Schwessinger, Benjamin; Li, Xiang; Ellinghaus, Thomas L; Chan, Leanne Jade G; Wei, Tong; Joe, Anna; Thomas, Nicholas; Pruitt, Rory; Adams, Paul D; Chern, Maw Sheng; Petzold, Christopher J; Liu, Chang C; Ronald, Pamela C
2016-04-18
Posttranslational modification (PTM) of proteins and peptides is important for diverse biological processes in plants and animals. The paucity of heterologous expression systems for PTMs and the technical challenges associated with chemical synthesis of these modified proteins has limited detailed molecular characterization and therapeutic applications. Here we describe an optimized system for expression of tyrosine-sulfated proteins in Escherichia coli and its application in a bio-based crop protection strategy in rice.
Schwessinger, Benjamin; Li, Xiang; Ellinghaus, Thomas L.; ...
2015-11-27
Posttranslational modification (PTM) of proteins and peptides is important for diverse biological processes in plants and animals. The paucity of heterologous expression systems for PTMs and the technical challenges associated with chemical synthesis of these modified proteins has limited detailed molecular characterization and therapeutic applications. Here we describe an optimized system for expression of tyrosine-sulfated proteins in Escherichia coli and its application in a bio-based crop protection strategy in rice.
Zhang, Bei; Rapolu, Madhusudhan; Liang, Zhibin; Han, Zhenlin; Williams, Philip G.; Su, Wei Wen
2015-01-01
Being able to coordinate co-expression of multiple proteins is necessary for a variety of important applications such as assembly of protein complexes, trait stacking, and metabolic engineering. Currently only few options are available for multiple recombinant protein co-expression, and most of them are not applicable to both prokaryotic and eukaryotic hosts. Here, we report a new polyprotein vector system that is based on a pair of self-excising mini-inteins fused in tandem, termed the dual-intein (DI) domain, to achieve synchronized co-expression of multiple proteins. The DI domain comprises an Ssp DnaE mini-intein N159A mutant and an Ssp DnaB mini-intein C1A mutant connected in tandem by a peptide linker to mediate efficient release of the flanking proteins via autocatalytic cleavage. Essentially complete release of constituent proteins, GFP and RFP (mCherry), from a polyprotein precursor, in bacterial, mammalian, and plant hosts was demonstrated. In addition, successful co-expression of GFP with chloramphenicol acetyltransferase, and thioredoxin with RFP, respectively, further substantiates the general applicability of the DI polyprotein system. Collectively, our results demonstrate the DI-based polyprotein technology as a highly valuable addition to the molecular toolbox for multi-protein co-expression which finds vast applications in biotechnology, biosciences, and biomedicine. PMID:25712612
In vitro protein expression: an emerging alternative to cell-based approaches.
He, Mingyue
2011-04-30
Protein expression remains a bottleneck in the production of proteins. Owing to several advantages, cell-free translation is emerging as an alternative to cell-based methods for the generation of proteins. Recent advances have led to many novel applications of cell-free systems in biotechnology, proteomics and fundamental biological research. This special issue of New Biotechnology describes recent advances in cell-free protein expression systems and their applications. Copyright © 2010 Elsevier B.V. All rights reserved.
The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.
Amarasinghe, Chinthaka; Jin, Jian-Ping
2015-01-01
Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement.
Ultrastructural localisation of protein interactions using conditionally stable nanobodies.
Ariotti, Nicholas; Rae, James; Giles, Nichole; Martel, Nick; Sierecki, Emma; Gambin, Yann; Hall, Thomas E; Parton, Robert G
2018-04-01
We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation ('EM split-fluorescent protein'), for localisation of protein-protein interactions at the ultrastructural level.
Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda
2013-08-02
We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.
Lu, Jian; Zhou, Bai-ping; Zhou, Yu-sen; Jiang, Xiao-ling; Wen, Li-xia; Le, Xiao-hua; Li, Bing; Xu, Liu-mei; Li, Li-xiong
2005-03-01
To clone and express nucleocapsid (N) protein of the severe acute respiratory syndrome (SARS)-associated coronavirus, and to evaluate its antigenicity and application value in the development of serological diagnostic test for SARS. SARS-associated coronavirus N protein gene was amplified from its genomic RNA by reverse transcript nested polymerase chain reaction (RT-nested-PCR) and cloned into pBAD/Thio-TOPO prokaryotic expression vector. The recombinant N fusion protein was expressed and purified, and its antigenicity and specificity was analyzed by Western Blot, to establish the recombinant N protein-based ELISA for detection of IgG antibodies to SARS-associated coronavirus, and SARS-associated coronavirus lysates-based ELISA was compared parallelly. The recombinant expression vector produced high level of the N fusion protein after induction, and that protein was purified successfully by affinity chromatography and displayed higher antigenicity and specificity as compared with whole virus lysates. The recombinant SARS-associated coronavirus N protein possessed better antigenicity and specificity and could be employed to establish a new, sensitive, and specific ELISA for SARS diagnosis.
Spisák, Sándor; Molnár, Béla; Galamb, Orsolya; Sipos, Ferenc; Tulassay, Zsolt
2007-08-12
The confirmation of mRNA expression studies by protein chips is of high recent interest due to the widespread application of expression arrays. In this review the advantages, technical limitations, application fields and the first results of the protein arrays is described. The bottlenecks of the increasing protein array applications are the fast decomposition of proteins, the problem with aspecific binding and the lack of amplification techniques. Today glass slide based printed, SELDI (MS) based, electrophoresis based and tissue microarray based technologies are available. The advantage of the glass slide based chips are the simplicity of their application, and relatively low cost. The SELDI based protein chip technique is applicable to minute amounts of starting material (<1 microg) but it is the most expensive one. The electrophoresis based techniques are still under intensive development. The tissue microarrays can be used for the parallel testing of the sensitivity and specificity of single antibodies on a broad range of histological specimens on a single slide. Protein chips were successfully used for serum tumor marker detection, cancer research, cell physiology studies and for the verification of mRNA expression studies. Protein chips are envisioned to be available for routine diagnostic applications if the ongoing technology development will be successful in increase in sensitivity, specificity, costs reduction and for the reduction of the necessary sample volume.
Cell-free protein synthesis: applications in proteomics and biotechnology.
He, Mingyue
2008-01-01
Protein production is one of the key steps in biotechnology and functional proteomics. Expression of proteins in heterologous hosts (such as in E. coli) is generally lengthy and costly. Cell-free protein synthesis is thus emerging as an attractive alternative. In addition to the simplicity and speed for protein production, cell-free expression allows generation of functional proteins that are difficult to produce by in vivo systems. Recent exploitation of cell-free systems enables novel development of technologies for rapid discovery of proteins with desirable properties from very large libraries. This article reviews the recent development in cell-free systems and their application in the large scale protein analysis.
Ultrastructural localisation of protein interactions using conditionally stable nanobodies
Ariotti, Nicholas; Rae, James; Giles, Nichole; Martel, Nick; Sierecki, Emma; Gambin, Yann; Parton, Robert G.
2018-01-01
We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation (‘EM split-fluorescent protein’), for localisation of protein–protein interactions at the ultrastructural level. PMID:29621251
Mizutani, Kimihiko
2015-01-01
Homologous recombination is a system for repairing the broken genomes of living organisms by connecting two DNA strands at their homologous sequences. Today, homologous recombination in yeast is used for plasmid construction as a substitute for traditional methods using restriction enzymes and ligases. This method has various advantages over the traditional method, including flexibility in the position of DNA insertion and ease of manipulation. Recently, the author of this review reported the construction of plasmids by homologous recombination in the methanol-utilizing yeast Pichia pastoris, which is known to be an excellent expression host for secretory proteins and membrane proteins. The method enabled high-throughput construction of expression systems of proteins using P. pastoris; the constructed expression systems were used to investigate the expression conditions of membrane proteins and to perform X-ray crystallography of secretory proteins. This review discusses the mechanisms and applications of homologous recombination, including the production of proteins for X-ray crystallography.
On risk and plant-based biopharmaceuticals.
Peterson, Robert K D; Arntzen, Charles J
2004-02-01
Research into plant-based expression of pharmaceutical proteins is proceeding at a blistering pace. Indeed, plants expressing pharmaceutical proteins are currently being grown in field environments throughout the USA. But how are these plants and proteins being assessed for environmental risk and how are they being regulated? Here, we examine the applicability of the risk assessment paradigm for assessing human and ecological risks from field-grown transgenic plants that express pharmaceutical proteins.
Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi
2013-11-04
High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering application of this system in yeast.
Gupta, Sanjeev K; Shukla, Pratyoosh
2016-12-01
Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.
Advances in recombinant protein expression for use in pharmaceutical research.
Assenberg, Rene; Wan, Paul T; Geisse, Sabine; Mayr, Lorenz M
2013-06-01
Protein production for structural and biophysical studies, functional assays, biomarkers, mechanistic studies in vitro and in vivo, but also for therapeutic applications in pharma, biotech and academia has evolved into a mature discipline in recent years. Due to the increased emphasis on biopharmaceuticals, the growing demand for proteins used for structural and biophysical studies, the impact of genomics technologies on the analysis of large sets of structurally diverse proteins, and the increasing complexity of disease targets, the interest in innovative approaches for the expression, purification and characterisation of recombinant proteins has steadily increased over the years. In this review, we summarise recent developments in the field of recombinant protein expression for research use in pharma, biotech and academia. We focus mostly on the latest developments for protein expression in the most widely used expression systems: Escherichia coli (E. coli), insect cell expression using the Baculovirus Expression Vector System (BEVS) and, finally, transient and stable expression of recombinant proteins in mammalian cells. Copyright © 2013. Published by Elsevier Ltd.
Yin, Yanchen; Mao, Youzhi; Yin, Xiaolie; Gao, Bei; Wei, Dongzhi
2015-07-01
The filamentous fungus Aspergillus oryzae is a well-known expression host used to express homologous and heterologous proteins in a number of industrial applications. To facilitate higher yields of proteins of interest, we constructed the pAsOP vector to express heterologous proteins in A. oryzae. pAsOP carries a selectable marker, pyrG, derived from Aspergillus nidulans, and a strong promoter and a terminator of the amyB gene derived from A. oryzae. pAsOP transformed A. oryzae efficiently via the PEG-CaCl2-mediated transformation method. As proof of concept, green fluorescent protein (GFP) was successfully expressed in A. oryzae transformed by pAsOP-GFP. Additionally, we identified a novel fungal α-amylase (PcAmy) gene from Penicillium sp. and cloned the gene into the vector. After transformation by pAsOPPcAmy, the α-amylase PcAmy from Penicillium sp. was successfully expressed in a heterologous host system for the first time. The α-amylase activity in the A. oryzae transformant was increased by 62.3% compared with the untransformed A. oryzae control. The PcAmy protein produced in the system had an optimum pH of 5.0 and optimum temperature of 30°C. As a cold-adapted enzyme, PcAmy shows potential value in industrial applications because of its high catalytic activity at low temperature. Furthermore, the expression vector reported in this study provides promising utility for further scientific research and biotechnological applications.
Expression of a soluble truncated Vargula luciferase in Escherichia coli
Hunt, Eric A.; Moutsiopoulou, Angeliki; Broyles, David; Head, Trajen; Dikici, Emre; Daunert, Sylvia; Deo, Sapna K.
2017-01-01
Marine luciferases are regularly employed as useful reporter molecules across a range of various applications. However, attempts to transition expression from their native eukaryotic environment into a more economical prokaryotic, i.e. bacterial, expression system often presents several challenges. Specifically, bacterial protein expression inherently lacks chaperone proteins to aid in the folding process, while Escherichia coli presents a reducing cytoplasmic environment in. These conditions contribute to the inhibition of proper folding of cysteine-rich proteins, leading to incorrect tertiary structure and ultimately inactive and potentially insoluble protein. Vargula luciferase (Vluc) is a cysteine-rich marine luciferase that exhibits glow-type bioluminescence through a reaction between its unique native substrate and molecular oxygen. Because most other commonly used bioluminescent proteins exhibit flash-type emission kinetics, this emission characteristic of Vluc is desirable for high-throughput applications where stability of emission is required for the duration of data collection. A truncated form of Vluc that retains considerable bioluminescence activity (55%) compared to the native full-length protein has been reported in the literature. However, expression and purification of this luciferase from bacterial systems has proven difficult. Herein, we demonstrate the expression and purification of a truncated form of Vluc from E. coli. This truncated Vluc (tVluc) was subsequently characterized in terms of both its biophysical and bioluminescence properties. PMID:28108349
Improving membrane protein expression by optimizing integration efficiency
2017-01-01
The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were 4-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effects of double mutations on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. PMID:28918393
Jang, Soo-Won; Kim, Yoonha; Khan, Abdul Latif; Na, Chae-In; Lee, In-Jung
2018-01-04
Silicon (Si) has been known to regulate plant growth; however, the underlying mechanisms of short-term exogenous Si application on the regulation of calcium (Ca) and nitrogen (N), endogenous phytohormones, and expression of essential proteins have been little understood. Exogenous Si application significantly increased Si content as compared to the control. Among Si treatments, 1.0 mM Si application showed increased phosphorus content as compared to other Si treatments (0.5, 2.0, and 4.0 mM). However, Ca accumulation was significantly reduced (1.8- to 2.0-fold) at the third-leaf stage in the control, whereas all Si treatments exhibited a dose-dependent increase in Ca as determined by radioisotope 45 Ca analysis. Similarly, the radioisotope 15 N for nitrogen localization and uptake showed a varying but reduced response (ranging from 1.03-10.8%) to different Si concentrations as compared to 15 N application alone. Physiologically active endogenous gibberellin (GA 1 ) was also significantly higher with exogenous Si (1.0 mM) as compared to GA 20 and the control plants. A similar response was noted for endogenous jasmonic and salicylic acid synthesis in rice plants with Si application. Proteomic analysis revealed the activation of several essential proteins, such as Fe-S precursor protein, putative thioredoxin, Ser/Thr phosphatase, glucose-6-phosphate isomerase (G6P), and importin alpha-1b (Imp3), with Si application. Among the most-expressed proteins, confirmatory gene expression analysis for G6P and Imp3 showed a similar response to those of the Si treatments. In conclusion, the current results suggest that short-term exogenous Si can significantly regulate rice plant physiology by influencing Ca, N, endogenous phytohormones, and proteins, and that 1.0 mM Si application is more beneficial to plants than higher concentrations.
Bhatla, S C; Kaushik, V; Yadav, M K
2010-01-01
Oil bodies obtained from oilseeds have been exploited for a variety of applications in biotechnology in the recent past. These applications are based on their non-coalescing nature, ease of extraction and presence of unique membrane proteins-oleosins. In suspension, oil bodies exist as separate entities and, hence, they can serve as emulsifying agent for a wide variety of products, ranging from vaccines, food, cosmetics and personal care products. Oil bodies have found significant uses in the production and purification of recombinant proteins with specific applications. The desired protein can be targeted to oil bodies in oilseeds by affinity tag or by fusing it directly to the N or C terminal of oleosins. Upon targeting, the hydrophobic domain of oleosin embeds into the TAG matrix of oil body, whereas the protein fused with N and/or C termini is exposed on the oil body surface, where it acquires correct confirmation spontaneously. Oil bodies with the attached foreign protein can be separated easily from other cellular components. They can be used directly or the protein can be cleaved from the fusion. The desired protein can be a pharmaceutically important polypeptide (e.g. hirudin, insulin and epidermal growth factor), a neutraceutical polypeptide (somatotropin), a commercially important enzyme (e.g. xylanase), a protein important for improvement of crops (e.g. chitinase) or a multimeric protein. These applications can further be widened as oil bodies can also be made artificially and oleosin gene can be expressed in bacterial systems. Thus, a protein fused to oleosin can be expressed in Escherichia coli and after cell lysis it can be incorporated into artificial oil bodies, thereby facilitating the extraction and purification of the desired protein. Artificial oil bodies can also be used for encapsulation of probiotics. The manipulation of oleosin gene for the expression of polyoleosins has further expanded the arena of the applications of oil bodies in biotechnology. (c) 2009 Elsevier Inc. All rights reserved.
Viral vectors for production of recombinant proteins in plants.
Lico, Chiara; Chen, Qiang; Santi, Luca
2008-08-01
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.
Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.
Fabrick, Jeffrey A; Hull, J Joe
2017-04-20
Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.
Young, Carissa L; Britton, Zachary T; Robinson, Anne S
2012-05-01
Protein fusion tags are indispensible tools used to improve recombinant protein expression yields, enable protein purification, and accelerate the characterization of protein structure and function. Solubility-enhancing tags, genetically engineered epitopes, and recombinant endoproteases have resulted in a versatile array of combinatorial elements that facilitate protein detection and purification in microbial hosts. In this comprehensive review, we evaluate the most frequently used solubility-enhancing and affinity tags. Furthermore, we provide summaries of well-characterized purification strategies that have been used to increase product yields and have widespread application in many areas of biotechnology including drug discovery, therapeutics, and pharmacology. This review serves as an excellent literature reference for those working on protein fusion tags. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yan; Zhang, Ting; Feng, Yanye; Lu, Xiuxiu; Lan, Wenxian; Wang, Jufang; Wu, Houming; Cao, Chunyang; Wang, Xiaoning
2011-01-01
The production of recombinant proteins in a large scale is important for protein functional and structural studies, particularly by using Escherichia coli over-expression systems; however, approximate 70% of recombinant proteins are over-expressed as insoluble inclusion bodies. Here we presented an efficient method for generating soluble proteins from inclusion bodies by using two steps of denaturation and one step of refolding. We first demonstrated the advantages of this method over a conventional procedure with one denaturation step and one refolding step using three proteins with different folding properties. The refolded proteins were found to be active using in vitro tests and a bioassay. We then tested the general applicability of this method by analyzing 88 proteins from human and other organisms, all of which were expressed as inclusion bodies. We found that about 76% of these proteins were refolded with an average of >75% yield of soluble proteins. This “two-step-denaturing and refolding” (2DR) method is simple, highly efficient and generally applicable; it can be utilized to obtain active recombinant proteins for both basic research and industrial purposes. PMID:21829569
Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production
USDA-ARS?s Scientific Manuscript database
Infiltration of tobacco leaves with a suspension of Agrobacterium tumefaciens harboring a binary plant expression plasmid provides a convenient method for laboratory scale protein production. When expressing plant cell wall degrading enzymes in the widely used tobacco (Nicotiana benthamiana), diffic...
Vectors for co-expression of an unrestricted number of proteins
Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad
2007-01-01
A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810
Expression of a soluble truncated Vargula luciferase in Escherichia coli.
Hunt, Eric A; Moutsiopoulou, Angeliki; Broyles, David; Head, Trajen; Dikici, Emre; Daunert, Sylvia; Deo, Sapna K
2017-04-01
Marine luciferases are regularly employed as useful reporter molecules across a range of various applications. However, attempts to transition expression from their native eukaryotic environment into a more economical prokaryotic, i.e. bacterial, expression system often presents several challenges. Specifically, bacterial protein expression inherently lacks chaperone proteins to aid in the folding process, while Escherichia coli presents a reducing cytoplasmic environment in. These conditions contribute to the inhibition of proper folding of cysteine-rich proteins, leading to incorrect tertiary structure and ultimately inactive and potentially insoluble protein. Vargula luciferase (Vluc) is a cysteine-rich marine luciferase that exhibits glow-type bioluminescence through a reaction between its unique native substrate and molecular oxygen. Because most other commonly used bioluminescent proteins exhibit flash-type emission kinetics, this emission characteristic of Vluc is desirable for high-throughput applications where stability of emission is required for the duration of data collection. A truncated form of Vluc that retains considerable bioluminescence activity (55%) compared to the native full-length protein has been reported in the literature. However, expression and purification of this luciferase from bacterial systems has proven difficult. Herein, we demonstrate the expression and purification of a truncated form of Vluc from E. coli. This truncated Vluc (tVluc) was subsequently characterized in terms of both its biophysical and bioluminescence properties. Copyright © 2017 Elsevier Inc. All rights reserved.
El-Makakey, Ayman M; El-Sharaby, Radwa M; Hassan, Mohammed H; Balbaa, Alaa
2017-03-01
Mitogen-Activated Protein Kinases (MAPKs) consist of three major signaling members: extracellular signal-regulated kinase (ERK), p38 and C-JUN N-terminal kinase (JNK). We investigated physiological effects of Pulsed Electromagnetic Field Therapy (PEMFT) and Low Level Laser Therapy (LLLT) on human body, adopting the expression level of mitogen-activated protein kinases as an indicator via assessment of the activation levels of three major families of MAPKS, ERK, p38 and JNK in the peripheral lymphocytes of patients before and after the therapies. Assessment for the expression levels of MAPKs families' were done, in the peripheral lymphocytes of patients recently have appendectomy, using flow cytometric analysis of multiple signaling pathways, pre and post LLLT and PEMFT application (twice daily for 6 successive days) on the appendectomy wound. There were non-significant differences in the expression levels of MAPKs families' pre- therapies application. But there were significant increase in the ERK expression levels post application of LLLT compared to its pre application (p<0.01). Also, there was significant increase in the ERK, p38 and C-Jun N terminal expression level values post application of PEMFT compared to its pre application expression levels (p<0.01 for each). The present study demonstrates that PEMFT has a powerful healing effect more than LLLT as it increase the activation of ERK, P38 and C-Jun-N Terminal while LLLT only increase the activation of ERK. LLLT has more potent pain decreasing effect than PEMFT as it does not activate P38 pathway like PEMFT.
Application of Protein Expression Profiling to Screen Chemicals for Androgenic Activity.
Protein expression changes can be used for detection of biomarkers that can be applied diagnostically to screen chemicals for endocrine modifying activity. In this study, Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) coupled with a s...
Pacheco, Benny; Crombet, Lissete; Loppnau, Peter; Cossar, Doug
2012-01-01
Heterologous protein expression in Escherichia coli is commonly used to obtain recombinant proteins for a variety of downstream applications. However, many proteins are not, or are only poorly, expressed in soluble form. High level expression often leads to the formation of inclusion bodies and an inactive product that needs to be refolded. By screening the solubility pattern for a set of 71 target proteins in different host-strains and varying parameters such as location of purification tag, promoter and induction temperature we propose a protocol with a success rate of 77% of clones returning a soluble protein. This protocol is particularly suitable for high-throughput screening with the goal to obtain soluble protein product for e.g. structure determination. Copyright © 2011 Elsevier Inc. All rights reserved.
Membrane Protein Production in E. coli Lysates in Presence of Preassembled Nanodiscs.
Rues, Ralf-Bernhardt; Gräwe, Alexander; Henrich, Erik; Bernhard, Frank
2017-01-01
Cell-free expression allows to synthesize membrane proteins in completely new formats that can relatively easily be customized for particular applications. Amphiphilic superstructures such as micelles, lipomicelles, or nanodiscs can be provided as nano-devices for the solubilization of membrane proteins. Defined empty bilayers in the form of nanodiscs offer native like environments for membrane proteins, supporting functional folding, proper oligomeric assembly as well as stability. Even very difficult and detergent-sensitive membrane proteins can be addressed by the combination of nanodisc technology with efficient cell-free expression systems as the direct co-translational insertion of nascent membrane proteins into supplied preassembled nanodiscs is possible. This chapter provides updated protocols for the synthesis of membrane proteins in presence of preassembled nanodiscs suitable for emerging applications such as screening of lipid effects on membrane protein function and the modulation of oligomeric complex formation.
Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B
2006-03-06
Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics.
Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B
2006-01-01
Background Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. Results To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. Conclusion The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics. PMID:16519801
Dual transcriptional-translational cascade permits cellular level tuneable expression control
Morra, Rosa; Shankar, Jayendra; Robinson, Christopher J.; Halliwell, Samantha; Butler, Lisa; Upton, Mathew; Hay, Sam; Micklefield, Jason; Dixon, Neil
2016-01-01
The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems. PMID:26405200
Application of an E. coli signal sequence as a versatile inclusion body tag.
Jong, Wouter S P; Vikström, David; Houben, Diane; van den Berg van Saparoea, H Bart; de Gier, Jan-Willem; Luirink, Joen
2017-03-21
Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs.
Tunable Protein Stabilization In Vivo Mediated by Shield-1 in Transgenic Medaka
Froschauer, Alexander; Kube, Lisa; Kegler, Alexandra; Rieger, Christiane; Gutzeit, Herwig O.
2015-01-01
Techniques for conditional gene or protein expression are important tools in developmental biology and in the analysis of physiology and disease. On the protein level, the tunable and reversible expression of proteins can be achieved by the fusion of the protein of interest to a destabilizing domain (DD). In the absence of its specific ligand (Shield-1), the protein is degraded by the proteasome. The DD-Shield system has proven to be an excellent tool to regulate the expression of proteins of interests in mammalian systems but has not been applied in teleosts like the medaka. We present the application of the DD-Shield technique in transgenic medaka and show the ubiquitous conditional expression throughout life. Shield-1 administration to the water leads to concentration-dependent induction of a YFP reporter gene in various organs and in spermatogonia at the cellular level. PMID:26148066
Protein and genome evolution in Mammalian cells for biotechnology applications.
Majors, Brian S; Chiang, Gisela G; Betenbaugh, Michael J
2009-06-01
Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.
Development and characterization of a eukaryotic expression system for human type II procollagen.
Wieczorek, Andrew; Rezaei, Naghmeh; Chan, Clara K; Xu, Chuan; Panwar, Preety; Brömme, Dieter; Merschrod S, Erika F; Forde, Nancy R
2015-12-15
Triple helical collagens are the most abundant structural protein in vertebrates and are widely used as biomaterials for a variety of applications including drug delivery and cellular and tissue engineering. In these applications, the mechanics of this hierarchically structured protein play a key role, as does its chemical composition. To facilitate investigation into how gene mutations of collagen lead to disease as well as the rational development of tunable mechanical and chemical properties of this full-length protein, production of recombinant expressed protein is required. Here, we present a human type II procollagen expression system that produces full-length procollagen utilizing a previously characterized human fibrosarcoma cell line for production. The system exploits a non-covalently linked fluorescence readout for gene expression to facilitate screening of cell lines. Biochemical and biophysical characterization of the secreted, purified protein are used to demonstrate the proper formation and function of the protein. Assays to demonstrate fidelity include proteolytic digestion, mass spectrometric sequence and posttranslational composition analysis, circular dichroism spectroscopy, single-molecule stretching with optical tweezers, atomic-force microscopy imaging of fibril assembly, and transmission electron microscopy imaging of self-assembled fibrils. Using a mammalian expression system, we produced full-length recombinant human type II procollagen. The integrity of the collagen preparation was verified by various structural and degradation assays. This system provides a platform from which to explore new directions in collagen manipulation.
Wang, Ting-Ting; Wang, Xi-Hui; Fan, Zhong-Ling; Chen, Jin-Long; Cao, Bing-Lei; Kong, Na; Hu, Jing-Dong; Zhao, Hong-Kun
2011-02-01
To express goat IL-18 in insect/baculovirus and detect the bioactivity of the recombinant protein. The mature goat interleukin-18(gIL-18) gene was cloned into the baculovirus transfer vector pFastBac Dual, and then the resulting eukaryotic expression plasmid pFastBac Dual-gIL18 was transformed into DH10Bac, followed by the identification of Bacmid-gIL18 recombinat plosmid by three antibiotics and blue-white patch. Finally, the recombinant bacmid was transfected into sf9 insect cells by Cellfectin and the transfected cells were harvested at different times. Then the expressed protein was identified by SDS-PAGE, Western blot and bioactivity assay. The recombinant protein recognized and bound to its specific antibody. Bioactivity assay showed that the recombinant protein stimulated the proliferation of lymphocytes and induced IFN-γproduction in spleen lymphocytes. The mature gIL-18 protein has been expressed successfully in insect/baculovirus expression system, and have good immunogenicity and bioactivity. The study paves a way for application of gIL-18 as an immunomodulator or immune adjuvant.
Characteristics and safety assessment of intractable proteins in genetically modified crops.
Bushey, Dean F; Bannon, Gary A; Delaney, Bryan F; Graser, Gerson; Hefford, Mary; Jiang, Xiaoxu; Lee, Thomas C; Madduri, Krishna M; Pariza, Michael; Privalle, Laura S; Ranjan, Rakesh; Saab-Rincon, Gloria; Schafer, Barry W; Thelen, Jay J; Zhang, John X Q; Harper, Marc S
2014-07-01
Genetically modified (GM) crops may contain newly expressed proteins that are described as "intractable". Safety assessment of these proteins may require some adaptations to the current assessment procedures. Intractable proteins are defined here as those proteins with properties that make it extremely difficult or impossible with current methods to express in heterologous systems; isolate, purify, or concentrate; quantify (due to low levels); demonstrate biological activity; or prove equivalency with plant proteins. Five classes of intractable proteins are discussed here: (1) membrane proteins, (2) signaling proteins, (3) transcription factors, (4) N-glycosylated proteins, and (5) resistance proteins (R-proteins, plant pathogen recognition proteins that activate innate immune responses). While the basic tiered weight-of-evidence approach for assessing the safety of GM crops proposed by the International Life Sciences Institute (ILSI) in 2008 is applicable to intractable proteins, new or modified methods may be required. For example, the first two steps in Tier I (hazard identification) analysis, gathering of applicable history of safe use (HOSU) information and bioinformatics analysis, do not require protein isolation. The extremely low level of expression of most intractable proteins should be taken into account while assessing safety of the intractable protein in GM crops. If Tier II (hazard characterization) analyses requiring animal feeding are judged to be necessary, alternatives to feeding high doses of pure protein may be needed. These alternatives are discussed here. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
The Interrelationship between Promoter Strength, Gene Expression, and Growth Rate
Klesmith, Justin R.; Detwiler, Emily E.; Tomek, Kyle J.; Whitehead, Timothy A.
2014-01-01
In exponentially growing bacteria, expression of heterologous protein impedes cellular growth rates. Quantitative understanding of the relationship between expression and growth rate will advance our ability to forward engineer bacteria, important for metabolic engineering and synthetic biology applications. Recently, a work described a scaling model based on optimal allocation of ribosomes for protein translation. This model quantitatively predicts a linear relationship between microbial growth rate and heterologous protein expression with no free parameters. With the aim of validating this model, we have rigorously quantified the fitness cost of gene expression by using a library of synthetic constitutive promoters to drive expression of two separate proteins (eGFP and amiE) in E. coli in different strains and growth media. In all cases, we demonstrate that the fitness cost is consistent with the previous findings. We expand upon the previous theory by introducing a simple promoter activity model to quantitatively predict how basal promoter strength relates to growth rate and protein expression. We then estimate the amount of protein expression needed to support high flux through a heterologous metabolic pathway and predict the sizable fitness cost associated with enzyme production. This work has broad implications across applied biological sciences because it allows for prediction of the interplay between promoter strength, protein expression, and the resulting cost to microbial growth rates. PMID:25286161
Bessling, Seneca; Thielen, Peter; Zhang, Sherry; Wolfe, Joshua
2017-01-01
Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability. PMID:28446704
Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen
2016-01-01
In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.
Moghadam, Ali; Niazi, Ali; Afsharifar, Alireza; Taghavi, Seyed Mohsen
2016-01-01
In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP) with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents. PMID:27459300
Elena, Claudia; Ravasi, Pablo; Castelli, María E.; Peirú, Salvador; Menzella, Hugo G.
2014-01-01
The efficient production of functional proteins in heterologous hosts is one of the major bases of modern biotechnology. Unfortunately, many genes are difficult to express outside their original context. Due to their apparent “silent” nature, synonymous codon substitutions have long been thought to be trivial. In recent years, this dogma has been refuted by evidence that codon replacement can have a significant impact on gene expression levels and protein folding. In the past decade, considerable advances in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences, dramatically improving the likelihood of high protein expression. This technology significantly impacts the economic feasibility of microbial-based biotechnological processes by, for example, increasing the volumetric productivities of recombinant proteins or facilitating the redesign of novel biosynthetic routes for the production of metabolites. This review discusses the current applications of this technology, particularly those regarding the production of small molecules and industrially relevant recombinant enzymes. Suggestions for future research and potential uses are provided as well. PMID:24550894
Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos
2017-01-01
During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.
Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos
2017-01-01
During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919
Douillard, François P; Mahony, Jennifer; Campanacci, Valérie; Cambillau, Christian; van Sinderen, Douwe
2011-09-01
Over the last 10 years, the NIsin Controlled Expression (NICE) system has been extensively used in the food-grade bacterium Lactococcus lactis subsp. cremoris to produce homologous and heterologous proteins for academic and biotechnological purposes. Although various L. lactis molecular tools have been developed, no expression vectors harboring the popular Gateway recombination system are currently available for this widely used cloning host. In this study, we constructed two expression vectors that combine the NICE and the Gateway recombination systems and we tested their applicability by recombining and over-expressing genes encoding structural proteins of lactococcal phages Tuc2009 and TP901-1. Over-expressed phage proteins were analyzed by immunoblotting and purified by His-tag affinity chromatography with protein productions yielding 2.8-3.7 mg/l of culture. This therefore is the first description of L. lactis NICE expression vectors which integrate the Gateway cloning technology and which are suitable for the production of sufficient amounts of proteins to facilitate subsequent structural and functional analyses. Copyright © 2011 Elsevier Inc. All rights reserved.
Rozov, S M; Permyakova, N V; Deineko, E V
2018-03-01
Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.
Analysis of Pacific oyster larval proteome and its response to high-CO2.
Dineshram, R; Wong, Kelvin K W; Xiao, Shu; Yu, Ziniu; Qian, Pei Yuan; Thiyagarajan, Vengatesen
2012-10-01
Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae. Copyright © 2012 Elsevier Ltd. All rights reserved.
Specific GFP-binding artificial proteins (αRep): a new tool for in vitro to live cell applications
Chevrel, Anne; Urvoas, Agathe; de la Sierra-Gallay, Ines Li; Aumont-Nicaise, Magali; Moutel, Sandrine; Desmadril, Michel; Perez, Franck; Gautreau, Alexis; van Tilbeurgh, Herman; Minard, Philippe; Valerio-Lepiniec, Marie
2015-01-01
A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly sequestrated by their cognate target protein addressed to various cell compartments. These results suggest that αRep proteins with tailor-made specificity can be selected and used in living cells to track, modulate or interfere with intracellular processes. PMID:26182430
Zhang, Xiaoyue; Xu, Keyan; Ou, Yanmei; Xu, Xiaodong; Chen, Hongying
2018-05-02
The Baculovirus expression vector system (BEVS) is a transient expression platform for recombinant protein production in insect cells. Baculovirus infection of insect cells will shutoff host translation and induce apoptosis and lead to the termination of protein expression. Previous reports have demonstrated the enhancement of protein yield in BEVS using stable insect cell lines expressing interference RNA to suppress the expression of caspase-1. In this study, short-hairpin RNA (shRNA) expression cassettes targeting Spodoptera frugiperda caspase-1 (Sf-caspase-1) were constructed and inserted into an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vector. Using the recombinant baculovirus vectors, we detected the suppression of Sf-caspase-1 expression and cell apoptosis. Green fluorescent protein (GFP), Discosoma sp. Red (DsRed) and firefly luciferase were then expressed as reporter proteins. The results showed that suppression of apoptosis enhanced the accumulation of exogenous proteins at 2 and 3 days post infection. After 4 days post infection, the activity of the reporter proteins remained higher in BEVS using the baculovirus carrying shRNA in comparison with the control without shRNA, but the accumulated protein levels showed no obvious difference between them, suggesting that apoptosis suppression resulted in improved protein folding rather than translation efficiency at the very late stage of baculovirus infection. The baculovirus vector developed in this study would be a useful tool for the production of active proteins suitable for structural and functional studies or pharmaceutical applications in Sf9 cells, and it also has the potential to be adapted for the improvement of protein expression in different insect cell lines that can be infected by AcMNPV.
Namvar, Simin; Fathollahi, Yaghoub; Javan, Mohammad; Zeraati, Maryam; Mohammad-Zadeh, Mohammad; Shojaei, Amir; Mirnajafi-Zadeh, Javad
2017-04-15
G-protein coupled receptors may have a role in mediating the antiepileptogenic effect of low-frequency stimulation (LFS) on kindling acquisition. This effect is accompanied by changes at the intracellular level of cAMP. In the present study, the effect of rolipram as a phosphodiesterase inhibitor on the antiepileptogenic effect of LFS was investigated. Meanwhile, the expression of α s - and α i -subunit of G proteins and regulators of G-protein signaling (RGS) proteins following LFS application was measured. Male Wistar rats were kindled by perforant path stimulation in a semi-rapid kindling manner (12 stimulations per day) during a period of 6days. Application of LFS (0.1ms pulse duration at 1Hz, 200 pulses, 50-150μA, 5min after termination of daily kindling stimulations) to the perforant path retarded the kindling development and prevented the kindling-induced potentiation and kindling-induced changes in paired pulse indices in the dentate gyrus. Intra-cerebroventricular microinjection of rolipram (0.25μM) partially prevented these LFS effects. Twenty-four hours after the last kindling stimulation, the dentate gyrus was removed and changes in protein expression were measured by Western blotting. There was no significant difference in the expression of α-subunit of G s and G i/o proteins in different experimental groups. However, application of LFS during the kindling procedure decreased the expression RGS4 and RGS10 proteins (that reduce the activity of G i/o ) and prevented the kindling-induced decrease of RGS2 protein (which reduces the G s activity). Therefore, it can be postulated that the G i/o protein signaling pathways may be involved in antiepileptogenetic effect of LFS, and this is why decreasing the cAMP metabolism by rolipram attenuates this effect of LFS. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing
2017-02-20
We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.
NASA Astrophysics Data System (ADS)
Hotowy, Anna; Sawosz, Ewa; Pineda, Lane; Sawosz, Filip; Grodzik, Marta; Chwalibog, André
2012-07-01
Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level ( FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA ( P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.
Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems
Zemella, Anne; Thoring, Lena; Hoffmeister, Christian; Kubick, Stefan
2015-01-01
From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field. PMID:26478227
Schwarz-Schilling, Matthaeus; Dupin, Aurore; Chizzolini, Fabio; Krishnan, Swati; Mansy, Sheref S; Simmel, Friedrich C
2018-04-11
Molecular complexes composed of RNA molecules and proteins are promising multifunctional nanostructures for a wide variety of applications in biological cells or in artificial cellular systems. In this study, we systematically address some of the challenges associated with the expression and assembly of such hybrid structures using cell-free gene expression systems. As a model structure, we investigated a pRNA-derived RNA scaffold functionalized with four distinct aptamers, three of which bind to proteins, streptavidin and two fluorescent proteins, while one binds the small molecule dye malachite green (MG). Using MG fluorescence and Förster resonance energy transfer (FRET) between the RNA-scaffolded proteins, we assess critical assembly parameters such as chemical stability, binding efficiency, and also resource sharing effects within the reaction compartment. We then optimize simultaneous expression and coassembly of the RNA-protein nanostructure within a single-compartment cell-free gene expression system. We demonstrate expression and assembly of the multicomponent nanostructures inside of emulsion droplets and their aptamer-mediated localization onto streptavidin-coated substrates, plus the successful assembly of the hybrid structures inside of bacterial cells.
Meek, Megan E; Van Dolah, Frances M
2016-05-01
Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.
Mallery, Susan R.; Zwick, Jared C.; Pei, Ping; Tong, Meng; Larsen, Peter E.; Shumway, Brian S.; Lu, Bo; Fields, Henry W.; Mumper, Russell J.; Stoner, Gary D.
2010-01-01
Reduced expression of proapoptotic and terminal differentiation genes in conjunction with increased levels of the proinflammatory and angiogenesis-inducing enzymes, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS), correlate with malignant transformation of oral intraepithelial neoplasia (IEN). Accordingly, this study investigated the effects of a 10% (w/w) freeze-dried black raspberry gel on oral IEN histopathology, gene expression profiles, intraepithelial COX-2 and iNOS proteins, and microvascular densities. Our laboratories have shown that freeze-dried black raspberries possess antioxidant properties and also induce keratinocyte apoptosis and terminal differentiation. Oral IEN tissues were hemisected to provide samples for pretreatment diagnoses and establish baseline biochemical and molecular variables. Treatment of the remaining lesional tissue (0.5 g gel applied four times daily for 6 weeks) began 1 week after the initial biopsy. RNA was isolated from snap-frozen IEN lesions for microarray analyses, followed by quantitative reverse transcription-PCR validation. Additional epithelial gene-specific quantitative reverse transcription-PCR analyses facilitated the assessment of target tissue treatment effects. Surface epithelial COX-2 and iNOS protein levels and microvascular densities were determined by image analysis quantified immunohistochemistry. Topical berry gel application uniformly suppressed genes associated with RNA processing, growth factor recycling, and inhibition of apoptosis. Although the majority of participants showed posttreatment decreases in epithelial iNOS and COX-2 proteins, only COX-2 reductions were statistically significant. These data show that berry gel application modulated oral IEN gene expression profiles, ultimately reducing epithelial COX-2 protein. In a patient subset, berry gel application also reduced vascular densities in the superficial connective tissues and induced genes associated with keratinocyte terminal differentiation. PMID:18559542
Druzinec, Damir; Salzig, Denise; Brix, Alexander; Kraume, Matthias; Vilcinskas, Andreas; Kollewe, Christian; Czermak, Peter
2013-01-01
Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes.
Kofuku, Yutaka; Yokomizo, Tomoki; Imai, Shunsuke; Shiraishi, Yutaro; Natsume, Mei; Itoh, Hiroaki; Inoue, Masayuki; Nakata, Kunio; Igarashi, Shunsuke; Yamaguchi, Hideyuki; Mizukoshi, Toshimi; Suzuki, Ei-Ichiro; Ueda, Takumi; Shimada, Ichio
2018-03-08
G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl- 13 C 1 H 3 -labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of β 2 -adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelb, Bruce D; Tartaglia, Marco; Pennacchio, Len
Diagnostic and therapeutic applications for Noonan Syndrome are described. The diagnostic and therapeutic applications are based on certain mutations in a RAS-specific guanine nucleotide exchange factor gene SOS1 or its expression product. The diagnostic and therapeutic applications are also based on certain mutations in a serine/threonine protein kinase gene RAF1 or its expression product thereof. Also described are nucleotide sequences, amino acid sequences, probes, and primers related to RAF1 or SOS1, and variants thereof, as well as host cells expressing such variants.
Construction and development of an auto-regulatory gene expression system in Bacillus subtilis.
Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Zhou, Li; Guo, Junling; Hu, Xu; Xiao, Guoping; Zhou, Zhemin
2015-09-21
Bacillus subtilis is an all-important Gram-positive bacterium of valuable biotechnological utility that has been widely used to over-produce industrially and pharmaceutically relevant proteins. There are a variety of expression systems in terms of types of transcriptional patterns, among which the auto-inducible and growth-phase-dependent promoters are gaining increasing favor due to their inducer-independent feature, allowing for the potential to industrially scale-up. To expand the applicability of the auto-inducible expression system, a novel auto-regulatory expression system coupled with cell density was constructed and developed in B. subtilis using the quorum-sensing related promoter srfA (PsrfA). The promoter of the srf operon was used to construct an expression plasmid with the green fluorescent protein (GFP) downstream of PsrfA. The expression displayed a cell-density-dependent pattern in that GFP had a fairly low expression level at the early exponential stage and was highly expressed at the late exponential as well as the stationary stages. Moreover, the recombinant system had a similar expression pattern in wild-type B. subtilis 168, WB600, and WB800, as well as in B. subtilis 168 derivative strain 1681, with the complete deletion of PsrfA, indicating the excellent compatibility of this system. Noticeably, the expression strength of PsrfA was enhanced by optimizing the -10 and -35 core sequence by substituting both sequences with consensus sequences. Importantly, the expression pattern was successfully developed in an auto-regulatory cell-density coupling system by the simple addition of glucose in which GFP could not be strongly expressed until glucose was depleted, resulting in a greater amount of the GFP product and increased cell density. The expression system was eventually tested by the successful over-production of aminopeptidase to a desired level. The auto-regulatory cell density coupling system that is mediated by PsrfA is a novel expression system that has an expression pattern that is split between cell-growth and over-expression, leading to an increase in cell density and elevating the overall expression levels of heterologously expressed proteins. The broad applicability of this system and inducer-free expression property in B. subtilis facilitate the industrial scale-up and medical applications for the over-production of a variety of desired proteins.
1988-12-01
correctly expresses, processes , and transports all M segment proteins (virus 7; r-eferences 2,3) were pulse -labeled with 35S- methionine and subsequently...c-ranslationii~y processed to yield the mature proteins. The first ATG codon of tP’o _iinle OrF is required for production of the 78kd protein...employed for the expression of the 78kd and l4kd proteins serves to control glycosylation arnd proteolytic. processing of the resultant poI~peptidles
Hassaïne, Ghérici; Deluz, Cédric; Grasso, Luigino; Wyss, Romain; Hovius, Ruud; Stahlberg, Henning; Tomizaki, Takashi; Desmyter, Aline; Moreau, Christophe; Peclinovska, Lucie; Minniberger, Sonja; Mebarki, Lamia; Li, Xiao-Dan; Vogel, Horst; Nury, Hugues
2017-01-01
There is growing interest in the use of mammalian protein expression systems, and in the use of antibody-derived chaperones, for structural studies. Here, we describe protocols ranging from the production of recombinant membrane proteins in stable inducible cell lines to biophysical characterization of purified membrane proteins in complex with llama antibody domains. These protocols were used to solve the structure of the mouse 5-HT3 serotonin receptor but are of broad applicability for crystallization or cryo-electron microscopy projects.
Gibertoni, Aliandra M.; Montassier, Maria de Fátima S.; Sena, Janete A. D.; Givisiez, Patrícia E. N.; Furuyama, Cibele R. A. G.; Montassier, Hélio J.
2005-01-01
A Saccharomyces cerevisiae-expressed nucleocapsid (N) polypeptide of the M41 strain of infectious bronchitis virus (IBV) was used as antigen in a recombinant yeast-expressed N protein-based enzyme-linked immunosorbent assay (Y-N-ELISA). The Y-N-ELISA was rapid, sensitive, and specific for detecting chicken serum antibodies to IBV, and it compared favorably with a commercial ELISA. PMID:15815038
Genetic incorporation of recycled unnatural amino acids.
Ko, Wooseok; Kim, Sanggil; Jo, Kyubong; Lee, Hyun Soo
2016-02-01
The genetic incorporation of unnatural amino acids (UAAs) into proteins has been a useful tool for protein engineering. However, most UAAs are expensive, and the method requires a high concentration of UAAs, which has been a drawback of the technology, especially for large-scale applications. To address this problem, a method to recycle cultured UAAs was developed. The method is based on recycling a culture medium containing the UAA, in which some of essential nutrients were resupplemented after each culture cycle, and induction of protein expression was controlled with glucose. Under optimal conditions, five UAAs were recycled for up to seven rounds of expression without a decrease in expression level, cell density, or incorporation fidelity. This method can generally be applied to other UAAs; therefore, it is useful for reducing the cost of UAAs for genetic incorporation and helpful for expanding the use of the technology to industrial applications.
Engineering Escherichia coli into a protein delivery system for mammalian cells.
Reeves, Analise Z; Spears, William E; Du, Juan; Tan, Kah Yong; Wagers, Amy J; Lesser, Cammie F
2015-05-15
Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.
Pan, Li; Iliuk, Anton; Yu, Shuai; Geahlen, Robert L.; Tao, W. Andy
2012-01-01
We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity, and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events. PMID:23088311
Improving Pharmaceutical Protein Production in Oryza sativa
Kuo, Yu-Chieh; Tan, Chia-Chun; Ku, Jung-Ting; Hsu, Wei-Cho; Su, Sung-Chieh; Lu, Chung-An; Huang, Li-Fen
2013-01-01
Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed. PMID:23615467
Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement
Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya
2012-01-01
Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344
Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V
2013-04-01
Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.
NASA Astrophysics Data System (ADS)
Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.
2013-04-01
Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.
Rainbow Vectors for Broad-Range Bacterial Fluorescence Labeling.
Barbier, Mariette; Damron, F Heath
2016-01-01
Since their discovery, fluorescent proteins have been widely used to study protein function, localization or interaction, promoter activity and regulation, drug discovery or for non-invasive imaging. They have been extensively modified to improve brightness, stability, and oligomerization state. However, only a few studies have focused on understanding the dynamics of fluorescent proteins expression in bacteria. In this work, we developed a set plasmids encoding 12 fluorescent proteins for bacterial labeling to facilitate the study of pathogen-host interactions. These broad-spectrum plasmids can be used with a wide variety of Gram-negative microorganisms including Escherichia coli, Pseudomonas aeruginosa, Burkholderia cepacia, Bordetella bronchiseptica, Shigella flexneri or Klebsiella pneumoniae. For comparison, fluorescent protein expression and physical characteristics in Escherichia coli were analyzed using fluorescence microscopy, flow cytometry and in vivo imaging. Fluorescent proteins derived from the Aequorea Victoria family showed high photobleaching, while proteins form the Discosoma sp. and the Fungia coccina family were more photostable for microscopy applications. Only E2-Crimson, mCherry and mKeima were successfully detected for in vivo applications. Overall, E2-Crimson was the fastest maturing protein tested in E. coli with the best overall performance in the study parameters. This study provides a unified comparison and comprehensive characterization of fluorescent protein photostability, maturation and toxicity, and offers general recommendations on the optimal fluorescent proteins for in vitro and in vivo applications.
Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance
Dongsheng, Liu; Xu, Rong; Cowburn, David
2009-01-01
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474
Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng
2016-10-01
The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mi, Yuanyuan; Sun, Chuanyu; Wei, Bingbing; Sun, Feiyu; Guo, Yijun; Hu, Qingfeng; Ding, Weihong; Zhu, Lijie; Xia, Guowei
2018-01-01
Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G 1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Xiao-Dan; Xie, Lixia; Wei, Yi; Zhou, Xiaoyang; Jia, Baolei; Liu, Jinliang
2014-01-01
Ribosomal proteins are highly conserved components of basal cellular organelles, primarily involved in the translation of mRNA leading to protein synthesis. However, certain ribosomal proteins moonlight in the development and differentiation of organisms. In this study, the ribosomal protein L44 (RPL44), associated with salt resistance, was screened from the halophilic fungus Aspergillus glaucus (AgRPL44), and its activity was investigated in Saccharomyces cerevisiae and Nicotiana tabacum. Sequence alignment revealed that AgRPL44 is one of the proteins of the large ribosomal subunit 60S. Expression of AgRPL44 was upregulated via treatment with salt, sorbitol, or heavy metals to demonstrate its response to osmotic stress. A homologous sequence from the model fungus Magnaporthe oryzae, MoRPL44, was cloned and compared with AgRPL44 in a yeast expression system. The results indicated that yeast cells with overexpressed AgRPL44 were more resistant to salt, drought, and heavy metals than were yeast cells expressing MoRPL44 at a similar level of stress. When AgRPL44 was introduced into M. oryzae, the transformants displayed obviously enhanced tolerance to salt and drought, indicating the potential value of AgRPL44 for genetic applications. To verify the value of its application in plants, tobacco was transformed with AgRPL44, and the results were similar. Taken together, we conclude that AgRPL44 supports abiotic stress resistance and may have value for genetic application. PMID:24814782
Kumar, A S Manoj; Reddy, G E C Vidyadhar; Rajmane, Yogesh; Nair, Soumya; Pai Kamath, Sangita; Sreejesh, Greeshma; Basha, Khalander; Chile, Shailaja; Ray, Kriti; Nelly, Vivant; Khadpe, Nilesh; Kasturi, Ravishankar; Ramana, Venkata
2015-01-10
siRNA delivery potential of the Dengue virus capsid protein in cultured cells was recently reported, but target knockdown potential in the context of specific diseases has not been explored. In this study we have evaluated the utility of the protein as an siRNA carrier for anti Dengue viral and anti cancer applications using cell culture systems. We show that target specific siRNAs delivered using the capsid protein inhibit infection by the four serotypes of Dengue virus and proliferation of two cancer cell lines. Our data confirm the potential of the capsid for anti Dengue viral and anti cancer RNAi applications. In addition, we have optimized a fermentation strategy to improve the yield of Escherichia coli expressed D2C protein since the reported yields of E. coli expressed flaviviral capsid proteins are low. Copyright © 2014 Elsevier B.V. All rights reserved.
Yeast cell surface display for lipase whole cell catalyst and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun; Zhang, Rui; Lian, Zhongshuai
The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chainmore » length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.« less
Tahmasebi, Amin-Alah; Afsharifar, Alireza
2017-06-01
Transient expression of proteins in plants has become a choice to facilitate recombinant protein production with its fast and easy application. On the other hand, host defensive mechanisms have been reported to reduce the efficiency of transient expression in plants. Hence, this study was designed to evaluate the effect of cap analog and Potato virus A helper component proteinase (PVA HC-Pro) on green fluorescent protein (GFP) expression efficiency. N . benthamiana leaves were inoculated with capped or un-capped RNA transcripts of a Turnip crinkle virus (TCV) construct containing a green fluorescent protein reporter gene (TCV-sGFP) in place of its coat protein (CP) ORF. PVA HC-Pro as a viral suppressor of RNA silencing was infiltrated in trans by Agrobacterium tumefaciens , increased the GFP foci diameter to six and even more cells in both capped and un capped treatments. The expression level of GFP in inoculated plants with TCV-sGFP transcript pre-infiltrated with PVA HC-Pro was 12.97-fold higher than the GFP accumulation level in pre-infiltrated leaves with empty plasmid (EP) control. Also, the yield of GFP in inoculated N. benthamiana plants with capped TCV-sGFP transcript pre-infiltrated with EP and PVA HC-Pro was 1.54 and 1.2-fold respectively, greater than the level of GFP expressed without cap analog application at 5 days post inoculation (dpi). In addition, the movement of TCV-sGFP was increased in some cells of inoculated leaves with capped transcripts. Results of this study indicated that PVA HC-Pro and mRNA capping can increase GFP expression and its cell to cell movement in N. benthamiana .
Bacterial cell-free expression technology to in vitro systems engineering and optimization.
Caschera, Filippo
2017-06-01
Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
Engineering growth factors for regenerative medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less
Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.
2010-01-01
Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542
Molecular Design of Performance Proteins With Repetitive Sequences
NASA Astrophysics Data System (ADS)
Vendrely, Charlotte; Ackerschott, Christian; Römer, Lin; Scheibel, Thomas
Most performance proteins responsible for the mechanical stability of cells and organisms reveal highly repetitive sequences. Mimicking such performance proteins is of high interest for the design of nanostructured biomaterials. In this article, flagelliform silk is exemplary introduced to describe a general principle for designing genes of repetitive performance proteins for recombinant expression in Escherichia coli . In the first step, repeating amino acid sequence motifs are reversely transcripted into DNA cassettes, which can in a second step be seamlessly ligated, yielding a designed gene. Recombinant expression thereof leads to proteins mimicking the natural ones. The recombinant proteins can be assembled into nanostructured materials in a controlled manner, allowing their use in several applications.
Automated Purification of Recombinant Proteins: Combining High-throughput with High Yield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chiann Tso; Moore, Priscilla A.; Auberry, Deanna L.
2006-05-01
Protein crystallography, mapping protein interactions and other approaches of current functional genomics require not only purifying large numbers of proteins but also obtaining sufficient yield and homogeneity for downstream high-throughput applications. There is a need for the development of robust automated high-throughput protein expression and purification processes to meet these requirements. We developed and compared two alternative workflows for automated purification of recombinant proteins based on expression of bacterial genes in Escherichia coli: First - a filtration separation protocol based on expression of 800 ml E. coli cultures followed by filtration purification using Ni2+-NTATM Agarose (Qiagen). Second - a smallermore » scale magnetic separation method based on expression in 25 ml cultures of E.coli followed by 96-well purification on MagneHisTM Ni2+ Agarose (Promega). Both workflows provided comparable average yields of proteins about 8 ug of purified protein per unit of OD at 600 nm of bacterial culture. We discuss advantages and limitations of the automated workflows that can provide proteins more than 90 % pure in the range of 100 ug – 45 mg per purification run as well as strategies for optimization of these protocols.« less
Cell-free protein synthesis: the state of the art.
Whittaker, James W
2013-02-01
Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.
Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice.
Zheng, Nuoyan; Xia, Ran; Yang, Cuiping; Yin, Bojiao; Li, Yin; Duan, Chengguo; Liang, Liming; Guo, Huishan; Xie, Qi
2009-08-06
Vaccines produced in plant systems are safe and economical; however, the extensive application of plant-based vaccines is mainly hindered by low expression levels of heterologous proteins in plant systems. Here, we demonstrated that the post-transcriptional gene silencing suppressor p19 protein from tomato bushy stunt virus substantially enhanced the transient expression of recombinant SARS-CoV nucleocapsid (rN) protein in Nicotiana benthamiana. The rN protein in the agrobacteria-infiltrated plant leaf accumulated up to a concentration of 79 microg per g fresh leaf weight at 3 days post infiltration. BALB/c mice were intraperitoneally vaccinated with pre-treated plant extract emulsified in Freund's adjuvant. The rN protein-specific IgG in the mouse sera attained a titer about 1:1,800 following three doses of immunization, which suggested effective B-cell maturation and differentiation in mice. Antibodies of the subclasses IgG1 and IgG2a were abundantly present in the mouse sera. During vaccination of rN protein, the expression of IFN-gamma and IL-10 was evidently up-regulated in splenocytes at different time points, while the expression of IL-2 and IL-4 was not. Up to now, this is the first study that plant-expressed recombinant SARS-CoV N protein can induce strong humoral and cellular responses in mice.
Oliveira, Marília Barros; Junior, Murillo Lobo; Grossi-de-Sá, Maria Fátima; Petrofeza, Silvana
2015-06-15
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen that causes a disease known as white mold, which is a major problem for dry bean (Phaseolus vulgaris L.) and other crops in many growing areas in Brazil. To investigate the role of methyl jasmonate (MeJA) in defending dry bean plants against S. sclerotiorum, we used suppression subtractive hybridization (SSH) of cDNA and identified genes that are differentially expressed during plant-pathogen interactions after treatment. Exogenous MeJA application enhanced resistance to the pathogen, and SSH analyses led to the identification of 94 unigenes, presumably involved in a variety of functions, which were classified into several functional categories, including metabolism, signal transduction, protein biogenesis and degradation, and cell defense and rescue. Using RT-qPCR, some unigenes were found to be differentially expressed in a time-dependent manner in dry bean plants during the interaction with S. sclerotiorum after MeJA treatment, including the pathogenesis-related protein PR3 (chitinase), PvCallose (callose synthase), PvNBS-LRR (NBS-LRR resistance-like protein), PvF-box (F-box family protein-like), and a polygalacturonase inhibitor protein (PGIP). Based on these expression data, the putative roles of differentially expressed genes were discussed in relation to the disease and MeJA resistance induction. Changes in the activity of the pathogenesis-related proteins β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase, and peroxidase in plants after MeJA treatment and following inoculation of the pathogen were also investigated as molecular markers of induced resistance. Foliar application of MeJA induced partial resistance against S. sclerotiorum in plants as well as a consistent increase in pathogenesis-related protein activities. Our findings provide new insights into the physiological and molecular mechanisms of resistance induced by MeJA in the P. vulgaris-S. sclerotiorum pathosystem. Copyright © 2015 Elsevier GmbH. All rights reserved.
Bleckmann, Maren; Schürig, Margitta; Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop
2016-01-01
The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS.
Functional evaluation of candidate ice structuring proteins using cell-free expression systems.
Brödel, A K; Raymond, J A; Duman, J G; Bier, F F; Kubick, S
2013-02-10
Ice structuring proteins (ISPs) protect organisms from damage or death by freezing. They depress the non-equilibrium freezing point of water and prevent recrystallization, probably by binding to the surface of ice crystals. Many ISPs have been described and it is likely that many more exist in nature that have not yet been identified. ISPs come in many forms and thus cannot be reliably identified by their structure or consensus ice-binding motifs. Recombinant protein expression is the gold standard for proving the activity of a candidate ISP. Among existing expression systems, cell-free protein expression is the simplest and gives the fastest access to the protein of interest, but selection of the appropriate cell-free expression system is crucial for functionality. Here we describe cell-free expression methods for three ISPs that differ widely in structure and glycosylation status from three organisms: a fish (Macrozoarces americanus), an insect (Dendroides canadensis) and an alga (Chlamydomonas sp. CCMP681). We use both prokaryotic and eukaryotic expression systems for the production of ISPs. An ice recrystallization inhibition assay is used to test functionality. The techniques described here should improve the success of cell-free expression of ISPs in future applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Analysis of molecular assemblies by flow cytometry: determinants of Gi1 and by binding
NASA Astrophysics Data System (ADS)
Sarvazyan, Noune A.; Neubig, Richard R.
1998-05-01
We report here a novel application of flow cytometry for the quantitative analysis of the high affinity interaction between membrane proteins both in detergent solutions and when reconstituted into lipid vesicles. The approach is further advanced to permit the analysis of binding to expressed protein complexes in native cell membranes. The G protein heterotrimer signal transduction function links the extracellularly activated transmembrane receptors and intracellular effectors. Upon activation, (alpha) and (beta) (gamma) subunits of G protein undergo a dissociation/association cycle on the cell membrane interface. The binding parameters of solubilized G protein (alpha) and (beta) (gamma) subunits have been defined but little is known quantitatively about their interactions in the membrane. Using a novel flow cytometry approach, the binding of low nanomolar concentrations of fluorescein-labeled G(alpha) i1 (F- (alpha) ) to (beta) (gamma) both in detergent solution and in a lipid environment was quantitatively compared. Unlabeled (beta) $gama reconstituted in biotinylated phospholipid vesicles bound F-(alpha) tightly (Kd 6 - 12 nM) while the affinity for biotinylated-(beta) (gamma) in Lubrol was even higher (Kd of 2.9 nM). The application of this approach to proteins expressed in native cell membranes will advance our understanding of G protein function in context of receptor and effector interaction. More generally, this approach can be applied to study the interaction of any fluorescently labeled protein with a membrane protein which can be expressed in Sf9 plasma membranes.
Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19
Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.
1998-01-01
A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273
Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit.
Ruf, S; Hermann, M; Berger, I J; Carrer, H; Bock, R
2001-09-01
Transgenic chloroplasts offer unique advantages in plant biotechnology, including high-level foreign protein expression, absence of epigenetic effects, and gene containment due to the lack of transgene transmission through pollen. However, broad application of plastid genome engineering in biotechnology has been largely hampered by both the lack of chloroplast transformation systems for major crop plants and the usually low plastid gene expression levels in nongreen tissues such as fruits, tubers, and other storage organs. Here we describe the development of a plastid transformation system for tomato, Lycopersicon esculentum. This is the first report on the generation of fertile transplastomic plants in a food crop with an edible fruit. We show that chromoplasts in the tomato fruit express the transgene to approximately 50% of the expression levels in leaf chloroplasts. Given the generally very high foreign protein accumulation rates that can be achieved in transgenic chloroplasts (>40% of the total soluble protein), this system paves the way to efficient production of edible vaccines, pharmaceuticals, and antibodies in tomato.
Interfacial polymerization for colorimetric labeling of protein expression in cells.
Lilly, Jacob L; Sheldon, Phillip R; Hoversten, Liv J; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J
2014-01-01
Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium.
Development of Synthetic Spider Silk Fibers for High Performance Applications
2013-08-08
complete with N- and C-termini. • Transformed all protein variants into a proprietary yeast strain and screened for expression. While all encoded...mammals1- 6,10-12. Among the most successfully expressing organisms has been the methylotropic yeast Pichia pastoris. Yeast are an attractive...modifications, recombinant proteins can be secreted into their culture media, and they are well adapted to high density fermentation . In addition, P
Genetic Polymorphism and Expression of CXCR4 in Breast Cancer
Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Losi Guembarovski, Roberta; Banin Hirata, Bruna Karina; Vitiello, Glauco Akelinghton Freire; Campos, Clodoaldo Zago; Watanabe, Maria Angelica Ehara
2015-01-01
CXCR4 genetic polymorphisms, as well as their expression level, have been associated with cancer development and prognosis. The present study aimed to investigate the influence of CXCR4 rs2228014 polymorphism on its mRNA and protein expression in breast cancer samples. It was observed that patients presented higher CXCR4 mRNA relative expression (5.7-fold) than normal mammary gland, but this expression was not correlated with patients clinicopathological features (nuclear grade, nodal status, ER status, PR status, p53 staining, Ki67 index, and HER-2 status). Moreover, CXCR4 mRNA relative expression also did not differ regarding the presence or absence of T allele (p = 0.301). In the immunohistochemical assay, no difference was observed for CXCR4 cytoplasmic protein staining in relation to different genotypes (p = 0.757); however, high cytoplasmic CXCR4 staining was verified in invasive breast carcinoma (p < 0.01). All in all, the results from present study indicated that rs2228014 genetic variant does not alter CXCR4 mRNA or protein expression. However, this receptor was more expressed in tumor compared to normal tissue, in both RNA and protein levels, suggesting its promising applicability in the general context of mammary carcinogenesis. PMID:26576337
Synthetic Nucleic Acids and Treatment of Neurological Diseases.
Corey, David R
2016-10-01
The ability to control gene expression with antisense oligonucleotides (ASOs) could provide a new treatment strategy for disease. To review the use of ASOs for the treatment of neurological disorders. Articles were identified through a search of PubMed references from 2000 to 2016 for articles describing the use of ASOs to treat disease, with specific attention to neurological disease. We concentrated our review on articles pertaining to activation of frataxin expression (Friedreich's ataxia) and production of active survival motor neuron 2 (SMN2, spinal muscular atrophy). Many neurological diseases are caused by inappropriate expression of a protein. Mutations may reduce expression of a wild-type protein, and strategies to activate expression may provide therapeutic benefit. For other diseases, a mutant protein may be expressed too highly and methods that reduce mutant protein expression might form the basis for drug development. Synthetic ASOs can recognize cellular RNA and control gene expression. Antisense oligonucleotides are not a new concept, but successful clinical development has proceeded at a slow pace. Advances in ASO chemistry, biological understanding, and clinical design are making successful applications more likely. Both laboratory and clinical studies are demonstrating the potential of ASOs as a source of drugs to treat neurological disease.
Optimization of Statistical Methods Impact on Quantitative Proteomics Data.
Pursiheimo, Anna; Vehmas, Anni P; Afzal, Saira; Suomi, Tomi; Chand, Thaman; Strauss, Leena; Poutanen, Matti; Rokka, Anne; Corthals, Garry L; Elo, Laura L
2015-10-02
As tools for quantitative label-free mass spectrometry (MS) rapidly develop, a consensus about the best practices is not apparent. In the work described here we compared popular statistical methods for detecting differential protein expression from quantitative MS data using both controlled experiments with known quantitative differences for specific proteins used as standards as well as "real" experiments where differences in protein abundance are not known a priori. Our results suggest that data-driven reproducibility-optimization can consistently produce reliable differential expression rankings for label-free proteome tools and are straightforward in their application.
Sehgal, Lalit; Budnar, Srikanth; Bhatt, Khyati; Sansare, Sneha; Mukhopadhaya, Amitabha; Kalraiya, Rajiv D; Dalal, Sorab N
2012-10-01
The study of protein-protein interactions, protein localization, protein organization into higher order structures and organelle dynamics in live cells, has greatly enhanced the understanding of various cellular processes. Live cell imaging experiments employ plasmid or viral vectors to express the protein/proteins of interest fused to a fluorescent protein. Unlike plasmid vectors, lentiviral vectors can be introduced into both dividing and non dividing cells, can be pseudotyped to infect a broad or narrow range of cells, and can be used to generate transgenic animals. However, the currently available lentiviral vectors are limited by the choice of fluorescent protein tag, choice of restriction enzyme sites in the Multiple Cloning Sites (MCS) and promoter choice for gene expression. In this report, HIV-1 based bi-cistronic lentiviral vectors have been generated that drive the expression of multiple fluorescent tags (EGFP, mCherry, ECFP, EYFP and dsRed), using two different promoters. The presence of a unique MCS with multiple restriction sites allows the generation of fusion proteins with the fluorescent tag of choice, allowing analysis of multiple fusion proteins in live cell imaging experiments. These novel lentiviral vectors are improved delivery vehicles for gene transfer applications and are important tools for live cell imaging in vivo.
Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovrinovic, Marina; Niemeyer, Christof M.
2005-09-30
We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter weremore » ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.« less
Wu, Yin; He, Yue; Ge, Xiaochun
2011-05-01
Ace-AMP1 is a potent antifungal peptide found in onion (Allium cepa) seeds with sequence similarity to plant lipid transfer proteins. Transgenic plants over-expressing Ace-AMP1 gene have enhanced disease resistance to some fungal pathogens. However, mass production in heterologous systems and in vitro application of this peptide have not been reported. In this study, Ace-AMP1 was highly expressed in a prokaryotic Escherichia coli system as a fusion protein. The purified protein inhibited the growth of many plant fungal pathogens, especially Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, and Verticillium dahliae. The inhibitory effect was accompanied by hyphal hyperbranching for V. dahliae but not for F. oxysporum f. sp. vasinfectum and A. solani, suggesting that the mode of action of Ace-AMP1 on different fungi might be different. Application of Ace-AMP1 on tomato leaves showed that the recombinant protein conferred strong resistance to the tomato pathogen A. solani and could be used as an effective fungicide.
Papaneophytou, Christos P; Kontopidis, George
2014-02-01
The supply of many valuable proteins that have potential clinical or industrial use is often limited by their low natural availability. With the modern advances in genomics, proteomics and bioinformatics, the number of proteins being produced using recombinant techniques is exponentially increasing and seems to guarantee an unlimited supply of recombinant proteins. The demand of recombinant proteins has increased as more applications in several fields become a commercial reality. Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, producing soluble proteins in E. coli is still a major bottleneck for structural biology projects. One of the most challenging steps in any structural biology project is predicting which protein or protein fragment will express solubly and purify for crystallographic studies. The production of soluble and active proteins is influenced by several factors including expression host, fusion tag, induction temperature and time. Statistical designed experiments are gaining success in the production of recombinant protein because they provide information on variable interactions that escape the "one-factor-at-a-time" method. Here, we review the most important factors affecting the production of recombinant proteins in a soluble form. Moreover, we provide information about how the statistical design experiments can increase protein yield and purity as well as find conditions for crystal growth. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.
Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulnessmore » as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.« less
Łastowska, Maria; Trubicka, Joanna; Niemira, Magdalena; Paczkowska-Abdulsalam, Magdalena; Karkucińska-Więckowska, Agnieszka; Kaleta, Magdalena; Drogosiewicz, Monika; Tarasińska, Magdalena; Perek-Polnik, Marta; Krętowski, Adam; Dembowska-Bagińska, Bożenna; Grajkowska, Wiesława; Pronicki, Maciej; Matyja, Ewa
2017-06-01
ALK gene rearrangements were identified in a variety of cancers, including neuroblastoma, where the presence of ALK expression is associated with adverse prognosis. ALK mutations have recently been found in the pediatric brain tumor medulloblastoma, and microarray data indicate that ALK is highly expressed in a subset of these tumors. Therefore, we investigated whether ALK expression correlates with transcriptional profiles and clinical features of medulloblastoma. Tumors from 116 medulloblastoma patients were studied at diagnosis for the detection of ALK expression at the RNA level by an application of NanoString technology and at the protein level by immunohistochemistry using antibody ALK clone D5F3. The results indicate that ALK expression, at both the RNA and the protein levels, is strongly associated with the WNT-activated type of tumors and therefore may serve as a useful marker for the detection of this type of medulloblastoma. Importantly, ALK protein expression alone is also an indicator of good prognosis for medulloblastoma patients.
Hydrostatic pressure modulates mRNA expressions for matrix proteins in human meniscal cells.
Suzuki, Toru; Toyoda, Takashi; Suzuki, Hiroshi; Hisamori, Noriyuki; Matsumoto, Hideo; Toyama, Yoshiaki
2006-01-01
There have been few reports describing the effects of mechanical loading on the metabolism of meniscal cells. The aim of this study was to investigate the effects of hydrostatic pressure on meniscal cell metabolism. Human meniscal cells were cultured in alginate beads for 3 days. They were then subjected to 4 MPa hydrostatic pressure for 4 hours in either a static or cyclic (1 Hz) mode using a specially designed and constructed system. Immediately after the pressure application, the messenger RNA levels for aggrecan, type I collagen, matrix metalloproteinases (MMP) -1, -3, -9, -13 and tissue inhibitors of metalloproteinases (TIMP) -1 and -2 were measured. It was found that the application of static hydrostatic pressure caused a significant decrease in mRNA expression for MMP-1 and -13 (p<0.05). In contrast, the application of cyclic hydrostatic pressure was associated with a significant increase in type I collagen (p<0.01), TIMP-1 and -2 mRNA expression (p<0.01). These results would suggest that hydrostatic pressure in isolation can modulate mRNA expressions for matrix proteins in meniscal cells.
High-Yield Secretion of Multiple Client Proteins in Aspergillus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segato, F.; Damasio, A. R. L.; Goncalves, T. A.
2012-07-15
Production of pure and high-yield client proteins is an important technology that addresses the need for industrial applications of enzymes as well as scientific experiments in protein chemistry and crystallization. Fungi are utilized in industrial protein production because of their ability to secrete large quantities of proteins. In this study, we engineered a high-expression-secretion vector, pEXPYR that directs proteins towards the extracellular medium in two Aspergillii host strains, examine the effect of maltose-induced over-expression and protein secretion as well as time and pH-dependent protein stability in the medium. We describe five client proteins representing a core set of hemicellulose degradingmore » enzymes that accumulated up to 50-100 mg/L of protein. Using a recyclable genetic marker that allows serial insertion of multiple genes, simultaneous hyper-secretion of three client proteins in a single host strain was accomplished.« less
Podoliankaitė, Monika; Lukša, Juliana; Vyšniauskis, Gintautas; Sereikaitė, Jolanta; Melvydas, Vytautas; Serva, Saulius; Servienė, Elena
2014-07-01
Saccharomyces cerevisiae K2 toxin is a highly active extracellular protein, important as a biocontrol agent for biotechnological applications in the wine industry. This protein is produced at negligible levels in yeast, making difficult to isolate it in amounts sufficient for investigation and generation of analysis tools. In this work, we demonstrate the use of a bacterial system for expression of the recombinant K2 protein, suitable for generation of antibodies specific for toxin of the yeast origin. Synthesis of the full-length S. cerevisiae K2 preprotoxin in Escherichia coli was found to be toxic to the host cell, resulting in diminished growth. Such effect was abolished by the introduction of the C-terminal truncation into K2 protein, directing it into non-toxic inclusion body fraction. The obtained protein is of limited solubility thus, facilitating the purification by simple and efficient chromatography-free procedure. The protein aggregates were successfully refolded into a soluble form yielding sufficient amounts of a tag-less truncated K2 protein suitable for polyclonal antibody production. Antibodies were raised in rabbit and found to be specific for detection of both antigen and native S. cerevisiae K2 toxin.
Mohammadinezhad, Rezvan; Farahmand, Hamid; Jalali, Seyed Amir Hossein; Mirvaghefi, Alireza
2018-05-01
The nucleoprotein of infectious hematopoietic necrosis virus (IHNV) is considered as the main target antigen for detection of IHNV infection in salmonid fish. This study aimed at improving the expression and solubility of IHNV nucleoprotein (IHNV-NP) in E. coli expression system. The effects of several expression strategies including host strain type, protein expression temperature, heat-shock treatment prior to protein induction, and additives in the growth medium and in the cell lysis buffer were examined. Results showed that bacterial strain type had a great impact on protein expression level, whereas it was not effective in preventing protein aggregation. Production of soluble IHNV-NP was proportionally increased with decreased incubation temperature. Heat-shock treatment prior to protein induction did not change the percent of solubility. For cells grown at low temperature, the presence of additives in the lysis buffer enhanced the solubility of IHNV-NP up to 24%. The highest yield of soluble protein was obtained via incorporation of osmolytes in the growth medium of cells exposed to a mild salt stress, in the following order: sucrose > sorbitol > glycerol > glycine. Soluble protein obtained by the optimized condition was efficiently purified in high yield and successfully detected by two monoclonal antibodies in a sandwich ELISA. Taken together, a combination of proper host strain, low-temperature expression, and timely application of osmolytes in the growth medium provided sufficient quantities of soluble recombinant IHNV-NP that has the potential to be used for diagnostic purposes.
Bragança, Caio Roberto Soares; Colombo, Lívia Tavares; Roberti, Alvaro Soares; Alvim, Mariana Caroline Tocantins; Cardoso, Silvia Almeida; Reis, Kledna Constancio Portes; de Paula, Sérgio Oliveira; da Silveira, Wendel Batista; Passos, Flavia Maria Lopes
2015-02-01
The yeast Kluyveromyces marxianus is a convenient host for industrial synthesis of biomolecules. However, despite its potential, there are few studies reporting the expression of heterologous proteins using this yeast. Here, we report expression of a dengue virus protein in K. marxianus for the first time. The dengue virus type 1 nonstructural protein 1 (NS1) was integrated into the K. marxianus UFV-3 genome at the LAC4 locus using an adapted integrative vector designed for high-level expression of recombinant protein in Kluyveromyces lactis. The NS1 gene sequence was codon-optimized to increase the level of protein expression in yeast. The synthetic gene was cloned in frame with K. lactis α-mating factor signal peptide, and the recombinant plasmid obtained was used to transform K. marxianus UFV-3 by electroporation. The transformed cells, selected in yeast extract peptone dextrose containing 200 μg mL(-1) Geneticin, were mitotically stable. Analysis of recombinant strains by RT-PCR and protein detection using blot analysis confirmed both transcription and expression of extracellular NS1 polypeptide. After induction with galactose, the NS1 protein was analyzed by sodium dodecyl sulfate-PAGE and immunogenic detection. Protein production was investigated under two conditions: with galactose and biotin pulses at 24-h intervals during 96 h of induction and without galactose and biotin supplementation. Protease activity was not detected in post-growth medium. Our results indicate that recombinant K. marxianus is a good host for the production of dengue virus NS1 protein, which has potential for diagnostic applications.
Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M
2016-01-01
A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.
Performance benchmarking of four cell-free protein expression systems.
Gagoski, Dejan; Polinkovsky, Mark E; Mureev, Sergey; Kunert, Anne; Johnston, Wayne; Gambin, Yann; Alexandrov, Kirill
2016-02-01
Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins. © 2015 Wiley Periodicals, Inc.
Recent advances in the production of recombinant subunit vaccines in Pichia pastoris
Wang, Man; Jiang, Shuai; Wang, Yefu
2016-01-01
ABSTRACT Recombinant protein subunit vaccines are formulated using defined protein antigens that can be produced in heterologous expression systems. The methylotrophic yeast Pichia pastoris has become an important host system for the production of recombinant subunit vaccines. Although many basic elements of P. pastoris expression system are now well developed, there is still room for further optimization of protein production. Codon bias, gene dosage, endoplasmic reticulum protein folding and culture condition are important considerations for improved production of recombinant vaccine antigens. Here we comment on current advances in the application of P. pastoris for the synthesis of recombinant subunit vaccines. PMID:27246656
2010-01-01
Background Glucocorticoids (GC) represent the core treatment modality for many inflammatory diseases. Its mode of action is difficult to grasp, not least because it includes direct modulation of many components of the extracellular matrix as well as complex anti-inflammatory effects. Protein expression profile of skin proteins is being changed with topical application of GC, however, the knowledge about singular markers in this regard is only patchy and collaboration is ill defined. Material/Methods Scar formation was observed under different doses of GC, which were locally applied on the back skin of mice (1 to 3 weeks). After euthanasia we analyzed protein expression of collagen I and III (picrosirius) in scar tissue together with 16 additional protein markers, which are involved in wound healing, with immunhistochemistry. For assessing GC's effect on co-expression we compared our results with a model of random figures to estimate how many significant correlations should be expected by chance. Results GC altered collagen and protein expression with distinct results in different areas of investigation. Most often we observed a reduced expression after application of low dose GC. In the scar infiltrate a multivariate analysis confirmed the significant impact of both GC concentrations. Calculation of Spearman's correlation coefficient similarly resulted in a significant impact of GC, and furthermore, offered the possibility to grasp the entire interactive profile in between all variables studied. The biological markers, which were connected by significant correlations could be arranged in a highly cross-linked network that involved most of the markers measured. A marker highly cross-linked with more than 3 significant correlations was indicated by a higher variation of all its correlations to the other variables, resulting in a standard deviation of > 0.2. Conclusion In addition to immunohistochemical analysis of single protein markers multivariate analysis of co-expressions by use of correlation coefficients reveals the complexity of biological relationships and identifies complex biological effects of GC on skin scarring. Depiction of collaborative clusters will help to understand functional pathways. The functional importance of highly cross-linked proteins will have to be proven in subsequent studies. PMID:20509951
Robust, synergistic regulation of human gene expression using TALE activators.
Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith
2013-03-01
Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.
Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Liu, Zengshan; Wang, Zhiliang
2013-08-01
The baculovirus expression system (BES) has been one of the versatile platforms for the production of recombinant proteins requiring multiple post-translational modifications, such as folding, oligomerization, phosphorylation, glycosylation, acylation, disulfide bond formation and proteolytic cleavage. Advances in recombinant DNA technology have facilitated application of the BES, and made it possible to express multiple proteins simultaneously in a single infection and to produce multimeric proteins sharing functional similarity with their natural analogs. Therefore, the BES has been used for the production of recombinant proteins and the construction of virus-like particles (VLPs), as well as for the development of subunit vaccines, including VLP-based vaccines. The VLP, which consists of one or more structural proteins but no viral genome, resembles the authentic virion but cannot replicate in cells. The high-quality recombinant protein expression and post-translational modifications obtained with the BES, along with its capacity to produce multiple proteins, imply that it is ideally suited to VLP production. In this article, we critically review the pros and cons of using the BES as a platform to produce both enveloped and non-enveloped VLPs. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei
2011-06-01
Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.
The anti-allergic activity of Lactobacillus plantarum L67 and its application to yogurt.
Song, Sooyeon; Lee, Sei-Jung; Park, Dong-June; Oh, Sejong; Lim, Kye-Taek
2016-12-01
Recently, interest in the beneficial role of probiotics in the protection and management of allergic diseases caused by immune disorders has been increasing. This study investigated the inhibitory effect of Lactobacillus plantarum L67 on induced allergic inflammatory response in bisphenol A-treated rat basophilic leukemia 2H3 (RBL-2H3) cells and mouse splenocytes. We also evaluated the applicability of L. plantarum L67 as a yogurt starter culture. We measured the ability of Lactobacillus strains to induce the production of IL-12 and IFN- γ in cultured splenocytes by ELISA. Bisphenol A (50μM)-treated RBL-2H3 cells were cotreated with a glycoprotein (18kDa) isolated from L. plantarum L67 (5-100µg/mL) for 30min. We measured the expression of mitogen-activated protein kinase (ERK and p38), AP-1 (c-Fos and c-Jun), T-bet, and GATA-binding protein 3 (GATA-3) using Western blotting to examine the differentiation of T helper cells. Furthermore, we evaluated the gene expression of IL-1β, IL-6, and IL-10 using real-time quantitative PCR. Finally, we evaluated the applicability of L. plantarum L67 as a yogurt starter by measuring pH, enumeration of bacteria, and sensory scores. Our results showed that L67 protein inhibited the phosphorylation of ERK and p38 mitogen-activated protein kinase through the transcriptional activation of AP-1 in bisphenol A-treated RBL-2H3 cells. During differentiation of T helper cells, the expression of transcription factor GATA-3 was significantly suppressed by L67 protein (100µg/mL) treatment, whereas expression of transcription factor T-bet was increased. In addition, the L67 protein significantly attenuated the expression of T helper 2-linked cytokines IL-1β, IL-6, and IL-10. These results indicate that L. plantarum L67, made available as yogurt starters and dietary supplements, has the potential to prevent allergy-related immune disorders. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Changes in protein expression of U937 and Jurkat cells exposed to nanosecond pulsed electric fields
NASA Astrophysics Data System (ADS)
Moen, Erick K.; Roth, Caleb C.; Cerna, Caesar; Estalck, Larry; Wilmink, Gerald; Ibey, Bennett L.
2013-02-01
Application of nanosecond pulsed electric fields (nsPEF) to various biological cell lines has been to shown to cause many diverse effects, including poration of the plasma membrane, depolarization of the mitochondrial membrane, blebbing, apoptosis, and intracellular calcium bursts. The underlying mechanism(s) responsible for these diverse responses are poorly understood. Of specific interest in this paper are the long-term effects of nsPEF on cellular processes, including the regulation of genes and production of proteins. Previous studies have reported transient activation of select signaling pathways involving mitogen-activated protein kinases (MAPKs), protein phosphorylation and downstream gene expression following nsPEF application. We hypothesize that nsPEF represents a unique stimulus that could be used to externally modulate cellular processes. To validate our hypothesis, we performed a series of cuvette-based exposures at 10 and 600ns pulse widths using a custom Blumlien line pulser system. We measured acute changes in the plasma membrane structure using flow cytometry by tracking phosphatidylserine externalization via FITC-Annexin V labeling and poration via propidium iodide uptake. We then compared these results to viability of the cells at 24 hours post exposure using MTT assay and changes in the MAPK family of proteins at 8 hours post-exposure using Luminex assay. By comparing exposures at 10 and 600ns duration, we found that most MAPK family-protein expression increased in Jurkat and U937 cell lines following exposure and compared well with drops in viability and changes in plasma membrane asymmetry. What proved interesting is that some MAPK family proteins (e.g. p53, STAT1), were expressed in one cell line, but not the other. This difference may point to an underlying mechanism for observed difference in cellular sensitivity to nsPEFinduced stresses.
An Independent Construct for Conditional Expression of Atonal Homolog-1
Cheng, Yen-fu; Kinouchi, Hikaru; Bieber, Rebecca; Edge, Albert S.B.
2014-01-01
Abstract The mammalian homolog of the basic helix-loop-helix transcription factor atonal-1 (Atoh1 or Math1) is required for development of cochlear hair cells that function as the mechanosensory cells required for audition. Forced expression of Atoh1 in cochlear-supporting cells may provide a way to regenerate hair cells and provide for a therapy for hearing loss. Additionally, Atoh1 is an inhibitor of proliferation and has further clinical applications in anticancer therapies. The goal of these experiments was to improve the method for Atoh1 expression by engineering a genetic construct that may be used in future translational applications. To address the poor control of Atoh1 expression in standard gene expression systems where Atoh1 is expressed constitutively at abnormally elevated levels, our aim was to engineer an inducible system whereby Atoh1 was upregulated by an inducer and downregulated once the inducer was removed. A further aim was to engineer a single genetic construct that allowed for conditional expression of Atoh1 independent of secondary regulatory elements. Here we describe a stand-alone genetic construct that utilizes the tamoxifen sensitivity of a mutated estrogen receptor (ER) ligand-binding domain for the conditional expression of Atoh1. The Atoh1-ER-DsRed construct is translated into an ATOH1-ER-DSRED fusion protein that remains sequestered in the cytoplasm and therefore rendered inactive because it cannot enter the nucleus to activate Atoh1 signaling pathways. However, application of 4-hydroxytamoxifen results in translocation of the fusion protein to the nucleus, where it binds to the Atoh1 enhancer, upregulates transcription and translation of endogenous ATOH1 and activates downstream Atoh1 signaling such as upregulation of the hair cell protein MYOSIN 7A. Removal of tamoxifen reverses the upregulation of endogenous Atoh1 signaling. This construct serves as an independent genetic construct that allows for the conditional upregulation and downregulation of Atoh1, and may prove useful for manipulating Atoh1 expression in vivo. PMID:24066662
Shen, Zhanlong; Wang, Bo; Luo, Jianyuan; Jiang, Kewei; Zhang, Hui; Mustonen, Harri; Puolakkainen, Pauli; Zhu, Jun; Ye, Yingjiang; Wang, Shan
2016-06-16
Lysine acetylated modification was indicated to impact colorectal cancer (CRC)'s distant metastasis. However, the global acetylated proteins in CRC and the differential expressed acetylated proteins and acetylated sites between CRC primary and distant metastatic tumor remains unclear. Our aim was to construct a complete atlas of acetylome in CRC and paired liver metastases. Combining high affinity enrichment of acetylated peptides with high sensitive mass spectrometry, we identified 603 acetylation sites from 316 proteins, among which 462 acetylation sites corresponding to 243 proteins were quantified. We further classified them into groups according to cell component, molecular function and biological process and analyzed the metabolic pathways, domain structures and protein interaction networks. Finally, we evaluated the differentially expressed lysine acetylation sites and revealed that 31 acetylated sites of 22 proteins were downregulated in CRC liver metastases compared to that in primary CRC while 40 acetylated sites of 32 proteins were upregulated, of which HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. These results provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC. This study described provides, for the first time, that full-scale profiling of lysine acetylated proteins were identified and quantified in colorectal cancer (CRC) and paired liver metastases. The novelty of the study is that we constructed a complete atlas of acetylome in CRC and paired liver metastases. Moreover, we analyzed these differentially expressed acetylated proteins in cell component, molecular function and biological process. In addition, metabolic pathways, domain structures and protein interaction networks of acetylated proteins were also investigated. Our approaches shows that of the differentially expressed proteins, HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. Our findings provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC. Copyright © 2016 Elsevier B.V. All rights reserved.
Heng, Boon Chin; Cao, Tong
2005-01-01
Over the past decade, there has been growing interest in the use of antibodies against intracellular targets. This is currently achieved through recombinant expression of the single chain variable fragment (scFv) antibody format within the cell, which is commonly referred to as an intrabody. This possesses a number of inherent advantages over RNA interference (iRNA). Firstly, the high specificity and affinity of intrabodies to target antigens is well-established, whereas iRNA has been frequently shown to exert multiple non-specific effects. Secondly, intrabodies being proteins possess a much longer active half-life compared to iRNA. Thirdly, when the active half-life of the intracellular target molecule is long, gene silencing through iRNA would be slow to yield any effect, whereas the effects of intrabody expression would be almost instantaneous. Lastly, it is possible to design intrabodies to block certain binding interactions of a particular target molecule, while sparing others. There is, however, various technical challenges faced with intrabody expression through the application of recombinant DNA technology. In particular, protein conformational folding and structural stability of the newly-synthesized intrabody within the cell is affected by reducing conditions of the intracellular environment. Also, there are overwhelming safety concerns surrounding the application of transfected recombinant DNA in human clinical therapy, which is required to achieve intrabody expression within the cell. Of particular concern are the various viral-based vectors that are commonly-used in genetic manipulation. A novel approach around these problems would be to look at the possibility of fusing protein transduction domains (PTD) to scFv antibodies, to create a 'cell-permeable' antibody or 'Transbody'. PTD are short peptide sequences that enable proteins to translocate across the cell membrane and be internalized within the cytosol, through atypical secretory and internalization pathways. There are a number of distinct advantages that a 'Transbody' would possess over conventional intrabodies expressed within the cell. For a start, 'correct' conformational folding and disulfide bond formation can take place prior to introduction into the target cell. More importantly, the use of cell-permeable antibodies or 'Transbodies' would avoid the overwhelming safety and ethical concerns surrounding the direct application of recombinant DNA technology in human clinical therapy, which is required for intrabody expression within the cell. 'Transbodies' introduced into the cell would possess only a limited active half-life, without resulting in any permanent genetic alteration. This would allay any safety concerns with regards to their application in human clinical therapy.
Expression of enzymes for the usage in food and feed industry with Pichia pastoris.
Spohner, Sebastian C; Müller, Hagen; Quitmann, Hendrich; Czermak, Peter
2015-05-20
The methylotrophic yeast Pichia pastoris is an established protein expression host for the production of industrial enzymes. This yeast can be grown to very high cell densities and produces high titers of recombinant protein, which can be expressed intercellularly or be secreted to the fermentation medium. P. pastoris offers some advantages over other established expression systems especially in protein maturation. In food and feed production many enzymatically catalyzed processes are reported and the demand for new enzymes grows continuously. For instance the unique catalytic properties of enzymes are used to improve resource efficiency, maintain quality, functionalize food, and to prevent off-flavors. This review aims to provide an overview on recent developments in heterologous production of enzymes with P. pastoris and their application within the food sector. Copyright © 2015 Elsevier B.V. All rights reserved.
Whitaker, Weston R; Lee, Hanson; Arkin, Adam P; Dueber, John E
2015-03-20
Genetic sequences ported into non-native hosts for synthetic biology applications can gain unexpected properties. In this study, we explored sequences functioning as ribosome binding sites (RBSs) within protein coding DNA sequences (CDSs) that cause internal translation, resulting in truncated proteins. Genome-wide prediction of bacterial RBSs, based on biophysical calculations employed by the RBS calculator, suggests a selection against internal RBSs within CDSs in Escherichia coli, but not those in Saccharomyces cerevisiae. Based on these calculations, silent mutations aimed at removing internal RBSs can effectively reduce truncation products from internal translation. However, a solution for complete elimination of internal translation initiation is not always feasible due to constraints of available coding sequences. Fluorescence assays and Western blot analysis showed that in genes with internal RBSs, increasing the strength of the intended upstream RBS had little influence on the internal translation strength. Another strategy to minimize truncated products from an internal RBS is to increase the relative strength of the upstream RBS with a concomitant reduction in promoter strength to achieve the same protein expression level. Unfortunately, lower transcription levels result in increased noise at the single cell level due to stochasticity in gene expression. At the low expression regimes desired for many synthetic biology applications, this problem becomes particularly pronounced. We found that balancing promoter strengths and upstream RBS strengths to intermediate levels can achieve the target protein concentration while avoiding both excessive noise and truncated protein.
Hung, Fei-Hung; Chiu, Hung-Wen
2015-01-01
Gene expression profiles differ in different diseases. Even if diseases are at the same stage, such diseases exhibit different gene expressions, not to mention the different subtypes at a single lesion site. Distinguishing different disease subtypes at a single lesion site is difficult. In early cases, subtypes were initially distinguished by doctors. Subsequently, further differences were found through pathological experiments. For example, a brain tumor can be classified according to its origin, its cell-type origin, or the tumor site. Because of the advancements in bioinformatics and the techniques for accumulating gene expressions, researchers can use gene expression data to classify disease subtypes. Because the operation of a biopathway is closely related to the disease mechanism, the application of gene expression profiles for clustering disease subtypes is insufficient. In this study, we collected gene expression data of healthy and four myelodysplastic syndrome subtypes and applied a method that integrated protein-protein interaction and gene expression data to identify different patterns of disease subtypes. We hope it is efficient for the classification of disease subtypes in adventure.
Tissue engineering skeletal muscle for orthopaedic applications
NASA Technical Reports Server (NTRS)
Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.
2002-01-01
With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.
Groves, Benjamin; Kuchina, Anna; Rosenberg, Alexander B.; Jojic, Nebojsa; Fields, Stanley; Seelig, Georg
2017-01-01
Our ability to predict protein expression from DNA sequence alone remains poor, reflecting our limited understanding of cis-regulatory grammar and hampering the design of engineered genes for synthetic biology applications. Here, we generate a model that predicts the protein expression of the 5′ untranslated region (UTR) of mRNAs in the yeast Saccharomyces cerevisiae. We constructed a library of half a million 50-nucleotide-long random 5′ UTRs and assayed their activity in a massively parallel growth selection experiment. The resulting data allow us to quantify the impact on protein expression of Kozak sequence composition, upstream open reading frames (uORFs), and secondary structure. We trained a convolutional neural network (CNN) on the random library and showed that it performs well at predicting the protein expression of both a held-out set of the random 5′ UTRs as well as native S. cerevisiae 5′ UTRs. The model additionally was used to computationally evolve highly active 5′ UTRs. We confirmed experimentally that the great majority of the evolved sequences led to higher protein expression rates than the starting sequences, demonstrating the predictive power of this model. PMID:29097404
NASA Astrophysics Data System (ADS)
Zhang, Yuanxing
Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.
Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna
2013-11-14
Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.
Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna
2013-01-01
Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840
Interfacial Polymerization for Colorimetric Labeling of Protein Expression in Cells
Lilly, Jacob L.; Sheldon, Phillip R.; Hoversten, Liv J.; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J.
2014-01-01
Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium. PMID:25536421
Zhang, Xianglan; Han, Seonhui; Han, Hye-Yeon; Ryu, Mi Heon; Kim, Ki-Yeol; Choi, Eun-Joo; Cha, In-Ho; Kim, Jin
2013-08-01
Increased aerobic glycolysis is a unique finding in cancers and hypoxia-related proteins are associated with aerobic glycolysis. Therefore, we aimed to investigate whether hypoxia-related proteins can be predictive markers for malignant conversion of oral premalignant lesions with epithelial dysplasia (OED). Expression of HIF-1α, Glut-1 and CA9 were detected in clinical samples of eight normal oral mucosa, 85 transitional areas of oral squamous cell carcinoma (OSCC) and 28 OED with or without malignant conversion using immunohistochemistry and were also comparatively detected in immortalised human oral keratinocyte (IHOK) and OSCC cell lines under hypoxia using immunoblotting. Sequential expression of HIF-1α, Glut-1 and CA9 was found both in transitional areas of OSCC and cell lines of IHOK and OSCC under hypoxia, supporting hypoxia-aerobic glycolysis-acidosis axis. Expression of all proteins showed significant association with malignant conversion of OED and CA9 was an independent risk factor of malignant transformation of OED. But the predictability of malignant transformation was improved when all three proteins were applied together. High expression of CA9 was an independent predictive marker of malignant conversion. Moreover, the combined application of these three proteins may be useful to assess the risk of malignant conversion of OED.
Hares, Michelle C; Hinchliffe, Stewart J; Strong, Philippa C R; Eleftherianos, Ioannis; Dowling, Andrea J; ffrench-Constant, Richard H; Waterfield, Nick
2008-11-01
The toxin complex (Tc) genes were first identified in the insect pathogen Photorhabdus luminescens and encode approximately 1 MDa protein complexes which are toxic to insect pests. Subsequent genome sequencing projects have revealed the presence of tc orthologues in a range of bacterial pathogens known to be associated with insects. Interestingly, members of the mammalian-pathogenic yersiniae have also been shown to encode Tc orthologues. Studies in Yersinia enterocolitica have shown that divergent tc loci either encode insect-active toxins or play a role in colonization of the gut in gastroenteritis models of rats. So far little is known about the activity of the Tc proteins in the other mammalian-pathogenic yersiniae. Here we present work to suggest that Tc proteins in Yersinia pseudotuberculosis and Yersinia pestis are not insecticidal toxins but have evolved for mammalian pathogenicity. We show that Tc is secreted by Y. pseudotuberculosis strain IP32953 during growth in media at 28 degrees C and 37 degrees C. We also demonstrate that oral toxicity of strain IP32953 to Manduca sexta larvae is not due to Tc expression and that lysates of Escherichia coli BL21 expressing the Yersinia Tc proteins are not toxic to Sf9 insect cells but are toxic to cultured mammalian cell lines. Cell lysates of E. coli BL21 expressing the Y. pseudotuberculosis Tc proteins caused actin ruffles, vacuoles and multi-nucleation in cultured human gut cells (Caco-2); similar morphology was observed after application of a lysate of E. coli BL21 expressing the Y. pestis Tc proteins to mouse fibroblast NIH3T3 cells, but not Caco-2 cells. Finally, transient expression of the individual Tc proteins in Caco-2 and NIH3T3 cell lines reproduced the actin and nuclear rearrangement observed with the topical applications. Together these results add weight to the growing hypothesis that the Tc proteins in Y. pseudotuberculosis and Y. pestis have been adapted for mammalian pathogenicity. We further conclude that Tc proteins from Y. pseudotuberculosis and Y. pestis display differential mammalian cell specificity in their toxicity.
Using ion exchange chromatography to purify a recombinantly expressed protein.
Duong-Ly, Krisna C; Gabelli, Sandra B
2014-01-01
Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. © 2014 Elsevier Inc. All rights reserved.
Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita
2018-01-01
The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface. PMID:29360877
Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita; Chaudhary, Vijay K
2018-01-01
The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.
Wu, Zhencai; Burns, Jacqueline K
2003-04-01
The genetics and expression of a lipid transfer protein (LTP) gene was examined during abscission of mature fruit of 'Valencia' orange. A cDNA encoding an LTP, CsLTP, was isolated from a cDNA subtraction library constructed from mature fruit abscission zones 48 h after application of a mature fruit-specific abscission agent, 5-chloro-3-methyl-4-nitro-pyrazole (CMN-pyrazole). A full-length cDNA clone of 652 nucleotides was isolated using 5' and 3' RACE followed by cDNA library screening and PCR amplification. The cDNA clone encoded a protein of 155 amino acid residues with a molecular mass and isoelectric point of 9.18 kDa and 9.12, respectively. A partial genomic clone of 505 nucleotides containing one intron of 101 base pairs was amplified from leaf genomic DNA. Southern blot hybridization demonstrated that at least two closely related CsLTP genes are present in 'Valencia' orange. Temporal expression patterns in mature fruit abscission zones were examined by northern hybridization. Increased expression of CsLTP mRNA was detected in RNA of mature fruit abscission zones 6, 24, 48, and 72 h after application of a non-specific abscission agent, ethephon. Low expression of CsLTP transcripts was observed after treatment of CMN-pyrazole until 24 h after application. After this time, expression markedly increased. The results suggest that CsLTP has a role in the abscission process, possibly by assisting transport of cutin monomers to the fracture plane of the abscission zone or through its anti-microbial activity by reducing the potential of microbial attack.
Kikuta, Kazutaka; Kubota, Daisuke; Yoshida, Akihiko; Qiao, Zhiwei; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Chuman, Hirokazu; Kawai, Akira; Kondo, Tadashi
2017-09-01
Myxofibrosarcoma (MFS) is a mesenchymal malignancy characterized by frequent recurrence even after radical wide resection. To optimize therapy for MFS patients, we aimed to identify candidate tissue biomarkers of MFS invasion potential. Invasion characteristics of MFS were evaluated by magnetic resonance imaging and protein expression profiling of primary tumor tissues performed using two-dimensional difference gel electrophoresis (2D-DIGE). Protein expression profiles were compared between invasive and non-invasive tumors surgically resected from 11 patients. Among the 3453 protein spots observed, 59 demonstrated statistically significant difference in intensity (≥2-fold) between invasive and non-invasive tumors (p<0.01 by Wilkoxon test), and were identified by mass spectrometry as 47 individual proteins. Among them, we further focused on discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2), a receptor tyrosine kinase with aberrant expression in malignant tumors. Immunohistochemistry analysis of 21 additional MFS cases revealed that higher DCBLD2 expression was significantly associated with invasive properties of tumor cells. DCBLD2 sensitivity and specificity, and positive and negative predictive values for MFS invasion were 69.2%, 87.5%, 90%, and 63.6%, respectively. The expression level of DCBLD2 was consistent in different portions of tumor tissues. Thus, DCBLD2 expression can be a useful biomarker to evaluate invasive properties of MFS. Further validation studies based on multi-institutional collaboration and comprehensive analysis of DCBLD2 biological functions in MFS are required to confirm its prognostic utility for clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.
Malinowski, Douglas P
2007-05-01
In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.
Li, Li; Li, Dongdong; Luo, Zisheng; Huang, Xinhong; Li, Xihong
2016-06-01
The limitations in current understanding of the molecular mechanisms underlying fruit response to the application of plant growth regulators have increasingly become major challenges in improvement of crop quality. This study aimed to evaluate the response of strawberry to the preharvest application of exogenous cytokinin known as forchlorfenuron (CPPU). Postharvest internal and physiological quality attributes were characterized following storage under different conditions. Hierarchical clustering analysis via a label-free proteomic quantitative approach identified a total of 124 proteins in strawberries across all treatments. The expression profiles of both proteins and genes spanned the ranged role of cytokinin involved in primary and secondary metabolism, stress response, and so on. Eighty-eight proteins and fifty-six proteins were significantly regulated immediately at harvest and after storage, respectively. In general, the glycolysis in strawberry was only regulated by CPPU before storage; in addition to the accelerated photosynthesis and acid metabolism, CPPU application maintained higher capacity of resistance in strawberry to stress stimuli after storage, in comparison to control. Nevertheless, the volatile biosynthesis in strawberry has been suppressed by exogenous CPPU. Novel cytokinin response proteins and processes were identified in addition to the main transcriptomic expression to gain insights into the phytohormone control of fruit postharvest quality.
Alimu, Reyihanguli; Mao, Xinfang; Liu, Zhongyuan
2013-06-01
To improve the expression level of tmAMP1m gene from Tenebrio molitor in Escherichia coli, we studied the effects of expression level and activity of the fusion protein HIS-TmAMP1m by conditions, such as culture temperature, inducing time and the final concentration of inductor Isopropyl beta-D-thiogalactopyranoside (IPTG). We analyzed the optimum expression conditions by Tricine-SDS-PAGE electrophoresis, meanwhile, detected its antibacterial activity by using agarose cavity diffusion method. The results suggest that when inducing the recombinant plasmid with a final IPTG concentration of 0.1 mmol/L at 37 degrees C for 4 h, there was the highest expression level of fusion protein HIS-TmAMP1m in Escherichia coli. Under these conditions, the expression of fusion protein accounted for 40% of the total cell lysate with the best antibacterial activity. We purified the fusion protein HIS-TmAMPlm with nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography matrices. Western blotting analysis indicates that the His monoclonal antibody could be specifically bound to fusion protein HIS-TmAMPlm. After expression by inducing, the fusion protein could inhibit the growth of host cell transformed by pET30a-tmAMP1m. The fusion protein HIS-TmAMP1m had better stability and remained higher antibacterial activities when incubated at 100 degrees C for 10 h, repeated freeze thawing at -20 degrees C, dissolved in strong acid and alkali, or treated by organic solvents and protease. Moreover, the minimum inhibitory concentration results demonstrated that the fusion protein HIS-TmAMP1m has a good antibacterial activity against Staphylococcus aureus, Staphylococcus sp., Corynebacterium glutamicum, Bacillus thuringiensis, Corynebacterium sp. This study laid the foundation to promote the application of insect antimicrobial peptides and further research.
Gradated assembly of multiple proteins into supramolecular nanomaterials
NASA Astrophysics Data System (ADS)
Hudalla, Gregory A.; Sun, Tao; Gasiorowski, Joshua Z.; Han, Huifang; Tian, Ye F.; Chong, Anita S.; Collier, Joel H.
2014-08-01
Biomaterials exhibiting precise ratios of different bioactive protein components are critical for applications ranging from vaccines to regenerative medicine, but their design is often hindered by limited choices and cross-reactivity of protein conjugation chemistries. Here, we describe a strategy for inducing multiple different expressed proteins of choice to assemble into nanofibres and gels with exceptional compositional control. The strategy employs ‘βTail’ tags, which allow for good protein expression in bacteriological cultures, yet can be induced to co-assemble into nanomaterials when mixed with additional β-sheet fibrillizing peptides. Multiple different βTail fusion proteins could be inserted into peptide nanofibres alone or in combination at predictable, smoothly gradated concentrations, providing a simple yet versatile route to install precise combinations of proteins into nanomaterials. The technology is illustrated by achieving precisely targeted hues using mixtures of fluorescent proteins, by creating nanofibres bearing enzymatic activity, and by adjusting antigenic dominance in vaccines.
DelProposto, James; Majmudar, Chinmay Y.; Smith, Janet L.; Brown, William Clay
2010-01-01
A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications. PMID:18824232
DelProposto, James; Majmudar, Chinmay Y; Smith, Janet L; Brown, William Clay
2009-01-01
A persistent problem in heterologous protein production is insolubility of the target protein when expressed to high level in the host cell. A widely employed strategy for overcoming this problem is the use of fusion tags. The best fusion tags promote solubility, may function as purification handles and either do not interfere with downstream applications or may be removed from the passenger protein preparation. A novel fusion tag is identified that meets these criteria. This fusion tag is a monomeric mutant of the Ocr protein (0.3 gene product) of bacteriophage T7. This fusion tag displays solubilizing activity with a variety of different passenger proteins. We show that it may be used as a purification handle similar to other fusion tags. Its small size and compact structure are compatible with its use in downstream applications of the passenger protein or it may be removed and purified away from the passenger protein. The use of monomeric Ocr (Mocr) as a complement to other fusion tags such as maltose-binding protein will provide greater flexibility in protein production and processing for a wide variety of protein applications.
Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura
2014-01-01
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624
Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura
2014-01-01
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.
Structure and Function of the Macrolide Biosensor Protein, MphR(A), with and without Erythromycin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianting; Sagar, Vatsala; Smolinsky, Adam
2009-09-02
The regulatory protein MphR(A) has recently seen extensive use in synthetic biological applications, such as metabolite sensing and exogenous control of gene expression. This protein negatively regulates the expression of a macrolide 2{prime}-phosphotransferase I resistance gene (mphA) via binding to a 35-bp DNA operator upstream of the start codon and is de-repressed by the presence of erythromycin. Here, we present the refined crystal structure of the MphR(A) protein free of erythromycin and that of the MphR(A) protein with bound erythromycin at 2.00- and 1.76-{angstrom} resolutions, respectively. We also studied the DNA binding properties of the protein and identified mutants ofmore » MphR(A) that are defective in gene repression and ligand binding in a cell-based reporter assay. The combination of these two structures illustrates the molecular basis of erythromycin-induced gene expression and provides a framework for additional applied uses of this protein in the isolation and engineered biosynthesis of polyketide natural products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Didier, P.; Weiss, E.; Sibler, A.-P.
2008-02-22
Time-resolved femtosecond spectroscopy can improve the application of green fluorescent proteins (GFPs) as protein-folding reporters. The study of ultrafast excited-state dynamics (ESD) of GFP fused to single chain variable fragment (scFv) antibody fragments, allowed us to define and measure an empirical parameter that only depends on the folding quality (FQ) of the fusion. This method has been applied to the analysis of genetic fusions expressed in the bacterial cytoplasm and allowed us to distinguish folded and thus functional antibody fragments (high FQ) with respect to misfolded antibody fragments. Moreover, these findings were strongly correlated to the behavior of the samemore » scFvs expressed in animal cells. This method is based on the sensitivity of the ESD to the modifications in the tertiary structure of the GFP induced by the aggregation state of the fusion partner. This approach may be applicable to the study of the FQ of polypeptides over-expressed under reducing conditions.« less
Lin, Yi-Chieh; Chen, Bing-Mae; Lu, Wei-Cheng; Su, Chien-I; Prijovich, Zeljko M.; Chung, Wen-Chuan; Wu, Pei-Yu; Chen, Kai-Chuan; Lee, I-Chiao; Juan, Ting-Yi; Roffler, Steve R.
2013-01-01
Membrane-tethered proteins (mammalian surface display) are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids) and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells. PMID:24073236
Huang, Jian; Yang, Jing; Guan, Lili; Yi, Shanyong; Du, Linna; Tian, Haishan; Guo, Yongxin; Zhai, Feng; Lu, Zhen; Li, Haiyan; Li, Xiaokun; Jiang, Chao
2017-10-01
Fibroblast growth factor 10 (FGF10) is a member of the FGF superfamily. It exhibits diverse biological functions, and is extensively used for fundamental research and clinical applications involving hair growth, tissue repair, and burn wounds. Oil bodies, obtained from oil seeds, have been exploited for a variety of biotechnology applications. The use of oil bodies reduces purification steps and costs associated with the production of heterogonous proteins. Here, recombinant human FGF10 (rhFGF10) was expressed in safflower (Carthamus tinctorius L.) seeds using oilbody-oleosin technology. A plant expression vector, pOTBar-oleosin-rhFGF10, was constructed and introduced into safflower using Agrobacterium tumefaciens transformation, and mature safflower plants were obtained by grafting. Oleosin-rhFGF10 was successfully transformed and expressed in safflower seeds and inherited to the T 3 generation. Moreover, MTT assays demonstrated that oil bodies expressed oleosin-FGF10 had a dose-dependent effect on cellular proliferation. In conclusion, this may provide a method of producing oleosin-rhFGF10, and help us meet the increasing pharmacological demands for the protein. Copyright © 2016. Published by Elsevier Inc.
Insect cells as factories for biomanufacturing.
Drugmand, Jean-Christophe; Schneider, Yves-Jacques; Agathos, Spiros N
2012-01-01
Insect cells (IC) and particularly lepidopteran cells are an attractive alternative to mammalian cells for biomanufacturing. Insect cell culture, coupled with the lytic expression capacity of baculovirus expression vector systems (BEVS), constitutes a powerful platform, IC-BEVS, for the abundant and versatile formation of heterologous gene products, including proteins, vaccines and vectors for gene therapy. Such products can be manufactured on a large scale thanks to the development of efficient and scaleable production processes involving the integration of a cell growth stage and a stage of cell infection with the recombinant baculovirus vector. Insect cells can produce multimeric proteins functionally equivalent to the natural ones and engineered vectors can be used for efficient expression. Insect cells can be cultivated easily in serum- and protein-free media. A growing number of companies are currently developing an interest in producing therapeutics using IC-BEVS, and many products are today in clinical trials and on the market for veterinary and human applications. This review summarizes current knowledge on insect cell metabolism, culture conditions and applications. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soranzo, Thomas; Martin, Donald K.; Lenormand, Jean -Luc
Here, the structure of the p7 viroporin, an oligomeric membrane protein ion channel involved in the assembly and release of the hepatitis C virus, was determined from proteins expressed and inserted directly into supported model lipid membranes using cell-free protein expression. Cell-free protein expression allowed (i) high protein concentration in the membrane, (ii) control of the protein’s isotopic constitution, and (iii) control over the lipid environment available to the protein. Here, we used cell-free protein synthesis to directly incorporate the hepatitis C virus (HCV) p7 protein into supported lipid bilayers formed from physiologically relevant lipids (POPC or asolectin) for bothmore » direct structural measurements using neutron reflectivity (NR) and conductance measurements using electrical impedance spectroscopy (EIS). We report that HCV p7 from genotype 1a strain H77 adopts a conical shape within lipid bilayers and forms a viroporin upon oligomerization, confirmed by EIS conductance measurements. This combination of techniques represents a novel approach to the study of membrane proteins and, through the use of selective deuteration of particular amino acids to enhance neutron scattering contrast, has the promise to become a powerful tool for characterizing the protein conformation in physiologically relevant environments and for the development of biosensor applications.« less
Soranzo, Thomas; Martin, Donald K.; Lenormand, Jean -Luc; ...
2017-06-13
Here, the structure of the p7 viroporin, an oligomeric membrane protein ion channel involved in the assembly and release of the hepatitis C virus, was determined from proteins expressed and inserted directly into supported model lipid membranes using cell-free protein expression. Cell-free protein expression allowed (i) high protein concentration in the membrane, (ii) control of the protein’s isotopic constitution, and (iii) control over the lipid environment available to the protein. Here, we used cell-free protein synthesis to directly incorporate the hepatitis C virus (HCV) p7 protein into supported lipid bilayers formed from physiologically relevant lipids (POPC or asolectin) for bothmore » direct structural measurements using neutron reflectivity (NR) and conductance measurements using electrical impedance spectroscopy (EIS). We report that HCV p7 from genotype 1a strain H77 adopts a conical shape within lipid bilayers and forms a viroporin upon oligomerization, confirmed by EIS conductance measurements. This combination of techniques represents a novel approach to the study of membrane proteins and, through the use of selective deuteration of particular amino acids to enhance neutron scattering contrast, has the promise to become a powerful tool for characterizing the protein conformation in physiologically relevant environments and for the development of biosensor applications.« less
Barros, Maria C E S; Galasso, Tatiane G C M; Chaib, Antônio J M; Degallier, Nicolas; Nagata, Tatsuya; Ribeiro, Bergmann M
2011-05-27
Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.
Kong, Rong; Cui, Yilei; Fisher, Gary J; Wang, Xiaojuan; Chen, Yinbei; Schneider, Louise M; Majmudar, Gopa
2016-03-01
All-trans retinol, a precursor of retinoic acid, is an effective anti-aging treatment widely used in skin care products. In comparison, topical retinoic acid is believed to provide even greater anti-aging effects; however, there is limited research directly comparing the effects of retinol and retinoic acid on skin. In this study, we compare the effects of retinol and retinoic acid on skin structure and expression of skin function-related genes and proteins. We also examine the effect of retinol treatment on skin appearance. Skin histology was examined by H&E staining and in vivo confocal microscopy. Expression levels of skin genes and proteins were analyzed using RT-PCR and immunohistochemistry. The efficacy of a retinol formulation in improving skin appearance was assessed using digital image-based wrinkle analysis. Four weeks of retinoic acid and retinol treatments both increased epidermal thickness, and upregulated genes for collagen type 1 (COL1A1), and collagen type 3 (COL3A1) with corresponding increases in procollagen I and procollagen III protein expression. Facial image analysis showed a significant reduction in facial wrinkles following 12 weeks of retinol application. The results of this study demonstrate that topical application of retinol significantly affects both cellular and molecular properties of the epidermis and dermis, as shown by skin biopsy and noninvasive imaging analyses. Although the magnitude tends to be smaller, retinol induces similar changes in skin histology, and gene and protein expression as compared to retinoic acid application. These results were confirmed by the significant facial anti-aging effect observed in the retinol efficacy clinical study. © 2015 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
In addition to microarray technology, which provides a robust method to study protein function in a rapid, economical, and proteome-wide fashion, plasmid-based functional proteomics is an important technology for rapidly obtaining large quantities of protein and determining protein function across a...
Mačinković, Igor S; Abughren, Mohamed; Mrkic, Ivan; Grozdanović, Milica M; Prodanović, Radivoje; Gavrović-Jankulović, Marija
2013-12-01
High levels of recombinant protein expression can lead to the formation of insoluble inclusion bodies. These complex aggregates are commonly solubilized in strong denaturants, such as 6-8M urea, although, if possible, solubilization under milder conditions could facilitate subsequent refolding and purification of bioactive proteins. Commercially available GST-tag assays are designed for quantitative measurement of GST activity under native conditions. GST fusion proteins accumulated in inclusion bodies are considered to be undetectable by such assays. In this work, solubilization of recombinantly produced proteins was performed in 4M urea. The activity of rGST was assayed in 2M urea and it was shown that rGST preserves 85% of its activity under such denaturing conditions. A colorimetric GST activity assay with 1-chloro-2, 4-dinitrobenzene (CDNB) was examined for use in rapid detection of expression targeted to inclusion bodies and for the identification of inclusion body proteins which can be solubilized in low concentrations of chaotropic agents. Applicability of the assay was evaluated by tracking protein expression of two GST-fused allergens of biopharmaceutical value in E. coli, GST-Der p 2 and GST-Mus a 5, both targeted to inclusion bodies. Copyright © 2013 Elsevier B.V. All rights reserved.
Klatt, Stephan; Hartl, Daniela; Fauler, Beatrix; Gagoski, Dejan; Castro-Obregón, Susana; Konthur, Zoltán
2013-12-06
Leishmania tarentolae is a non-human-pathogenic Leishmania species of growing interest in biotechnology, as it is well-suited for the expression of human recombinant proteins. For many applications it is desirable to express recombinant proteins with a tag allowing easy purification and detection. Hence, we adopted a scheme to express recombinant proteins with a His6-tag and, additionally, to site-specifically in vivo biotinylate them for detection. Biotinylation is a relatively rare modification of endogenous proteins that allows easy detection with negligible cross-reactivity. Here, we established a genetically engineered L. tarentolae strain constitutively expressing the codon-optimized biotin-protein ligase from Escherichia coli (BirA). We thoroughly analyzed the strain for functionality using 2-D polyacrylamide-gel electrophoresis (PAGE), mass spectrometry, and transmission electron microscopy (TEM). We could demonstrate that neither metabolic changes (growth rate) nor structural abnormalities (TEM) occurred. To our knowledge, we show the first 2-D PAGE analyses of L. tarentolae. Our results demonstrate the great benefit of the established L. tarentolae in vivo biotinylation strain for production of dual-tagged recombinant proteins. Additionally, 2-D PAGE and TEM results give insights into the biology of L. tarentolae, helping to better understand Leishmania species. Finally, we envisage that the system is transferable to human-pathogenic species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary E. lidstrom
Limitations in current isotopic labeling methods present a substantial bottleneck for the application of advanced structural techniques to many important biochemical problems. New tools are required to efficiently produce the necessary labeling patterns in biochemical precursors and incorporate them into protein molecules for structural studies. This project proposed involved one aspect of this problem, the development of expression vectors for a methylotrophic bacterium, Methylobacterium extorquens AM1. If high-level, efficient expression could be obtained in such a bacterium, it would be possible to use low-cost {sup 2}H- and/or {sup 13}C-labeled substrates such as methanol to label proteins. The Lidstrom laboratory atmore » the University of Washington worked closely with the collaborators at Los Alamos National Laboratories in the development and use of these vectors. (1) Overexpression of a target gene, bacterial dehalogenase--This enzyme was expressed in Methylobacterium extorquens AM1 using a high level methanol-inducible promoter, the mxaF promoter. High expression was achieved, but most was in an insoluble form. They expressed this protein in a mutant lacking polybetahydroxybutyrate granules, and high expression was achieved, up to 10% of the total soluble protein. The recombinant protein was purified and shown to be active, with characteristics similar to the enzyme produced in E. coli. (2) Development of regulated expression systems--A number of regulated promoters were tested in M. extorquens AM1, the most promising of which appeared to be the E. coli lac promoter coupled to the Laciq regulator. The repressor was shown to be active and a chromosomal insertion construct was generated that repressed the low-level lac promoter activity in M. extorquens AM1. However, IPTG induced this system only poorly. A number of studies were carried out leading to the conclusion that IPTG entered the cell but was exported by one or more export pumps. Target genes for such pumps were mutated but none of these showed increased induction. A number of methods were used to permeabilize the cell, and a 2-fold increase in induction was obtained with one of these. The activity of the lac promoter was increased by inserting a recently-identified M. extorquens AM1 enhancer element upstream. The promoter increased in activity 5-6 fold with this addition. In summary, they have developed a suite of expression tools and host mutant strains for expressing a variety of heterologous proteins in this methylotroph. These are now available for testing by the LANL collaborators in labeling reactors to obtain labeled proteins of interest.« less
Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I
2015-08-03
In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.
Multiway modeling and analysis in stem cell systems biology
2008-01-01
Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate. Conclusion Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models. PMID:18625054
Xu, Hanfu
2014-10-01
The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It's a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Ziyu; Hooker, Brian S.; Anderson, Daniel B.
Optimization of Acidothermus cellulolyticus endoglucanase (E1) gene expression in transgenic potato (Solanum tuberosum L.) was examined in this study, where the E1 coding sequence was transcribed under control of a leaf specific promoter (tomato RbcS-3C) or the Mac promoter (a hybrid promoter of mannopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region). Average E1 activity in leaf extracts of potato transformants, in which E1 protein was targeted by a chloroplast signal peptide and an apoplast signal peptide were much higher than those by an E1 native signal peptide and a vacuole signal peptide. E1 protein accumulated up tomore » 2.6% of total leaf soluble protein, where E1 gene was under control of the RbcS-3C promoter, alfalfa mosaic virus 5-untranslated leader, and RbcS-2A signal peptide. E1 protein production, based on average E1 activity and E1 protein accumulation in leaf extracts, is higher in potato than those measured previously in transgenic tobacco bearing the same transgene constructs. Comparisons of E1 activity, protein accumulation, and relative mRNA levels showed that E1 expression under control of tomato RbcS-3C promoter was specifically localized in leaf tissues, while E1 gene was expressed in both leaf and tuber tissues under control of Mac promoter. This suggests dual-crop applications in which potato vines serve as enzyme production `bioreactors' while tubers are preserved for culinary applications.« less
Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies.
Meiyalaghan, Sathiyamoorthy; Latimer, Julie M; Kralicek, Andrew V; Shaw, Martin L; Lewis, John G; Conner, Anthony J; Barrell, Philippa J
2014-11-04
The Gibberellin Stimulated-Like (GSL) or Snakin peptides from higher plants are cysteine-rich, with broad spectrum activity against a range of bacterial and fungal pathogens. To detect GSL peptides in applications such as western blot analysis and enzyme-linked immunosorbent assays (ELISA), specific antibodies that recognise GSL peptides are required. However, the intrinsic antimicrobial activity of these peptides is likely to prevent their expression alone in bacterial or yeast expression systems for subsequent antibody production in animal hosts. To overcome this issue we developed an Escherichia coli expression strategy based on the expression of the GSL1 peptide as a His-tagged thioredoxin fusion protein. The DNA sequence for the mature GSL1 peptide from potato (Solanum tuberosum L.) was cloned into the pET-32a expression vector to produce a construct encoding N-terminally tagged his6-thioredoxin-GSL1. The fusion protein was overexpressed in E. coli to produce soluble non-toxic protein. The GSL1 fusion protein could be easily purified by using affinity chromatography to yield ~1.3 mg of his6-thioredoxin-GSL1 per L of culture. The fusion protein was then injected into rabbits for antibody production. Western blot analysis showed that the antibodies obtained from rabbit sera specifically recognised the GSL1 peptide that had been expressed in a wheat germ cell-free expression system. We present here the first report of a GSL1 peptide expressed as a fusion protein with thioredoxin that has resulted in milligram quantities of soluble protein to be produced. We have also demonstrated that a wheat germ system can be used to successfully express small quantities of GSL1 peptide useful as positive control in western blot analysis. To our knowledge this is the first report of antibodies being produced against GSL1 peptide. The antibodies will be useful for analysis of GSL1peptides in western blot, localization by immunohistochemistry (IHC) and quantitation by ELISA.
USDA-ARS?s Scientific Manuscript database
The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and physiology of this insect remains poorly understood. A combined assembly of 8340 expressed sequence tags (ESTs) was generated from Roche 454 GS-FLX sequencing of 8 tissu...
Sangawa, Takeshi; Tabata, Sanae; Suzuki, Kei; Saheki, Yasushi; Tanaka, Keiji; Takagi, Junichi
2013-01-01
Expression and purification of aggregation-prone and disulfide-containing proteins in Escherichia coli remains as a major hurdle for structural and functional analyses of high-value target proteins. Here, we present a novel gene-fusion strategy that greatly simplifies purification and refolding procedure at very low cost using a unique hyperacidic module derived from the human amyloid precursor protein. Fusion with this polypeptide (dubbed FATT for Flag-Acidic-Target Tag) results in near-complete soluble expression of variety of extracellular proteins, which can be directly refolded in the crude bacterial lysate and purified in one-step by anion exchange chromatography. Application of this system enabled preparation of functionally active extracellular enzymes and antibody fragments without the need for condition optimization. PMID:23526492
Queiroz, Sabrina Ribeiro de Almeida; Silva Júnior, José Valter Joaquim; Silva, Andréa Nazaré Monteiro Rangel da; Carvalho, Amanda Gomes de Oliveira; Santos, Jefferson José da Silva; Gil, Laura Helena Vega Gonzales
2018-01-01
Pseudo-infectious yellow fever viral particles (YFV-PIVs) have been used to study vaccines and viral packaging. Here, we report the development of a packaging cell line, which expresses the YFV prM/E proteins. HEK293 cells were transfected with YFV prM/E and C (84 nt) genes to generate HEK293-YFV-PrM/E-opt. The cells were evaluated for their ability to express the heterologous proteins and to package the replicon repYFV-17D-LucIRES, generating YFV-PIVs. The expression of prM/E proteins was confirmed, and the cell line trans-packaged the replicon for recovery of a reporter for the YFV-PIVs. HEK293-YFV-prM/E-opt trans-packaging capacity demonstrates its possible biotechnology application.
Chen, Yao; Zane, Nicole R; Thakker, Dhiren R; Wang, Michael Zhuo
2016-07-01
Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39-67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26-65) pmol/mg HLM protein and 27 (11.5-49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14-20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9-9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Chen, Yao; Zane, Nicole R.; Thakker, Dhiren R.
2016-01-01
Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39–67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26–65) pmol/mg HLM protein and 27 (11.5–49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14–20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9–9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. PMID:26839369
Protein complex purification from Thermoplasma acidophilum using a phage display library.
Hubert, Agnes; Mitani, Yasuo; Tamura, Tomohiro; Boicu, Marius; Nagy, István
2014-03-01
We developed a novel protein complex isolation method using a single-chain variable fragment (scFv) based phage display library in a two-step purification procedure. We adapted the antibody-based phage display technology which has been developed for single target proteins to a protein mixture containing about 300 proteins, mostly subunits of Thermoplasma acidophilum complexes. T. acidophilum protein specific phages were selected and corresponding scFvs were expressed in Escherichia coli. E. coli cell lysate containing the expressed His-tagged scFv specific against one antigen protein and T. acidophilum crude cell lysate containing intact target protein complexes were mixed, incubated and subjected to protein purification using affinity and size exclusion chromatography steps. This method was confirmed to isolate intact particles of thermosome and proteasome suitable for electron microscopy analysis and provides a novel protein complex isolation strategy applicable to organisms where no genetic tools are available. Copyright © 2013 Elsevier B.V. All rights reserved.
Directed molecular evolution to design advanced red fluorescent proteins.
Subach, Fedor V; Piatkevich, Kiryl D; Verkhusha, Vladislav V
2011-11-29
Fluorescent proteins have become indispensable imaging tools for biomedical research. Continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications.
Besir, Hüseyin
2017-01-01
Recombinant expression of heterologous proteins in E. coli is well established for a wide range of proteins, although in many cases, purifying soluble and properly folded proteins remains challenging (Sorensen and Mortensen, J Biotechnol 115:113-128, 2005; Correa and Oppezzo, Methods Mol Biol 1258:27-44, 2015). Proteins that contain disulfide bonds (e.g., cytokines, growth factors) are often particularly difficult to purify in soluble form and still need optimizing of protocols in almost every step of the process (Berkmen, Protein Expr Purif 82:240-251, 2012; de Marco, Microb Cell Fact 11:129, 2012). Expression of disulfide bonded proteins in the periplasm of E. coli is one approach that can help to obtain soluble protein with the correct disulfide bridges forming in the periplasm. This offers the appropriate conditions for disulfide formation although periplasmic expression can also result in low expression levels and incorrect folding of the target protein (Schlapschy and Skerra, Methods Mol Biol 705:211-224, 2011). Generation of specific antibodies often requires a specific antigenic sequence of a protein in order to get an efficient immune response and minimize cross-reactivity of antibodies. Larger proteins like GST (Glutathione-S-transferase) or MBP (maltose binding protein) as solubilizing fusion partners are frequently used to keep antigens soluble and immunize animals. This approach has the disadvantage that the immune response against the fusion partner leads to additional antibodies that need to be separated from the antigen-specific antibodies. For both classes of proteins mentioned above, a protocol has been developed and optimized using the human version of small ubiquitin-like modifier 3 (SUMO3) protein and its corresponding protease SenP2. This chapter describes the experimental steps for expression, purification, refolding, and cleavage that are applicable to both disulfide-bonded proteins with a defined structure and random protein fragments for antibody generation or larger peptides with defined sequence that are difficult express on their own.
Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O
2012-04-01
Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.
Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging
Provost, Christopher R.; Sun, Luo
2010-01-01
SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262
NASA Astrophysics Data System (ADS)
Feng, Yi; Wan, Mingxi
2017-03-01
To analyze the potential mechanism related to the apoptosis induced by low intensity focused ultrasound, comparative proteomic method was introduced in the study. After ultrasound irradiation (3.0 W/cm2, 1 minute, 6 hours incubation post-irradiation), the human SMMC-7721 hepatocarcinoma cells were stained by trypan blue to detect the morphologic changes, and then the percentage of early apoptosis were tested by the flow cytometry with double staining of FITC-labelled Annexin V/Propidium iodide. Two-dimensional SDS polyacrylamide gel electrophoresis was used to get the protein profile and some proteins differently expressed after ultrasound irradiation were identified by MALDI-TOF mass spectrometry. It's proved early apoptosis of cells were induced by low intentisy focused ultrasound. After ultrasound irradiation, the expressing characteristics of several proteins changed, in which protein p53 and heat shock proteins are associated with apoptosis initiation. It is suggested that the low-intensity ultrasound-induced apoptotic cancer therapy has the potential application via understanding its relevant molecular signaling and key proteins. Moreover, the comparative proteomic method is proved to be useful to supply information about the protein expression to analyze the metabolic processes related to bio-effects of biomedical ultrasound.
Wittenberger, T; Schaller, H C; Hellebrand, S
2001-03-30
We have developed a comprehensive expressed sequence tag database search method and used it for the identification of new members of the G-protein coupled receptor superfamily. Our approach proved to be especially useful for the detection of expressed sequence tag sequences that do not encode conserved parts of a protein, making it an ideal tool for the identification of members of divergent protein families or of protein parts without conserved domain structures in the expressed sequence tag database. At least 14 of the expressed sequence tags found with this strategy are promising candidates for new putative G-protein coupled receptors. Here, we describe the sequence and expression analysis of five new members of this receptor superfamily, namely GPR84, GPR86, GPR87, GPR90 and GPR91. We also studied the genomic structure and chromosomal localization of the respective genes applying in silico methods. A cluster of six closely related G-protein coupled receptors was found on the human chromosome 3q24-3q25. It consists of four orphan receptors (GPR86, GPR87, GPR91, and H963), the purinergic receptor P2Y1, and the uridine 5'-diphosphoglucose receptor KIAA0001. It seems likely that these receptors evolved from a common ancestor and therefore might have related ligands. In conclusion, we describe a data mining procedure that proved to be useful for the identification and first characterization of new genes and is well applicable for other gene families. Copyright 2001 Academic Press.
de Carvalho, João Carlos Monteiro; Mayfield, Stephen Patrick
2018-01-01
Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP) for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications. PMID:29408937
Viglio, Simona; Stolk, Jan; Iadarola, Paolo; Giuliano, Serena; Luisetti, Maurizio; Salvini, Roberta; Fumagalli, Marco; Bardoni, Anna
2014-01-22
To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical pathways involved in disease; (ii) for generating hypotheses; or (iii) as a tool for the identification of proteins differentially expressed in response to the disease state. Proteomics has not been used yet in the field of respiratory research as extensively as in other fields, only a few reproducible and clinically applicable molecular markers, which can assist in diagnosis, having been currently identified. The continuous advances in both instrumentation and methodology, which enable sensitive and quantitative proteomic analyses in much smaller amounts of biological material than before, will hopefully promote the identification of new candidate biomarkers in this area. The aim of this report is to critically review the application over the decade 2004-2013 of very sophisticated technologies to the study of respiratory disorders. The observed changes in protein expression profiles from tissues/fluids of patients affected by pulmonary disorders opens the route for the identification of novel pathological mediators of these disorders.
Pan, Xingliang; Yang, Yalin; Liu, Xuewei; Li, Dong; Li, Juan; Guo, Xiaoze; Zhou, Zhigang
2016-09-16
The quenching enzyme AIO6 (AiiO-AIO6) has been reported as a feed additive preparation for application in aquaculture and biological control of pathogenic Aeromonas hydrophila. We developed an economical strategy to express AIO6BS (AiiO-AIO6BS, codon optimized AIO6 in Bacillus subtilis) in Bacillus subtilis for facilitating its widespread application. Promoter p43 without the signal peptide was used for secretory expression of AIO6BS in B. subtilis. Western blotting analysis demonstrated that AIO6BS was successfully expressed and secreted into the cell culture. Expression analysis of AIO6BS in the single or double mutant of the lytC and lytD genes for cell autolysis in B. subtilis 1A751 and cell autolysis-resistant engineered strain LM2531 derived from the wild type 168 indicated that the release of the heterologous protein AIO6BS was not simply mediated by cell lysis. Expression level of AIO6BS did not change in the mutants of B. subtilis that harbored mutations in the secA, tatAC, or ecsA genes compared with that in the parent wild type strain. These results suggested the AIO6BS protein was likely secreted via a non-classical secretion pathway. The expression analysis of the various N- or C-terminal truncated gene products indicated that AIO6BS probably acts as an export signal to direct its self-secretion across the cell membrane. Copyright © 2016 Elsevier Inc. All rights reserved.
Karothia, B S; Athmaram, T N; D, Thavaselvam; Ashu, Kumar; Tiwari, Sapna; Singh, Anil K; Sathyaseelan, K; Gopalan, N
2013-07-01
Brucellosis is a disease caused by bacteria belonging to the genus Brucella. It affects cattle, goat, sheep, dog and humans. The serodiagnosis of brucellosis involves detection of antibodies generated against the LPS or whole cell bacterial extracts, however these tests lack sensitivity and specificity. The present study was performed to optimize the culture condition for the production of recombinant Brucella melitensis outer membrane protein 28 kDa protein in E.coli via fed batch fermentation. Expression was induced with 1.5mM isopropyl β thiogalactoside and the expressed recombinant protein was purified using Ni-NTA affinity chromatography. After fed-batch fermentation the dry cell weight of 17.81 g/L and a purified protein yield of 210.10 mg/L was obtained. The purified Brucella melitensis recombinant Omp 28 kDa protein was analyzed through SDS- poly acrylamide gel electrophoresis and western blotting. The obtained recombinant protein was evaluated for its diagnostic application through Indirect ELISA using brucellosis suspected human sera samples. Our results clearly indicate that recombinant Omp28 produced via fed batch fermentation has immense potential as a diagnostic reagent that could be employed in sero monitoring of brucellosis.
Facile Method for the Site-Specific, Covalent Attachment of full-length IgG onto Nanoparticles
Hui, James Zhe; Al Zaki, Ajlan; Cheng, Zhiliang; Popik, Vladimir; Zhang, Hongtao; Luning Prak, Eline T.
2014-01-01
Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzycyclooctyne-modified nanoparticles, via copper-free click chemistry. PMID:24729432
Facile method for the site-specific, covalent attachment of full-length IgG onto nanoparticles.
Hui, James Zhe; Al Zaki, Ajlan; Cheng, Zhiliang; Popik, Vladimir; Zhang, Hongtao; Luning Prak, Eline T; Tsourkas, Andrew
2014-08-27
Antibodies, most commonly IgGs, have been widely used as targeting ligands in research and therapeutic applications due to their wide array of targets, high specificity and proven efficacy. Many of these applications require antibodies to be conjugated onto surfaces (e.g. nanoparticles and microplates); however, most conventional bioconjugation techniques exhibit low crosslinking efficiencies, reduced functionality due to non-site-specific labeling and random surface orientation, and/or require protein engineering (e.g. cysteine handles), which can be technically challenging. To overcome these limitations, we have recombinantly expressed Protein Z, which binds the Fc region of IgG, with an UV active non-natural amino acid benzoylphenyalanine (BPA) within its binding domain. Upon exposure to long wavelength UV light, the BPA is activated and forms a covalent link between the Protein Z and the bound Fc region of IgG. This technology was combined with expressed protein ligation (EPL), which allowed for the introduction of a fluorophore and click chemistry-compatible azide group onto the C-terminus of Protein Z during the recombinant protein purification step. This enabled the crosslinked-Protein Z-IgG complexes to be efficiently and site-specifically attached to aza-dibenzocyclooctyne-modified nanoparticles, via copper-free click chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Hang; Li, Li; Fang, Jin
2012-04-01
To construct and express the recombinant ND-1-scFv/SEA, a fusion protein of superantigen (staphylococcal enterotoxinA, SEA) and single-chain variable fragment of monoclonal antibody ND-1 against human clolorectal carcinoma, and to enhance the targeted killing effect of SEA. The expression of the fusion protein was induced in E.coli M15 by IPTG. Ni-NTA resin affinity chromatography was used to separate and purify the expressed product. The specific binding activity of the purified ND-1-scFv/SEA protein was examined by indirect immunofluorescence assay and the targeted-cytotoxicity was determined using MTT assay. The expressing vector of fusion gene ND-1scFv/SEA was constructed successfully. ND-1-scFv/SEA protein retained a high binding affinity to antigen-positive human colorectal cancer cell CCL-187 and had a stronger capability to activate PBMC and kill the target cells compared to SEA alone, with a killing rate of 91% at 4 μg/mL. ND-1-scFv/SEA fusion protein could specifically target colorectal cancer cell, enhance the activity of kill tumor cell and has potential applications in the targeted therapy of colorectal cancer.
Venter, P. Arno; Dirksen, Anouk; Thomas, Diane; Manchester, Marianne; Dawson, Philip E.; Schneemann, Anette
2011-01-01
Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery and tissue-specific bio-imaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to covalently display a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development. PMID:21545187
Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells
Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.
2016-01-01
Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430
Thakur, Krishan Gopal; Jaiswal, Ravi Kumar; Shukla, Jinal K; Praveena, T; Gopal, B
2010-12-01
The function of a protein in a cell often involves coordinated interactions with one or several regulatory partners. It is thus imperative to characterize a protein both in isolation as well as in the context of its complex with an interacting partner. High resolution structural information determined by X-ray crystallography and Nuclear Magnetic Resonance offer the best route to characterize protein complexes. These techniques, however, require highly purified and homogenous protein samples at high concentration. This requirement often presents a major hurdle for structural studies. Here we present a strategy based on co-expression and co-purification to obtain recombinant multi-protein complexes in the quantity and concentration range that can enable hitherto intractable structural projects. The feasibility of this strategy was examined using the σ factor/anti-σ factor protein complexes from Mycobacterium tuberculosis. The approach was successful across a wide range of σ factors and their cognate interacting partners. It thus appears likely that the analysis of these complexes based on variations in expression constructs and procedures for the purification and characterization of these recombinant protein samples would be widely applicable for other multi-protein systems. Copyright © 2010 Elsevier Inc. All rights reserved.
Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko
2016-08-01
Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.
Mohammadzadeh, Sara; Roohvand, Farzin; Memarnejadian, Arash; Jafari, Anis; Ajdary, Soheila; Salmanian, Ali-Hatef; Ehsani, Parastoo
2016-01-01
Plants transformed by virus-based vectors have emerged as promising tools to rapidly express large amounts and inexpensive antigens in transient condition. We studied the possibility of transient-expression of an HBsAg-fused polytopic construct (HCVpc) [containing H-2d and HLA-A2-restricted CD8+CTL-epitopic peptides of C (Core; aa 132-142), E6 (Envelope2; aa 614-622), N (NS3; aa 1406-1415), and E4 (Envelope2; aa 405-414) in tandem of CE6NE4] in tobacco (Nicotiana tabacum) leaves for the development of a plant-based HCV vaccine. A codon-optimized gene encoding the Kozak sequence, hexahistidine (6×His)-tag peptide, and HCVpc in tandem was designed, chemically synthesized, fused to HBsAg gene, and inserted into Potato virus X (PVX-GW) vector under the control of duplicated PVX coat protein promoter (CPP). The resulted recombinant plasmids (after confirmation by restriction and sequencing analyses) were transferred into Agrobacterium tumefaciens strain GV3101 and vacuum infiltrated into tobacco leaves. The effect of gene-silencing suppressor, p19 protein from tomato bushy stunt virus, on the expression yield of HCVpc-HBsAg was also evaluated by co-infiltration of a p19 expression vector. Codon-optimized gene increased adaptation index (CAI) value (from 0.61 to 0.92) in tobacco. The expression of the HCVpc-HBsAg was confirmed by western blot and HBsAg-based detection ELISA on total extractable proteins of tobacco leaves. The expression level of the fusion protein was significantly higher in p19 co-agroinfiltrated plants. The results indicated the possibility of expression of HCVpc-HBsAg constructs with proper protein conformations in tobacco for final application as a plant-derived HCV vaccine.
London, Anne Serdakowski; Patel, Kunal; Quinn, Lisa; Lemmerer, Martin
2015-04-01
Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis. Copyright © 2014 Elsevier Inc. All rights reserved.
Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine
Jando, Julia; Camargo, Simone M. R.; Herzog, Brigitte
2017-01-01
Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary adaptation mainly restricted to the proximal segment of the small intestine. PMID:28915252
Rosenthal, Sun Hee; Diamos, Andrew G; Mason, Hugh S
2018-03-01
We have found interesting features of a plant gene (extensin) 3' flanking region, including extremely efficient polyadenylation which greatly improves transient expression of transgenes when an intron is removed. Its use will greatly benefit studies of gene expression in plants, research in molecular biology, and applications for recombinant proteins. Plants are a promising platform for the production of recombinant proteins. To express high-value proteins in plants efficiently, the optimization of expression cassettes using appropriate regulatory sequences is critical. Here, we characterize the activity of the tobacco extensin (Ext) gene terminator by transient expression in Nicotiana benthamiana, tobacco, and lettuce. Ext is a member of the hydroxyproline-rich glycoprotein (HRGP) superfamily and constitutes the major protein component of cell walls. The present study demonstrates that the Ext terminator with its native intron removed increased transient gene expression up to 13.5-fold compared to previously established terminators. The enhanced transgene expression was correlated with increased mRNA accumulation and reduced levels of read-through transcripts, which could impair gene expression. Analysis of transcript 3'-ends found that the majority of polyadenylated transcripts were cleaved at a YA dinucleotide downstream from a canonical AAUAAA motif and a UG-rich region, both of which were found to be highly conserved among related extensin terminators. Deletion of either of these regions eliminated most of the activity of the terminator. Additionally, a 45 nt polypurine sequence ~ 175 nt upstream from the polyadenylation sites was found to also be necessary for the enhanced expression. We conclude that the use of Ext terminator has great potential to benefit the production of recombinant proteins in plants.
A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum.
Rud, Ida; Jensen, Peter Ruhdal; Naterstad, Kristine; Axelsson, Lars
2006-04-01
A synthetic promoter library (SPL) for Lactobacillus plantarum has been developed, which generalizes the approach for obtaining synthetic promoters. The consensus sequence, derived from rRNA promoters extracted from the L. plantarum WCFS1 genome, was kept constant, and the non-consensus sequences were randomized. Construction of the SPL was performed in a vector (pSIP409) previously developed for high-level, inducible gene expression in L. plantarum and Lactobacillus sakei. A wide range of promoter strengths was obtained with the approach, covering 3-4 logs of expression levels in small increments of activity. The SPL was evaluated for the ability to drive beta-glucuronidase (GusA) and aminopeptidase N (PepN) expression. Protein production from the synthetic promoters was constitutive, and the most potent promoters gave high protein production with levels comparable to those of native rRNA promoters, and production of PepN protein corresponding to approximately 10-15 % of the total cellular protein. High correlation was obtained between the activities of promoters when tested in L. sakei and L. plantarum, which indicates the potential of the SPL for other Lactobacillus species. The SPL enables fine-tuning of stable gene expression for various applications in L. plantarum.
Dong, De-Xin; Ji, Zhi-Gang; Li, Han-Zhong; Yan, Wei-Gang; Zhang, Yu-Shi
2017-12-30
Objective To evaluate the application of weak cation exchange (WCX) magnetic bead-based Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in detecting differentially expressed proteins in the urine of renal clear cell carcinoma (RCCC) and its value in the early diagnosis of RCCC.Methods Eleven newly diagnosed patients (10 males and 1 female, aged 46-78, mean 63 years) of renal clear cell carcinoma by biopsy and 10 healthy volunteers (all males, aged 25-32, mean 29.7 years) were enrolled in this study. Urine samples of the RCCC patients and healthy controls were collected in the morning. Weak cation exchange (WCX) bead-based MALDI-TOF MS technique was applied in detecting differential protein peaks in the urine of RCCC. ClinProTools2.2 software was utilized to determine the characteristic proteins in the urine of RCCC patients for the predictive model of RCCC. Results The technique identified 160 protein peaks in the urine that were different between RCCC patients and health controls; and among them, there was one peak (molecular weight of 2221.71 Da) with statistical significance (P=0.0304). With genetic algorithms and the support vector machine, we screened out 13 characteristic protein peaks for the predictive model. Conclusions The application of WCX magnetic bead-based MALDI-TOF MS in detecting differentially expressed proteins in urine may have potential value for the early diagnosis of RCCC.
2011-01-01
Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine. PMID:21619598
Park, Jong Ho; Suh, Mi Chung; Kim, Tae Hyun; Kim, Moon Chul; Cho, Sung Ho
2008-11-01
Glycine-rich proteins (GRPs) belong to a large family of heterogenous proteins that are enriched in glycine residues. The expression of two GRP genes of Arabidopsis thaliana, AtGRP5 and AtGRP23, was induced by 16-hydroxypalmitic acid (HPA), a major component of cutin. The expression of AtGRP3, which encodes a GRP protein that is structurally different from AtGRP5 and AtGRP23, was not responsive to HPA application. Treatment with HPA also induced expression of the pathogen-related PR-1 and PR-4 genes. Abscisic acid and salicylic acid treatments enhanced the transcript levels of AtGRP5 and AtGRP23 as well as those of AtGRP3. It was also demonstrated that HPA effectively elicited the accumulation of H2O2 in rosette leaves of Arabidopsis. Results suggest the possible role of some species of GRPs, such as AtGRP5 and AtGRP23, in response to the pathogenic invasion mediated by cutin monomers in plants.
