Science.gov

Sample records for expressing murine cd40

  1. Trypanosoma cruzi infection induces the expression of CD40 in murine cardiomyocytes favoring CD40 ligation-dependent production of cardiopathogenic IL-6.

    PubMed

    Ayala, Mariela Alejandra Moreno; Casasco, Agustina; González, Mariela; Postan, Miriam; Corral, Ricardo Santiago; Petray, Patricia Beatriz

    2016-02-01

    The inflammatory response in the myocardium is an important aspect of the pathogenesis of Chagas' heart disease raised by Trypanosoma cruzi. CD40, a transmembrane type I receptor belonging to the tumor necrosis factor receptor (TNFR) family, is expressed in a broad spectrum of cell types and is crucial in several inflammatory and autoimmune diseases. Activation of CD40 through ligation to CD40L (CD154) induces multiple effects, including the secretion of proinflammatory molecules. In the present study, we examined the ability of T. cruzi to trigger the expression of CD40 in cardiac myocytes in vitro and in a murine model of chagasic cardiomyopathy. Our results indicate, for the first time, that T. cruzi is able to induce the expression of CD40 in HL-1 murine cardiomyocytes. Moreover, ligation of CD40 receptor upregulated interleukin-6 (IL-6), associated with inflammation. Furthermore, the induction of this costimulatory molecule was demonstrated in vivo in myocardium of mice infected with T. cruzi. This suggests that CD40-bearing cardiac muscle cells could interact with CD40L-expressing lymphocytes infiltrating the heart, thus contributing to inflammatory injury in chagasic cardiomyopathy.

  2. Separate cis-trans Pathways Post-transcriptionally Regulate Murine CD154 (CD40 Ligand) Expression

    PubMed Central

    Hamilton, B. JoNell; Wang, Xiao-Wei; Collins, Jane; Bloch, Donald; Bergeron, Alan; Henry, Brian; Terry, Benjamin M.; Zan, Moe; Mouland, Andrew J.; Rigby, William F. C.

    2008-01-01

    We report a role for CA repeats in the 3′-untranslated region (3′-UTR) in regulating CD154 expression. Human CD154 is encoded by an unstable mRNA; this instability is conferred in cis by a portion of its 3′-UTR that includes a polypyrimidine-rich region and CA dinucleotide repeat. We demonstrate similar instability activity with the murine CD154 3′-UTR. This instability element mapped solely to a conserved 100-base CU-rich region alone, which we call a CU-rich response element. Surprisingly, the CA dinucleotide-rich region also regulated reporter expression but at the level of translation. This activity was associated with poly(A) tail shortening and regulated by heterogeneous nuclear ribonucleoprotein L levels. We conclude that the CD154 3′-UTR contains dual cis-acting elements, one of which defines a novel function for exonic CA dinucleotide repeats. These findings suggest a mechanism for the association of 3′-UTR CA-rich response element polymorphisms with CD154 overexpression and the subsequent risk of autoimmune disease. PMID:18640985

  3. Genomic structure and chromosomal mapping of the murine CD40 gene

    SciTech Connect

    Grimaldi, J.C.; Chang, R.; Howard, M.; Cockayne, D.A. ); Torres, R.; Clark, E.A. ); Kozak, C.A. )

    1992-12-15

    The B cell-associated surface molecule, CD40, is likely to play a central role in the expansion of Ag-stimulated B cells, and their interaction with activated Th cells. In this study the authors have isolated genomic clones of murine CD40 from a mouse liver genomic DNA library. Comparison with the murine CD40 cDNA sequence revealed the presence of nine exons that together contain the entire murine CD40 coding region, and span approximately 16.3 kb of genomic DNA. The intron/exon structure of the CD40 gene resembles that of the low affinity nerve growth factor receptor gene, a close homolog of both human and murine CD40. In both cases the functional domains of the receptor molecules are separated onto different exons throughout the genes. Southern blot analysis demonstrated that murine CD40 is a single copy gene that maps in the distal region of mouse chromosome 2. 58 refs., 4 figs., 1 tab.

  4. CD40 engagement on dendritic cells, but not on B or T cells, is required for long-term control of murine gammaherpesvirus 68.

    PubMed

    Giannoni, Francesca; Shea, Ashley; Inglis, Chandra; Lee, Lian Ni; Sarawar, Sally R

    2008-11-01

    CD4 T cells are not essential for primary clearance of replicating murine gammaherpesvirus 68 (MHV-68) but are required for effective long-term control. The virus reactivates in the lungs of major histocompatibility complex class II-deficient (CII-/-) mice that lack functional CD4 T cells. CD40 ligand (CD40L) is upregulated on activated CD4 T cells, and it is thought that CD40-CD40L interactions are an important component of CD4 T-cell help. Our previous studies have shown that agonistic antibodies to CD40 can substitute for CD4 T-cell function in the long-term control of MHV-68. In the present study, we sought to identify the CD40-positive cell type mediating this effect. To address this question, we adoptively transferred MHV-68 peptide-pulsed CII(-/-) dendritic cells (DC) that had been treated with an agonistic antibody to CD40 into MHV-68-infected CII(-/-) recipients. Viral reactivation was significantly lower in mice injected with anti-CD40-treated DC than in those injected with control DC or in mice that did not receive any DC. However, in similar experiments with B cells, anti-CD40 treatment had no effect. We also investigated the requirement for CD40 expression on T cells by adoptive transfer of T cells from CD40(+/+) or CD40(-/-) mice into T-cell-deficient recipients that were subsequently infected with MHV-68. The results showed that CD40 expression on T cells is not necessary for preventing viral reactivation. Taken together, our data suggest that CD40 engagement on DC, but not on T or B cells, is essential for effective long-term control of MHV-68.

  5. Clinical disease upregulates expression of CD40 and CD40 ligand on peripheral blood mononuclear cells from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD40 and CD40L interactions have costimulatory effects that are part of a complex series of events in host cellular and humoral immune responses and inflammation. The purpose of this study was to examine the changes in expression of CD40 and CD40L on peripheral blood mononuclear cells (PBMCs) isolat...

  6. CD40 Expression in Fibrocytes Is Induced by TSH: Potential Synergistic Immune Activation

    PubMed Central

    Mester, Tünde; Raychaudhuri, Nupur; Gillespie, Erin F.; Chen, Hong; Smith, Terry J.; Douglas, Raymond S.

    2016-01-01

    Context Fibrocytes appear to participate in inflammation and tissue remodeling in patients with thyroid-associated ophthalmopathy (TAO). These patients have increased frequencies of circulating TSH receptor (TSHR)- and CD40-positive fibrocytes, suggesting TSHR and CD40 may play roles in proinflammatory cytokine production, which ultimately leads to orbital inflammation and tissue remodeling. Objective To investigate the potential interactions between the TSHR and CD40 signaling pathways and their roles in IL-6 and TNF-α production. Design and Outcome Measures CD40 expression on fibrocytes was assessed using flow cytometry; IL-6 and TNF-α protein release using Luminex technology; increased IL-6 and TNF-α mRNA abundance, using real-time PCR; TSH- and CD40 ligand (CD40L)-stimulated Akt phosphorylation in fibrocytes, by western blot analysis; TSHR-CD40 protein-protein interaction, using co-immunoprecipitation, and CD40-TSHR co-localization, using immunocytochemistry. Results TSH enhances CD40 expression at a pre-translational level in fibrocytes. Production of IL-6 and TNF-α after costimulation with TSH and CD40L was greater than that after TSH or CD40L stimulation alone. TSH and CD40L costimulation also resulted in greater Akt phosphorylation. Akt and nuclear factor (NF)-κB inhibitors significantly reduced cytokine production after TSH and CD40L costimulation. TSHR and CD40L are colocalized on the cell surface and form a complex. Conclusions TSHR and CD40 in fibrocytes appear to be physically and functionally related. TSH stimulates CD40 production on the fibrocyte surface. Cytokine expression upon simultaneous stimulation of TSHR and CD40 is greater than levels achieved with TSH or CD40L alone. Increased expression of CD40 by TSH is a potential mechanism for this process. PMID:27631497

  7. Functional CD40 ligand is expressed by T cells in rheumatoid arthritis.

    PubMed Central

    MacDonald, K P; Nishioka, Y; Lipsky, P E; Thomas, R

    1997-01-01

    CD40 ligand (CD40-L), a member of the tumor necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. Interactions between CD40-L and CD40 induce B cell immunoglobulin production as well as monocyte activation and dendritic cell differentiation. Since these features characterize rheumatoid arthritis (RA), the expression and function of CD40-L in RA was examined. Freshly isolated RA peripheral blood (PB) and synovial fluid (SF) T cells expressed CD40-L mRNA as well as low level cell surface CD40-L. An additional subset of CD4+ RA SF T cells upregulated cell surface CD40-L expression within 15 min of in vitro activation even in the presence of cycloheximide, but soluble CD40-L was not found in SF. CD40-L expressed by RA T cells was functional, since RA PB and SF T cells but not normal PB T cells stimulated CD40-L-dependent B cell immunoglobulin production and dendritic cell IL-12 expression in the absence of prolonged in vitro T cell activation. In view of the diverse proinflammatory effects of CD40-L, this molecule is likely to play a central role in the perpetuation of rheumatoid synovitis. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA. PMID:9410920

  8. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  9. Involvement of mitogen-activated protein kinases and NFkappaB in LPS-induced CD40 expression on human monocytic cells.

    PubMed

    Wu, Weidong; Alexis, Neil E; Chen, Xian; Bromberg, Philip A; Peden, David B

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFkappaB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFkappaB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFkappaB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFkappaB activation, and CD40 expression. Moreover, blockage of MAPK and NFkappaB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFkappaB.

  10. The CD40 ligand expressed by human B cells costimulates B cell responses.

    PubMed

    Grammer, A C; Bergman, M C; Miura, Y; Fujita, K; Davis, L S; Lipsky, P E

    1995-05-15

    The possibility that activated B cells might express a ligand for CD40 that was of functional importance for B cell responses was examined by using highly purified human peripheral blood B cells, as well as a variety of B lymphoblastoid cell lines and hybridomas. Following stimulation with the combination of a calcium ionophore and a phorbol ester, human B cells bound a soluble fusion protein containing the extracellular portion of CD40 and the Fc region of IgG1 (CD40.Ig). A variety of B cell lines and hybridomas also bound CD40.Ig, either constitutively or after activation. In addition, CD40.Ig specifically immunoprecipitated a 33-kDa glycoprotein from surface 125I-labeled activated B cells. The nucleotide sequence of the coding region of the CD40 ligand mRNA amplified by RT-PCR from activated T cells and B cell lines was identical. The CD40 ligand expressed on human B cells was important functionally because homotypic aggregation of CD40 ligand-expressing B cells was inhibited by the CD40.Ig construct. Additionally, RNA and DNA synthesis as well as Ig production by polyclonally activated, highly purified peripheral B cells and a variety of B cell lines were inhibited significantly by the CD40.Ig construct. Finally, B cell lines expressing the CD40 ligand induced Ig production from resting normal B cells in a CD40-dependent manner. These results indicate that human B cells express a ligand for CD40 that is identical with that expressed by activated T cells and that the B cell-expressed CD40 ligand plays an important role in facilitating responses of activated B cells.

  11. T cell-expressed CD40L potentiates the bone anabolic activity of intermittent PTH treatment.

    PubMed

    Robinson, Jerid W; Li, Jau-Yi; Walker, Lindsey D; Tyagi, Abdul Malik; Reott, Michael A; Yu, Mingcan; Adams, Jonathan; Weitzmann, M Neale; Pacifici, Roberto

    2015-04-01

    T cells are known to potentiate the bone anabolic activity of intermittent parathyroid hormone (iPTH) treatment. One of the involved mechanisms is increased T cell secretion of Wnt10b, a potent osteogenic Wnt ligand that activates Wnt signaling in stromal cells (SCs). However, additional mechanisms might play a role, including direct interactions between surface receptors expressed by T cells and SCs. Here we show that iPTH failed to promote SC proliferation and differentiation into osteoblasts (OBs) and activate Wnt signaling in SCs of mice with a global or T cell-specific deletion of the T cell costimulatory molecule CD40 ligand (CD40L). Attesting to the relevance of T cell-expressed CD40L, iPTH induced a blunted increase in bone formation and failed to increase trabecular bone volume in CD40L(-/-) mice and mice with a T cell-specific deletion of CD40L. CD40L null mice exhibited a blunted increase in T cell production of Wnt10b and abrogated CD40 signaling in SCs in response to iPTH treatment. Therefore, expression of the T cell surface receptor CD40L enables iPTH to exert its bone anabolic activity by activating CD40 signaling in SCs and maximally stimulating T cell production of Wnt10b.

  12. gamma/delta T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes

    PubMed Central

    1995-01-01

    T cells expressing gamma/delta T cell receptors home to epithelial tissue and may play a role in immunity to infectious agents and foreign antigens. In an effort to understand the role of gamma/delta T cells in directing B cell responses, we investigated the capacity of human gamma/delta T cells to express CD40 ligand (CD40L) and to drive immunoglobulin (Ig) isotype switching in B cells. A multiple step purification procedure resulted in the recovery of highly pure populations of peripheral blood CD4-CD8- gamma/delta T cells. Neither CD40L surface expression nor CD40L mRNA were detected in unstimulated gamma/delta T cells. Stimulation with phorbol ester and ionomycin induced CD40L mRNA and surface CD40L expression by gamma/delta T cells. Both the percentage of CD40L+ cells and the cell surface density of CD40L were significantly lower in gamma/delta T cells compared to unselected T cells. We further demonstrated that in the presence of neutralizing monoclonal antibody to interferon gamma (IFN-gamma), gamma/delta T cells could induce IgE synthesis in B cells, albeit to a lesser extent than unselected T cells. Furthermore, IgE synthesis driven by gamma/delta T cells was inhibited by monoclonal antibody to CD40L. These observations demonstrate that activated gamma/delta T cells express CD40L and can induce isotype switching in B cells. PMID:7869041

  13. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  14. CD40-CD40 ligand (CD154) engagement is required but not sufficient for modulating MHC class I, ICAM-1 and Fas expression and proliferation of human non-small cell lung tumors.

    PubMed

    Yamada, M; Shiroko, T; Kawaguchi, Y; Sugiyama, Y; Egilmez, N K; Chen, F A; Bankert, R B

    2001-05-15

    To determine the possible functional significance of CD40 expression on human non-small cell lung carcinomas and to assess the potential of CD40 as a therapeutic target, 18 lung tumor cell lines were established from biopsy tissues and were monitored for phenotypic changes on the cell surface and alterations in tumor cell proliferation after the ligation of CD40 with a trimeric fusion protein complex of CD40 ligand (CD40Lt). CD40 cross-linking resulted in up to a 6-fold increase in the surface expression of major histocompatibility complex (MHC) class I, Fas and intracellular adhesion molecule (ICAM)-1 in a subset of tumors expressing the highest levels of CD40. Suppression of tumor proliferation was seen after the ligation of CD40 on CD40Lt-responsive cell lines. The suppression was dose dependent, reversible and resulted from a delay of the tumor cells entering S-phase. No change in the cell phenotype or in proliferation were observed in CD40-negative tumors or in tumors expressing moderate-to-low levels of CD40 after incubation with CD40Lt. CD40-negative tumors transfected with the CD40 gene expressed high levels of CD40 on their surface, but were also unresponsive to CD40Lt cross-linking of CD40. Our data establish that CD40 is required (but not sufficient) for transducing a signal that results in phenotypic changes in human lung tumors and suppression in their proliferation. We conclude that CD40 on non-small cell lung tumors may represent a potential therapeutic target, but only on a subset of the CD40+ tumors.

  15. The role of CD40 ligand in systemic lupus erythematosus.

    PubMed

    Yazdany, J; Davis, J

    2004-01-01

    CD40 ligand (CD40L, also known as CD154 or gp39) is a member of the tumor necrosis superfamily of transmembrane proteins. The interaction of CD40L on activated T cells with its receptor, CD40 on B cells, is necessary for normal immune function, including B cell differentiation, germinal center formation, and antibody isotype switching. Abnormal expression of CD40L in patients with systemic lupus erythematosus (SLE) may contribute to autoantibody production and disease pathogenesis. Although murine models of monoclonal antibodies directed against CD40L initially showed promise, human trials either have failed to demonstrate efficacy or have been associated with adverse events. This review will summarize in vitro and murine model data and human clinical trials involving anti-CD40L monoclonal antibody.

  16. Chorioamnionitis is associated with increased CD40L expression on cord blood platelets.

    PubMed

    Sitaru, Ana-Gabriela; Speer, Christian P; Holzhauer, Susanne; Obergfell, Achim; Walter, Ulrich; Grossmann, Ralf

    2005-12-01

    Chorioamnionitis (CA) is a severe infection responsible not only for premature birth but also for many severe neonatal diseases. The aim of the present study was to investigate the expression of CD40L and P-selectin on platelets and the plasma levels of their soluble forms in the umbilical cord blood in infants with documented chorioamnionitis. Umbilical cord blood samples were obtained from 10 healthy term newborns, 10 non-infected preterm infants, 10 preterm infants with premature rupture of membranes and 9 preterm infants with clinical and histological CA. The expression of CD40L and P-selectin on platelets was analyzed by flow cytometry. Soluble P-selectin (sCD62P), soluble CD40L (sCD40L) and interleukine-6 (IL-6) were measured in plasma by ELISA assays. Neonates with CA had significantly higher percentages of platelets expressing CD40L in basal conditions (5.3 +/- 2.9% vs. 1.6 +/- 0.7% and in non-infected preterm infants p < 0.05), while the percentages of P-selectin positive platelets were similar among all groups. In contrast, the level of sP-selectin was higher in infants with CA (222 +/- 128 ng/ml vs. 104 +/- 71 ng/ml in non-infected preterm infants, p < 0.05) but no differences were found in the levels of sCD40L. As expected, the levels of IL-6, a pro-inflammatory cytokine were significantly higher in samples obtained from preterm neonates whose mothers had also elevated inflammatory parameters. Our observations suggest that platelets are involved in the complex inflammatory pathogenesis of CA. Neither P-selectin expression on cord blood platelets nor plasma sP-selectin or sCD40L were suitable platelet markers in CA, whereas CD40L was significantly elevated in histologically proven CA.

  17. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    SciTech Connect

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar; Chattopadhyay, Samit

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thus releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.

  18. INVOLVEMENT OF TOLL-LIKE RECEPTOR 4 AND MAPK PATHWAYS IN LPS-INDUCED CD40 EXPRESSION IN MONOCYTIC CELLS

    EPA Science Inventory

    CD40 is a co-stimulatory surface molecule actively expressed on mature dendritic cells (DC). Recent studies suggest that endotoxin (LPS) inhalation induces DC maturation in the airways of healthy volunteers. To characterize the effect of LPS on CD40 expression and underlying mech...

  19. A novel CD40LG deletion causes the hyper-IgM syndrome with normal CD40L expression in a 6-month-old child.

    PubMed

    López-Herrera, Gabriela; Maravillas-Montero, José Luis; Vargas-Hernández, Alexander; Berrón-Ruíz, Laura; Ramírez-Sánchez, Emmanuel; Yamazaki-Nakashimada, Marco Antonio; Espinosa-Rosales, Francisco Javier; Santos-Argumedo, Leopoldo

    2015-05-01

    The X-linked hyper-IgM syndrome (XHIGM) is the most common form of HIGM. Patients are clinically diagnosed on the basis of recurrent sinopulmonary infections, accompanied with low levels of IgG and IgA, normal to elevated levels of IgM, and the presence of peripheral B cells. Here, we have reported a novel deletion of four nucleotides in CD40LG exon 3, c.375_378delCAAA, which led to a frameshift mutation with a premature stop codon, p.Asn101*126. The deletion resulted in a truncated protein, in which majority of the extracellular domain was lost. However, detection of surface CD40L was still possible as the intracellular, transmembrane, and part of the extracellular domains were not affected. This indicated that this mutation did not affect protein stability and that immunodetection of CD40L expression is not enough for the diagnosis of XHIGM. Our study strongly suggests that genetic diagnosis for XHIGM should always be performed when clinical data support this diagnosis and CD40L protein is present.

  20. Latent virus infection upregulates CD40 expression facilitating enhanced autoimmunity in a model of multiple sclerosis

    PubMed Central

    Casiraghi, Costanza; Citlali Márquez, Ana; Shanina, Iryna; Steven Horwitz, Marc

    2015-01-01

    Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS) by multiple groups working worldwide. Previously, we reported that when experimental autoimmune encephalomyelitis (EAE) was induced in mice latently infected with murine γ-herpesvirus 68 (γHV-68), the murine homolog to EBV, a disease more reminiscent of MS developed. Specifically, MS-like lesions developed in the brain that included equal numbers of IFN-γ producing CD4+ and CD8+ T cells and demyelination, none of which is observed in MOG induced EAE. Herein, we demonstrate that this enhanced disease was dependent on the γHV-68 latent life cycle and was associated with STAT1 and CD40 upregulation on uninfected dendritic cells. Importantly, we also show that, during viral latency, the frequency of regulatory T cells is reduced via a CD40 dependent mechanism and this contributes towards a strong T helper 1 response that resolves in severe EAE disease pathology. Latent γ-herpesvirus infection established a long-lasting impact that enhances subsequent adaptive autoimmune responses. PMID:26356194

  1. Nanovesicle-targeted Kv1.3 knockdown in memory T cells suppresses CD40L expression and memory phenotype.

    PubMed

    Chimote, Ameet A; Hajdu, Peter; Kottyan, Leah C; Harley, John B; Yun, Yeoheung; Conforti, Laura

    2016-05-01

    Ca(2+) signaling controls activation and effector functions of T lymphocytes. Ca(2+) levels also regulate NFAT activation and CD40 ligand (CD40L) expression in T cells. CD40L in activated memory T cells binds to its cognate receptor, CD40, on other cell types resulting in the production of antibodies and pro-inflammatory mediators. The CD40L/CD40 interaction is implicated in the pathogenesis of autoimmune disorders and CD40L is widely recognized as a therapeutic target. Ca(2+) signaling in T cells is regulated by Kv1.3 channels. We have developed lipid nanoparticles that deliver Kv1.3 siRNAs (Kv1.3-NPs) selectively to CD45RO(+) memory T cells and reduce the activation-induced Ca(2+) influx. Herein we report that Kv1.3-NPs reduced NFAT activation and CD40L expression exclusively in CD45RO(+) T cells. Furthermore, Kv1.3-NPs suppressed cytokine release and induced a phenotype switch of T cells from predominantly memory to naïve. These findings indicate that Kv1.3-NPs operate as targeted immune suppressive agents with promising therapeutic potentials.

  2. Involvement of the cytoplasmic cysteine-238 of CD40 in its up-regulation of CD23 expression and its enhancement of TLR4-triggered responses.

    PubMed

    Nadiri, Amal; Jundi, Malek; El Akoum, Souhad; Hassan, Ghada S; Yacoub, Daniel; Mourad, Walid

    2015-11-01

    CD40, a member of the tumor necrosis factor receptor superfamily, plays a key role in both adaptive and innate immunity. Engagement of CD40 with its natural trimeric ligand or with cross-linked antibodies results in disulfide-linked CD40 (dl-CD40) homodimer formation, a process mediated by the cysteine-238 residues of the cytoplasmic tail of CD40. The present study was designed to elucidate the biological relevance of cysteine-238-mediated dl-CD40 homodimers to the expression of CD23 on B cells and to investigate its possible involvement in the innate response. Our results indicate that cysteine-238-mediated dl-CD40 homodimerization is required for CD40-induced activation of PI3-kinase/Akt signaling and the subsequent CD23 expression, as inhibition of dl-CD40 homodimer formation through a point mutation-approach specifically impairs these responses. Interestingly, cysteine-238-mediated dl-CD40 homodimers are also shown to play a crucial role in Toll-like receptor 4-induced CD23 expression, further validating the importance of this system in bridging innate and adaptive immune responses. This process also necessitates the activation of the PI3-kinase/Akt cascade. Thus, our results highlight new roles for CD40 and cysteine-238-mediated CD40 homodimers in cell biology and identify a potential new target for therapeutic strategies against CD40-associated chronic inflammatory diseases.

  3. Impaired Tumor Antigen Processing by Immunoproteasome-expressing CD40-Activated B cells and Dendritic Cells

    PubMed Central

    Anderson, Karen S.; Zeng, Wanyong; Sasada, Tetsuro; Su, Mei; Choi, Jaewon; Drakoulakos, Donna; Kang, Yoon-Joong; Brusic, Vladimir; Wu, Catherine; Reinherz, Ellis L.

    2012-01-01

    Professional APCs, such as dendritic cells, are routinely used in vitro for the generation of cytotoxic T lymphocytes specific for tumor antigens. In addition to dendritic cells, CD40-activated B cells and variant K562 leukemic cells can be readily transfected with nucleic acids for in vitro and in vivo antigen presentation. However, the expression of immunoproteasome components in dendritic cells may preclude display of tumor antigens such as Mart1/MelanA. Here, we use three target epitopes, two derived from tumor antigens [Mart126–34 (M26) and Cyp1B1239–247 (Cyp239)] and one derived from the Influenza A viral antigen [FluM158–66 (FluM58)], to demonstrate that CD40-activated B cells, like dendritic cells, have a limited capability to process certain tumor antigens. In contrast, the K562 HLA-A*0201 transfectant efficiently processes and presents M26 and Cyp239 as well as the influenza FluM58 epitopes to T cells. These results demonstrate that the choice of target APC for gene transfer of tumor antigens may be limited by the relative efficacy of proteasome components to process certain tumor epitopes. Importantly, K562 can be exploited as an artificial APC, efficient in processing both M26 and Cyp239 epitopes and presumably, by extension, other relevant tumor antigens. PMID:21400024

  4. Multimeric soluble CD40 ligand (sCD40L) efficiently enhances HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens.

    PubMed

    Gómez, Carmen E; Nájera, José L; Sánchez, Raquel; Jiménez, Victoria; Esteban, Mariano

    2009-05-21

    The attenuated poxvirus vectors MVA and NYVAC are now in clinical trials against HIV/AIDS. Due to the vectors restricted replication capacity in human cells, approaches to enhance their immunogenicity are highly desirable. Here, we have analyzed the ability of a soluble form of hexameric CD40L (sCD40L) to stimulate specific immune responses to HIV antigens when inoculated in mice during priming with DNA and in the booster with MVA or NYVAC, expressing the vectors HIV-1 Env, Gag, Pol and Nef antigens from clade B. Our findings revealed that sCD40L in DNA/poxvirus combination enhanced the magnitude about 2-fold (DNA-B/MVA-B) and 4-fold (DNA-B/NYVAC-B), as well as the breath of the HIV antigen specific cellular immune responses. sCD40L was necessary in both prime and boost inoculations triggering a potent polarization of the Th response towards a Th1 type. In DNA-B/NYVAC-B regime the addition of sCD40L significantly enhanced the humoral immune response against HIV gp160, but not in DNA-B/MVA-B combination. These findings provided evidence for the immunostimulatory benefit of sCD40L when DNA and the poxvirus vectors MVA and NYVAC are used as immunogens.

  5. PU.1 Expression in T Follicular Helper Cells Limits CD40L-Dependent Germinal Center B Cell Development.

    PubMed

    Awe, Olufolakemi; Hufford, Matthew M; Wu, Hao; Pham, Duy; Chang, Hua-Chen; Jabeen, Rukhsana; Dent, Alexander L; Kaplan, Mark H

    2015-10-15

    PU.1 is an ETS family transcription factor that is important for the development of multiple hematopoietic cell lineages. Previous work demonstrated a critical role for PU.1 in promoting Th9 development and in limiting Th2 cytokine production. Whether PU.1 has functions in other Th lineages is not clear. In this study, we examined the effects of ectopic expression of PU.1 in CD4(+) T cells and observed decreased expression of genes involved with the function of T follicular helper (Tfh) cells, including Il21 and Tnfsf5 (encoding CD40L). T cells from conditional mutant mice that lack expression of PU.1 in T cells (Sfpi1(lck-/-)) demonstrated increased production of CD40L and IL-21 in vitro. Following adjuvant-dependent or adjuvant-independent immunization, we observed that Sfpi1(lck-/-) mice had increased numbers of Tfh cells, increased germinal center B cells (GCB cells), and increased Ab production in vivo. This correlated with increased expression of IL-21 and CD40L in Tfh cells from Sfpi1(lck-/-) mice compared with control mice. Finally, although blockade of IL-21 did not affect GCB cells in Sfpi1(lck-/-) mice, anti-CD40L treatment of immunized Sfpi1(lck-/-) mice decreased GCB cell numbers and Ag-specific Ig concentrations. Together, these data indicate an inhibitory role for PU.1 in the function of Tfh cells, germinal centers, and Tfh-dependent humoral immunity.

  6. Thyrotropin Receptor and CD40 Mediate Interleukin-8 Expression in Fibrocytes: Implications for Thyroid-Associated Ophthalmopathy (An American Ophthalmological Society Thesis)

    PubMed Central

    Douglas, Raymond S.; Mester, Tünde; Ginter, Anna; Kim, Denise S.

    2014-01-01

    Purpose: To better understand the pathogenesis of thyroid-associated orbitopathy (TAO) through elucidating the role of thyrotropin receptor (TSHR) and CD40 in the expression of interleukin-8 (IL-8) in peripheral blood fibrocytes. Fibrocytes infiltrate the orbit of patients with TAO, where they differentiate into fibroblasts. Fibrocyte precursors occur with increased frequency in the peripheral blood expressing TSHR and CD40 in TAO patients. We hypothesize that in vitro derived fibrocytes and peripheral blood fibrocyte precursors express proinflammatory chemoattractant molecules including IL-8 initiated by TSHR and CD40 signaling. Since nearly all TAO patients express activating antibodies to TSHR, this is particularly relevant for activation of peripheral blood fibrocytes. Methods: TSHR and CD40 expression on peripheral blood fibrocytes was determined by flow cytometry. IL-8 RNA was quantitated by real-time polymerase chain reaction. IL-8 protein production was measured by Luminex and flow cytometry. Thyroid-stimulating hormone and CD40 ligand–stimulated phosphorylation of Akt in peripheral blood fibrocytes was studied by flow cytometry. Results: Both TSHR- and CD40-mediated signaling lead to IL-8 expression in mature fibrocytes. Fibrocyte precursors assayed directly from circulating peripheral blood demonstrate intracellular IL-8 expression with addition of thyroid-stimulating hormone or CD40 ligand. TSHR- and CD40-induced IL-8 production is mediated by Akt phosphorylation. Conclusions: Peripheral blood TSHR+ and CD40+ fibrocytes express IL-8 and may promote the recruitment of inflammatory cells, mitogenesis, and tissue remodeling in TAO. TSHR- and CD40-mediated IL-8 signaling is mediated by Akt. Delineating the molecular mechanisms of fibrocyte immune function may provide potential therapeutic targets for TAO. PMID:25411513

  7. Expression of CD40 is a positive prognostic factor of diffuse large B-cell lymphoma treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone)

    PubMed Central

    Song, Guoqi; Ni, Huiyun; Zou, Linqing; Wang, Shukui; Tian, Fuliang; Liu, Hong; Cho, William C

    2016-01-01

    Objectives The objective of this study was to investigate the expression level of CD40 and its role in the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) who were treated with rituximab-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). Design and methods The immunohistochemical expressions of CD40 in 186 well-characterized DLBCL patients were evaluated by tissue microarrays, thereby revealing the relationship of the molecule CD40 with known tumor, patient-related variables, and survival rates. Results The results showed that CD40 expressions were not statistically different between the germinal center B-cell-like (GCB) type and the non-GCB type. We also analyzed the relationships of CD40 expression with overall survival (OS) and progression-free survival (PFS) in DLBCL patients who were uniformly treated with R-CHOP. A low expression of CD40 compared to high expression is related to poor OS and PFS. Conclusion Our findings indicate that the CD40 level at onset acts as an independent prognostic predictor of DLBCL patients treated with R-CHOP. PMID:27382316

  8. Ligation of CD40 influences the function of human Ig-secreting B cell hybridomas both positively and negatively.

    PubMed

    Bergman, M C; Attrep, J F; Grammer, A C; Lipsky, P E

    1996-05-01

    The effect of ligation of CD40 on the proliferation and Ig secretion of a battery of human Ig-secreting hybridomas was examined to determine the regulatory activity of this surface molecule on B cells after initial activation. B cell hybridomas were generated by fusing activated peripheral blood B cells with SPAZ-4, a non-Ig-secreting fusion partner, and were cloned before analysis. All hybridomas expressed CD40 comparably. These hybridomas were stimulated with either recombinant baculovirus-expressed membrane-bound CD40L or a soluble murine CD40L/CD8 construct in the presence or the absence of various cytokines. Concentrations of CD40L that saturated 40 to 100% of CD40 induced initial homotypic aggregation followed by Fas (CD95)-independent apoptosis, with resultant decreases in growth and Ig secretion. Concentrations of CD40L that saturated 15 to 25% of CD40 also stimulated aggregation of all hybridomas. However, proliferation and Ig secretion of 9 of 13 IgM-secreting hybridomas, but none of 14 IgG- or IgA-secreting hybridomas, were enhanced by these concentrations of CD40L. These responses were independent of interactions mediated by the adhesion pair CD1la/CD18-CD54. These results indicate that the impact of CD40 ligation on human Ig-secreting hybridomas varies with the extent of CD40 engagement and depending on whether the hybridoma derived from an activated B cell that had previously undergone switch recombination.

  9. Interleukin 21 Controls mRNA and MicroRNA Expression in CD40-Activated Chronic Lymphocytic Leukemia Cells

    PubMed Central

    De Cecco, Loris; Capaia, Matteo; Zupo, Simona; Cutrona, Giovanna; Matis, Serena; Brizzolara, Antonella; Orengo, Anna Maria; Croce, Michela; Marchesi, Edoardo; Ferrarini, Manlio; Canevari, Silvana; Ferrini, Silvano

    2015-01-01

    Several factors support CLL cell survival in the microenvironment. Under different experimental conditions, IL21 can either induce apoptosis or promote CLL cell survival. To investigate mechanisms involved in the effects of IL21, we studied the ability of IL21 to modulate gene and miRNA expressions in CD40-activated CLL cells. IL21 was a major regulator of chemokine production in CLL cells and it modulated the expression of genes involved in cell movement, metabolism, survival and apoptosis. In particular, IL21 down-regulated the expression of the chemokine genes CCL4, CCL3, CCL3L1, CCL17, and CCL2, while it up-regulated the Th1-related CXCL9 and CXCL10. In addition, IL21 down-regulated the expression of genes encoding signaling molecules, such as CD40, DDR1 and PIK3CD. IL21 modulated a similar set of genes in CLL and normal B-cells (e.g. chemokine genes), whereas other genes, including MYC, TNF, E2F1, EGR2 and GAS-6, were regulated only in CLL cells. An integrated analysis of the miRNome and gene expression indicated that several miRNAs were under IL21 control and these could, in turn, influence the expression of potential target genes. We focused on hsa-miR-663b predicted to down-regulate several relevant genes. Transfection of hsa-miR-663b or its specific antagonist showed that this miRNA regulated CCL17, DDR1, PIK3CD and CD40 gene expression. Our data indicated that IL21 modulates the expression of genes mediating the crosstalk between CLL cells and their microenvironment and miRNAs may take part in this process. PMID:26305332

  10. Increased CD40 Expression Enhances Early STING-Mediated Type I Interferon Response and Host Survival in a Rodent Malaria Model

    PubMed Central

    Yao, Xiangyu; Wu, Jian; Lin, Meng; Sun, Wenxiang; He, Xiao; Gowda, Channe; Bolland, Silvia; Long, Carole A.; Wang, Rongfu; Su, Xin-zhuan

    2016-01-01

    Both type I interferon (IFN-I) and CD40 play a significant role in various infectious diseases, including malaria and autoimmune disorders. CD40 is mostly known to function in adaptive immunity, but previous observations of elevated CD40 levels early after malaria infection of mice led us to investigate its roles in innate IFN-I responses and disease control. Using a Plasmodium yoelii nigeriensis N67 and C57BL/6 mouse model, we showed that infected CD40-/- mice had reduced STING and serum IFN-β levels day-2 post infection, higher day-4 parasitemia, and earlier deaths. CD40 could greatly enhance STING-stimulated luciferase signals driven by the IFN-β promoter in vitro, which was mediated by increased STING protein levels. The ability of CD40 to influence STING expression was confirmed in CD40-/- mice after malaria infection. Substitutions at CD40 TRAF binding domains significantly decreased the IFN-β signals and STING protein level, which was likely mediated by changes in STING ubiquitination and degradation. Increased levels of CD40, STING, and ISRE driven luciferase signal in RAW Lucia were observed after phagocytosis of N67-infected red blood cells (iRBCs), stimulation with parasite DNA/RNA, or with selected TLR ligands [LPS, poly(I:C), and Pam3CSK4]. The results suggest stimulation of CD40 expression by parasite materials through TLR signaling pathways, which was further confirmed in bone marrow derived dendritic cells/macrophages (BMDCs/BMDMs) and splenic DCs from CD40-/-, TLR3-/- TLR4-/-, TRIF-/-, and MyD88-/- mice after iRBC stimulation or parasite infection. Our data connect several signaling pathways consisting of phagocytosis of iRBCs, recognition of parasite DNA/RNA (possibly GPI) by TLRs, elevated levels of CD40 and STING proteins, increased IFN-I production, and longer host survival time. This study reveals previously unrecognized CD40 function in innate IFN-I responses and protective pathways in infections with malaria strains that induce a strong

  11. Systemic Agonistic Anti-CD40 Treatment of Tumor-Bearing Mice Modulates Hepatic Myeloid-Suppressive Cells and Causes Immune-Mediated Liver Damage.

    PubMed

    Medina-Echeverz, José; Ma, Chi; Duffy, Austin G; Eggert, Tobias; Hawk, Nga; Kleiner, David E; Korangy, Firouzeh; Greten, Tim F

    2015-05-01

    Immune-stimulatory mAbs are currently being evaluated as antitumor agents. Although overall toxicity from these agents appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in the spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in the liver and spleen, serum transaminases, and liver histologies were analyzed after antibody administration. Nox2(-/-), Cd40(-/-), and bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid-derived suppressor cells (MDSC) was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras, we demonstrate that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80-positive and CD40-positive liver CD11b(+)Gr-1(+) immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14(+)HLA-DR(low) peripheral blood mononuclear cells from patients with cancer reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced myeloid cells, caused myeloid-dependent hepatotoxicity, and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggest that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC. PMID:25637366

  12. Systemic Agonistic Anti-CD40 Treatment of Tumor-Bearing Mice Modulates Hepatic Myeloid-Suppressive Cells and Causes Immune-Mediated Liver Damage.

    PubMed

    Medina-Echeverz, José; Ma, Chi; Duffy, Austin G; Eggert, Tobias; Hawk, Nga; Kleiner, David E; Korangy, Firouzeh; Greten, Tim F

    2015-05-01

    Immune-stimulatory mAbs are currently being evaluated as antitumor agents. Although overall toxicity from these agents appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in the spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in the liver and spleen, serum transaminases, and liver histologies were analyzed after antibody administration. Nox2(-/-), Cd40(-/-), and bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid-derived suppressor cells (MDSC) was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras, we demonstrate that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80-positive and CD40-positive liver CD11b(+)Gr-1(+) immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14(+)HLA-DR(low) peripheral blood mononuclear cells from patients with cancer reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced myeloid cells, caused myeloid-dependent hepatotoxicity, and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggest that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC.

  13. In vivo CD40 ligation can induce T-cell-independent antitumor effects that involve macrophages.

    PubMed

    Lum, Hillary D; Buhtoiarov, Ilia N; Schmidt, Brian E; Berke, Gideon; Paulnock, Donna M; Sondel, Paul M; Rakhmilevich, Alexander L

    2006-06-01

    We have previously demonstrated T cell-independent antitumor and antimetastatic effects of CD40 ligation that involved natural killer (NK) cells. As CD40 molecules are expressed on the surface of macrophages (Mphi), we hypothesized that Mphi may also serve as antitumor effector cells when activated by CD40 ligation. Progression of subcutaneous NXS2 murine neuroblastomas was delayed significantly by agonistic CD40 monoclonal antibody (anti-CD40 mAb) therapy in immunocompetent A/J mice, as well as in T and B cell-deficient severe combined immunodeficiency (SCID) mice. Although NK cells can be activated by anti-CD40 mAb, anti-CD40 mAb treatment also induced a significant antitumor effect in SCID/beige mice in the absence of T and NK effector cells, even when noncytolytic NK cells and polymorphonuclear cells (PMN) were depleted. Furthermore, in vivo treatment with anti-CD40 mAb resulted in enhanced expression of cytokines and cell surface activation markers, as well as Mphi-mediated tumor inhibition in A/J mice, C57BL/6 mice, and SCID/beige mice, as measured in vitro. A role for Mphi was shown by reduction in the antitumor effect of anti-CD40 mAb when Mphi functions were inhibited in vivo by silica. In addition, activation of peritoneal Mphi by anti-CD40 mAb resulted in survival benefits in mice bearing intraperitoneal tumors. Taken together, our results show that anti-CD40 mAb immunotherapy of mice can inhibit tumor growth in the absence of T cells, NK cells, and PMN through the involvement of activated Mphi.

  14. PPARα agonist fenofibrate attenuates TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway

    SciTech Connect

    Wang, Weirong; Lin, Qinqin; Lin, Rong; Zhang, Jiye; Ren, Feng; Zhang, Jianfeng; Ji, Meixi; Li, Yanxiang

    2013-06-10

    The ligand-activated transcription factor peroxisome proliferator-activated receptor-α (PPARα) participates in the regulation of cellular inflammation. More recent studies indicated that sirtuin1 (SIRT1), a NAD{sup +}-dependent deacetylase, regulates the inflammatory response in adipocytes. However, whether the role of PPARα in inflammation is mediated by SIRT1 remains unclear. In this study, we aimed to determine the effect of PPARα agonist fenofibrate on the expressions of SIRT1 and pro-inflammatory cytokine CD40 and underlying mechanisms in 3T3-L1 adipocytes. We found that fenofibrate inhibited CD40 expression and up-regulated SIRT1 expression in tumor necrosis factor-α (TNF-α)-stimulated adipocytes, and these effects of fenofibrate were reversed by PPARα antagonist GW6471. Moreover, SIRT1 inhibitors sirtinol/nicotinamide (NAM) or knockdown of SIRT1 could attenuate the effect of fenofibrate on TNF-α-induced CD40 expression in adipocytes. Importantly, NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) augmented the effect of fenofibrate on CD40 expression in adipocytes. Further study found that fenofibrate decreased the expression of acetylated-NF-κB p65 (Ac-NF-κB p65) in TNF-α-stimulated adipocytes, and the effect of fenofibrate was abolished by SIRT1 inhibition. In addition, fenofibrate up-regulated SIRT1 expression through AMPK in TNF-α-stimulated adipocytes. Taken together, these findings indicate that PPARα agonist fenofibrate inhibits TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway. -- Highlights: • Fenofibrate up-regulates SIRT1 expression in TNF-α-stimulated adipocytes. • Fenofibrate inhibits CD40 expression through SIRT1 in adipocytes. • The effects of fenofibrate on CD40 and SIRT1 expressions are dependent on PPARα. • Fenofibrate inhibits CD40 expression via SIRT1-dependent deacetylation of NF-κB. • Fenofibrate increases SIRT1 expression through PPARα and AMPK in adipocytes.

  15. Analysis of CD40-CD40 ligand interactions in the regulation of human B cell function.

    PubMed

    Lipsky, P E; Attrep, J F; Grammer, A C; McIlraith, M J; Nishioka, Y

    1997-04-01

    CD40-CD40 ligand interactions play an essential role in T cell/B cell collaboration. The data presented in this review have served to widen the scope of CD40-CD40 ligand interactions to include initial activation, proliferation, differentiation, and isotype switching of B cells, as well as subsequent downregulation of B cell function. Moreover, CD40 ligand expression by activated B cells is likely to play an essential role in facilitating ongoing responses of stimulated B cells maturing in germinal centers. Finally, CD40 expression by activated T cells may also play an important role in regulating the function of helper T cells within germinal centers. In summary, emerging data have expanded the role of CD40-CD40 ligand interaction during T cell/B cell collaboration and have emphasized its potential to regulate many of the functions of both partners in this essential interaction involved in antibody production.

  16. Gene expression and TB pathogenesis in rhesus macaques: TR4, CD40, CD40L, FAS (CD95), and TNF are host genetic markers in peripheral blood mononuclear cells that are associated with severity of TB lesions.

    PubMed

    Roodgar, Morteza; Ross, Cody T; Tarara, Ross; Lowenstine, Linda; Dandekar, Satya; Smith, David Glenn

    2015-12-01

    Tuberculosis (TB) pathologic lesions in rhesus macaques resemble those in humans. The expression levels of several host TB candidate genes in the peripheral blood mononuclear cells (PBMCs) of six rhesus macaques experimentally infected with Mycobacterium tuberculosis were quantified pre-infection and at several dates post-infection. Quantitative measures of TB histopathology in the lungs including: granuloma count, granuloma size, volume of granulomatous and non-granulomatous lesions, and direct bacterial load, were used as the outcomes of a multi-level Bayesian regression model in which expression levels of host genes at various dates were used as predictors. The results indicate that the expression levels of TR4, CD40, CD40L, FAS (CD95) and TNF in PBMC were associated with quantitative measures of the severity of TB histopathologic lesions in the lungs of the study animals. Moreover, no reliable association between the expression levels of IFNE in PBMCs and the severity of TB lesions in the lungs of the study animals was found. In conclusion, PBMC expression profiles derived from the above-listed host genes might be appropriate biomarkers for probabilistic diagnosis and/or prognosis of TB severity in rhesus macaques.

  17. Modulation of neuronal differentiation by CD40 isoforms

    SciTech Connect

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-05-02

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40{sup -/-} deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40{sup -/-} mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may

  18. Differential regulation of chromatin structure of the murine 3' IgH enhancer and IgG2b germline promoter in response to lipopolysaccharide and CD40 signaling.

    PubMed

    Qin, Xincheng; Tang, Hong

    2006-03-01

    Class switch recombination (CSR) of murine immunoglobulin heavy chain (IgH) is controlled by germline transcription-coupled modification of the accessibility of the highly repetitive switch regions (S) located upstream of the constant region genes. Activation of the 3' IgH enhancer (3'E) is believed to regulate CSR during B cell terminal differentiation, although the detailed molecular mechanism remains unclear. Here, we show that BAF57 and BRG1, two essential subunits of murine SWI/SNF complex, differentially associate with the DNase I hypersensitive region HS1/2 of 3'E and the IgG2b germline promoter in response to LPS activation or CD40 engagement. Both LPS and CD40 signaling cause SWI/SNF complex to dissociate from HS1/2 and associate with their responsive IgG2b germline promoter, suggesting the potential fluidity of chromatin structure and specific regulatory mode for the ATP-dependent chromatin remodeler during CSR. More interesting, increase in histone acetylation is either inverse or parallel with the action of SWI/SNF complex at HS1/2 enhancer or IgG2b germline promoter, respectively. Chromatin immunoprecipitation experiments show that alteration of histone H3 and H4 acetylation has overall similarities in response to LPS and CD40 signaling, with H3 hyperacetylated and H4 hypoacetylated at the HS1/2 enhancer and reversed modification patterns at the IgG2b germline promoter. Finally, the specificity of LPS and CD40 signaling in control of CSR could be partially coded by the specific acetylation marking of H3 and H4. Our results further strengthen the notion that chromatin remodeling plays a critical role in CSR.

  19. The CD30 ligand and CD40 ligand regulate CD54 surface expression and release of its soluble form by cultured Hodgkin and Reed-Sternberg cells.

    PubMed

    Gruss, H J; Scheffrahn, I; Hubinger, G; Duyster, J; Hermann, F

    1996-05-01

    The membrane-bound proteins CD30 ligand (CD30L), CD40L and 4-1BBL are members of the tumor necrosis factor (TNF) superfamily. They are expressed mainly by activated T cells. Primary and cultured Hodgkin and Reed-Sternberg (H-RS) cells, regarded as the malignant components of Hodgkin's disease (HD), display high levels of the counter-receptors for these ligands, ie CD30, CD40 and 4-1BB. CD30L and CD40L are known to share some biological activities that can be linked to the unbalanced secretion of cytokines seen in HD. In addition, cell contact-dependent molecules such as adhesion or activation antigens are critically involved in T cell/H-RS cell interactions. Primary and cultured H-RS cells frequently overexpress intercellular adhesion molecule-1 (ICAM-1/CD54), BB-1 (B7-1/CD80) and B70/B7-2 (CD86). Here we show that CD30L and CD40L, but not 4-1BBL upregulate CD54 expression by cultured H-RS cells on the mRNA and protein level, as a result of transcriptional gene activation. Furthermore, enhanced CD54 surface expression by these cells is accompanied by increased shedding of surface-bound CD54, as evidenced by high levels of the 82 kDa soluble (s) CD54 form detectable in culture supernatants after specific stimulation. Addition of CD30L in combination with CD40L to cultured H-RS cells additively enhanced CD54 surface expression and its shedding. These results may give a plausible explanation why sCD54 serum levels are increased in patients with HD.

  20. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal

    PubMed Central

    1993-01-01

    Cognate interactions between antigen-presenting B and T cells play crucial roles in immunologic responses. T cells that have been activated via the crosslinking of CD3 are able to induce B cell proliferation and immunoglobulin secretion in a major histocompatibility complex-unrestricted and contact-dependent manner. We find that such activated human CD4+ T cells, but not control Ig- treated T cells, may induce normal or leukemic B cells to express B7/BB1 and significantly higher levels of CD54 intercellular adhesion molecule 1 via a process that also requires direct cell-cell contact. To discern what cell surface molecule(s) may be responsible for signalling B cells to express B7/BB1, we added various monoclonal antibodies (mAbs) specific for T or B cell accessory molecules or control mAbs to cocultures of alpha-CD3-activated T cells and resting B cells. We find that only alpha-CD40 mAbs can significantly inhibit the increased expression of B7/BB1, suggesting that the ligand for CD40 expressed on activated T cells may be an important inducer of B7/BB1 expression. Subsequent experiments in fact demonstrate that alpha-CD40 mAbs, but not control mAbs, induce changes in B cell phenotype similar to those induced by activated T cells when the mAbs are presented on Fc gamma RII (CDw32)-expressing L cells. These phenotypic changes have significant effects on B cell function. Whereas chronic lymphocytic leukemia (CLL) B cells normally are very poor stimulators in allogeneic mixed lymphocyte reactions (MLRs), CLL-B cells preactivated via CD40 crosslinking are significantly better presenters of alloantigen, affecting up to 30-fold-greater stimulation of T cell proliferation than that induced by control treated or nontreated CLL-B cells. Similarly, the MLR of T cells stimulated by allogeneic nonleukemic B cells can be enhanced significantly if the stimulator B cells are preactivated via CD40 crosslinking. The enhanced MLR generated by such preactivated B cells may be inhibited

  1. Protein kinase R is a novel mediator of CD40 signaling and plays a critical role in modulating immunoglobulin expression during respiratory syncytial virus infection.

    PubMed

    Thakur, Sheetal A; Zalinger, Zachary B; Johnson, Teresa R; Imani, Farhad

    2011-12-01

    Effective immunoglobulin responses play a vital role in protection against most pathogens. However, the molecular mediators and mechanisms responsible for signaling and selective expression of immunoglobulin types remain to be elucidated. Previous studies in our laboratory have demonstrated that protein kinase R (PKR) plays a crucial role in IgE responses to double-stranded RNA (dsRNA) in vitro. In this study, we show that PKR plays a critical role in IgG expression both in vivo and in vitro. PKR(-/-) mice show significantly altered serum IgG levels during respiratory syncytial virus (RSV) infection. IgG2a expression is particularly sensitive to a lack of PKR and is below the detection level in mock- or RSV-infected PKR(-/-) mice. Interestingly, we show that upon activation by anti-CD40 and gamma interferon (IFN-γ), B cells from PKR(-/-) mice show diminished major histocompatibility complex class II (MHC II), CD80, and CD86 levels on the cell surface compared to wild-type (WT) mice. Our data also show that PKR is necessary for optimal expression of adhesion molecules, such as CD11a and ICAM-1, that are necessary for homotypic aggregation of B cells. Furthermore, in this report we demonstrate for the first time that upon CD40 ligation, PKR is rapidly phosphorylated and activated, indicating that PKR is an early and novel downstream mediator of CD40 signaling pathways.

  2. Regulation of interleukin-6 and interleukin-6R alpha (gp80) expression by murine immunoglobulin-secreting B-cell hybridomas.

    PubMed Central

    Iwasaki, T; Hamano, T; Fujimoto, J; Kakishita, E

    1998-01-01

    We have examined the contribution of endogenous interleukin-6 (IL-6) to the differentiation of murine B-cell hybridomas. AT73 was established by somatic hybridization between BALB/c mice B cells and 2.52M, a hypoxanthine-aminopterine-thymidine (HAT) medium-sensitive B-cell line mutant. It spontaneously secreted IgM, and addition of exogenous IL-6 augmented IgM secretion. Triggering of CD40 led to an augmentation of IL-6 expression and IgM secretion. Blocking the binding of IL-6 to its cellular receptor through the use of inhibitory monoclonal antibodies inhibited CD40-induced IgM secretion, suggesting a possible autocrine role of IL-6 for the differentiation of a CD40-activated B-cell hybridoma. Co-triggering with CD40 and B-cell receptor or activation through CD40 and IL-4 led to a synergistic augmentation of IL-6 expression as well as additive IgM secretion; this was followed by a marked decrease in the expression of B-cell surface markers on the cell membrane. Furthermore, under conditions where IL-6 expression was augmented, gp80 expression was down-regulated, suggesting a negative feedback mechanism in this B-cell hybridoma. These findings provide a role by which T-cell-dependent activation through CD40 regulates an IL-6 autocrine loop, controlling B-cell differentiation. Images Figure 4 PMID:9659221

  3. Agreement of skin test with IL-4 production and CD40L expression by T cells upon immunotherapy of subjects with systemic reactions to Hymenoptera stings.

    PubMed

    Urra, José M; Cabrera, Carmen M; Alfaya, Teresa; Feo-Brito, Francisco

    2016-02-01

    Venom immunotherapy is the only curative intervention for subjects with Hymenoptera venom allergy who suffering systemic reactions upon bee or wasp stings. Venom immunotherapy can restore normal immunity against venom allergens, as well as providing to allergic subjects a lifetime tolerance against venoms. Nevertheless, it is necessary using safety assays to monitoring the development of tolerance in the VIT protocols to avoid fatal anaphylactic reactions. The purpose of this study was to assess the modifications in several markers of tolerance induction in subjects with Hymenoptera venom allergy undergoing immunotherapy. The studies were performed at baseline time and after six month of VIT. Intradermal skin tests, basophil activation tests, specific IgE levels; and the T-cell markers (IL-4 and IFN-γ producing cells; and expression of the surface activation markers CD40L and CTLA-4) were assayed. At six month of immunotherapy all parameters studied had significant alterations. All decreased, except the IFN-γ producing cells. In addition, modifications in intradermal skin test showed a significant correlation with both, CD40L expression on CD4 T lymphocytes (p=0.043) and IL-4 producing T lymphocytes (p=0.012). Neither basophil activation test nor serum levels of sIgE demonstrated any correlation with the immunological parameters studied nor among them. These results suggest that both IL-4 production and CD40L expression could be two good indicators of the beneficial effects of venom immunotherapy which translate into skin tests.

  4. Changes of soluble CD40 ligand in the progression of acute myocardial infarction associate to endothelial nitric oxide synthase polymorphisms and vascular endothelial growth factor but not to platelet CD62P expression.

    PubMed

    Napoleão, Patrícia; Monteiro, Maria do Céu; Cabral, Luís B P; Criado, Maria Begoña; Ramos, Catarina; Selas, Mafalda; Viegas-Crespo, Ana Maria; Saldanha, Carlota; Carmo, Miguel Mota; Ferreira, Rui Cruz; Pinheiro, Teresa

    2015-12-01

    Reported in vitro data implicated soluble CD40 ligand (sCD40L) in endothelial dysfunction and angiogenesis. However, whether sCD40L could exert that influence in endothelial dysfunction and angiogenesis after injury in acute myocardial infarction (AMI) patients remains unclear. In the present study, we evaluated the association of sCD40L with markers of platelet activation, endothelial, and vascular function during a recovery period early after AMI. To achieve this goal, the time changes of soluble, platelet-bound, and microparticle-bound CD40L levels over 1 month were assessed in AMI patients and correlated with endothelial nitric oxide synthase (eNOS) polymorphisms, vascular endothelial growth factor (VEGF) concentrations, and platelet expression of P-selectin (CD62P). The association of soluble form, platelet-bound, and microparticle-bound CD40L with CD62P expression on platelets, a marker of platelet activation, was also assessed to evaluate the role of CD40L in the thrombosis, whereas the association with eNOS and VEGF was to evaluate the role of CD40L in vascular dysfunction. This work shows for the first time that time changes of sCD40L over 1 month after myocardial infarct onset were associated with G894T eNOS polymorphism and with the VEGF concentrations, but not to the platelet CD62P expression. These results indicate that, in terms of AMI pathophysiology, the sCD40L cannot be consider just as being involved in thrombosis and inflammation but also as having a relevant role in vascular and endothelial dysfunction. PMID:26279254

  5. Bidirectional regulation of human B cell responses by CD40-CD40 ligand interactions.

    PubMed

    Miyashita, T; McIlraith, M J; Grammer, A C; Miura, Y; Attrep, J F; Shimaoka, Y; Lipsky, P E

    1997-05-15

    Positive and negative effects of CD40 ligation on human B cell function were suggested by the observation that mAb to CD40 ligand partially blocked the suppressive influences of anti-CD3-stimulated control CD4+ T cells, as well as the B cell stimulatory effects of anti-CD3 activated mitomycin C-treated CD4+ T cells. To examine the negative effects of CD40 ligation in greater detail, B cells were cultured with anti-CD3 activated mitomycin C-treated CD4+ T cells that expressed optimal levels of CD40 ligand; additional recombinant human CD40 ligand significantly suppressed Ig production, but not proliferation. In contrast, when B cells were stimulated with SAC (formalinized Cowan I strain Staphylococcus aureus) and IL-2 in the absence of T cells, small amounts of recombinant CD40 ligand-stimulated Ig production, whereas larger quantities directly suppressed Ig secretion. The suppressive action of CD40 ligation on Ig production was most apparent after initial B cell activation. Moreover, IgD-memory B cells were significantly more sensitive to inhibition by CD40 ligation than IgD+ naive B cells. Engagement of CD40 not only suppressed Ig secretion by IgD- memory B cells, but also expression of CD38. Finally, activated B cells acquired the capacity to down-regulate CD40 ligand expression by stimulated CD4+ T cells more effectively than resting B cells. These results indicate that during T cell-B cell collaboration, engagement of CD40 can influence Ig production both positively and negatively, depending on the density of CD40 ligand as well as the stage of B cell activation and differentiation.

  6. BAFF upregulates CD28/B7 and CD40/CD154 expression and promotes mouse T and B cell interaction in vitro via BAFF receptor

    PubMed Central

    Zhang, Feng; Song, Shan-shan; Shu, Jin-ling; Li, Ying; Wu, Yu-jing; Wang, Qing-tong; Chen, Jing-yu; Chang, Yan; Wu, Hua-xun; Zhang, Ling-ling; Wei, Wei

    2016-01-01

    Aim: B cell-activating factor belonging to the TNF family (BAFF) is a member of TNF family and required for peripheral B cell survival and homeostasis. BAFF has been shown to promote the proliferation of T and B cells. In this study we examined whether and how BAFF mediated the interaction between mouse T and B cells in vitro. Methods: BAFF-stimulated B or T cells were co-cultured with T or B cells. The interactions between T and B cells were analyzed by measuring the expression of co-stimulatory molecules (CD28/CD80 or CD40/CD154), the proliferation and secretion of T and B cells and other factors. Two siRNAs against the transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and BAFF receptor (BAFF-R) were used to identify the receptors responsible for the actions of BAFF. Results: BAFF-stimulated B cells significantly promoted the proliferation and activity of co-cultured T cells, and increased the percentages of CD4+CD28+ and CD4+CD154+ T cells. Similarly, BAFF-stimulated T cells significantly promoted the proliferation and activity of co-cultured B cells, and increased CD19+CD80+ and CD19+CD40+B cell subpopulations. BAFF-R siRNA-silenced B cells showed significantly lower expression of CD40 and CD80 than the control B cells. When the BAFF-R siRNA-silenced B cells were stimulated with BAFF, then co-cultured with T cells, the expression of CD28 and CD154 on T cells was not increased. TACI siRNA-silenced B cells exhibited higher expression of CD40 and CD80 than the control B cells. When the TACI siRNA-silenced B cells were stimulated with BAFF, then co-cultured with T cells, the expression of CD28 and CD154 on T cells was significantly increased. Conclusion: BAFF upregulates CD28/B7 and CD40/CD154 expression, and promotes the interactions between T and B cells in a BAFF-R-dependent manner. PMID:27180986

  7. MicroRNA-155 Mediates Augmented CD40 Expression in Bone Marrow Derived Plasmacytoid Dendritic Cells in Symptomatic Lupus-Prone NZB/W F1 Mice

    PubMed Central

    Yan, Sheng; Yim, Lok Yan; Tam, Rachel Chun Yee; Chan, Albert; Lu, Liwei; Lau, Chak Sing; Chan, Vera Sau-Fong

    2016-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by hyperactivated immune responses to self-antigens and persistent systemic inflammation. Previously, we reported abnormalities in circulating and bone marrow (BM)-derived plasmacytoid dendritic cells (pDCs) from SLE patients. Here, we aim to seek for potential regulators that mediate functional aberrations of pDCs in SLE. BM-derived pDCs from NZB/W F1 mice before and after the disease onset were compared for toll-like receptor (TLR) induced responses and microRNA profile changes. While pDCs derived from symptomatic mice were phenotypically comparable to pre-symptomatic ones, functionally they exhibited hypersensitivity to TLR7 but not TLR9 stimulation, as represented by the elevated upregulation of CD40, CD86 and MHC class II molecules upon R837 stimulation. Upregulated induction of miR-155 in symptomatic pDCs following TLR7 stimulation was observed. Transfection of miR-155 mimics in pre-symptomatic pDCs induced an augmented expression of Cd40, which is consistent with the increased CD40 expression in symptomatic pDCs. Overall, our results provide evidence for miR-155-mediated regulation in pDC functional abnormalities in SLE. Findings from this study contribute to a better understanding of SLE pathogenesis and ignite future interests in evaluating the molecular regulation in autoimmunity. PMID:27509492

  8. Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis

    PubMed Central

    2012-01-01

    Introduction The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). Methods In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes. Results No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis. Conclusions Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc. PMID:22731751

  9. A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T cell receptor complex

    PubMed Central

    1995-01-01

    Signaling through surface CD40 is essential for selecting B cells that have mutated their immunoglobulin variable region genes in germinal centers and is an important signal in the early stages of antibody responses to T cell-dependent antigens. It is shown that a subset of CD45RO+, CD4+ T cells isolated from human tonsil contains preformed 30- 35-kD ligand for CD40. This is expressed on their surfaces within 5 min of their antigen-receptor complexes interacting with CD3 epsilon antibodies bound to ox erythrocytes. This surface expression does not require de novo protein synthesis and lasts for only 1-2 h. Preformed CD40 ligand (CD40L) was not detected in any CD4+ CD45RA+ T cells, but > 90% of all CD4+ T cells from the tonsil can be induced to express large amounts of CD40L on culture with phorbol myristate acetate and the calcium ionophore ionomycin. This expression of CD40L starts between 1 and 2 h, peaks at 6 h, and remains at a high level for > 20 h. It is totally prevented by adding a concentration of cycloheximide that inhibits CD25 synthesis by these activated cells. While CD3 epsilon antibody bound to ox red cells is a good inducer of surface expression of CD40L, it is a much less potent inducer of CD40L synthesis than phorbol myristate acetate with ionomycin. Immunohistological analysis of tonsil sections shows that cells containing CD40L are located mainly in the outer zone of germinal centers and the margins of the T zones that are rich in dendritic cells (interdigitating cells). The distribution of these cells is consistent with: (a) their interaction in T zones with B cells that have taken up and processed antigen and (b) their involvement in B cell selection in germinal centers. PMID:7699321

  10. In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD40 ligand, cytokines, and antibody production delineates sites of cognate T-B cell interactions

    PubMed Central

    1993-01-01

    T-B cell interactions have a central role in the development of antibody responses. Upon activation, T helper (Th) cells express the ligand for CD40, gp39, which is essential for Th cell-dependent B cell activation. The cytokines produced by activated Th cells have a regulatory role in B cell differentiation. In this study, we investigated, using immunohistochemical techniques, the in vivo time course and localization of gp39 expression and cytokine production in relation to the specific antibody production. Both the immunization with keyhole limpet hemocyanin (KLH), a thymus-dependent (TD) antigen, and trinitrophenyl (TNP)-Ficoll, a thymus-independent type 2 (TI-2) antigen, induced Th cells to express gp39. The expression of gp39 was restricted to Th cells in the outer periarteriolar lymphocyte sheaths (outer-PALS) and around the terminal arterioles (TA). Incidentally, gp39+ Th cells were found in the corona of follicles, whereas gp39+ cells were never found in the germinal centers or marginal zones of the spleen. Maximum frequencies of gp39+ cells were observed 3 and 4 d after primary and secondary immunization with KLH. After injection of TNP-Ficoll, a marked increase in gp39+ cells was observed, confirming previous observations that activated T cells are involved in TI-2 antibody responses. Analysis of the in vivo cytokine production revealed that interleukin 2 (IL-2)-, IL-4- and interferon gamma (IFN- gamma)-producing cells (IFN-gamma-PC) developed according to similar kinetics as observed for gp39+ cells. IL-2-PC and IL-4-PC were present in higher frequencies as were IFN-gamma-PC in the immune response against TNP-KLH. Double staining experiments revealed gp39+ Th cells producing IL-2, IL-4, or IFN-gamma, suggesting that these cells were involved in both the initial activation as well as the differentiation process of B cells into antibody-forming cells. Dual immunohistochemical analysis revealed gp39+ T cells and cytokine-PC in close proximity to antigen

  11. A New Mechanism of NK Cell Cytotoxicity Activation: The CD40CD40 Ligand Interaction

    PubMed Central

    Carbone, Ennio; Ruggiero, Giuseppina; Terrazzano, Giuseppe; Palomba, Carmen; Manzo, Ciro; Fontana, Silvia; Spits, Hergen; Kärre, Klas; Zappacosta, Serafino

    1997-01-01

    NK recognition is regulated by a delicate balance between positive signals initiating their effector functions, and inhibitory signals preventing them from proceeding to cytolysis. Knowledge of the molecules responsible for positive signaling in NK cells is currently limited. We demonstrate that IL-2–activated human NK cells can express CD40 ligand (CD40L) and that recognition of CD40 on target cells can provide an activation pathway for such human NK cells. CD40-transfected P815 cells were killed by NK cell lines expressing CD40L, clones and PBLderived NK cells cultured for 18 h in the presence of IL-2, but not by CD40L-negative fresh NK cells. Cross-linking of CD40L on IL-2–activated NK cells induced redirected cytolysis of CD40-negative but Fc receptor-expressing P815 cells. The sensitivity of human TAP-deficient T2 cells could be blocked by anti-CD40 antibodies as well as by reconstitution of TAP/MHC class I expression, indicating that the CD40-dependent pathway for NK activation can be downregulated, at least in part, by MHC class I molecules on the target cells. NK cell recognition of CD40 may be important in immunoregulation as well as in immune responses against B cell malignancies. PMID:9182676

  12. Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells

    PubMed Central

    Amin, Hiren P.; Czank, Charles; Raheem, Saki; Zhang, Qingzhi; Botting, Nigel P.; Cassidy, Aedín

    2015-01-01

    Scope In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. Methods and results Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin‐3‐glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL‐6 and VCAM‐1 was quantified by ELISA and RT‐qPCR. In oxLDL‐stimulated cells the parent anthocyanin had no effect on IL‐6 production, whereas numerous anthocyanin metabolites significantly reduced IL‐6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L‐stimulated cells the anthocyanin and its phase II metabolites reduced IL‐6 protein production, where protocatechuic acid‐4‐sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM‐1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). Conclusion These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators. PMID:25787755

  13. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    SciTech Connect

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2013-11-15

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{sup 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.

  14. Prostaglandin E2-EP4 signaling persistently amplifies CD40-mediated induction of IL-23 p19 expression through canonical and non-canonical NF-κB pathways.

    PubMed

    Ma, Xiaojun; Aoki, Tomohiro; Narumiya, Shuh

    2016-03-01

    While there is mounting evidence that interleukin (IL)-23-IL-17 axis plays a critical role in the pathogenesis of various autoimmune diseases, much remains to be elucidated on how IL-23 is induced in the pathological processes. IL-23 is a heterodimer composed of p19 and p40, the latter being shared with IL-12. We previously reported that prostaglandin (PG) E2 promotes CD40-mediated induction of Il23a (p19) expression through its E receptor subtype 4 (EP4) receptor in splenic dendritic cells (DCs). Here, we have analyzed signaling pathways regulating Il23a induction in the cross talk between EP4 and CD40 in bone marrow-derived DCs. We found that PGE2 synergistically induced Il23a transcription with CD40 signaling. An EP4 agonist, but not agonists of EP1, EP2, or EP3, reproduced this action. Stimulation of CD40 with an agonist antibody evoked biphasic induction of Il23a expression, with the early phase peaking at 1 h and the late phase peaking at 12 h and lasting up to 36 h after stimulation, whereas induction by lipopolysaccharide or tumor necrosis factor-α was transient. The early phase induction by CD40 stimulation was absent in DCs derived from Nfkb1-deficient mice, and the late phase induction was eliminated by RNA interference of nuclear factor-kappa B (NF-κB) p100 subunit. Further, cAMP response element-binding protein (CREB) depletion completely eliminated the induction of Il23a by CD40 stimulation. The addition of the EP4 agonist amplified the induction in both phases through the cAMP-protein kinase A (PKA) pathway. These results suggest that Il23a expression in DCs is synergistically triggered by the PG E2-EP4-cAMP-PKA pathway and canonical/non-canonical NF-κB pathways and CREB activated by CD40 stimulation.

  15. CD40 Blockade Combines with CTLA4Ig and Sirolimus To Produce Mixed Chimerism in an MHC-defined Rhesus Macaque Transplant Model

    PubMed Central

    Page, Andrew; Srinivasan, Swetha; Singh, Karnail; Russell, Maria; Hamby, Kelly; Deane, Taylor; Sen, Sharon; Stempora, Linda; Leopardi, Frank; Price, Andrew A.; Strobert, Elizabeth; Reimann, Keith A.; Kirk, Allan D.; Larsen, Christian P.; Kean, Leslie S.

    2011-01-01

    In murine models, T-cell costimulation blockade of the CD28:B7 and CD154:CD40 pathways synergistically promotes immune tolerance after transplantation. While CD28 blockade has been successfully translated to the clinic, translation of blockade of the CD154:CD40 pathway has been less successful, in large part due to thromboembolic complications associated with anti-CD154 antibodies. Translation of CD40 blockade has also been slow, in part due to the fact that synergy between CD40 blockade and CD28 blockade had not yet been demonstrated in either primate models or humans. Here we show that a novel, non-depleting CD40 monoclonal antibody, 3A8, can combine with combined CTLA4Ig and sirolimus in a well-established primate bone marrow chimerism-induction model. Prolonged engraftment required the presence of all three agents during maintenance therapy, and resulted in graft acceptance for the duration of immunosuppressive treatment, with rejection resulting upon immunosuppression withdrawal. Flow cytometric analysis revealed that upregulation of CD95 expression on both CD4+ and CD8+ T-cells correlated with rejection, suggesting that CD95 may be a robust biomarker of graft loss. These results are the first to demonstrate prolonged chimerism in primates treated with CD28/mTOR blockade and non-depletional CD40 blockade, and support further investigation of combined costimulation blockade targeting the CD28 and CD40 pathways. PMID:21929643

  16. Humoral immune responses in CD40 ligand-deficient mice

    PubMed Central

    1994-01-01

    Individuals with X-linked hyper-IgM syndrome fail to express functional CD40 ligand (CD40L) and, as a consequence, are incapable of mounting protective antibody responses to opportunistic bacterial infections. To address the role of CD40L in humoral immunity, we created, through homologous recombination, mice deficient in CD40L expression. These mice exhibited no gross developmental deficiencies or health abnormalities and contained normal percentages of B and T cell subpopulations. CD40L-deficient mice did display selective deficiencies in humoral immunity; basal serum isotype levels were significantly lower than observed in normal mice, and IgE was undetectable. Furthermore, the CD40L-deficient mice failed to mount secondary antigen- specific responses to immunization with a thymus-dependent antigen, trinitrophenol-conjugated keyhole limpet hemocyanin (TNP-KLH). By contrast, the CD40L-deficient mice produced antigen-specific antibody of all isotypes except IgE in response to the thymus-independent antigen, DNP-Ficoll. These results underscore the requirement of CD40L for T cell-dependent antibody responses. Moreover, Ig class switching to isotypes other than IgE can occur in vivo in the absence of CD40L, supporting the notion that alternative B cell signaling pathways regulate responses to thymus-independent antigens. PMID:7964465

  17. CD40 ligand immunotherapy in cancer: an efficient approach.

    PubMed

    Kuwashima, N; Kageyama, S; Eto, Y; Urashima, M

    2001-01-01

    Cancer cells do not elicit a clinically sufficient anti-tumor immune response that results in tumor rejection. Recently, many investigators have been trying to enhance anti-tumor immunity and encouraging results have been reported. This review will discuss current anti-cancer immunotherapy; interleukin-2 therapy, tumor vaccine secreting Granulocyte macrophage-colony stimulating factor, dendritic cells fused with tumor cells, and CD40 ligand immunotherapy. Moreover, we introduce our two kinds of CD40 ligand immuno-genetherapy; (1) oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium (published in BLOOD 2000), (2) cancer vaccine transfected with CD40 ligand ex vivo for neuroblastoma (unpublished). Both approaches resulted in a high degree of protection against the tumor progression and they are simple and safe in the murine system.