Hunter, Lawrence; Lu, Zhiyong; Firby, James; Baumgartner, William A; Johnson, Helen L; Ogren, Philip V; Cohen, K Bretonnel
2008-01-01
Background Information extraction (IE) efforts are widely acknowledged to be important in harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual information is published in a diverse literature. Here we report on the design, implementation and several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It significantly advances the state of the art in information extraction by leveraging knowledge in ontological resources, integrating diverse text processing applications, and using an expanded pattern language that allows the mixing of syntactic and semantic elements and variable ordering. Results OpenDMAP information extraction systems were produced for extracting protein transport assertions (transport), protein-protein interaction assertions (interaction) and assertions that a gene is expressed in a cell type (expression). Evaluations were performed on each system, resulting in F-scores ranging from .26 – .72 (precision .39 – .85, recall .16 – .85). Additionally, each of these systems was run over all abstracts in MEDLINE, producing a total of 72,460 transport instances, 265,795 interaction instances and 176,153 expression instances. Conclusion OpenDMAP advances the performance standards for extracting protein-protein interaction predications from the full texts of biomedical research articles. Furthermore, this level of performance appears to generalize to other information extraction tasks, including extracting information about predicates of more than two arguments. The output of the information extraction system is always constructed from elements of an ontology, ensuring that the knowledge representation is grounded with respect to a carefully constructed model of reality. The results of these efforts can be used to increase the efficiency of manual curation efforts and to provide additional features in systems that integrate multiple sources for information extraction. The open source OpenDMAP code library is freely available at PMID:18237434
Rhee, Sun-Ju; Jang, Yoon Jeong; Lee, Gung Pyo
2016-06-01
Heterologous gene expression using plant virus vectors enables research on host-virus interactions and the production of useful proteins, but the host range of plant viruses limits the practical applications of such vectors. Here, we aimed to develop a viral vector based on cucumber fruit mottle mosaic virus (CFMMV), a member of the genus Tobamovirus, whose members infect cucurbits. The subgenomic promoter (SGP) in the coat protein (CP) gene, which was used to drive heterologous expression, was mapped by analyzing deletion mutants from a CaMV 35S promoter-driven infectious CFMMV clone. The region from nucleotides (nt) -55 to +160 relative to the start codon of the open reading frame (ORF) of CP was found to be a fully active promoter, and the region from nt -55 to +100 was identified as the active core promoter. Based on these SGPs, we constructed a cloning site in the CFMMV vector and successfully expressed enhanced green fluorescent protein (EGFP) in Nicotiana benthamiana and watermelon (Citrullus lanatus). Co-inoculation with the P19 suppressor increased EGFP expression and viral replication by blocking degradation of the viral genome. Our CFMMV vector will be useful as an expression vector in cucurbits.
Maeda, Yukihide; Fukushima, Kunihiro; Kariya, Shin; Orita, Yorihisa; Nishizaki, Kazunori
2015-08-01
Using proteomics, we aimed to identify the proteins differentially regulated by dexamethasone in the mouse cochlea based on mass-spectrometry data. Glucocorticoid therapy is widely used for many forms of sensorineural hearing loss; however, the molecular mechanism of its action in the cochlea remains poorly understood. Dexamethasone or control saline was intratympanically applied to the cochleae of mice. Twelve hours after application, proteins differentially regulated by dexamethasone in the cochlea were analyzed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-mass spectrometry. Next, dexamethasone-dependent regulation of these proteins was verified in the cochleae of mice with noise-induced hearing loss (NIHL) and systemic administration of dexamethasone by western blotting. Immunolocalizations of these proteins were examined in cochleae with NIHL. A total of 247 proteins with a greater than 95% confidence interval of protein identification were found, and 11 differentially expressed proteins by dexamethasone were identified by the iTRAQ-mass spectrometry. One protein, myelin protein zero (Mpz), was upregulated (1.870 ± 0.201-fold change, p < 0.01) at 6 hours post-systemic dexamethasone and noise exposure in a mouse model of NIHL. Heat shock protein 70 (Hsp70) was downregulated (0.511 ± 0.274-fold change, p < 0.05) at 12 hours post-systemic dexamethasone. Immunohistochemistry confirmed Mpz localization to the efferent and afferent processes of the spiral neurons, whereas Hsp70 showed a more ubiquitous expression pattern in the cochlea. Both Mpz and Hsp70 have been reported to be closely associated with sensorineural hearing loss in humans. Dexamethasone significantly modulated the expression levels of these proteins in the cochleae of mice.
Affimer proteins are versatile and renewable affinity reagents
Tiede, Christian; Bedford, Robert; Heseltine, Sophie J; Smith, Gina; Wijetunga, Imeshi; Ross, Rebecca; AlQallaf, Danah; Roberts, Ashley PE; Balls, Alexander; Curd, Alistair; Hughes, Ruth E; Martin, Heather; Needham, Sarah R; Zanetti-Domingues, Laura C; Sadigh, Yashar; Peacock, Thomas P; Tang, Anna A; Gibson, Naomi; Kyle, Hannah; Platt, Geoffrey W; Ingram, Nicola; Taylor, Thomas; Coletta, Louise P; Manfield, Iain; Knowles, Margaret; Bell, Sandra; Esteves, Filomena; Maqbool, Azhar; Prasad, Raj K; Drinkhill, Mark; Bon, Robin S; Patel, Vikesh; Goodchild, Sarah A; Martin-Fernandez, Marisa; Owens, Ray J; Nettleship, Joanne E; Webb, Michael E; Harrison, Michael; Lippiat, Jonathan D; Ponnambalam, Sreenivasan; Peckham, Michelle; Smith, Alastair; Ferrigno, Paul Ko; Johnson, Matt; McPherson, Michael J; Tomlinson, Darren Charles
2017-01-01
Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications. DOI: http://dx.doi.org/10.7554/eLife.24903.001 PMID:28654419
Principles of Protein Stability and Their Application in Computational Design.
Goldenzweig, Adi; Fleishman, Sarel
2018-01-26
Proteins are increasingly used in basic and applied biomedical research.Many proteins, however, are only marginally stable and can be expressed in limited amounts, thus hampering research and applications. Research has revealed the thermodynamic, cellular, and evolutionary principles and mechanisms that underlie marginal stability. With this growing understanding, computational stability design methods have advanced over the past two decades starting from methods that selectively addressed only some aspects of marginal stability. Current methods are more general and, by combining phylogenetic analysis with atomistic design, have shown drastic improvements in solubility, thermal stability, and aggregation resistance while maintaining the protein's primary molecular activity. Stability design is opening the way to rational engineering of improved enzymes, therapeutics, and vaccines and to the application of protein design methodology to large proteins and molecular activities that have proven challenging in the past. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.
2016-01-01
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795
Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J
2016-02-17
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.
Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction
Goldfless, Stephen J.; Wagner, Jeffrey C.; Niles, Jacquin C.
2014-01-01
The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important out come given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum. PMID:25370483
The 3of5 web application for complex and comprehensive pattern matching in protein sequences.
Seiler, Markus; Mehrle, Alexander; Poustka, Annemarie; Wiemann, Stefan
2006-03-16
The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with the ability to find all solutions, without compromising the user friendliness of regular expression terms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Tianqing; Ming, Hongyan; Deng, Lili
Recombinant scorpion anti-excitation peptide (rANEP) has previously been expressed using the pET32a system and purified via affinity chromatography. However, rANEP is expressed in BL21(DE3) cells as an inclusion body, and the affinity tag can not be removed. To overcome this problem, we used a variety of protein, DsbA, MBP, TrxA, intein, and affinity tags in fusion and co-expression to achieve soluble and functional rANEP without any affinity tag. In the pCIT-ANEP expression vector, the highest soluble expression level was approximately 90% of the total cellular proteins in E. coli, and the rANEP was cleaved by the intein protein and subsequently purifiedmore » to obtain rANEP, which had the same activity as the natural ANEP. The purity of rANEP obtained using this method was over 95%, with a quantity of 5.1 mg from of purified rANEP from 1 L of culture. This method could expand the application of the soluble expression of disulfide-rich peptides in E. coli.« less
Scebba, Francesca; Tognotti, Danika; Presciuttini, Gianluca; Gabellieri, Edi; Cioni, Patrizia; Angeloni, Debora; Basso, Barbara; Morelli, Elisabetta
2016-01-01
Quantum dots (QDs), namely semiconductor nanocrystals, due to their particular optical and electronic properties, have growing applications in device technology, biotechnology and biomedical fields. Nevertheless, the possible threat to human health and the environment have attracted increasing attention as the production and applications of QDs increases rapidly while standard evaluation of safety lags. In the present study we performed proteomic analyses, by means of 2D gel electrophoresis and Surface Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometry (SELDI-TOF-MS). We aimed to identify potential biomarkers of exposure to CdSe/ZnS quantum dots. The marine diatom Phaeodactylum tricornutum exposed to 2.5nM QDs was used as a model system. Both 2DE and SELDI showed the presence of differentially expressed proteins. By Principal Component Analysis (PCA) we were able to show that the differentially expressed proteins can discriminate between exposed and not exposed cells. Furthermore, a protein profile specific for exposed cells was obtained by SELDI analysis. To our knowledge, this is the first example of the application of SELDI technology to the analysis of microorganisms used as biological sentinel model of marine environmental pollution. Copyright © 2015 Elsevier Inc. All rights reserved.
2013-01-01
Proteomics has opened a new horizon in biological sciences. Global proteomic analysis is a promising technology for the discovery of thousands of proteins, post-translational modifications, polymorphisms, and molecular interactions in a variety of biological systems. The activities and roles of the identified proteins must also be elucidated, but this is complicated by the inability of conventional proteomic methods to yield quantitative information for protein expression. Thus, a variety of biological systems remain “black boxes”. Quantitative targeted absolute proteomics (QTAP) enables the determination of absolute expression levels (mol) of any target protein, including low-abundance functional proteins, such as transporters and receptors. Therefore, QTAP will be useful for understanding the activities and roles of individual proteins and their differences, including normal/disease, human/animal, or in vitro/in vivo. Here, we describe the study protocols and precautions for QTAP experiments including in silico target peptide selection, determination of peptide concentration by amino acid analysis, setup of selected/multiple reaction monitoring (SRM/MRM) analysis in liquid chromatography–tandem mass spectrometry, preparation of protein samples (brain capillaries and plasma membrane fractions) followed by the preparation of peptide samples, simultaneous absolute quantification of target proteins by SRM/MRM analysis, data analysis, and troubleshooting. An application of QTAP in biological sciences was introduced that utilizes data from inter-strain differences in the protein expression levels of transporters, receptors, tight junction proteins and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Among 18 molecules, 13 (abcb1a/mdr1a/P-gp, abcc4/mrp4, abcg2/bcrp, slc2a1/glut1, slc7a5/lat1, slc16a1/mct1, slc22a8/oat3, insr, lrp1, tfr1, claudin-5, Na+/K+-ATPase, and γ-gtp) were detected in the isolated brain capillaries, and their protein expression levels were within a range of 0.637-101 fmol/μg protein. The largest difference in the levels between the three strains was 2.2-fold for 13 molecules, although bcrp and mct1 displayed statistically significant differences between C57BL/6J and the other strain(s). Highly sensitive simultaneous absolute quantification achieved by QTAP will increase the usefulness of proteomics in biological sciences and is expected to advance the new research field of pharmacoproteomics (PPx). PMID:23758935
Tremblay, Reynald; Feng, Mary; Menassa, Rima; Huner, Norman P A; Jevnikar, Anthony M; Ma, Shengwu
2011-04-01
Soybean agglutinin (SBA) is a specific N-acetylgalactosamine-binding plant lectin that can agglutinate a wide variety of cells. SBA has great potential for medical and biotechnology-focused applications, including screening and treatment of breast cancer, isolation of fetal cells from maternal blood for genetic screening, the possibility as a carrier system for oral drug delivery, and utilization as an affinity tag for high-quality purification of tagged proteins. The success of these applications, to a large degree, critically depends on the development of a highly efficient expression system for a source of recombinant SBA (rSBA). Here, we demonstrate the utility of transient and stable expression systems in Nicotiana benthamiana and potato, respectively, for the production of rSBA, with the transgenic protein accumulated to 4% of total soluble protein (TSP) in Nicotiana benthamiana leaves and 0.3% of TSP in potato tubers. Furthermore, we show that both plant-derived rSBAs retain their ability to induce the agglutination of red blood cells, are similarly glycosylated when compared with native SBA, retained their binding specificity for N-acetylgalactosamine, and were highly resistant to degradation in simulated gastric and intestinal fluids. Affinity column purification using N-acetylgalactosamine as a specific ligand resulted in high recovery and purity of rSBA. This work is the first step toward use of rSBA for various new applications, including the development of rSBA as a novel affinity tag for simplified purification of tagged proteins and as a new carrier molecule for delivery of oral drugs.
Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I.
2015-01-01
In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na+/Ca2+ exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies. PMID:26234466
Bioengineering strategies to generate artificial protein complexes.
Kim, Heejae; Siu, Ka-Hei; Raeeszadeh-Sarmazdeh, Maryam; Sun, Qing; Chen, Qi; Chen, Wilfred
2015-08-01
For many applications, increasing synergy between distinct proteins through organization is important for the specificity, regulation, and overall reaction efficiency. Although there are many examples of protein complexes in nature, a generalized method to create these complexes remains elusive. Many conventional techniques such as random chemical conjugation, physical adsorption onto surfaces, and encapsulation within matrices are imprecise approaches and can lead to deactivation of protein native functionalities. More "bio-friendly" approaches such as genetically fused proteins and biological scaffolds often can result in low yields and low complex stability. Alternatively, site-specific protein conjugation or ligation can generate artificial protein complexes that preserve the native functionalities of protein domains and maintain stability through covalent bonds. In this review, we describe three distinct methods to synthesize artificial protein complexes (genetic incorPoration of unnatural amino acids to introduce bio-orthogonal azide and alkyne groups to proteins, split-intein based expressed protein ligation, and sortase mediated ligation) and highlight interesting applications for each technique. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tamin, R. Y.; Soeroso, Y.; Amir, L.; Idrus, E.
2017-08-01
Chronic periodontitis is an oral disease in which the destruction of periodontal tissue leads to tooth loss. Regenerative therapy for attachment cannot be applied to one wall bone defects owing to the minimal existing healthy bone. Tissue engineering in the form of cell sheets has been developed to overcome this limitation. In a previous study, cell sheet application to a one wall bone defect in Macaca nemestrina showed good clinical results. To evaluate the effectiveness of cell sheet application histologically, the level of periostin expression in the gingival crevicular fluid (GCF) of M. nemestrina was determined. Periostin is a 90-kDa protein that regulates coordination and interaction for regeneration and tissue repair. A laboratory observation study was performed to see the differences in periostin levels in samples collected from M. nemestrina’s GCF, where a cell sheet was applied to the bone defect. Gel electrophoresis with SDS-PAGE was performed to detect periostin expression based on its molecular weight and to compare the expression band between the cell sheet and the control at 1, 2, and 3 weeks after treatment. The gel electrophoresis result shows different thicknesses of the protein band around the molecular weight of periostin between the cell sheet groups.
Gandier, Julie-Anne; Master, Emma R.
2018-01-01
The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we describe the development of Pichia pastoris KM71H strains capable of solubly producing the full set of predicted Cordyceps militaris hydrophobins CMil1 (Class IA), CMil2 (Class II), and CMil3 (IM) at mg/L yields with the use of 6His-tags not only for purification but for their detection. This result further demonstrates the feasibility of using P. pastoris as a host organism for the production of hydrophobins from all Ascomycota Class I subdivisions (a classification our previous work defined) as well as Class II. We highlight the specific challenges related to the production of hydrophobins, notably the challenge in detecting the protein that will be described, in particular during the screening of transformants. Together with the literature, our results continue to show that P. pastoris is a suitable host for the soluble heterologous expression of hydrophobins with a wide range of properties. PMID:29303996
Gandier, Julie-Anne; Master, Emma R
2018-01-05
The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we describe the development of Pichia pastoris KM71H strains capable of solubly producing the full set of predicted Cordyceps militaris hydrophobins CMil1 (Class IA), CMil2 (Class II), and CMil3 (IM) at mg/L yields with the use of 6His-tags not only for purification but for their detection. This result further demonstrates the feasibility of using P. pastoris as a host organism for the production of hydrophobins from all Ascomycota Class I subdivisions (a classification our previous work defined) as well as Class II. We highlight the specific challenges related to the production of hydrophobins, notably the challenge in detecting the protein that will be described, in particular during the screening of transformants. Together with the literature, our results continue to show that P. pastoris is a suitable host for the soluble heterologous expression of hydrophobins with a wide range of properties.
cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.
Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin
2009-09-01
The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.
NASA Astrophysics Data System (ADS)
Sharma, Ajay; Khoury-Christianson, Anastasia M.; White, Steven P.; Dhanjal, Nirpal K.; Huang, Wen; Paulhiac, Clara; Friedman, Eric J.; Manjula, Belur N.; Kumar, Ramesh
1994-09-01
Chemical synthesis of peptides, though feasible, is hindered by considerations of cost, purity, and efficiency of synthesizing longer chains. Here we describe a transgenic system for producing peptides of therapeutic interest as fusion proteins at low cost and high purity. Transgenic hemoglobin expression technology using the locus control region was employed to produce fusion hemoglobins in the erythrocytes of mice. The fusion hemoglobin contains the desired peptide as an extension at the C end of human α-globin. A protein cleavage site is inserted between the C end of the α-globin chain and the N-terminal residue of the desired peptide. The peptide is recovered after cleavage of the fusion protein with enzymes that recognize this cleavage signal as their substrate. Due to the selective compartmentalization of hemoglobin in the erythrocytes, purification of the fusion hemoglobin is easy and efficient. Because of its compact and highly ordered structure, the internal sites of hemoglobin are resistant to protease digestion and the desired peptide is efficiently released and recovered. The applicability of this approach was established by producing a 16-mer α-endorphin peptide and a 26-mer magainin peptide in transgenic mice. Transgenic animals and their progeny expressing these fusion proteins remain healthy, even when the fusion protein is expressed at >25% of the total hemoglobin in the erythrocytes. Additional applications and potential improvements of this methodology are discussed.
Genic insights from integrated human proteomics in GeneCards.
Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron
2016-01-01
GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several GeneCards sections and help promote and organize the genome-wide structural and functional knowledge of the human proteome. Database URL:http://www.genecards.org/. © The Author(s) 2016. Published by Oxford University Press.
Expression of Functional Human Sialyltransferases ST3Gal1 and ST6Gal1 in Escherichia coli
Ortiz-Soto, Maria Elena; Seibel, Jürgen
2016-01-01
Sialyltransferases (STs) are disulfide-containing, type II transmembrane glycoproteins that catalyze the transfer of sialic acid to proteins and lipids and participate in the synthesis of the core structure oligosaccharides of human milk. Sialic acids are found at the outermost position of glycostructures, playing a key role in health and disease. Sialylation is also essential for the production of recombinant therapeutic proteins (RTPs). Despite their importance, availability of sialyltransferases is limited due to the low levels of stable, soluble and active protein produced in bacterial expression systems, which hampers biochemical and structural studies on these enzymes and restricts biotechnological applications. We report the successful expression of active human sialyltransferases ST3Gal1 and ST6Gal1 in commercial Escherichia coli strains designed for production of disulfide-containing proteins. Fusion of hST3Gal1 with different solubility enhancers and substitution of exposed hydrophobic amino acids by negatively charged residues (supercharging-like approach) were performed to promote solubility and folding. Co-expression of sialyltransferases with the chaperon/foldases sulfhydryl oxidase, protein disulfide isomerase and disulfide isomerase C was explored to improve the formation of native disulfide bonds. Active sialyltransferases fused with maltose binding protein (MBP) were obtained in sufficient amounts for biochemical and structural studies when expressed under oxidative conditions and co-expression of folding factors increased the yields of active and properly folded sialyltransferases by 20%. Mutation of exposed hydrophobic amino acids increased recovery of active enzyme by 2.5-fold, yielding about 7 mg of purified protein per liter culture. Functionality of recombinant enzymes was evaluated in the synthesis of sialosides from the β-d-galactoside substrates lactose, N-acetyllactosamine and benzyl 2-acetamido-2-deoxy-3-O-(β-d-galactopyranosyl)-α-d-galactopyranoside. PMID:27166796
Formighieri, Cinzia; Melis, Anastasios
2015-11-01
Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to divert intermediate terpenoid metabolites and to generate the monoterpene β-phellandrene during photosynthesis. However, terpene synthases, including the PHLS, have a slow Kcat (low Vmax) necessitating high levels of enzyme concentration to enable meaningful rates and yield of product formation. Here, a novel approach was applied to increase the PHLS protein expression alleviating limitations in the rate and yield of β-phellandrene product generation. Different PHLS fusion constructs were generated with the Synechocystis endogenous cpcB sequence, encoding for the abundant in cyanobacteria phycocyanin β-subunit, expressed under the native cpc operon promoter. In one of these constructs, the CpcB·PHLS fusion protein accumulated to levels approaching 20% of the total cellular protein, i.e., substantially higher than expressing the PHLS protein alone under the same endogenous cpc promoter. The CpcB·PHLS fusion protein retained the activity of the PHLS enzyme and catalyzed β-phellandrene synthesis, yielding an average of 3.2 mg product g(-1) dry cell weight (dcw) versus the 0.03 mg g(-1)dcw measured with low-expressing constructs, i.e., a 100-fold yield improvement. In conclusion, the terpene synthase fusion-protein approach is promising, as, in this case, it substantially increased the amount of the PHLS in cyanobacteria, and commensurately improved rates and yield of β-phellandrene hydrocarbons production in these photosynthetic microorganisms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur
2017-01-01
Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647
Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur
2017-12-01
Among nucleic acid-based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti
2008-01-01
Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax andmore » subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.« less
Gui, Tao; Liu, Xing; Tao, Jia; Chen, Jianwen; Li, Yunsheng; Zhang, Meiling; Wu, Ronghua; Zhang, Yuanliang; Peng, Kaisong; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai
2013-12-01
Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland. Copyright © 2013 Elsevier B.V. All rights reserved.
Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro
2011-01-01
Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809
Gu, Yaping; Zhou, Huayun; Cao, Jun; Gao, Qi
2014-01-01
Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO) fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel–nitrilotriacetic acid (Ni2+–NTA) resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+–NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future. PMID:25068263
Applications of recombinant Pichia pastoris in the healthcare industry.
Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B; Figueroa, Carolina A; Pessoa, Adalberto; Farías, Jorge G
2013-12-01
Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry.
Applications of recombinant Pichia pastoris in the healthcare industry
Weinacker, Daniel; Rabert, Claudia; Zepeda, Andrea B.; Figueroa, Carolina A.; Pessoa, Adalberto; Farías, Jorge G.
2013-01-01
Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry. PMID:24688491
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie
2007-08-10
We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) nomore » specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.« less
Proteomic approaches in brain research and neuropharmacology.
Vercauteren, Freya G G; Bergeron, John J M; Vandesande, Frans; Arckens, Lut; Quirion, Rémi
2004-10-01
Numerous applications of genomic technologies have enabled the assembly of unprecedented inventories of genes, expressed in cells under specific physiological and pathophysiological conditions. Complementing the valuable information generated through functional genomics with the integrative knowledge of protein expression and function should enable the development of more efficient diagnostic tools and therapeutic agents. Proteomic analyses are particularly suitable to elucidate posttranslational modifications, expression levels and protein-protein interactions of thousands of proteins at a time. In this review, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) investigations of brain tissues in neurodegenerative diseases such as Alzheimer's disease, Down syndrome and schizophrenia, and the construction of 2D-PAGE proteome maps of the brain are discussed. The role of the Human Proteome Organization (HUPO) as an international coordinating organization for proteomic efforts, as well as challenges for proteomic technologies and data analysis are also addressed. It is expected that the use of proteomic strategies will have significant impact in neuropharmacology over the coming decade.
Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey
2003-11-01
Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Tang, Jiajie; Guo, Su; Wang, Wei; Wei, Wei; Wei, Dongzhi
2015-11-04
We expressed a novel alkaline-adapted beta-mannanase gene and characterized the enzyme for potential industrial applications. We obtained a mannanase gene (named man(B)) from Bacillus pumilus Nsic2 and expressed the gene man(B) in Escherichia coli and Bacillus subtilis. Furthermore, we characterized the enzyme. The gene man(B) had an open reading frame of 1104 bp that encoded a polypeptide of 367-amino-acid beta-mannanase (Man(B)). The protein sequence showed the highest identity with the beta-mannanase from B. pumilus CCAM080065. We expressed the gene man(B) in E. coli BL21 (DE3) with the enzyme activity of 11021.3 U/mL. Compared with other mannanases, Man(B) showed higher stability under alkaline conditions and was stable at pH6.0 -9.0. The specific activity of purified Man(B) was 4191 ± 107 U/mg. The K(m) and V(max) values of purified Man(B) were 35.7 mg/mL and 14.9 μmol/(mL x min), respectively. Meanwhile, we achieved recombinant protein secretion expression in B. subtilis WB800N. We achieved heterologous expression of the gene man(B) and characterized its enzyme. The alkaline-adapted Man(B) showed potential value in industrial applications due to its pH stability.
Matsusaki, Michiya; Hikimoto, Daichi; Nishiguchi, Akihiro; Kadowaki, Koji; Ohura, Kayoko; Imai, Teruko; Akashi, Mitsuru
2015-02-13
Caco-2, human colon carcinoma cell line, has been widely used as a model system for intestinal epithelial permeability because Caco-2 cells express tight-junctions, microvilli, and a number of enzymes and transporters characteristic of enterocytes. However, the functional differentiation and polarization of Caco-2 cells to express sufficient tight-junctions (a barrier) usually takes over 21 days in culture. This may be due to the cell culture environment, for example inflammation induced by plastic petri dishes. Three-dimensional (3D) sufficient cell microenvironments similar to in vivo natural conditions (proteins and cells), will promote rapid differentiation and higher functional expression of tight junctions. Herein we report for the first time an enhancement in tight-junction formation by 3D-cultures of Caco-2 cells on monolayered (1L) and eight layered (8L) normal human dermal fibroblasts (NHDF). Trans epithelial electric resistance (TEER) of Caco-2 cells was enhanced in the 3D-cultures, especially 8L-NHDF tissues, depending on culture times and only 10 days was enough to reach the same TEER value of Caco-2 monolayers after a 21 day incubation. Relative mRNA expression of tight-junction proteins of Caco-2 cells on 3D-cultures showed higher values than those in monolayer structures. Transporter gene expression patterns of Caco-2 cells on 3D-constructs were almost the same as those of Caco-2 monolayers, suggesting that there was no effect of 3D-cultures on transporter protein expression. The expression correlation between carboxylesterase 1 and 2 in 3D-cultures represented similar trends with human small intestines. The results of this study clearly represent a valuable application of 3D-Caco-2 tissues for pharmaceutical applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Abiri, Rambod; Valdiani, Alireza; Maziah, Mahmood; Shaharuddin, Noor Azmi; Sahebi, Mahbod; Yusof, Zetty Norhana Balia; Atabaki, Narges; Talei, Daryush
2016-01-01
Using transgenic plants for the production of high-value recombinant proteins for industrial and clinical applications has become a promising alternative to using conventional bioproduction systems, such as bacteria, yeast, and cultured insect and animal cells. This novel system offers several advantages over conventional systems in terms of safety, scale, cost-effectiveness, and the ease of distribution and storage. Currently, plant systems are being utilised as recombinant bio-factories for the expression of various proteins, including potential vaccines and pharmaceuticals, through employing several adaptations of recombinant processes and utilizing the most suitable tools and strategies. The level of protein expression is a critical factor in plant molecular farming, and this level fluctuates according to the plant species and the organs involved. The production of recombinant native and engineered proteins is a complicated procedure that requires an inter- and multi-disciplinary effort involving a wide variety of scientific and technological disciplines, ranging from basic biotechnology, biochemistry, and cell biology to advanced production systems. This review considers important plant resources, affecting factors, and the recombinant-protein expression techniques relevant to the plant molecular farming process.
Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo
2013-01-01
Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, “Nongda146” and “Jimai6358”, by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying. PMID:24040315
Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo
2013-01-01
Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.
Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai
2013-01-01
Abstract Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest. PMID:23941674
Zhou, Yanrong; Lin, Yanli; Wu, Xiaojie; Xiong, Fuyin; Lv, Yuemeng; Zheng, Tao; Huang, Peitang; Chen, Hongxing
2012-02-01
Transgene expression for the mammary gland bioreactor aimed at producing recombinant proteins requires optimized expression vector construction. Previously we presented a hybrid gene locus strategy, which was originally tested with human lactoferrin (hLF) as target transgene, and an extremely high-level expression of rhLF ever been achieved as to 29.8 g/l in mice milk. Here to demonstrate the broad application of this strategy, another 38.4 kb mWAP-htPA hybrid gene locus was constructed, in which the 3-kb genomic coding sequence in the 24-kb mouse whey acidic protein (mWAP) gene locus was substituted by the 17.4-kb genomic coding sequence of human tissue plasminogen activator (htPA), exactly from the start codon to the end codon. Corresponding five transgenic mice lines were generated and the highest expression level of rhtPA in the milk attained as to 3.3 g/l. Our strategy will provide a universal way for the large-scale production of pharmaceutical proteins in the mammary gland of transgenic animals.
Gliadin Detection in Food by Immunoassay
NASA Astrophysics Data System (ADS)
Grant, Gordon; Sporns, Peter; Hsieh, Y.-H. Peggy
Immunoassays are very sensitive and efficient tests that are commonly used to identify a specific protein. Examples of applications in the food industry include identification of proteins expressed in genetically modified foods, allergens, or proteins associated with a disease, including celiac disease. This genetic disease is associated with Europeans and affects about one in every 200 people in North America. These individuals react immunologically to wheat proteins, and consequently their own immune systems attack and damage their intestines. This disease can be managed if wheat proteins, specifically "gliadins," are avoided in foods.
Abdolalizadeh, Jalal; Majidi Zolbanin, Jafar; Nouri, Mohammad; Baradaran, Behzad; Movassaghpour, AliAkbar; Farajnia, Safar; Omidi, Yadollah
2013-01-01
Purpose: Recombinant tumor necrosis factor-alpha (TNF-α) has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods:In this study, we examined the potential of our produced anti-TNF-α scFv fragments for purification of TNF-α produced by Raji cells. The Raji cells were induced by lipopolysaccharides (LPS) to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS) flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications. PMID:24312807
Putalun, Waraporn
2011-03-01
Single chain fragment-variable (scFv) enhanced solasodine glycoside accumulation in Solanum khasianum hairy root cultures transformed by the ScFv solamargine (As)-scFv gene. The scFv protein was expressed at a high level in inclusion bodies of E. coli. After being renatured, the scFv protein was purified in a one-step manner by metal chelate affinity chromatography. The yield of refolded and purified scFv was 12.5 mg per 100 ml of cell culture. The characteristics of the As-scFv expressed in E. coli and transgenic hairy roots were similar to those of the parent monoclonal antibody (MAb). The expression of scFv protein provides a low cost and a high yield of functional scFv antibody against solamargine. The full linear range of the ELISA assay using scFv was extended from 1.5-10 µg/ml. The expressed anti-solamargine scFv protein could be useful for determination of total solasodine glycoside content in plant samples by ELISA. Solasodine glycoside levels in the transgenic hairy root were 2.3-fold higher than that in the wild-type hairy root based on the soluble protein level and binding activities. The As-scFv expressed in S. khasianum hairy roots enhanced solasodine glycosides accumulation and provide a novel medicinal plant breeding methodology that can produce a high yield of secondary metabolites.
Azizian, Sara; Khatami, Fatemeh; Modaresifar, Khashayar; Mosaffa, Nariman; Peirovi, Habibollah; Tayebi, Lobat; Bahrami, Soheyl; Redl, Heinz; Niknejad, Hassan
2018-02-23
Placenta-derived amniotic epithelial cells (AECs), a great cell source for tissue engineering and stem cell therapy, are immunologically inert in their native state; however, immunological changes in these cells after culture and differentiation have challenged their applications. The aim of this study was to investigate the effect of 2D and 3D scaffolds on human lymphocyte antigens (HLA) expression by AECs. The effect of different preparation parameters including pre-freezing time and temperature was evaluated on 3D chitosan-gelatine scaffolds properties. Evaluation of MHC class I, HLA-DR and HLA-G expression in AECs after 7 d culture on 2D bed and 3D scaffold of chitosan-gelatine showed that culture of AECs on the 2D substrate up-regulated MHC class I and HLA-DR protein markers on AECs surface and down-regulated HLA-G protein. In contrast, 3D scaffold did not increase protein expression of MHC class I and HLA-DR. Moreover, HLA-G protein expression remained unchanged in 3D culture. These results confirm that 3D scaffold can remain AECs in their native immunological state and modification of physical properties of the scaffold is a key regulator of immunological markers at the gene and protein expression levels; a strategy which circumvents rejection challenge of amniotic stem cells to be translated into the clinic.
Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.
Sitaraman, Kalavathy; Chatterjee, Deb K
2011-01-01
In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.
Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae.
Park, Yang-Nim; Masison, Daniel; Eisenberg, Evan; Greene, Lois E
2011-09-01
The yeast Saccharomyces cerevisiae has proved to be an excellent model organism to study the function of proteins. One of the many advantages of yeast is the many genetic tools available to manipulate gene expression, but there are still limitations. To complement the many methods used to control gene expression in yeast, we have established a conditional gene deletion system by using the FLP/FRT system on yeast vectors to conditionally delete specific yeast genes. Expression of Flp recombinase, which is under the control of the GAL1 promoter, was induced by galactose, which in turn excised FRT sites flanked genes. The efficacy of this system was examined using the FRT site-flanked genes HSP104, URA3 and GFP. The pre-excision frequency of this system, which might be caused by the basal activity of the GAL1 promoter or by spontaneous recombination between FRT sites, was detected ca. 2% under the non-selecting condition. After inducing expression of Flp recombinase, the deletion efficiency achieved ca. 96% of cells in a population within 9 h. After conditional deletion of the specific gene, protein degradation and cell division then diluted out protein that was expressed from this gene prior to its excision. Most importantly, the specific protein to be deleted could be expressed under its own promoter, so that endogenous levels of protein expression were maintained prior to excision by the Flp recombinase. Therefore, this system provides a useful tool for the conditional deletion of genes in yeast. Published in 2011 by John Wiley & Sons, Ltd.
Tian, Na; Li, Jialiang; Shi, Jinming; Sui, Guangchao
2017-01-01
Alternative pre-mRNA splicing is a crucial process that allows the generation of diversified RNA and protein products from a multi-exon gene. In tumor cells, this mechanism can facilitate cancer development and progression through both creating oncogenic isoforms and reducing the expression of normal or controllable protein species. We recently demonstrated that an alternative cyclin D-binding myb-like transcription factor 1 (DMTF1) pre-mRNA splicing isoform, DMTF1β, is increasingly expressed in breast cancer and promotes mammary tumorigenesis in a transgenic mouse model. Aberrant pre-mRNA splicing is a typical event occurring for many cancer-related functional proteins. In this review, we introduce general aberrant pre-mRNA splicing in cancers and discuss its therapeutic application using our recent discovery of the oncogenic DMTF1 isoform as an example. We also summarize new insights in designing novel targeting strategies of cancer therapies based on the understanding of deregulated pre-mRNA splicing mechanisms. PMID:28257090
Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.
Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S
2005-10-14
The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.
Wong, Kah Keng; Ch'ng, Ewe Seng; Loo, Suet Kee; Husin, Azlan; Muruzabal, María Arestin; Møller, Michael B; Pedersen, Lars M; Pomposo, María Puente; Gaafar, Ayman; Banham, Alison H; Green, Tina M; Lawrie, Charles H
2015-12-01
Huntingtin-interacting protein 1-related (HIP1R) is an endocytic protein involved in receptor trafficking, including regulating cell surface expression of receptor tyrosine kinases. We have previously shown that low HIP1R protein expression was associated with poorer survival in diffuse large B-cell lymphoma (DLBCL) patients from Denmark treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone). In this multicenter study, we extend these findings and validate the prognostic and subtyping utility of HIP1R expression at both transcript and protein level. Using data mining on three independent transcriptomic datasets of DLBCL, HIP1R transcript was preferentially expressed in germinal center B-cell (GCB)-like DLBCL subtype (P<0.01 in all three datasets), and lower expression was correlated with worse overall survival (OS; P<0.01) and progression-free survival (PFS; P<0.05) in a microarray-profiled DLBCL dataset. At the protein level examined by immunohistochemistry, HIP1R expression at 30% cut-off was associated with GCB-DLBCL molecular subtype (P=0.0004; n=42), and predictive of OS (P=0.0006) and PFS (P=0.0230) in de novo DLBCL patients treated with R-CHOP (n=73). Cases with high FOXP1 and low HIP1R expression frequency (FOXP1(hi)/HIP1R(lo) phenotype) exhibited poorer OS (P=0.0038) and PFS (P=0.0134). Multivariate analysis showed that HIP1R<30% or FOXP1(hi)/HIP1R(lo) subgroup of patients exhibited inferior OS and PFS (P<0.05) independently of the International Prognostic Index. We conclude that HIP1R expression is strongly indicative of survival when utilized on its own or in combination with FOXP1, and the molecule is potentially applicable for subtyping of DLBCL cases. Copyright © 2015 Elsevier Inc. All rights reserved.
Use of whole genome expression analysis in the toxicity screening of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at; Meindl, Claudia; Wagner, Karin
2014-10-15
The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays formore » NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.« less
Baculovirus expression of the avian paramyxovirus 2 HN gene for diagnostic applications.
Choi, Kang-Seuk; Kye, Soo-Jeong; Kim, Ji-Ye; Seul, Hee-Jeong; Lee, Hee-Soo; Kwon, Hyuk-Moo; Sung, Haan-Woo
2014-03-01
Avian paramyxovirus 2 (APMV-2) infections are associated with respiratory diseases in poultry worldwide. The hemagglutination inhibition (HI) test is a useful tool for surveillance and monitoring of this virus. In this study, full-length hemagglutinin (HN) gene of APMV-2 was chemically synthesized based on its published sequence, cloned and expressed in Spodoptera frugiperda insect cells using recombinant baculoviruses. The biological, antigenic and immunogenic properties of the expressed protein were evaluated to assess its ability to produce diagnostic reagents for HI testing. Recombinant APMV-2 HN protein showed two distinct bands with molecular masses of 64 and 75kDa, which showed hemagglutination (HA) and neuraminidase activities, respectively. The recombinant HN (rHN) protein extracted from infected cells produced high HA titers (2(13) per 25μL). HA activity of the protein was inhibited by APMV-2 antiserum, although there were weak cross reactions with other APMV serotype antisera. The rHN protein induced high titers of APMV-2-specific antibodies in immunized chickens based on the HI test. These results indicated that recombinant APMV-2 HN protein is a useful alternative to the APMV-2 antigen in HI assays. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.
2013-01-01
The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.
Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L
1994-12-20
The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.
A software solution for recording circadian oscillator features in time-lapse live cell microscopy.
Sage, Daniel; Unser, Michael; Salmon, Patrick; Dibner, Charna
2010-07-06
Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Our software solution, Circadian Gene Express (CGE), is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and efficient recording of large number of cell parameters, including level of reporter protein expression, velocity, direction of movement, and others. CGE proves to be useful for the analysis of widefield fluorescent microscopy datasets, as well as for bioluminescence imaging. Moreover, it might be easily adaptable for confocal image analysis by manually choosing one of the focal planes of each z-stack of the various time points of a time series. CGE is a Java plugin for ImageJ; it is freely available at: http://bigwww.epfl.ch/sage/soft/circadian/.
Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production.
Jones, Richard W
2016-01-01
When expressing plant cell wall degrading enzymes in the widely used tobacco (Nicotiana benthamiana) after Agrobacterium infiltration, difficulties arise due to the thin leaf structure. Thick leaved succulents, Kalanchoe blossfeldiana and Hylotelephium telephium, were tested as alternatives. A xyloglucanase, as well as a xyloglucanase inhibitor protein was successfully produced. Published by Elsevier B.V.
Ito, Mikako; Ohno, Kinji
2018-02-20
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Jocks, T; Zahner, G; Freudenberg, J; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A
1996-06-01
To study whether prostaglandins (PG) can regulate the mRNA expression of monocyte-chemoattractant protein 1 (MCP-1) in glomerular immune injury, MCP-1 mRNA levels were evaluated in anti-thymocyte antibody (ATS) -induced glomerular injury by Northern blotting and reverse transcription-polymerase chain reaction. Immune injury was induced in vivo by the intravenous application of ATS to male Wistar rats and in vitro by the perfusion of isolated rat kidneys with ATS and rat serum. In vivo 3 h and 5 days after antibody application, glomerular mRNA expression of MCP-1 was markedly enhanced compared with controls. In the isolated perfused kidney, antibody and complement also induced an increase in MCP-1 expression at 10 min and 60 min after antibody perfusion. When the rats were treated with PGE (250 micrograms, twice daily), the increase in MCP-1 expression was reduced. This was associated with a reduction of intraglomerular recruitment of monocytes/macrophages. In the isolated perfused kidneys, PGE1 (1 mg/L) prevented the antibody- and rat serum-stimulated increase in glomerular MCP-1 mRNA expression. These data demonstrate that PGE1 reduces glomerular MCP-1 mRNA expression in glomerulonephritis and in the isolated perfused rat kidney after induction of immune injury with antibody and complement. The data suggest that prostaglandins might mediate MCP-1 effects in glomerular immune injuries.
Wanka, Franziska; Arentshorst, Mark; Cairns, Timothy C; Jørgensen, Thomas; Ram, Arthur F J; Meyer, Vera
2016-08-20
The filamentous ascomycete Aspergillus niger is used in many industrial processes for the production of enzymes and organic acids by batch and fed-batch cultivation. An alternative technique is continuous cultivation, which promises improved yield and optimized pipeline efficiency. In this work, we have used perfusion (retentostat) cultivation to validate two promoters that are suitable for A. niger continuous cultivation of industrially relevant products. Firstly, promoters of genes encoding either an antifungal protein (Panafp) or putative hydrophobin (PhfbD) were confirmed as active throughout retentostat culture by assessing mRNA and protein levels using a luciferase (mluc) reporter system. This demonstrated the anafp promoter mediates a high but temporally variable expression profile, whereas the hfbD promoter mediates a semi-constant, moderate-to-high protein expression during retentostat culture. In order to assess whether these promoters were suitable to produce heterologous proteins during retentostat cultivation, the secreted antifungal protein (AFP) from Aspergillus giganteus, which has many potential biotechnological applications, was expressed in A. niger during retentostat cultivation. Additionally, this assay was used to concomitantly validate that native secretion signals encoded in anafp and hfbD genes can be harnessed for secretion of heterologous proteins. Afp mRNA and protein abundance were comparable to luciferase measurements throughout retentostat cultivation, validating the use of Panafp and PhfbD for perfusion cultivation. Finally, a gene encoding the highly commercially relevant thermal hysteresis protein (THP) was expressed in this system, which did not yield detectable protein. Both hfbD and anafp promoters are suitable for production of useful products in A. niger during perfusion cultivation. These findings provide a platform for further optimisations for high production of heterologous proteins with industrial relevance.
Ramsey, J S; Chavez, J D; Johnson, R; Hosseinzadeh, S; Mahoney, J E; Mohr, J P; Robison, F; Zhong, X; Hall, D G; MacCoss, M; Bruce, J; Cilia, M
2017-02-01
The Asian citrus psyllid ( Diaphorina citri) is the insect vector responsible for the worldwide spread of ' Candidatus Liberibacter asiaticus' (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the D. citri immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host-microbe relationships. Using protein interaction reporter technology, a D. citri haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a D. citri myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with D. citri proteins. These co-evolved protein interaction networks at the host-microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening.
Chavez, J. D.; Johnson, R.; Hosseinzadeh, S.; Mahoney, J. E.; Mohr, J. P.; Robison, F.; Zhong, X.; Hall, D. G.; MacCoss, M.; Bruce, J.; Cilia, M.
2017-01-01
The Asian citrus psyllid (Diaphorina citri) is the insect vector responsible for the worldwide spread of ‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the D. citri immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a D. citri haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a D. citri myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with D. citri proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening. PMID:28386418
Blanchard, Kristen; Robic, Srebrenka
2014-01-01
Metabolic engineers develop inexpensive enantioselective syntheses of high-value compounds, but their designs are sometimes confounded by the misfolding of heterologously expressed proteins. Geobacillus stearothermophilus NUB3621 is a readily transformable facultative thermophile. It could be used to express and properly fold proteins derived from its many mesophilic or thermophilic Bacillaceae relatives or to direct the evolution of thermophilic variants of mesophilic proteins. Moreover, its capacity for high-temperature growth should accelerate chemical transformation rates in accordance with the Arrhenius equation and reduce the risks of microbial contamination. Its tendency to sporulate in response to nutrient depletion lowers the costs of storage and transportation. Here, we present a draft genome sequence of G. stearothermophilus NUB3621 and describe inducible and constitutive expression plasmids that function in this organism. These tools will help us and others to exploit the natural advantages of this system for metabolic engineering applications. PMID:24788326
Supported Lipid Bilayer Technology for the Study of Cellular Interfaces
Crites, Travis J.; Maddox, Michael; Padhan, Kartika; Muller, James; Eigsti, Calvin; Varma, Rajat
2015-01-01
Glass-supported lipid bilayers presenting freely diffusing proteins have served as a powerful tool for studying cell-cell interfaces, in particular, T cell–antigen presenting cell (APC) interactions, using optical microscopy. Here we expand upon existing protocols and describe the preparation of liposomes by an extrusion method, and describe how this system can be used to study immune synapse formation by Jurkat cells. We also present a method for forming such lipid bilayers on silica beads for the study of signaling responses by population methods, such as western blotting, flow cytometry, and gene-expression analysis. Finally, we describe how to design and prepare transmembrane-anchored protein-laden liposomes, following expression in suspension CHO (CHOs) cells, a mammalian expression system alternative to insect and bacterial cell lines, which do not produce mammalian glycosylation patterns. Such transmembrane-anchored proteins may have many novel applications in cell biology and immunology. PMID:26331983
Nanoparticles as conjugated delivery agents for therapeutic applications
NASA Astrophysics Data System (ADS)
Muroski, Megan Elizabeth
This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as a molecular beacon. The development of non-viral transfection approaches using gold nanoparticles (AuNP) as a gene carrier allows the implementation of advanced biophysical tools to follow the transfection cycle by utilizing nanometal surface energy transfer (NSET) molecular beacon methods coupled to delivery of a gene that induces a fluorescent protein. The change in photoluminescence of an appended dye following gene release from the AuNP surface within endosomes can be tempo-rally and spatially followed. The ability to correlate the release events with the protein expression event by simultaneously monitoring fluorescent protein production provides insight into package uptake, nanoparticle disassembly, and final gene expression. Employing AuNP transfection constructs and then monitoring the stages of the transfection cycle via NSET, indicates delivery of the constructs leads to gene release from the AuNP surface within the endosome followed by slow cytosolic diffusion. The slow diffusion is the limiting step for transfection and impacts the protein yield due to competing degradation processes. Chapter 4 aims to improve the NP conjugate through the use of cell penetrating peptides (CPP) to Transfect Primary Cells. All future clinical applications of mesenchymal stem cell (MSC) therapies must allow the MSC to be harvested, transfected, and induced to express a desired protein or selection of proteins to have medical benefit. For the full potential of MSC cell therapy to be realized, it is desirable to be able to systematically alter the protein expression in harvested MSC cells with high fidelity in a single transfection event. We have developed a bimodal delivery platform based on the use of a solid gold core nanoparticle that has been surface modified to produce a chimera containing a protein transduction domain (PTD) sequence to enhance cellular uptake and a linearized expression vector to induce protein production. The transfection chimera is observed to be an efficient inducer of protein expression following a single treatment of femur bone marrow isolated rat MSCs. Use of the neutral penta-peptide, Ku70, designed from Bax-inhibiting peptides in a 500:1 ratio to the linearized gene yields >80% transfection efficiencies. Chapter 5 further develops this idea by using cell penetrating peptides. Research over the past decade has identified several of the key limiting features in multidrug resistance therapy applications, such as, cellular targeting, protection from multidrug resistant mediators and retention of intact and functional drugs. Cell penetrating peptides are able to overcome the difficulties of drug transport resulting in improved efficacy of delivery. Functionalizing the cell penetrating peptide onto the surface of a quantum dot, allows the capability of creating an individualized package for further downstream studies. Four distinct cell penetrating peptides, TAT, VP-22, Ku-70, and hCT (9-32), were utilized to study the different profiles in gliosarcoma lines (rat 9L) with varying resistances to one of the most prescribed drugs in treating glioblastoma in the clinic; BCNU. (Abstract shortened by UMI.)
Lan, Lu-Hong; Zhao, Han; Chen, Jin-Chun; Chen, Guo-Qiang
2016-12-01
Halomonas spp. have been studied as a low cost production host for producing bulk materials such as polyhydroxyalkanoates (PHA) bioplastics, since they are able to grow at high pH and high NaCl concentration under unsterile and continuous conditions without microbial contamination. In this paper, Halomonas strain TD is used as a host to produce a protein named PHA phasin or PhaP which has a potential to be developed into a bio-surfactant. Four Halomonas TD expression strains are constructed based on a strong T7-family expression system. Of these, the strain with phaC deletion and chromosomal expression system resulted in the highest production of PhaP in soluble form, reaching 19% of total cellular soluble proteins and with a yield of 1.86 g/L in an open fed-batch fermentation process. A simple "heat lysis and salt precipitation" method is applied to allow rapid PhaP purification from a mixture of cellular proteins with a PhaP recovery rate of 63%. It clearly demonstrated that Halomonas TD could be used for high yield expression of a bio-surfactant protein PhaP for industrial application in an economical way. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hegedus, Dwayne D; Baron, Marcus; Labbe, Natalie; Coutu, Cathy; Lydiate, Derek; Lui, Helen; Rozwadowski, Kevin
2014-03-01
Seeds are capable of accumulating high levels of seed storage proteins (SSP), as well as heterologous proteins under certain conditions. Arabidopsis thaliana was used to develop a strategy to deplete seeds of an endogenous SSP and then replenish them with the same protein fused to a heterologous protein. In several other studies, competition with endogenous SSP for space and metabolic resources was shown to affect the accumulation of recombinant proteins in seeds. We used RNAi to reduce the expression of the five napin genes and deplete the seeds of this SSP. Targeting a recombinant protein to a vacuole or structure within the seed where it can be protected from cytosolic proteases can also promote its accumulation. To achieve this, a synthetic Brassica napus napin gene (Bn napin) was designed that was both impervious to the A. thaliana napin (At napin) RNAi construct and permitted fusion to a heterologous protein, in this case green fluorescent protein (GFP). GFP was placed in several strategic locations within Bn napin with consideration to maintaining structure, processing sites and possible vacuolar targeting signals. In transgenic A. thaliana plants, GFP was strongly localized to the seed protein storage vacuole in all Bn napin fusion configurations tested, but not when expressed alone. This SSP depletion-replenishment strategy outlined here would be applicable to expression of recombinant proteins in industrial crops that generally have large repertoires of endogenous SSP genes. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
[Plants as an alternative source of therapeutic proteins].