  18. CD40 ligand immunotherapy in cancer: an efficient approach.

    PubMed

    Kuwashima, N; Kageyama, S; Eto, Y; Urashima, M

    2001-01-01

    Cancer cells do not elicit a clinically sufficient anti-tumor immune response that results in tumor rejection. Recently, many investigators have been trying to enhance anti-tumor immunity and encouraging results have been reported. This review will discuss current anti-cancer immunotherapy; interleukin-2 therapy, tumor vaccine secreting Granulocyte macrophage-colony stimulating factor, dendritic cells fused with tumor cells, and CD40 ligand immunotherapy. Moreover, we introduce our two kinds of CD40 ligand immuno-genetherapy; (1) oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium (published in BLOOD 2000), (2) cancer vaccine transfected with CD40 ligand ex vivo for neuroblastoma (unpublished). Both approaches resulted in a high degree of protection against the tumor progression and they are simple and safe in the murine system. PMID:11911421

  19. CD40 is a prognostic marker in primary cutaneous malignant melanoma.

    PubMed Central

    van den Oord, J. J.; Maes, A.; Stas, M.; Nuyts, J.; Battocchio, S.; Kasran, A.; Garmyn, M.; De Wever, I.; De Wolf-Peeters, C.

    1996-01-01

    CD40 is a receptor at the surface of B lymphocytes with important functions in the immune response. CD40 has also been found on a variety of carcinoma and melanoma cell lines where it has been suggested to serve as a possible receptor for mitogenic signals. We studied the expression and distribution of CD40 in paraffin sections of 71 uniformly treated malignant melanomas (MMs) with a long clinical follow-up using well known monoclonal antibodies. For comparison, 71 benign nevi were also studied. Common acquired nevi occasionally expressed CD40 in nests or single cells at the dermo-epidermal junction; no immunoreactivity was observed in the dermal part of acquired nevi, and all Spitz' nevi were entirely negative. One-third of large congenital nevi expressed CD40 in small clusters of heavily pigmented, epithelioid cells, corresponding to so-called proliferative nodules. In 41 of 71 MMs, CD40 was expressed in single or clustered neoplastic melanocytes; 9 cases showed CD40 expression only in the radial growth phase, and in 32 cases, the vertical growth phase showed CD40 expression. The same staining pattern was obtained with other anti-CD40 monoclonal antibodies, directed to different epitopes of the CD40 molecule. In 29 of 32 MMs showing CD40 in the vertical growth phase, expression of the CD40 ligand (CD40L) was studied; in 13 of these 29, CD40L was found in the same tumor areas that expressed CD40. Analysis of 28 metastases from 24 MM patients showed in the majority of cases a similar, scattered or nodular staining pattern as observed in the primary tumor. Patients expressing CD40 in the vertical growth phase of their MM did not differ significantly from CD40-negative patients with respect to any of the known prognostic parameters but showed a significantly shorter tumor-free survival. Patients with CD40+ CD40L+ MM tended to have a shorter tumor-free survival than those lacking CD40L. We conclude that CD40 represents a novel prognostic parameter in primary cutaneous

  20. The CD40 ligand. At the center of the immune universe?

    PubMed

    Grewal, I S; Flavell, R A

    1997-02-01

    For several years, the primary function of CD40 ligand (CD40L) has been believed to be in regulation of contact-dependent, CD40-CD40L-mediated signals between B- and T-cells, which are essential for the regulation of thymus-dependent (TD) humoral immune responses. Recently, a flurry of reports indicate that CD40 is expressed by variety of cell types other than B-cells that include dendritic cells, follicular dendritic cells, monocytes, macrophages, fibroblasts, and endothelial cells. These studies show that CD40-CD40L interactions are important in inflammatory process. For the past few years, through the availability of CD40L-knockout mice, new data have emerged to support the belief that CD40L has many more functions than its role in TD humoral immunity. CD40L-deficient mice have provided significant information towards our understanding of the in vivo role of CD40L. The current picture that emerges indicates that CD40-CD40L interactions mediate many cell-mediated immune responses and T-cell-mediated effector functions that are required for proper functioning of the host defense system. This article focuses on the in vivo role of the CD40L in regulation of cell-mediated effector functions.

  1. Expression of Fas ligand in murine ovary.

    PubMed

    Guo, M W; Xu, J P; Mori, E; Sato, E; Saito, S; Mori, T

    1997-05-01

    Corresponding to the expression of Fas in the ovarian oocytes as previously reported (Guo et al., Biochem Biophys Res Commun 1994; 203:1438-1446; Mori et al., JSIR 1995; 9:49-50), the expression of Fas ligand (FasL) in the ovarian follicle was found to be restricted in the area of granulosa cells by the indirect immunofluorescence (IIF) test. Reverse transcriptase/polymerase chain reaction (RT/PCR) technique coupled with Southern blot hybridization analysis showed that the highest level of FasL mRNA was demonstrated in murine ovaries and granulosa cells 1 day after the administration of pregnant mare's serum gonadotropin (PMSG), while the level of FasL mRNA became very weak on the day 5, respectively. The observed gradual decrease in FasL mRNA could not be attributed to a generalized degradation of cellular RNA during atresia, as evidenced by the presence of constitutive expression of elongation factor 1 alpha (EF-1 alpha) mRNA in murine ovaries and granulosa cells treated with PMSG. Furthermore, in situ hybridization analysis with a FasL-specific probe confirmed that FasL was specifically localized in the granulosa cells of most follicles and its expression was regulated by PMSG administration. FasL localized in granulosa cells might possibly play an important role in the formation of the ovarian atretic follicles, most likely depending on PMSG administration. PMID:9196798

  2. The Signaling Role of CD40 Ligand in Platelet Biology and in Platelet Component Transfusion

    PubMed Central

    Aoui, Chaker; Prigent, Antoine; Sut, Caroline; Tariket, Sofiane; Hamzeh-Cognasse, Hind; Pozzetto, Bruno; Richard, Yolande; Cognasse, Fabrice; Laradi, Sandrine; Garraud, Olivier

    2014-01-01

    The CD40 ligand (CD40L) is a transmembrane molecule of crucial interest in cell signaling in innate and adaptive immunity. It is expressed by a variety of cells, but mainly by activated T-lymphocytes and platelets. CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. Both forms bind to several receptors, including CD40. This interaction is necessary for the antigen specific immune response. Furthermore, CD40L and sCD40L are involved in inflammation and a panoply of immune related and vascular pathologies. Soluble CD40L is primarily produced by platelets after activation, degranulation and cleavage, which may present a problem for transfusion. Soluble CD40L is involved in adverse transfusion events including transfusion related acute lung injury (TRALI). Although platelet storage designed for transfusion occurs in sterile conditions, platelets are activated and release sCD40L without known agonists. Recently, proteomic studies identified signaling pathways activated in platelet concentrates. Soluble CD40L is a good candidate for platelet activation in an auto-amplification loop. In this review, we describe the immunomodulatory role of CD40L in physiological and pathological conditions. We will focus on the main signaling pathways activated by CD40L after binding to its different receptors. PMID:25479079

  3. CD40 Generation 2.5 Antisense Oligonucleotide Treatment Attenuates Doxorubicin-induced Nephropathy and Kidney Inflammation

    PubMed Central

    Donner, Aaron J; Yeh, Steve T; Hung, Gene; Graham, Mark J; Crooke, Rosanne M; Mullick, Adam E

    2015-01-01

    Preclinical and clinical data suggest CD40 activation contributes to renal inflammation and injury. We sought to test whether upregulation of CD40 in the kidney is a causative factor of renal pathology and if reduction of renal CD40 expression, using antisense oligonucleotides (ASOs) targeting CD40, would be beneficial in mouse models of glomerular injury and unilateral ureter obstruction. Administration of a Generation 2.5 CD40 ASO reduced CD40 mRNA and protein levels 75–90% in the kidney. CD40 ASO treatment mitigated functional, transcriptional, and pathological endpoints of doxorubicin-induced nephropathy. Experiments using an activating CD40 antibody revealed CD40 is primed in kidneys following doxorubicin injury or unilateral ureter obstruction and CD40 ASO treatment blunted CD40-dependent renal inflammation. Suborgan fractionation and imaging studies demonstrated CD40 in glomeruli before and after doxorubicin administration that becomes highly enriched within interstitial and glomerular foci following CD40 activation. Such foci were also sites of ASO distribution and activity and may be predominately comprised from myeloid cells as bone marrow CD40 deficiency sharply attenuated CD40 antibody responses. These studies suggest an important role of interstitial renal and/or glomerular CD40 to augment kidney injury and inflammation and demonstrate that ASO treatment could be an effective therapy in such disorders. PMID:26623936

  4. Cholera Toxin B Subunit as a Carrier Molecule Promotes Antigen Presentation and Increases CD40 and CD86 Expression on Antigen-Presenting Cells

    PubMed Central

    George-Chandy, Annie; Eriksson, Kristina; Lebens, Michael; Nordström, Inger; Schön, Emma; Holmgren, Jan

    2001-01-01

    Cholera toxin B subunit (CTB) is an efficient mucosal carrier molecule for the generation of mucosal antibody responses and/or induction of systemic T-cell tolerance to linked antigens. CTB binds with high affinity to GM1 ganglioside cell surface receptors. In this study, we evaluated how conjugation of a peptide or protein antigen to CTB by chemical coupling or genetic fusion influences the T-cell-activating capacity of different antigen-presenting cell (APC) subsets. Using an in vitro system in which antigen-pulsed APCs were incubated with antigen-specific, T-cell receptor-transgenic T cells, we found that the dose of antigen required for T-cell activation could be decreased >10,000-fold using CTB-conjugated compared to free antigen. In contrast, no beneficial effects were observed when CTB was simply admixed with antigen. CTB conjugation enhanced the antigen-presenting capacity not only of dendritic cells and B cells but also of macrophages, which expressed low levels of cell surface major histocompatibility complex (MHC) class II and were normally poor activators of naive T cells. Enhanced antigen-presenting activity by CTB-linked antigen resulted in both increased T-cell proliferation and increased interleukin-12 and gamma interferon secretion and was associated with up-regulation of CD40 and CD86 on the APC surface. These results imply that conjugation to CTB dramatically lowers the threshold concentration of antigen required for immune cell activation and also permits low-MHC II-expressing APCs to prime for a specific immune response. PMID:11500448

  5. Chromosomal localization of the gene for human B-cell antigen CD40

    SciTech Connect

    Ramesh, N.; Geha, R. ); Ramesh, V.; Gusella, J.F. )

    1993-05-01

    CD40 is a surface glycoprotein expressed on all human B lymphocytes and plays an important role in B-cell development, growth, and differentiation. Anti-CD40 monoclonal antibodies cause isotype switching in B cells treated with IL-4. CD40 is a member of a family of proteins that include low-affinity nerve growth factor receptor, TNF receptor, and the antigen Fas. The ligand for CD40 had been recently identified and had been assigned to the X chromosome. Using a panel of human-rodent somatic cell hybrids, the authors now show that CD40 maps to human chromosome 20.

  6. Off-the-shelf adenoviral-mediated immunotherapy via bicistronic expression of tumor antigen and iMyD88/CD40 adjuvant.

    PubMed

    Kemnade, Jan Ole; Seethammagari, Mamatha; Narayanan, Priya; Levitt, Jonathan M; McCormick, Alison A; Spencer, David M

    2012-07-01

    Recent modest successes in ex vivo dendritic cell (DC) immunotherapy have motivated continued innovation in the area of DC manipulation and activation. Although ex vivo vaccine approaches continue to be proving grounds for new DC manipulation techniques, the intrinsic limits of ex vivo therapy, including high cost, minimal standardization, cumbersome delivery, and poor accessibility, incentivizes the development of vaccines compatible with in vivo DC targeting. We describe here a method to co-deliver both tumor-specific antigen (TSA) and an iMyD88/CD40 adjuvant (iMC), to DCs that combines toll-like receptor (TLR) and CD40 signaling. In this study, we demonstrate that simple TSA delivery via adenoviral vectors results in strong antitumor immunity. Addition of iMC delivered in a separate vector is insufficient to enhance this effect. However, when delivered simultaneously with TSA in a single bicistronic vector (BV), iMC is able to significantly enhance antigen-specific cytotoxic T-cell (CTL) responses and inhibit established tumor growth. This study demonstrates the spatial-temporal importance of concurrent DC activation and TSA presentation. Further, it demonstrates the feasibility of in vivo molecular enhancement of DCs necessary for effective antitumor immune responses.

  7. HOIL-1L Interacting Protein (HOIP) Is Essential for CD40 Signaling

    PubMed Central

    Hostager, Bruce S.; Kashiwada, Masaki; Colgan, John D.; Rothman, Paul B.

    2011-01-01

    CD40 is a cell surface receptor important in the activation of antigen-presenting cells during immune responses. In macrophages and dendritic cells, engagement of CD40 by its ligand CD154 provides signals critical for anti-microbial and T cell-mediated immune responses, respectively. In B cells, CD40 signaling has a major role in regulating cell proliferation, antibody production, and memory B cell development. CD40 engagement results in the formation of a receptor-associated complex that mediates activation of NF-κB, stress-activated protein kinases, and other signaling molecules. However, the mechanisms that link CD40 to these signaling events have been only partially characterized. Known components of the CD40 signaling complex include members of the TNF receptor-associated factor (TRAF) family of proteins. We previously showed that the TRAF family member TRAF2 mediates recruitment of HOIL-1L-interacting protein (HOIP) to the cytoplasmic domain of CD40, suggesting that HOIP has a role in the CD40 signaling pathway. To determine the role of HOIP in CD40 signaling, we used somatic cell gene targeting to generate mouse B cell lines deficient in HOIP. We found that the CD40-induced upregulation of CD80 and activation of germline immunoglobulin epsilon transcription were defective in HOIP-deficient cells. We also found that the CD40-mediated activation of NF-κB and c-Jun kinase was impaired. Recruitment of IκB kinase proteins to the CD40 signaling complex was undetectable in HOIP-deficient cells, potentially explaining the defect in NF-κB activation. Restoration of HOIP expression reversed the defects in cellular activation and signaling. These results reveal HOIP as a key component of the CD40 signaling pathway. PMID:21829693

  8. Murine erythropoietin gene: cloning, expression, and human gene homology.

    PubMed Central

    Shoemaker, C B; Mitsock, L D

    1986-01-01

    The gene for murine erythropoietin (EPO) was isolated from a mouse genomic library with a human EPO cDNA probe. Nucleotide sequence analysis permitted the identification of the murine EPO coding sequence and the prediction of the encoded amino acid sequence based on sequence conservation between the mouse and human EPO genes. Both the coding DNA and the amino acid sequences were 80% conserved between the two species. Transformation of COS-1 cells with a mammalian cell expression vector containing the murine EPO coding region resulted in secretion of murine EPO with biological activity on both murine and human erythroid progenitor cells. The transcription start site for the murine EPO gene in kidneys was determined. This permitted tentative identification of the transcription control region. The region included 140 base pairs upstream of the cap site which was over 90% conserved between the murine and human genes. Surprisingly, the first intron and much of the 5'- and 3'-untranslated sequences were also substantially conserved between the genes of the two species. Images PMID:3773894

  9. Stratification of ST-elevation myocardial infarction patients based on soluble CD40L longitudinal changes.

    PubMed

    Napoleão, Patrícia; Cabral, Luís B P; Selas, Mafalda; Freixo, Cláudia; Monteiro, Maria do Céu; Criado, Maria Begoña; Costa, Marina C; Enguita, Francisco J; Viegas-Crespo, Ana Maria; Saldanha, Carlota; Carmo, Miguel Mota; Ferreira, Rui Cruz; Pinheiro, Teresa

    2016-10-01

    Involvement of soluble CD40 ligand (sCD40L) in thrombosis and inflammation on the context of coronary artery disease is currently being revised. In that perspective, we had studied the association of sCD40L with markers of platelet activation and markers of endothelial and vascular function. On that cohort, a stratification of patients with acute myocardial infarction (AMI) 1 month after percutaneous coronary intervention (PCI) was observed based on concentrations of sCD40L. The study intended to identify the groups of AMI patients with different profiles of sCD40L concentrations and verify how medication, clinical evolution, biochemical data, and markers of regulation of endothelial function at genetic (endothelial nitric oxide synthase polymorphisms) and post-transcriptional levels (circulating microRNAs) affect sCD40L serum levels. Lower quartiles of sCD40L (<2.3 ng/mL) were associated with higher concentrations of N-terminal pro-brain natriuretic peptide (NT-proBNP), high frequency of G894T polymorphism, and altered expression of a set of microRNAs assumed to be involved in the regulation of endothelial and cardiac function and myocardium hypertrophy, relative to patients in sCD40L upper quartiles. A characteristic sCD40L variation pattern in STEMI patients was identified. Low levels of sCD40L 1 month after PCI distinguish STEMI patients with worse prognosis, a compromised cardiac healing, and a persistent endothelial dysfunction, as given by the association between sCD40L, NT-proBNP, G894T polymorphism, and specific profile of miRNA expression. These results suggest sCD40L could have a prognostic value in STEMI patients. PMID:27172386

  10. CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging.

    PubMed

    Parviainen, S; Ahonen, M; Diaconu, I; Hirvinen, M; Karttunen, Å; Vähä-Koskela, M; Hemminki, A; Cerullo, V

    2014-02-01

    Oncolytic vaccinia virus is an attractive platform for immunotherapy. Oncolysis releases tumor antigens and provides co-stimulatory danger signals. However, arming the virus can improve efficacy further. CD40 ligand (CD40L, CD154) can induce apoptosis of tumor cells and it also triggers several immune mechanisms. One of these is a T-helper type 1 (Th1) response that leads to activation of cytotoxic T-cells and reduction of immune suppression. Therefore, we constructed an oncolytic vaccinia virus expressing hCD40L (vvdd-hCD40L-tdTomato), which in addition features a cDNA expressing the tdTomato fluorochrome for detection of virus, potentially important for biosafety evaluation. We show effective expression of functional CD40L both in vitro and in vivo. In a xenograft model of bladder carcinoma sensitive to CD40L treatment, we show that growth of tumors was significantly inhibited by the oncolysis and apoptosis following both intravenous and intratumoral administration. In a CD40-negative model, CD40L expression did not add potency to vaccinia oncolysis. Tumors treated with vvdd-mCD40L-tdtomato showed enhanced efficacy in a syngenic mouse model and induced recruitment of antigen-presenting cells and lymphocytes at the tumor site. In summary, oncolytic vaccinia virus coding for CD40L mediates multiple antitumor effects including oncolysis, apoptosis and induction of Th1 type T-cell responses.

  11. Expression and modulation of IL-1 alpha in murine keratinocytes

    SciTech Connect

    Ansel, J.C.; Luger, T.A.; Lowry, D.; Perry, P.; Roop, D.R.; Mountz, J.D.

    1988-04-01

    Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low (Ca2+) tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high (Ca2+) media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low (Ca2+) conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes.

  12. Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2.

    PubMed

    Aloui, Chaker; Prigent, Antoine; Tariket, Sofiane; Sut, Caroline; Fagan, Jocelyne; Cognasse, Fabrice; Chakroun, Tahar; Garraud, Olivier; Laradi, Sandrine

    2016-01-01

    Increased circulating soluble CD40 ligand (sCD40L) is commonly associated with inflammatory disorders. We aimed to investigate whether gene polymorphisms in CD40LG, CD40 and ITGA2 are associated with a propensity to secrete sCD40L; thus, we examined this issue at the level of human platelets, the principal source of sCD40L. We performed single polymorphism and haplotype analyses to test for the effect of twelve polymorphisms across the CD40LG, CD40 and ITGA2 genes in blood donors. ITGA2 presented a positive association with rs1126643, with a significant modification in sCD40L secretion (carriers of C allele, P =  0.02), unlike the investigated CD40LG and CD40 polymorphisms. One CD40LG haplotype (TGGC) showing rs975379 (C/T), rs3092952 (A/G), rs3092933 (A/G) and rs3092929 (A/C) was associated with increased sCD40L levels (1.906 μg/L (95% CI: 1.060 to 2.751); P = 0.000009). The sCD40L level was associated with the inter-chromosomal CD40LG/CD40/ITGA2 haplotype (ATC), displaying rs3092952 (A/G), rs1883832 (C/T) and rs1126643 (C/T), with increased sCD40L levels (P = 0.0135). Our results help to decipher the genetic role of CD40LG, CD40 and ITGA2 with regard to sCD40L levels found in platelet components. Given the crucial role of sCD40L, this haplotype study in a transfusion model may be helpful to further determine the role of haplotypes in inflammatory clinical settings. PMID:27094978

  13. Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2

    PubMed Central

    Aloui, Chaker; Prigent, Antoine; Tariket, Sofiane; Sut, Caroline; Fagan, Jocelyne; Cognasse, Fabrice; Chakroun, Tahar; Garraud, Olivier; Laradi, Sandrine

    2016-01-01

    Increased circulating soluble CD40 ligand (sCD40L) is commonly associated with inflammatory disorders. We aimed to investigate whether gene polymorphisms in CD40LG, CD40 and ITGA2 are associated with a propensity to secrete sCD40L; thus, we examined this issue at the level of human platelets, the principal source of sCD40L. We performed single polymorphism and haplotype analyses to test for the effect of twelve polymorphisms across the CD40LG, CD40 and ITGA2 genes in blood donors. ITGA2 presented a positive association with rs1126643, with a significant modification in sCD40L secretion (carriers of C allele, P = 0.02), unlike the investigated CD40LG and CD40 polymorphisms. One CD40LG haplotype (TGGC) showing rs975379 (C/T), rs3092952 (A/G), rs3092933 (A/G) and rs3092929 (A/C) was associated with increased sCD40L levels (1.906 μg/L (95% CI: 1.060 to 2.751); P = 0.000009). The sCD40L level was associated with the inter-chromosomal CD40LG/CD40/ITGA2 haplotype (ATC), displaying rs3092952 (A/G), rs1883832 (C/T) and rs1126643 (C/T), with increased sCD40L levels (P = 0.0135). Our results help to decipher the genetic role of CD40LG, CD40 and ITGA2 with regard to sCD40L levels found in platelet components. Given the crucial role of sCD40L, this haplotype study in a transfusion model may be helpful to further determine the role of haplotypes in inflammatory clinical settings. PMID:27094978

  14. Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation

    PubMed Central

    Carpenter, Erica L; Mick, Rosemarie; Rüter, Jens; Vonderheide, Robert H

    2009-01-01

    Background CD40 activation of antigen presenting cells (APC) such as dendritic cells (DC) and B cells plays an important role in immunological licensing of T cell immunity. Agonist CD40 antibodies have been previously shown in murine models to activate APC and enhance tumor immunity; in humans, CD40-activated DC and B cells induce tumor-specific T cells in vitro. Although clinical translation of these findings for patients with cancer has been previously limited due to the lack of a suitable and available drug, promising clinical results are now emerging from phase I studies of the agonist CD40 monoclonal antibody CP-870,893. The most prominent pharmacodynamic effect of CP-870,893 infusion is peripheral B cell modulation, but direct evidence of CP-870,893-mediated B cell activation and the potential impact on T cell reactivity has not been reported, despite increasing evidence that B cells, like DC, regulate cellular immunity. Methods Purified total CD19+ B cells, CD19+ CD27+ memory, or CD19+ CD27neg subsets from peripheral blood were stimulated in vitro with CP-870,893, in the presence or absence of the toll like receptor 9 (TLR9) ligand CpG oligodeoxynucleotide (ODN). B cell surface molecule expression and cytokine secretion were evaluated using flow cytometry. Activated B cells were used as stimulators in mixed lymphocyte reactions to evaluate their ability to induce allogeneic T cell responses. Results Incubation with CP-870,893 activated B cells, including both memory and naïve B cells, as demonstrated by upregulation of CD86, CD70, CD40, and MHC class I and II. CP-870,893-activated B cells induced T cell proliferation and T cell secretion of effector cytokines including IFN-gamma and IL-2. These effects were increased by TLR9 co-stimulation via a CpG ODN identical in sequence to a well-studied clinical grade reagent. Conclusion The CD40 mAb CP-870,893 activates both memory and naïve B cells and triggers their T cell stimulatory capacity. Simultaneous TLR9

  15. Expression of Wnts in the developing murine secondary palate

    PubMed Central

    WARNER, DENNIS R.; SMITH, HENRY S.; WEBB, CYNTHIA L.; GREENE, ROBERT M.; PISANO, M. MICHELE

    2009-01-01

    Morphogenesis of the mammalian secondary palate requires coordination of cell migration, proliferation, differentiation, apoptosis and synthesis of extracellular matrix molecules by numerous signal transduction pathways. Recent evidence suggests a role for members of the Wnt family of secreted cytokines in orofacial development. However, no study has systematically or comprehensively examined the expression of Wnts in embryonic orofacial tissue. We thus conducted a survey of the expression of all known Wnt genes in the developing murine secondary palate. Using an RT-PCR strategy to assay gene expression, 12 of the 19 known members of the Wnt family were found to be expressed in embryonic palatal tissue during key phases of its development. The expression of 5 Wnt family members was found to be temporally regulated. Moreover, these Wnts had unique spatio-temporal patterns of expression which suggested possible roles in palatal ontogeny. PMID:19598129

  16. Global Gene Expression Analysis of Murine Limb Development

    PubMed Central

    Taher, Leila; Collette, Nicole M.; Murugesh, Deepa; Maxwell, Evan; Ovcharenko, Ivan; Loots, Gabriela G.

    2011-01-01

    Detailed information about stage-specific changes in gene expression is crucial for understanding the gene regulatory networks underlying development and the various signal transduction pathways contributing to morphogenesis. Here we describe the global gene expression dynamics during early murine limb development, when cartilage, tendons, muscle, joints, vasculature and nerves are specified and the musculoskeletal system of limbs is established. We used whole-genome microarrays to identify genes with differential expression at 5 stages of limb development (E9.5 to 13.5), during fore- and hind-limb patterning. We found that the onset of limb formation is characterized by an up-regulation of transcription factors, which is followed by a massive activation of genes during E10.5 and E11.5 which levels off at later time points. Among the 3520 genes identified as significantly up-regulated in the limb, we find ∼30% to be novel, dramatically expanding the repertoire of candidate genes likely to function in the limb. Hierarchical and stage-specific clustering identified expression profiles that are likely to correlate with functional programs during limb development and further characterization of these transcripts will provide new insights into specific tissue patterning processes. Here, we provide for the first time a comprehensive analysis of developmentally regulated genes during murine limb development, and provide some novel insights into the expression dynamics governing limb morphogenesis. PMID:22174793

  17. Global gene expression analysis of murine limb development.

    PubMed

    Taher, Leila; Collette, Nicole M; Murugesh, Deepa; Maxwell, Evan; Ovcharenko, Ivan; Loots, Gabriela G

    2011-01-01

    Detailed information about stage-specific changes in gene expression is crucial for understanding the gene regulatory networks underlying development and the various signal transduction pathways contributing to morphogenesis. Here we describe the global gene expression dynamics during early murine limb development, when cartilage, tendons, muscle, joints, vasculature and nerves are specified and the musculoskeletal system of limbs is established. We used whole-genome microarrays to identify genes with differential expression at 5 stages of limb development (E9.5 to 13.5), during fore- and hind-limb patterning. We found that the onset of limb formation is characterized by an up-regulation of transcription factors, which is followed by a massive activation of genes during E10.5 and E11.5 which levels off at later time points. Among the 3520 genes identified as significantly up-regulated in the limb, we find ~30% to be novel, dramatically expanding the repertoire of candidate genes likely to function in the limb. Hierarchical and stage-specific clustering identified expression profiles that are likely to correlate with functional programs during limb development and further characterization of these transcripts will provide new insights into specific tissue patterning processes. Here, we provide for the first time a comprehensive analysis of developmentally regulated genes during murine limb development, and provide some novel insights into the expression dynamics governing limb morphogenesis.

  18. Autocrine stimulation of IL-10 is critical to the enrichment of IL-10-producing CD40(hi)CD5(+) regulatory B cells in vitro and in vivo.

    PubMed

    Kim, Hyuk Soon; Lee, Jun Ho; Han, Hee Dong; Kim, A-Ram; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Lee, Dajeong; Lee, Min Bum; Park, Yeong Min; Kim, Hyung Sik; Kim, Young Mi; You, Ji Chang; Choi, Wahn Soo

    2015-01-01

    IL-10-producing B (Breg) cells regulate various immune responses. However, their phenotype remains unclear. CD40 expression was significantly increased in B cells by LPS, and the Breg cells were also enriched in CD40(hi)CD5(+) B cells. Furthermore, CD40 expression on Breg cells was increased by IL-10, CD40 ligand, and B cell-activating factor, suggesting that CD40(hi) is a common phenotype of Breg cells. LPS-induced CD40 expression was largely suppressed by an anti-IL-10 receptor antibody and in IL-10(-/-)CD5(+)CD19(+) B cells. The autocrine effect of IL-10 on the CD40 expression was largely suppressed by an inhibitor of JAK/STAT3. In vivo, the LPS treatment increased the population of CD40(hi)CD5(+) Breg cells in mice. However, the population of CD40(hi)CD5(+) B cells was minimal in IL-10(-/-) mice by LPS. Altogether, our findings show that Breg cells are largely enriched in CD40(hi)CD5(+) B cells and the autocrine effect of IL-10 is critical to the formation of CD40(hi)CD5(+) Breg cells.

  19. Expression of fibroblast growth factors (Fgfs) in murine tooth development.

    PubMed

    Porntaveetus, Thantrira; Otsuka-Tanaka, Yoko; Basson, M Albert; Moon, Anne M; Sharpe, Paul T; Ohazama, Atsushi

    2011-05-01

    Fgf signalling is known to play critical roles in tooth development. Twenty-two Fgf ligands have been identified in mammals, but expression of only 10 in molars and three in the incisor loop stem cell region have been documented in murine tooth development. Our understanding of Fgf signalling in tooth development thus remains incomplete and we therefore carried out comparative in situ hybridisation analysis of unexamined Fgf ligands (eight in molars and 15 in cervical loops of incisors; Fgf11-Fgf14 were excluded from this analysis because they are not secreted and do not activate Fgf receptors) during tooth development. To identify where Fgf signalling is activated, we also examined the expression of Etv4 and Etv5, considered to be transcriptional targets of the Fgf signalling pathway. In molar tooth development, the expression of Fgf15 and Fgf20 was restricted to the primary enamel knots, whereas Etv4 and Etv5 were expressed in cells surrounding the primary enamel knots. Fgf20 expression was observed in the secondary enamel knots, whereas Fgf15 showed localised expression in the adjacent mesenchyme. Fgf16, Etv4 and Etv5 were strongly expressed in the ameloblasts of molars. In the incisor cervical loop stem cell region, Fgf17, Fgf18, Etv4 and Etv5 showed a restricted expression pattern. These molecules thus show dynamic temporo-spatial expression in murine tooth development. We also analysed teeth in Fgf15(-/-) and Fgf15(-/-) ;Fgf8(+/-) mutant mice. Neither mutant showed significant abnormalities in tooth development, indicating likely functional redundancy.

  20. Interleukin-12-induced adhesion molecule expression in murine liver.

    PubMed Central

    Myers, K. J.; Eppihimer, M. J.; Hall, L.; Wolitzky, B.

    1998-01-01

    Systemically administered interleukin (IL)-12 causes liver inflammation in mice characterized by Kupffer cell proliferation and hypertrophy, hepatocyte necrosis, and multifocal accumulations of leukocytes in the hepatic parenchyma and around portal tracts and central veins. We have used both immunohistochemical staining and radiolabeled antibody quantitation to examine adhesion molecule expression in the livers of mice dosed daily with murine IL-12. Cells infiltrating livers of IL-12-treated mice were primarily mononuclear leukocytes expressing LFA-1, VLA-4, MAC-1, and CD18 adhesion molecules but little L-selectin. Kupffer cells constitutively expressed LFA-1 and smaller amounts of MAC-1, and high levels of ICAM-1 were constitutively expressed by liver sinusoidal lining cells, portal tract, and central vein endothelia. With IL-12 treatment, existing ICAM-1 expression was up-regulated and de novo expression occurred along bile duct epithelia. VCAM-1 levels were dramatically increased, with induced expression occurring along portal tract and central vein endothelia and scattered bile duct epithelial cells and in aggregations of cells in perivascular areas and the liver parenchyma. Although constitutive expression of E- and P-selectin was negligible, Il-12 induced a moderate rise in E-selectin levels. These increases in adhesion molecule expression may have implications for the therapeutic use of IL-12, especially in patients with liver disease or autoimmune conditions where augmented adhesion molecule expression may be critical to disease pathogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9466572

  1. Protective immunity induced by tumor vaccines requires interaction between CD40 and its ligand, CD154.

    PubMed

    Mackey, M F; Gunn, J R; Ting, P P; Kikutani, H; Dranoff, G; Noelle, R J; Barth, R J

    1997-07-01

    Interactions between CD40 and its ligand, CD154 (CD40L, gp39), have been shown to play a central role in the regulation of humoral immunity. Recent evidence suggests that this ligand-receptor pair also plays an important role in the induction of cell-mediated immune responses, including those directed against viral pathogens, intracellular parasites, and alloantigens. The contribution of this ligand-receptor pair to the development of protective immunity against syngeneic tumors was evaluated by blocking the in vivo function of CD154 or by studying tumor resistance in mice genetically deficient in CD40 expression (CD40-/-). In the former case, anti-CD154 monoclonal antibody treatment inhibited the generation of protective immune responses after the administration of three potent tumor vaccines: irradiated MCA 105, MCA 105 admixed with Corynebacterium parvum adjuvant, and irradiated B16 melanoma cells transduced with the gene for granulocyte macrophage colony-stimulating factor. Confirmation of the role of CD40/CD154 interactions in tumor immunity was provided by the overt tumor susceptibility in CD40-deficient mice as compared to that in CD40+/+ mice. In this case, wild-type but not CD40-deficient mice could be readily protected against live TS/A tumor challenge by preimmunization with TS/A admixed with C. parvum. These findings suggest a critical role for CD40/CD154 interactions in the induction of cellular immunity by tumor vaccines and may have important implications for future approaches to cell-based cancer therapies. PMID:9205055

  2. Expression and regulation of CCN genes in murine osteoblasts.

    PubMed

    Parisi, Muriel S; Gazzerro, Elizabetta; Rydziel, Sheila; Canalis, Ernesto

    2006-05-01

    Members of the CCN family of genes include cysteine-rich 61 (CYR61), connective tissue growth factor (CTGF), nephroblastoma overexpressed (NOV), and Wnt-induced secreted proteins (WISP) 1, 2 and 3. CCN proteins play a role in cell differentiation and function, but their expression and function in skeletal tissue is partially understood. We examined the expression and regulation of CCN genes in primary cultures of murine osteoblasts treated with transforming growth factor beta (TGFbeta), bone morphogenetic protein (BMP)-2, or cortisol. Northern blot analysis revealed the presence of CYR61, CTGF, NOV, and WISP 1 and 2 transcripts in murine osteoblasts, but not WISP 3 transcripts. Northern and Western blot analyses revealed that TGF beta, BMP-2, and cortisol increased CYR61 and CTGF mRNA and protein levels. TGF beta decreased NOV and increased WISP 2 mRNA and protein levels, and TGF beta and BMP-2 increased, whereas cortisol decreased WISP 1 mRNA and protein levels. Nuclear run-on assays revealed that TGF beta, BMP-2 and cortisol enhanced CYR61 and CTGF transcription, TGF beta and BMP-2 induced and cortisol suppressed WISP 1, and TGF beta induced WISP 2 transcription. Suppression of NOV transcription could not be detected due to low control levels. In conclusion, five of the six known CCN genes are expressed by osteoblasts and their transcription is regulated by TGF beta, BMP-2 and cortisol.

  3. Functional expression of murine multidrug resistance in Xenopus laevis oocytes

    SciTech Connect

    Castillo, G.; Vera, J.C.; Rosen, O.M. ); Yang, Chiaping Huang; Horwitz, S.B. )

    1990-06-01

    The development of multidrug resistance (MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here the authors report the functional expression of a member of the murine MDR family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of ({sup 3}H)vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.

  4. miRNA-145 inhibits VSMC proliferation by targeting CD40

    PubMed Central

    Guo, Xin; Li, Dai; Chen, Min; Chen, Lei; Zhang, Bikui; Wu, Tian; Guo, Ren

    2016-01-01

    Recent studies have demonstrated functions of miR-145 in vascular smooth muscle cells (VSMCs) phenotypes and vascular diseases. In this study, we aim to determine whether CD40 is involved in miR-145 mediated switch of VSMC phenotypes. In cultured VSMCs, the effects of miR-145 and CD40 on TNF-α, TGF-β, and Homocysteine (Hcy) induced cell proliferation were evaluated by over-expression of miR-145 or by siRNA-mediated knockdown of CD40. We also used ultrasound imaging to explore the effect of miR-145 on carotid artery intima-media thickness (CIMT) in atherosclerotic cerebral infarction (ACI) patients. The results showed 50 ng/mL TNF-α, 5 ng/mL TGF-β, and 500 μmol/L Hcy significantly increased the expression of CD40, both at mRNA and protein levels, and also induced the proliferation of VSMCs. We found that over-expression of miR-145 significantly inhibited the expression of CD40 and the differentiation of VSMCs, and over-expression of miR-145 decreased IL-6 levels in VSMC supernatants. In ACI patients, the lower expression of miR-145 was associated with thicker CIMT and higher levels of plasma IL-6. Our results suggest that the miR-145/CD40 pathway is involved in regulating VSMC phenotypes in TNF-α, TGF-β, and Hcy induced VSMCs proliferation model. Targeting miR-145/CD40 might be a useful strategy for treating atherosclerosis. PMID:27731400

  5. Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus.

    PubMed

    Diaconu, Iulia; Cerullo, Vincenzo; Hirvinen, Mari L M; Escutenaire, Sophie; Ugolini, Matteo; Pesonen, Saila K; Bramante, Simona; Parviainen, Suvi; Kanerva, Anna; Loskog, Angelica S I; Eliopoulos, Aristides G; Pesonen, Sari; Hemminki, Akseli

    2012-05-01

    Oncolytic adenovirus is an attractive platform for immunotherapy because virus replication is highly immunogenic and not subject to tolerance. Although oncolysis releases tumor epitopes and provides costimulatory danger signals, arming the virus with immunostimulatory molecules can further improve efficacy. CD40 ligand (CD40L, CD154) induces apoptosis of tumor cells and triggers several immune mechanisms, including a T-helper type 1 (T(H)1) response, which leads to activation of cytotoxic T cells and reduction of immunosuppression. In this study, we constructed a novel oncolytic adenovirus, Ad5/3-hTERT-E1A-hCD40L, which features a chimeric Ad5/3 capsid for enhanced tumor transduction, a human telomerase reverse transcriptase (hTERT) promoter for tumor selectivity, and human CD40L for increased efficacy. Ad5/3-hTERT-E1A-hCD40L significantly inhibited tumor growth in vivo via oncolytic and apoptotic effects, and (Ad5/3-hTERT-E1A-hCD40L)-mediated oncolysis resulted in enhanced calreticulin exposure and HMGB1 and ATP release, which were suggestive of immunogenicity. In two syngeneic mouse models, murine CD40L induced recruitment and activation of antigen-presenting cells, leading to increased interleukin-12 production in splenocytes. This effect was associated with induction of the T(H)1 cytokines IFN-γ, RANTES, and TNF-α. Tumors treated with Ad5/3-CMV-mCD40L also displayed an enhanced presence of macrophages and cytotoxic CD8(+) T cells but not B cells. Together, our findings show that adenoviruses coding for CD40L mediate multiple antitumor effects including oncolysis, apoptosis, induction of T-cell responses, and upregulation of T(H)1 cytokines.

  6. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease.

  7. Hypoxia inhibits Moloney murine leukemia virus expression in activated macrophages.

    PubMed

    Puppo, Maura; Bosco, Maria Carla; Federico, Maurizio; Pastorino, Sandra; Varesio, Luigi

    2007-02-01

    Hypoxia, a local decrease in oxygen tension, occurring in many pathological processes, modifies macrophage (Mphi) gene expression and function. Here, we provide the first evidence that hypoxia inhibits transgene expression driven by the Moloney murine leukemia virus-long terminal repeats (MoMLV-LTR) in IFN-gamma-activated Mphi. Hypoxia silenced the expression of several MoMLV-LTR-driven genes, including v-myc, enhanced green fluorescence protein, and env, and was effective in different mouse Mphi cell lines and on distinct MoMLV backbone-based viruses. Down-regulation of MoMLV mRNA occurred at the transcriptional level and was associated with decreased retrovirus production, as determined by titration experiments, suggesting that hypoxia may control MoMLV retroviral spread through the suppression of LTR activity. In contrast, genes driven by the CMV or the SV40 promoter were up-regulated or unchanged by hypoxia, indicating a selective inhibitory activity on the MoMLV promoter. It is interesting that hypoxia was ineffective in suppressing MoMLV-LTR-controlled gene expression in T or fibroblast cell lines, suggesting a Mphi lineage-selective action. Finally, we found that MoMLV-mediated gene expression in Mphi was also inhibited by picolinic acid, a tryptophan catabolite with hypoxia-like activity and Mphi-activating properties, suggesting a pathophysiological role of this molecule in viral resistance and its possible use as an antiviral agent.

  8. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  9. Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine.

    PubMed

    Hangalapura, Basav N; Oosterhoff, Dinja; de Groot, Jan; Boon, Louis; Tüting, Thomas; van den Eertwegh, Alfons J; Gerritsen, Winald R; van Beusechem, Victor W; Pereboev, Alexander; Curiel, David T; Scheper, Rik J; de Gruijl, Tanja D

    2011-09-01

    In situ delivery of tumor-associated antigen (TAA) genes into dendritic cells (DC) has great potential as a generally applicable tumor vaccination approach. Although adenoviruses (Ad) are an attractive vaccine vehicle in this regard, Ad-mediated transduction of DCs is hampered by the lack of expression of the Ad receptor CAR on the DC surface. DC activation also requires interaction of CD40 with its ligand CD40L to generate protective T-cell-mediated tumor immunity. Therefore, to create a strategy to target Ads to DCs in vivo, we constructed a bispecific adaptor molecule with the CAR ectodomain linked to the CD40L extracellular domain via a trimerization motif (CFm40L). By targeting Ad to CD40 with the use of CFm40L, we enhanced both transduction and maturation of cultured bone marrow-derived DCs. Moreover, we improved transduction efficiency of DCs in lymph node and splenic cell suspensions in vitro and in skin and vaccination site-draining lymph nodes in vivo. Furthermore, CD40 targeting improved the induction of specific CD8(+) T cells along with therapeutic efficacy in a mouse model of melanoma. Taken together, our findings support the use of CD40-targeted Ad vectors encoding full-length TAA for in vivo targeting of DCs and high-efficacy induction of antitumor immunity.

  10. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    PubMed

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.

  11. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    PubMed

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies. PMID:27622331

  12. Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection.

    PubMed

    Soong, L; Xu, J C; Grewal, I S; Kima, P; Sun, J; Longley, B J; Ruddle, N H; McMahon-Pratt, D; Flavell, R A

    1996-03-01

    To study the role of CD40 ligand (CD40L) in the host immune responses against intracellular pathogens, we infected CD40L knockout (CD40L-/-) mice with Leishmania amazonensis. Although wild-type mice were susceptible to infection and developed progressive ulcerative lesions, tissue parasite burdens in CD40L-/- mice were significantly higher. This heightened susceptibility to infection was associated with an impaired T cell and macrophage activation and altered inflammatory response, as reflected by low levels of IFN gamma, lymphotoxin-tumor necrosis factor (LT-TNF), and nitric oxide (NO) production. Furthermore, CD40L-/- mice failed to generate a protective immune response after immunization. These results indicate an essential role of cognate CD40-CD40L interactions in the generation of cellular immune responses against an intracellular parasite.

  13. Melatonin modulates adiponectin expression on murine colitis with sleep deprivation

    PubMed Central

    Kim, Tae Kyun; Park, Young Sook; Baik, Haing-Woon; Jun, Jin Hyun; Kim, Eun Kyung; Sull, Jae Woong; Sung, Ho Joong; Choi, Jin Woo; Chung, Sook Hee; Gye, Myung Chan; Lim, Ju Yeon; Kim, Jun Bong; Kim, Seong Hwan

    2016-01-01

    AIM To determine adiponectin expression in colonic tissue of murine colitis and systemic cytokine expression after melatonin treatments and sleep deprivation. METHODS The following five groups of C57BL/6 mice were used in this study: (1) group I, control; (2) group II, 2% DSS induced colitis for 7 d; (3) group III, 2% DSS induced colitis and melatonin treatment; (4) group IV, 2% DSS induced colitis with sleep deprivation (SD) using specially designed and modified multiple platform water baths; and (5) group V, 2% DSS induced colitis with SD and melatonin treatment. Melatonin (10 mg/kg) or saline was intraperitoneally injected daily to mice for 4 d. The body weight was monitored daily. The degree of colitis was evaluated histologically after sacrificing the mice. Immunohistochemical staining and Western blot analysis was performed using anti-adiponectin antibody. After sampling by intracardiac punctures, levels of serum cytokines were measured by ELISA. RESULTS Sleep deprivation in water bath exacerbated DSS induced colitis and worsened weight loss. Melatonin injection not only alleviated the severity of mucosal injury, but also helped survival during stressful condition. The expression level of adiponectin in mucosa was decreased in colitis, with the lowest level observed in colitis combined with sleep deprivation. Melatonin injection significantly (P < 0.05) recovered the expression of adiponectin. The expression levels of IL-6 and IL-17 were increased in the serum of mice with DSS colitis but decreased after melatonin injection. CONCLUSION This study suggested that melatonin modulated adiponectin expression in colonic tissue and melatonin and adiponectin synergistically potentiated anti-inflammatory effects on colitis with sleep deprivation.

  14. Melatonin modulates adiponectin expression on murine colitis with sleep deprivation

    PubMed Central

    Kim, Tae Kyun; Park, Young Sook; Baik, Haing-Woon; Jun, Jin Hyun; Kim, Eun Kyung; Sull, Jae Woong; Sung, Ho Joong; Choi, Jin Woo; Chung, Sook Hee; Gye, Myung Chan; Lim, Ju Yeon; Kim, Jun Bong; Kim, Seong Hwan

    2016-01-01

    AIM To determine adiponectin expression in colonic tissue of murine colitis and systemic cytokine expression after melatonin treatments and sleep deprivation. METHODS The following five groups of C57BL/6 mice were used in this study: (1) group I, control; (2) group II, 2% DSS induced colitis for 7 d; (3) group III, 2% DSS induced colitis and melatonin treatment; (4) group IV, 2% DSS induced colitis with sleep deprivation (SD) using specially designed and modified multiple platform water baths; and (5) group V, 2% DSS induced colitis with SD and melatonin treatment. Melatonin (10 mg/kg) or saline was intraperitoneally injected daily to mice for 4 d. The body weight was monitored daily. The degree of colitis was evaluated histologically after sacrificing the mice. Immunohistochemical staining and Western blot analysis was performed using anti-adiponectin antibody. After sampling by intracardiac punctures, levels of serum cytokines were measured by ELISA. RESULTS Sleep deprivation in water bath exacerbated DSS induced colitis and worsened weight loss. Melatonin injection not only alleviated the severity of mucosal injury, but also helped survival during stressful condition. The expression level of adiponectin in mucosa was decreased in colitis, with the lowest level observed in colitis combined with sleep deprivation. Melatonin injection significantly (P < 0.05) recovered the expression of adiponectin. The expression levels of IL-6 and IL-17 were increased in the serum of mice with DSS colitis but decreased after melatonin injection. CONCLUSION This study suggested that melatonin modulated adiponectin expression in colonic tissue and melatonin and adiponectin synergistically potentiated anti-inflammatory effects on colitis with sleep deprivation. PMID:27672276

  15. Gene expression of lactobacilli in murine forestomach biofilms

    PubMed Central

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-01-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62–82% of rRNA reads), followed by Clostridiales (8–31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans. PMID:24702817

  16. Gene expression of lactobacilli in murine forestomach biofilms.

    PubMed

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-07-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62-82% of rRNA reads), followed by Clostridiales (8-31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans.

  17. CD40 upregulation is independent of HHV-8 in the pathogenesis of Kaposi's sarcoma.

    PubMed Central

    Kennedy, M M; Biddolph, S; Lucas, S B; Howells, D D; Picton, S; McGee, J O; O'Leary, J J

    1999-01-01

    AIMS: Human herpesvirus 8 (HHV-8) is now acknowledged as the infective cofactor in the pathogenesis of Kaposi's sarcoma. The mode by which HHV-8 causes Kaposi's sarcoma is unresolved and it is probable that it acts in conjunction with other factors including cytokines, anti-apoptosis proteins, and cell surface receptors. CD40, a cell membrane receptor belonging to the tumour necrosis factor receptor super family, promotes B cell survival and is expressed constitutively on endothelial cells. It is upregulated on cytokine treatment and has been documented recently in Kaposi's sarcoma. Because the HHV-8 genome contains cytokine homologues, this study investigated whether CD40 expression in Kaposi's sarcoma correlated with HHV-8 status, using a unique set of HHV-8 positive and negative specimens. METHODS: Twenty one paraffin wax embedded samples of Kaposi's sarcoma were selected, of which 18 were screened for the presence of HHV-8 using both conventional solution phase and TaqMan polymerase chain reaction (PCR). CD40 immunohistochemistry was assessed using a biotinylated amplification system. Staining was scored semiquantitatively. RESULTS: The results indicated that the expression of CD40 is independent of viral status, being present in both HHV-8 positive and negative specimens. CONCLUSIONS: This suggests that HHV-8 promotes Kaposi's sarcoma cell survival following infection by mechanisms other than those involving CD40. PMID:10439837

  18. Interruption of classic CD40L-CD40 signalling but not of the novel CD40L-Mac-1 interaction limits arterial neointima formation in mice.

    PubMed

    Willecke, F; Tiwari, S; Rupprecht, B; Wolf, D; Hergeth, S; Hoppe, N; Dufner, B; Schulte, L; Anto Michel, N; Bukosza, N; Marchini, T; Jäckel, M; Stachon, P; Hilgendorf, I; Zeschky, K; Schleicher, R; Langer, H F; von Zur Muhlen, C; Bode, C; Peter, K; Zirlik, A

    2014-08-01

    The co-stimulatory immune molecule CD40L figures prominently in a variety of inflammatory conditions including arterial disease. Recently, we made the surprising finding that CD40L mediates atherogenesis independently of its classic receptor CD40 via a novel interaction with the leukocyte integrin Mac-1. Here, we hypothesised that selective blockade of the CD40L-Mac-1 interaction may also retard restenosis. We induced neointima formation in C57/BL6 mice by ligation of the left carotid artery. Mice were randomised to daily intraperitoneal injections of either cM7, a small peptide selectively inhibiting the CD40L-Mac-1 interaction, scM7, a scrambled control peptide, or saline for 28 days. Interestingly, cM7-treated mice developed neointima of similar size compared with mice receiving the control peptide or saline as assessed by computer-assisted analysis of histological cross sections. These data demonstrate that the CD40L-Mac-1 interaction is not required for the development of restenosis. In contrast, CD40-deficient mice subjected to carotid ligation in parallel, developed significantly reduced neointimal lesions compared with respective wild-type controls (2872 ± 843 µm² vs 35469 ± 11870 µm²). Flow cytometry in CD40-deficient mice revealed reduced formation of platelet-granulocyte and platelet-inflammatory monocyte- aggregates. In vitro, supernatants of CD40-deficient platelet-leukocyte aggregates attenuated proliferation and increased apoptosis of smooth muscle cells. Unlike in the setting of atherosclerosis, CD40L mediates neointima formation via its classic receptor CD40 rather than via its recently described novel interaction with Mac-1. Therefore, selective targeting of CD40L-Mac-1 binding does not appear to be a favorable strategy to fight restenosis.

  19. Induction of myeloma-specific cytotoxic T lymphocytes ex vivo by CD40-activated B cells loaded with myeloma tumor antigens.

    PubMed

    Kim, Sang-Ki; Nguyen Pham, Thanh-Nhan; Nguyen Hoang, Tuyet Minh; Kang, Hyun-Kyu; Jin, Chun-Ji; Nam, Jong-Hee; Chung, Sang-Young; Choi, So-Jin-Na; Yang, Deok-Hwan; Kim, Yeo-Kyeoung; Chung, Ik-Joo; Kim, Hyeoung-Joon; Lee, Je-Jung

    2009-11-01

    We investigated to establish CD40-activated B cells (CD40-B cells) as alternative antigen-presenting cells (APCs) for the induction of myeloma-specific cytotoxic T lymphocytes (CTLs). To generate CD40-B cells, peripheral blood mononuclear cells were co-cultured with CD40L-transfected J558 cells in the presence of IL-4, insulin, transferrin, and cyclosporine for 14 days, and pulsed with myeloma lysates. The CD40-B cells consistently expressed high levels of CD80, CD86, CD54, CCR7, and HLA-DR. The CD40-B cells produced IL-12, IFN-gamma, and IL-6 during the culture period, but not IL-10. In addition, the CD40-B cells showed potent allogeneic T-cell stimulatory capacities that depended on the dose ratio and had the potential to polarize naïve T cells into Th1 subsets. The CD40-B cells loaded with tumor lysates induced strong target-specific CTLs, based on large numbers of IFN-gamma secreting cells and higher cytotoxic activity against target cells compared to the CD40-B cells without the tumor lysates. These results suggest that CD40-B cells loaded with myeloma lysates might provide alternative APCs for cellular immunotherapy in patients with myeloma. PMID:19277657

  20. Organization, structure and expression of murine interferon alpha genes.

    PubMed

    Zwarthoff, E C; Mooren, A T; Trapman, J

    1985-02-11

    Using a human interferon-alpha probe we have isolated recombinant phages containing murine interferon-alpha (Mu IFN-alpha) genes from a genomic library. One of these phages contained two complete Mu IFN-alpha genes and part of a third gene. The insert of a second phage held two IFN genes. This indicates that the Mu IFN-alpha genes are clustered in the genome as is the case for the analogous human genes. The nucleotide sequences of these 5 genes were determined. They show that the genes are all different, albeit highly homologous. The deduced amino acid sequences show that four of the five genes contain a putative glycosylation site. Three genes were transiently expressed in COS cells and they gave rise to protein products showing antiviral properties. The expression of the five Mu IFN-alpha genes and the Mu IFN-beta gene was studied in virus-induced mouse L cells. The individual mRNAs were visualized in a nuclease S1 experiment, using a specific probe for each gene. In RNA preparations from induced cells mRNAs for each of the five alpha genes and the beta gene were present. However, substantial differences in the amounts of the individual mRNAs were observed.

  1. Expression of heteromeric amino acid transporters along the murine intestine.

    PubMed

    Dave, Mital H; Schulz, Nicole; Zecevic, Marija; Wagner, Carsten A; Verrey, Francois

    2004-07-15

    Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.

  2. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  3. Soluble CD40 Ligand in Sera of Subjects Exposed to Leishmania infantum Infection Reduces the Parasite Load in Macrophages

    PubMed Central

    de Oliveira, Fabrícia Alvisi; Barreto, Aline Silva; Bomfim, Lays G. S.; Leite, Talita Rebeca S.; dos Santos, Priscila Lima; de Almeida, Roque Pacheco; da Silva, Ângela Maria; Duthie, Malcolm S.; Reed, Steven G.

    2015-01-01

    Background While CD40L is typically a membrane glycoprotein expressed on activated T cells and platelets that binds and activates CD40 on the surface on antigen presenting cells, a soluble derivative (sCD40L) that appears to retain its biological activity after cleavage from cell membrane also exists. We recently reported that sCD40L is associated with clinical resolution of visceral leishmaniasis and protection against the disease. In the present study we investigated if this sCD40L is functional and exerts anti-parasitic effect in L. infantum-infected macrophages. Methodology/Principal Findings Macrophages from normal human donors were infected with L. infantum promastigotes and incubated with either sera from subjects exposed to L. infantum infection, monoclonal antibodies against human CD40L, or an isotype control antibody. We then evaluated infection by counting the number of infected cells and the number of parasites in each cell. We also measured a variety of immune modulatory cytokines in these macrophage culture supernatants by Luminex assay. The addition of sCD40L, either recombinant or from infected individuals’ serum, decreased both the number of infected macrophages and number of intracellular parasites. Moreover, this treatment increased the production of IL-12, IL-23, IL-27, IL-15, and IL1β such that negative correlations between the levels of these cytokines with both the infection ratio and number of intracellular parasites were observed. Conclusions/Significance sCD40L from sera of subjects exposed to L. infantum is functional and improves both the control of parasite and production of inflamatory cytokines of infected macrophages. Although the mechanisms involved in parasite killing are still unclear and require further exploration, these findings indicate a protective role of sCD40L in visceral leishmaniasis. PMID:26488744

  4. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes. PMID:26369430

  5. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  6. Inhibition of B-cell death does not restore T-cell-dependent immune responses in CD40-deficient mice

    PubMed Central

    Merino, Jesús; Díez, Miguel A; Muñiz, María; Buelta, Luis; Núñez, Gabriel; López-Hoyos, Marcos; Merino, Ramón

    2003-01-01

    Signalling through CD40 is essential for the development of immunoglobulin G (IgG) antibody responses, germinal centres and B-cell memory against T-dependent antigens. In addition, engagement of CD40 in B cells promotes cell survival by inducing the expression of anti-apoptotic members of the bcl-2 family of cell-death regulators. In the present study we analysed whether T-dependent immune responses can be developed in mice deficient in CD40 if the anti-apoptotic activity mediated by the engagement of CD40 in B cells is compensated by the constitutive over-expression of anti-apoptotic genes of the bcl-2 family. We showed that the over-expression of either hbcl-2 or hbcl-xL transgenes in B cells is not sufficient to restore IgG antibody responses and germinal centre formation in CD40-deficient mice. These results indicate that CD40 functions, other than those mediated through survival, are required for the establishment of T-dependent B-cell responses. PMID:12871216

  7. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    PubMed

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L; Siminovitch, Katherine A; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Gupta, Namrata; Clemons, Paul A; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M

    2013-05-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in

  8. Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    PubMed Central

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J.; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L.; Siminovitch, Katherine A.; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Gupta, Namrata; Clemons, Paul A.; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M.

    2013-01-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10−9). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10−9), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in

  9. Class II-targeted antigen is superior to CD40-targeted antigen at stimulating humoral responses in vivo.

    PubMed

    Frleta, D; Demian, D; Wade, W F

    2001-02-01

    We examined the efficacy of using monoclonal antibodies to target antigen (avidin) to different surface molecules expressed on antigen presenting cells (APC). In particular, we targeted CD40 to test whether the "adjuvant" properties of CD40 signaling combined with targeted antigen would result in enhanced serologic responses. We targeted avidin to class II as a positive control and to CD11c as a negative control. These surface proteins represent an ensemble of surface molecules that signal upon ligation and that are expressed on professional APC, in particular dendritic cells (DC). We observed that targeting class II molecules on APC was superior to targeting CD40, or CD11c. However, CD40 and CD11c could function as targets for antigen bound monoclonal antibodies under certain conditions. Interestingly, inclusion of anti-CD40 mAb with the targeting anti-class II-targeted antigens negatively affects humoral response, suggesting that CD40 signaling under certain conditions may suppress processing and/or presentation of targeted antigen. PMID:11360928

  10. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  11. The Serum Levels of the Soluble Factors sCD40L and CXCL1 Are Not Indicative of Endometriosis

    PubMed Central

    Pateisky, Petra; Pils, Dietmar; Kuessel, Lorenz; Szabo, Ladislaus; Walch, Katharina; Obwegeser, Reinhard; Wenzl, René; Yotova, Iveta

    2016-01-01

    Endometriosis is a benign but troublesome gynecological condition, characterized by endometrial-like tissue outside the uterine cavity. Lately, the discovery and validation of noninvasive diagnostic biomarkers for endometriosis is one of the main priorities in the field. As the disease elicits a chronic inflammatory reaction, we focused our interest on two factors well known to be involved in inflammation and neoplastic processes, namely, soluble CD40 Ligand and CXCL1, and asked whether differences in the serum levels of sCD40L and CXCL1 in endometriosis patients versus controls can serve as noninvasive disease markers. A total of n = 60 women were included in the study, 31 endometriosis patients and 29 controls, and the serum levels of sCD40L and CXCL1 were measured by enzyme-linked immunosorbent assay. Overall, there were no statistically significant differences in the levels of expression of both sCD40L and CXCL1 between patients and controls. This study adds useful clinical data showing that the serum levels of the soluble factors sCD40L and CXCL1 are not associated with endometriosis and are not suitable as biomarkers for disease diagnosis. However, we found a trend toward lower levels of sCD40L in the deep infiltrating endometriosis subgroup making it a potentially interesting target worth further investigation. PMID:27190986

  12. Transformation of the tumour microenvironment by a CD40 agonist antibody correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model

    PubMed Central

    Mullins, Stefanie; Sulikowski, Michal G.; Martin, Philip; Brown, Lee; Lewis, Arthur; Davies, Gareth; Morrow, Michelle; Wilkinson, Robert W.

    2016-01-01

    Despite the availability of recently developed chemotherapy regimens, survival times for pancreatic cancer patients remain poor. These patients also respond poorly to immune checkpoint blockade therapies (anti-CTLA-4, anti-PD-L1, anti-PD-1), which suggests the presence of additional immunosuppressive mechanisms in the pancreatic tumour microenvironment (TME). CD40 agonist antibodies (αCD40) promote antigen presenting cell (APC) maturation and enhance macrophage tumouricidal activity, and may therefore alter the pancreatic TME to increase sensitivity to immune checkpoint blockade. Here, we test whether αCD40 transforms the TME in a mouse syngeneic orthotopic model of pancreatic cancer, to increase sensitivity to PD-L1 blockade. We found that whilst mice bearing orthotopic Pan02 tumours responded poorly to PD-L1 blockade, αCD40 improved overall survival. αCD40 transformed the TME, upregulating Th1 chemokines, increasing cytotoxic T cell infiltration and promoting formation of an immune cell-rich capsule separating the tumour from the normal pancreas. Furthermore, αCD40 drove systemic APC maturation, memory T cell expansion, and upregulated tumour and systemic PD-L1 expression. Combining αCD40 with PD-L1 blockade enhanced anti-tumour immunity and improved overall survival versus either monotherapy. These data provide further support for the potential of combining αCD40 with immune checkpoint blockade to promote anti-tumour immunity in pancreatic cancer. PMID:26918344

  13. Expression cloning of the murine interferon gamma receptor cDNA.

    PubMed Central

    Munro, S; Maniatis, T

    1989-01-01

    A cDNA encoding a receptor for murine interferon gamma (IFN-gamma) was isolated from an expression library made from murine thymocytes. The clone was identified by transfecting the library into monkey COS cells and probing the transfected monolayer with radiolabeled murine IFN-gamma. Cells expressing the receptor were identified by autoradiography and plasmids encoding the receptor were directly rescued from those cells producing a positive signal. A partial cDNA so obtained was used to isolate a full-length cDNA from mouse L929 cells by conventional means. When this cDNA was expressed in COS cells it produced a specific binding site for murine IFN-gamma with an affinity constant similar to that of the receptor found on L929 cells. The predicted amino acid sequence of the murine IFN-gamma receptor shows homology to that previously reported for the human IFN-gamma receptor. However, although the two proteins are clearly related, they show less than 60% identity in both the putative extracellular domain and the intracellular domain. Images PMID:2531896

  14. CD40 and B cell antigen receptor dual triggering of resting B lymphocytes turns on a partial germinal center phenotype

    PubMed Central

    1996-01-01

    Phenotypic alterations occur when resting human B lymphocytes become germinal center (GC) cells. These include the induction of surface CD38, CD95 (FAS/APO-1), and carboxy-peptidase-M (CPM), a recently described GC marker. However, the factors that govern the in vivo induction of these surface molecules on B cells remain unknown. Here, we purified resting (CD38-) human B lymphocytes from tonsils in an attempt to establish culture conditions resulting in the induction of these three GC markers. We show that interferon (IFN) alpha or IFN- gamma, as well as antibodies against the B cell antigen receptor (BCR), could induce CD38 on resting B lymphocytes, a phenomenon further enhanced by CD40 stimulation. Concomitantly, CD95 was upregulated by CD40 ligation and, to a lesser extent, by IFN-gamma. By contrast, CPM expression could be upregulated only through BCR triggering. This CPM induction was specifically enhanced by CD19 or CD40 ligation. CD40 + BCR stimulation of resting B cells with CD40 ligand-transfected fibroblastic cells in the presence of cross-linked anti-BCR monoclonal antibodies resulted in the coexpression of CD38, CD95, and CPM. As GC cells, these cells also expressed CD71, CD80 (B7.1), and CD86 (B7.2), but not CD24. However, CD10+ or CD44- B cells could not be detected in these culture conditions, suggesting that yet other signals are required for the induction of these GC markers. Consistent with a GC phenotype, CD40 + BCR-stimulated cells exhibited reduced viability when cultured for 20 h in the absence of stimulus. These results first demonstrate that cotriggering of resting B cells through BCR and CD40 induces both phenotypic and functional GC features. They also show that IFN and CD19 triggering of resting B cells specifically modulate the expression of GC markers. PMID:8551247

  15. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  16. Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes.

    PubMed

    Hammill, Joanne A; Afsahi, Arya; Bramson, Jonathan L; Helsen, Christopher W

    2016-01-01

    The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses. PMID:27581020

  17. Dendritic cells induce Tc1 cell differentiation via the CD40/CD40L pathway in mice after exposure to cigarette smoke.

    PubMed

    Kuang, Liang-Jian; Deng, Ting-Ting; Wang, Qin; Qiu, Shi-Lin; Liang, Yi; He, Zhi-Yi; Zhang, Jian-Quan; Bai, Jing; Li, Mei-Hua; Deng, Jing-Min; Liu, Guang-Nan; Liu, Ji-Feng; Zhong, Xiao-Ning

    2016-09-01

    Dendritic cells and CD8(+) T cells participate in the pathology of chronic obstructive pulmonary disease, including emphysema, but little is known of the involvement of the CD40/CD40L pathway. We investigated the role of the CD40/CD40L pathway in Tc1 cell differentiation induced by dendritic cells in a mouse model of emphysema, and in vitro. C57BL/6J wild-type and CD40(-/-) mice were exposed to cigarette smoke (CS) or not (control), for 24 wk. In vitro experiments involved wild-type and CD40(-/-) dendritic cells treated with CS extract (CSE) or not. Compared with the control groups, the CS mice (both wild type and CD40(-/-)) had a greater percentage of lung dendritic cells and higher levels of major histocompatability complex (MHC) class I molecules and costimulatory molecules CD40 and CD80. Relative to the CS CD40(-/-) mice, the CS wild type showed greater signs of lung damage and Tc1 cell differentiation. In vitro, the CSE-treated wild-type cells evidenced more cytokine release (IL-12/p70) and Tc1 cell differentiation than did the CSE-treated CD40(-/-) cells. Exposure to cigarette smoke increases the percentage of lung dendritic cells and promotes Tc1 cell differentiation via the CD40/CD40L pathway. Blocking the CD40/CD40L pathway may suppress development of emphysema in mice exposed to cigarette smoke. PMID:27448664

  18. Expression and function of the murine B7 antigen, the major costimulatory molecule expressed by peritoneal exudate cells.

    PubMed Central

    Razi-Wolf, Z; Freeman, G J; Galvin, F; Benacerraf, B; Nadler, L; Reiser, H

    1992-01-01

    The murine B7 (mB7) protein is a potent costimulatory molecule for the T-cell receptor (TCR)-mediated activation of murine CD4+ T cells. We have previously shown that stable mB7-transfected Chinese hamster ovary (CHO) cells but not vector-transfected controls synergize with either anti-CD3 monoclonal antibody-induced or concanavalin A-induced T-cell activation, resulting ultimately in lymphokine production and proliferation. We now have generated a hamster anti-mB7 monoclonal antibody. This reagent recognizes a protein with an apparent molecular mass of 50-60 kDa. The mB7 antigen is expressed on activated B cells and on peritoneal exudate cells (PECs). Antibody blocking experiments demonstrate that mB7 is the major costimulatory molecule expressed by PECs for the activation of murine CD4+ T cells. This suggests an important role for mB7 during immune-cell interactions. We have also surveyed a panel of murine cell lines capable of providing costimulatory activity. Our results indicate that mB7 is the major costimulatory molecule on some but not all cell lines and that there may be additional molecules besides mB7 that can costimulate the activation of murine CD4+ T cells. Images PMID:1373896

  19. An essential role for gp39, the ligand for CD40, in thymic selection.

    PubMed

    Foy, T M; Page, D M; Waldschmidt, T J; Schoneveld, A; Laman, J D; Masters, S R; Tygrett, L; Ledbetter, J A; Aruffo, A; Claassen, E; Xu, J C; Flavell, R A; Oehen, S; Hedrick, S M; Noelle, R J

    1995-11-01

    The interactions between CD40 on B cells and its ligand gp39 on activated T helper cells are known to be essential for the development of thymus-dependent humoral immunity. However, CD40 is also functionally expressed on thymic epithelial cells and dendritic cells, suggesting that gp39-CD40 interactions may also play a role in thymic education, the process by which self-reactive cells are deleted from the T cell repertoire. Six systems of negative selection were studied for their reliance on gp39-CD40 interactions to mediate negative selection. In all cases, when the antigen/superantigen was endogenously expressed (in contrast to exogenously administered), negative selection was blocked by loss of gp39 function. Specifically, blockade of gp39-CD40 interactions prevented the deletion of thymocytes expressing V beta 3, V beta 11, and V beta 12, specificities normally deleted in BALB/c mice because of the endogenous expression of minor lymphocyte-stimulating determinants. Independent verification of a role of gp39 in negative selection was provided by studies in gp39-deficient mice where alterations in T cell receptor (TCR) V beta expression were also observed. Studies were also performed in the AND TCR transgenic (Tg) mice, which bear the V alpha 11, V beta 3 TCR and recognize both pigeon cytochrome c (PCC)/IEk and H-2As. Neonatal administration of anti-gp39 to AND TCR Tg mice that endogenously express H-2As or endogenously produce PCC prevented the deletion of TCR Tg T cells. In contrast, deletion mediated by high-dose PCC peptide antigen (administered exogenously) in AND TCR mice was unaltered by administration of anti-gp39. In addition, deletion by Staphylococcus enterotoxin B in conventional mice was also unaffected by anti-gp39 administration. gp39 expression was induced on thymocytes by mitogens or by antigen on TCR Tg thymocytes. Immunohistochemical analysis of B7-2 expression in the thymus indicated that, in the absence of gp39, B7-2 expression was

  20. Preliminary evidence for a matrix metalloproteinase-2 (MMP-2)-dependent shedding of soluble CD40 ligand (sCD40L) from activated platelets.