Łucka, Marta; Kowalczyk, Tomasz; Szemraj, Janusz; Sakowicz, Tomasz
2015-03-22
In recent years, there has been an increased interest of researchers in developing efficient plant heterologous expression systems of proteins for a wide range of applications. It represents an alternative to the traditional strategy utilizing bacterial, yeast, insect or mammalian cells. New techniques of identification and characterization and effective methods of plant genetic transformation allow the range of recombinant protein products to be expanded. Great expectations are associated with the use of plants as bioreactors for the production of specific proteins of therapeutic interest. This strategy offers a number of advantages, the most important being: the possibility of a significant reduction in production costs, the safety of the products obtained and full eukaryotic post-translational modifications of proteins. A group of proteins of special interest is pharmaceuticals, and a number of successful experiments have confirmed the possibility of obtaining heterogeneous proteins with therapeutic potential: monoclonal antibodies, vaccine antigens, and a variety of cytokines. This work is focused on selected recombinant proteins belonging to those groups expression of which was achieved in plant cells. These proteins may be used in the future for therapy or prevention of viral, bacterial or cancer diseases.
Chou, San-Fang; Chang, Shu-Wen; Chuang, Jia-Ling
2007-05-01
To investigate the expression of chemokines and their signaling pathways after application of mitomycin C (MMC) to corneal fibroblasts. Primary porcine and human corneal fibroblasts from passages 3 to 6 were treated with MMC at concentrations of 0.05, 0.1, or 0.2 mg/mL for 1, 2, 5, or 10 minutes. The relative expression of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) were investigated with reverse transcription, and quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA). The effects of MMC on the activation of kinases were analyzed by Western blot analysis with specific antiphosphokinase antibodies. The signaling pathways by which MMC regulates the expression of IL-8 and MCP-1 were evaluated by pharmacological kinase-specific inhibitors. The expression of IL-8 and MCP-1 were upregulated after MMC treatment in a time- and concentration-dependent manner. Furthermore, the upregulated expression of IL-8 and MCP-1 increased with longer incubation time. MMC treatment enhanced the phosphorylation of p38, JNK, and ERK at different time points. The MMC-related IL-8 and MCP-1 expression was inhibited by both a p38 inhibitor (SB203580) and an ERK inhibitor (PD98059). A JNK inhibitor (SP600125) reduced the expression of MMC-induced MCP-1 but not of IL-8. MMC treatment upregulated the expression of IL-8 and MCP-1 mRNA and protein secretion by the activation of mitogen-activated protein kinases (MAPKs) in corneal fibroblasts.
Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco
2011-01-01
Background Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application. Results In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by CaMV 35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells. Conclusions In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants. PMID:21985646
Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications.
Buerth, Christoph; Tielker, Denis; Ernst, Joachim F
2016-08-01
The yeast Candida utilis is used as a food additive and as a host for heterologous gene expression to produce various metabolites and proteins. Reliable protocols for intracellular production of recombinant proteins are available for C. utilis and have now been expanded to secrete proteins into the growth medium or to achieve surface display by linkage to a cell wall protein. A recombinant C. utilis strain was recently shown to induce oral tolerance in a mouse model of multiple sclerosis suggesting future applications in autoimmune therapy. Whole genome sequencing of C. utilis and its presumed parent Cyberlindnera (Pichia) jadinii demonstrated different ploidy but high sequence identity, consistent with identical recombinant technologies for both yeasts. C. jadinii was recently described as an antagonist to the important human fungal pathogen Candida albicans suggesting its use as a probiotic agent. The review summarizes the status of recombinant protein production in C. utilis, as well as current and future biotechnological and medical applications of C. utilis and C. jadinii.
Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C
2016-01-01
Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications.
Liu, Ying; Jiang, Yu-xin; Li, Chao-pin
2011-12-01
To clone tenecin gene, an antibacterial peptide gene, from Tenebrio molitor for its prokaryotic expression and explore the molecular mechanism for regulating the expression of antibacterial peptide in Tenebrio molitor larvae. The antibacterial peptide was induced from the larvae of Tenebrio molitor by intraperitoneal injection of Escherichia coli DH-5α (1×10(8)/ml). RT-PCR was performed 72 h after the injection to clone Tenecin gene followed by sequencing and bioinformatic analysis. The recombinant expression vector pET-28a(+)-Tenecin was constructed and transformed into E. coli BL21(DE3) cells and the expression of tenecin protein was observed after IPTG induction. Tenecin expression was detected in transformed E.coli using SDS-PAGE after 1 mmol/L IPTG induction. Tenecin gene, which was about 255 bp in length, encoded Tenecin protein with a relative molecular mass of 9 kD. Incubation of E.coli with 80, 60, 40, and 20 µg/ml tenecin for 18 h resulted in a diameter of the inhibition zone of 25.1∓0.03, 20.7∓0.06, 17.2∓0.11 and 9.3∓0.04 mm, respectively. Tenecin protein possesses strong antibacterial activity against E. coli DH-5α, which warrants further study of this protein for its potential as an antibacterial agent in clinical application.
Gene Delivery into Plant Cells for Recombinant Protein Production
Chen, Qiang
2015-01-01
Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275
Melo, Carlos V.; Silva, Carla G.; Duarte, Carlos B.
2013-01-01
BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP. PMID:23326507
Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting.
Eaton, Samantha L; Roche, Sarah L; Llavero Hurtado, Maica; Oldknow, Karla J; Farquharson, Colin; Gillingwater, Thomas H; Wishart, Thomas M
2013-01-01
Western blotting has been a key technique for determining the relative expression of proteins within complex biological samples since the first publications in 1979. Recent developments in sensitive fluorescent labels, with truly quantifiable linear ranges and greater limits of detection, have allowed biologists to probe tissue specific pathways and processes with higher resolution than ever before. However, the application of quantitative Western blotting (QWB) to a range of healthy tissues and those from degenerative models has highlighted a problem with significant consequences for quantitative protein analysis: how can researchers conduct comparative expression analyses when many of the commonly used reference proteins (e.g. loading controls) are differentially expressed? Here we demonstrate that common controls, including actin and tubulin, are differentially expressed in tissues from a wide range of animal models of neurodegeneration. We highlight the prevalence of such alterations through examination of published "-omics" data, and demonstrate similar responses in sensitive QWB experiments. For example, QWB analysis of spinal cord from a murine model of Spinal Muscular Atrophy using an Odyssey scanner revealed that beta-actin expression was decreased by 19.3±2% compared to healthy littermate controls. Thus, normalising QWB data to β-actin in these circumstances could result in 'skewing' of all data by ∼20%. We further demonstrate that differential expression of commonly used loading controls was not restricted to the nervous system, but was also detectable across multiple tissues, including bone, fat and internal organs. Moreover, expression of these "control" proteins was not consistent between different portions of the same tissue, highlighting the importance of careful and consistent tissue sampling for QWB experiments. Finally, having illustrated the problem of selecting appropriate single protein loading controls, we demonstrate that normalisation using total protein analysis on samples run in parallel with stains such as Coomassie blue provides a more robust approach.
Sekar, Narendrakumar; Veetil, Soumya Kariyadan; Neerathilingam, Muniasamy
2013-09-02
Escherichia coli is most widely used prokaryotic expression system for the production of recombinant proteins. Several strategies have been employed for expressing recombinant proteins in E.coli. This includes the development of novel host systems, expression vectors and cost effective media. In this study, we exploit tender coconut water (TCW) as a natural and cheaper growth medium for E.coli and Pichia pastoris. E.coli and P.pastoris were cultivated in TCW and the growth rate was monitored by measuring optical density at 600 nm (OD(600nm)), where 1.55 for E.coli and 8.7 for P.pastoris was obtained after 12 and 60 hours, respectively. However, variation in growth rate was observed among TCW when collected from different localities (0.15-2.5 at OD(600nm)), which is attributed to the varying chemical profile among samples. In this regard, we attempted the supplementation of TCW with different carbon and nitrogen sources to attain consistency in growth rate. Here, supplementation of TCW with 25 mM ammonium sulphate (TCW-S) was noted efficient for the normalization of inconsistency, which further increased the biomass of E.coli by 2 to 10 folds, and 1.5 to 2 fold in P.pastoris. These results indicate that nitrogen source is the major limiting factor for growth. This was supported by total nitrogen and carbon estimation where, nitrogen varies from 20 to 60 mg/100 ml while carbohydrates showed no considerable variation (2.32 to 3.96 g/100 ml). In this study, we also employed TCW as an expression media for recombinant proteins by demonstrating successful expression of maltose binding protein (MBP), MBP-TEV protease fusion and a photo switchable fluorescent protein (mEos2) using TCW and the expression level was found to be equivalent to Luria Broth (LB). This study highlights the possible application of TCW-S as a media for cultivation of a variety of microorganisms and recombinant protein expression.
Dark proteins: effect of inclusion body formation on quantification of protein expression.
Iafolla, Marco A J; Mazumder, Mostafizur; Sardana, Vandit; Velauthapillai, Tharsan; Pannu, Karanbir; McMillen, David R
2008-09-01
Plasmid-borne gene expression systems have found wide application in the emerging fields of systems biology and synthetic biology, where plasmids are used to implement simple network architectures, either to test systems biology hypotheses about issues such as gene expression noise or as a means of exerting artificial control over a cell's dynamics. In both these cases, fluorescent proteins are commonly applied as a means of monitoring the expression of genes in the living cell, and efforts have been made to quantify protein expression levels through fluorescence intensity calibration and by monitoring the partitioning of proteins among the two daughter cells after division; such quantification is important in formulating the predictive models desired in systems and synthetic biology research. A potential pitfall of using plasmid-based gene expression systems is that the high protein levels associated with expression from plasmids can lead to the formation of inclusion bodies, insoluble aggregates of misfolded, nonfunctional proteins that will not generate fluorescence output; proteins caught in these inclusion bodies are thus "dark" to fluorescence-based detection methods. If significant numbers of proteins are incorporated into inclusion bodies rather than becoming biologically active, quantitative results obtained by fluorescent measurements will be skewed; we investigate this phenomenon here. We have created two plasmid constructs with differing average copy numbers, both incorporating an unregulated promoter (P(LtetO-1) in the absence of TetR) expressing the GFP derivative enhanced green fluorescent protein (EGFP), and inserted them into Escherichia coli bacterial cells (a common model organism for work on the dynamics of prokaryotic gene expression). We extracted the inclusion bodies, denatured them, and refolded them to render them active, obtaining a measurement of the average number of EGFP per cell locked into these aggregates; at the same time, we used calibrated fluorescent intensity measurements to determine the average number of active EGFP present per cell. Both measurements were carried out as a function of cellular doubling time, over a range of 45-75 min. We found that the ratio of inclusion body EGFP to active EGFP varied strongly as a function of the cellular growth rate, and that the number of "dark" proteins in the aggregates could in fact be substantial, reaching ratios as high as approximately five proteins locked into inclusion bodies for every active protein (at the fastest growth rate), and dropping to ratios well below 1 (for the slowest growth rate). Our results suggest that efforts to compare computational models to protein numbers derived from fluorescence measurements should take inclusion body loss into account, especially when working with rapidly growing cells. 2008 Wiley-Liss, Inc.
2014-01-01
Background Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering. PMID:24636000
Yeaman, Grant R; Paul, Sudakshina; Nahirna, Iryna; Wang, Yongcheng; Deffenbaugh, Andrew E; Liu, Zi Lucy; Glenn, Kevin C
2016-06-22
In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.
Dingal, P.C. Dave P.; Discher, Dennis E.
2014-01-01
Mechanotransduction pathways convert forces that stress and strain structures within cells into gene expression levels that impact development, homeostasis, and disease. The levels of some key structural proteins in the nucleus, cytoskeleton, or extracellular matrix have been recently reported to scale with tissue- and cell-level forces or mechanical properties such as stiffness, and so the mathematics of mechanotransduction becomes important to understand. Here, we show that if a given structural protein positively regulates its own gene expression, then stresses need only inhibit degradation of that protein to achieve stable, mechanosensitive gene expression. This basic use-it-or-lose-it module is illustrated by application to meshworks of nuclear lamin A, minifilaments of myosin II, and extracellular matrix collagen fibers—all of which possess filamentous coiled-coil/supercoiled structures. Past experiments not only suggest that tension suppresses protein degradation mediated and/or initiated by various enzymes but also that transcript levels vary with protein levels because key transcription factors are regulated by these structural proteins. Coupling between modules occurs within single cells and between cells in tissue, as illustrated during embryonic heart development where cardiac fibroblasts make collagen that cardiomyocytes contract. With few additional assumptions, the basic module has sufficient physics to control key structural genes in both development and disease. PMID:25468352
A study on Nim expression in Bacteroides fragilis
Leitsch, David; Sóki, József; Kolarich, Daniel; Urbán, Edit; Nagy, Elisabeth
2016-01-01
Summary Members of the genus Bacteroides, mainly Bacteroides fragilis, can cause severe disease in man, especially after intestinal perforation in the course of abdominal surgery. Treatment is based on a small number of antibiotics, including metronidazole which has proved to be highly reliable throughout the last 40 to 50 years. Nevertheless, metronidazole resistance does occur in Bacteroides and has been mainly attributed to Nim proteins, a class of proteins with suggested nitroreductase function. Despite the potentially high importance of Nim proteins for human health, information on the expression of nim genes in Bacteroides fragilis is still lacking. It was the aim of this study to demonstrate expression of nim genes in B. fragilis at the protein level and, further, to correlate the level of Nim levels with the level of metronidazole resistance. By application of two-dimensional gel electrophoresis, Nim proteins could be readily identified in nim-positive strains but their levels were not elevated to a relevant extent after induction of resistance to high doses of metronidazole. Thus, the presented data do not provide evidence for Nim proteins acting as nitroreductases using metronidazole as a substrate because no correlation of Nim levels and level of resistance could be observed. Further, no evidence was found that Nim proteins protect B. fragilis from metronidazole by sequestering activated metronidazole. PMID:24448511
UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila
2014-09-01
The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.
Preparation of GST Fusion Proteins.
Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R
2007-04-01
INTRODUCTIONThis protocol describes the preparation of glutathione-S-transferase (GST) fusion proteins, which have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis.
Lin, Sheng-yun; Shen, Chu-yun; Jiang, Jian-ping; Wu, Li-qiang; Dai, Tie-ying; Qian, Wen-bing; Meng, Hai-tao
2013-04-01
To explore the proliferation inhibition and apoptosis effects of polysaccharides extracts from Hedyotis diffusa (PEHD) on multiple myeloma (MM) cell line RPMI 8226 cells in vitro, so as to provide experimental theory for the clinical application in the treatment of MM. MTT assay was used to examine the effects of PEHD on cell growth. The apoptotic cells were analyzed by flow cytometry with AnnexinⅤ/PI staining. Hoechst staining was used to observe the morphological changes of RPMI 8226 cell apoptosis. The expression levels of caspase-3,-8,-9, PARP, nucleoprotein NF-κB protein and other channel protein were assayed by Western blotting method. The growth of RPMI 8226 cells were suppressed after treatment with PEHD, the highest inhibition rate reached to 92.3%, the results in the doses from 1 to 4 mg/ml showed a dose-and-time-dependent manner. The proportion of apoptotic cells in 1, 2 and 3 mg/ml PEHD treatment groups for 24 h were 22.52%, 62.31% and 69.94%, respectively, and significantly higher than that of control 8.93%. After treated with PEHD, apoptotic body appeared in RPMI 8226 cells nucleus and the number of apoptotic body increased in a dose-dependent manner. With the increasing of PEHD concentration, the expression of caspase-8,-9,-3 and PARP protein increased. The expression of Mcl-1, Bcl-xl, Bid and Bim protein decreased gradually, but the expression of Bax, Bak and Bad protein increased, and the expression of p-AKT protein (60 kDa) and NF-κB obviously decreased. PEHD could inhibited the growth of RPMI 8226 cells and displayed a dose-and-time-dependent manner, its mechanism may involve cell apoptosis induction, which was associated with the activation of caspase-8, caspase-9, and caspase-3 protein and the down-regulation of p-AKT and NF-κB protein expression.
Cloning strategy for producing brush-forming protein-based polymers.
Henderson, Douglas B; Davis, Richey M; Ducker, William A; Van Cott, Kevin E
2005-01-01
Brush-forming polymers are being used in a variety of applications, and by using recombinant DNA technology, there exists the potential to produce protein-based polymers that incorporate unique structures and functions in these brush layers. Despite this potential, production of protein-based brush-forming polymers is not routinely performed. For the design and production of new protein-based polymers with optimal brush-forming properties, it would be desirable to have a cloning strategy that allows an iterative approach wherein the protein based-polymer product can be produced and evaluated, and then if necessary, it can be sequentially modified in a controlled manner to obtain optimal surface density and brush extension. In this work, we report on the development of a cloning strategy intended for the production of protein-based brush-forming polymers. This strategy is based on the assembly of modules of DNA that encode for blocks of protein-based polymers into a commercially available expression vector; there is no need for custom-modified vectors and no need for intermediate cloning vectors. Additionally, because the design of new protein-based biopolymers can be an iterative process, our method enables sequential modification of a protein-based polymer product. With at least 21 bacterial expression vectors and 11 yeast expression vectors compatible with this strategy, there are a number of options available for production of protein-based polymers. It is our intent that this strategy will aid in advancing the production of protein-based brush-forming polymers.
Nasri, M
In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits. © 2017 Elsevier Inc. All rights reserved.
Von Seggern, Dan J.; Huang, Shuang; Fleck, Shonna Kaye; Stevenson, Susan C.; Nemerow, Glen R.
2000-01-01
While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.βgal.ΔF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.βgal.ΔF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types. PMID:10590124
Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.
Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R
2007-08-01
INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.
Printing Proteins as Microarrays for High-Throughput Function Determination
NASA Astrophysics Data System (ADS)
MacBeath, Gavin; Schreiber, Stuart L.
2000-09-01
Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.
Manipulating heat shock protein expression in laboratory animals.
Tolson, J Keith; Roberts, Stephen M
2005-02-01
Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.
Geminiviruses for biotechnology: the art of parasite taming.
Lozano-Durán, Rosa
2016-04-01
Viruses are intracellular pathogens that have evolved efficient strategies for replication and expression of their proteins in the host cells. Geminiviruses - plant viruses with small circular single-stranded DNA genomes - effectively manipulate plant cell processes for viral functions, entailing great potential for biotechnological applications. This potentiality has been realized in the form of protein expression and gene-silencing vectors, and, more recently, vectors for genome editing - a technology that these viruses seem particularly well-suited to facilitate. This insight offers an overview of the biological properties of geminiviruses, with emphasis on those leveraging development of geminivirus-based replicons. It illustrates the basis for engineering geminivirus-based replicons and their applications. Furthermore, it discusses the reported use and future perspectives of geminivirus-based replicons for genome editing. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Lin, Jennifer S.; Albrecht, Jennifer Coyne; Meagher, Robert J.; Wang, Xiaoxiao; Barron, Annelise E.
2011-01-01
Protein-based polymers are increasingly being used in biomaterial applications due to their ease of customization and potential monodispersity. These advantages make protein polymers excellent candidates for bioanalytical applications. Here we describe improved methods for producing drag-tags for Free-Solution Conjugate Electrophoresis (FSCE). FSCE utilizes a pure, monodisperse recombinant protein, tethered end-on to a ssDNA molecule, to enable DNA size separation in aqueous buffer. FSCE also provides a highly sensitive method to evaluate the polydispersity of a protein drag-tag and thus its suitability for bioanalytical uses. This method is able to detect slight differences in drag-tag charge or mass. We have devised an improved cloning, expression, and purification strategy that enables us to generate, for the first time, a truly monodisperse 20 kDa protein polymer and a nearly monodisperse 38 kDa protein. These newly produced proteins can be used as drag-tags to enable longer read DNA sequencing by free-solution microchannel electrophoresis. PMID:21553840
Site-selective protein-modification chemistry for basic biology and drug development
NASA Astrophysics Data System (ADS)
Krall, Nikolaus; da Cruz, Filipa P.; Boutureira, Omar; Bernardes, Gonçalo J. L.
2016-02-01
Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.
Michnick, Stephen W; Landry, Christian R; Levy, Emmanuel D; Diss, Guillaume; Ear, Po Hien; Kowarzyk, Jacqueline; Malleshaiah, Mohan K; Messier, Vincent; Tchekanda, Emmanuelle
2016-11-01
Protein-fragment complementation assays (PCAs) comprise a family of assays that can be used to study protein-protein interactions (PPIs), conformation changes, and protein complex dimensions. We developed PCAs to provide simple and direct methods for the study of PPIs in any living cell, subcellular compartments or membranes, multicellular organisms, or in vitro. Because they are complete assays, requiring no cell-specific components other than reporter fragments, they can be applied in any context. PCAs provide a general strategy for the detection of proteins expressed at endogenous levels within appropriate subcellular compartments and with normal posttranslational modifications, in virtually any cell type or organism under any conditions. Here we introduce a number of applications of PCAs in budding yeast, Saccharomyces cerevisiae These applications represent the full range of PPI characteristics that might be studied, from simple detection on a large scale to visualization of spatiotemporal dynamics. © 2016 Cold Spring Harbor Laboratory Press.
Site-selective protein-modification chemistry for basic biology and drug development.
Krall, Nikolaus; da Cruz, Filipa P; Boutureira, Omar; Bernardes, Gonçalo J L
2016-02-01
Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.
Singh, Ankita; Kildegaard, Helene F; Andersen, Mikael R
2018-05-15
Chinese hamster ovary (CHO) cell lines can fold, assemble and modify proteins post-translationally to produce human-like proteins; as a consequence, it is the single most common expression systems for industrial production of recombinant therapeutic proteins. A thorough knowledge of cultivation conditions of different CHO cell lines has been developed over the last decade, but comprehending gene or pathway-specific distinctions between CHO cell lines at transcriptome level remains a challenge. To address these challenges, we compiled a compendium of 23 RNA-Seq studies from public and in-house data on CHO cell lines, i.e. CHO-S, CHO-K1 and DG44. Significantly differentially expressed (DE) genes particularly related to subcellular structure and macromolecular categories were used to identify differences between the cell lines. A R-based web application was developed specifically for CHO cell lines to further visualize expression values across different cell lines, and make available the normalized full CHO data set graphically as a CHO research community resource. This study quantitatively categorizes CHO cell lines based on patterns at transcriptomic level and detects gene and pathway specific key distinctions among sibling cell lines. Studies such as this can be used to select desired characteristics across various CHO cell lines. Furthermore, the availability of the data as an internet-based application can be applied to broad range of CHO engineering applications. This article is protected by copyright. All rights reserved.
McCormick, Aleesha M; Jarmusik, Natalie A; Endrizzi, Elizabeth J; Leipzig, Nic D
2014-01-22
Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification.
McCormick, Aleesha M.; Jarmusik, Natalie A.; Endrizzi, Elizabeth J.; Leipzig, Nic D.
2014-01-01
Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification. PMID:24513608
Mallik, Mrinmay Kumar
2018-02-07
Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that is indicative of their strong influence in the protein protein interaction network. Similarly the newly proposed GEADCA helped identify the transcription factors with high centrality values indicative of their key roles in transcriptional regulation. The enrichment studies provided a list of molecular functions, biological processes and biochemical pathways associated with the constructed network. The study shows how pathway based databases may be used to create and analyze a relevant protein interaction network in glioma cancer stem cells and identify the essential elements within it to gather insights into the molecular interactions that regulate the properties of glioma stem cells. How these insights may be utilized to help the development of future research towards formulation of new management strategies have been discussed from a theoretical standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficient production of glycosylated Cypridina luciferase using plant cells.
Mitani, Yasuo; Oshima, Yoshimi; Mitsuda, Nobutaka; Tomioka, Azusa; Sukegawa, Masako; Fujita, Mika; Kaji, Hiroyuki; Ohmiya, Yoshihiro
2017-05-01
Cypridina noctiluca luciferase has been utilized for biochemical and molecular biological applications, including bioluminescent enzyme immunoassays, far-red luminescence imaging, and high-throughput reporter assays. Some of these applications require a large amount of purified luciferase. However, conventional protein expression systems are not capable of producing sufficient quantities of protein with a high quality and purity without laborious and costly purification processes. To improve the productivity and expand the breadth of possibilities for Cypridina luciferase applications, we employed a variety of secretion expression systems, including yeast, mammalian cells, and silk worms. In this study, we established a simple production procedure using plant cell cultures. The plant cell culture BY-2 efficiently secreted luciferase, which was easily purified using a simple one-step ion-exchange chromatography method. The production yield was 20-30 mg of luciferase per liter of culture medium, and its Km for the luciferin (0.45 μM) was similar to that of the native protein. Additionally, we characterized its glycosylation pattern and confirmed that the two potential N-glycosylation sites were modified with plant-type oligosaccharide chains. Interestingly, the oligosaccharide chains could be trimmed without any detectable decrease in recombinant protein activity. Therefore, the results of our study indicate that this method offers a more cost-effective production method for Cypridina luciferase than conventional methods. Copyright © 2017 Elsevier Inc. All rights reserved.
EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.
Moore, Simon J; Lai, Hung-En; Kelwick, Richard J R; Chee, Soo Mei; Bell, David J; Polizzi, Karen Marie; Freemont, Paul S
2016-10-21
Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterize in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimize pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimization. In summary, EcoFlex provides a standardized and multifunctional kit for a variety of applications in E. coli synthetic biology.
Investigation of Glandular Trichome Proteins in Artemisia annua L. Using Comparative Proteomics
Wu, Ting; Wang, Yejun; Guo, Dianjing
2012-01-01
Glandular secreting trichomes (GSTs) are called biofactories because they are active in synthesizing, storing and secreting various types of plant secondary metabolites. As the most effective drug against malaria, artemisinin, a sesquiterpene lactone is derived from GSTs of Artemisia annua. However, low artemisinin content (0.001%∼1.54% of dry weight) has hindered its wide application. We investigate the GST-expressed proteins in Artemisia annua using a comparative proteomics approach, aiming for a better understanding of the trichome proteome and arteminisin metabolism. 2D-electrophoresis was employed to compare the protein profiles of GSTs and leaves. More than 700 spots were resolved for GSTs, of which ∼93 non-redundant proteins were confidently identified by searching NCBI and Artemisia EST databases. Over 70% of these proteins were highly expressed in GTSs. Functional classification of these GSTs enriched proteins revealed that many of them participate in major plant metabolic processes such as electron transport, transcription and translation. PMID:22905110
Swanson, Jon; Audie, Joseph
2018-01-01
A fundamental and unsolved problem in biophysical chemistry is the development of a computationally simple, physically intuitive, and generally applicable method for accurately predicting and physically explaining protein-protein binding affinities from protein-protein interaction (PPI) complex coordinates. Here, we propose that the simplification of a previously described six-term PPI scoring function to a four term function results in a simple expression of all physically and statistically meaningful terms that can be used to accurately predict and explain binding affinities for a well-defined subset of PPIs that are characterized by (1) crystallographic coordinates, (2) rigid-body association, (3) normal interface size, and hydrophobicity and hydrophilicity, and (4) high quality experimental binding affinity measurements. We further propose that the four-term scoring function could be regarded as a core expression for future development into a more general PPI scoring function. Our work has clear implications for PPI modeling and structure-based drug design.
Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system.
Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G
2013-01-01
The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed.
Nazir, Muslima; Pandey, Renu; Siddiqi, Tariq O.; Ibrahim, Mohamed M.; Qureshi, Mohammad I.; Abraham, Gerard; Vengavasi, Krishnapriya; Ahmad, Altaf
2016-01-01
Nitrogen (N) is essential for proper plant growth and its application has proven to be critical for agricultural produce. However, for unavoidable economic and environmental problems associated with excessive use of N-fertilizers, it is an urgent demand to manage application of fertilizers. Improving the N-use efficiency (NUE) of crop plants to sustain productivity even at low N levels is the possible solution. In the present investigation, contrasting low-N sensitive (HM-4) and low-N tolerant (PEHM-2) genotypes were identified and used for comparative proteome-profiling of leaves under optimum and low N as well as restoration of low N on 3rd (NR3) and 5th (NR5) days after re-supplying N. The analysis of differential expression pattern of proteins was performed by 2-D gel electrophoresis. Significant variations in the expression of proteins were observed under low N, which were genotype specific. In the leaf proteome, 25 spots were influenced by N treatment and four spots were different between the two genotypes. Most of the proteins that were differentially accumulated in response to N level and were involved in photosynthesis and metabolism, affirming the relationship between N and carbon metabolism. In addition to this, greater intensity of some defense proteins in the low N tolerant genotype was found that may have a possible role in imparting it tolerance under N starvation conditions. The new insights generated on maize proteome in response to N-starvation and restoration would be useful toward improvement of NUE in maize. PMID:27047497
A Survey of Computational Intelligence Techniques in Protein Function Prediction
Tiwari, Arvind Kumar; Srivastava, Rajeev
2014-01-01
During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395
Lee, Jinho; Geiss, Gary K; Demirkan, Gokhan; Vellano, Christopher P; Filanoski, Brian; Lu, Yiling; Ju, Zhenlin; Yu, Shuangxing; Guo, Huifang; Bogatzki, Lisa Y; Carter, Warren; Meredith, Rhonda K; Krishnamurthy, Savitri; Ding, Zhiyong; Beechem, Joseph M; Mills, Gordon B
2018-06-01
Molecular analysis of tumors forms the basis for personalized cancer medicine and increasingly guides patient selection for targeted therapy. Future opportunities for personalized medicine are highlighted by the measurement of protein expression levels via immunohistochemistry, protein arrays, and other approaches; however, sample type, sample quantity, batch effects, and "time to result" are limiting factors for clinical application. Here, we present a development pipeline for a novel multiplexed DNA-labeled antibody platform which digitally quantifies protein expression from lysate samples. We implemented a rigorous validation process for each antibody and show that the platform is amenable to multiple protocols covering nitrocellulose and plate-based methods. Results are highly reproducible across technical and biological replicates, and there are no observed "batch effects" which are common for most multiplex molecular assays. Tests from basal and perturbed cancer cell lines indicate that this platform is comparable to orthogonal proteomic assays such as Reverse-Phase Protein Array, and applicable to measuring the pharmacodynamic effects of clinically-relevant cancer therapeutics. Furthermore, we demonstrate the potential clinical utility of the platform with protein profiling from breast cancer patient samples to identify molecular subtypes. Together, these findings highlight the potential of this platform for enhancing our understanding of cancer biology in a clinical translation setting. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Otsuki, Ryosuke; Yamamoto, Masafumi; Matsumoto, Erika; Iwamoto, Shin-Ichi; Sezutsu, Hideki; Suzui, Masumi; Takaki, Keiko; Wakabayashi, Keiji; Mori, Hajime; Kotani, Eiji
2017-06-27
Genetically manipulated organisms with dysfunction of specific tissues are crucial for the study of various biological applications and mechanisms. However, the bioengineering of model organisms with tissue-specific dysfunction has not progressed because the challenges of expression of proteins, such as cytotoxins, in living cells of individual organisms need to be overcome first. Here, we report the establishment of a transgenic silkworm ( Bombyx mori ) with posterior silk glands (PSGs) that was designed to express the cabbage butterfly ( Pieris rapae ) cytotoxin pierisin-1A (P1A). P1A, a homolog of the apoptosis inducer pierisin-1, had relatively lower DNA ADP ribosyltransferase activity than pierisin-1; it also induced the repression of certain protein synthesis when expressed in B. mori -derived cultured cells. The transgene-derived P1A domain harboring enzymatic activity was successfully expressed in the transgenic silkworm PSGs. The glands showed no apoptosis-related morphological changes; however, an abnormal appearance was evident. The introduced truncated P1A resulted in the dysfunction of PSGs in that they failed to produce the silk protein fibroin. Cocoons generated by the silkworms solely consisted of the glue-like glycoprotein sericin, from which soluble sericin could be prepared to form hydrogels. Embryonic stem cells could be maintained on the hydrogels in an undifferentiated state and proliferated through stimulation by the cytokines introduced into the hydrogels. Thus, bioengineering with targeted P1A expression successfully produced silkworms with a biologically useful trait that has significant application potential.
Otsuki, Ryosuke; Yamamoto, Masafumi; Matsumoto, Erika; Iwamoto, Shin-ichi; Sezutsu, Hideki; Suzui, Masumi; Takaki, Keiko; Wakabayashi, Keiji; Mori, Hajime; Kotani, Eiji
2017-01-01
Genetically manipulated organisms with dysfunction of specific tissues are crucial for the study of various biological applications and mechanisms. However, the bioengineering of model organisms with tissue-specific dysfunction has not progressed because the challenges of expression of proteins, such as cytotoxins, in living cells of individual organisms need to be overcome first. Here, we report the establishment of a transgenic silkworm (Bombyx mori) with posterior silk glands (PSGs) that was designed to express the cabbage butterfly (Pieris rapae) cytotoxin pierisin-1A (P1A). P1A, a homolog of the apoptosis inducer pierisin-1, had relatively lower DNA ADP ribosyltransferase activity than pierisin-1; it also induced the repression of certain protein synthesis when expressed in B. mori-derived cultured cells. The transgene-derived P1A domain harboring enzymatic activity was successfully expressed in the transgenic silkworm PSGs. The glands showed no apoptosis-related morphological changes; however, an abnormal appearance was evident. The introduced truncated P1A resulted in the dysfunction of PSGs in that they failed to produce the silk protein fibroin. Cocoons generated by the silkworms solely consisted of the glue-like glycoprotein sericin, from which soluble sericin could be prepared to form hydrogels. Embryonic stem cells could be maintained on the hydrogels in an undifferentiated state and proliferated through stimulation by the cytokines introduced into the hydrogels. Thus, bioengineering with targeted P1A expression successfully produced silkworms with a biologically useful trait that has significant application potential. PMID:28607081
Komorowski, A.; James, G. M.; Philippe, C.; Gryglewski, G.; Bauer, A.; Hienert, M.; Spies, M.; Kautzky, A.; Vanicek, T.; Hahn, A.; Traub-Weidinger, T.; Winkler, D.; Wadsak, W.; Mitterhauser, M.; Hacker, M.; Kasper, S.; Lanzenberger, R.
2017-01-01
Abstract Regional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post-mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5-HT1A) and excitatory (5-HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase-A (MAO-A), using Spearman's correlation coefficients (rs) in a voxel-wise and region-wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5-HT1A (voxel-wise rs = 0.71; region-wise rs = 0.93) and the 5-HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO-A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region-wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5-HT1Ars = 0.82; 5-HT2Ars = 0.88; MAO-A rs = 0.50; SERT rs = −0.01). The SERT and MAO-A appear to be regulated in a region-specific manner across the whole brain. In contrast, the serotonin-1A and -2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins. PMID:27909009
Li, Bao-Cun; Zhang, Shuang-Quan; Dan, Wen-Bing; Chen, Yu-Qing; Cao, Peng
2007-07-01
The antibacterial peptide CM4 (ABP-CM4), isolated from Chinese Bombys mori, is a 35-residue cationic, amphipathic alpha-helical peptide that exhibits a broad range of antimicrobial activity. To explore a new approach for the expression of ABP-CM4 in E. coli, the gene ABP-CM4, obtained by recursive PCR (rPCR), was cloned into the vector pET32a to construct a fusion expression plasmid. The fusion protein Trx-CM4 was expressed in soluble form, purified by Ni(2+)-chelating chromatography, and cleaved by formic acid to release recombinant CM4. Purification of rCM4 was achieved by affinity chromatography and reverse-phase HPLC. The purified of recombinant peptide showed antimicrobial activities against E. coli K(12)D(31), Penicillium chrysogenum, Aspergillus niger and Gibberella saubinetii. According to the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html), 116 peptides contain a Met residue, but only 5 peptides contain the AspPro site, indicating a broader application of formic acid than CNBr in cleaving fusion protein. The successful application to the expression of the ABP-CM4 indicates that the system is a low-cost, efficient way of producting milligram quantities of ABP-CM4 that is biologically active.
Maggi, Maristella; Scotti, Claudia
2017-06-01
Heterologous expression of high amounts of recombinant proteins is a milestone for research and industrial purposes. Single domain antibodies (sdAbs) are heavy-chain only antibody fragments with applications in the biotechnological, medical and industrial fields. The simple nature and small size of sdAbs allows for efficient expression of the soluble molecule in different hosts. However, in some cases, it results in low functional protein yield. To overcome this limitation, expression of a 6xHistag sdAb was attempted in different conditions in Escherichia coli BL21(DE3) cells. Data showed that high amount of sdAb can be expressed in E. coli classical inclusion bodies, efficiently extracted by urea in a short-time, and properly purified by metal ion affinity chromatography. These data originate from the research article "Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies" Maggi and Scotti (2017) [1] (DOI: http://dx.doi.org/10.1016/j.pep.2017.02.007).
Jeong, Young-Hee; Kim, Yeong Ji; Kim, Eun Young; Kim, Se Eun; Kim, Jiwoo; Park, Min Jee; Lee, Hong-Gu; Park, Se Pill; Kang, Man-Jong
2016-06-01
Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland, and this approach is one of the most important methods for agricultural and biomedical applications. However, expression and secretion of a protein varies because transgenes are integrated at random sites in the genome. In addition, distal enhancers are very important for transcriptional gene regulation and tissue-specific gene expression. Development of a vector system regulated accurately in the genome is needed to improve production of therapeutic proteins. The objective of this study was to develop a knock-in system for expression of human fibroblast growth factor 2 (FGF2) in the bovine β-casein gene locus. The F2A sequence was fused to the human FGF2 gene and inserted into exon 3 of the β-casein gene. We detected expression of human FGF2 mRNA in the HC11 mouse mammary epithelial cells by RT-PCR and human FGF2 protein in the culture media using western blot analysis when the knock-in vector was introduced. We transfected the knock-in vector into bovine ear fibroblasts and produced knock-in fibroblasts using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Moreover, the CRISPR/Cas9 system was more efficient than conventional methods. In addition, we produced knock-in blastocysts by somatic cell nuclear transfer using the knock-in fibroblasts. Our knock-in fibroblasts may help to create cloned embryos for development of transgenic dairy cattle expressing human FGF2 protein in the mammary gland via the expression system of the bovine β-casein gene.
Recombinant Collagenlike Proteins
NASA Technical Reports Server (NTRS)
Fertala, Andzej
2007-01-01
A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.
Capaldi, Stefano
2014-01-01
In recent years, the production of recombinant pharmaceutical proteins in heterologous systems has increased significantly. Most applications involve complex proteins and glycoproteins that are difficult to produce, thus promoting the development and improvement of a wide range of production platforms. No individual system is optimal for the production of all recombinant proteins, so the diversity of platforms based on plants offers a significant advantage. Here, we discuss the production of four recombinant pharmaceutical proteins using different platforms, highlighting from these examples the unique advantages of plant-based systems over traditional fermenter-based expression platforms. PMID:24745008
Wu, Minghua; Obara, Yutaro; Ohshima, Shingo; Nagasawa, Yoshinobu; Ishii, Kuniaki
2017-11-04
Diabetes mellitus affects ion channel physiology. We have previously reported that acute application of insulin suppresses the KCNQ1/KCNE1 currents that play an important role in terminating ventricular action potential. In this study, we investigated the effect of long-term insulin treatment on KCNQ1/KCNE1 currents using the Xenopus oocyte expression system. Insulin treatment with a duration longer than 6 h had an opposite effect to acute insulin application, that is, it augmented the KCNQ1/KCNE1 currents. Inhibitors of PI3K, wortmannin and LY294002, and a MEK inhibitor, U0126, abolished the potentiating effect of long-term insulin treatment. The long-term treatment with insulin had no effect on KCNQ1 currents indicating an essential role of KCNE1 in the insulin effect, which is similar to the acute insulin effect. Cycloheximide, an inhibitor of protein synthesis, and brefeldin A, an inhibitor of protein transport from endoplasmic reticulum, suppressed the long-term insulin effect. Western blotting analysis combined with these pharmacological data suggest that long-term insulin treatment augments KCNQ1/KCNE1 currents by increasing KCNE1 protein expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Yeast Genetics and Biotechnological Applications
NASA Astrophysics Data System (ADS)
Mishra, Saroj; Baranwal, Richa
Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.
Yasmin, Nusrat; Saleem, Mahjabeen; Naz, Mamoona; Gul, Roquyya; Rehman, Hafiz Muzzammel
2017-01-01
A thaumatin-like protein gene from Basrai banana was cloned and expressed in Escherichia coli . Amplified gene product was cloned into pTZ57R/T vector and subcloned into expression vector pET22b(+) and resulting pET22b-basrai TLP construct was introduced into E. coli BL21. Maximum protein expression was obtained at 0.7 mM IPTG concentration after 6 hours at 37°C. Western blot analysis showed the presence of approximately 20 kDa protein in induced cells. Basrai antifungal TLP was tried as pharmacological agent against fungal disease. Independently Basrai antifungal protein and amphotericin B exhibited their antifungal activity against A. fumigatus ; however combined effect of both agents maximized activity against the pathogen. Docking studies were performed to evaluate the antimicrobial potential of TLP against A. fumigatus by probing binding pattern of antifungal protein with plasma membrane ergosterol of targeted fungal strain. Ice crystallization primarily damages frozen food items; however addition of antifreeze proteins limits the growth of ice crystal in frozen foods. The potential of Basrai TLP protein, as an antifreezing agent, in controlling the ice crystal formation in frozen yogurt was also studied. The scope of this study ranges from cost effective production of pharmaceutics to antifreezing and food preserving agent as well as other real life applications.
Yasmin, Nusrat; Naz, Mamoona; Gul, Roquyya; Rehman, Hafiz Muzzammel
2017-01-01
A thaumatin-like protein gene from Basrai banana was cloned and expressed in Escherichia coli. Amplified gene product was cloned into pTZ57R/T vector and subcloned into expression vector pET22b(+) and resulting pET22b-basrai TLP construct was introduced into E. coli BL21. Maximum protein expression was obtained at 0.7 mM IPTG concentration after 6 hours at 37°C. Western blot analysis showed the presence of approximately 20 kDa protein in induced cells. Basrai antifungal TLP was tried as pharmacological agent against fungal disease. Independently Basrai antifungal protein and amphotericin B exhibited their antifungal activity against A. fumigatus; however combined effect of both agents maximized activity against the pathogen. Docking studies were performed to evaluate the antimicrobial potential of TLP against A. fumigatus by probing binding pattern of antifungal protein with plasma membrane ergosterol of targeted fungal strain. Ice crystallization primarily damages frozen food items; however addition of antifreeze proteins limits the growth of ice crystal in frozen foods. The potential of Basrai TLP protein, as an antifreezing agent, in controlling the ice crystal formation in frozen yogurt was also studied. The scope of this study ranges from cost effective production of pharmaceutics to antifreezing and food preserving agent as well as other real life applications. PMID:28875151
Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins?
Lambrecht, Stijn; Juchtmans, Nele; Elewaut, Dirk
2014-02-01
Heat-shock proteins (HSPs) are molecular chaperones that are highly conserved between species. In recent decades it has become clear that these proteins play an important role in the pathogenesis of inflammatory and degenerative joint diseases by (dys)regulating the immune system and by direct effects on the stromal tissues of the joint. In this review we discuss current insights into the expression pattern of HSPs in connective tissues, the direct biological role of HSPs in stromal tissues and the potential clinical applications.
Snyder, Lindsey L.; Esser, Jonathan M.; Pachuk, Catherine J.; Steel, Laura F.
2008-01-01
RNA interference (RNAi) is a process that can target intracellular RNAs for degradation in a highly sequence specific manner, making it a powerful tool that is being pursued in both research and therapeutic applications. Hepatitis B virus (HBV) is a serious public health problem in need of better treatment options, and aspects of its life cycle make it an excellent target for RNAi-based therapeutics. We have designed a vector that expresses interfering RNAs that target HBV transcripts, including both viral RNA replicative intermediates and mRNAs encoding viral proteins. Our vector design incorporates many features of endogenous microRNA (miRNA) gene organization that are proving useful for the development of reagents for RNAi. In particular, our vector contains an RNA pol II driven gene cassette that leads to tissue specific expression and efficient processing of multiple interfering RNAs from a single transcript, without the co-expression of any protein product. This vector shows potent silencing of HBV targets in cell culture models of HBV infection. The vector design will be applicable to silencing of additional cellular or disease-related genes. PMID:18499277
Advances in Quantitative Proteomics of Microbes and Microbial Communities
NASA Astrophysics Data System (ADS)
Waldbauer, J.; Zhang, L.; Rizzo, A. I.
2015-12-01
Quantitative measurements of gene expression are key to developing a mechanistic, predictive understanding of how microbial metabolism drives many biogeochemical fluxes and responds to environmental change. High-throughput RNA-sequencing can afford a wealth of information about transcript-level expression patterns, but it is becoming clear that expression dynamics are often very different at the protein level where biochemistry actually occurs. These divergent dynamics between levels of biological organization necessitate quantitative proteomic measurements to address many biogeochemical questions. The protein-level expression changes that underlie shifts in the magnitude, or even the direction, of metabolic and biogeochemical fluxes can be quite subtle and test the limits of current quantitative proteomics techniques. Here we describe methodologies for high-precision, whole-proteome quantification that are applicable to both model organisms of biogeochemical interest that may not be genetically tractable, and to complex community samples from natural environments. Employing chemical derivatization of peptides with multiple isotopically-coded tags, this strategy is rapid and inexpensive, can be implemented on a wide range of mass spectrometric instrumentation, and is relatively insensitive to chromatographic variability. We demonstrate the utility of this quantitative proteomics approach in application to both isolates and natural communities of sulfur-metabolizing and photosynthetic microbes.
Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong
2008-06-01
A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.
Buyel, Johannes Felix; Fischer, Rainer
2014-01-31
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine.
Kumaravel, Marimuthu; Uma, Subbaraya; Backiyarani, Suthanthiram; Saraswathi, Marimuthu Somasundaram; Vaganan, Muthu Mayil; Muthusamy, Muthusamy; Sajith, Kallu Purayil
2017-01-01
Endogenous hormone secretion proteins along with stress and defense proteins play predominant role in banana embryogenesis. This study reveals the underlying molecular mechanism during transition from vegetative to embryogenic state. Banana (Musa spp.) is well known globally as a food fruit crop for millions. The requirement of quality planting material of banana is enormous. Although mass multiplication through tissue culture is in vogue, high-throughput techniques like somatic embryogenesis (SE) as a mass multiplication tool needs to be improved. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. SE in banana is completely genome-dependent and most of the commercial cultivars exhibit recalcitrance. Thus, understanding the molecular basis of embryogenesis in Musa will help to develop strategies for mass production of quality planting material. In this study, differentially expressed proteins between embryogenic calli (EC) and non-embryogenic calli (NEC) with respect to the explant, immature male flower buds (IMFB), of cv. Grand Naine (AAA) were determined using two-dimensional gel electrophoresis (2DE). The 2DE results were validated through qRT-PCR. In total, 65 proteins were identified: 42 were highly expressed and 23 were less expressed in EC compared to NEC and IMFB. qRT-PCR analysis of five candidate proteins, upregulated in EC, were well correlated with expression at transcript level. Further analysis of proteins showed that embryogenesis in banana is associated with the control of oxidative stress. The regulation of ROS scavenging system and protection of protein structure occurred in the presence of heat shock proteins. Alongside, high accumulation of stress-related cationic peroxidase and plant growth hormone-related proteins like indole-3-pyruvate monooxygenase and adenylate isopentenyltransferase in EC revealed the association with the induction of SE.
Bataille, Laure; Dieryck, Wilfrid; Hocquellet, Agnès; Cabanne, Charlotte; Bathany, Katell; Lecommandoux, Sébastien; Garbay, Bertrand; Garanger, Elisabeth
2015-06-01
Elastin-like polypeptides (ELPs) are biodegradable polymers with interesting physico-chemical properties for biomedical and biotechnological applications. The recombinant expression of hydrophobic elastin-like polypeptides is often difficult because they possess low transition temperatures, and therefore form aggregates at sub-ambient temperatures. To circumvent this difficulty, we expressed in Escherichia coli three hydrophobic ELPs (VPGIG)n with variable lengths (n=20, 40, and 60) in fusion with the maltose-binding protein (MBP). Fusion proteins were soluble and yields of purified MBP-ELP ranged between 66 and 127mg/L culture. After digestion of the fusion proteins by enterokinase, the ELP moiety was purified by using inverse transition cycling. The purified fraction containing ELP40 was slightly contaminated by traces of undigested fusion protein. Purification of ELP60 was impaired because of co-purification of the MBP tag during inverse transition cycling. ELP20 was successfully purified to homogeneity, as assessed by gel electrophoresis and mass spectrometry analyses. The transition temperature of ELP20 was measured at 15.4°C in low salt buffer. In conclusion, this method can be used to produce hydrophobic ELP of low molecular mass. Copyright © 2015 Elsevier Inc. All rights reserved.
Mallik, Moushami; Lakhotia, Subhash C
2010-12-01
Polyglutamine (polyQ) diseases, resulting from a dynamic expansion of glutamine repeats in a polypeptide, are a class of genetically inherited late onset neurodegenerative disorders which, despite expression of the mutated gene widely in brain and other tissues, affect defined subpopulations of neurons in a disease-specific manner. We briefly review the different polyQ-expansion-induced neurodegenerative disorders and the advantages of modelling them in Drosophila. Studies using the fly models have successfully identified a variety of genetic modifiers and have helped in understanding some of the molecular events that follow expression of the abnormal polyQ proteins. Expression of the mutant polyQ proteins causes, as a consequence of intra-cellular and inter-cellular networking, mis-regulation at multiple steps like transcriptional and posttranscriptional regulations, cell signalling, protein quality control systems (protein folding and degradation networks), axonal transport machinery etc., in the sensitive neurons, resulting ultimately in their death. The diversity of genetic modifiers of polyQ toxicity identified through extensive genetic screens in fly and other models clearly reflects a complex network effect of the presence of the mutated protein. Such network effects pose a major challenge for therapeutic applications.