    PubMed

    Reinboldt, Stephan; Wenzel, Folker; Rauch, Bernhard H; Hohlfeld, Thomas; Grandoch, Maria; Fischer, Jens W; Weber, Artur-Aron

    2009-09-01

    Platelets are the major source of soluble CD40 ligand (sCD40L) in the blood. It has been demonstrated that CD40L is cleaved from the surface of activated platelets to release sCD40L. However, the enzyme involved in sCD40L shedding has not been identified yet. Using a panel of pharmacological inhibitors of serine, cysteine, aspartate, or metalloproteinases, preliminary evidence is presented for the hypothesis that matrix metalloproteinase-2 (MMP-2) might be the protease, primarily responsible for CD40L cleavage from platelet surface. PMID:19811225

  1. Lack of XBP-1 Impedes Murine Cytomegalovirus Gene Expression

    PubMed Central

    Drori, Adi; Messerle, Martin; Brune, Wolfram; Tirosh, Boaz

    2014-01-01

    The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-to-nucleus signaling cascade induced in response to ER stress. The UPR aims at restoring homeostasis, but can also induce apoptosis if stress persists. Infection by human and murine cytomegaloviruses (CMVs) provokes ER stress and induces the UPR. However, both CMVs manipulate the UPR to promote its prosurvival activity and delay apoptosis. The underlying mechanisms remain largely unknown. Recently, we demonstrated that MCMV and HCMV encode a late protein to target IRE1 for degradation. However, the importance of its downstream effector, X Box binding protein 1 (XBP-1), has not been directly studied. Here we show that deletion of XBP-1 prior to or early after infection confers a transient delay in viral propagation in fibroblasts that can be overcome by increasing the viral dose. A similar phenotype was demonstrated in peritoneal macrophages. In vivo, acute infection by MCMV is reduced in the absence of XBP-1. Our data indicate that removal of XBP-1 confers a kinetic delay in early stages of MCMV infection and suggest that the late targeting of IRE1 is aimed at inhibiting activities other than the splicing of XBP-1 mRNA. PMID:25333725

  2. Ontogeny of the expression of leptin and its receptor in the murine fetus and placenta.

    PubMed

    Hoggard, N; Hunter, L; Lea, R G; Trayhurn, P; Mercer, J G

    2000-03-01

    Leptin is a 167-amino acid protein that is secreted from adipose cells and expressed in placental tissues. It is important nutritionally in the regulation of energy balance, but also has other functions such as a role in reproduction. To investigate the function of the leptin system in fetal development we examined, primarily by in-situ hybridization and immunohistochemistry, the expression (both mRNA and protein) of leptin and its receptor (including the signalling splice variant) in tissues from 11.5, 13.5, 16.5 and 18.5 d postcoitus murine fetuses and associated placentas. We detected leptin mRNA (at low levels) and protein predominantly in the cytotrophoblasts of the labyrinth part of the placenta, an area of nutrient exchange between the developing fetus and the placenta, and in the trophoblast giant cells situated in the junctional zone at the maternal interface. In addition, leptin was strongly expressed in the fetal cartilage-bone and at a lower level in the hair follicles, heart, and liver of the murine fetus at differing stages of development. The leptin receptor, including the signalling splice variant, was also identified in specific fetal tissues. The physiological importance of expression of both leptin and the leptin receptor (OB-R and OB-Rb) in the placenta remains to be determined. In addition, the high levels of expression of leptin and its receptor in discrete areas of the murine fetus suggest that leptin has a critical role in fetal development.

  3. Developmental MicroRNA Expression Profiling of Murine Embryonic Orofacial Tissue

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Pihur, Vasyl; Webb, Cynthia; Pisano, M. Michele; Greene, Robert M.

    2011-01-01

    BACKGROUND Orofacial development is a multifaceted process involving precise, spatio-temporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs involved in gene silencing, represent critical regulators of cell and tissue differentiation. MicroRNA gene expression profiling is an effective means of acquiring novel and valuable information regarding the expression and regulation of genes, under the control of miRNA, involved in mammalian orofacial development. METHODS To identify differentially expressed miRNAs during mammalian orofacial ontogenesis, miRNA expression profiles from gestation day (GD) -12, -13 and -14 murine orofacial tissue were compared utilizing miRXplore microarrays from Miltenyi Biotech. Quantitative real-time PCR was utilized for validation of gene expression changes. Cluster analysis of the microarray data was conducted with the clValid R package and the UPGMA clustering method. Functional relationships between selected miRNAs were investigated using Ingenuity Pathway Analysis. RESULTS Expression of over 26% of the 588 murine miRNA genes examined was detected in murine orofacial tissues from GD-12–GD-14. Among these expressed genes, several clusters were seen to be developmentally regulated. Differential expression of miRNAs within such clusters were shown to target genes encoding proteins involved in cell proliferation, cell adhesion, differentiation, apoptosis and epithelial-mesenchymal transformation, all processes critical for normal orofacial development. CONCLUSIONS Using miRNA microarray technology, unique gene expression signatures of hundreds of miRNAs in embryonic orofacial tissue were defined. Gene targeting and functional analysis revealed that the expression of numerous protein-encoding genes, crucial to normal orofacial ontogeny, may be regulated by specific miRNAs. PMID:20589883

  4. Specific lysis of murine cells expressing HLA molecules by allospecific human and murine H-2-restricted anti-HLA T killer lymphocytes.

    PubMed

    Achour, A; Begue, B; Gomard, E; Paul, P; Sayagh, B; Van Pel, A; Levy, J P

    1986-06-01

    The lysis by human and murine anti-HLA cytolytic T lymphocytes (CTL) of murine cells expressing class I HLA molecule after gene transfection has been studied using two different murine cells: LMTK- and P815-HTR-TK-. Weak but significant HLA-A11-specific lysis was found occasionally with human CTL on the HLA-A11+ L cells. On the contrary, P815-A11 or P815-A2 cells were lysed strongly and specifically by HLA-A11 or HLA-A2-specific human CTL. The T8+T4- phenotype of the effector cells was confirmed and the reaction was inhibited by anti-HLA class I monoclonal antibodies. Despite their higher sensitivity to human CTL, the P815-HLA+ cells did not express higher levels of HLA antigens than L cells, and the presence or the absence of human beta 2 microglobulin was irrelevant. Anti-human LFA-1 antibodies abrogated the lysis of P815-A11+ cells showing that the LFA-1 receptor which is apparently lacking on the L cell surface was on the contrary expressed on P815 cells. On the other hand, murine anti-HLA CTL have been prepared by immunizing mice against syngeneic HLA-A11+ L cells. They lysed very efficiently and specifically these cells, but appeared completely devoid of activity against human HLA-A11 target cells. This barrier was apparently due to the H-2 restriction of these H-2k anti-HLA murine CTL, as shown by their inability to lyse allogeneic H-2d cells expressing HLA-A11, and by the blocking of their activity by anti H-2k antibodies. By contrast, xenogeneic anti-HLA CTL obtained by immunizing murine lymphocytes against human cells lysed both human and murine HLA+ cells but they reacted with a monomorphic epitope of the HLA molecule in a nonrestricted way. These results show that human cells lyse very efficiently P815 murine cells expressing HLA class I antigens; the higher sensitivity of P815 cells compared to L cells is probably due to the presence of a LFA-1 receptor on these cells; a class I molecule of human origin can be seen as an H-2-restricted minor

  5. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    SciTech Connect

    Inagaki-Ohara, Kyoko . E-mail: INAGAKI@med.miyazaki-u.ac.jp; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-06-17

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), {beta}-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. {gamma}{delta} IEL showed higher level of these expressions than {alpha}{beta} IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC.

  6. Eukaryotic expression, purification, crystallization and preliminary X-ray analysis of murine Manic Fringe

    SciTech Connect

    Jinek, Martin; Conti, Elena

    2006-08-01

    The catalytic domain of the murine glycosyltransferase Manic Fringe was expressed in insect cells. Removal by site-directed mutagenesis of two N-glycosylation sites present in the protein was essential to obtain crystals that diffracted to 1.8 Å resolution. Fringe proteins are Golgi-resident β1,3-N-acetylglucosaminyltransferases that regulate development in metazoa through glycosylation of the Notch receptor and its ligands. The catalytic domain of murine Manic Fringe was expressed in the baculovirus/insect-cell system as a secreted protein. Mass-spectrometric analysis of the purified protein indicated the presence of two N-linked glycans. Abolishing the glycosylation sites by site-directed mutagenesis was necessary in order to obtain orthorhombic crystals that diffracted to 1.8 Å resolution. For phasing, a highly redundant data set was collected using a crystal soaked with halide salts.

  7. Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl− channels expressed in mammalian cells

    PubMed Central

    Lansdell, K A; Delaney, S J; Lunn, D P; Thomson, S A; Sheppard, D N; Wainwright, B J

    1998-01-01

    To investigate the function of the murine cystic fibrosis transmembrane conductance regulator (CFTR), a full-length cDNA encoding wild-type murine CFTR was assembled and stably expressed in Chinese hamster ovary (CHO) cells. Like human CFTR, murine CFTR formed Cl− channels that were regulated by cAMP-dependent phosphorylation and intracellular ATP. However, murine CFTR Cl− channels had a reduced single-channel conductance and decreased open probability (Po) compared with those of human CFTR. Analysis of the dwell time distributions of single channels suggested that the reduced Po of murine CFTR was caused by both decreased residence in the open state and transitions to a new closed state, described by an intermediate closed time constant. For both human and murine CFTR, ATP and ADP regulated the rate of exit from the long-lived closed state. 5′-Adenylylimidodiphosphate (AMP-PNP) and pyrophosphate, two compounds that disrupt cycles of ATP hydrolysis, stabilized the open state of human CFTR. However, neither agent locked murine CFTR Cl− channels open, although AMP-PNP increased the Po of murine CFTR. The data indicate that although human and murine CFTR have many properties in common, some important differences in function are observed. These differences could be exploited in future studies to provide new understanding about CFTR. PMID:9508803

  8. Pim-1 kinase expression during murine mammary development

    SciTech Connect

    Gapter, Leslie A.; Magnuson, Nancy S.; Ng, Ka-yun; Hosick, Howard L. . E-mail: hosick@wsu.edu

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile of progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.

  9. Involvement of calcitonin gene-related peptide and CCL2 production in CD40-mediated behavioral hypersensitivity in a model of neuropathic pain

    PubMed Central

    MALON, JENNIFER T.; MADDULA, SWATHI; BELL, HARMONY; CAO, LING

    2014-01-01

    The neuropeptide calcitonin gene-related peptide (CGRP) is known to play a pro-nociceptive role after peripheral nerve injury upon its release from primary afferent neurons in preclinical models of neuropathic pain. We previously demonstrated a critical role for spinal cord microglial CD40 in the development of spinal nerve L5 transection (L5Tx)-induced mechanical hypersensitivity. Herein, we investigated whether CGRP is involved in the CD40-mediated behavioral hypersensitivity. First, L5Tx was found to significantly induce CGRP expression in wild-type (WT) mice up to 14 days post-L5Tx. This increase in CGRP expression was reduced in CD40 knockout (KO) mice at day 14 post-L5Tx. Intrathecal injection of the CGRP antagonist CGRP8–37 significantly blocked L5Tx-induced mechanical hypersensitivity. In vitro, CGRP induced glial IL-6 and CCL2 production, and CD40 stimulation added to the effects of CGRP in neonatal glia. Further, there was decreased CCL2 production in CD40 KO mice compared to WT mice 21 days post-L5Tx. However, CGRP8–37 did not significantly affect spinal cord CCL2 production following L5Tx in WT mice. Altogether, these data suggest that CD40 contributes to the maintenance of behavioral hypersensitivity following peripheral nerve injury in part through two distinct pathways, the enhancement of CGRP expression and spinal cord CCL2 production. PMID:22377050

  10. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  11. Functional expression of novel human and murine AKR1B genes

    PubMed Central

    Salabei, Joshua K.; Li, Xiao-Ping; Petrash, J. Mark; Bhatnagar, Aruni; Barski, Oleg A.

    2011-01-01

    The Aldo Keto Reductases (AKRs) are a superfamily of enzymes that catalyze the reduction of biogenic and xenobiotic aldehydes and ketones. AKR1B family has 2 known members in humans and 3 in rodents. Two novel gene loci, hereafter referred to as AKR1B15 in human and Akr1b16 in mouse have been predicted to exist within the AKR1B clusters. AKR1B15 displays 91% and 67% sequence identity with human genes AKR1B10 and AKR1B1, respectively while Akr1b16 shares 82–84% identity with murine Akr1b8 and Akr1b7. We tested the hypothesis that AKR1B15 and Akr1b16 genes are expressed as functional proteins in human and murine tissues, respectively. Using whole tissue mRNA, we were able to clone the full-length open reading frames for AKR1B15 from human eye and testes, and Akr1b16 from murine spleen, demonstrating that these genes are transcriptionally active. The corresponding cDNAs were cloned into pET28a and pIRES-hrGFP-1α vectors for bacterial and mammalian expression respectively. Both genes were expressed as 36 kDA proteins found in the insoluble fraction of bacterial cell lysate. These proteins, expressed in bacteria showed no enzymatic activity. However, lysates from COS-7 cells transfected with AKR1B15 showed a 4.8-fold (with p-nitrobenzaldehyde) and 3.3-fold (with DL-glyceraldehyde) increase in enzyme activity compared with untransfected COS-7 cells. The Akr1b16 transcript was shown to be ubiquitously expressed in murine tissues. Highest levels of transcript were found in heart, spleen, and lung. From these observations we conclude that the predicted AKR1B15 and 1b16 genes are expressed in several murine and human tissues. Further studies are required to elucidate their physiological roles. PMID:21276782

  12. 1.8 Astroms Structure of Murine GITR Ligand Dimer Expressed in Drosophila Melanogaster S2 Cells

    SciTech Connect

    Chattopadhyay, K.; Ramagopal, U; Nathenson, S; Almo, S

    2009-01-01

    Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique 'strand-exchanged' dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 {angstrom} resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical 'strand-exchanged' dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  13. Gene expression analysis in the compartments of the murine uterus.

    PubMed

    Rosario, Gracy Xavier; Cheng, Jr-Gang; Stewart, Colin L

    2016-01-01

    Embryo implantation, a key critical feature of mammalian pregnancy, involves co-ordinate interplay between an incoming blastocyst and a receptive uterus. Aberrations in signaling cascades during this process result in pregnancy loss in mammals, including women. Analysis of the complete uterus at any given point either during preparation for implantation or during and after embryo attachment and invasion makes it difficult to assign specific signaling mechanism to the individual cellular compartments of the uterus. Here, we describe methods for the specific isolation of the luminal epithelium (LE) and subsequent analysis of gene expression/signaling pathways during embryo attachment. We further describe the analysis of RNA and proteins by specific techniques of quantitative PCR (qPCR), immunostaining and Western blotting of uterine tissues. These methods can be applied to the other cellular compartments of the uterus and embryo invasion and endometrial development. These techniques will be beneficial to investigators for delineating the mechanisms involved during embryo attachment and female reproduction as well as providing a means to studying highly dynamic changes in gene expression in tissues. PMID:26651425

  14. Microarray Based Gene Expression Analysis of Murine Brown and Subcutaneous Adipose Tissue: Significance with Human

    PubMed Central

    Boparai, Ravneet K.; Kondepudi, Kanthi Kiran; Mantri, Shrikant; Bishnoi, Mahendra

    2015-01-01

    Background Two types of adipose tissues, white (WAT) and brown (BAT) are found in mammals. Increasingly novel strategies are being proposed for the treatment of obesity and its associated complications by altering amount and/or activity of BAT using mouse models. Methodology/Principle Findings The present study was designed to: (a) investigate the differential expression of genes in LACA mice subcutaneous WAT (sWAT) and BAT using mouse DNA microarray, (b) to compare mouse differential gene expression with previously published human data; to understand any inter- species differences between the two and (c) to make a comparative assessment with C57BL/6 mouse strain. In mouse microarray studies, over 7003, 1176 and 401 probe sets showed more than two-fold, five-fold and ten-fold change respectively in differential expression between murine BAT and WAT. Microarray data was validated using quantitative RT-PCR of key genes showing high expression in BAT (Fabp3, Ucp1, Slc27a1) and sWAT (Ms4a1, H2-Ob, Bank1) or showing relatively low expression in BAT (Pgk1, Cox6b1) and sWAT (Slc20a1, Cd74). Multi-omic pathway analysis was employed to understand possible links between the organisms. When murine two fold data was compared with published human BAT and sWAT data, 90 genes showed parallel differential expression in both mouse and human. Out of these 90 genes, 46 showed same pattern of differential expression whereas the pattern was opposite for the remaining 44 genes. Based on our microarray results and its comparison with human data, we were able to identify genes (targets) (a) which can be studied in mouse model systems to extrapolate results to human (b) where caution should be exercised before extrapolation of murine data to human. Conclusion Our study provides evidence for inter species (mouse vs human) differences in differential gene expression between sWAT and BAT. Critical understanding of this data may help in development of novel ways to engineer one form of adipose

  15. Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells.

    PubMed

    Möller, Kerstin; Adolph, Oliver; Grünow, Jennifer; Elrod, Julia; Popa, Miruna; Ghosh, Subhajit; Schwarz, Manuel; Schwale, Chrysovalandis; Grässle, Sandra; Huck, Volker; Bruehl, Claus; Wieland, Thomas; Schneider, Stefan W; Nobiling, Rainer; Wagner, Andreas H; Hecker, Markus

    2015-05-01

    Co-stimulation via CD154 binding to CD40, pivotal for both innate and adaptive immunity, may also link haemostasis to vascular remodelling. Here we demonstrate that human platelet-bound or recombinant soluble CD154 (sCD154) elicit the release from and tethering of ultra-large (UL) von Willebrand factor (vWF) multimers to the surface of human cultured endothelial cells (ECs) exposed to shear stress. This CD40-mediated ULVWF multimer release from the Weibel-Palade bodies was triggered by consecutive activation of TRAF6, the tyrosine kinase c-Src and phospholipase Cγ1 followed by inositol-1,4,5 trisphosphate-mediated calcium mobilisation. Subsequent exposure to human washed platelets caused ULVWF multimer-platelet string formation on the EC surface in a shear stress-dependent manner. Platelets tethered to these ULVWF multimers exhibited P-selectin on their surface and captured labelled monocytes from the superfusate. When exposed to shear stress and sCD154, native ECs from wild-type but not CD40 or vWF-deficient mice revealed a comparable release of ULVWF multimers to which murine washed platelets rapidly adhered, turning P-selectin-positive and subsequently capturing monocytes from the perfusate. This novel CD154-provoked ULVWF multimer-platelet string formation at normal to fast flow may contribute to vascular remodelling processes requiring the perivascular or intravascular accumulation of pro-inflammatory macrophages such as arteriogenesis or atherosclerosis.

  16. Expression and characterization of a truncated murine Fc gamma receptor

    PubMed Central

    1988-01-01

    We have isolated a recombinant secreted Fc gamma R beta molecule by deletion of the transmembrane and cytoplasmic domains encoding sequence from a Fc gamma R beta 1 cDNA clone, and insertion of the truncated cDNA into a eukaryotic expression vector, pcEXV-3. To express and amplify the production of the truncated Fc gamma R beta molecule, we transfected the truncated cDNA plasmid into a dihydrofolate reductase- minus CHO cell line along with a dhfr minigene, and amplified the gene products with methotrexate. The resulting cell line secretes 2-3 micrograms/ml/24 h of truncated Fc gamma R beta, which can be readily purified by affinity chromatography on IgG-Sepharose. The truncated Fc gamma R beta has a Mr of 31-33,000 on SDS-PAGE and is glycosylated. N- glycosidase F cleavage reduces the Mr to 19,000, consistent with the size of the truncated product, 176 amino acid residues. There are two disulfide bonds in the protein. Binding of immune complexes formed between DNP20BSA and anti-DNP mAbs reveals better binding of IgG1 aggregates than that of IgG2b and IgG2a aggregates. The binding of the immune complexes was somewhat better at more acidic pH, in contrast to previous experiments with binding of purified Fc gamma R to immune complex-coated beads. We were surprised to observe that the truncated Fc gamma R beta did not react with the anti-Fc gamma R mAb 6B7C. Previous work had shown that 6B7C reacts with Fc gamma R on immunoblots, fails to bind to the surface of resting B cells and peritoneal macrophages, but does bind to macrophage cell lines and LPS- stimulated B cells. We show, by binding of mAb 6B7C to a peptide conjugate, that the 6B7C epitope lies within residues 169-183 of the intact Fc gamma R beta, which is just outside the plasma membrane. The availability of the truncated Fc gamma R beta in microgram quantities should facilitate further analysis of structure and function of these receptors. PMID:2450951

  17. Arsenite induces aquaglyceroporin 9 expression in murine livers.

    PubMed

    Torres-Avila, Manuel; Leal-Galicia, Perla; Sánchez-Peña, Luz C; Del Razo, Luz M; Gonsebatt, Maria E

    2010-07-01

    Mice exposed to sodium arsenite show a dose-related accumulation of inorganic arsenic (iAs) and its methylated metabolites in the liver. While the accumulation of iAs forms increased linearly with dose in liver cells, a different pattern was observed in other tissues such as the brain and lung, as well as in the peripheral nerves of the rat. As such, trivalent iAs enters the cells, using aquaglyceroporin transporters to modulate cell arsenic accumulation and cytotoxicity. We investigated here if the dose-related accumulation of arsenic in the liver was related to the expression of aquaglyceroporin 9 (AQP9) in the same organ. CD1 male mice were treated with different concentrations (0, 2.5, 5 or 10mg/kg/day) of sodium arsenite during 1, 3 or 9 days. A significant dose-related, up-regulation of AQP9 mRNA and protein was observed and which was verified by immunohistochemistry in liver sections using specific antibodies. The increased transcription of AQP9 has been observed in fasting and diabetic rats, suggesting that this channel could play a role in the diabetogenic effect of arsenic.

  18. Expression and localization of GPR91 and GPR99 in murine organs.

    PubMed

    Diehl, Julia; Gries, Barbara; Pfeil, Uwe; Goldenberg, Anna; Mermer, Petra; Kummer, Wolfgang; Paddenberg, Renate

    2016-05-01

    Energy substrates and metabolic intermediates are proven ligands of a growing number of G-protein coupled receptors. In 2004, GPR91 and GPR99 were identified as receptors for the citric acid cycle intermediates, succinate and α-ketoglutarate, respectively. GPR91 seems to act as a first responder to local stress and GPR99 participates in the regulation of the acid-base balance through an intrarenal paracrine mechanism. However, a systematic analysis of the distribution of both receptors in mouse organs is still missing. The aim of this study was to examine the expression of GPR91 and GPR99 in a large number of different murine organs both at mRNA and protein level. Whereas GPR91 mRNA was detectable in almost all organs, GPR99 mRNA was mainly expressed in neuronal tissues. Widespread expression of GPR91 was also detected at the protein level by western blotting and immunohistochemistry. In addition to neuronal cells, GPR99 protein was found in renal intercalated cells and epididymal narrow cells. Double-labeling immunohistochemistry demonstrated the colocalization of GPR99 with the B1 subunit isoform of vacuolar H(+)-ATPases which is expressed only by a very limited number of cell types. In summary, our detailed expression analysis of GPR91 and GPR99 in murine tissues will allow a more directed search for additional functions of both receptors. PMID:26590824

  19. MicroRNA-145 regulates platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration by targeting CD40

    PubMed Central

    Li, Yumei; Huang, Jiangnan; Jiang, Zhiyuan; Zhong, Yuanli; Xia, Mingjie; Wang, Hui; Jiao, Yang

    2016-01-01

    The objective of this study is to investigate the expression of microRNA (miR)-145 in human aortic vascular smooth muscle cells (VSMCs) and the effect of miR-145 in the biological behavior and expression of CD40 in VSMCs. Cells were treated with either miR-145 or miR-145 inhibitor. Cell proliferation was analyzed by a colony formation assay and a methyl thiazolyl tetrazolium assay. Cell migration and invasion were assessed using a transwell assay, an invasion assay, and a wound healing assay. A luciferase reporter assay was used to detect the interaction between miR-145 and CD40. Expression of α-SMA, calponin, osteopontin (OPN), epiregulin, activator protein-1 (AP-1) and CD40 was measured using real-time RT-PCR for mRNA levels and Western blotting for protein levels. Overexpression of miR-145 significantly inhibited VSMC proliferation, invasion and migration. Furthermore, OPN, epiregulin, AP-1 and CD40 expression at the mRNA and protein levels was down-regulated by overexpression of miR-145. However, α-SMA and calponin expression at the mRNA and protein levels was up-regulated by overexpression of miR-145. In addition, the luciferase reporter assay showed that CD40 may be a direct target gene of miR-145 in VSMC initiation and development. Moreover, these data demonstrate that the up-regulation of CD40 is critical for miR-145-mediated inhibitory effects on platelet-derived growth factor-induced cell proliferation and migration in human VSMCs. In summary, CD40, a direct target of miR-145, reverses the inhibitory effects of miR-145. These results suggest that the specific modulation of miR-145 in human VSMCs may be an attractive approach for the treatment of proliferative vascular diseases. PMID:27186305

  20. Lipopolysaccharide modulation of dendritic cells is insufficient to mature dendritic cells to generate CTLs from naive polyclonal CD8+ T cells in vitro, whereas CD40 ligation is essential.

    PubMed

    Kelleher, M; Beverley, P C

    2001-12-01

    Many cytotoxic CD8+ T cell responses are dependent on the interactions between CD40 ligand on the helper CD4+ T cell and CD40 on the APC. Although CD40 triggering of dendritic cells (DC) has been shown to mature the DC by increasing the level of expression of costimulatory molecules and inducing IL-12 secretion, the precise mechanisms by which CD40-CD40 ligand interactions allow DC to drive CTL responses remain unknown. We have used an in vitro model in which naive polyclonal CD8+ T cells can be activated by bone marrow-derived DC to investigate factor(s) that are responsible for this CD40-dependent generation of CTLs. DC modulated with agonistic anti-CD40 mAb (aCD40) are able to generate Ag-specific CTL responses while DC modulated with the microbial stimulus LPS alone do not. We compared the Ag-presenting capacity, levels of costimulatory molecules, and release of cytokines and chemokines of DC modulated with aCD40 to that of DC modulated by LPS. None of the factors assayed account for the unique capacity of anti-CD40-matured DC to drive CTL but this model provides a simplified system for further investigation. Although we attempted to use an LPS-free system for these studies, we are unable to rule out the possibility that very low levels of endotoxin (<20 pg/ml) may synergize with CD40 ligation in the generation of CTLs. PMID:11714787

  1. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors

    PubMed Central

    Parker, Jacqueline N.; Gillespie, G. Yancey; Love, Cammy E.; Randall, Suzanne; Whitley, Richard J.; Markert, James M.

    2000-01-01

    Genetically engineered, neuroattenuated herpes simplex viruses (HSVs) expressing various cytokines can improve survival when used in the treatment of experimental brain tumors. These attenuated viruses have both copies of γ134.5 deleted. Recently, we demonstrated increased survival of C57BL/6 mice bearing syngeneic GL-261 gliomas when treated with an engineered HSV expressing IL-4, as compared with treatment with the parent construct (γ134.5−) alone or with a virus expressing IL-10. Herein, we report construction of a conditionally replication-competent mutant expressing both subunits of mIL-12 (M002) and its evaluation in a syngeneic neuroblastoma murine model. IL-12 induces a helper T cell subset type 1 response, which may induce more durable antitumor effects. In vitro studies showed that, when infected with M002, both Vero cells and murine Neuro-2a neuroblastoma cells produced physiologically relevant levels of IL-12 heterodimers, as determined by ELISA. M002 was cytotoxic for Neuro-2a cells and human glioma cell lines U251MG and D54MG. Neurotoxicity studies, as defined by plaque-forming units/LD50, performed in HSV-1-sensitive A/J strain mice found that M002 was not toxic even at high doses. When evaluated in an intracranial syngeneic neuroblastoma murine model, median survival of M002-treated animals was significantly longer than the median survival of animals treated with R3659, the parent γ134.5− mutant lacking any cytokine gene insert. Immunohistochemical analysis of M002-treated tumors identified a pronounced influx of CD4+ T cells and macrophages as well as CD8+ cells when compared with an analysis of R3659-treated tumors. We conclude that M002 produced a survival benefit via oncolytic effects combined with immunologic effects meditated by helper T cells of subset type 1. PMID:10681459

  2. Substance P does not alter interleukin-1 expression by splenic or granuloma macrophages in murine schistosomiasis.

    PubMed

    Cook, G A; Blum, A M; Ballas, Z; Weinstock, J V

    1991-09-01

    Substance P (SP) is an undecapeptide with neurotransmitter and immunoregulatory properties. In murine schistosomiasis, ova naturally induce liver and intestinal granulomas. These granulomas contain macrophages, and eosinophils that produce SP. A report showed that human blood monocytes isolated by adherence release interleukin-1 (IL-1) in response to SP (Lotz et al. (1989) Science 241, 1218). IL-1 is important for initiation of hypersensitivity granulomas. Therefore, it was determined whether SP modulates granuloma macrophage IL-1 production in murine schistosomiasis. Macrophages were obtained from lung and liver granulomas, and from spleens of infected mice. A thymocyte proliferation assay measured IL-1 activity in culture supernatants. Total RNA, extracted from macrophages, was assayed for IL-1 alpha and beta mRNA by Northern blotting using cDNA probes. In response to lipopolysaccharide (LPS), splenic macrophages and macrophages from young lung granulomas released appreciable IL-1. Macrophages from liver granulomas, that were lesions older than the lung granulomas, were unresponsive to LPS with regard to IL-1 secretion. Yet, granuloma macrophages spontaneously expressed IL-1 alpha and beta mRNA. LPS enhanced IL-1 mRNA expression in both splenic and granuloma macrophages. Exposure of macrophages from all sources to SP did not alter IL-1 secretion or gene expression. Similarly, the responsiveness of macrophages to LPS was not affected by concomitant exposure to SP. It is concluded that, in the murine system, SP does not directly influence splenic or granuloma macrophage IL-1 secretion or gene expression. Also, it appears that macrophage secretion of IL-1 is rapidly down-regulated following granuloma elicitation.

  3. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes.

    PubMed

    Fan, X; Hashem, A M; Chen, Z; Li, C; Doyle, T; Zhang, Y; Yi, Y; Farnsworth, A; Xu, K; Li, Z; He, R; Li, X; Wang, J

    2015-01-01

    The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine. PMID:25052763

  4. Dataset on gene expression profiling of multiple murine hair follicle populations.

    PubMed

    Gunnarsson, Anders Patrik; Christensen, Rikke; Li, Jian; Jensen, Uffe Birk

    2016-12-01

    The murine hair follicle contains several different keratinocyte progenitor populations within its compartments. By using antibodies against CD34, Itgα6, Sca-1 and Plet-1, we have isolated eight populations and compared their Krt10 and Krt14 expressions using fluorescence microscopy. This improved panel was used in our associated article doi:10.1016/j.scr.2016.06.002 (A.P. Gunnarsson, R. Christensen, J. Li, U.B. Jensen, 2016) [1] and the present dataset describes the basic controls for the FACS. We also used imaging flow cytometry to visualize the identified populations as control. A more detailed analysis of the global gene expression profiling is presented, focusing on the pilosebaceous unit. Murine whole-mounts were stained for heat shock protein Hspa2, which is exclusively expressed by keratinocytes with low or no expression of the four selection markers (IRK). Whole-mount labeling was also conducted to visualize Krt79 and Plet-1 coexpression within the hair follicle and quantification on the distribution of Krt79 positive keratinocytes is presented. PMID:27672671

  5. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    SciTech Connect

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  6. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type-1 immunity

    PubMed Central

    Zaccard, Colleen R.; Watkins, Simon C.; Kalinski, Pawel; Fecek, Ronald J.; Yates, Aarika L.; Salter, Russell D.; Ayyavoo, Velpandi; Rinaldo, Charles R.; Mailliard, Robbie B.

    2014-01-01

    The ability of dendritic cells (DC) to mediate CD4+ T cell help for cellular immunity is guided by instructive signals received during DC maturation, and the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. Here we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type-1 immunity (DC1) are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or recombinant CD40L. This immunologic process of DC ‘reticulation’ facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by DC1, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. PMID:25548234

  7. Murine sex-limited protein expression requires androgens and pituitary hormones.

    PubMed

    Danoff, T M; Goldman, M B; Goldman, J N

    1986-01-01

    Levels of the murine sex-limited protein (Slp) were measured by an enzyme-linked immunosorbent assay in normal and hypophysectomized female CDF1 (Slpa) mice before and after a 15-day treatment with testosterone proprionate. Both groups of mice initially had undetectable levels of circulating Slp. After treatment, Slp serum levels of the nonhypophysectomized group had risen significantly above the Slp serum levels of the hypophysectomized group and the pretreatment controls. This indicates that the pituitary gland is necessary for the androgen-induced expression of Slp.

  8. Lipid rafts regulate cellular CD40 receptor localization in vascular endothelial cells

    SciTech Connect

    Xia Min; Wang Qing; Zhu Huilian; Ma Jing; Hou Mengjun; Tang Zhihong; Li Juanjuan; Ling Wenhua

    2007-09-28

    Cholesterol enriched lipid rafts are considered to function as platforms involved in the regulation of membrane receptor signaling complex through the clustering of signaling molecules. In this study, we tested whether these specialized membrane microdomains affect CD40 localization in vitro and in vivo. Here, we provide evidence that upon CD40 ligand stimulation, endogenous and exogenous CD40 receptor is rapidly mobilized into lipid rafts compared with unstimulated HAECs. Efficient binding between CD40L and CD40 receptor also increases amounts of CD40 protein levels in lipid rafts. Deficiency of intracellular conserved C terminus of the CD40 cytoplasmic tail impairs CD40 partitioning in raft. Raft disorganization after methyl-{beta}-cyclodextrin treatment diminishes CD40 localization into rafts. In vivo studies show that elevation of circulating cholesterol in high-cholesterol fed rabbits increases the cholesterol content and CD40 receptor localization in lipid rafts. These findings identify a physiological role for membrane lipid rafts as a critical regulator of CD40-mediated signal transduction and raise the possibility that certain pathologic conditions may be treated by altering CD40 signaling with drugs affecting its raft localization.

  9. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    SciTech Connect

    Chattopadhyay, Kausik; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.

    2009-05-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  10. Differential expression of Ran GTPase during HMBA-induced differentiation in murine erythroleukemia cells.

    PubMed

    Vanegas, N; García-Sacristán, A; López-Fernández, L A; Párraga, M; del Mazo, J; Hernández, P; Schvartzman, J B; Krimer, D B

    2003-07-01

    Murine erythroleukemia (MEL) cells undergo erythroid differentiation in vitro when treated with hexamethylene bisacetamide (HMBA). To identify genes involved in the commitment of MEL cells to differentiate, we screened a cDNA library constructed from HMBA-induced cells by differential hybridization and isolated GTPase Ran as a down-regulated gene. We observed that Ran was expressed in a biphasic mode. Following a decrease in mRNA level during the initial hours of induction, Ran re-expressed at 24-48 h, and gradually declined again. To investigate the role of Ran during MEL differentiation we constructed MEL transfectants capable to express or block Ran mRNA production constitutively. No effects were observed on cell growth and proliferation. Blockage of Ran, however, interfered with MEL cell differentiation resulting in a decrease of cell survival in the committed population.

  11. T cell receptor transgenic lymphocytes infiltrating murine tumors are not induced to express foxp3

    PubMed Central

    2011-01-01

    Regulatory T cells (Treg) that express the transcription factor Foxp3 are enriched within a broad range of murine and human solid tumors. The ontogeny of these Foxp3 Tregs - selective accumulation or proliferation of natural thymus-derived Treg (nTreg) or induced Treg (iTreg) converted in the periphery from naïve T cells - is not known. We used several strains of mice in which Foxp3 and EGFP are coordinately expressed to address this issue. We confirmed that Foxp3-positive CD4 T cells are enriched among tumor-infiltrating lymphocytes (TIL) and splenocytes (SPL) in B16 murine melanoma-bearing C57BL/6 Foxp3EGFP mice. OT-II Foxp3EGFP mice are essentially devoid of nTreg, having transgenic CD4 T cells that recognize a class II-restricted epitope derived from ovalbumin; Foxp3 expression could not be detected in TIL or SPL in these mice when implanted with ovalbumin-transfected B16 tumor (B16-OVA). Likewise, TIL isolated from B16 tumors implanted in Pmel-1 Foxp3EGFP mice, whose CD8 T cells recognize a class I-restricted gp100 epitope, were not induced to express Foxp3. All of these T cell populations - wild-type CD4, pmel CD8 and OTII CD4 - could be induced in vitro to express Foxp3 by engagement of their T cell receptor (TCR) and exposure to transforming growth factor β (TGFβ). B16 melanoma produces TGFβ and both pmel CD8 and OTII CD4 express TCR that should be engaged within B16 and B16-OVA respectively. Thus, CD8 and CD4 transgenic T cells in these animal models failed to undergo peripheral induction of Foxp3 in a tumor microenvironment. PMID:22112546

  12. ZAP inhibits murine gammaherpesvirus 68 ORF64 expression and is antagonized by RTA.

    PubMed

    Xuan, Yifang; Gong, Danyang; Qi, Jing; Han, Chuanhui; Deng, Hongyu; Gao, Guangxia

    2013-03-01

    Zinc finger antiviral protein (ZAP) is an interferon-inducible host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1 and Ebola virus. ZAP functions as a dimer formed through intermolecular interactions of its N-terminal tails. ZAP binds directly to specific viral mRNAs and inhibits their expression by repressing translation and/or promoting degradation of the target mRNA. ZAP is not a universal antiviral factor, since some viruses grow normally in ZAP-expressing cells. It is not fully understood what determines whether a virus is susceptible to ZAP. We explored the interaction between ZAP and murine gammaherpesvirus 68 (MHV-68), whose life cycle has latent and lytic phases. We previously reported that ZAP inhibits the expression of M2, which is expressed mainly in the latent phase, and regulates MHV-68 latency in cultured cells. Here, we report that ZAP inhibits the expression of ORF64, a tegument protein that is expressed in the lytic phase and is essential for lytic replication. MHV-68 infection induced ZAP expression. However, ZAP did not inhibit lytic replication of MHV-68. We provide evidence showing that the antiviral activity of ZAP is antagonized by MHV-68 RTA, a critical viral transactivator expressed in the lytic phase. We further show that RTA inhibits the antiviral activity of ZAP by disrupting the N-terminal intermolecular interaction of ZAP. Our results provide an example of how a virus can escape ZAP-mediated immunity. PMID:23255809

  13. Plasma Prostaglandin E2 Levels Correlated with the Prevention of Intravenous Immunoglobulin Resistance and Coronary Artery Lesions Formation via CD40L in Kawasaki Disease

    PubMed Central

    Kuo, Ho-Chang; Wang, Chih-Lu; Yang, Kuender D.; Lo, Mao-Hung; Hsieh, Kai-Sheng; Li, Sung-Chou

    2016-01-01

    Background A form of systemic vasculitis, Kawasaki disease (KD) occurs most frequently in children under the age of five years old. Previous studies have found that Prostaglandin E2 (PGE2) correlates with KD, although the related mechanisms are still unknown. CD40L may also be a marker of vasculitis in KD, so this study focuses on PGE2 and CD40L expression in KD. Materials and Methods This study consisted of a total of 144 KD patients, whose intravenous immunoglobulin (IVIG)/coronary arterial lesion (CAL) formation resistance was evaluated. PGE2 levels were evaluated in vitro to study the effect of CD40L on CD4+ T lymphocytes. Results PGE2 levels significantly increased after IVIG treatment (p<0.05), especially in patients who responded to initial IVIG treatment (p = 0.004) and for patients without CAL formation (p = 0.016). Furthermore, an in vitro study revealed that IVIG acted as a trigger for PGE2 expression in the acute-stage mononuclear cells of KD patients. According to our findings, both IVIG and PGE2 can impede surface CD40L expressions on CD4+ T lymphocytes (p<0.05). Conclusions The results of this study are among the first to find that plasma PGE2 is correlated with the prevention of IVIG resistance and CAL formation through CD40L in KD. PMID:27525421

  14. CD40L induces matrix-metalloproteinase-9 but not tissue inhibitor of metalloproteinases-1 in cervical carcinoma cells: imbalance between NF-kappaB and STAT3 activation.

    PubMed

    Smola-Hess, S; Schnitzler, R; Hadaschik, D; Smola, H; Mauch, C; Krieg, T; Pfister, H

    2001-07-15

    Matrix-metalloproteinases (MMPs) are essentially required for tumor cell invasion and metastasis. Production of precursor enzymes is regulated on transcriptional level, while activation of the pro-enzymes is tightly controlled by posttranscriptional mechanisms. The enzyme activity can be blocked by specific tissue inhibitors of MMPs (TIMPs). In cervical carcinomas strong up-regulation of the type IV collagenase MMP-9 had been demonstrated. We show that activation of CD40, a receptor highly expressed on cervical carcinomas, induces MMP-9 in cervical carcinoma cells, whereas TIMP-1 production inhibiting MMP-9 activity was not affected. This gene induction pattern corresponded to the differential activation of the transcription factor nuclear factor kappaB (NF-kappaB) regulating MMP-9, but not signal transducer and activator of transcription 3 (STAT3), which is involved in TIMP-1 gene regulation. Transient expression of the CD40-inducible NF-kappaB subunit p65 was sufficient for MMP-9 induction. Agents that suppressed CD40-mediated NF-kappaB activation also reduced MMP-9 induction, further supporting an important role of NF-kappaB in CD40-mediated MMP-9 induction. Our data suggest that CD40 expression in carcinoma cells might convert a CD40L-dependent immunological defense signal into a tumor-promoting signal. Selective CD40-mediated signaling through NF-kappaB but not STAT3 correlates to a shift of the balance between MMP-9 and TIMP-1 toward the protease.

  15. Potential role of soluble CD40 in the humoral immune response impairment of uraemic patients

    PubMed Central

    Contin, Cécile; Pitard, Vincent; Delmas, Yahsou; Pelletier, Nadège; Defrance, Thierry; Moreau, Jean-François; Merville, Pierre; Déchanet-Merville, Julie

    2003-01-01

    CD40/CD154 interaction is essential for both humoral and cellular immune response. We investigated whether this interaction could be altered in patients with kidney failure who are known to present an impaired immune response. To that aim, we measured the levels of the soluble form of CD40 (sCD40), which is known to interfere with CD40/CD154 interaction, in 43 chronic renal failure patients, 162 hemodialysed patients, and 83 healthy donors. Uraemic and haemodialysed patients presented a three- and fivefold increase, respectively, of the antagonist soluble form of CD40 in their serum, when compared to healthy subjects. Serum sCD40 levels correlated with those of creatinine in uraemic non-haemodialysed patients. While sCD40 is widely excreted in urine of healthy individuals, it is not eliminated by dialysis sessions on classic membranes. The return to a normal kidney function in nine haemodialysed patients who received renal transplantation, leads to a rapid decrease of serum sCD40 levels. This natural sCD40 exhibited multimeric forms and was able to inhibit immunoglobulin production by CD154-activated B lymphocytes in vitro. Furthermore, the positive correlation we observed between the serum levels of sCD40 and the deficient response to hepatitis B vaccination in uraemic patients suggests that sCD40 also compromises the humoral response in vivo. PMID:12941150

  16. Regulation of endothelial VCAM-1 expression in murine cardiac grafts. Roles for TNF and IL4.

    PubMed Central

    Bergese, S.; Pelletier, R.; Vallera, D.; Widmer, M.; Orosz, C.

    1995-01-01

    The in vivo mechanisms of vascular endothelial activation and VCAM-1 expression were studied in murine heterotopic cardiac grafts. Preliminary studies demonstrated that cardiac allograft endothelia develop reactivity with MECA-32 monoclonal antibody (MAb) and M/K-2 (anti-VCAM-1) MAb within 3 days of transplantation, whereas cardiac isografts develop MECA-32 reactivity but no M/K-2 reactivity. Additional studies demonstrated that a single treatment of cardiac isograft recipients with the anti-CD3 MAb 145-2C11 induces VCAM-1 expression on isograft microvascular endothelia within 24 hours. We have used this experimental system to identify the cytokines responsible for expression of VCAM-1 and MECA-32 MAb reactivity on graft vascular endothelia. We report that the expression of VCAM-1 on isograft endothelia that was induced with anti-CD3 MAb was blocked by simultaneous treatment with either pentoxifylline, soluble tumor necrosis factor (TNF) receptor (TNFR-Fc), anti-IL4 MAb, or soluble IL4R, but not by anti-IFN-gamma MAb. Alternatively, a similar pattern of isograft endothelial VCAM-1 expression was stimulated in the absence of anti-CD3 MAbs with a single injection of human recombinant TNF-alpha, or with recombinant murine IL4 provided as IL4/anti-IL4 MAb complexes. In addition, the IL4-induced VCAM-1 expression was completely blocked by a single intravenous treatment of the isograft recipients with TNFR:Fc. This suggests that high concentrations of TNF-alpha can stimulate endothelial VCAM-1 expression, but these concentrations are apparently not achieved in cardiac isografts. In the absence of an inducing agent such as anti-CD3 MAb, the stimulation of VCAM-1 expression with exogenous IL4 may reflect functional interaction between endogenous TNF and exogenous IL4, as suggested by the blocking experiments with TNFR:Fc. Although cardiac isograft endothelia normally develop reactivity with MECA-32 MAb within 3 days of transplantation, treatment of cardiac isograft

  17. Expression of LINE-1 retroposons is essential for murine preimplantation development.

    PubMed

    Beraldi, Rosanna; Pittoggi, Carmine; Sciamanna, Ilaria; Mattei, Elisabetta; Spadafora, Corrado

    2006-03-01

    In higher eukaryotes, reverse transcriptase (RT) activities are encoded by a variety of endogenous retroviruses and retrotransposable elements. We previously found that mouse preimplantation embryos are endowed with an endogenous RT activity. Inhibition of that activity by the non nucleosidic inhibitor nevirapine or by microinjection of anti-RT antibody caused early embryonic developmental arrest. Those experiments indicated that RT is required for early development, but did not identify the responsible coding elements. We now show that microinjection of morpholino-modified antisense oligonucleotides targeting the 5' end region of active LINE-1 retrotransposons in murine zygotes irreversibly arrests preimplantation development at the two- and four-cell stages; the overall level of functional RT is concomitantly downregulated in arrested embryos. Furthermore, we show that the induction of embryo developmental arrest is associated with a substantial reprogramming of gene expression. Together, these results support the conclusion that expression of LINE-1 retrotransposons is required for early embryo preimplantation development.

  18. Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope.

    PubMed

    Yamniuk, Aaron P; Suri, Anish; Krystek, Stanley R; Tamura, James; Ramamurthy, Vidhyashankar; Kuhn, Robert; Carroll, Karen; Fleener, Catherine; Ryseck, Rolf; Cheng, Lin; An, Yongmi; Drew, Philip; Grant, Steven; Suchard, Suzanne J; Nadler, Steven G; Bryson, James W; Sheriff, Steven

    2016-07-17

    Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications. PMID:27216500

  19. Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes

    PubMed Central

    1996-01-01

    Upon activation, B lymphocytes can change the isotype of the antibody they express by immunoglobulin (Ig) isotype switch recombination. In previous studies on the regulation of human IgG expression, we demonstrated that interleukin 10 (IL-10) could stimulate IgG1 and IgG3 secretion by human CD40-activated naive (sIgD+) tonsillar B cells. To assess whether IL-10 actually promotes the DNA recombination underlying switching to these isotypes, we examined the effect of IL-10 on the generation of reciprocal products that form DNA circles as by-products of switch recombination. The content of reciprocal products characteristic of mu-gamma recombination was elevated after culture of CD40-activated tonsillar sIgD+ B cells with either IL-4 or IL-10, although high levels of IgG secretion were observed only with IL-10. Unlike IL-4, IL-10 did not induce reciprocal products of mu-epsilon and gamma-epsilon switch recombination. These results demonstrate that IL- 10 promotes both switching to gamma and IgG secretion. PMID:8642297

  20. Murine tissue factor gene expression in vivo. Tissue and cell specificity and regulation by lipopolysaccharide.

    PubMed Central

    Mackman, N.; Sawdey, M. S.; Keeton, M. R.; Loskutoff, D. J.

    1993-01-01

    Regulation of tissue factor (TF) gene expression was studied in vivo employing a murine model system. In untreated mice, TF mRNA was detected in brain, lung, kidney, and heart by Northern blot analysis. After administration of lipopolysaccharide, steady-state levels of TF mRNA were unchanged in brain, decreased in heart, and increased in both kidney and lung. In the brain, Bergmann glia within the Purkinje cell layer of the cerebellum and neuroglia within the cerebral cortex expressed TF mRNA by in situ hybridization. Epidermal cells of the skin and tongue also expressed TF mRNA. At present, we have not identified the cell type(s) in the kidney and lung responsible for increased TF gene expression. These results demonstrate tissue- and cell-specific TF gene expression in vivo. Lipopolysaccharide-mediated increases in TF expression in the kidney and lung may promote fibrin deposition in these organs during Gram-negative sepsis. Images Figure 1 Figure 2 Figure 3 PMID:8317556

  1. Expression of Pit2 sodium-phosphate cotransporter during murine odontogenesis is developmentally regulated.

    PubMed

    Zhao, Dawei; Vaziri Sani, Forugh; Nilsson, Jeanette; Rodenburg, Michaela; Stocking, Carol; Linde, Anders; Gritli-Linde, Amel

    2006-12-01

    Different sodium-dependent inorganic phosphate (P(i)) uptake mechanisms play a major role in cellular P(i) homeostasis. The function and detailed distribution patterns of the type III Na(+)-phosphate cotransporter, PiT-2, in different organs during development are still largely unknown. We therefore examined the temporospatial expression patterns of Pit2 during murine odontogenesis. Odontoblasts were always devoid of Pit2 expression, whereas a transient, but strong, expression was detected in young secretory ameloblasts. However, the stratum intermedium and, later on, the papillary layer and cells of the subodontoblastic layer, exhibited high levels of Pit2 mRNA, which increased gradually as the tooth matured. Hormonal treatment or P(i) starvation of tooth germs in vitro did not alter Pit2 levels or patterns of expression, indicating mechanisms of regulation different from those of PiT-1 or other cell types. PiT-2 also functions as a retroviral receptor, and functional membrane-localized protein was confirmed throughout the dental papilla/pulp by demonstrating cellular permissiveness to infection by a gammaretrovirus that uses PiT-2 as a receptor. The distinct pattern of Pit2 expression during odontogenesis suggests that its P(i)-transporter function may be important for homeostasis of dental cells and not specifically for mineralization of the dental extracellular matrices. The expression of viral receptors in enamel-forming cells and the dental pulp may be of pathological significance.

  2. Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy

    PubMed Central

    Liu, Chi-Hsiu; Wang, Zhongxiao; Sun, Ye; SanGiovanni, John Paul; Chen, Jing

    2016-01-01

    Ocular neovascularization is a leading cause of blindness in proliferative retinopathy. Small non-coding RNAs (sncRNAs) play critical roles in both vascular and neuronal development of the retina through post-transcriptional regulation of target gene expression. To identify the function and therapeutic potential of sncRNAs in retinopathy, we assessed the expression profile of retinal sncRNAs in a mouse model of oxygen-induced retinopathy (OIR) with pathologic proliferation of neovessels. Approximately 2% of all analyzed sncRNAs were significantly altered in OIR retinas compared with normoxic controls. Twenty three microRNAs with substantial up- or down-regulation were identified, including miR-351, -762, -210, 145, -155, -129-5p, -150, -203, and -375, which were further analyzed for their potential target genes in angiogenic, hypoxic, and immune response-related pathways. In addition, nineteen small nucleolar RNAs also revealed differential expression in OIR retinas compared with control retinas. A decrease of overall microRNA expression in OIR retinas was consistent with reduced microRNA processing enzyme Dicer, and increased expression of Alu element in OIR. Together, our findings elucidated a group of differentially expressed sncRNAs in a murine model of proliferative retinopathy. These sncRNAs may exert critical post-transcriptional regulatory roles in regulating pathological neovascularization in eye diseases. PMID:27653551

  3. Mechanism of induction of class I major histocompatibility antigen expression by murine leukemia virus.

    PubMed

    Faller, D V; Wilson, L D; Flyer, D C

    1988-03-01

    Alterations in expression of major histocompatibility complex (MHC) antigens on tumor cells clearly correlate with the tumorgenicity and metastatic potential of those cells. These changes in the biological behavior of the tumor cells are presumably secondary to resulting changes in their susceptibility to immune recognition and destruction. Murine leukemia viruses (MuLV) exert regulatory effects on class I genes of the MHC locus. MuLV infection results in substantial increases in cell surface expression of all three class I MHC antigens. These viral effects on MHC antigen expression profoundly influence immune-mediated interaction with the infected cells, as assessed by cytotoxic T lymphocyte recognition and killing. Control of class I MHC and beta-2 microglobulin genes by MuLV takes place via a trans-acting molecular mechanism. MuLV controls expression of widely separated endogenous cellular MHC genes, transfected xenogeneic class I MHC genes, and unintegrated chimeric genes consisting of fragments of class I MHC genes linked to a bacterial reporter gene. These findings indicate that MuLV exerts its effects on MHC expression via a trans mechanism. The MuLV-responsive sequences on the MHC genes appear to lie within 1.2 kilobases upstream of the initiation codon for those genes.

  4. Bone morphogenetic protein-2 and -4 expression during murine orofacial development.

    PubMed

    Bennett, J H; Hunt, P; Thorogood, P

    1995-09-01

    In the developing orofacial region, epithelial-mesenchymal interactions induce a differentiation cascade leading to bone and cartilage formation. Although the nature of this interaction is unknown, bone morphogenetic proteins (BMP)-2 and -4 have been suggested as putative signalling molecules. Using 35S-labelled cDNA probes, the expression patterns of BMP-2 and -4 mRNA were examined in murine perioral tissues preceding, during and following the time of the epithelial-mesenchymal interaction leading to mandibular formation. At embryonic age (e) 9.5 days, a restricted pattern of BMP-4 mRNA was expressed in the epithelium of the developing facial processes. This decreased rapidly, with little or no signal on E10.5 or E11.5. By E13.5, BMP-4 signal was restricted to the dental lamina, follicle and papilla. BMP-2 expression was not prominent in the developing face until E13.5. At this stage, signal was widespread throughout mesenchyme of neural-crest, but not somatic origin. Different domains of expression were present in the developing epithelium: for example, there was strong signal in the floor of the mouth and the ventral tongue, in contrast to that of the dorsum of the tongue and primary palate, which were negative. These results support the role of BMP-2 and -4 as regulators of orofacial development and demonstrates different fields of BMP-2 expression in developing oral mucosal epithelium.

  5. Imbalanced MHC class II molecule expression at surface of murine B cell lymphomas

    PubMed Central

    1986-01-01

    To study the role of class II MHC expression in mouse lymphomagenesis, we examined the cell surface expression of I-A/E antigens on 24 spontaneous or murine leukemia virus (MuLV)-induced mouse B10.A (I-Ak, I-Ek) B cell lymphomas. Two primary B10.A B cell lymphomas were observed with strong I-Ek expression but with only minimal cell surface I-Ak expression. Both tumors are readily transplantable in syngeneic mice, with maintenance of their I-A-, I-E+ phenotype. Strikingly, one I- A-, I-E+ B cell lymphoma contains a (11; 17) translocation with a breakpoint on chromosome 17 that is localized within or very close to the H-2 complex. DNA of both tumors contains normal restriction enzyme fragments of the A alpha and A beta genes. Northern blot analyses indicated that one I-A-, I-E+ tumor strongly expressed A alpha, E alpha, and E beta mRNAs but possessed only a weak expression of A beta mRNA. The other B cell lymphoma showed A beta, E alpha, and E beta mRNA expression but only minimal A alpha mRNA expression. In 11 primary B10.A B cell lymphomas with a normal I-A+, I-E+ phenotype, no imbalances in A alpha/A beta mRNA levels were observed. The implications of these findings for the role of class II MHC expression in mouse B cell lymphoma-genesis are discussed. PMID:3486245

  6. Increased levels of the CD40:CD40 ligand dyad in the cerebrospinal fluid of rats with vitamin B12(cobalamin)-deficient central neuropathy.

    PubMed

    Veber, Daniela; Mutti, Elena; Galmozzi, Enrico; Cedrola, Sabrina; Galbiati, Stefania; Morabito, Alberto; Tredici, Giovanni; La Porta, Caterina A; Scalabrino, Giuseppe

    2006-07-01

    The levels of the soluble (s) CD40:sCD40 ligand (L) dyad, which belongs to the tumor necrosis factor (TNF)-alpha:TNF-alpha-receptor superfamily, are significantly increased in the cerebrospinal fluid (CSF), but not the serum of cobalamin (Cbl)-deficient (Cbl-D) rats. They were normalized or significantly reduced after treatment with Cbl, transforming growth factor-beta1 or S-adenosyl-L-methionine, and the normal myelin ultrastructure of the spinal cord was concomitantly restored. The concomitance of the two beneficial effects of these treatments strongly suggests that the increases in CSF sCD40:sCD40L levels may participate in the pathogenesis of purely myelinolytic Cbl-D central neuropathy in the rat. In keeping with this, an anti-CD40 treatment prevented myelin lesions.

  7. Purified murine granulocyte/macrophage progenitor cells express a high-affinity receptor for recombinant murine granulocyte/macrophage colony-stimulating factor

    SciTech Connect

    Williams, D.E.; Bicknell, D.C.; Park, L.S.; Straneva, J.E.; Cooper, S.; Broxmeyer, H.E.

    1988-01-01

    Purified recombinant murine granulocyte/macrophage colony-stimulating factor (GM-CSF) was labeled with /sup 125/I and used to examine the GM-CSF receptor on unfractionated normal murine bone marrow cells, casein-induced peritoneal exudate cells, and highly purified murine granulocyte/macrophage progenitor cells (CFU-GM). CFU-GM were isolated from cyclophosphamide-treated mice by Ficoll-Hypaque density centrifugation followed by counterflow centrifugal elutriation. The resulting population had a cloning efficiency of 62-99% in cultures containing conditioned medium from pokeweed mitogen-stimulated spleen cells and 55-86% in the presence of a plateau concentration of purified recombinant murine GM-CSF. Equilibrium binding studies with /sup 125/I-labeled GM-CSF showed that normal bone marrow cells, casein-induced peritoneal exudate cells, and purified CFU-GM had a single class of high-affinity receptor. Affinity crosslinking studies demonstrated that /sup 125/I-labeled GM-CSF bound specifically to two species of M/sub r/ 180,000 and 70,000 on CFU-GM, normal bone marrow cells, and peritoneal exudate cells. The M/sub r/ 70,000 species is thought to be a proteolytic fragment of the intact M/sub r/ 180,000 receptor. The present studies indicate that the GM-CSF receptor expressed on CFU-GM and mature myeloid cells are structurally similar. In addition, the number of GM-CSF receptors on CFU-GM is twice the average number of receptors on casein-induced mature myeloid cells, suggesting that receptor number may decrease as CFU-GM mature.

  8. MicroRNA expression profiling of the developing murine upper lip

    PubMed Central

    Warner, Dennis R.; Mukhopadhyay, Partha; Brock, Guy; Webb, Cindy L.; Pisano, M. Michele; Greene, Robert M.

    2015-01-01

    Clefts of the lip and palate are thought to be caused by genetic and environmental insults but the role of epigenetic mechanisms underlying this common birth defect are unknown. We analyzed the expression of over 600 microRNAs in the murine medial nasal and maxillary processes isolated on GD10.0-GD11.5 to identify those expressed during development of the upper lip and analyzed spatial expression of a subset. A total of 169 microRNAs were differentially expressed across gestation days 10.0 to 11.5 in the medial nasal processes, and 77 in the maxillary processes of the first branchial arch with 49 common to both. Of the microRNAs exhibiting the largest percent increase in both facial processes were 5 members of the Let-7 family. Among those with the greatest decrease in expression from GD10.0 to GD11.5 were members of the microRNA-302/367 family that have been implicated in cellular reprogramming. The distribution of expression of microRNA-199a-3p and Let-7i was determined by in situ hybridization and revealed widespread expression in both medial nasal and maxillary facial processes while that for microRNA-203 was much more limited. MicroRNAs are dynamically expressed in the tissues that form the upper lip and several were identified that target mRNAs known to be important for its development, including those that regulate the two main isoforms of p63 (microRNA-203 and microRNA-302/367 family). Integration of these data with corresponding proteomic data sets will lead to a greater appreciation of epigenetic regulation of lip development and provide a better understanding of potential causes of cleft lip. PMID:24849136

  9. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    NASA Astrophysics Data System (ADS)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  10. ICAM-1–expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia

    PubMed Central

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R.; Hordijk, Peter L.; Hogg, Nancy

    2016-01-01

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1–deficient mice were defective in these effector functions. Mechanistically, ICAM-1–mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  11. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  12. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  13. Loss of NAC1 expression is associated with defective bony patterning in the murine vertebral axis.

    PubMed

    Yap, Kai Lee; Sysa-Shah, Polina; Bolon, Brad; Wu, Ren-Chin; Gao, Min; Herlinger, Alice L; Wang, Fengying; Faiola, Francesco; Huso, David; Gabrielson, Kathleen; Wang, Tian-Li; Wang, Jianlong; Shih, Ie-Ming

    2013-01-01

    NAC1 encoded by NACC1 is a member of the BTB/POZ family of proteins and participates in several pathobiological processes. However, its function during tissue development has not been elucidated. In this study, we compared homozygous null mutant Nacc1(-/-) and wild type Nacc1(+/+) mice to determine the consequences of diminished NAC1 expression. The most remarkable change in Nacc1(-/-) mice was a vertebral patterning defect in which most knockout animals exhibited a morphological transformation of the sixth lumbar vertebra (L6) into a sacral identity; thus, the total number of pre-sacral vertebrae was decreased by one (to 25) in Nacc1(-/-) mice. Heterozygous Nacc1(+/-) mice had an increased tendency to adopt an intermediate phenotype in which L6 underwent partial sacralization. Nacc1(-/-) mice also exhibited non-closure of the dorsal aspects of thoracic vertebrae T10-T12. Chondrocytes from Nacc1(+/+) mice expressed abundant NAC1 while Nacc1(-/-) chondrocytes had undetectable levels. Loss of NAC1 in Nacc1(-/-) mice was associated with significantly reduced chondrocyte migratory potential as well as decreased expression of matrilin-3 and matrilin-4, two cartilage-associated extracellular matrix proteins with roles in the development and homeostasis of cartilage and bone. These data suggest that NAC1 participates in the motility and differentiation of developing chondrocytes and cartilaginous tissues, and its expression is necessary to maintain normal axial patterning of murine skeleton.

  14. Transfusion of murine RBCs expressing the human KEL glycoprotein induces clinically significant alloantibodies

    PubMed Central

    Stowell, Sean R.; Girard-Pierce, Kathryn R.; Smith, Nicole H.; Henry, Kate L.; Arthur, C. Maridith; Zimring, James C.; Hendrickson, Jeanne E.

    2013-01-01

    Background Red blood cell (RBC) alloantibodies to non-self antigens may develop following transfusion or pregnancy, leading to morbidity and mortality in the form of hemolytic transfusion reactions or hemolytic disease of the newborn. A better understanding of the mechanisms of RBC alloantibody induction, or strategies to mitigate the consequences of such antibodies, may ultimately improve transfusion safety. However, such studies are inherently difficult in humans. Study Design and Methods We recently generated transgenic mice with RBC specific expression of the human KEL glycoprotein, with the KEL2 or KEL1 antigens. Herein, we investigate recipient alloimmune responses to transfused RBCs in this system. Results Transfusion of RBCs from KEL2 donors into wild type recipients (lacking the human KEL protein but expressing the murine KEL orthologue) resulted in dose dependent anti-KEL glycoprotein IgM and IgG antibody responses, enhanced by recipient inflammation with poly (I:C). Boostable responses were evident upon repeat transfusion, with morbid appearing alloimmunized recipients experiencing rapid clearance of transfused KEL2 but not control RBCs. Although KEL1 RBCs were also immunogenic following transfusion into wild type recipients, transfusion of KEL1 RBCs into KEL2 recipients or vice versa failed to lead to detectable anti-KEL1 or anti-KEL2 responses. Conclusions This murine model, with reproducible and clinically significant KEL glycoprotein alloantibody responses, provides a platform for future mechanistic studies of RBC alloantibody induction and consequences. Long term translational goals of these studies include improving transfusion safety for at risk patients. PMID:23621760

  15. CD40-induced aggregation of MHC class II and CD80 on the cell surface leads to an early enhancement in antigen presentation.

    PubMed

    Clatza, Abigail; Bonifaz, Laura C; Vignali, Dario A A; Moreno, José

    2003-12-15

    Ligation of CD40 on B cells increases their ability to present Ag and to activate MHC class II (MHC-II)-restricted T cells. How this occurs is not entirely clear. In this study we demonstrate that CD40 ligation on Ag-presenting B cells (APC) for a short period between 30 min and 3 h has a rapid, augmenting effect on the ability of a B cell line and normal B cells to activate T cells. This is not due to alterations in Ag processing or to an increase in surface expression of CD80, CD86, ICAM-1, or MHC-II. This effect is particularly evident with naive, resting T lymphocytes and appears to be more pronounced under limiting Ag concentrations. Shortly after CD40 ligation on a B cell line, MHC-II and CD80 progressively accumulated in cholesterol-enriched microdomains on the cell surface, which correlated with an initial enhancement in their Ag presentation ability. Moreover, CD40 ligation induced a second, late, more sustained enhancement of Ag presentation, which correlates with a significant increase in CD80 expression by APC. Thus, CD40 signaling enhances the efficiency with which APC activate T cells by at least two related, but distinct, mechanisms: an early stage characterized by aggregation of MHC-II and CD80 clusters, and a late stage in which a significant increase in CD80 expression is observed. These results raise the possibility that one important role of CD40 is to contribute to the formation of the immunological synapse on the APC side.

  16. Fas apoptosis inhibitory molecule enhances CD40 signaling in B cells and augments the plasma cell compartment.

    PubMed

    Kaku, Hiroaki; Rothstein, Thomas L

    2009-08-01

    Fas apoptosis inhibitory molecule (FAIM) was cloned as a mediator of Fas resistance that is highly evolutionarily conserved but contains no known effector motifs. In this study, we report entirely new functions of FAIM that regulate B cell signaling and differentiation. FAIM acts to specifically enhance CD40 signaling for NF-kappaB activation, IRF-4 expression, and BCL-6 down-regulation in vitro, but has no effect on its own or in conjunction with LPS or anti-Ig stimulation. In keeping with its effects on IRF-4 and BCL-6, FAIM overexpression augments the plasma cell compartment in vivo. These results indicate that FAIM is a new player on the field of B cell differentiation and acts as a force multiplier for a series of events that begins with CD40 engagement and ends with plasma cell differentiation.

  17. Expression and function of a novel variant of estrogen receptor-α36 in murine airways.

    PubMed

    Jia, Shuping; Zhang, Xintian; He, David Z Z; Segal, Manav; Berro, Abdo; Gerson, Trevor; Wang, Zhaoyi; Casale, Thomas B

    2011-11-01

    Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis. Time-lapse video and photodiode-based displacement measurement systems were used to assess the effects of estrogen signaling on airway ciliary beat frequency and smooth muscle contraction. We found that a novel variant of estrogen receptor (ER)-α, ER-α36, is expressed in airway epithelial and smooth muscle cells. ER-α36 was predominately localized on the plasma membranes of airway cells. After sensitization to allergen, the expression levels of ER-α36 increased significantly (P < 0.01), whereas the expression of ER-β and ER-α66 did not significantly change. Estrogen treatment in vitro resulted in a rapid increase in airway cilia motion in a dose-dependent fashion, but did not exert any effect on airway smooth muscle contraction. We speculate that the up-regulation of estrogen receptor expression associated with allergen-induced airway hyperresponsiveness may constitute a protective mechanism to facilitate the clearance of mucus. The identification and localization of specific estrogen receptor subtypes in the lung could lead to newer therapeutic avenues aimed at addressing sex differences of asthma susceptibility. PMID:21642591

  18. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle

    PubMed Central

    Gardner, Lauren H.; Mathews, Juanita; Yamazaki, Yuki; Allsopp, Richard C.

    2016-01-01

    Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells. PMID:27148974

  19. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression.

    PubMed

    Koczor, Christopher A; Fields, Earl; Jedrzejczak, Mark J; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Shang, Joan; Torres, Rebecca A; Lewis, William

    2015-11-01

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10d, 3mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change>1.5, p<0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides for calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. PMID:26307267

  20. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    SciTech Connect

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. )

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  1. Murine branched chain alpha-ketoacid dehydrogenase kinase; cDNA cloning, tissue distribution, and temporal expression during embryonic development.

    PubMed

    Doering, C B; Coursey, C; Spangler, W; Danner, D J

    1998-06-01

    These studies were designed to demonstrate the structural and functional similarity of murine branched chain alpha-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain alpha-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain alpha-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system. PMID:9611264

  2. Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters.

    PubMed Central

    Bartlett, J S; Sethna, M; Ramamurthy, L; Gowen, S A; Samulski, R J; Marzluff, W F

    1996-01-01

    Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8799116

  3. Metallothionein-1 and nitric oxide expression are inversely correlated in a murine model of Chagas disease

    PubMed Central

    Gonzalez-Mejia, Martha Elba; Torres-Rasgado, Enrique; Porchia, Leonardo M; Salgado, Hilda Rosas; Totolhua, José-Luis; Ortega, Arturo; Hernández-Kelly, Luisa Clara Regina; Ruiz-Vivanco, Guadalupe; Báez-Duarte, Blanca G; Pérez-Fuentes, Ricardo

    2014-01-01

    Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels. PMID:24676665

  4. Metallothionein-1 and nitric oxide expression are inversely correlated in a murine model of Chagas disease.

    PubMed

    Gonzalez-Mejia, Martha Elba; Torres-Rasgado, Enrique; Porchia, Leonardo M; Salgado, Hilda Rosas; Totolhua, José-Luis; Ortega, Arturo; Hernández-Kelly, Luisa Clara Regina; Ruiz-Vivanco, Guadalupe; Báez-Duarte, Blanca G; Pérez-Fuentes, Ricardo

    2014-04-01

    Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels.

  5. Expression of E-Selectin, P-Selectin, and Intercellular Adhesion Molecule-1 during Experimental Murine Listeriosis

    PubMed Central

    López, Santiago; Prats, Neus; Marco, Alberto Jesús

    1999-01-01

    The expression of adhesion molecules E-selectin, P-selectin, and intercellular adhesion molecule-1 (ICAM-1) was immunohistochemically investigated during the course of experimental murine listeriosis. Infection was monitored by microbiological count of blood, liver, and spleen. After an early generalized expression of P-selectin and ICAM-1, a later regulation occurred specifically to areas of inflammation. Expression of E-selectin was faint and inconstantly detected in all of the studied organs. In the liver, typical lesions of murine listeriosis were related to the expression of ICAM-1 on sinusoidal endothelial cells and the biliary system and to the de novo expression of P-selectin in hepatic portal vessels. Inflammation in the spleen was related to the expression of ICAM-1 on red pulp sinusoidal cells, especially in the marginal sinus. High endothelial venules of inflamed lymph nodes also expressed P-selectin and ICAM-1. Lesions in the central nervous system appeared on day 3 after infection as a pyogranulomatous leptomeningitis associated with an intense expression of P-selectin and ICAM-1 in meningeal vessels, especially those in the hippocampal sulcus, suggesting a way through which inflammation initially reach the central nervous system during experimental murine listeriosis. Leptomeningitis was followed by the presence of ventriculitis, which was related to the up-regulation of ICAM-1 on choroid plexus epithelial cells, periventricular vessels and ependymal cells. Up-regulation of P-selectin and ICAM-1 during experimental murine listeriosis could play an important role in the recruitment of leukocytes, especially to the liver, lymphoid organs, and central nervous system. PMID:10514421

  6. Cloning and expression of a murine fascin homolog from mouse brain.

    PubMed

    Edwards, R A; Herrera-Sosa, H; Otto, J; Bryan, J

    1995-05-01

    The fascins are a widely distributed family of proteins that organize filamentous actin into bundles. We have cloned, sequenced, and expressed the murine homolog. Fascin is most abundant in brain and is found in other tissues including uterus and spleen. The deduced open reading frame encodes a protein of 493 amino acids with a molecular mass of 54,412 Da. Previous solubility problems with bacterially expressed fascins were overcome by producing the mouse protein as a fusion with Escherichia coli thioredoxin. A method for cleaving the fusion protein and for purifying active recombinant fascin is described. The N-terminal sequence and molecular mass estimated on SDS gels indicate that recombinant fascin is full-length. Two-dimensional gel electrophoresis suggests that recombinant fascin is post-translationally modified in a manner similar to that observed in mouse brain. Recombinant fascin and the fusion protein are recognized by monoclonal anti-fascin antibodies and will bundle rabbit skeletal muscle F-actin in vitro at a stoichiometry of 4.1:1 actin to fascin. Electron cryomicroscopy images show that the reconstituted bundles are highly ordered. However, their fine structure differs from that of echinoid fascin-actin bundles. This structural difference can be attributed to fascin.

  7. Murine carcinoma expressing carcinoembryonic antigen-like protein is restricted by antibody against neem leaf glycoprotein.