Natarajan, Aravind; Haitjema, Charles H; Lee, Robert; Boock, Jason T; DeLisa, Matthew P
2017-05-19
The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved for most synthetic biology and metabolic engineering applications. To address this challenge, we developed a generalizable survival-based selection strategy that effectively couples extracellular protein secretion to antibiotic resistance and enables facile isolation of rare mutants from very large populations (i.e., 10 10-12 clones) based simply on cell growth. Using this strategy in the context of the YebF pathway, a comprehensive library of E. coli single-gene knockout mutants was screened and several gain-of-function mutations were isolated that increased the efficiency of extracellular expression without compromising the integrity of the outer membrane. We anticipate that this user-friendly strategy could be leveraged to better understand the YebF pathway and other secretory mechanisms-enabling the exploration of protein secretion in pathogenesis as well as the creation of designer E. coli strains with greatly expanded secretomes-all without the need for expensive exogenous reagents, assay instruments, or robotic automation.
Murillo, Isabel; Virji, Mumtaz
2010-10-24
The Opc protein of Neisseria meningitidis (Nm, meningococcus) is a surface-expressed integral outer membrane protein, which can act as an adhesin and an effective invasin for human epithelial and endothelial cells. We have identified endothelial surface-located integrins as major receptors for Opc, a process which requires Opc to first bind to integrin ligands such as vitronectin and via these to the cell-expressed receptors(1). This process leads to bacterial invasion of endothelial cells(2). More recently, we observed an interaction of Opc with a 100 kDa protein found in whole cell lysates of human cells(3). We initially observed this interaction when host cell proteins separated by electrophoresis and blotted on to nitrocellulose were overlaid with Opc-expressing Nm. The interaction was direct and did not involve intermediate molecules. By mass spectrometry, we established the identity of the protein as α-actinin. As no surface expressed α-actinin was found on any of the eight cell lines examined, and as Opc interactions with endothelial cells in the presence of serum lead to bacterial entry into the target cells, we examined the possibility of the two proteins interacting intracellularly. For this, cultured human brain microvascular endothelial cells (HBMECs) were infected with Opc-expressing Nm for extended periods and the locations of internalised bacteria and α-actinin were examined by confocal microscopy. We observed time-dependent increase in colocalisation of Nm with the cytoskeletal protein, which was considerable after an eight hour period of bacterial internalisation. In addition, the use of quantitative imaging software enabled us to obtain a relative measure of the colocalisation of Nm with α-actinin and other cytoskeletal proteins. Here we present a protocol for visualisation and quantification of the colocalisation of the bacterium with intracellular proteins after bacterial entry into human endothelial cells, although the procedure is also applicable to human epithelial cells.
Detection of site specific glycosylation in proteins using flow cytometry†
Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram
2009-01-01
We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085
[Advance of heterologous expression study of eukaryote-origin laccases].
Ning, Na; Tan, Huijun; Sun, Xinxin; Ni, Jinfeng
2017-04-25
Laccases are enzymes belonging to the group of multi-copper oxidases. These enzymes are widely distributed in insects, plants, fungi and bacteria. In general, laccases can oxidize an exceptionally high number of substrates, so they have broad applications in textile, pulp, food and the degradation of lignin. However, low yield, low activity and thermo-instability of laccase in nature limit the application of laccase. High efficient heterologous expression of the protein is an effective way for solving this problem. Here, we summarize the research advances of heterologous expression of eukaryote-origin laccases. We focus on the overexpression of eukaryote-origin laccases using different expression system and the method for improving the production yield and enzyme activity in yeast cells. Information provided in this review would be helpful for researchers in the field.
Lin, Kuo Hsing; Chin, Wei Chih; Lee, Ang Hsuan; Huang, Chieh Chen
2011-01-01
Cysteine-rich metallothioneins (MTs) have been reported to possess the capacity to scavenge reactive oxygen species in vitro and in vivo. Recombinant strains of Escherichia coli expressing outer membrane protein C (OmpC) fused with MTs from human, mouse and tilapia displayed the ability for such surface-localized MTs to scavenge extracellular free radicals, but the benefits of the possible applications of this capacity have not yet been demonstrated. Because the intrinsic butanol tolerance of microbes has become an impediment for biological butanol production, we examined whether surface-displayed MTs could contribute to butanol tolerance. The results show that strains expressing OmpC-MT fusion proteins had higher butanol tolerance than strains with cytoplasmically expressed MTs. Furthermore, the OmpC-tilapia MT fusion protein enhanced butanol tolerance more strongly than other recombinant constructs. Although the enhanced level of tolerance was not as high as that provided by OmpC-tilapia MT, over-expression of OmpC was also found to contribute to butanol tolerance. These results suggest that free-radical scavenging by MT and OmpC-related osmoregulation enhance butanol tolerance. Our results shed new light on methods for engineering bacteria with higher butanol tolerance. © 2011 Landes Bioscience
Model for amorphous aggregation processes
NASA Astrophysics Data System (ADS)
Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz
2009-11-01
The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haihe; Yang, Zhanchun; Liu, Chunbo
2014-11-07
Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive.more » RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.« less
A synthetic system for expression of components of a bacterial microcompartment.
Sargent, Frank; Davidson, Fordyce A; Kelly, Ciarán L; Binny, Rachelle; Christodoulides, Natasha; Gibson, David; Johansson, Emelie; Kozyrska, Katarzyna; Lado, Lucia Licandro; Maccallum, Jane; Montague, Rachel; Ortmann, Brian; Owen, Richard; Coulthurst, Sarah J; Dupuy, Lionel; Prescott, Alan R; Palmer, Tracy
2013-11-01
In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the Salmonella propanediol utilization (Pdu) microcompartment. The genes chosen included pduA, -B, -J, -K, -N, -T and -U, and each was shown to produce protein in an Escherichia coli chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an in vivo protease accessibility assay suggested that a PduD-GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.
Photoactivatable protein labeling by singlet oxygen mediated reactions.
To, Tsz-Leung; Medzihradszky, Katalin F; Burlingame, Alma L; DeGrado, William F; Jo, Hyunil; Shu, Xiaokun
2016-07-15
Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen ((1)O2) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rutkowski, D. Thomas; Arnold, Stacey M; Miller, Corey N; Wu, Jun; Li, Jack; Gunnison, Kathryn M; Mori, Kazutoshi; Sadighi Akha, Amir A.; Raden, David; Kaufman, Randal J
2006-01-01
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates a signaling cascade known as the unfolded protein response (UPR). Although activation of the UPR is well described, there is little sense of how the response, which initiates both apoptotic and adaptive pathways, can selectively allow for adaptation. Here we describe the reconstitution of an adaptive ER stress response in a cell culture system. Monitoring the activation and maintenance of representative UPR gene expression pathways that facilitate either adaptation or apoptosis, we demonstrate that mild ER stress activates all UPR sensors. However, survival is favored during mild stress as a consequence of the intrinsic instabilities of mRNAs and proteins that promote apoptosis compared to those that facilitate protein folding and adaptation. As a consequence, the expression of apoptotic proteins is short-lived as cells adapt to stress. We provide evidence that the selective persistence of ER chaperone expression is also applicable to at least one instance of genetic ER stress. This work provides new insight into how a stress response pathway can be structured to allow cells to avert death as they adapt. It underscores the contribution of posttranscriptional and posttranslational mechanisms in influencing this outcome. PMID:17090218
Liang, Guan-Can; Zheng, Hao-Feng; Chen, Yan-Xiong; Li, Teng-Cheng; Liu, Wei; Fang, You-Qiang
2017-01-01
The mechanism underlying the therapeutic effects of combi-molecule JDF12 on prostate cancer (PCa) DU145 cells remains still unclear. This study aimed to investigate the proteomic profile after JDF12 treatment in DU145 cells by comparing with that in Iressa treated cells and untreated cells. MTT was used to evaluate drug cytotoxicity, DAPI staining was done to assess apoptosis of cells, and flow cytometry was used to analyze cell cycle. iTRAQ and qPCR were employed to obtain the proteomic profiles of JDF12 treated, Iressa treated, and untreated DU145 cells, and validate the expression of selected differentially expressed proteins, respectively. JDF12 could significantly inhibit the proliferation and increase the apoptosis of DU145 cells when compared with Iressa or blank group. In total, 5071 proteins were obtained, out of which, 42, including 21 up-regulated and 21 down-regulated proteins, were differentially expressed in JDF12 group when compared with Iressa and blank groups. The up-regulated proteins were mainly involved in DNA damage/repair and energy metabolism; while the down-regulated proteins were mainly associated with cell apoptosis. qPCR confirmed the expression of several biologically important proteins in DU145 cells after JDF12 treatment. The molecular mechanisms of DNA alkylating agents on PCa therapy that with the assistant of EGFR-blocker were revealed on proteomic level, which may increase the possible applications of DNA alkylating agents and JDF12 on PCa therapy.
Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip
2011-08-01
The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.
Existence of a regulatory loop between MCP-1 and TGF-beta in glomerular immune injury.
Wolf, Gunter; Jocks, Thomas; Zahner, Gunther; Panzer, Ulf; Stahl, Rolf A K
2002-11-01
Glomerular upregulation of monocyte chemotactic protein-1 (MCP-1), followed by an influx of monocytes resulting eventually in extracellular matrix deposition is a common sequel of many types of glomerulonephritis. However, it is not entirely clear how early expression of MCP-1 is linked to the later development of glomerulosclerosis. Because transforming growth factor-beta (TGF-beta) is a key regulator of extracellular matrix proteins, we hypothesized that there might be a regulatory loop between early glomerular MCP-1 induction and subsequent TGF-beta expression. To avoid interference with other cytokines that may be released from infiltrating monocytes, isolated rat kidneys were perfused with a polyclonal anti-thymocyte-1 antiserum (ATS) and rat serum (RS) as a complement source to induce glomerular injury. Renal TGF-beta protein and mRNA expressions were strongly stimulated after perfusion with ATS-RS. This effect was attenuated by coperfusion with a neutralizing anti-MCP-1 but was partly mimicked by perfusion with recombinant MCP-1 protein. On the other hand, renal MCP-1 expression and production were stimulated by administration of ATS-RS. Additional perfusion with an anti-TGF-beta antibody further aggravated this increase, whereas application of recombinant TGF-beta protein reduced MCP-1 formation. Our data demonstrate an intrinsic regulatory loop in which increased MCP-1 levels stimulate TGF-beta formation in resident glomerular cells in the absence of infiltrating immune competent cells.
Tam, Annie; Soellner, Matthew B.; Raines, Ronald T.
2010-01-01
The traceless Staudinger ligation is an effective means to synthesize an amide bond between two groups of otherwise orthogonal reactivity: a phosphinothioester and an azide. An important application of the Staudinger ligation is in the ligation of peptides at a variety of residues. Here, we demonstrate that the traceless Staudinger ligation can be achieved in water with a water-soluble reagent. Those reagents that provide a high yield of amide product discourage protonation of the nitrogen in the key iminophosphorane intermediate. The most efficacious reagent, bis(p-dimethylaminoethylphenyl)phosphinomethanethiol, mediates the rapid ligation of equimolar substrates in water. This reagent is also able to perform a transthioesterification reaction with the thioester intermediate formed during intein-mediated protein splicing. Hence, the traceless Staudinger ligation can be integrated with expressed protein ligation, extending the reach of modern protein chemistry. PMID:17713909
Stepanyuk, Galina A.; Xu, Hao; Wu, Chia-Kuei; Markova, Svetlana V.; Lee, John; Vysotski, Eugene S.; Wang, Bi-Cheng
2008-01-01
Metridia luciferase is a secreted luciferase from a marine copepod and uses coelenterazine as a substrate to produce a blue bioluminescence (λmax = 480 nm). This luciferase has been successfully applied as a bioluminescent reporter in mammalian cells. The main advantage of secreted luciferase as a reporter is the capability of measuring intracellular events without destroying the cells or tissues and this property is well suited for development of high throughput screening technologies. However because Metridia luciferase is a Cys-rich protein, E. coli expression systems produce an incorrectly folded protein, hindering its biochemical characterization and application for development of in vitro bioluminescent assays. Here we report the successful expression of Metridia luciferase with its signal peptide for secretion, in insect (Sf9) cells using the baculovirus expression system. Functionally active luciferase secreted by insect cells into the culture media has been efficiently purified with a yield of high purity protein of 2–3 mg/L. This Metridia luciferase expressed in the insect cell system is a monomeric protein showing 3.5-fold greater bioluminescence activity than luciferase expressed and purified from E. coli. The near coincidence of the experimental mass of Metridia luciferase purified from insect cells with that calculated from amino acid sequence, indicates that luciferase does not undergo posttranslational modifications such as phosphorylation or glycosylation and also, the cleavage site of the signal peptide for secretion is at VQA-KS, as predicted from sequence analysis. PMID:18595733
Intracellular localization of adeno-associated viral proteins expressed in insect cells.
Gallo-Ramírez, Lilí E; Ramírez, Octavio T; Palomares, Laura A
2011-01-01
Production of vectors derived from adeno-associated virus (AAVv) in insect cells represents a feasible option for large-scale applications. However, transducing particles yields obtained in this system are low compared with total capsid yields, suggesting the presence of genome encapsidation bottlenecks. Three components are required for AAVv production: viral capsid proteins (VP), the recombinant AAV genome, and Rep proteins for AAV genome replication and encapsidation. Little is known about the interaction between the three components in insect cells, which have intracellular conditions different to those in mammalian cells. In this work, the localization of AAV proteins in insect cells was assessed for the first time with the purpose of finding potential limiting factors. Unassembled VP were located either in the cytoplasm or in the nucleus. Their transport into the nucleus was dependent on protein concentration. Empty capsids were located in defined subnuclear compartments. Rep proteins expressed individually were efficiently translocated into the nucleus. Their intranuclear distribution was not uniform and differed from VP distribution. While Rep52 distribution and expression levels were not affected by AAV genomes or VP, Rep78 distribution and stability changed during coexpression. Expression of all AAV components modified capsid intranuclear distribution, and assembled VP were found in vesicles located in the nuclear periphery. Such vesicles were related to baculovirus infection, highlighting its role in AAVv production in insect cells. The results obtained in this work suggest that the intracellular distribution of AAV proteins allows their interaction and does not limit vector production in insect cells. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Branco, Luis M; Matschiner, Alex; Fair, Joseph N; Goba, Augustine; Sampey, Darryl B; Ferro, Philip J; Cashman, Kathleen A; Schoepp, Randal J; Tesh, Robert B; Bausch, Daniel G; Garry, Robert F; Guttieri, Mary C
2008-01-01
Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV) proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP), glycoprotein 1 (GP1), and glycoprotein 2 (GP2). Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP) fusions in the Rosetta strains of Escherichia coli (E. coli) using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC). Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF) against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA). Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination. PMID:18538016
Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana
2016-04-14
Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially involved in sea urchin adhesion, is not only highly expressed in tube feet discs, but is a genuine component of the secreted adhesive. Copyright © 2016 Elsevier B.V. All rights reserved.
Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang
2009-01-01
We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365
Takakura, Yoshimitsu; Sofuku, Kozue; Tsunashima, Masako; Kuwata, Shigeru
2016-04-01
A biotin-binding protein with a low isoelectric point (pI), which minimizes electrostatic non-specific binding to substances other than biotin, is potentially valuable. To obtain such a protein, we screened hundreds of mushrooms, and detected strong biotin-binding activity in the fruit bodies of Lentinula edodes, shiitake mushroom. Two cDNAs, each encoding a protein of 152 amino acids, termed lentiavidin 1 and lentiavidin 2 were cloned from L. edodes. The proteins shared sequence identities of 27%-49% with other biotin-binding proteins, and many residues that directly associate with biotin in streptavidin were conserved in lentiavidins. The pI values of lentiavidin 1 and lentiavidin 2 were 3.9 and 4.4, respectively; the former is the lowest pI of the known biotin-binding proteins. Lentiavidin 1 was expressed as a tetrameric protein with a molecular mass of 60 kDa in an insect cell-free expression system and showed biotin-binding activity. Lentiavidin 1, with its pI of 3.9, has a potential for broad applications as a novel biotin-binding protein. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D
2013-07-29
A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited Cdr1p expression by ~50%. We have developed a simple cloning strategy to fine-tune protein expression levels in yeast that has many potential applications in metabolic engineering and the optimization of protein expression in yeast. This study also highlights the importance of considering the use of multiple cloning-sites carefully to preclude unwanted effects on gene expression.
2013-01-01
Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = −4.4 kcal/mol) inhibited Cdr1p expression by ~50%. Conclusion We have developed a simple cloning strategy to fine-tune protein expression levels in yeast that has many potential applications in metabolic engineering and the optimization of protein expression in yeast. This study also highlights the importance of considering the use of multiple cloning-sites carefully to preclude unwanted effects on gene expression. PMID:23895661
The road ahead: working towards effective clinical translation of myocardial gene therapies
Katz, Michael G; Fargnoli, Anthony S; Williams, Richard D; Bridges, Charles R
2014-01-01
During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression. PMID:24341816
Nguyen, Tien-Thanh; Nguyen, Hoang-Minh; Geiger, Barbara; Mathiesen, Geir; Eijsink, Vincent G H; Peterbauer, Clemens K; Haltrich, Dietmar; Nguyen, Thu-Ha
2015-03-07
Two overlapping genes lacL and lacM (lacLM) encoding for heterodimeric β-galactosidase from Lactobacillus reuteri were previously cloned and over-expressed in the food-grade host strain Lactobacillus plantarum WCFS1, using the inducible lactobacillal pSIP expression system. In this study, we analyzed different factors that affect the production of recombinant L. reuteri β-galactosidase. Various factors related to the cultivation, i.e. culture pH, growth temperature, glucose concentration, as well as the induction conditions, including cell concentration at induction point and inducer concentration, were tested. Under optimal fermentation conditions, the maximum β-galactosidase levels obtained were 130 U/mg protein and 35-40 U/ml of fermentation broth corresponding to the formation of approximately 200 mg of recombinant protein per litre of fermentation medium. As calculated from the specific activity of the purified enzyme (190 U/mg), β-galactosidase yield amounted to roughly 70% of the total soluble intracellular protein of the host organism. It was observed that pH and substrate (glucose) concentration are the most prominent factors affecting the production of recombinant β-galactosidase. The over-expression of recombinant L. reuteri β-galactosidase in a food-grade host strain was optimized, which is of interest for applications of this enzyme in the food industry. The results provide more detailed insight into these lactobacillal expression systems and confirm the potential of the pSIP system for efficient, tightly controlled expression of enzymes and proteins in lactobacilli.
Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.
Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen
2009-01-30
A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals.
Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii
Onishi, Masayuki; Pringle, John R.
2016-01-01
The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins. PMID:27770025
Zhan, Jinghui; Felder, Barbara; Ellison, Aaron R; Winters, Aaron; Salimi-Moosavi, Hossein; Scully, Sheila; Turk, James R; Wei, Ping
2013-06-01
Thrombopoietin and its cognate receptor, c-Mpl, are the primary molecular regulators of megakaryocytopoiesis and platelet production. To date the pattern of c-Mpl expression in human solid tumors and the distribution and biochemical properties of c-Mpl proteins in hematopoietic tissues are largely unknown. We have recently developed highly specific mouse monoclonal antibodies (MAb) against human c-Mpl. In this study we used these antibodies to demonstrate the presence of full-length and truncated human c-Mpl proteins in various megakaryocytic cell types, and their absence in over 100 solid tumor cell lines and in the 12 most common primary human tumor types. Quantitative assays showed a cell context-dependent distribution of full-length and truncated c-Mpl proteins. All forms of human c-Mpl protein were found to be modified with extensive N-linked glycosylation but different degrees of sialylation and O-linked glycosylation. Of note, different variants of full-length c-Mpl protein exhibiting differential glycosylation were expressed in erythromegakaryocytic leukemic cell lines and in platelets from healthy human donors. This work provides a comprehensive analysis of human c-Mpl mRNA and protein expression on normal and malignant hematopoietic and non-hematopoietic cells and demonstrates the multiple applications of several novel anti-c-Mpl antibodies.
Label free quantitative proteomics analysis on the cisplatin resistance in ovarian cancer cells.
Wang, F; Zhu, Y; Fang, S; Li, S; Liu, S
2017-05-20
Quantitative proteomics has been made great progress in recent years. Label free quantitative proteomics analysis based on the mass spectrometry is widely used. Using this technique, we determined the differentially expressed proteins in the cisplatin-sensitive ovarian cancer cells COC1 and cisplatin-resistant cells COC1/DDP before and after the application of cisplatin. Using the GO analysis, we classified those proteins into different subgroups bases on their cellular component, biological process, and molecular function. We also used KEGG pathway analysis to determine the key signal pathways that those proteins were involved in. There are 710 differential proteins between COC1 and COC1/DDP cells, 783 between COC1 and COC1/DDP cells treated with cisplatin, 917 between the COC1/DDP cells and COC1/DDP cells treated with LaCl3, 775 between COC1/DDP cells treated with cisplatin and COC1/DDP cells treated with cisplatin and LaCl3. Among the same 411 differentially expressed proteins in cisplatin-sensitive COC1 cells and cisplain-resistant COC1/DDP cells before and after cisplatin treatment, 14% of them were localized on the cell membrane. According to the KEGG results, differentially expressed proteins were classified into 21 groups. The most abundant proteins were involved in spliceosome. This study lays a foundation for deciphering the mechanism for drug resistance in ovarian tumor.
Bai, Yuxiang; van der Kaaij, Rachel Maria; Woortman, Albert Jan Jacob; Jin, Zhengyu; Dijkhuizen, Lubbert
2015-06-09
The GTFB enzyme of the probiotic bacterium Lactobacillus reuteri 121 is a 4,6-α-glucanotransferase of glycoside hydrolase family 70 (GH70; http://www.cazy.org ). Contrary to the glucansucrases in GH70, GTFB is unable to use sucrose as substrate, but instead converts malto-oligosaccharides and starch into isomalto-/malto- polymers that may find application as prebiotics and dietary fibers. The GTFB enzyme expresses well in Escherichia coli BL21 Star (DE3), but mostly accumulates in inclusion bodies (IBs) which generally contain wrongly folded protein and inactive enzyme. Denaturation followed by refolding, as well as ncIB preparation were used for isolation of active GTFB protein from inclusion bodies. Soluble, refolded and ncIB GTFB were compared using activity assays, secondary structure analysis by FT-IR, and product analyses by NMR, HPAEC and SEC. Expression of GTFB in E. coli yielded > 100 mg/l relatively pure and active but mostly insoluble GTFB protein in IBs, regardless of the expression conditions used. Following denaturing, refolding of GTFB protein was most efficient in double distilled H2O. Also, GTFB ncIBs were active, with approx. 10 % of hydrolysis activity compared to the soluble protein. When expressed as units of activity obtained per liter E. coli culture, the total amount of ncIB GTFB expressed possessed around 180 % hydrolysis activity and 100 % transferase activity compared to the amount of soluble GTFB enzyme obtained from one liter culture. The product profiles obtained for the three GTFB enzyme preparations were similar when analyzed by HPAEC and NMR. SEC investigation also showed that these 3 enzyme preparations yielded products with similar size distributions. FT-IR analysis revealed extended β-sheet formation in ncIB GTFB providing an explanation at the molecular level for reduced GTFB activity in ncIBs. The thermostability of ncIB GTFB was relatively high compared to the soluble and refolded GTFB. In view of their relatively high yield, activity and high thermostability, both refolded and ncIB GTFB derived from IBs in E. coli may find industrial application in the synthesis of modified starches.
Huang, Jinjin; Xia, Ji; Yang, Zhen; Guan, Feifei; Cui, Di; Guan, Guohua; Jiang, Wei; Li, Ying
2014-01-01
We previously cloned a 1,3-specific lipase gene from the fungus Rhizomucor miehei and expressed it in methylotrophic yeast Pichia pastoris strain GS115. The enzyme produced (termed RML) was able to catalyze methanolysis of soybean oil and showed strong position specificity. However, the enzyme activity and amount of enzyme produced were not adequate for industrial application. Our goal in the present study was to improve the enzyme properties of RML in order to apply it for the conversion of microalgae oil to biofuel. Several new expression plasmids were constructed by adding the propeptide of the target gene, optimizing the signal peptide, and varying the number of target gene copies. Each plasmid was transformed separately into P. pastoris strain X-33. Screening by flask culture showed maximal (21.4-fold increased) enzyme activity for the recombinant strain with two copies of the target gene; the enzyme was termed Lipase GH2. The expressed protein with the propeptide (pRML) was a stable glycosylated protein, because of glycosylation sites in the propeptide. Quantitative real-time RT-PCR analysis revealed two major reasons for the increase in enzyme activity: (1) the modified recombinant expression system gave an increased transcription level of the target gene (rml), and (2) the enzyme was suitable for expression in host cells without causing endoplasmic reticulum (ER) stress. The modified enzyme had improved thermostability and methanol or ethanol tolerance, and was applicable directly as free lipase (fermentation supernatant) in the catalytic esterification and transesterification reaction. After reaction for 24 hours at 30°C, the conversion rate of microalgae oil to biofuel was above 90%. Our experimental results show that signal peptide optimization in the expression plasmid, addition of the gene propeptide, and proper gene dosage significantly increased RML expression level and enhanced the enzymatic properties. The target enzyme was the major component of fermentation supernatant and was stable for over six months at 4°C. The modified free lipase is potentially applicable for industrial-scale conversion of microalgae oil to biodiesel.
Emergent Lévy behavior in single-cell stochastic gene expression
NASA Astrophysics Data System (ADS)
Jia, Chen; Zhang, Michael Q.; Qian, Hong
2017-10-01
Single-cell gene expression is inherently stochastic; its emergent behavior can be defined in terms of the chemical master equation describing the evolution of the mRNA and protein copy numbers as the latter tends to infinity. We establish two types of "macroscopic limits": the Kurtz limit is consistent with the classical chemical kinetics, while the Lévy limit provides a theoretical foundation for an empirical equation proposed in N. Friedman et al., Phys. Rev. Lett. 97, 168302 (2006), 10.1103/PhysRevLett.97.168302. Furthermore, we clarify the biochemical implications and ranges of applicability for various macroscopic limits and calculate a comprehensive analytic expression for the protein concentration distribution in autoregulatory gene networks. The relationship between our work and modern population genetics is discussed.
Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system
Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G.
2013-01-01
The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed. PMID:24294221
Escherichia coli as a production host for novel enzymes from basidiomycota.
Zelena, Katerina; Eisele, Nadine; Berger, Ralf G
2014-12-01
Many enzymes from basidiomycota have been identified and more recently characterized on the molecular level. This report summarizes the potential biotechnological applications of these enzymes and evaluates recent advances in their heterologous expression in Escherichia coli. Being one of the most widely used hosts for the production of recombinant proteins, there are, however, recurrent problems of recovering substantial yields of correctly folded and active enzymes. Various strategies for the efficient production of recombinant proteins from basidiomycetous fungi are reviewed including the current knowledge on vectors and expression strains, as well as methods for enhancing the solubility of target expression products and their purification. Research efforts towards the refolding of recombinant oxidoreductases and hydrolases are presented to illustrate successful production strategies. Copyright © 2014 Elsevier Inc. All rights reserved.
A gel-free proteomic-based method for the characterization of Bordetella pertussis clinical isolates
Williamson, Yulanda M.; Moura, Hercules; Simmons, Kaneatra; Whitmon, Jennifer; Melnick, Nikkol; Rees, Jon; Woolfitt, Adrian; Schieltz, David M.; Tondella, Maria L.; Ades, Edwin; Sampson, Jacquelyn; Carlone, George; Barr, John R.
2017-01-01
Bordetella pertussis (Bp) is the etiologic agent of pertussis or whooping cough, a highly contagious respiratory disease occurring primarily in infants and young children. Although vaccine preventable, pertussis cases have increased over the years leading researchers to re-evaluate vaccine control strategies. Since bacterial outer membrane proteins, comprising the surfaceome, often play roles in pathogenesis and antibody-mediated immunity, three recent Bp circulating isolates were examined using proteomics to identify any potential changes in surface protein expression. Fractions enriched for outer membrane proteins were digested with trypsin and the peptides analyzed by nano liquid chromatography-electrospray ionization-mass spectrometry (nLC-ESI-MS), followed by database analysis to elucidate the surfaceomes of our three Bp isolates. Furthermore, a less labor intensive non-gel based antibody affinity capture technology in conjunction with MS was employed to assess each Bp strains' immunogenic outer membrane proteins. This novel technique is generally applicable allowing for the identification of immunogenic surface expressed proteins on pertussis and other pathogenic bacteria. PMID:22537821
Angov, E; Camerini-Otero, R D
1994-01-01
We have cloned, expressed, and purified the RecA analog from the thermophilic eubacterium Thermus aquaticus YT-1. Analysis of the deduced amino acid sequence indicates that the T. aquaticus RecA is structurally similar to the Escherichia coli RecA and suggests that RecA-like function has been conserved in thermophilic organisms. Preliminary biochemical analysis indicates that the protein has an ATP-dependent single-stranded DNA binding activity and can pair and carry out strand exchange to form a heteroduplex DNA under reaction conditions previously described for E. coli RecA, but at 55 to 65 degrees C. Further characterization of a thermophilically derived RecA protein should yield important information concerning DNA-protein interactions at high temperatures. In addition, a thermostable RecA protein may have some general applicability in stabilizing DNA-protein interactions in reactions which occur at high temperatures by increasing the specificity (stringency) of annealing reactions. Images PMID:8113181
Thoring, Lena; Wüstenhagen, Doreen A.; Borowiak, Maria; Stech, Marlitt; Sonnabend, Andrei; Kubick, Stefan
2016-01-01
Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO) cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called “difficult-to-express” proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of “difficult-to-express” proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called “cell-free” protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various “difficult-to-express” proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA. PMID:27684475
Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin
2013-03-01
Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.
Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales
Margres, Mark J.; Wray, Kenneth P.; Seavy, Margaret; McGivern, James J.; Herrera, Nathanael D.; Rokyta, Darin R.
2016-01-01
Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation. PMID:26546003
Taraslia, Vasiliki; Lymperi, Stefania; Pantazopoulou, Vasiliki; Anagnostopoulos, Athanasios K; Papassideri, Issidora S; Basdra, Efthimia K; Bei, Marianna; Kontakiotis, Evangelos G; Tsangaris, George Th; Stravopodis, Dimitrios J; Anastasiadou, Ema
2018-01-05
Dental stem cells (DSCs) have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC) populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC) sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Periodontal Ligament Stem Cells (PDLSCs). A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS) revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways.
Taraslia, Vasiliki; Lymperi, Stefania; Pantazopoulou, Vasiliki; Anagnostopoulos, Athanasios K.; Basdra, Efthimia K.; Bei, Marianna; Kontakiotis, Evangelos G.; Tsangaris, George Th.; Stravopodis, Dimitrios J.; Anastasiadou, Ema
2018-01-01
Dental stem cells (DSCs) have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC) populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC) sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Periodontal Ligament Stem Cells (PDLSCs). A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS) revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways. PMID:29304003
Demidenko, Natalia V.; Logacheva, Maria D.; Penin, Aleksey A.
2011-01-01
Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species. PMID:21589908
Curran, Kathleen A.; Karim, Ashty S.; Gupta, Akash; Alper, Hal S.
2013-01-01
Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characterize over 30 terminators for use in metabolic engineering applications in Saccharomyces cerevisiae and determine mRNA half-life changes to be the major cause of the varied protein and transcript expression level. We demonstrate that the difference in transcript level can be over 6.5-fold even for high strength promoters. The influence of terminator selection is magnified when coupled with a low-expression promoter, with a maximum difference in protein expression of 11-fold between a high-capacity terminator and the parent plasmid terminator and over 35-fold difference when compared with a no-terminator baseline. This is the first time that terminators have been investigated in the context of multiple promoters spanning orders of magnitude in activity. Finally, we demonstrate the utility of terminator selection for metabolic engineering by using a mutant xylose isomerase gene as a proof-of-concept. Through pairing a high-capacity terminator with a low-expression promoter, we were able to achieve the same phenotypic result as with a promoter considerably higher in strength. Moreover, we can further boost the phenotype of the high-strength promoter by pairing it with a high-capacity terminator. This work highlights how terminator elements can be used to control metabolic pathways in the same way that promoters are traditionally used in yeast. Together, this work demonstrates that terminators will be an important part of heterologous gene expression and metabolic engineering for yeast in the future. PMID:23856240
Bai, Xue; Sakaguchi, Mayo; Yamaguchi, Yuko; Ishihara, Shiori; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku; Nomura, Takaomi; Arai, Ryoichi
2015-08-28
Retreat-maker larvae of Stenopsyche marmorata, one of the major caddisfly species in Japan, produce silk threads and adhesives to build food capture nets and protective nests in water. Research on these underwater adhesive silk proteins potentially leads to the development of new functional biofiber materials. Recently, we identified four major S. marmorata silk proteins (Smsps), Smsp-1, Smsp-2, Smsp-3, and Smsp-4 from silk glands of S. marmorata larvae. In this study, we cloned full-length cDNAs of Smsp-2, Smsp-3, and Smsp-4 from the cDNA library of the S. marmorata silk glands to reveal the primary sequences of Smsps. Homology search results of the deduced amino acid sequences indicate that Smsp-2 and Smsp-4 are novel proteins. The Smsp-2 sequence [167 amino acids (aa)] has an array of GYD-rich repeat motifs and two (SX)4E motifs. The Smsp-4 sequence (132 aa) contains a number of GW-rich repeat motifs and three (SX)4E motifs. The Smsp-3 sequence (248 aa) exhibits high homology with fibroin light chain of other caddisflies. Gene expression analysis of Smsps by real-time PCR suggested that the gene expression of Smsp-1 and Smsp-3 was relatively stable throughout the year, whereas that of Smsp-2 and Smsp-4 varied seasonally. Furthermore, Smsps recombinant protein expression was successfully performed in Escherichia coli. The study provides new molecular insights into caddisfly aquatic silk and its potential for future applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Buck, Christopher B.; Pang, Yuk-Ying S.; Lowy, Douglas R.
2013-01-01
Full-length genomic DNA of the recently identified laboratory mouse papillomavirus 1 (MusPV1) was synthesized in vitro and was used to establish and characterize a mouse model of papillomavirus pathobiology. MusPV1 DNA, whether naked or encapsidated by MusPV1 or human papillomavirus 16 (HPV 16) capsids, efficiently induced the outgrowth of papillomas as early as 3 weeks after application to abraded skin on the muzzles and tails of athymic NCr nude mice. High concentrations of virions were extracted from homogenized papillomatous tissues and were serially passaged for >10 generations. Neutralization by L1 antisera confirmed that infectious transmission was capsid mediated. Unexpectedly, the skin of the murine back was much less susceptible to virion-induced papillomas than the muzzle or tail. Although reporter pseudovirions readily transduced the skin of the back, infection with native MusPV1 resulted in less viral genome amplification and gene expression on the back, including reduced expression of the L1 protein and very low expression of the L2 protein, results that imply skin region-specific control of postentry aspects of the viral life cycle. Unexpectedly, L1 protein on the back was predominantly cytoplasmic, while on the tail the abundant L1 was cytoplasmic in the lower epithelial layers and nuclear in the upper layers. Nuclear localization of L1 occurred only in cells that coexpressed the minor capsid protein, L2. The pattern of L1 protein staining in the infected epithelium suggests that L1 expression occurs earlier in the MusPV1 life cycle than in the life cycle of high-risk HPV and that virion assembly is regulated by a previously undescribed mechanism. PMID:24067981
Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides
Choe, Weonu; Durgannavar, Trishaladevi A.; Chung, Sang J.
2016-01-01
The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed. PMID:28774114
Stable isotope dimethyl labelling for quantitative proteomics and beyond
Hsu, Jue-Liang; Chen, Shu-Hui
2016-01-01
Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970
Prostate Stem Cell Antigen: A Prospective Therapeutic and Diagnostic Target
Raff, Adam B.; Gray, Andrew; Kast, W. Martin
2009-01-01
The development of novel clinical tools to combat cancer is an intense field of research and recent efforts have been directed at the identification of proteins that may provide diagnostic, prognostic and/or therapeutic applications due to their restricted expression. To date, a number of protein candidates have emerged as potential clinical tools in the treatment of prostate cancer. Discovered over ten year ago, prostate stem cell antigen (PSCA) is a cell surface antigen that belongs to the Ly-6/Thy-1 family of glycosylphosphatidylinositol-anchored proteins. PSCA is highly overexpressed in human prostate cancer, with limited expression in normal tissues, making it an ideal target for both diagnosis and therapy. Several studies have now clearly correlated the expression of PSCA with relevant clinical benchmarks, such as Gleason score and metastasis, while others have demonstrated the efficacy of PSCA targeting in treatment through various modalities. The purpose of this review is to present the current body of knowledge about PSCA and its potential role in the treatment of human prostate cancer. PMID:18838214
Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying
2008-02-01
To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.
Huang, Zhong; Phoolcharoen, Waranyoo; Lai, Huafang; Piensook, Khanrat; Cardineau, Guy; Zeitlin, Larry; Whaley, Kevin J.; Arntzen, Charles J.
2010-01-01
Plant viral vectors have great potential in rapid production of important pharmaceutical proteins. However, high-yield production of heterooligomeric proteins that require the expression and assembly of two or more protein subunits often suffers problems due to the “competing” nature of viral vectors derived from the same virus. Previously we reported that a bean yellow dwarf virus (BeYDV)-derived, three-component DNA replicon system allows rapid production of single recombinant proteins in plants (Huang et al. 2009). In this article, we report further development of this expression system for its application in high-yield production of oligomeric protein complexes including monoclonal antibodies (mAbs) in plants. We showed that the BeYDV replicon system permits simultaneous efficient replication of two DNA replicons and thus, high-level accumulation of two recombinant proteins in the same plant cell. We also demonstrated that a single vector that contains multiple replicon cassettes was as efficient as the three-component system in driving the expression of two distinct proteins. Using either the non-competing, three-vector system or the multi-replicon single vector, we produced both the heavy and light chain subunits of a protective IgG mAb 6D8 against Ebola virus GP1 (Wilson et al. 2000) at 0.5 mg of mAb per gram leaf fresh weight within 4 days post infiltration of Nicotiana benthamiana leaves. We further demonstrated that full-size tetrameric IgG complex containing two heavy and two light chains was efficiently assembled and readily purified, and retained its functionality in specific binding to inactivated Ebola virus. Thus, our single-vector replicon system provides high-yield production capacity for heterooligomeric proteins, yet eliminates the difficult task of identifying non-competing virus and the need for co-infection of multiple expression modules. The multi-replicon vector represents a significant advance in transient expression technology for antibody production in plants. PMID:20047189
Catenacci, Daniel V.T.; Liao, Wei-Li; Zhao, Lei; Whitcomb, Emma; Henderson, Les; O’Day, Emily; Xu, Peng; Thyparambil, Sheeno; Krizman, David; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Cecchi, Fabiola; Blackler, Adele; Bang, Yung-Jue; Hart, John; Xiao, Shu-Yuan; Lee, Sang Mee; Burrows, Jon; Hembrough, Todd
2015-01-01
Background Trastuzumab showed survival benefit for Her2-positive gastroesophageal cancers (GEC). Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) currently determine eligibility for trastuzumab-based therapy. However, these low-throughput assays often produce discordant or equivocal results. Methods We developed a targeted proteomic assay based on selected reaction monitoring mass spectrometry (SRM-MS) and quantified levels (amol/ug) of Her2-SRM protein in cell lines (n=27) and GEC tissues (n=139). We compared Her2-SRM protein expression with IHC/FISH, seeking to determine optimal SRM protein expression cut-offs to identify HER2 gene amplification. Results After demonstrating assay development, precision, and stability, Her2-SRM protein measurement was observed to be highly concordant with HER2/CEP17 ratio, particularly in a multivariate regression model adjusted for SRM-expression of Met, Egfr, Her3, and HER2-heterogeneity covariates, and their interactions (cell lines r2=0.9842; FFPE r2=0.7643). In GEC tissues, Her2-SRM protein was detected in 71.2% of cases. ROC curves demonstrated Her2-SRM protein levels to have high specificity (100%) at an upper-level cut-off of >750 amol/μg and sensitivity (75%) at lower-level cut-off of <450 amol/ug to identify HER2 FISH amplified tumors. An ‘equivocal-zone’ of 450-750 amol/ug of Her2-SRM protein was analogous to ’IHC2+#x2019;, but represented fewer cases (9-16% of cases versus 36-41%). Conclusions Compared to IHC, targeted SRM-Her2 proteomics provided more objective and quantitative Her2 expression with excellent HER2/CEP17 FISH correlation and fewer equivocal cases. Along with the multiplex capability for other relevant oncoproteins, these results demonstrated a refined HER2 protein expression assay for clinical application. PMID:26581548
Computational synchronization of microarray data with application to Plasmodium falciparum.
Zhao, Wei; Dauwels, Justin; Niles, Jacquin C; Cao, Jianshu
2012-06-21
Microarrays are widely used to investigate the blood stage of Plasmodium falciparum infection. Starting with synchronized cells, gene expression levels are continually measured over the 48-hour intra-erythrocytic cycle (IDC). However, the cell population gradually loses synchrony during the experiment. As a result, the microarray measurements are blurred. In this paper, we propose a generalized deconvolution approach to reconstruct the intrinsic expression pattern, and apply it to P. falciparum IDC microarray data. We develop a statistical model for the decay of synchrony among cells, and reconstruct the expression pattern through statistical inference. The proposed method can handle microarray measurements with noise and missing data. The original gene expression patterns become more apparent in the reconstructed profiles, making it easier to analyze and interpret the data. We hypothesize that reconstructed gene expression patterns represent better temporally resolved expression profiles that can be probabilistically modeled to match changes in expression level to IDC transitions. In particular, we identify transcriptionally regulated protein kinases putatively involved in regulating the P. falciparum IDC. By analyzing publicly available microarray data sets for the P. falciparum IDC, protein kinases are ranked in terms of their likelihood to be involved in regulating transitions between the ring, trophozoite and schizont developmental stages of the P. falciparum IDC. In our theoretical framework, a few protein kinases have high probability rankings, and could potentially be involved in regulating these developmental transitions. This study proposes a new methodology for extracting intrinsic expression patterns from microarray data. By applying this method to P. falciparum microarray data, several protein kinases are predicted to play a significant role in the P. falciparum IDC. Earlier experiments have indeed confirmed that several of these kinases are involved in this process. Overall, these results indicate that further functional analysis of these additional putative protein kinases may reveal new insights into how the P. falciparum IDC is regulated.
Matsuo, Hideaki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Watanabe, Shuji; Takeura, Naoto; Sugita, Daisuke; Shimada, Seiichiro; Nakatsuka, Terumasa; Baba, Hisatoshi
2014-09-01
Although transcutaneous electrical nerve stimulation (TENS) is widely used for the treatment of neuropathic pain, its effectiveness and mechanism of action in reducing neuropathic pain remain uncertain. We investigated the effects of early TENS (starting from the day after surgery) in mice with neuropathic pain, on hyperalgesia, glial cell activation, pain transmission neuron sensitization, expression of proinflammatory cytokines, and opioid receptors in the spinal dorsal horn. Following nerve injury, TENS and behavioral tests were performed every day. Immunohistochemical, immunoblot, and flow cytometric analysis of the lumbar spinal cord were performed after 8 days. Early TENS reduced mechanical and thermal hyperalgesia and decreased the activation of microglia and astrocytes (P<0.05). In contrast, the application of TENS at 1 week (TENS-1w) or 2 weeks (TENS-2w) after injury was ineffective in reducing hyperalgesia (mechanical and thermal) or activation of microglia and astrocytes. Early TENS decreased p-p38 within microglia (P<0.05), the expression levels of protein kinase C (PKC-γ), and phosphorylated anti-phospho-cyclic AMP response element-binding protein (p-CREB) in the superficial spinal dorsal horn neurons (P<0.05), mitogen-activated protein (MAP) kinases, and proinflammatory cytokines, and increased the expression levels of opioid receptors (P<0.05). The results suggested that the application of early TENS relieved hyperalgesia in our mouse model of neuropathic pain by inhibiting glial activation, MAP kinase activation, PKC-γ, and p-CREB expression, and proinflammatory cytokines expression, as well as maintenance of spinal opioid receptors. The findings indicate that TENS treatment is more effective when applied as early after nerve injury as possible. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Sakshi; Department of Biochemistry, Banaras Hindu University; Tripathi, Anurag
Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposuremore » also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF-κB. • DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. • No tumor promotion was observed up to 24 weeks of topical application of DON. • Enhanced Peyer's patches and inflammatory cytokines suggested inflammation in skin.« less
Poland, Simon P.; Krstajić, Nikola; Monypenny, James; Coelho, Simao; Tyndall, David; Walker, Richard J.; Devauges, Viviane; Richardson, Justin; Dutton, Neale; Barber, Paul; Li, David Day-Uei; Suhling, Klaus; Ng, Tony; Henderson, Robert K.; Ameer-Beg, Simon M.
2015-01-01
We demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein. The applicability of the technique to imaging protein-protein interactions in live cells is exemplified by observation of time-dependent FRET between the epidermal growth factor receptor (EGFR) and the adapter protein Grb2 following stimulation with the receptor ligand. Furthermore, ligand-dependent association of HER2-HER3 receptor tyrosine kinases was observed on a similar timescale and involved the internalisation and accumulation or receptor heterodimers within endosomes. These data demonstrate the broad applicability of this novel FLIM technique to the spatio-temporal dynamics of protein-protein interaction. PMID:25780724
Bao, Ji; Fisher, James E.; Lillegard, Joseph B.; Wang, William; Amiot, Bruce; Yu, Yue; Dietz, Allan B.; Nahmias, Yaakov; Nyberg, Scott L.
2013-01-01
Long-term culture of hepatocyte spheroids with high ammonia clearance is valuable for therapeutic applications, especially the bioartificial liver. However, the optimal conditions are not well studied. We hypothesized that liver urea cycle enzymes can be induced by high protein diet and maintain on a higher expression level in rat hepatocyte spheroids by serum-free medium (SFM) culture and coculture with mesenchymal stromal cells (MSCs). Rats were feed normal protein diet (NPD) or high protein diet (HPD) for 7 days before liver digestion and isolation of hepatocytes. Hepatocyte spheroids were formed and maintained in a rocked suspension culture with or without MSCs in SFM or 10% serum-containing medium (SCM). Spheroid viability, kinetics of spheroid formation, hepatic functions, gene expression, and biochemical activities of rat hepatocyte spheroids were tested over 14 days of culture. We observed that urea cycle enzymes of hepatocyte spheroids can be induced by high protein diet. SFM and MSCs enhanced ammonia clearance and ureagenesis and stabilized integrity of hepatocyte spheroids compared to control conditions over 14 days. Hepatocytes from high protein diet-fed rats formed spheroids and maintained a high level of ammonia detoxification for over 14 days in a novel SFM. Hepatic functionality and spheroid integrity were further stabilized by coculture of hepatocytes with MSCs in the spheroid microenvironment. These findings have direct application to development of the spheroid reservoir bioartificial liver. PMID:23006214
Applications of Proteomic Technologies to Toxicology
Proteomics is the large-scale study of gene expression at the protein level. This cutting edge technology has been extensively applied to toxicology research recently. The up-to-date development of proteomics has presented the toxicology community with an unprecedented opportunit...
2013-01-01
Background Escherichia coli is most widely used prokaryotic expression system for the production of recombinant proteins. Several strategies have been employed for expressing recombinant proteins in E.coli. This includes the development of novel host systems, expression vectors and cost effective media. In this study, we exploit tender coconut water (TCW) as a natural and cheaper growth medium for E.coli and Pichia pastoris. Result E.coli and P.pastoris were cultivated in TCW and the growth rate was monitored by measuring optical density at 600 nm (OD600nm), where 1.55 for E.coli and 8.7 for P.pastoris was obtained after 12 and 60 hours, respectively. However, variation in growth rate was observed among TCW when collected from different localities (0.15-2.5 at OD600nm), which is attributed to the varying chemical profile among samples. In this regard, we attempted the supplementation of TCW with different carbon and nitrogen sources to attain consistency in growth rate. Here, supplementation of TCW with 25 mM ammonium sulphate (TCW-S) was noted efficient for the normalization of inconsistency, which further increased the biomass of E.coli by 2 to 10 folds, and 1.5 to 2 fold in P.pastoris. These results indicate that nitrogen source is the major limiting factor for growth. This was supported by total nitrogen and carbon estimation where, nitrogen varies from 20 to 60 mg/100 ml while carbohydrates showed no considerable variation (2.32 to 3.96 g/100 ml). In this study, we also employed TCW as an expression media for recombinant proteins by demonstrating successful expression of maltose binding protein (MBP), MBP-TEV protease fusion and a photo switchable fluorescent protein (mEos2) using TCW and the expression level was found to be equivalent to Luria Broth (LB). Conclusion This study highlights the possible application of TCW-S as a media for cultivation of a variety of microorganisms and recombinant protein expression. PMID:24004578
2011-01-01
Background Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host E. coli had to be removed by an expensive and time consuming procedure. In the present study, in order to achieve expression of pyrogen-free, recombinant S-layer/allergen fusion protein and to study the secretion of a protein capable to self-assemble, the S-layer/allergen fusion protein rSbpA/Bet v1 was produced in the gram-positive organism Bacillus subtilis 1012. Results The chimaeric gene encoding the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 as well as Bet v1 was cloned and expressed in B. subtilis 1012. For that purpose, the E. coli-B. subtilis shuttle vectors pHT01 for expression in the B. subtilis cytoplasm and pHT43 for secretion of the recombinant fusion protein into the culture medium were used. As shown by western blot analysis, immediately after induction of expression, B. subtilis 1012 was able to secret rSbpA/Bet v1 mediated by the signal peptide amyQ of Bacillus amyloliquefaciens. Electron microscopical investigation of the culture medium revealed that the secreted fusion protein was able to form self-assembly products in suspension but did not recrystallize on the surface of the B. subtilis cells. The specific binding mechanism between the N-terminus of the S-layer protein and a secondary cell wall polymer (SCWP), located in the peptidoglycan-containing sacculi of Ly. sphaericus CCM 2177, could be used for isolation and purification of the secreted fusion protein from the culture medium. Immune reactivity of rSbpA/Bet v1 could be demonstrated in immunoblotting experiments with Bet v1 specific IgE containing serum samples from patients suffering birch pollen allergy. Conclusions The impact of this study can be seen in the usage of a gram-positive organism for the production of pyrogen-free self-assembling recombinant S-layer/allergen fusion protein with great relevance for the development of vaccines for immunotherapy of atopic allergy. PMID:21310062
Mayers, Michael D; Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W
2017-02-03
Tandem mass spectrometry based shotgun proteomics of distal gut microbiomes is exceedingly difficult due to the inherent complexity and taxonomic diversity of the samples. We introduce two new methodologies to improve metaproteomic studies of microbiome samples. These methods include the stable isotope labeling in mammals to permit protein quantitation across two mouse cohorts as well as the application of activity-based probes to enrich and analyze both host and microbial proteins with specific functionalities. We used these technologies to study the microbiota from the adoptive T cell transfer mouse model of inflammatory bowel disease (IBD) and compare these samples to an isogenic control, thereby limiting genetic and environmental variables that influence microbiome composition. The data generated highlight quantitative alterations in both host and microbial proteins due to intestinal inflammation and corroborates the observed phylogenetic changes in bacteria that accompany IBD in humans and mouse models. The combination of isotope labeling with shotgun proteomics resulted in the total identification of 4434 protein clusters expressed in the microbial proteomic environment, 276 of which demonstrated differential abundance between control and IBD mice. Notably, application of a novel cysteine-reactive probe uncovered several microbial proteases and hydrolases overrepresented in the IBD mice. Implementation of these methods demonstrated that substantial insights into the identity and dysregulation of host and microbial proteins altered in IBD can be accomplished and can be used in the interrogation of other microbiome-related diseases.
Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland
2014-01-01
The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.
Zhao, Jin-yao; Liu, Chun-qing; Zhao, He-nan; Ding, Yan-Fang; Bi, Tie; Wang, Bo; Lin, Xing-chi; Guo, Gordon; Cui, Shi-ying
2012-10-01
After discovering new miRNAs, it is often difficult to determine their targets and effects on downstream protein expression. In situ hybridization (ISH) and immunohistochemistry (IHC) are two commonly used methods for clinical diagnosis and basic research. We used an optimized technique that simultaneously detects miRNAs, their binding targets and corresponding proteins on transferred serial formalin fixed paraffin embedded (FFPE) sections from patients. Combined with bioinformatics, this method was used to validate the reciprocal expression of specific miRNAs and targets that were detected by ISH, as well as the expression of downstream proteins that were detected by IHC. A complete analysis was performed using a limited number of transferred serial FFPE sections that had been stored for 1-4 years at room temperature. Some sections had even been previously stained with H&E. We identified a miRNA that regulates epithelial ovarian cancer, along with its candidate target and related downstream protein. These findings were directly validated using sub-cellular components obtained from the same patient sample. In addition, the expression of Nephrin (a podocyte marker) and Stmn1 (a recently identified marker related to glomerular development) were confirmed in transferred FFPE sections of mouse kidney. This procedure may be adapted for clinical diagnosis and basic research, providing a qualitative and efficient method to dissect the detailed spatial expression patterns of miRNA pathways in FFPE tissue, especially in cases where only a small biopsy sample can be obtained. Copyright © 2012 Elsevier Inc. All rights reserved.
Expression of nattokinase in Escherichia coli and renaturation of its inclusion body.
Ni, He; Guo, Peng-Cheng; Jiang, Wei-Ling; Fan, Xiao-Min; Luo, Xiang-Yu; Li, Hai-Hang
2016-08-10
Nattokinase is an important fibrinolytic enzyme with therapeutic applications for cardiovascular diseases. The full-length and mature nattokinase genes were cloned from Bacillus subtilis var. natto and expressed in pQE30 vector in Escherichia coli. The full-length gene expressed low nattokinase activity in the intracellular soluble and the medium fractions. The mature gene expressed low soluble nattokinase activity and large amount insoluble protein in inclusion bodies without enzyme activity. Large amount of refolding solutions (RSs) at different pH values were screening and RS-10 and RS-11 at pH 9 were selected to refold nattokinase inclusion bodies. The recombinant cells were lysed with 0.1mg/mL lysozyme and ultrasonic treatment. After centrifugation, the pellete was washed twice with 20mM Tris-HCl buffer (pH 7.5) containing 1% Triton X-100 to purify the inclusion bodies. The inclusion bodies were dissolved in water at pH 12.0 and refolded with RS-10. The refolded proteins showed 42.8IU/mg and 79.3IU/mg fibrinolytic activity by the traditional dilution method (20-fold dilution into RS-10) and the directly mixing the protein solution with equal volume RS-10, respectively, compared to the 52.0IU/mg of total water-soluble proteins from B. subtilis var. natto. This work demonstrated that the inclusion body of recombinant nattokinase expressed in E. coli could be simply refolded to the natural enzyme activity level by directly mixing the protein solution with equal volume refolding solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Molecular simulation of hydrophobin adsorption at an oil-water interface.
Cheung, David L
2012-06-12
Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein.
Mazloom, Amin R.; Dannenfelser, Ruth; Clark, Neil R.; Grigoryan, Arsen V.; Linder, Kathryn M.; Cardozo, Timothy J.; Bond, Julia C.; Boran, Aislyn D. W.; Iyengar, Ravi; Malovannaya, Anna; Lanz, Rainer B.; Ma'ayan, Avi
2011-01-01
Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/. PMID:22219718
Minton, Allen P.
2007-01-01
Exact expressions for the static light scattering of a solution containing up to three species of point-scattering solutes in highly nonideal solutions at arbitrary concentration are obtained from multicomponent scattering theory. Explicit expressions for thermodynamic interaction between solute molecules, required to evaluate the scattering relations, are obtained using an equivalent hard particle approximation similar to that employed earlier to interpret scattering of a single protein species at high concentration. The dependence of scattering intensity upon total protein concentration is calculated for mixtures of nonassociating proteins and for a single self-associating protein over a range of concentrations up to 200 g/l. An approximate semiempirical analysis of the concentration dependence of scattering intensity is proposed, according to which the contribution of thermodynamic interaction to scattering intensity is modeled as that of a single average hard spherical species. Simulated data containing pseudo-noise comparable in magnitude to actual experimental uncertainty are modeled using relations obtained from the proposed semiempirical analysis. It is shown that by using these relations one can extract from the data reasonably reliable information about underlying weak associations that are manifested only at very high total protein concentration. PMID:17526566
Hwang, Peter M; Pan, Jonathan S; Sykes, Brian D
2014-01-21
Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
[Construction of rAAV2-GPIIb/IIIa vector and test of its expression and function in vitro].
Wang, Kai; Peng, Jian-Qiang; Chen, Fang-Ping; Wu, Xiao-Bin
2006-04-01
This study was aimed to explore the possibility of rAAV2 vector-mediating gene therapy for Glanzmann' s thrombasthenia. The rAAV2-GPIIb/IIIa vector was constructed. The GPIIb/IIIa gene expression in mammal cell were examined by different methods, such as: detection of mRNA expression in BHK-21 cells after 24 hours of infection (MOI = 1 x 10(5) v.g/cell) was performed by RT-PCR; the relation between MOI and quantity of GPII6/IIIa gene expression was detected by FACS after 48 hours of infection; GPIIb/IIIa protein expression in BHK-21 cells after 48 hours of infection (MOI = 10(5) v x g/cell) was assayed by Western blot, GPIIb/IIIa protein expression on cell surface was detected by immunofluorescence, and the biological function of expressing product was determined by PAC-1 conjunct experiments. The results showed that GPIIb/IIIa gene expression in mRNA level could be detected in BHK-21 cells after 24 hours of infection at MOI = 1 x 10(5) v x g/cell and the GPIIb/IIIa gene expression in protein level could be detected in BHK-21 cells after 48 hours of infection at MOI = 1 x 10(5) v x g/cell. In certain range, quantity of GPIIb/IIIa gene expression increased with MOI, but overdose of MOI decreased quantity of GPIIb/IIIa gene expression. Activated product of GPIIb/IIIa gene expression could combined with PAC-I, and possesed normal biological function. In conclusion, rAAV2 vactor can effectively mediate GPIIb and GPIIIa gene expressing in mammal cells, and the products of these genes exhibit biological function. This result may provide a basis for application of rAAV2 vector in Glanzmann's thrombasthenia gene therapy in furture.
Design and construction of functional AAV vectors.
Gray, John T; Zolotukhin, Serge
2011-01-01
Using the basic principles of molecular biology and laboratory techniques presented in this chapter, researchers should be able to create a wide variety of AAV vectors for both clinical and basic research applications. Basic vector design concepts are covered for both protein coding gene expression and small non-coding RNA gene expression cassettes. AAV plasmid vector backbones (available via AddGene) are described, along with critical sequence details for a variety of modular expression components that can be inserted as needed for specific applications. Protocols are provided for assembling the various DNA components into AAV vector plasmids in Escherichia coli, as well as for transferring these vector sequences into baculovirus genomes for large-scale production of AAV in the insect cell production system.
Sha, Yongqiang; Yang, Li; Lv, Yonggang
2018-04-01
Severe hypoxia inhibits the adhesion and mobility of bone marrow-derived mesenchymal stem cells (BMSCs) and limits their application in bone tissue engineering. In this study, CoCl 2 was used to simulate severe hypoxia and the effects of mechano-growth factor (MGF) E peptide on the morphology, adhesion, migration, and proangiogenic capacity of BMSCs under hypoxia were measured. It was demonstrated that severe hypoxia (500-μM CoCl 2 ) significantly caused cell contraction and reduced cell area, roundness, adhesion, and migration of BMSCs. RhoA and ROCK1 expression levels were upregulated by severe hypoxia, but p-RhoA and mobility-relevant protein (integrin β1, p-FAK and fibronectin) expression levels in BMSCs were inhibited. Fortunately, MGF E peptide could restore all abovementioned indexes except RhoA expression. MEK-ERK1/2 pathway was involved in MGF E peptide regulating cell morphological changes, mobility, and relevant proteins (except p-FAK). PI3K-Akt pathway was involved in MGF E peptide regulating cell area, mobility, and relevant proteins. Besides, severe hypoxia upregulated vascular endothelial growth factor α expression but was harmful for proangiogenic capacity of BMSCs. Our study suggested that MGF E peptide might be helpful for the clinical application of tissue engineering strategy in bone defect repair. Sever hypoxia impairs bone defect repair with bone marrow-derived mesenchymal stem cells (BMSCs). This study proved that mechano-growth factor E (MGF E) peptide could improve the severe hypoxia-induced cell contraction and decline of cell adhesion and migration of BMSCs. Besides, MGF E peptide weakened the effects of severe hypoxia on the cytoskeleton arrangement- and mobility-relevant protein expression levels in BMSCs. The underlying molecular mechanism was also verified. Finally, it was confirmed that MGF E peptide showed an adverse effect on the expression level of vascular endothelial growth factor α in BMSCs under severe hypoxia but could make up for this deficiency through accelerating cell proliferation. Copyright © 2018 John Wiley & Sons, Ltd.
A Computational Algorithm for Functional Clustering of Proteome Dynamics During Development
Wang, Yaqun; Wang, Ningtao; Hao, Han; Guo, Yunqian; Zhen, Yan; Shi, Jisen; Wu, Rongling
2014-01-01
Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role. PMID:24955031
Zydroń, Roland; Marszałek, Andrzej; Bodnar, Magdalena; Kosikowski, Paweł; Greczka, Grażyna; Wierzbicka, Małgorzata
Sinonasal inverted papilloma constitute relevant therapeutic problem due to destructive character of growth, tendency to recur and the possibility of malignant transformation. Therefore, many attempts to identify risk factors for inverted papilloma occurrence have been undertaken, as well as research to find markers that would allow for the earlier detection of tumors and the application of adequate therapy. A widely known risk factor of inverted papilloma is HPV infection. One of the markers of HPV infection and the ongoing effect of this change (although arousing some controversy) is the expression of the p16 protein. The aim of the study was to analyze the correlation between the expression of p16 as a surrogate of HPV infection in analyzed histopathological material and epidemiological variables, recurrences or malignant transformation. The retrospective study includes a group of 53 patients (18 women and 35 men) undergoing treatment for sinonasal inverted papilloma in the period of 2002-2012. The intensity of the p16 protein in histopathological material was scored as: 0 - no expression, 1 - diffuse expression (borderline) and 2 - positive expression; or 0 - no expression/diffuse expression (borderline); 1 - positive expression. The Ethics Committee agreement was obtained (1089/12; 245/13). There was no statistically significant relationship between the expression of p16 and the age of patients, cigarette smoking, tumor location, tumor staging according to the Krouse and Cannady classification, the presence of dysplasia or the occurrence of relapse. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Human HOXA5 homeodomain enhances protein transduction and its application to vascular inflammation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji Young; Park, Kyoung sook; Cho, Eun Jung
2011-07-01
Highlights: {yields} We have developed an E. coli protein expression vector including human specific gene sequences for protein cellular delivery. {yields} The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence. {yields} HOXA5-APE1/Ref-1 inhibited TNF-alpha-induced monocyte adhesion to endothelial cells. {yields} Human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins. -- Abstract: Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including humanmore » specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1 min and its transduction reached a maximum at 1 h within cell lysates. The cellular uptake of HOXA5-EGFP at 37 {sup o}C was greater than in 4 {sup o}C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100 nM) inhibited TNF-{alpha}-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.« less
NASA Astrophysics Data System (ADS)
Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.
2008-10-01
Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and revealed highly inhomogeneous vasculature perfusion within the tumour. Optical-ECT emission images yielded high-resolution 3D images of the fluorescent protein distribution in the tumour. Attenuation-uncorrected optical-ECT images showed clear loss of signal in regions of high attenuation, including regions of high perfusion, where attenuation is increased by increased vascular ink stain. Application of attenuation correction showed significant changes in an apparent expression of fluorescent proteins, confirming the importance of the attenuation correction. In conclusion, this work presents the first development and application of an attenuation correction for optical-ECT imaging. The results suggest that successful attenuation correction for optical-ECT is feasible and is essential for quantitatively accurate optical-ECT imaging.
Rational Design of a Triple Reporter Gene for Multimodality Molecular Imaging
Hsieh, Ya-Ju; Ke, Chien-Chih; Yeh, Skye Hsin-Hsien; Lin, Chien-Feng; Chen, Fu-Du; Lin, Kang-Ping; Chen, Ran-Chou; Liu, Ren-Shyan
2014-01-01
Multimodality imaging using noncytotoxic triple fusion (TF) reporter genes is an important application for cell-based tracking, drug screening, and therapy. The firefly luciferase (fl), monomeric red fluorescence protein (mrfp), and truncated herpes simplex virus type 1 thymidine kinase SR39 mutant (ttksr39) were fused together to create TF reporter gene constructs with different order. The enzymatic activities of TF protein in vitro and in vivo were determined by luciferase reporter assay, H-FEAU cellular uptake experiment, bioluminescence imaging, and micropositron emission tomography (microPET). The TF construct expressed in H1299 cells possesses luciferase activity and red fluorescence. The tTKSR39 activity is preserved in TF protein and mediates high levels of H-FEAU accumulation and significant cell death from ganciclovir (GCV) prodrug activation. In living animals, the luciferase and tTKSR39 activities of TF protein have also been successfully validated by multimodality imaging systems. The red fluorescence signal is relatively weak for in vivo imaging but may expedite FACS-based selection of TF reporter expressing cells. We have developed an optimized triple fusion reporter construct DsRedm-fl-ttksr39 for more effective and sensitive in vivo animal imaging using fluorescence, bioluminescence, and PET imaging modalities, which may facilitate different fields of biomedical research and applications. PMID:24809057
A Proteomics View of the Molecular Mechanisms and Biomarkers of Glaucomatous Neurodegeneration
Tezel, Gülgün
2013-01-01
Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers. PMID:23396249
Wagner, Wolfgang; Feldmann, Robert E; Seckinger, Anja; Maurer, Martin H; Wein, Frederik; Blake, Jonathon; Krause, Ulf; Kalenka, Armin; Bürgers, Heinrich F; Saffrich, Rainer; Wuchter, Patrick; Kuschinsky, Wolfgang; Ho, Anthony D
2006-04-01
Mesenchymal stem cells (MSC) raise high hopes in clinical applications. However, the lack of common standards and a precise definition of MSC preparations remains a major obstacle in research and application of MSC. Whereas surface antigen markers have failed to precisely define this population, a combination of proteomic data and microarray data provides a new dimension for the definition of MSC preparations. In our continuing effort to characterize MSC, we have analyzed the differential transcriptome and proteome expression profiles of MSC preparations isolated from human bone marrow under two different expansion media (BM-MSC-M1 and BM-MSC-M2). In proteomics, 136 protein spots were unambiguously identified by MALDI-TOF-MS and corresponding cDNA spots were selected on our "Human Transcriptome cDNA Microarray." Combination of datasets revealed a correlation in differential gene expression and protein expression of BM-MSC-M1 vs BM-MSC-M2. Genes involved in metabolism were more highly expressed in BM-MSC-M1, whereas genes involved in development, morphogenesis, extracellular matrix, and differentiation were more highly expressed in BM-MSC-M2. Interchanging culture conditions for 8 days revealed that differential expression was retained in several genes whereas it was altered in others. Our results have provided evidence that homogeneous BM-MSC preparations can reproducibly be isolated under standardized conditions, whereas culture conditions exert a prominent impact on transcriptome, proteome, and cellular organization of BM-MSC.
Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve
2017-07-01
The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata
2009-01-01
We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380
Comparison of Normal and Breast Cancer Cell lines using Proteome, Genome and Interactome data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patwardhan, Anil J.; Strittmatter, Eric F.; Camp, David G.
2005-12-01
Normal and cancer cell line proteomes were profiled using high throughput mass spectrometry techniques. Application of both protein-level and peptide-level sample fractionation combined with LC-MS/MS analysis enabled the confident identification of 2,235 unmodified proteins representing a broad range of functional and compartmental classes. An iterative multi-step search strategy was used to identify post-translational modifications and detected several proteins that are preferentially modified in cancer cells. Information regarding both unmodified and modified protein forms was combined with publicly available gene expression and protein-protein interaction data. The resulting integrated dataset revealed several functionally related proteins that are differentially regulated between normal andmore » cancer cell lines.« less
Application of targeted proteomics to metabolically engineered Escherichia coli.
Singh, Pragya; Batth, Tanveer S; Juminaga, Darmawi; Dahl, Robert H; Keasling, Jay D; Adams, Paul D; Petzold, Christopher J
2012-04-01
As synthetic biology matures to compete with chemical transformation of commodity and high-value compounds, a wide variety of well-characterized biological parts are needed to facilitate system design. Protein quantification based on selected-reaction monitoring (SRM) mass spectrometry compliments metabolite and transcript analysis for system characterization and optimizing flux through engineered pathways. By using SRM quantification, we assayed red fluorescent protein (RFP) expressed from plasmids containing several inducible and constitutive promoters and subsequently assessed protein production from the same promoters driving expression of eight mevalonate pathway proteins in Escherichia coli. For each of the promoter systems, the protein level for the first gene in the operon followed that of RFP, however, the levels of proteins produced from genes farther from the promoter were much less consistent. Second, we used targeted proteomics to characterize tyrosine biosynthesis pathway proteins after removal of native regulation. The changes were not expected to cause significant impact on protein levels, yet significant variation in protein abundance was observed and tyrosine production for these strains spanned a range from less than 1 mg/L to greater than 250 mg/L. Overall, our results underscore the importance of targeted proteomics for determining accurate protein levels in engineered systems and fine-tuning metabolic pathways. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TERA submitted by University of California, Riverside and given the tracking designation of R-03-0001. The microorganism has been modified to carry a coding sequence of DsRed for expressing a red fluorescent protein.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... Serial No. 11/132,199, entitled ``Construction of Live Attenuated Shigella Vaccine Strains that Express... proteins in Shigella spp. without affecting the ability of the Shigella strain to invade cells of the...
Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers.
Wyatt, Eugene J; Demonbreun, Alexis R; Kim, Ellis Y; Puckelwartz, Megan J; Vo, Andy H; Dellefave-Castillo, Lisa M; Gao, Quan Q; Vainzof, Mariz; Pavanello, Rita C M; Zatz, Mayana; McNally, Elizabeth M
2018-05-03
Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.
Zhou, Zhong-Yin; Tao, DI-DI; Cao, Ji-Wang; Luo, He-Sheng
2013-06-01
The aim of the present study was to identify a specific biological marker for the diagnosis of colorectal adenomas through the analysis of variations in serum protein profiling in colorectal adenoma patients. The study was conducted at the Renmin Hospital of Wuhan University (Wuhan, China) between September 2011 and May 2012. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was performed to compare the serum protein profiles of 50 patients with colorectal adenoma and 50 healthy individuals. The obtained protein profiles were analyzed using Biomarker Wizard software. Twenty protein peaks were identified to exhibit differences in average intensity between colorectal adenomas compared with normal controls, including peaks 8,565.84, 8,694.51 and 5,910.50 Da, in which the intensity between the patients and control individuals was significantly different. Two peaks, 8,565.84 and 8,694.51 Da, were observed to be highly expressed in the colorectal adenomas, however, expression was low in the control samples. By contrast, 5,910.50 Da expression was low in the colorectal adenomas and high in the controls. The results of the current study indicate that the three protein peaks may represent specific biomarkers for colorectal adenomas.
Establishing a high yielding streptomyces-based cell-free protein synthesis system.
Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C
2017-06-01
Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Pérez-Cárceles, M D; Sibón, A; Vizcaya, M A; Osuna, E; Gómez-Zapata, M; Luna, A; Martínez-Díaz, F
2008-09-01
The histopathological alterations that permit the diagnosis of death by asphyxia are very unspecific, although pulmonary alterations are of great importance in this respect. The postmortem diagnosis of drowning, particularly, continues to be one of the most difficult in forensic pathology. The aim of this study is to jointly evaluate microscopic findings and immunohistochemical surfactant protein A (SP-A) expression in the upper and lower lobes of lungs in different causes of death, and their possible application to the diagnosis of drowning. We studied 120 cadavers from subjects with a mean age of 48.73 years (SD 19.45; range 2-86 years), and with a mean post-mortem interval of 30 hours (SD 39.59; range 3-216 hours). According to the scene, cause and circumstances of death, and autopsy findings, cases were classified into groups as follows: (a) drowning (n=47); (b) other asphyxia (n=44) and (c) other causes (n=29). In the upper and lower lobes of lungs, histological studies of H&E staining and immunohistochemical surfactant protein A expression were made. The presence and severity of congestion, haemorrhage and oedema, together with immunohistochemical SP-A expression, may have a diagnostic value in differentiating asphyxia and drowning from other causes of death, and drowning from other types of asphyxia. Our findings suggest that both lobes should be investigated to establish the diagnosis, although the findings in the upper lobe might be the most important for differentiating the exact cause of death.
Lou, David; Steiner, Stephanie; Rezwanul, Tasmia; Guo, Qin; Picking, William D.; Nene, Vishvanath; Sztein, Marcelo B.
2017-01-01
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever, is a pathogen of great public health importance. Typhoid vaccines have the potential to be cost-effective measures towards combating this disease, yet the antigens triggering host protective immune responses are largely unknown. Given the key role of cellular-mediated immunity in S. Typhi protection, it is crucial to identify S. Typhi proteins involved in T-cell responses. Here, cells from individuals immunized with Ty21a typhoid vaccine were collected before and after immunization and used as effectors. We also used an innovative antigen expressing system based on the infection of B-cells with recombinant Escherichia coli (E. coli) expressing one of four S. Typhi gene products (i.e., SifA, OmpC, FliC, GroEL) as targets. Using flow cytometry, we found that the pattern of response to specific S. Typhi proteins was variable. Some individuals responded to all four proteins while others responded to only one or two proteins. We next evaluated whether T-cells responding to recombinant E. coli also possess the ability to respond to purified proteins. We observed that CD4+ cell responses, but not CD8+ cell responses, to recombinant E. coli were significantly associated with the responses to purified proteins. Thus, our results demonstrate the feasibility of using an E. coli expressing system to uncover the antigen specificity of T-cells and highlight its applicability to vaccine studies. These results also emphasize the importance of selecting the stimuli appropriately when evaluating CD4+ and CD8+ cell responses. PMID:28873442
Cao, Xueyuan; Costa, Liliana M; Biderre-Petit, Corinne; Kbhaya, Bouchab; Dey, Nrisingha; Perez, Pascual; McCarty, Donald R; Gutierrez-Marcos, Jose F; Becraft, Philip W
2007-02-01
Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions. Expression of Vp1 decreased after culture in hormone-free medium, but was induced by salinity or osmotic stress. Application of exogenous abscisic acid (ABA) also induced transcript levels within 1 h in a dose-dependent manner. The Vp1 promoter fused to beta-glucuronidase or green fluorescent protein reproduced the endogenous Vp1 expression patterns in transgenic maize plants and also revealed previously unknown expression domains of Vp1. The Vp1 promoter is active in the embryo and aleurone cells of developing seeds and, upon drought stress, was also found in phloem cells of vegetative tissues, including cobs, leaves, and stems. Sequence analysis of the Vp1 promoter identified a potential ABA-responsive complex, consisting of an ACGT-containing ABA response element (ABRE) and a coupling element 1-like motif. Electrophoretic mobility shift assay confirmed that the ABRE and putative coupling element 1 components specifically bound proteins in embryo nuclear protein extracts. Treatment of embryos in hormone-free Murashige and Skoog medium blocked the ABRE-protein interaction, whereas exogenous ABA or mannitol treatment restored this interaction. Our data support a model for a VP1-dependent positive feedback mechanism regulating Vp1 expression during seed maturation.
A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.
Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil
2005-05-01
SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.
Miao, Zhiguo; Wei, Panpeng; Khan, Muhammad Akram; Zhang, Jinzhou; Guo, Liping; Liu, Dongyang; Zhang, Xiaojian; Bai, Yueyu; Wang, Shan
2018-05-01
Meat is a rich source of protein, fatty acids and carbohydrates for human needs. In addition to necessary nutrients, high fat contents in pork increase the tenderness and juiciness of the meat, featuring diverse application in various dishes. This study investigated the transcriptomic profiles of intramuscular adipose tissues in Jinhua and Landrace pigs by employing advanced RNA sequencing. Results showed significant interesting to note that there were significant differences in the expression of genes. 1,632 genes showed significant differential expression, 837 genes were up-regulated and 195 genes were down-regulated. Variations in genes responsible for cell aggregation, extracellular matrix formation, cellular lipid catabolic process, and fatty acid binding strongly supported that both pig breeds feature variable fat and muscle metabolism. Certain differentially expressed genes are included in the pathway of mitogen-activated protein kinase signaling pathway, Ras signaling pathway and insulin pathway. Results from real-time quantitative polymerase chain reaction also validated the differential expression of 17 mRNAs between meats of the two pig breeds. Overall, these findings reveal significant differences in fat and protein metabolism of intramuscular adipose tissues of two pig breeds at the transcriptomic level and suggest diversification at the genetic level between breeds of the same species.
Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei
2016-01-01
Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666
[Eukaryotic expression and application of HCV Hebei strain E2 extracellular core region].
Ye, Chuantao; Bian, Peiyu; Weng, Daihui; Zhang, Hui; Yang, Jing; Zhang, Ying; Lei, Yingfeng; Jia, Zhansheng
2016-06-01
Objective To express core region of HCV1b (Hebei strain) E2 protein (E2c) by eukaryotic system, and establish the detection method of specific anti-HCV E2 antibody in the sera from hepatitis C patients. Methods Based on the literature, the E2c gene was modified from the HCV1b gene and synthesized via overlapping PCR. Thereafter, the E2c gene including tissue-type plasminogen activator (tPA) signal peptide was cloned into the pCI-neo eukaryotic expression vector, and the product was named pCI-tpa-1bE2c. After HEK293T cells were transfected with pCI-tpa-1bE2c, the supernatant was collected, condensed and purified. Its specificity was identified by Western blotting. Galanthus nivalis agglutinin (GNA)-based ELISA was used to detect the antibody against HCVE2 in the sera from hepatitis C patients. Results Modified HCV E2c protein was successfully expressed in HEK293T cells and the GNA-based ELISA was developed for detecting the antibody against HCV E2 in the sera from hepatitis C patients. Conclusion HCV-1bE2c protein can be effectively expressed in HEK293T cells and applied clinically.
Global PROTOMAP profiling to search for biomarkers of early-recurrent hepatocellular carcinoma.
Taoka, Masato; Morofuji, Noriaki; Yamauchi, Yoshio; Ojima, Hidenori; Kubota, Daisuke; Terukina, Goro; Nobe, Yuko; Nakayama, Hiroshi; Takahashi, Nobuhiro; Kosuge, Tomoo; Isobe, Toshiaki; Kondo, Tadashi
2014-11-07
This study used global protein expression profiling to search for biomarkers to predict early recurrent hepatocellular carcinoma (HCC). HCC tissues surgically resected from patients with or without recurrence within 2 years (early recurrent) after surgery were compared with adjacent nontumor tissue and with normal liver tissue. We used the PROTOMAP strategy for comparative profiling, which integrates denaturing polyacrylamide gel electrophoresis migratory rates and high-resolution, semiquantitative mass-spectrometry-based identification of in-gel-digested tryptic peptides. PROTOMAP allows examination of global changes in the size, topography, and abundance of proteins in complex tissue samples. This approach identified 8438 unique proteins from 45 708 nonredundant peptides and generated a proteome-wide map of changes in expression and proteolytic events potentially induced by intrinsic apoptotic/necrotic pathways. In the early recurrent HCC tissue, 87 proteins were differentially expressed (≥20-fold) relative to the other tissues, 46 of which were up-regulated or specifically proteolyzed and 41 of which were down-regulated. This data set consisted of proteins that fell into various functional categories, including signal transduction and cell organization and, notably, the major catalytic pathways responsible for liver function, such as the urea cycle and detoxification metabolism. We found that aberrant proteolysis appeared to occur frequently during recurrence of HCC in several key signal transducers, including STAT1 and δ-catenin. Further investigation of these proteins will facilitate the development of novel clinical applications.
Wong, Emily S. W.; Morgenstern, David; Mofiz, Ehtesham; Gombert, Sara; Morris, Katrina M.; Temple-Smith, Peter; Renfree, Marilyn B.; Whittington, Camilla M.; King, Glenn F.; Warren, Wesley C.; Papenfuss, Anthony T.; Belov, Katherine
2012-01-01
The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution. PMID:22899769
Wong, Emily S W; Morgenstern, David; Mofiz, Ehtesham; Gombert, Sara; Morris, Katrina M; Temple-Smith, Peter; Renfree, Marilyn B; Whittington, Camilla M; King, Glenn F; Warren, Wesley C; Papenfuss, Anthony T; Belov, Katherine
2012-11-01
The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution.
Tian, Siqi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi
2015-01-01
To elucidate the mechanism of interorganelle sterol transport, a system to evaluate sterol transport from the endoplasmic reticulum (ER) to the mitochondria was constructed. A bacterial glycerophospholipid: cholesterol acyltransferase fused with a mitochondria-targeting sequence and a membrane-spanning domain of the mitochondrial inner membrane protein Pet100 and enhanced green fluorescent protein was expressed in a Saccharomyces cerevisiae mutant deleted for ARE1 and ARE2 encoding acyl-CoA:sterol acyltransferases. Microscopic observation and subcellular fractionation suggested that this fusion protein, which was named mito-SatA-EGFP, was localized in the mitochondria. Steryl esters were synthesized in the mutant expressing mito-SatA-EGFP. This system will be applicable for evaluations of sterol transport from the ER to the mitochondria in yeast by examining sterol esterification in the mitochondria.
Berndt-Paetz, Mandy; Herbst, Luise; Weimann, Annett; Gonsior, Andreas; Stolzenburg, Jens-Uwe; Neuhaus, Jochen
2018-05-01
Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (G αq/11 , G αs , G αi ) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor ® 488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP-subtype coupling patterns. Detection of M3 interactions with endocytic trafficking proteins by PLA resulted in object sizes correlating with well-documented vesicle sizes of the endocytosis pathway. PLA enabled highly specific detection of M3 receptor expression, demonstration of M3/GP differential coupling and intracellular M3 trafficking in human detrusor smooth muscle cells. This new approach minimized background fluorescence and antibody cross-reactions resulting from single antibody application, and enhanced specificity due to the use of two primary antibodies. Use of subcellular markers allowed visualization of subcellular receptor location. PLA/CLSM allows analyses of muscarinic "receptor - G protein - promiscuity" and intracellular trafficking even in bladder paraffin sections and may give new insights into the etiology and pathology of BPS/IC. Copyright © 2018 Elsevier GmbH. All rights reserved.
Vella, Danila; Zoppis, Italo; Mauri, Giancarlo; Mauri, Pierluigi; Di Silvestre, Dario
2017-12-01
The reductionist approach of dissecting biological systems into their constituents has been successful in the first stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped biologists to understand the complexity of the biological systems evidencing that most biological functions do not arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be explained or be predicted by investigating individual molecules without taking into consideration their relations. Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular relationships, even more studies are evaluating the biological systems through approaches based on graph theory. Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease modules. On the other hand, co-expression networks represent a complementary procedure that give the opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises, we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a special attention will be devoted to the topological and module analysis.
Lee, Jing-Yi; Huo, Teh-Ia; Wang, Sun-Sang; Lin, Han-Chieh; Chuang, Chiao-Lin; Lee, Shou-Dong
2013-01-01
Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP) in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL)-induced cirrhosis received vehicle (citrate buffer) or streptozotocin (diabetic, BDL/STZ). The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist) and overcome by NaF (a G protein activator). The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation. PMID:23874439
Lee, Jing-Yi; Huo, Teh-Ia; Wang, Sun-Sang; Huang, Hui-Chun; Lee, Fa-Yauh; Lin, Han-Chieh; Chuang, Chiao-Lin; Lee, Shou-Dong
2013-01-01
Liver cirrhosis may lead to portal-systemic collateral formation and bleeding. The hemostatic effect is influenced by the response of collateral vessels to vasoconstrictors. Diabetes and glucose also influence vasoresponsiveness, but their net effect on collaterals remains unexplored. This study investigated the impact of diabetes or glucose application on portal-systemic collateral vasoresponsiveness to arginine vasopressin (AVP) in cirrhosis. Spraque-Dawley rats with bile duct ligation (BDL)-induced cirrhosis received vehicle (citrate buffer) or streptozotocin (diabetic, BDL/STZ). The in situ collateral perfusion was done after hemodynamic measurements: Both were perfused with Krebs solution, D-glucose, or D-glucose and NaF, with additional OPC-31260 for the BDL/STZ group. Splenorenal shunt vasopressin receptors and Gα proteins mRNA expressions were evaluated. The survival rate of cirrhotic rats was decreased by STZ injection. The collateral perfusion pressure changes to AVP were lower in STZ-injected groups, which were reversed by OPC-31260 (a V2R antagonist) and overcome by NaF (a G protein activator). The splenorenal shunt V2R mRNA expression was increased while Gα proteins mRNA expressions were decreased in BDL/STZ rats compared to BDL rats. The Gαq and Gα11 mRNA expressions also correlated with the maximal perfusion pressure changes to AVP. Diabetes diminished the portal-systemic collateral vascular response to AVP in rats with BDL-induced cirrhosis, probably via V2 receptor up-regulation and Gα proteins down-regulation.
Pendrin protein abundance in the kidney is regulated by nitric oxide and cAMP.
Thumova, Monika; Pech, Vladimir; Froehlich, Otto; Agazatian, Diana; Wang, Xiaonan; Verlander, Jill W; Kim, Young Hee; Wall, Susan M
2012-09-15
Pendrin is a Cl(-)/HCO(3)(-) exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (N(G)-nitro-L-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ∼33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation.
Pendrin protein abundance in the kidney is regulated by nitric oxide and cAMP
Thumova, Monika; Pech, Vladimir; Froehlich, Otto; Agazatian, Diana; Wang, Xiaonan; Verlander, Jill W.; Kim, Young Hee
2012-01-01
Pendrin is a Cl−/HCO3− exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (NG-nitro-l-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ∼33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation. PMID:22811483
Upregulation and biological function of transmembrane protein 119 in osteosarcoma
Jiang, Zhen-Huan; Peng, Jun; Yang, Hui-Lin; Fu, Xing-Li; Wang, Jin-Zhi; Liu, Lei; Jiang, Jian-Nong; Tan, Yong-Fei; Ge, Zhi-Jun
2017-01-01
Osteosarcoma is suggested to be caused by genetic and molecular alterations that disrupt osteoblast differentiation. Recent studies have reported that transmembrane protein 119 (TMEM119) contributes to osteoblast differentiation and bone development. However, the level of TMEM119 expression and its roles in osteosarcoma have not yet been elucidated. In the present study, TMEM119 mRNA and protein expression was found to be up-regulated in osteosarcoma compared with normal bone cyst tissues. The level of TMEM119 protein expression was strongly associated with tumor size, clinical stage, distant metastasis and overall survival time. Moreover, gene set enrichment analysis (GSEA) of the Gene Expression Omnibus (GEO) GSE42352 dataset revealed TMEM119 expression in osteosarcoma tissues to be positively correlated with cell cycle, apoptosis, metastasis and TGF-β signaling. We then knocked down TMEM119 expression in U2OS and MG63 cells using small interfering RNA, which revealed that downregulation of TMEM119 could inhibit the proliferation of osteosarcoma cells by inducing cell cycle arrest in G0/G1 phase and apoptosis. We also found that TMEM119 knockdown significantly inhibited cell migration and invasion, and decreased the expression of TGF-β pathway-related factors (BMP2, BMP7 and TGF-β). TGF-β application rescued the inhibitory effects of TMEM119 knockdown on osteosarcoma cell migration and invasion. Further in vitro experiments with a TGF-β inhibitor (SB431542) or BMP inhibitor (dorsomorphin) suggested that TMEM119 significantly promotes cell migration and invasion, partly through TGF-β/BMP signaling. In conclusion, our data support the notion that TMEM119 contributes to the proliferation, migration and invasion of osteosarcoma cells, and functions as an oncogene in osteosarcoma. PMID:28496199
Duary, Raj Kumar; Batish, Virender Kumar; Grover, Sunita
2012-03-01
Probiotic bacteria must overcome the toxicity of bile salts secreted in the gut and adhere to the epithelial cells to enable their better colonization with extended transit time. Expression of bile salt hydrolase and other proteins on the surface of probiotic bacteria can help in better survivability and optimal functionality in the gut. Two putative Lactobacillus plantarum isolates i.e., Lp9 and Lp91 along with standard strain CSCC5276 were used. A battery of six housekeeping genes viz. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA were evaluated by using geNorm 3.4 excel based application for normalizing the expression of bile salt hydrolase (bsh), mucus-binding protein (mub), mucus adhesion promoting protein (mapA), and elongation factor thermo unstable (EF-Tu) in Lp9 and Lp91. The maximal level of relative bsh gene expression was recorded in Lp91 with 2.89 ± 0.14, 4.57 ± 0.37 and 6.38 ± 0.19 fold increase at 2% bile salt concentration after 1, 2 and 3 h, respectively. Similarly, mub and mapA genes were maximally expressed in Lp9 at the level of 20.07 ± 1.28 and 30.92 ± 1.51 fold, when MRS was supplemented with 0.05% mucin and 1% each of bile and pancreatin (pH 6.5). However, in case of EF-Tu, the maximal expression of 42.84 ± 5.64 fold was recorded in Lp91 in the presence of mucin alone (0.05%). Hence, the expression of bsh, mub, mapA and EF-Tu could be considered as prospective biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut.
Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio
2015-01-01
Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics.
Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio
2015-01-01
Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics. PMID:26696829
Antoniou, Georgia; Papakyriacou, Irineos; Papaneophytou, Christos
2017-10-01
Human rhinovirus (HRV) 3C protease is widely used in recombinant protein production for various applications such as biochemical characterization and structural biology projects to separate recombinant fusion proteins from their affinity tags in order to prevent interference between these tags and the target proteins. Herein, we report the optimization of expression and purification conditions of glutathione S-transferase (GST)-tagged HRV 3C protease by statistically designed experiments. Soluble expression of GST-HRV 3C protease was initially optimized by response surface methodology (RSM), and a 5.5-fold increase in enzyme yield was achieved. Subsequently, we developed a new incomplete factorial (IF) design that examines four variables (bacterial strain, expression temperature, induction time, and inducer concentration) in a single experiment. The new design called Incomplete Factorial-Strain/Temperature/Time/Inducer (IF-STTI) was validated using three GST-tagged proteins. In all cases, IF-STTI resulted in only 10% lower expression yields than those obtained by RSM. Purification of GST-HRV 3C was optimized by an IF design that examines simultaneously the effect of the amount of resin, incubation time of cell lysate with resin, and glycerol and DTT concentration in buffers, and a further 15% increase in protease recovery was achieved. Purified GST-HRV 3C protease was active at both 4 and 25 °C in a variety of buffers.
Balaji, Parthasarathy; Satheeshkumar, P K; Venkataraman, Krishnan; Vijayalakshmi, M A
2016-05-01
Therapeutic antibodies against tumor necrosis factor alpha (TNFα) have been considered effective for some of the autoimmune diseases such as rheumatoid arthritis, Crohn's diseases, and so on. But associated limitations of the current therapeutics in terms of cost, availability, and immunogenicity have necessitated the need for alternative candidates. Single-chain variable fragment (scFv) can negate the limitations tagged with the anti-TNFα therapeutics to a greater extent. In the present study, Spirodela punctata plants were transformed with anti-TNFα through in planta transformation using Agrobacterium tumefaciens strain, EHA105. Instead of cefotaxime, garlic extract (1 mg/mL) was used to remove the agrobacterial cells after cocultivation. To the best of our knowledge, this report shows for the first time the application of plant extracts in transgenic plant development. 95% of the plants survived screening under hygromycin. ScFv cDNA integration in the plant genomic DNA was confirmed at the molecular level by PCR. The transgenic protein expression was followed up to 10 months. Expression of scFv was confirmed by immunodot blot. Protein expression levels of up to 6.3% of total soluble protein were observed. β-Glucuronidase and green fluorescent protein expressions were also detected in the antibiotic resistant plants. The paper shows the generation of transgenic Spirodela punctuata plants through in planta transformation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Ohtsuka, J; Fukumura, M; Tsurudome, M; Hara, K; Nishio, M; Kawano, M; Nosaka, T
2014-08-01
A stable packaging cell line (Vero/BC-F) constitutively expressing fusion (F) protein of the human parainfluenza virus type 2 (hPIV2) was established for production of the F-defective and single round-infectious hPIV2 vector in a strategy for recombinant vaccine development. The F gene expression has not evoked cytostatic or cytotoxic effects on the Vero/BC-F cells and the F protein was physiologically active to induce syncytial formation with giant polykaryocytes when transfected with a plasmid expressing hPIV2 hemagglutinin-neuraminidase (HN). Transduction of the F-defective replicon RNA into the Vero/BC-F cells led to the release of the infectious particles that packaged the replicon RNA (named as hPIV2ΔF) without detectable mutations, limiting the infectivity to a single round. The maximal titer of the hPIV2ΔF was 6.0 × 10(8) median tissue culture infections dose per ml. The influenza A virus M2 gene was inserted into hPIV2ΔF, and the M2 protein was found to be highly expressed in a human lung cancer cell line after transduction. Furthermore, in vivo airway infection experiments revealed that the hPIV2ΔF was capable of delivering transgenes to hamster tracheal cells. Thus, non-transmissible or single round-infectious hPIV2 vector will be potentially applicable to human gene therapy or recombinant vaccine development.
Kim, Hyo Jung; Kim, Il Soon; Dong, Yin; Lee, Ik-Soo; Kim, Jin Sook; Kim, Jong-Sang; Woo, Je-Tae; Cha, Byung-Yoon
2015-04-20
The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP) 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF) after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.
Bazl, M Rajabi; Rasaee, M J; Foruzandeh, M; Rahimpour, A; Kiani, J; Rahbarizadeh, F; Alirezapour, B; Mohammadi, M
2007-02-01
There is an increasing interest in the application of nanobodies such as VHH in the field of therapy and imaging. In the present study a stable genetically engineered cell line of Chinese hamster ovary (CHO) origin transfected using two sets of expression vectors was constructed in order to permit the cytoplasmic and extracellular expression of single domain antibody along with green fluorescent protein (GFP) as reporter gene. The quality of the constructs were examined both by the restriction map as well as sequence analysis. The gene transfection and protein expression was further examined by reverse transcription-polymerase chain reaction (RT-PCR). The transfected cells were grown in 200 microg/mL hygromycin containing media and the stable cell line obtained showed fluorescent activity for more than a period of 180 days. The production of fusion protein was also detected by fluorescent microscopy, fluorescent spectroscopy as well as by enzyme-linked immunosorbent assay (ELISA) analysis. This strategy allows a rapid production of recombinant fluobodies involving VHH, which can be used in various experiments such as imaging and detection in which a primary labeled antibody is required.
Chen, Cuicui; Liu, Xiaozhu; Li, Yinfeng; Liang, Huankun; Li, Kangyan; Li, Jiali; Cheng, Chengwu; Liu, Xianpan; Zhong, Shuhai; Li, Laiqing; Wang, Yan
2017-08-01
Allergic contact dermatitis (ACD) is a chronic inflammatory skin disease. Topical corticosteroids are the first-line therapy for ACD despite their significant adverse effects. Acupuncture has been widely used in the treatment of various skin diseases, but its underlying mechanism remains unrevealed. In this study, we investigated the characteristics of acupuncture treatment based on effectiveness and mechanism. BALB/c mice received 1-chloro-2,4-dinitrobenzene (DNCB) application to build AD-like model. Results showed that acupuncture was an effective treatment method in inhibiting inflammatory conditions, serum IgE levels, and expression of proinflammatory cytokine Th2 (IL-4, IL-6), and Th2 (IL-1β, TNF-α) mRNA compared with DNCB treatment. Acupuncture treatment also inhibited nuclear factor-κB p65, phosphorylation of IκBα, and phosphorylation of occludin proteins expression. Furthermore, it could improve the expression of epidermal growth factor in both mRNA and protein levels. These results suggest that acupuncture, as an alternative therapy treatment for its no significant side effects, was effective in alleviating ACD by reducing proinflammatory cytokines and changing proteins' expression. Copyright © 2017. Published by Elsevier B.V.
Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tae-Joon; Hahn, Ji-Sook
NOD1 is an intracellular sensor of innate immunity which is related to a number of inflammatory diseases. NOD1 is known to be difficult to express and purify for structural and biochemical studies. Based on the fact that Hsp90 and its cochaperone SGT1 are necessary for the stabilization and activation of NOD1 in mammals, SGT1 was chosen as a fusion partner of the leucine-rich repeat (LRR) domain of NOD1 for its soluble expression in Escherichia coli. Fusion of human SGT1 (hSGT1) to NOD1 LRR significantly enhanced the solubility, and the fusion protein was stabilized by coexpression of mouse Hsp90α. The expressionmore » level of hSGT1-NOD1 LRR was further enhanced by supplementation of rare codon tRNAs and exchange of antibiotic marker genes. - Highlights: • The NOD1 LRR domain was solubilized by SGT1 fusion in E. coli. • The coexpression of HSP90 stabilized the SGT1-NOD1 LRR fusion protein. • Several optimizations could enhance the expression level of the fusion protein.« less
Rodríguez-Frade, José M; Guedán, Anabel; Lucas, Pilar; Martínez-Muñoz, Laura; Villares, Ricardo; Criado, Gabriel; Balomenos, Dimitri; Reyburn, Hugh T; Mellado, Mario
2017-01-01
During budding, lentiviral particles (LVP) incorporate cell membrane proteins in the viral envelope. We explored the possibility of harnessing this process to generate LVP-expressing membrane proteins of therapeutic interest and studied the potential of these tools to treat different pathologies. Fas-mediated apoptosis is central to the maintenance of T cell homeostasis and prevention of autoimmune processes. We prepared LVP that express murine FasL on their surface. Our data indicate that mFasL-bearing LVP induce caspase 3 and 9 processing, cytochrome C release, and significantly more cell death than control LVP in vitro . This cytotoxicity is blocked by the caspase inhibitor Z-VAD. Analysis of the application of these reagents for the treatment of inflammatory arthritis in vivo suggests that FasL-expressing LVP could be useful for therapy in autoimmune diseases such as rheumatoid arthritis, where there is an excess of Fas-expressing activated T cells in the joint. LVP could be a vehicle not only for mFasL but also for other membrane-bound proteins that maintain their native conformation and might mediate biological activities.
Time-resolved analysis of DNA-protein interactions in living cells by UV laser pulses.
Nebbioso, Angela; Benedetti, Rosaria; Conte, Mariarosaria; Carafa, Vincenzo; De Bellis, Floriana; Shaik, Jani; Matarese, Filomena; Della Ventura, Bartolomeo; Gesuele, Felice; Velotta, Raffaele; Martens, Joost H A; Stunnenberg, Hendrik G; Altucci, Carlo; Altucci, Lucia
2017-09-15
Interactions between DNA and proteins are mainly studied through chemical procedures involving bi-functional reagents, mostly formaldehyde. Chromatin immunoprecipitation is used to identify the binding between transcription factors (TFs) and chromatin, and to evaluate the occurrence and impact of histone/DNA modifications. The current bottleneck in probing DNA-protein interactions using these approaches is caused by the fact that chemical crosslinkers do not discriminate direct and indirect bindings or short-lived chromatin occupancy. Here, we describe a novel application of UV laser-induced (L-) crosslinking and demonstrate that a combination of chemical and L-crosslinking is able to distinguish between direct and indirect DNA-protein interactions in a small number of living cells. The spatial and temporal dynamics of TF bindings to chromatin and their role in gene expression regulation may thus be assessed. The combination of chemical and L-crosslinking offers an exciting and unprecedented tool for biomedical applications.