    PubMed

    Das, Arnab; Barik, Subhasis; Bose, Anamika; Roy, Soumyabrata; Biswas, Jaydip; Baral, Rathindranath; Pal, Smarajit

    2014-11-01

    We have generated a polyclonal antibody against a novel immunomodulator, neem leaf glycoprotein (NLGP) that can react to a specific 47 kDa subunit of NLGP. Generated anti-NLGP antibody (primarily IgG2a) was tested for its anti-tumor activity in murine carcinoma (EC, CT-26), sarcoma (S180) and melanoma (B16Mel) tumor models. Surprisingly, tumor growth restriction was only observed in CT-26 carcinoma models, without any alteration in other tumor systems. Comparative examination of antigenicity between four different tumor models revealed high expression of CEA-like protein on the surface of CT-26 tumors. Subsequent examination of the cross-reactivity of anti-NLGP antibody with purified or cell bound CEA revealed prominent recognition of CEA by anti-NLGP antibody, as detected by ELISA, Western Blotting and immunohistochemistry. This recognition seems to be responsible for anti-tumor function of anti-NLGP antibody only on CEA-like protein expressing CT-26 tumor models, as confirmed by ADCC reaction in CEA(+) tumor systems where dependency to anti-NLGP antibody is equivalent to anti-CEA antibody. Obtained result with enormous therapeutic potential for CEA(+) tumors may be explained in view of the epitope spreading concept, however, further investigation is crucial.

  8. Murine muscle-specific enolase: cDNA cloning, sequence, and developmental expression.

    PubMed Central

    Lamandé, N; Mazo, A M; Lucas, M; Montarras, D; Pinset, C; Gros, F; Legault-Demare, L; Lazar, M

    1989-01-01

    In vertebrates, the glycolytic enzyme enolase (EC 4.2.1.11) is present as homodimers and heterodimers formed from three distinct subunits of identical molecular weight, alpha, beta, and gamma. We report the cloning and sequencing of a cDNA encoding the beta subunit of murine muscle-specific enolase. The corresponding amino acid sequence shows greater than 80% homology with the beta subunit from chicken obtained by protein sequencing and with alpha and gamma subunits from rat and mouse deduced from cloned cDNAs. In contrast, there is no homology between the 3' untranslated regions of mouse alpha, beta, and gamma enolase mRNAs, which also differ greatly in length. The short 3' untranslated region of beta enolase mRNA accounts for its distinct length, 1600 bases. It is known that a progressive transition from alpha alpha to beta beta enolase occurs in developing skeletal muscle. We show that this transition mainly results from a differential regulation of alpha and beta mRNA levels. Analysis of myogenic cell lines shows that beta enolase gene is expressed at the myoblast stage. Moreover, transfection of premyogenic C3H10T1/2 cells with MyoD1 cDNA shows that the initial expression of beta transcripts occurs during the very first steps of the myogenic pathway, suggesting that it could be a marker event of myogenic lineage determination. Images PMID:2734297

  9. PRENATAL EXPOSURE TO ENVIRONMENTAL TOBACCO SMOKE ALTERS GENE EXPRESSION IN THE DEVELOPING MURINE HIPPOCAMPUS

    PubMed Central

    Mukhopadhyay, Partha; Horn, Kristin H.; Greene, Robert M.; Pisano, M. Michele

    2010-01-01

    Background Little is known about the effects of passive smoke exposures on the developing brain. Objective The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. Methods A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for six hours/day from gestational days 6–17 (gd 6–17) [for microarray] or gd 6–18.5 [for fetal phenotyping]. Results There were no significant effects of ETS exposure on fetal phenotype. However, 61 “expressed” genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5 fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were downregulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. Conclusions Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the “early” period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function. PMID:19969065

  10. A comparison of two distinct murine macrophage gene expression profiles in response to Leishmania amazonensis infection

    PubMed Central

    2012-01-01

    Background The experimental murine model of leishmaniasis has been widely used to characterize the immune response against Leishmania. CBA mice develop severe lesions, while C57BL/6 present small chronic lesions under L. amazonensis infection. Employing a transcriptomic approach combined with biological network analysis, the gene expression profiles of C57BL/6 and CBA macrophages, before and after L. amazonensis infection in vitro, were compared. These strains were selected due to their different degrees of susceptibility to this parasite. Results The genes expressed by C57BL/6 and CBA macrophages, before and after infection, differ greatly, both with respect to absolute number as well as cell function. Uninfected C57BL/6 macrophages express genes involved in the deactivation pathway of macrophages at lower levels, while genes related to the activation of the host immune inflammatory response, including apoptosis and phagocytosis, have elevated expression levels. Several genes that participate in the apoptosis process were also observed to be up-regulated in C57BL/6 macrophages infected with L. amazonensis, which is very likely related to the capacity of these cells to control parasite infection. By contrast, genes involved in lipid metabolism were found to be up-regulated in CBA macrophages in response to infection, which supports the notion that L. amazonensis probably modulates parasitophorous vacuoles in order to survive and multiply in host cells. Conclusion The transcriptomic profiles of C57BL/6 macrophages, before and after infection, were shown to be involved in the macrophage pathway of activation, which may aid in the control of L. amazonensis infection, in contrast to the profiles of CBA cells. PMID:22321871

  11. Genetic background influences murine prostate gene expression: implications for cancer phenotypes

    PubMed Central

    Bianchi-Frias, Daniella; Pritchard, Colin; Mecham, Brigham H; Coleman, Ilsa M; Nelson, Peter S

    2007-01-01

    Background Cancer of the prostate is influenced by both genetic predisposition and environmental factors. The identification of genes capable of modulating cancer development has the potential to unravel disease heterogeneity and aid diagnostic and prevention strategies. To this end, mouse models have been developed to isolate the influences of individual genetic lesions in the context of consistent genotypes and environmental exposures. However, the normal prostatic phenotypic variability dictated by a genetic background that is potentially capable of influencing the process of carcinogenesis has not been established. Results In this study we used microarray analysis to quantify transcript levels in the prostates of five commonly studied inbred mouse strains. We applied a multiclass response t-test and determined that approximately 13% (932 genes) exhibited differential expression (range 1.3-190-fold) in any one strain relative to other strains (false discovery rate ≤10%). Expression differences were confirmed by quantitative RT-PCR, or immunohistochemistry for several genes previously shown to influence cancer progression, such as Psca, Mmp7, and Clusterin. Analyses of human prostate transcripts orthologous to variable murine prostate genes identified differences in gene expression in benign epithelium that correlated with the differentiation state of adjacent tumors. For example, the gene encoding apolipoprotein D, which is known to enhance resistance to cell stress, was expressed at significantly greater levels in benign epithelium associated with high-grade versus low-grade cancers. Conclusion These studies support the concept that the cellular, tissue, and organismal context contribute to oncogenesis and suggest that a predisposition to a sequence of events leading to pathology may exist prior to cancer initiation. PMID:17577413

  12. A targeted proteomics approach for profiling murine cytochrome P450 expression.

    PubMed

    Hersman, Elisabeth M; Bumpus, Namandjé N

    2014-05-01

    The cytochrome P450 (P450) superfamily of enzymes plays a prominent role in drug metabolism. Although mice are a widely used preclinical model in pharmacology, the expression of murine P450 enzymes at the protein level has yet to be fully defined. Twenty-seven proteins belonging to P450 subfamilies 1A, 2A, 2B, 2C, 2D, 2E, 2F, 2J, 2U, 3A, 4A, 4B, 4F, and 4V were readily detectable in Balb/c mouse tissue using a global mass spectrometry-based proteomics approach. Subsequently, a targeted mass spectrometry-based assay was developed to simultaneously quantify these enzymes in ranges of femtomoles of P450 per microgram of total protein concentration range. This screen was applied to mouse liver microsomes and tissue lysates of kidney, lung, intestine, heart, and brain isolated from mixed-sex fetuses; male and female mice that were 3-4 weeks, 9-10 weeks, and 8-10 months of age; and pregnant mice. CYP1A2 was consistently more abundant in male mouse liver microsomes compared with age-matched females. Hepatic expression of CYP2B9 was more abundant in 3- to 4-week-old male and female mice than in mice of other ages; in addition, CYP2B9 was the only enzyme that was detectable at higher levels in pregnant mouse liver microsomes compared with age-matched females. Interestingly, sexually dimorphic expression of CYP2B9, 2D26, 2E1, and 4B1 was observed in kidney only. The targeted proteomics assay described here can be broadly used as a tool for investigating the expression patterns of P450 enzymes in mice.

  13. Expression of the Wilms' tumor gene WT1 in the murine urogenital system.

    PubMed

    Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D

    1991-08-01

    The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression

  14. Expression and secretion of a recombinant ricin immunotoxin from murine myeloma cells.

    PubMed

    Krek, C E; Ladino, C A; Goldmacher, V S; Blättler, W A; Guild, B C

    1995-05-01

    Expression plasmids carrying a humanized N901 immunoglobulin heavy chain gene (hN901HC) fused to a gene encoding the native B chain of ricin toxin (RTB), hN901HC-RTB, or a sugar binding mutant of RTB, hN901HC-RTB delta gly, were constructed. In each case, the fused gene constructions were co-expressed in murine myeloma cells (Sp2/0) with the gene for humanized N901 immunoglobulin light chain to produce the secreted recombinant products hN901-RTB and hN901-RTB delta gly, respectively. When purified by affinity chromatography, both the hN901-RTB and hN901-RTB delta gly products were found to have an apparent molecular mass of M(r) = 210,000 and to be composed of two hN901 antibody heavy chains each fused to a full-length copy of RTB and two hN901 antibody light chains. In each of the recombinant fusions the hN901 antibody moiety retained the full binding affinity and specificity for its cognate antigen, CD56. Moreover, when mixtures of hN901-RTB and native ricin A chain were incubated in the presence of the antigen-positive target cell line SW-2, antigen-specific potentiation of ricin A chain cytotoxicity was observed. It has been demonstrated previously that lectin activity of the B chain is essential for A chain cytotoxicity, and we conclude that the fused wild-type B chain was properly folded and maintained lectin activity. These data demonstrate that feasibility of using recombinant ricin B chain in an immunotoxin and of using mammalian cell culture for its expression. The use of recombinant hN901-RTB fusion protein to evaluate the contribution of the lectin activity of ricin B chain in the penetration of cell membranes by ricin A chain is proposed.

  15. CD40 signaling in human dendritic cells is initiated within membrane rafts

    PubMed Central

    Vidalain, Pierre-Olivier; Azocar, Olga; Servet-Delprat, Christine; Rabourdin-Combe, Chantal; Gerlier, Denis; Manié, Serge

    2000-01-01

    Despite CD40’s role in stimulating dendritic cells (DCs) for efficient specific T-cell stimulation, its signal transduction components in DCs are still poorly documented. We show that CD40 receptors on human monocyte-derived DCs associate with sphingolipid- and cholesterol-rich plasma membrane microdomains, termed membrane rafts. Following engagement, CD40 utilizes membrane raft-associated Lyn Src family kinase, and possibly other raft-associated Src family kinases, to initiate tyrosine phosphorylation of intracellular substrates. CD40 engagement also leads to a membrane raft-restricted recruitment of tumor necrosis factor (TNF) receptor-associated factor (TRAF) 3 and, to a lesser extent, TRAF2, to CD40’s cytoplasmic tail. Thus, the membrane raft structure plays an integral role in proximal events of CD40 signaling in DCs. We demonstrate that stimulation of Src family kinase within membrane rafts initiates a pathway implicating ERK activation, which leads to interleukin (IL)-1α/β and IL-1Ra mRNA production and contributes to p38-dependent IL-12 mRNA production. These results provide the first evidence that membrane rafts play a critical role in initiation of CD40 signaling in DCs, and delineate the outcome of CD40-mediated pathways on cytokine production. PMID:10880443

  16. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    PubMed

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces.

  17. Biologic and immunohistochemical analysis of interleukin-6 expression in vivo. Constitutive and induced expression in murine polymorphonuclear and mononuclear phagocytes.

    PubMed Central

    Terebuh, P. D.; Otterness, I. G.; Strieter, R. M.; Lincoln, P. M.; Danforth, J. M.; Kunkel, S. L.; Chensue, S. W.

    1992-01-01

    Interleukin-6 (IL-6) is considered an important multifunctional cytokine involved in the regulation of a variety of cellular responses, including the induction of acute-phase protein synthesis, lymphocyte activation, and hematopoiesis. In vitro studies have identified many cells that can produce IL-6, but the cellular sources under physiologic conditions have yet to be identified. Using immunoaffinity purified goat anti-murine IL-6, the authors performed immunohistochemical studies to localize cells expressing IL-6 in selected organs of normal and endotoxin challenged NIH-Swiss outbred mice. In the blood, findings were correlated with cell-associated bioactivity using the standard B9 cell proliferation assay. In normal mice, constitutive expression was seen in granulocytes, monocytes and their precursors as well as in bone marrow and splenic stromal macrophages. Hepatic macrophages were negative, as were lymphocytes, megakaryocytes, erythroid precursors, and endothelial cells. In the absence of significant serum levels of IL-6, cell-associated IL-6 bioactivity was detected in circulating polymorphonuclear leukocytes (PMNs), but not lymphocytes. After endotoxin challenge, there was a threefold increase in PMN IL-6 content from 1 to 3 hours followed by almost complete depletion at 6 hours. This correlated well with a threefold increase of IL-6 mRNA in the bone marrow followed by a decrease at 6 hours. This pattern also correlated with serum levels of IL-6, which peaked at 3 hours and dropped significantly by 6 hours. By 24 hours, cell-associated IL-6 showed recovery with no increase in serum levels. In vivo findings showing IL-6 expression in bone marrow macrophages support in vitro studies suggesting a role for IL-6 in hematopoiesis. Furthermore, PMNs as well as macrophages are likely important sources of IL-6 during inflammatory and septic states. Images Figure 1 Figure 5 PMID:1372159

  18. Alpha beta-crystallin expression and presentation following infection with murine gammaherpesvirus 68

    PubMed Central

    Chauhan, Vinita S.; Nelson, Daniel A.; Marriott, Ian; Bost, Kenneth L.

    2014-01-01

    Alpha beta-crystallin (CRYAB) is a small heat shock protein that can function as a molecular chaperone and has protective effects for cells undergoing a variety of stressors. Surprisingly, CRYAB has been identified as one of the dominant autoantigens in multiple sclerosis. It has been suggested that autoimmune mediated destruction of this small heat shock protein may limit its protective effects, thereby exacerbating inflammation and cellular damage during multiple sclerosis. It is not altogether clear how autoimmunity against CRYAB might develop, or whether there are environmental factors which might facilitate the presentation of this autoantigen to CD4+ T lymphocytes. In the present study, we utilized an animal model of an Epstein Barr Virus (EBV)-like infection, murine gammaherpesvirus 68 (HV-68), to question whether such a virus could modulate the expression of CRYAB by antigen presenting cells. Following exposure to HV-68 and several other stimuli, in vitro secretion of CRYAB and subsequent intracellular accumulation were observed in cultured macrophages and dendritic cells. Following infection of mice with this virus, it was possible to track CRYAB expression in the spleen and in antigen presenting cell subpopulations, as well as its secretion into the blood. Mice immunized with human CRYAB mounted a significant immune response against this heat shock protein. Further, dendritic cells that were exposed to HV-68 could stimulate CD4+ T cells from CRYAB immunized mice to secrete interferon gamma. Taken together these studies are consistent with the notion of a gammaherpesvirus-induced CRYAB response in professional antigen presenting cells in this mouse model. PMID:23586607

  19. [Regulatory B cells activated by CpG-ODN combined with anti-CD40 monoclonal antibody inhibit CD4(+)T cell proliferation].

    PubMed

    Wang, Keng; Tao, Lei; Su, Jianbing; Zhang, Yueyang; Zou, Binhua; Wang, Yiyuan; Li, Xiaojuan

    2016-09-01

    Objective To observe the immunosuppressive function of regulatory B cells (Bregs) in vitro after activated by CpG oligodeoxynucleotide (CpG-ODN) and anti-CD40 mAb. Methods Mice splenic CD5(+)CD1d(high)B cells and CD5(-)CD1d(low)B cells were sorted by flow cytometry. These B cells were first stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours, and then co-cultured with purified CD4(+)T cells. The interleukin 10 (IL-10) expression in the activated Bregs and other B cell subset, as well as the proliferation and interferon γ (IFN-γ) expression in the CD4(+) T cells activated by anti-CD3 mAb plus anti-CD28 mAb were determined by flow cytometry. Results CD5(+)CD1d(high) B cells activated by CpG-ODN plus anti-CD40 mAb blocked the up-regulated CD4(+)T proliferation and significantly reduced the IFN-γ level. At the same time, activated CD5(-)CD1d(low)B cells showed no inhibitory effect on CD4(+)T cells. Further study revealed that IL-10 expression in the CD5(+)CD1d(high) B cells were much higher than that in the CD5(-)CD1d(low)B cells after stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours. Conclusion CD5(+)CD1d(high) B cells activated by CpG-ODN combined with anti-CD40 mAb have immune inhibitory effects on CD4(+)T cell activation in vitro , which possibly due to IL-10 secretion. PMID:27609568

  20. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia.

    PubMed

    Grzenda, Adrienne; Shannon, John; Fisher, Jason; Arkovitz, Marc S

    2013-01-01

    Congenital diaphragmatic hernia (CDH) is one of the most common congenital abnormalities. Children born with CDH suffer a number of co-morbidities, the most serious of which is respiratory insufficiency from a combination of alveolar hypoplasia and pulmonary vascular hypertension. All children born with CDH display some degree of pulmonary hypertension, the severity of which has been correlated with mortality. The molecular mechanisms responsible for the development of pulmonary hypertension in CDH remain poorly understood. Angiopoitein-1 (Ang-1), a central mediator in angiogenesis, participates in the vascular development of many tissues, including the lung. Although previous studies have demonstrated that Ang-1 might play an important role in the development of familial pulmonary hypertension, the role of Ang-1 in the development of the pulmonary hypertension associated with CDH is poorly understood. The aim of this study was to examine the role of the Ang-1 pathway in a murine model of CDH. Here, we report that Ang-1 appears important in normal murine lung development, and have established its tissue-level expression and localization patterns at key time-points. Additionally, our data from a nitrofen and bisdiamine-induced murine model of CDH suggests that altered expression patterns of Ang-1, its receptor Tie-2 and one of its transcription factors (epithelium-specific Ets transcription factor 1) might be responsible for development of the pulmonary vasculopathy seen in the setting of CDH.

  1. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia.

    PubMed

    Grzenda, Adrienne; Shannon, John; Fisher, Jason; Arkovitz, Marc S

    2013-01-01

    Congenital diaphragmatic hernia (CDH) is one of the most common congenital abnormalities. Children born with CDH suffer a number of co-morbidities, the most serious of which is respiratory insufficiency from a combination of alveolar hypoplasia and pulmonary vascular hypertension. All children born with CDH display some degree of pulmonary hypertension, the severity of which has been correlated with mortality. The molecular mechanisms responsible for the development of pulmonary hypertension in CDH remain poorly understood. Angiopoitein-1 (Ang-1), a central mediator in angiogenesis, participates in the vascular development of many tissues, including the lung. Although previous studies have demonstrated that Ang-1 might play an important role in the development of familial pulmonary hypertension, the role of Ang-1 in the development of the pulmonary hypertension associated with CDH is poorly understood. The aim of this study was to examine the role of the Ang-1 pathway in a murine model of CDH. Here, we report that Ang-1 appears important in normal murine lung development, and have established its tissue-level expression and localization patterns at key time-points. Additionally, our data from a nitrofen and bisdiamine-induced murine model of CDH suggests that altered expression patterns of Ang-1, its receptor Tie-2 and one of its transcription factors (epithelium-specific Ets transcription factor 1) might be responsible for development of the pulmonary vasculopathy seen in the setting of CDH. PMID:22917924

  2. RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy.

    PubMed

    Coughlin, Christina M; Vance, Barbara A; Grupp, Stephan A; Vonderheide, Robert H

    2004-03-15

    Vaccination with antigen-presenting cells (APCs) engineered to mimic mechanisms of immune stimulation represents a promising approach for cancer immunotherapy. Dendritic cell vaccines have entered phase 3 testing in adult malignancies, but such vaccines in children have been limited. We demonstrate that CD40-activated B cells (CD40-B) transfected with RNA may serve as an alternative vaccine that can be generated from small blood volumes regardless of patient age. CD40-B from pediatric patients are efficient APCs and can be loaded with RNA as an antigenic payload, permitting simultaneous targeting of multiple antigenic epitopes without the necessity of HLA matching. For viral and tumor antigens, CD40-B/RNA technology induced cytotoxic T lymphocytes (CTLs) from adults and children, which could be identified with peptide/major histocompatibility complex (MHC) tetramers. These CTLs secreted interferon-gamma (IFN-gamma) and killed targets in an MHC-restricted fashion. For pooled neuroblastoma RNA and autologous neuroblastoma RNA, CTLs that lysed neuroblastoma cell lines, including CTLs specific against the widely expressed tumor-antigen survivin, were generated. These findings support a novel platform for tumor-specific vaccine or adoptive immunotherapies in pediatric malignancies.

  3. Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling.

    PubMed

    Epron, G; Ame-Thomas, P; Le Priol, J; Pangault, C; Dulong, J; Lamy, T; Fest, T; Tarte, K

    2012-01-01

    Interleukin-15 (IL-15) has been extensively studied for its role in the survival and proliferation of NK and T cells through a unique mechanism of trans-presentation by producer cells. Conversely, whereas activated B cells have been described as IL-15-responding cells, the cellular and molecular context sustaining this effect remains unexplored. In this study, we found that, whereas human B cells could not respond to soluble IL-15, monocytes and lymphoid tissue-derived macrophages but not stromal cells efficiently trans-present IL-15 to normal B cells and cooperate with T-cell-derived CD40L to promote IL-15-dependent B-cell proliferation. Furthermore, CD40L signaling triggers a Src-independent upregulation of STAT5 expression and favors a Src-dependent phosphorylation of STAT5 in response to IL-15. In follicular lymphoma (FL), immunohistochemical studies reported a strong relationship between malignant B cells, infiltrating macrophages and T cells. We show here an overexpression of IL-15 in purified tumor-associated macrophages, and STAT5A in purified tumor B cells. Moreover, FL B cells respond to IL-15 trans-presented by monocytes/macrophages, in particular, in the presence of CD40L-mediated signaling. This cooperation between IL-15 and CD40L reinforces the importance of tumor microenvironment and unravels a mechanism of FL growth that should be considered if using IL-15 as a drug in this disease.

  4. Isolation and characterization of human prorenin secreted from murine cells transformed with a bovine papillomavirus-preprorenin expression vector

    SciTech Connect

    Evans, D.B.; Weighous, T.F.; Cornette, J.C.; Tarpley, W.G.; Sharma, S.K.

    1987-07-01

    The authors report the construction of a plasmid-based expression vector that carries the murine metallothionein gene promoter, the human preprorenin gene, the Tn5 phosphotransferase gene, and a complete bovine papilloma virus genome. Murine cells transformed with this vector constitutively secrete high levels of human prorenin as determined by immunoprecipitation of culture media with anti-human renin antibody and activity assays. An immunoaffinity system for the isolation of human prorenin from serum-free media, or media containing serum, was developed. Purified human prorenin is stable for months and is fully activated to enzymatically mature renin by limited tryptic digestion. This is the first example of a recombinant system leading to the isolation of research quantities of highly pure and fully activatable human prorenin.

  5. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  6. Expression and precursor processing of neuropeptide Y in human and murine neuroblastoma and pheochromocytoma cell lines.

    PubMed

    O'Hare, M M; Schwartz, T W

    1989-12-15

    The synthesis and processing of the precursor for neuropeptide Y (NPY) were studied in 16 human and murine neuroendocrine cell lines. Eight of the cell lines, NS-20Y, PC12, LA-N-5, CHP-234, SMS-KCNR, SH-SY5Y, SMS-KCN, and BE(2)-M17, produced sufficient quantities to permit chromatographic characterization of the NPY immunoreactivity. Although the cell lines varied in the amount of NPY they produced, both within and between cell lines, they displayed a relatively constant pattern of posttranslational modifications. In contrast to observations in tumor extracts (M. M. T. O'Hare and T. W. Schwartz, Cancer Res., 49: 7010-7014, 1989), all cell lines studied contained a substantial amount of the intracellular NPY in the form of the unprocessed propeptide, 57% (range, 33-72%) as characterized by both gel filtrations (32 experiments in 8 cell lines) and "in vitro conversion" with endoproteinase Lys-C. In the majority, 4 of 6 cell lines studied, almost all of the NPY, which by size corresponded to the mature 36-amino acid form, was amidated as assessed by isoelectric focusing and by a radioimmunoassay specific for the COOH-terminal amide group of the peptide. Both the propeptide and smaller molecular forms of NPY were secreted from the cell cultures; however, proteolytic degradation in the tissue culture medium prevented a detailed, meaningful characterization of these peptides. It is concluded that many neuroendocrine cell lines, especially those derived from human neuroblastomas, express the NPY gene; the cells display a partly impaired dibasic processing capacity but they generally amidate the products efficiently.

  7. The murine biglycan: Complete cDNA cloning, genomic organization, promoter function, and expression

    SciTech Connect

    Wegrowski, Y.; Pillarisetti, J.; Danielson, K.G.; Iozzo, R.V.; Suzuki, S.

    1995-11-01

    Biglycan is a ubiquitous chondroitin/dermatan sulfate proteoglycan that belongs to a growing family of proteins harboring leucine-rich repeats. We have cloned and sequenced the cDNA containing the complete murine biglycan, elucidated its genomic organization, and demonstrated functional promoter activity of its 5{prime} flanking region. The deduced biglycan protein core was highly conserved across species. However, the mouse biglycan (Bgn) gene was significantly larger than the human counterpart, primarily because of a large > 4.5-kb intron between exons 1 and 2. The mouse Bgn gene spanned over 9.5 kb of continuous DNA and comprised 8 exons, with a perfectly conserved intron/exon organization vis-a-vis the human counterpart. The promoter region was enriched in GC dinucleotide and contained numerous cis-acting elements including binding sites for SP-1, AP-1, and AP-2 factors. It lacked TATA and CAAT boxes typical of housekeeping genes. In support of this, primer extension analysis showed the existence of multiple transcription start sites. Transient cell transfection assays with a construct comprising the 548 hp upstream of the major transcription start site fused to the chloramphenicol acetyl transferase reporter gene showed functional promoter activity. Internal and 5{prime} deletion constructs showed that the distal promoter of the Bgn gene was required for full transcriptional activity. In contrast to the homologous proteoglycan decorin, the highest expression of biglycan mRNA was observed in lung, liver, and spleen of adult mouse and the lowest in skin, heart, and kidney. These results will be useful for the study of biglycan gene regulation and for the generation of mice with targeted null mutation of the Bgn gene. 56 refs., 7 figs., 1 tab.

  8. Influence of interferon on the functional expression of natural killer target structures of murine lymphoma cells.

    PubMed

    Marini, S; Guadagni, F; Bonmassar, E; Potenza, P; Giuliani, A

    1986-10-01

    Murine lymphoma cells (YAC-1), induced by Moloney leukemia virus, nontreated (YAC) or pretreated in vitro with interferon (YAC-IF), were tested for their susceptibility to natural killer (NK)-mediated cytolysis. In line with previous reports YAC-IF were less susceptible to NK lysis than YAC cells. In cold competition assay, YAC-IF inhibited cytotoxicity to a lesser extent than YAC lymphoma when labeled target YAC cells were used. However, when radioactive YAC-IF cells were used as targets, cold competition attained with both YAC and YAC-IF was essentially the same. Furthermore, effector splenocytes, depleted of NK effector cells through immunoabsorption on YAC monolayer, were inactive against both YAC and YAC-IF targets. On the other hand, effector lymphocytes, absorbed on YAC-IF monolayer, retained NK activity against YAC cells but not against YAC-IF targets. These results are compatible with the hypothesis that interferon (IF) modulates negatively a subset of "interferon-susceptible" (IFS) NK target structure(s) (TS) of YAC cells, which would then express membrane determinants not functionally present on YAC-IF cells. On the other hand YAC and YAC-IF cells share "interferon-resistant" (IFR) TS not affected by pretreatment with IF. In order to test whether IFS X TS and IFR X TS are present on the same cell or clonally distributed, YAC cells were cloned and tested for NK susceptibility following IF pretreatment. The results did not support the hypothesis of a clonal distribution of both IFS X TS and IFR X TS since IF pretreatment of all clones, obtained by limiting dilution, resulted in a net impairment of target susceptibility to NK effector cells.

  9. Murine retroviruses control class I major histocompatibility antigen gene expression via a trans effect at the transcriptional level.

    PubMed

    Wilson, L D; Flyer, D C; Faller, D V

    1987-07-01

    Moloney murine leukemia virus (M-MuLV) and Moloney murine sarcoma virus (M-MSV) exert a regulatory effect on the class I genes of the murine major histocompatibility complex (MHC). We have previously shown that M-MuLV infection of mouse fibroblasts results in a substantial increase in cell surface expression of H-2K, H-2D, and H-2L proteins, whereas M-MSV, upon coinfection of the same cells, is apparently able to override the MuLV-induced increase in H-2 expression. As a result of this modulation, immune recognition of the infected cells is profoundly altered. Our efforts have been directed toward elucidating the molecular basis for this phenomenon. We report here that stimulation of interferon production as a result of infection with MuLV does not occur and, therefore, is not the cause of MuLV-induced enhancement of MHC expression. Control of H-2 class I and beta 2-microglobulin gene expression by M-MuLV, and probably by M-MSV, takes place at the transcriptional level as indicated by nuclear runoff studies and analysis of steady-state mRNA levels. Our demonstration that M-MuLV controls expression of widely separated endogenous cellular genes (those coding for H-2D, H-2K, H-2L, and beta 2-microglobulin), transfected class I MHC genes, and unintegrated chimeric genes consisting of fragments of class I MHC genes linked to sequences encoding a procaryotic enzyme, chloramphenicol acetyltransferase, suggests that M-MuLV exerts its effect in trans and not by proviral integration in the vicinity of the H-2 gene complex. Finally, we show that the sequences of at least one MHC gene, which are responsive to trans regulation by M-MuLV, lie within 1.2 kilobases upstream of the initiation codon for that gene.

  10. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice.

    PubMed

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B; Mounayar, Marwan; Sackstein, Robert

    2015-05-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here, we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in nonobese diabetic (NOD) mice. Although murine MSCs natively do not express the E-selectin-binding determinant sialyl Lewis(x) (sLe(x) ), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLe(x) display uniquely on cell surface CD44 thereby creating hematopoietic cell E-/L-selectin ligand (HCELL), the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL(+) MSCs showed threefold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL(-) ) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays; however, although engraftment was temporary for both HCELL(+) and HCELL(-) MSCs, administration of HCELL(+) MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL(-) MSCs. Notably, exofucosylation of MSCs generated from CD44(-/-) mice induced prominent membrane expression of sLe(x) , but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. Stem Cells

  11. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice

    PubMed Central

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B.; Mounayar, Marwan; Sackstein, Robert

    2015-01-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in non-obese diabetic (NOD) mice. Though murine MSCs natively do not express the E-selectin binding determinant sialyl Lewisx (sLex), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLex display uniquely on cell surface CD44 thereby creating HCELL, the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL+ MSCs showed 3-fold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL−) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays, however, though engraftment was temporary for both HCELL+ and HCELL− MSCs, administration of HCELL+ MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL− MSCs. Notably, exofucosylation of MSCs generated from CD44−/− mice induced prominent membrane expression of sLex, but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. PMID:25641589

  12. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet.

    PubMed Central

    Greenwalt, D E; Scheck, S H; Rhinehart-Jones, T

    1995-01-01

    High levels of CD36 expression are found in triglyceride storing and secreting cells such as differentiated adipocytes and mammary secretory epithelial cells and in some capillary endothelial cells. We have found high levels of CD36 in the capillary endothelium of murine adipose tissue and in cardiac and skeletal muscles. Muscle cells themselves were CD36 negative. No CD36 was found in brain endothelium. Cardiac and skeletal muscle tissues are highly oxidative and catabolize long-chain fatty acids as a source of energy while brain tissue does not use long-chain fatty acids for energy production. Since capillary endothelial cell CD36 expression appeared to correlate with parenchymal cell fatty acid utilization and since CD26 has been identified recently as a long-chain fatty acid-binding protein, we examined heart tissue CD36 expression in murine models of insulin-dependent (nonobese diabetic, NOD) and non-insulin-dependent diabetes mellitus (KKAY). Diabetic NOD and KKAY mice had serum triglyceride levels 2.6- and 4.2-fold higher, respectively, than normal mice and exhibited 7- and 3.5-fold higher levels of heart microsomal CD36, respectively, than control mice. Mice fed a 40% fat diet expressed heart tissue CD36 at a level 3.5-fold higher than those fed a 9% fat diet. These data suggest that endothelial cell CD36 expression is related to parenchymal cell lipid metabolism. Images PMID:7544802

  13. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst.

    PubMed

    Jin, Rong; Yu, Shiyong; Song, Zifang; Zhu, Xiaolei; Wang, Cuiping; Yan, Jinchuan; Wu, Fusheng; Nanda, Anil; Granger, D Neil; Li, Guohong

    2013-01-01

    Recent work has revealed an essential involvement of soluble CD40L (sCD40L) in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40), i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ) is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b) and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better understanding of the

  14. Expression of bovine herpesvirus 1 glycoproteins gI and gIII in transfected murine cells.

    PubMed

    Fitzpatrick, D R; Zamb, T; Parker, M D; van Drunen Littel-van den Hurk, S; Babiuk, L A; Lawman, M J

    1988-11-01

    Genes encoding two of the major glycoproteins of bovine herpesvirus 1 (BHV-1), gI and gIII, were cloned into the eucaryotic expression vectors pRSVcat and pSV2neo and transfected into murine LMTK- cells, and cloned cell lines were established. The relative amounts of gI or gIII expressed from the two vectors were similar. Expression of gI was cell associated and localized predominantly in the perinuclear region, but nuclear and plasma membrane staining was also observed. Expression of gI was additionally associated with cell fusion and the formation of polykaryons and giant cells. Expression of gIII was localized predominantly in the nuclear and plasma membranes. Radioimmunoprecipitation in the presence or absence of tunicamycin revealed that the recombinant glycoproteins were proteolytically processed and glycosylated and had molecular weights similar to those of the forms of gI and gIII expressed in BHV-1-infected bovine cells. However, both recombinant glycoproteins were glycosylated to a lesser extent than were the forms found in BHV-1-infected bovine cells. For gI, a deficiency in N-linked glycosylation of the amino-terminal half of the protein was identified; for gIII, a deficiency in O-linked glycosylation was implicated. The reactivity pattern of a panel of gI- and gIII-specific monoclonal antibodies, including six which recognize conformation-dependent epitopes, was found to be unaffected by the glycosylation differences and was identical for transfected or BHV-1-infected murine cells. Use of the transfected cells as targets in immune-mediated cytotoxicity assays demonstrated the functional recognition of recombinant gI and gIII by murine antibody and cytotoxic T lymphocytes. Immunization of mice with the transfected cells elicited BHV-1-specific virus-neutralizing antibody, thus verifying the antigenic authenticity of the recombinant glycoproteins and the important role of gI and gIII as targets of the immune response to BHV-1 in this murine model system.

  15. Expression of intronic miRNAs and their host gene Igf2 in a murine unilateral ureteral obstruction model

    PubMed Central

    Li, N.Q.; Yang, J.; Cui, L.; Ma, N.; Zhang, L.; Hao, L.R.

    2015-01-01

    The objective of this study was to determine the expression of miR-483 and miR-483* and the relationship among them, their host gene (Igf2), and other cytokines in a murine model of renal fibrosis. The extent of renal fibrosis was visualized using Masson staining, and fibrosis was scored 3 days and 1 and 2 weeks after unilateral ureteral obstruction (UUO). Expression of miR-483, miR-483* and various cytokine mRNAs was detected by real-time polymerase chain reaction (PCR). Expression of miR-483 and miR-483* was significantly upregulated in the UUO model, particularly miR-483 expression was the greatest 2 weeks after surgery. Additionally, miR-483 and miR-483* expression negatively correlated with Bmp7 expression and positively correlated with Igf2, Tgfβ, Hgf, and Ctgf expression, as determined by Pearson's correlation analysis. Hgf expression significantly increased at 1 and 2 weeks after the surgery compared to the control group. This study showed that miR-483 and miR-483* expression was upregulated in a murine UUO model. These data suggest that miR-483 and miR-483* play a role in renal fibrosis and that miR-483* may interact with miR-483 in renal fibrosis. Thus, these miRNAs may play a role in the pathogenesis of renal fibrosis and coexpression of their host gene Igf2. PMID:25831208

  16. Expression of an isoform of the testis-specific estrogen sulfotransferase in the murine placenta during the late gestational period.