PIWI Proteins and PIWI-Interacting RNA: Emerging Roles in Cancer.
Han, Yi-Neng; Li, Yuan; Xia, Sheng-Qiang; Zhang, Yuan-Yuan; Zheng, Jun-Hua; Li, Wei
2017-01-01
P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNAs (ncRNAs) and interact with PIWI proteins. piRNAs were primarily described in the germline, but emerging evidence revealed that piRNAs are expressed in a tissue-specific manner among multiple human somatic tissue types as well and play important roles in transposon silencing, epigenetic regulation, gene and protein regulation, genome rearrangement, spermatogenesis and germ stem-cell maintenance. PIWI proteins were first discovered in Drosophila and they play roles in spermatogenesis, germline stem-cell maintenance, self-renewal, retrotransposons silencing and the male germline mobility control. A growing number of studies have demonstrated that several piRNA and PIWI proteins are aberrantly expressed in various kinds of cancers and may probably serve as a novel biomarker and therapeutic target for cancer treatment. Nevertheless, their specific mechanisms and functions need further investigation. In this review, we discuss about the biogenesis, functions and the emerging role of piRNAs and PIWI proteins in cancer, providing novel insights into the possible applications of piRNAs and PIWI proteins in cancer diagnosis and clinical treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.
Kim, Sung Bae; Ozawa, Takeaki; Watanabe, Shigeaki; Umezawa, Yoshio
2004-08-10
Nucleocytoplasmic trafficking of functional proteins plays a key role in regulating gene expressions in response to extracellular signals. We developed a genetically encoded bioluminescent indicator for monitoring the nuclear trafficking of target proteins in vitro and in vivo. The principle is based on reconstitution of split fragments of Renilla reniformis (Rluc) by protein splicing with a DnaE intein (a catalytic subunit of DNA polymerase III). A target cytosolic protein fused to the N-terminal half of Rluc is expressed in mammalian cells. If the protein translocates into the nucleus, the Rluc moiety meets the C-terminal half of Rluc, and full-length Rluc is reconstituted by protein splicing. We demonstrated quantitative cell-based in vitro sensing of ligand-induced translocation of androgen receptor, which allowed high-throughput screening of exo- and endogenous agonists and antagonists. Furthermore, the indicator enabled noninvasive in vivo imaging of the androgen receptor translocation in the brains of living mice with a charge-coupled device imaging system. These rapid and quantitative analyses in vitro and in vivo provide a wide variety of applications for screening pharmacological or toxicological compounds and testing them in living animals.
Yao, Yibing; Fan, Yu; Wu, Jun; Wan, Haisu; Wang, Jing; Lam, Stephen; Lam, Wan L.; Girard, Luc; Gazdar, Adi F.; Wu, Zhihao; Zhou, Qinghua
2015-01-01
To identify a panel of tumor associated autoantibodies which can potentially be used as biomarkers for the early diagnosis of non-small cell lung cancer (NSCLC). Thirty-five unique and in-frame expressed phage proteins were isolated. Based on the gene expression profiling, four proteins were selected for further study. Both receiver operating characteristic curve analysis and leave-one-out method revealed that combined measurements of four antibodies produced have better predictive accuracies than any single marker alone. Leave-one-out validation also showed significant relevance with all stages of NSCLC patients. The panel of autoantibodies has a high potential for detecting early stage NSCLC. PMID:22713465
Galectins as Cancer Biomarkers
Balan, Vitaly; Nangia-Makker, Pratima; Raz, Avraham
2010-01-01
Galectins are a group of proteins that bind β-galactosides through evolutionarily conserved sequence elements of the carbohydrate recognition domain (CRD). Proteins similar to galectins can be found in very primitive animals such as sponges. Each galectin has an individual carbohydrate binding preference and can be found in cytoplasm as well as in the nucleus. They also can be secreted through non-classical pathways and function extra-cellularly. Experimental and clinical data demonstrate a correlation between galectin expression and tumor progression and metastasis, and therefore, galectins have the potential to serve as reliable tumor markers. In this review, we describe the expression and role of galectins in different cancers and their clinical applications for diagnostic use. PMID:23658855
Campos, Magnólia de A; Silva, Marilia S; Magalhães, Cláudio P; Ribeiro, Simone G; Sarto, Rafael PD; Vieira, Eduardo A; Grossi de Sá, Maria F
2008-01-01
Background Heterologous protein expression in microorganisms may contribute to identify and demonstrate antifungal activity of novel proteins. The Solanum nigrum osmotin-like protein (SnOLP) gene encodes a member of pathogenesis-related (PR) proteins, from the PR-5 sub-group, the last comprising several proteins with different functions, including antifungal activity. Based on deduced amino acid sequence of SnOLP, computer modeling produced a tertiary structure which is indicative of antifungal activity. Results To validate the potential antifungal activity of SnOLP, a hexahistidine-tagged mature SnOLP form was overexpressed in Escherichia coli M15 strain carried out by a pQE30 vector construction. The urea solubilized His6-tagged mature SnOLP protein was affinity-purified by immobilized-metal (Ni2+) affinity column chromatography. As SnOLP requires the correct formation of eight disulfide bonds, not correctly formed in bacterial cells, we adapted an in vitro method to refold the E. coli expressed SnOLP by using reduced:oxidized gluthatione redox buffer. This method generated biologically active conformations of the recombinant mature SnOLP, which exerted antifungal action towards plant pathogenic fungi (Fusarium solani f. sp.glycines, Colletotrichum spp., Macrophomina phaseolina) and oomycete (Phytophthora nicotiana var. parasitica) under in vitro conditions. Conclusion Since SnOLP displays activity against economically important plant pathogenic fungi and oomycete, it represents a novel PR-5 protein with promising utility for biotechnological applications. PMID:18334031
Protein interaction networks from literature mining
NASA Astrophysics Data System (ADS)
Ihara, Sigeo
2005-03-01
The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.
2013-01-01
Background Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. Results We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. Conclusion A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification. PMID:23638724
Pandey, Neeraj; Sachan, Annapurna; Chen, Qi; Ruebling-Jass, Kristin; Bhalla, Ritu; Panguluri, Kiran Kumar; Rouviere, Pierre E; Cheng, Qiong
2013-05-02
Many proteins and peptides have been used in therapeutic or industrial applications. They are often produced in microbial production hosts by fermentation. Robust protein production in the hosts and efficient downstream purification are two critical factors that could significantly reduce cost for microbial protein production by fermentation. Producing proteins/peptides as inclusion bodies in the hosts has the potential to achieve both high titers in fermentation and cost-effective downstream purification. Manipulation of the host cells such as overexpression/deletion of certain genes could lead to producing more and/or denser inclusion bodies. However, there are limited screening methods to help to identify beneficial genetic changes rendering more protein production and/or denser inclusion bodies. We report development and optimization of a simple density gradient method that can be used for distinguishing and sorting E. coli cells with different buoyant densities. We demonstrate utilization of the method to screen genetic libraries to identify a) expression of glyQS loci on plasmid that increased expression of a peptide of interest as well as the buoyant density of inclusion body producing E. coli cells; and b) deletion of a host gltA gene that increased the buoyant density of the inclusion body produced in the E. coli cells. A novel density gradient sorting method was developed to screen genetic libraries. Beneficial host genetic changes could be exploited to improve recombinant protein expression as well as downstream protein purification.
Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle
2016-12-05
Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p<0.05), were identified. Compared to that in the low titer circumstance, cells conducted distinct biological processes under high acetic acid stress, where >150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing. Copyright © 2016 Elsevier B.V. All rights reserved.
Hammond, John P.; Broadley, Martin R.; Bowen, Helen C.; Spracklen, William P.; Hayden, Rory M.; White, Philip J.
2011-01-01
Background There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture. PMID:21935429
Song, Lintao; Huang, Zhifeng; Chen, Yu; Li, Haiyan; Jiang, Chao; Li, Xiaokun
2014-01-01
Using fusion tags, expression of recombinant human fibroblast growth factor 18 (rhFGF18) in mammalian cells and Escherichia coli has been extensively used for fundamental research and clinical applications, including chondrogenesis and osteogenesis, hair growth, and neuroprotection. However, high-level rhFGF18 expression is difficult and the products are often not homogeneous. Furthermore, fusion-tagged protein has higher immunogenicity and lower bioactivity, and the removal of the fused tag is expensive. To overcome the limitations of fusion-tagged expression of protein and to prepare soluble highly bioactive rhFGF18, we have developed a rapid and efficient expression strategy. Optimized hFGF18 gene was amplified by polymerase chain reaction and cloned into pET22b and pET3c vectors, then transformed into E. coli strains Origima (DE3) and BL21 (DE3)PlysS. The best combination of plasmid and host strain was selected, and only Origima (DE3)/pET3c-rhFGF18 was screened for high-level expressed rhFGF18. Under optimal conditions in a 30-L fermentor, the average bacterial yield and expression level of rhFGF18 of three batches were more than 652 g and 30 % respectively, after treatment with 1 mM isopropyl-thio-β-galactopyranoside for 10 h at 25 °C. The target protein was purified by CM Sepharose FF and heparin affinity chromatography. The purity of rhFGF18 was shown by HPLC to be higher than 95 %, and the yield was 155 mg/L. In vitro MTT assays demonstrated that the purified rhFGF18 could stimulate significant proliferation of NIH3T3 cells, and animal experiments showed that rhFGF18 could effectively regulate hair growth. In conclusion, this may be a better method of producing rhFGF18 to meet the increasing demand in its pharmacological application.
Reprint of "versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16".
Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra
2014-12-20
The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.
Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16.
Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra
2014-09-30
The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96 h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.
Whittington, Emma; Zhao, Qian; Borziak, Kirill; Walters, James R; Dorus, Steve
2015-07-01
The application of mass spectrometry based proteomics to sperm biology has greatly accelerated progress in understanding the molecular composition and function of spermatozoa. To date, these approaches have been largely restricted to model organisms, all of which produce a single sperm morph capable of oocyte fertilisation. Here we apply high-throughput mass spectrometry proteomic analysis to characterise sperm composition in Manduca sexta, the tobacco hornworm moth, which produce heteromorphic sperm, including one fertilisation competent (eupyrene) and one incompetent (apyrene) sperm type. This resulted in the high confidence identification of 896 proteins from a co-mixed sample of both sperm types, of which 167 are encoded by genes with strict one-to-one orthology in Drosophila melanogaster. Importantly, over half (55.1%) of these orthologous proteins have previously been identified in the D. melanogaster sperm proteome and exhibit significant conservation in quantitative protein abundance in sperm between the two species. Despite the complex nature of gene expression across spermatogenic stages, a significant correlation was also observed between sperm protein abundance and testis gene expression. Lepidopteran-specific sperm proteins (e.g., proteins with no homology to proteins in non-Lepidopteran taxa) were present in significantly greater abundance on average than those with homology outside the Lepidoptera. Given the disproportionate production of apyrene sperm (96% of all mature sperm in Manduca) relative to eupyrene sperm, these evolutionarily novel and highly abundant proteins are candidates for possessing apyrene-specific functions. Lastly, comparative genomic analyses of testis-expressed, ovary-expressed and sperm genes identified a concentration of novel sperm proteins shared amongst Lepidoptera of potential relevance to the evolutionary origin of heteromorphic spermatogenesis. As the first published Lepidopteran sperm proteome, this whole-cell proteomic characterisation will facilitate future evolutionary genetic and developmental studies of heteromorphic sperm production and parasperm function. Furthermore, the analyses presented here provide useful annotation information regarding sex-biased gene expression, novel Lepidopteran genes and gene function in the male gamete to complement the newly sequenced and annotated Manduca genome. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toxicogenomics is the study of changes in gene expression, protein, and metabolite profiles within cells and tissues, complementary to more traditional toxicological methods. Genomics tools provide detailed molecular data about the underlying biochemical mechanisms of toxicity, a...
Reverse-phase protein arrays (RPPA) represent a powerful functional proteomic approach to elucidate cancer-related molecular mechanisms and to develop novel cancer therapies. To facilitate community-based investigation of the large-scale protein expression data generated by this platform, we have developed a user-friendly, open-access bioinformatic resource, The Cancer Proteome Atlas (TCPA, http://tcpaportal.org), which contains two separate web applications.
Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.
Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung
2011-07-18
Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Selective staining of proteins with hydrophobic surface sites on a native electrophoretic gel.
Bertsch, Martina; Kassner, Richard J
2003-01-01
Chemical proteomics aims to characterize all of the proteins in the proteome with respect to their function, which is associated with their interaction with other molecules. We propose the identification of a subproteomic library of expressed proteins whose native structures are typified by the presence of hydrophobic surface sites, which are often involved in interactions with small molecules, membrane lipids, and other proteins, pertaining to their functions. We demonstrate that soluble globular proteins with hydrophobic surface sites can be detected selectively by staining on an electrophoretic gel run under nondenaturing conditions. The application of these staining techniques may help elucidate new catalytic, transport, and regulatory functionalities in complex proteomic screenings.
2011-01-01
Background Various protein expression systems, such as Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae), Pichia pastoris (P. pastoris), insect cells and mammalian cell lines, have been developed for the synthesis of G protein-coupled receptors (GPCRs) for structural studies. Recently, the crystal structures of four recombinant human GPCRs, namely β2 adrenergic receptor, adenosine A2a receptor, CXCR4 and dopamine D3 receptor, were successfully determined using an insect cell expression system. GPCRs expressed in insect cells are believed to undergo mammalian-like posttranscriptional modifications and have similar functional properties than in mammals. Crystal structures of GPCRs have not yet been solved using yeast expression systems. In the present study, P. pastoris and insect cell expression systems for the human muscarinic acetylcholine receptor M2 subtype (CHRM2) were developed and the quantity and quality of CHRM2 synthesized by both expression systems were compared for the application in structural studies. Results The ideal conditions for the expression of CHRM2 in P. pastoris were 60 hr at 20°C in a buffer of pH 7.0. The specific activity of the expressed CHRM2 was 28.9 pmol/mg of membrane protein as determined by binding assays using [3H]-quinuclidinyl benzilate (QNB). Although the specific activity of the protein produced by P. pastoris was lower than that of Sf9 insect cells, CHRM2 yield in P. pastoris was 2-fold higher than in Sf9 insect cells because P. pastoris was cultured at high cell density. The dissociation constant (Kd) for QNB in P. pastoris was 101.14 ± 15.07 pM, which was similar to that in Sf9 insect cells (86.23 ± 8.57 pM). There were no differences in the binding affinity of CHRM2 for QNB between P. pastoris and Sf9 insect cells. Conclusion Compared to insect cells, P. pastoris is easier to handle, can be grown at lower cost, and can be expressed quicker at a large scale. Yeast, P. pastoris, and insect cells are all effective expression systems for GPCRs. The results of the present study strongly suggested that protein expression in P. pastoris can be applied to the structural and biochemical studies of GPCRs. PMID:21513509
Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding
Sirois, Allison R.; Deny, Daniela A.; Baierl, Samantha R.; George, Katia S.
2018-01-01
Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics. PMID:29738555
FunSimMat: a comprehensive functional similarity database
Schlicker, Andreas; Albrecht, Mario
2008-01-01
Functional similarity based on Gene Ontology (GO) annotation is used in diverse applications like gene clustering, gene expression data analysis, protein interaction prediction and evaluation. However, there exists no comprehensive resource of functional similarity values although such a database would facilitate the use of functional similarity measures in different applications. Here, we describe FunSimMat (Functional Similarity Matrix, http://funsimmat.bioinf.mpi-inf.mpg.de/), a large new database that provides several different semantic similarity measures for GO terms. It offers various precomputed functional similarity values for proteins contained in UniProtKB and for protein families in Pfam and SMART. The web interface allows users to efficiently perform both semantic similarity searches with GO terms and functional similarity searches with proteins or protein families. All results can be downloaded in tab-delimited files for use with other tools. An additional XML–RPC interface gives automatic online access to FunSimMat for programs and remote services. PMID:17932054
Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris.
Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D
2009-06-29
VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.
Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris
Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D
2009-01-01
Background VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. Methods VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. Results From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. Conclusion These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development. PMID:19563628
Circular Permutation of a Chaperonin Protein: Biophysics and Application to Nanotechnology
NASA Technical Reports Server (NTRS)
Paavola, Chad; Chan, Suzanne; Li, Yi-Fen; McMillan, R. Andrew; Trent, Jonathan
2004-01-01
We have designed five circular permutants of a chaperonin protein derived from the hyperthermophilic organism Sulfolobus shibatae. These permuted proteins were expressed in E. coli and are well-folded. Furthermore, all the permutants assemble into 18-mer double rings of the same form as the wild-type protein. We characterized the thermodynamics of folding for each permutant by both guanidine denaturation and differential scanning calorimetry. We also examined the assembly of chaperonin rings into higher order structures that may be used as nanoscale templates. The results show that circular permutation can be used to tune the thermodynamic properties of a protein template as well as facilitating the fusion of peptides, binding proteins or enzymes onto nanostructured templates.
Development of a proteomic approach to monitor protein synthesis in mycotoxin producing moulds.
Milles, J; Krämer, J; Prange, A
2007-12-01
In general, proteome studies compare different states of metabolism to investigate external or internal influences on protein expression. In the context of mycotoxin production the method could open another view on this complex and could be helpful to gain knowledge about proteins which are involved in metabolism (enzymes, transporters). In this short technical report, we describe a new protocol suitable for protein preparation for whole proteome analysis ofFusarium graminearum. Cell lysis was performed by grinding the mycelium with liquid nitrogen. Proteins were extracted with TCA/acetone and then cleaned; the isolated proteins were separated in a 2D-gel electrophoresis system (BioRad) using different pH gradients. The protocol established seems also generally applicable for other mycotoxin producing fungi.
Chong, Seon-Ha; Kim, Kyunhoo; Choi, Dong Kyu; Thi Vu, Thu Trang; Nguyen, Minh Tan; Jeong, Boram; Ryu, Han-Bong; Kim, Injune; Jang, Yeon Jin; Robinson, Robert Charles; Choe, Han
2013-01-01
Human leukemia inhibitory factor (hLIF) is a multifunctional cytokine that is essential for maintaining the pluripotency of embryonic stem cells. hLIF may be also be useful in aiding fertility through its effects on increasing the implantation rate of fertilized eggs. Thus these applications in biomedical research and clinical medicine create a high demand for bioactive hLIF. However, production of active hLIF is problematic since eukaryotic cells demonstrate limited expression and prokaryotic cells produce insoluble protein. Here, we have adopted a hybrid protein disulfide isomerase design to increase the solubility of hLIF in Escherichia coli. Low temperature expression of hLIF fused to the b'a' domain of protein disulfide isomerase (PDIb'a') increased the soluble expression in comparison to controls. A simple purification protocol for bioactive hLIF was established that includes removal of the PDIb'a' domain by cleavage by TEV protease. The resulting hLIF, which contains one extra glycine residue at the N-terminus, was highly pure and demonstrated endotoxin levels below 0.05 EU/μg. The presence of an intramolecular disulfide bond was identified using mass spectroscopy. This purified hLIF effectively maintained the pluripotency of a murine embryonic stem cell line. Thus we have developed an effective method to produce a pure bioactive version of hLIF in E. coli for use in biomedical research. PMID:24358310
Sui, Tao; Ge, Da-Wei; Yang, Lei; Tang, Jian; Cao, Xiao-Jian; Ge, Ying-Bin
2017-04-01
Numerous studies have shown that topical application of mitomycin C after surgical decompression effectively reduces scar adhesion. However, the underlying mechanisms remain unclear. In this study, we investigated the effect of mitomycin C on the proliferation and apoptosis of human epidural scar fibroblasts. Human epidural scar fibroblasts were treated with various concentrations of mitomycin C (1, 5, 10, 20, 40 μg/mL) for 12, 24 and 48 hours. Mitomycin C suppressed the growth of these cells in a dose- and time-dependent manner. Mitomycin C upregulated the expression levels of Fas, DR4, DR5, cleaved caspase-8/9, Bax, Bim and cleaved caspase-3 proteins, and it downregulated Bcl-2 and Bcl-xL expression. In addition, inhibitors of caspase-8 and caspase-9 (Z-IETD-FMK and Z-LEHD-FMK, respectively) did not fully inhibit mitomycin C-induced apoptosis. Furthermore, mitomycin C induced endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78, CAAT/enhancer-binding protein homologous protein (CHOP) and caspase-4 in a dose-dependent manner. Salubrinal significantly inhibited the mitomycin C-induced cell viability loss and apoptosis, and these effects were accompanied by a reduction in CHOP expression. Our results support the hypothesis that mitomycin C induces human epidural scar fibroblast apoptosis, at least in part, via the endoplasmic reticulum stress pathway.
Scharf, Andrea; Rockel, Thomas Dino; von Mikecz, Anna
2007-06-01
Proteasomes are ATP-driven, multisubunit proteolytic machines that degrade endogenous proteins into peptides and play a crucial role in cellular events such as the cell cycle, signal transduction, maintenance of proper protein folding and gene expression. Recent evidence indicates that the ubiquitin-proteasome system is an active component of the cell nucleus. A characteristic feature of the nucleus is its organization into distinct domains that have a unique composition of macromolecules and dynamically form as a response to the requirements of nuclear function. Here, we show by systematic application of different immunocytochemical procedures and comparison with signature proteins of nuclear domains that during interphase endogenous proteasomes are localized diffusely throughout the nucleoplasm, in speckles, in nuclear bodies, and in nucleoplasmic foci. Proteasomes do not occur in the nuclear envelope region or the nucleolus, unless nucleoplasmic invaginations expand into this nuclear body. Confirmedly, proteasomal proteolysis is detected in nucleoplasmic foci, but is absent from the nuclear envelope or nucleolus. The results underpin the idea that the ubiquitin-proteasome system is not only located, but also proteolytically active in distinct nuclear domains and thus may be directly involved in gene expression, and nuclear quality control.
Lavdas, Alexandros A; Efrose, Rodica; Douris, Vassilis; Gaitanou, Maria; Papastefanaki, Florentia; Swevers, Luc; Thomaidou, Dimitra; Iatrou, Kostas; Matsas, Rebecca
2010-12-01
For biotechnological applications, insect cell lines are primarily known as hosts for the baculovirus expression system that is capable to direct synthesis of high levels of recombinant proteins through use of powerful viral promoters. Here, we demonstrate the implementation of two alternative approaches based on the baculovirus system for production of a mammalian recombinant glycoprotein, comprising the extracellular part of the cell adhesion molecule L1, with potential important therapeutic applications in nervous system repair. In the first approach, the extracellular part of L1 bearing a myc tag is produced in permanently transformed insect cell lines and purified by affinity chromatography. In the second approach, recombinant baculoviruses that express L1-Fc chimeric protein, derived from fusion of the extracellular part of L1 with the Fc part of human IgG1, under the control of a mammalian promoter are used to infect mammalian HEK293 and primary Schwann cells. Both the extracellular part of L1 bearing a myc tag accumulating in the supernatants of insect cultures as well as L1-Fc secreted by transduced HEK293 or Schwann cells are capable of increasing the motility of Schwann cells with similar efficiency in a gap bridging bioassay. In addition, baculovirus-transduced Schwann cells show enhanced motility when grafted on organotypic cultures of neonatal brain slices while they retain their ability to myelinate CNS axons. This proof-of-concept that the migratory properties of myelin-forming cells can be modulated by recombinant protein produced in insect culture as well as by means of baculovirus-mediated adhesion molecule expression in mammalian cells may have beneficial applications in the field of CNS therapies. ©2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.
Shimizu, Fumitaka; Tasaki, Ayako; Sano, Yasuteru; Ju, Mihua; Nishihara, Hideaki; Oishi, Mariko; Koga, Michiaki; Kawai, Motoharu; Kanda, Takashi
2014-01-01
Pathological destruction of blood-brain barrier (BBB) has been thought to be the initial key event in the process of developing multiple sclerosis (MS). The purpose of the present study was to clarify the possible molecular mechanisms responsible for the malfunction of BBB by sera from relapse-remitting MS (RRMS) and secondary progressive MS (SPMS) patients. We evaluated the effects of sera from the patients in the relapse phase of RRMS (RRMS-R), stable phase of RRMS (RRMS-S) and SPMS on the expression of tight junction proteins and vascular cell adhesion protein-1 (VCAM-1), and on the transendothelial electrical resistance (TEER) in human brain microvascular endothelial cells (BMECs). Sera from the RRMS-R or SPMS patients decreased the claudin-5 protein expression and the TEER in BMECs. In RRMS-R, this effect was restored after adding an MMP inhibitor, and the MMP-2/9 secretion by BMECs was significantly increased after the application of patients' sera. In SPMS, the immunoglobulin G (IgG) purified from patients' sera also decreased the claudin-5 protein expression and the TEER in BMECs. The sera and purified IgG from all MS patients increased the VCAM-1 protein expression in BMECs. The up-regulation of autocrine MMP-2/9 by BMECs after exposure to sera from RRMS-R patients or the autoantibodies against BMECs from SPMS patients can compromise the BBB. Both RRMS-S and SPMS sera increased the VCAM-1 expression in the BBB, thus indicating that targeting the VCAM-1 in the BBB could represent a possible therapeutic strategy for even the stable phase of MS and SPMS.
Yan, Li-Bo; Yu, You-Jia; Zhang, Qing-Bo; Tang, Xiao-Qiong; Bai, Lang; Huang, FeiJun; Tang, Hong
2018-05-01
The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication. © 2018 The Authors. Proteomics - Clinical Application Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Zheng; Bai, Jing; Wu, Aiwei; Wang, Yuan; Zhang, Jinwen; Wang, Zishan; Li, Yongsheng; Xu, Juan; Li, Xia
2015-01-01
Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological processes and diseases. However, the combinatorial effects of these molecules in a specific biological function are poorly understood. Identifying co-expressed protein-coding genes of lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we have developed Co-LncRNA, which is a web-based computational tool that allows users to identify GO annotations and KEGG pathways that may be affected by co-expressed protein-coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes were first identified in publicly available human RNA-Seq datasets, including 241 datasets across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA combinatorial effects in a given GO annotations or KEGG pathways are taken into account by the simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets, which is realized by enrichment analysis. In addition, this software provides a graphical overview of pathways that are modulated by lncRNAs, as well as a specific tool to display the relevant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA also supports users in uploading their own lncRNA and protein-coding gene expression profiles to investigate the lncRNA combinatorial effects. It will be continuously updated with more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a web-based application for investigating lncRNA combinatorial effects, which could shed light on their biological roles and could be a valuable resource for this community. Database URL: http://www.bio-bigdata.com/Co-LncRNA/ PMID:26363020
Lo, Ting Ling; Yusoff, Permeen; Fong, Chee Wai; Guo, Ke; McCaw, Ben J; Phillips, Wayne A; Yang, He; Wong, Esther Sook Miin; Leong, Hwei Fen; Zeng, Qi; Putti, Thomas Choudary; Guy, Graeme R
2004-09-01
Sprouty (Spry) proteins were found to be endogenous inhibitors of the Ras/mitogen-activated protein kinase pathway that play an important role in the remodeling of branching tissues. We investigated Spry expression levels in various cancers and found that Spry1 and Spry2 were down-regulated consistently in breast cancers. Such prevalent patterns of down-regulation may herald the later application of these isoforms as tumor markers that are breast cancer specific and more profound than currently characterized markers. Spry1 and 2 were expressed specifically in the luminal epithelial cells of breast ducts, with higher expression during stages of tissue remodeling when the epithelial ducts are forming and branching. These findings suggest that Sprys might be involved as a modeling counterbalance and surveillance against inappropriate epithelial expansion. The abrogation of endogenous Spry activity in MCF-7 cells by the overexpression of a previously characterized dominant-negative mutant of Spry, hSpry2Y55F resulted in enhanced cell proliferation in vitro. The hSpry2Y55F stably expressing cells also formed larger and greater number of colonies in the soft-agar assay. An in vivo nude mice assay showed a dramatic increase in the tumorigenic potential of hSpry2Y55F stable cells. The consistent down-regulation of Spry1 and 2 in breast cancer and the experimental evidence using a dominant-negative hSpry2Y55F indicate that Spry proteins may actively maintain tissue integrity that runs amok when their expression is decreased below normal threshold levels. This alludes to a previously unrecognized role for Sprys in cancer development.
High-Throughput Cloning and Expression Library Creation for Functional Proteomics
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-01-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047
Characterization and assembly of a GFP-tagged cylindriform silk into hexameric complexes.
Öster, Carl; Svensson Bonde, Johan; Bülow, Leif; Dicko, Cedric
2014-04-01
Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP-silk fusion protein is predominantly α-helical, and that pH can trigger a α- to β-transition resulting in aggregation. Structural analysis by small angle X-ray scattering suggests that the GFP-Silk exists in the form of a hexamer in solution. Copyright © 2013 Wiley Periodicals, Inc.
High-throughput cloning and expression library creation for functional proteomics.
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-05-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ProteinTracker: an application for managing protein production and purification
2012-01-01
Background Laboratories that produce protein reagents for research and development face the challenge of deciding whether to track batch-related data using simple file based storage mechanisms (e.g. spreadsheets and notebooks), or commit the time and effort to install, configure and maintain a more complex laboratory information management system (LIMS). Managing reagent data stored in files is challenging because files are often copied, moved, and reformatted. Furthermore, there is no simple way to query the data if/when questions arise. Commercial LIMS often include additional modules that may be paid for but not actually used, and often require software expertise to truly customize them for a given environment. Findings This web-application allows small to medium-sized protein production groups to track data related to plasmid DNA, conditioned media samples (supes), cell lines used for expression, and purified protein information, including method of purification and quality control results. In addition, a request system was added that includes a means of prioritizing requests to help manage the high demand of protein production resources at most organizations. ProteinTracker makes extensive use of existing open-source libraries and is designed to track essential data related to the production and purification of proteins. Conclusions ProteinTracker is an open-source web-based application that provides organizations with the ability to track key data involved in the production and purification of proteins and may be modified to meet the specific needs of an organization. The source code and database setup script can be downloaded from http://sourceforge.net/projects/proteintracker. This site also contains installation instructions and a user guide. A demonstration version of the application can be viewed at http://www.proteintracker.org. PMID:22574679
Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications
Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James
2016-01-01
Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts. PMID:27758134
Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.
Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander
2016-11-01
Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.
Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun
2010-10-01
Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.
Chimeric tRNAs as tools to induce proteome damage and identify components of stress responses.
Geslain, Renaud; Cubells, Laia; Bori-Sanz, Teresa; Alvarez-Medina, Roberto; Rossell, David; Martí, Elisa; Ribas de Pouplana, Lluís
2010-03-01
Misfolded proteins are caused by genomic mutations, aberrant splicing events, translation errors or environmental factors. The accumulation of misfolded proteins is a phenomenon connected to several human disorders, and is managed by stress responses specific to the cellular compartments being affected. In wild-type cells these mechanisms of stress response can be experimentally induced by expressing recombinant misfolded proteins or by incubating cells with large concentrations of amino acid analogues. Here, we report a novel approach for the induction of stress responses to protein aggregation. Our method is based on engineered transfer RNAs that can be expressed in cells or tissues, where they actively integrate in the translation machinery causing general proteome substitutions. This strategy allows for the introduction of mutations of increasing severity randomly in the proteome, without exposing cells to unnatural compounds. Here, we show that this approach can be used for the differential activation of the stress response in the Endoplasmic Reticulum (ER). As an example of the applications of this method, we have applied it to the identification of human microRNAs activated or repressed during unfolded protein stress.
A novel feature ranking method for prediction of cancer stages using proteomics data
Saghapour, Ehsan; Sehhati, Mohammadreza
2017-01-01
Proteomic analysis of cancers' stages has provided new opportunities for the development of novel, highly sensitive diagnostic tools which helps early detection of cancer. This paper introduces a new feature ranking approach called FRMT. FRMT is based on the Technique for Order of Preference by Similarity to Ideal Solution method (TOPSIS) which select the most discriminative proteins from proteomics data for cancer staging. In this approach, outcomes of 10 feature selection techniques were combined by TOPSIS method, to select the final discriminative proteins from seven different proteomic databases of protein expression profiles. In the proposed workflow, feature selection methods and protein expressions have been considered as criteria and alternatives in TOPSIS, respectively. The proposed method is tested on seven various classifier models in a 10-fold cross validation procedure that repeated 30 times on the seven cancer datasets. The obtained results proved the higher stability and superior classification performance of method in comparison with other methods, and it is less sensitive to the applied classifier. Moreover, the final introduced proteins are informative and have the potential for application in the real medical practice. PMID:28934234
Wu, Z; Wang, W; Li, Y; Rao, X
2014-01-01
Watermelon silver mottle virus (WSMoV) is an emerging disease of cucurbit crops in South China. Production of high-quality antibodies is necessary for the development of serological methods for detection of this virus. The nucleocapsid protein (NP) gene of WSMoV was amplified from WSMoV-infected watermelon leaves by RT-PCR and cloned into vector pET-28a (+) for prokaryotic expression. After identification via enzyme digestion and sequencing, the recombinant clone was transformed into Escherichia coli Rosetta (DE3) for protein expression. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the molecular weight of the WSMoV NP fusion protein was 34.1 kDa. The fusion protein was purified and used as antigen for the preparation of polyclonal antisera in rabbits. Results of indirect ELISA and western blot analysis showed that the antisera reacted specifically with WSMoV NP. In addition, sensitivity and specificity of the antisera were examined on a number of infected field samples by indirect ELISA. These findings will facilitate further immunological and serological studies of WSMoV. .
Klepp, Laura; Vazquez, Camila; Rocha, Roxana Valeria; Blanco, Federico Carlos; López, Beatriz; Bigi, Fabiana; Sasiain, María del Carmen
2014-01-01
Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb), formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM) and from Haarlem (H) lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB. PMID:25105140
Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification.
Zhang, Liangliang; Chen, Changmai; Fan, Xinli; Tang, Xinjing
2018-06-18
Caged siRNAs incorporating terminal modification were rationally designed for photochemical regulation of gene silencing induced by RNA interference (RNAi). Through the conjugation of a single oligonucleotide aptamer at the 5' terminus of the antisense RNA strand, enhancement of the blocking effect for RNA-induced silencing complex (RISC) formation/processing was expected, due both/either to the aptamers themselves and/or to their interaction with large binding proteins. Two oligonucleotide aptamers (AS1411 and MUC-1) were chosen for aptamer-siRNA conjugation through a photolabile linker. This caging strategy was successfully used to photoregulate gene expression both of firefly luciferase and of green fluorescent protein (GFP) in cells. Further patterning experiments revealed that spatial regulation of GFP expression was successfully achieved by using the aptamer-modified caged siRNA and light activation. We expect that further optimized caged siRNAs featuring aptamer conjugation will be promising for practical applications to spatiotemporal photoregulation of gene expression in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Stork, Martina; Tavan, Paul
2007-04-01
In the preceding paper by Stork and Tavan, [J. Chem. Phys. 126, 165105 (2007)], the authors have reformulated an electrostatic theory which treats proteins surrounded by dielectric solvent continua and approximately solves the associated Poisson equation [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)]. The resulting solution comprises analytical expressions for the electrostatic reaction field (RF) and potential, which are generated within the protein by the polarization of the surrounding continuum. Here the field and potential are represented in terms of Gaussian RF dipole densities localized at the protein atoms. Quite like in a polarizable force field, also the RF dipole at a given protein atom is induced by the partial charges and RF dipoles at the other atoms. Based on the reformulated theory, the authors have suggested expressions for the RF forces, which obey Newton's third law. Previous continuum approaches, which were also built on solutions of the Poisson equation, used to violate the reactio principle required by this law, and thus were inapplicable to molecular dynamics (MD) simulations. In this paper, the authors suggest a set of techniques by which one can surmount the few remaining hurdles still hampering the application of the theory to MD simulations of soluble proteins and peptides. These techniques comprise the treatment of the RF dipoles within an extended Lagrangian approach and the optimization of the atomic RF polarizabilities. Using the well-studied conformational dynamics of alanine dipeptide as the simplest example, the authors demonstrate the remarkable accuracy and efficiency of the resulting RF-MD approach.
Rasala, Beth A; Muto, Machiko; Lee, Philip A; Jager, Michal; Cardoso, Rosa MF; Behnke, Craig A; Kirk, Peter; Hokanson, Craig A; Crea, Roberto; Mendez, Michael; Mayfield, Stephen P
2010-01-01
Summary Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear if this is due to few attempts or to limitations of the system that preclude expression of many proteins. Thus, we sought to assess the versatility of transgenic algae as a recombinant protein production platform. To do this, we tested whether the algal chloroplast could support the expression of a diverse set of current or potential human therapeutic proteins. Of the seven proteins chosen, greater than 50% expressed at levels sufficient for commercial production. Three expressed at 2% to 3% of total soluble protein, while a forth protein accumulated to similar levels when translationally fused to a well-expressed serum amyloid protein. All of the algal chloroplast-expressed proteins are soluble and showed biological activity comparable to that of the same proteins expressed using traditional production platforms. Thus, the success rate, expression levels, and bioactivty achieved demonstrate the utility of C. reinhardtii as a robust platform for human therapeutic protein production. PMID:20230484
Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System
Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.
2015-01-01
Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221
Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.
López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M
2015-01-01
Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.
Nerve Growth Factor Inhibits Sympathetic Neurons' Response to an Injury Cytokine
NASA Astrophysics Data System (ADS)
Shadiack, Annette M.; Vaccariello, Stacey A.; Sun, Yi; Zigmond, Richard E.
1998-06-01
Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Eun-Jung, E-mail: pejtoxic@hanmail.net; Hong, Young-Shick; Lee, Byoung-Seok
2016-07-15
Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200 μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200 μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes andmore » increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries. - Highlights: • We evaluated local and systemic health effects following persistence of SWCNTs. • SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation. • Th1-polarized immune response was induced in the lung. • The expression of antigen presentation-related proteins was altered. • Immune and metabolic regulation function were disturbed.« less
Gwiazda, Kamila S; Grier, Alexandra E; Sahni, Jaya; Burleigh, Stephen M; Martin, Unja; Yang, Julia G; Popp, Nicholas A; Krutein, Michelle C; Khan, Iram F; Jacoby, Kyle; Jensen, Michael C; Rawlings, David J; Scharenberg, Andrew M
2016-09-29
Many future therapeutic applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 and related RNA-guided nucleases are likely to require their use to promote gene targeting, thus necessitating development of methods that provide for delivery of three components-Cas9, guide RNAs and recombination templates-to primary cells rendered proficient for homology-directed repair. Here, we demonstrate an electroporation/transduction codelivery method that utilizes mRNA to express both Cas9 and mutant adenoviral E4orf6 and E1b55k helper proteins in association with adeno-associated virus (AAV) vectors expressing guide RNAs and recombination templates. By transiently enhancing target cell permissiveness to AAV transduction and gene editing efficiency, this novel approach promotes efficient gene disruption and/or gene targeting at multiple loci in primary human T-cells, illustrating its broad potential for application in translational gene editing.
Hosseini-Abari, Afrouzossadat; Kim, Byung-Gee; Lee, Sang-Hyuk; Emtiazi, Giti; Kim, Wooil; Kim, June-Hyung
2016-12-01
Tyrosinases, copper-containing monooxygenases, are widely used enzymes for industrial, medical, and environmental applications. We report the first functional surface display of Bacillus megaterium tyrosinase on Bacillus subtilis spores using CotE as an anchor protein. Flow Cytometry was used to verify surface expression of tyrosinase on the purified spores. Moreover, tyrosinase activity of the displayed enzyme on B. subtilis spores was monitored in the presence of L-tyrosine (substrate) and CuSO 4 (inducer). The stability of the spore-displayed tyrosinase was then evaluated after 15 days maintenance of the spores at room temperature, and no significant decrease in the enzyme activity was observed. In addition, the tyrosinase-expressing spores could be repeatedly used with 62% retained enzymatic activity after six times washing with Tris-HCl buffer. This genetically immobilized tyrosinase on the spores would make a new advance in industrial, medical, and environmental applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tagliavia, Marcello; Cuttitta, Angela
2016-01-01
High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.
In vivo kinetic approach reveals slow SOD1 turnover in the CNS
Crisp, Matthew J.; Mawuenyega, Kwasi G.; Patterson, Bruce W.; Reddy, Naveen C.; Chott, Robert; Self, Wade K.; Weihl, Conrad C.; Jockel-Balsarotti, Jennifer; Varadhachary, Arun S.; Bucelli, Robert C.; Yarasheski, Kevin E.; Bateman, Randall J.; Miller, Timothy M.
2015-01-01
Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life. Here, we applied a stable isotope-labeling technique in combination with mass spectrometric detection and determined the in vivo kinetics of superoxide dismutase 1 (SOD1), mutation of which causes amyotrophic lateral sclerosis. Application of this method to human SOD1-expressing rats demonstrated that SOD1 is a long-lived protein, with a similar half-life in both the cerebral spinal fluid (CSF) and the CNS. Additionally, in these animals, the half-life of SOD1 was longest in the CNS when compared with other tissues. Evaluation of this method in human subjects demonstrated successful incorporation of the isotope label in the CSF and confirmed that SOD1 is a long-lived protein in the CSF of healthy individuals. Together, the results of this study provide important insight into SOD1 kinetics and support application of this technique to the design and implementation of clinical trials that target long-lived CNS proteins. PMID:26075819
In vivo kinetic approach reveals slow SOD1 turnover in the CNS.
Crisp, Matthew J; Mawuenyega, Kwasi G; Patterson, Bruce W; Reddy, Naveen C; Chott, Robert; Self, Wade K; Weihl, Conrad C; Jockel-Balsarotti, Jennifer; Varadhachary, Arun S; Bucelli, Robert C; Yarasheski, Kevin E; Bateman, Randall J; Miller, Timothy M
2015-07-01
Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life. Here, we applied a stable isotope-labeling technique in combination with mass spectrometric detection and determined the in vivo kinetics of superoxide dismutase 1 (SOD1), mutation of which causes amyotrophic lateral sclerosis. Application of this method to human SOD1-expressing rats demonstrated that SOD1 is a long-lived protein, with a similar half-life in both the cerebral spinal fluid (CSF) and the CNS. Additionally, in these animals, the half-life of SOD1 was longest in the CNS when compared with other tissues. Evaluation of this method in human subjects demonstrated successful incorporation of the isotope label in the CSF and confirmed that SOD1 is a long-lived protein in the CSF of healthy individuals. Together, the results of this study provide important insight into SOD1 kinetics and support application of this technique to the design and implementation of clinical trials that target long-lived CNS proteins.
Ma, Sanyuan; Shi, Run; Wang, Xiaogang; Liu, Yuanyuan; Chang, Jiasong; Gao, Jie; Lu, Wei; Zhang, Jianduo; Zhao, Ping; Xia, Qingyou
2014-01-01
Evolution has produced some remarkable creatures, of which silk gland is a fascinating organ that exists in a variety of insects and almost half of the 34,000 spider species. The impressive ability to secrete huge amount of pure silk protein, and to store proteins at an extremely high concentration (up to 25%) make the silk gland of Bombyx mori hold great promise to be a cost-effective platform for production of recombinant proteins. However, the extremely low production yields of the numerous reported expression systems greatly hindered the exploration and application of silk gland bioreactors. Using customized zinc finger nucleases (ZFN), we successfully performed genome editing of Bmfib-H gene, which encodes the largest and most abundant silk protein, in B. mori with efficiency higher than any previously reported. The resulted Bmfib-H knocked-out B. mori showed a smaller and empty silk gland, abnormally developed posterior silk gland cells, an extremely thin cocoon that contain only sericin proteins, and a slightly heavier pupae. We also showed that removal of endogenous Bmfib-H protein could significantly increase the expression level of exogenous protein. Furthermore, we demonstrated that the bioreactor is suitable for large scale production of protein-based materials. PMID:25359576
Prediction of cassava protein interactome based on interolog method.
Thanasomboon, Ratana; Kalapanulak, Saowalak; Netrphan, Supatcharee; Saithong, Treenut
2017-12-08
Cassava is a starchy root crop whose role in food security becomes more significant nowadays. Together with the industrial uses for versatile purposes, demand for cassava starch is continuously growing. However, in-depth study to uncover the mystery of cellular regulation, especially the interaction between proteins, is lacking. To reduce the knowledge gap in protein-protein interaction (PPI), genome-scale PPI network of cassava was constructed using interolog-based method (MePPI-In, available at http://bml.sbi.kmutt.ac.th/ppi ). The network was constructed from the information of seven template plants. The MePPI-In included 90,173 interactions from 7,209 proteins. At least, 39 percent of the total predictions were found with supports from gene/protein expression data, while further co-expression analysis yielded 16 highly promising PPIs. In addition, domain-domain interaction information was employed to increase reliability of the network and guide the search for more groups of promising PPIs. Moreover, the topology and functional content of MePPI-In was similar to the networks of Arabidopsis and rice. The potential contribution of MePPI-In for various applications, such as protein-complex formation and prediction of protein function, was discussed and exemplified. The insights provided by our MePPI-In would hopefully enable us to pursue precise trait improvement in cassava.
Salicylic acid interferes with GFP fluorescence in vivo
de Jonge, Jennifer; Hofius, Daniel
2017-01-01
Abstract Fluorescent proteins have become essential tools for cell biologists. They are routinely used by plant biologists for protein and promoter fusions to infer protein localization, tissue‐specific expression and protein abundance. When studying the effects of biotic stress on chromatin, we unexpectedly observed a decrease in GFP signal intensity upon salicylic acid (SA) treatment in Arabidopsis lines expressing histone H1-GFP fusions. This GFP signal decrease was dependent on SA concentration. The effect was not specific to the linker histone H1-GFP fusion but was also observed for the nucleosomal histone H2A-GFP fusion. This result prompted us to investigate a collection of fusion proteins, which included different promoters, subcellular localizations and fluorophores. In all cases, fluorescence signals declined strongly or disappeared after SA application. No changes were detected in GFP‐fusion protein abundance when fluorescence signals were lost indicating that SA does not interfere with protein stability but GFP fluorescence. In vitro experiments showed that SA caused GFP fluorescence reduction only in vivo but not in vitro, suggesting that SA requires cellular components to cause fluorescence reduction. Together, we conclude that SA can interfere with the fluorescence of various GFP‐derived reporter constructs in vivo. Assays that measure relocation or turnover of GFP‐tagged proteins upon SA treatment should therefore be evaluated with caution. PMID:28369601
Analysis of gene expression on anodic porous alumina microarrays
Nicolini, Claudio; Singh, Manjul; Spera, Rosanna; Felli, Lamberto
2013-01-01
This paper investigates the application of anodic porous alumina as an advancement on chip laboratory for gene expressions. The surface was prepared by a suitable electrolytic process to obtain a regular distribution of deep micrometric holes and printed bypen robot tips under standard conditions. The gene expression within the Nucleic Acid Programmable Protein Array (NAPPA) is realized in a confined environment of 16 spots, containing circular DNA plasmids expressed using rabbit reticulocyte lysate. Authors demonstrated the usefulness of APA in withholding the protein expression by detecting with a CCD microscope the photoluminescence signal emitted from the complex secondary antibody anchored to Cy3 and confined in the pores. Friction experiments proved the mechanical resistance under external stresses by the robot tip pens printing. So far, no attempts have been made to directly compare APA with any other surface/substrate; the rationale for pursuing APA as a potential surface coating is that it provides advantages over the simple functionalization of a glass slide, overcoming concerns about printing and its ability to generate viable arrays. PMID:23783000
Yoshida, Ryu; Murray, Martha M.
2012-01-01
Use of platelet-rich plasma (PRP) has shown promise in various orthopaedic applications, including treatment of anterior cruciate ligament (ACL) injuries. However, various components of blood, including peripheral blood mononuclear cells (PBMCs), are removed in the process of making PRP. It is yet unknown whether these PBMCs have a positive or negative effect on fibroblast behavior. To begin to define the effect of PBMCs on ACL fibroblasts, ACL fibroblasts were cultured on three-dimensional collagen scaffolds for 14 days with and without PBMCs. ACL fibroblasts exposed to PBMCs showed increased type I and type III procollagen gene expression, collagen protein expression, and cell proliferation when the cells were cultured in the presence of platelets and plasma. However, addition of PBMCs to cells cultured without the presence of platelets had no effect. The increase in collagen gene and protein expression was accompanied by an increase in IL-6 expression by the PBMCs with exposure to the platelets. Our results suggest that the interaction between platelets and PBMCs leads to an IL-6 mediated increase in collagen expression by ACL fibroblasts. PMID:22767425
RNA-ID, a Powerful Tool for Identifying and Characterizing Regulatory Sequences.
Brule, C E; Dean, K M; Grayhack, E J
2016-01-01
The identification and analysis of sequences that regulate gene expression is critical because regulated gene expression underlies biology. RNA-ID is an efficient and sensitive method to discover and investigate regulatory sequences in the yeast Saccharomyces cerevisiae, using fluorescence-based assays to detect green fluorescent protein (GFP) relative to a red fluorescent protein (RFP) control in individual cells. Putative regulatory sequences can be inserted either in-frame or upstream of a superfolder GFP fusion protein whose expression, like that of RFP, is driven by the bidirectional GAL1,10 promoter. In this chapter, we describe the methodology to identify and study cis-regulatory sequences in the RNA-ID system, explaining features and variations of the RNA-ID reporter, as well as some applications of this system. We describe in detail the methods to analyze a single regulatory sequence, from construction of a single GFP variant to assay of variants by flow cytometry, as well as modifications required to screen libraries of different strains simultaneously. We also describe subsequent analyses of regulatory sequences. © 2016 Elsevier Inc. All rights reserved.