    PubMed

    Takehara, K; Kubushiro, K; Iwamori, Y; Tsukazaki, K; Nozawa, S; Iwamori, M

    2001-10-15

    Cytosolic sulfotransferases play essential roles in regulating the activities and transfer of steroids. To evaluate their biological significance in the murine uterus and placenta during the course of gestation, we determined their activities with several steroids as substrates. Activated estrogen sulfotransferase (EST) was found in the placenta and uterus during the late gestational period. Reverse-transcribed cDNA of murine placental EST (mpEST) was isolated from mouse placenta at 18 days of gestation and its expression in the tissue coincided with a change in its enzyme activity. The open-reading frame of mpEST encodes a protein composed of 296 amino acids with a predicted molecular mass of 35.5 kDa and was revealed to be an isoform of the murine testis-specific EST gene (99.7%). Also, the amino acid sequence of mpEST showed 49.6 and 77.9% homology with human placental and endometrial EST, respectively, showing that it corresponds to human endometrial EST. COS-7 cells transfected with mpEST exhibited sulfotransferase activity with the phenolic hydroxy groups of steroids and artificial substrates. The best acceptor substrate was estrogen.

  17. Recent developments in StemBase: a tool to study gene expression in human and murine stem cells

    PubMed Central

    Sandie, Reatha; Palidwor, Gareth A; Huska, Matthew R; Porter, Christopher J; Krzyzanowski, Paul M; Muro, Enrique M; Perez-Iratxeta, Carolina; Andrade-Navarro, Miguel A

    2009-01-01

    Background Currently one of the largest online repositories for human and mouse stem cell gene expression data, StemBase was first designed as a simple web-interface to DNA microarray data generated by the Canadian Stem Cell Network to facilitate the discovery of gene functions relevant to stem cell control and differentiation. Findings Since its creation, StemBase has grown in both size and scope into a system with analysis tools that examine either the whole database at once, or slices of data, based on tissue type, cell type or gene of interest. As of September 1, 2008, StemBase contains gene expression data (microarray and Serial Analysis of Gene Expression) from 210 stem cell samples in 60 different experiments. Conclusion StemBase can be used to study gene expression in human and murine stem cells and is available at . PMID:19284540

  18. Preparation of anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres.

    PubMed

    Gao, Xiang; Kan, Bing; Gou, MaLing; Zhang, Juan; Guo, Gang; Huang, Ning; Zhao, Xia; Qian, ZhiYong

    2011-04-01

    Antibody modified magnetic polymeric microspheres have potential biomedical application. In this paper, anti-CD40 antibody modified magnetic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) microspheres were prepared. First, PCL-PEG-PCL triblock copolymer was synthesized by ring-opening polymerization, followed by reaction with succinic anhydride, creating carboxylated PCL-PEG-PCL copolymer. Then, magnetite nanoparticles were encapsulated into carboxylated PCL-PEG-PCL microspheres, forming magnetic PCL-PEG-PCL microspheres with carboxyl group on their surface. Catalyzed by EDC/NHS, the anti-CD40 antibody was linked to these magnetic PCL-PEG-PCL microspheres, thus forming anti-CD40 modified PCL-PEG-PCL microspheres. These anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres may have potential application in cell separation. PMID:21702366

  19. p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6

    SciTech Connect

    Seibold, Kristina; Ehrenschwender, Martin

    2015-08-14

    CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified the multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.

  20. Recognition of hybrid HLA molecules expressed on murine P815 cells using human alloreactive cytotoxic T lymphocytes.

    PubMed

    Healy, F; Sire, J; Kahn-Perles, B; Gomard, E; Levy, J P; Jordan, B R

    1987-01-01

    The HLA-A2 and -A3 genes were used to construct intra-exon hybrids in which part of the third exon (corresponding to the second domain) was of one type and the rest of the other. Murine P815 cells expressing these hybrid constructs were assayed with human alloreactive cytotoxic T-lymphocyte lines specific for either HLA-A2 or HLA-A3. Specific recognition patterns were obtained which indicate that, in some cases, a small portion of the HLA-A2 sequence in an HLA-A3 background is sufficient for recognition by HLA-A2-specific cytotoxic T cells. PMID:3107590

  1. Isolation of murine peritoneal macrophages to carry out gene expression analysis upon Toll-like receptors stimulation.

    PubMed

    Layoun, Antonio; Samba, Macha; Santos, Manuela M

    2015-01-01

    During infection and inflammation, circulating monocytes leave the bloodstream and migrate into tissues, where they differentiate into macrophages. Macrophages express surface Toll-like receptors (TLRs), which recognize molecular patterns conserved through evolution in a wide range of microorganisms. TLRs play a central role in macrophage activation which is usually associated with gene expression alteration. Macrophages are critical in many diseases and have emerged as attractive targets for therapy. In the following protocol, we describe a procedure to isolate murine peritoneal macrophages using Brewer's thioglycollate medium. The latter will boost monocyte migration into the peritoneum, accordingly this will raise macrophage yield by 10-fold. Several studies have been carried out using bone marrow, spleen or peritoneal derived macrophages. However, peritoneal macrophages were shown to be more mature upon isolation and are more stable in their functionality and phenotype. Thus, macrophages isolated from murine peritoneal cavity present an important cell population that can serve in different immunological and metabolic studies. Once isolated, macrophages were stimulated with different TLR ligands and consequently gene expression was evaluated.

  2. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells.

    PubMed

    Zhang, Junfang; Han, Bingshe; Li, Xiaoxia; Bies, Juraj; Jiang, Penglei; Koller, Richard P; Wolff, Linda

    2016-01-01

    The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells. PMID:27607579

  3. Late-phase expression of a murine cytomegalovirus immediate-early antigen recognized by cytolytic T lymphocytes.

    PubMed Central

    Reddehase, M J; Fibi, M R; Keil, G M; Koszinowski, U H

    1986-01-01

    The cloned murine cytolytic T-lymphocyte line IE1-IL and several sublines detect a murine cytomegalovirus immediate-early (IE) membrane determinant in conjunction with Ld class I major histocompatibility glycoprotein. The lines retained cytolytic activity, strict antigen specificity, and self-restriction even when adapted to long-term, antigen-independent growth in the presence of interleukin-2 only (M. J. Reddehase, H.-J. Bühring, and U. H. Koszinowski, J. Virol. 57:408-412). These attributes allowed us to use IE1-IL as a stable, monospecific probe for tracing the expression of the IE membrane antigen throughout the viral replication cycle. Presentation of the antigen at the cell membrane proved to be most effective when expression of IE genes in infected mouse embryo fibroblasts was selectively enhanced by consecutive cycloheximide-actinomycin D treatment, whereas without enhancement high numbers of IE1-IL cytolytic T lymphocytes were required to demonstrate the antigen in the IE phase. In the early phase of infection when IE genes were no longer transcribed, cytolysis was not observed, although IE proteins were detectable in the nuclei of the infected cells. Without application of inhibitors IE membrane antigen expression was most prominent during the late phase of infection. Reinitiation of transcription from the genomic region encoding the major IE protein (pp89) and de novo synthesis of pp89 correlated with this reexpression of the IE membrane antigen. Images PMID:2431160

  4. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    SciTech Connect

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  5. Expression of human tyrosine kinase-negative epidermal growth factor receptor amplifies signaling through endogenous murine epidermal growth factor receptor.

    PubMed

    Hack, N; Sue-A-Quan, A; Mills, G B; Skorecki, K L

    1993-12-15

    Recent findings have suggested that certain ligand-dependent responses to EGF may be propagated in a manner that is not dependent on the intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGF-R, Campos-Gonzalez, R., and Glenney, J. R., Jr. (1992) J. Biol. Chem. 267, 14535-14538) or, alternatively, that these responses may occur through the interaction of the human tyrosine kinase-deficient EGF-R with an as yet unidentified kinase (Selva, E., Raden, D. L., and Davis, R. J. (1993) J. Biol. Chem. 268, 2250-2254). These conclusions represent a significant departure from our current understanding of signal transduction by receptor tyrosine kinases. Therefore we examined the effect of expression of tyrosine kinase-negative human EGF receptor in murine NIH-3T3-2.2 cells on the EGF-dependent phosphorylation of mitogen-activated protein (MAP-2) kinase. In parental cells (NIH-3T3-2.2) that express low levels of endogenous murine EGF-R, there was no demonstrable EGF-dependent coupling to MAP-2 kinase. In NIH-3T3-2.2 cells transfected with tyrosine kinase-negative human EGF-R, there was unexpected EGF-dependent phosphorylation of MAP-2 kinase. Analysis of the tyrosine kinase-negative human EGF-R in these cells revealed significant tyrosine phosphorylation of the EGF-R. A low level of endogenous murine EGF-R present in these cells were also phosphorylated on tyrosine residues and displayed autokinase activity. Similar results were obtained using an unrelated cell line (B82L cells), in which EGF-dependent phosphorylation of MAP-2 kinase was previously attributed to signal propagation through a tyrosine kinase-negative human EGF-R (Campos-Gonzalez, R., and Glenney, J. R., Jr. (1992) J. Biol. Chem. 267, 14535-14538). Taken together, these results suggest that the tyrosine kinase-negative human EGF-R are able to amplify the response to activation of low levels of endogenous murine EGF-R, thus leading to EGF-dependent phosphorylation of MAP-2 kinase in cells

  6. Saliva suppresses osteoclastogenesis in murine bone marrow cultures.

    PubMed

    Caballé-Serrano, J; Cvikl, B; Bosshardt, D D; Buser, D; Lussi, A; Gruber, R

    2015-01-01

    Saliva can reach mineralized surfaces in the oral cavity; however, the relationship between saliva and bone resorption is unclear. Herein, we examined whether saliva affects the process of osteoclastogenesis in vitro. We used murine bone marrow cultures to study osteoclast formation. The addition of fresh sterile saliva eliminated the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase (TRAP). In line with the histochemical staining, saliva substantially reduced gene expression of cathepsin K, calcitonin receptor, and TRAP. Addition of saliva led to considerably decreased gene expression of receptor activator of nuclear factor kappa-B (RANK) and, to a lesser extent, that of c-fms. The respective master regulators of osteoclastogenesis (c-fos and NFATc1) and the downstream cell fusion genes (DC-STAMP and Atp6v0d2) showed decreased expression after the addition of saliva. Among the costimulatory molecules for osteoclastogenesis, only OSCAR showed decreased expression. In contrast, CD40, CD80, and CD86-all costimulatory molecules of phagocytic cells-were increasingly expressed with saliva. The phagocytic capacity of the cells was confirmed by latex bead ingestion. Based on these in vitro results, it can be concluded that saliva suppresses osteoclastogenesis and leads to the development of a phagocytic cell phenotype.

  7. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    SciTech Connect

    Rodriguez, Annabelle . E-mail: arodrig5@jhmi.edu; Ashen, M. Dominique; Chen, Edward S.

    2005-05-27

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 {mu}g protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p < 0.04). Cytotoxicity, as measured by the cellular release of [{sup 14}C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1.

  8. Expression of skeletal muscle sodium channel (Nav1.4) or connexin32 prevents reperfusion arrhythmias in murine heart

    PubMed Central

    Anyukhovsky, Evgeny P.; Sosunov, Eugene A.; Kryukova, Yelena N.; Prestia, Kevin; Ozgen, Nazira; Rivaud, Mathilde; Cohen, Ira S.; Robinson, Richard B.; Rosen, Michael R.

    2011-01-01

    Aims Acute myocardial ischaemia induces a decrease in resting membrane potential [which leads to reduction of action potential (AP) Vmax] and intracellular acidification (which closes gap junctions). Both contribute to conduction slowing. We hypothesized that ventricular expression of the skeletal muscle Na+ channel, Nav1.4 (which activates fully at low membrane potentials), or connexin32 (Cx32, which is less pH-sensitive than connexin43) would support conduction and be antiarrhythmic. We tested this hypothesis in a murine model of ischaemia and reperfusion arrhythmias. Methods and results Empty adenovirus (Sham) or adenoviral constructs expressing either SkM1 (gene encoding Nav1.4) or Cx32 genes were injected into the left ventricular wall. Four days later, ventricular tachycardia (VT) occurred during reperfusion following a 5 min coronary occlusion. In Nav1.4- and Cx32-expressing mice, VT incidence and duration were lower than in Sham (P < 0.05). In vitro multisite microelectrode mapping was performed in the superfused right ventricular wall. To simulate ischaemic conditions, [K+] in solution was increased to 10 mmol/L and/or pH was decreased to 6.0. Western blots revealed Cx32 and Nav1.4 expression in both ventricles. Nav1.4 APs showed higher Vmax and conduction velocity (CV) than Shams at normal and elevated [K+]. Exposure of tissue to acid solution reduced intracellular pH to 6.4. There was no difference in CV between Sham and Cx32 groups in control solution. Acid solution slowed CV in Sham (P < 0.05) but not in Cx32. Conclusion Nav1.4 or Cx32 expression preserved normal conduction in murine hearts and decreased the incidence of reperfusion VT. PMID:20823275

  9. Soluble CD40L in children and adolescents with type 1 diabetes: relation to microvascular complications and glycemic control.

    PubMed

    El-Asrar, Mohamed A; Adly, Amira Am; Ismail, Eman A

    2012-12-01

    CD40-soluble CD40 ligand (sCD40L) interactions might constitute an important mediator for vascular inflammation that initiates diabetic microangiopathy. Little is known about the relation between sCD40L and glycemic control. Therefore, this study aimed to evaluate sCD40L levels in patients with type 1 diabetes and its relation to microvascular complications and metabolic control. Sixty patients with type 1 diabetes were compared with 30 healthy control subjects. Detailed medical history, thorough clinical examination, and laboratory assessment of high-sensitivity C-reactive protein, glycemic control, and the presence of microvascular complications were performed. Measurement of serum sCD40L levels was done using enzyme-linked immunosorbent assay. Patients were divided into two groups according to the presence of microvascular complications. Serum sCD40L levels were significantly elevated in patients with type 1 diabetes in both groups compared with healthy controls (p < 0.001). Patients with microvascular complications had higher serum sCD40L concentrations than non-complicated cases (median, 13 000 vs. 450 pg/mL; p < 0.001). Serum sCD40L cutoff value of 530 pg/mL was able to differentiate complicated from non-complicated cases (p < 0.001). Patients with microalbuminuria or peripheral neuropathy showed higher levels of sCD40L when compared with patients without these complications (p < 0.05). Serum sCD40L levels were positively correlated with hemoglobin A1c and urinary albumin excretion (p < 0.001). We suggest that serum sCD40L levels are elevated in type 1 diabetes, particularly in patients with microvascular complications and a significant correlation with glycemic control exists. Therefore, measurement of serum sCD40L levels in poorly controlled patients would help to identify those at high risk of developing microvascular complications.

  10. CD40 ligand protects from TRAIL-induced apoptosis in follicular lymphomas through NF-kappaB activation and up-regulation of c-FLIP and Bcl-xL.

    PubMed

    Travert, Marion; Ame-Thomas, Patricia; Pangault, Céline; Morizot, Alexandre; Micheau, Olivier; Semana, Gilbert; Lamy, Thierry; Fest, Thierry; Tarte, Karin; Guillaudeux, Thierry

    2008-07-15

    The TNF family member TRAIL is emerging as a promising cytotoxic molecule for antitumor therapy. However, its mechanism of action and the possible modulation of its effect by the microenvironment in follicular lymphomas (FL) remain unknown. We show here that TRAIL is cytotoxic only against FL B cells and not against normal B cells, and that DR4 is the main receptor involved in the initiation of the apoptotic cascade. However, the engagement of CD40 by its ligand, mainly expressed on a specific germinal center CD4(+) T cell subpopulation, counteracts TRAIL-induced apoptosis in FL B cells. CD40 induces a rapid RNA and protein up-regulation of c-FLIP and Bcl-x(L). The induction of these antiapoptotic molecules as well as the inhibition of TRAIL-induced apoptosis by CD40 is partially abolished when NF-kappaB activity is inhibited by a selective inhibitor, BAY 117085. Thus, the antiapoptotic signaling of CD40, which interferes with TRAIL-induced apoptosis in FL B cells, involves NF-kappaB-mediated induction of c-FLIP and Bcl-x(L) which can respectively interfere with caspase 8 activation or mitochondrial-mediated apoptosis. These findings suggest that a cotreatment with TRAIL and an inhibitor of NF-kappaB signaling or a blocking anti-CD40 Ab could be of great interest in FL therapy.

  11. Expression of human HLA-B27 transgene alters susceptibility to murine Theiler's virus-induced demyelination.

    PubMed

    Rodriguez, M; Nickerson, C; Patick, A K; David, C S

    1991-04-15

    Infection of certain strains of mice with Theiler's murine encephalomyelitis virus results in persistence of virus and an immune-mediated primary demyelination in the central nervous system that resembles multiple sclerosis. Because susceptibility/resistance to demyelination in B10 congeneic mice maps strongly to class I MHC genes (D region) we tested whether expression of a human class I MHC gene (HLA-B27) would alter susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination. Transgenic HLA-B27 mice were found to co-express human and endogenous mouse class I MHC genes by flow microfluorimetry analysis of PBL. In the absence of the human transgene, H-2stf, or v mice but not H-2b mice had chronic demyelination and persistence of virus at 45 days after infection. No difference in degree of demyelination, meningeal inflammation, or virus persistence was seen between transgenic HLA-B27 and nontransgenic littermate mice of H-2f or H-2v haplotype. In contrast, H-2s (HLA-B27+) mice showed a dramatic decrease in extent of demyelination and number of virus-Ag+ cells in the spinal cord compared with H-2s (HLA-B27-) littermate mice. In addition, none of the eight H-2s mice homozygous for HLA-B27 gene had spinal cord lesions even though infectious virus was isolated chronically from their central nervous system. Expression of HLA-B27 transgene did not interfere with the resistance to demyelination normally observed in B10 (H-2b) mice. These experiments demonstrate that expression of a human class I MHC gene can modulate a virus-induced demyelinating disease process in the mouse.

  12. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    PubMed

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy.

  13. Dexamethasone Attenuates VEGF Expression and Inflammation but Not Barrier Dysfunction in a Murine Model of Ventilator–Induced Lung Injury

    PubMed Central

    Hegeman, Maria A.; Hennus, Marije P.; Cobelens, Pieter M.; Kavelaars, Annemieke; Jansen, Nicolaas J. G.; Schultz, Marcus J.; van Vught, Adrianus J.; Heijnen, Cobi J.

    2013-01-01

    Background Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI. Methods Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. Results Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation. Conclusions Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI. PMID:23451215

  14. Enhanced expression of class I major histocompatibility complex gene (Dk) products on immunogenic variants of a spontaneous murine carcinoma.

    PubMed

    Carlow, D A; Kerbel, R S; Feltis, J T; Elliott, B E

    1985-08-01

    Both immunogenic and nonimmunogenic variant clones were isolated from a recently obtained spontaneous murine adenocarcinoma after treatment (xenogenization) with either the mutagen ethyl methanesulfonate or the DNA hypomethylating agent, and "gene activator," 5-azacytidine. Clonal analysis of the untreated tumor population confirmed that immunogenic variants arose as a consequence of the xenogenization protocol. At a dose of 10(6) cells per mouse, nonimmunogenic variants, like the parental tumor line, grew progressively in normal syngeneic recipients. In contrast, immunogenic variants were rejected in normal syngeneic mice and grew progressively only in T-cell-deficient nude mice. Serologic analysis of the respective clonal variants revealed that immunogenic variants expressed substantially elevated (fourfold to tenfold) levels of class I H-2Dk antigen relative to parental or nonimmunogenic cell lines. Two variants exhibiting marginal immunogenicity expressed high and low levels of major histocompatibility complex (MHC) antigen, respectively suggesting that elevated MHC expression, although possibly a contributing factor, did not account for the immunogenic phenotype in all cases. Finally, the immunogenic phenotype of two variants decayed with time in culture. Clones in the process of reversion lost their elevated Dk gene expression and became progressively more tumorigenic in normal syngeneic mice. Together, these data are consistent with a hypothesis that elevated MHC expression can contribute to the immunogenic phenotype of originally low MHC-expressing tumors and that the reduced level of MHC observed in certain clinical cancers may have significant implications with regard to immunologic aspects of the tumor-host relationship.

  15. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.

    PubMed

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2008-08-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.

  16. CD40 Stimulation Obviates Innate Sensors and Drives T Cell Immunity in Cancer.

    PubMed

    Byrne, Katelyn T; Vonderheide, Robert H

    2016-06-21

    Cancer immunotherapies are more effective in tumors with robust T cell infiltrates, but mechanisms to convert T cell-devoid tumors with active immunosuppression to those capable of recruiting T cells remain incompletely understood. Here, using genetically engineered mouse models of pancreatic ductal adenocarcinoma (PDA), we demonstrate that a single dose of agonistic CD40 antibody with chemotherapy rendered PDA susceptible to T cell-dependent destruction and potentiated durable remissions. CD40 stimulation caused a clonal expansion of T cells in the tumor, but the addition of chemotherapy optimized myeloid activation and T cell function. Although recent data highlight the requirement for innate sensors in cancer immunity, these canonical pathways-including TLRs, inflammasome, and type I interferon/STING-played no role in mediating the efficacy of CD40 and chemotherapy. Thus, CD40 functions as a non-redundant mechanism to convert the tumor microenvironment immunologically. Our data provide a rationale for a newly initiated clinical trial of CD40 and chemotherapy in PDA. PMID:27292635

  17. Functional organization of the murine leukemia virus reverse transcriptase: characterization of a bacterially expressed AKR DNA polymerase deficient in RNase H activity.

    PubMed Central

    Levin, J G; Crouch, R J; Post, K; Hu, S C; McKelvin, D; Zweig, M; Court, D L; Gerwin, B I

    1988-01-01

    The functional organization of the murine leukemia virus reverse transcriptase was investigated by expressing a molecular clone containing AKR MuLV reverse transcriptase-coding sequences in Escherichia coli. A purified preparation of the expressed enzyme (pRT250 reverse transcriptase) consisted primarily of a 69-kilodalton protein that has normal levels of murine leukemia virus polymerase activity but 10-fold-reduced levels of RNase H compared with the viral enzyme. The deficit in RNase H activity was correlated with the absence of 60 to 65 amino acids normally present at the carboxyl end of murine leukemia virus reverse transcriptase. The results provide additional experimental evidence for the localization of polymerase and RNase H domains to the N- and C-terminal regions of reverse transcriptase, respectively. Images PMID:2459414

  18. A novel Krueppel related factor consisting of only a KRAB domain is expressed in the murine trigeminal ganglion

    SciTech Connect

    Nikulina, Karina; Bodeker, MacDara; Warren, John; Matthews, Philip; Margolis, Todd P. . E-mail: todd.margolis@ucsf.edu

    2006-09-29

    The largest family of zinc-finger (ZnF) transcription factors is that containing the Krueppel-associated box, or KRAB domain. The amino-terminal KRAB domain of these proteins functions as a transcriptional repressor with the downstream ZnF motifs providing DNA-binding specificity. Here we report the identification and characterization of a novel murine Krueppel-related factor (KLF), MIF1, which contains a KRAB domain but lacks a ZnF motif. Western blot analysis identified MIF1-like proteins in the murine trigeminal ganglion (TG) and immunostaining localized these proteins primarily to the cytoplasm of TG neuronal cell bodies. In situ hybridization for Mif1 transcripts confirms the selective expression of Mif1 in TG neurons. Consistent with the non-nuclear localization of MIF1 we could detect no transcriptional repressor activity of the MIF1 protein. However MIF1 appears to be capable of interacting with the co-repressor TIF1{beta} and exhibits transcription repressor activity when fused to yeast GAL4 binding domain protein. Genomic analysis of Mif1 sequence suggests that the Mif1 transcript may result from splicing of a longer KRAB-ZnF containing transcript.

  19. Induction of murine adenosine A(2A) receptor expression by LPS: analysis of the 5' upstream promoter.

    PubMed

    Elson, G; Eisenberg, M; Garg, C; Outram, S; Ferrante, C J; Hasko, G; Leibovich, S J

    2013-04-01

    Non-activated macrophages express low levels of A(2A)Rs and lipopolysaccharides (LPS) upregulates A(2A)R expression in an NF-κB-dependent manner. The murine A(2A)R gene is encoded by three exons, m1, m2 and m3. Exons m2 and m3 are conserved, while m1 encodes the 5' untranslated UTR. Three m1 variants have been defined, m1A, m1B and m1C, with m1C being farthest from the transcriptional start site. LPS upregulates A(2A)Rs in primary murine peritoneal and bone-marrow-derived macrophages and RAW264.7 cells by selectively splicing m1C to m2, through a promoter located upstream of m1C. We have cloned ∼1.6 kb upstream of m1C into pGL4.16(luc2CP/Hygro) promoterless vector. This construct in RAW 264.7 cells responds to LPS, and adenosine receptor agonists augmented LPS responsiveness. The NF-κB inhibitors BAY-11 and triptolide inhibited LPS-dependent induction. Deletion of a key proximal NF-κB site (402-417) abrogated LPS responsiveness, while deletion of distal NF-κB and C/EBPβ sites did not. Site-directed mutagenesis of CREB (309-320), STAT1 (526-531) and AP2 (566-569) sites had little effect on LPS and adenosine receptor agonist responsiveness; however, mutation of a second STAT1 site (582-588) abrogated this responsiveness. Further analysis of this promoter should provide valuable insights into regulation of A(2A)R expression in macrophages in response to inflammatory stimuli.

  20. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells

    PubMed Central

    Zhang, Junfang; Han, Bingshe; Li, Xiaoxia; Bies, Juraj; Jiang, Penglei; Koller, Richard P; Wolff, Linda

    2016-01-01

    The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a −28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the −28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the −28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the −28k region. Taken together, our results provide an evidence for critical role of the −28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells. PMID:27607579

  1. CD40 Ligand and GMCSF Coexpression Enhance the Immune Responses and Protective Efficacy of PCV2 Adenovirus Vaccine.

    PubMed

    Li, Delong; Huang, Yong; Du, Qian; Wang, Zhenyu; Chang, Lingling; Zhao, Xiaomin; Tong, Dewen

    2016-04-01

    Porcine circovirus 2 (PCV2) capsid protein (Cap) is the major structural protein that is responsible for neutralizing antibodies development and protective immunity, thus it is usually used to develop vaccines against porcine circovirus-associated disease (PCVAD). Porcine CD40 ligand (CD40L) and granulocyte-macrophage colony-stimulating factor (GMCSF) have positive immunostimulatory effects on immunocytes and have been applied in vaccine efficacy improvement as attractive adjuvant cytokines, respectively. However, whether these two cytokines can produce synergistic effect in vaccines still need to be further studied. In this study, porcine CD40L and GMCSF were inserted into recombinant adenoviruses to test the immunogenicity of PCV2 adenovirus vaccine in mice. Western blot and indirect immunofluorescence assay showed that Ad-Cap, Ad-CD40L-Cap, Ad-Cap-GMCSF, and Ad-CD40L-Cap-GMCSF were successfully constructed. Indirect ELISA and virus neutralizing assay showed that CD40L and GMCSF could enhance humoral immune responses, and PCV2 Cap-specific antibody titer and neutralizing activities were significantly higher in Ad-CD40L-Cap-GMCSF group than that in the other groups that just inserted either porcine CD40L or GMCSF in recombinant adenoviruses. Moreover, lymphocyte proliferation assay and cytokine release assay showed that CD40L and GMCSF enhanced the cellular immune responses of Ad-Cap, and had synergistic effects in lymphocyte proliferative activities and Th1-type cytokine production. Following PCV2 challenge, the viral loads in lungs of Ad-CD40L-Cap-GMCSF group were significantly lower compared with Ad-Cap, Ad-CD40L-Cap, and Ad-Cap-GMCSF group. Taken together, the results of this study demonstrated that CD40L and GMCSF could synergistically enhance the protective immune responses of PCV2 adenovirus vaccine, which would be used as a potent vaccine for the prevention and control of PCVAD. PMID:26982652

  2. Effects of cadmium on calcium transporter SPCA, calcium homeostasis and β-casein expression in the murine mammary epithelium.

    PubMed

    Ohrvik, H; Ullerås, E; Oskarsson, A; Tallkvist, J

    2011-02-25

    Maternal cadmium (Cd) exposure during lactation causes neurobehavioral effects in the suckling offspring as well as involution like disturbances in the mammary glands of rodents. The aim of the present study was to examine Cd-induced effects in secreting mammary epithelial cells in relation to calcium (Ca) transport and β-casein expression. Reduced protein expression of secretory pathway Ca-ATPase (SPCA) was revealed in the mammary glands of lactating mice exposed to Cd during peak lactation. In concordance, SPCA gene expression was down regulated and total intracellular Ca levels reduced in murine mammary epithelial HC11 cells treated with Cd for 72 h. Cd reduced β-casein gene expression in a concentration dependent manner in the HC11 cells. Our findings on Cd-induced reduction of Ca levels, SPCA and β-casein expression in the mammary epithelium resemble the effects observed in the mammary glands as a result of forced weaning. In conclusion, maternal Cd exposure during lactation may disturb Ca regulation and decrease the levels of β-casein in milk with potential nutritional and developmental implications for the breast-fed newborn.

  3. Failure of expression of class I major histocompatibility antigens to alter tumor immunogenicity of a spontaneous murine carcinoma.

    PubMed

    Carlow, D A; Kerbel, R S; Elliott, B E

    1989-05-10

    We have shown previously that clonal immunogenic variants of murine mammary adenocarcinoma 10.1 can be isolated after treatment in vitro with the DNA-hypomethylating agent 5-azacytidine (5-aza). Such immunogenic variants frequently express elevated class I major histocompatibility complex antigens relative to the level of expression in the parent tumor and are rejected in syngeneic mice by a T-cell-dependent process. To ascertain whether elevated immunogenicity is a function of increased class I antigen expression, we isolated high class I antigen expressors from 5-aza-treated 10.1 cells by using the fluorescence-activated cell sorter. Clonal variants displaying any increase in class I antigen expression were more efficient stimulators of allo-class I antigen-specific cytolytic T-cell precursors. However, these variants displayed unaltered tumorigenicity in immunocompetent syngeneic mice. Thus, phenotypic changes other than, or in addition to, elevated class I antigen expression cause the reduced tumorigenicity of immunogenic clones of 10.1 cells isolated after 5-aza treatment.

  4. Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance.

    PubMed

    Pinelli, David F; Ford, Mandy L

    2015-01-01

    Since the discovery of the CD40-CD154 costimulatory pathway and its critical role in the adaptive immune response, there has been considerable interest in therapeutically targeting this interaction with monoclonal antibodies in transplantation. Unfortunately, initial promise in animal models gave way to disappointment in clinical trials following a number of thromboembolic complications. However, recent mechanistic studies have identified the mechanism of these adverse events, as well as detailed a myriad of interactions between CD40 and CD154 on a wide variety of immune cell types and the critical role of this pathway in generating both humoral and cell-mediated alloreactive responses. This has led to resurgence in interest and the potential resurrection of anti-CD154 and anti-CD40 antibodies as clinically viable therapeutic options.

  5. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions

    PubMed Central

    Grammer, Amrie C.; Slota, Rebecca; Fischer, Randy; Gur, Hanan; Girschick, Hermann; Yarboro, Cheryl; Illei, Gabor G.; Lipsky, Peter E.

    2003-01-01

    To determine the role of CD154-CD40 interactions in the B cell overactivity exhibited by patients with active systemic lupus erythematosus (SLE), CD19+ peripheral B cells were examined before and after treatment with humanized anti-CD154 mAb (BG9588, 5c8). Before treatment, SLE patients manifested activated B cells that expressed CD154, CD69, CD38, CD5, and CD27. Cells expressing CD38, CD5, or CD27 disappeared from the periphery during treatment with anti-CD154 mAb, and cells expressing CD69 and CD154 disappeared from the periphery during the post-treatment period. Before treatment, active-SLE patients had circulating CD38bright Ig-secreting cells that were not found in normal individuals. Disappearance of this plasma cell subset during treatment was associated with decreases in anti–double-stranded DNA (anti-dsDNA) Ab levels, proteinuria, and SLE disease activity index. Consistent with this finding, peripheral B cells cultured in vitro spontaneously proliferated and secreted Ig in a manner that was inhibited by anti-CD154 mAb. Finally, the CD38+/++IgD+, CD38+++, and CD38+IgD– B cell subsets present in the peripheral blood also disappeared following treatment with humanized anti-CD154. Together, these results indicate that patients with active lupus nephritis exhibit abnormalities in the peripheral B cell compartment that are consistent with intensive germinal center activity, are driven via CD154-CD40 interactions, and may reflect or contribute to the propensity of these patients to produce autoantibodies. PMID:14617752

  6. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions.

    PubMed

    Grammer, Amrie C; Slota, Rebecca; Fischer, Randy; Gur, Hanan; Girschick, Hermann; Yarboro, Cheryl; Illei, Gabor G; Lipsky, Peter E

    2003-11-01

    To determine the role of CD154-CD40 interactions in the B cell overactivity exhibited by patients with active systemic lupus erythematosus (SLE), CD19+ peripheral B cells were examined before and after treatment with humanized anti-CD154 mAb (BG9588, 5c8). Before treatment, SLE patients manifested activated B cells that expressed CD154, CD69, CD38, CD5, and CD27. Cells expressing CD38, CD5, or CD27 disappeared from the periphery during treatment with anti-CD154 mAb, and cells expressing CD69 and CD154 disappeared from the periphery during the post-treatment period. Before treatment, active-SLE patients had circulating CD38 (bright) Ig-secreting cells that were not found in normal individuals. Disappearance of this plasma cell subset during treatment was associated with decreases in anti-double-stranded DNA (anti-dsDNA) Ab levels, proteinuria, and SLE disease activity index. Consistent with this finding, peripheral B cells cultured in vitro spontaneously proliferated and secreted Ig in a manner that was inhibited by anti-CD154 mAb. Finally, the CD38(+/++)IgD(+), CD38(+++), and CD38(+)IgD(-) B cell subsets present in the peripheral blood also disappeared following treatment with humanized anti-CD154. Together, these results indicate that patients with active lupus nephritis exhibit abnormalities in the peripheral B cell compartment that are consistent with intensive germinal center activity, are driven via CD154-CD40 interactions, and may reflect or contribute to the propensity of these patients to produce autoantibodies.

  7. TGFβ-1 and Wnt-3a interact to induce unique gene expression profiles in murine embryonic palate mesenchymal cells

    PubMed Central

    Warner, Dennis R.; Mukhopadhyay, Partha; Brock, Guy N.; Pihur, Vasyl; Pisano, M. Michele; Greene, Robert M.

    2011-01-01

    Development of the secondary palate in mammals is a complex process under the control of numerous growth and differentiation factors that regulate key processes such as cell proliferation, synthesis of extracellular matrix molecules, and epithelial-mesenchymal transdifferentiation. Alterations in any one of these processes either through genetic mutation or environmental insult have the potential to lead to clefts of the secondary palate. Members of the TGFβ family of cytokines are crucial mediators of these processes and emerging evidence supports a pivotal role for members of the Wnt family of secreted growth and differentiation factors. Previous work in this laboratory demonstrated cross-talk between the Wnt and TGFβ signaling pathways in cultured mouse embryonic palate mesenchymal cells. In the current study we tested the hypothesis that unique gene expression profiles are induced in murine embryonic palate mesenchymal cells as a result of this cross-talk between the TGFβ and Wnt signal transduction pathways. PMID:20955781

  8. Lentivirus transduced interleukin-1 receptor antagonist gene expression in murine bone marrow-derived mesenchymal stem cells in vitro.

    PubMed

    He, Tao; Chi, Guanghao; Tian, Bo; Tang, Tingting; Dai, Kerong

    2015-09-01

    Genetically modified mesenchymal stem cells have been used in attempts to increase the expression of interleukin‑1 receptor antagonist (IL‑1Ra); however, the attempts thus far have been unsuccessful. The aim of the present study was to investigate whether the lentivirus transduced IL‑1Ra gene was able to be stably expressed in murine bone marrow‑derived mesenchymal stem cells (mBMSCs) in vitro. In the present study, third generation lentiviral (Lv) vectors transducing the IL‑1Ra/green fluorescent protein (copGFP) gene were constructed and transfected into mBMSCs to establish the Lv.IL‑1Ra.copGFP/mBMSCs, which were evaluated using fluorescence microscopy, flow cytometry, cell viability analysis using a cell counting kit‑8 kit, Trypan blue staining and an MTT growth kinetics assay. The expression of IL‑1Ra was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that the Lv.IL‑1Ra/copGFP vector was successfully constructed. The mBMSCs exhibited a short proliferation life, however they had good growth kinetics at an early stage and improved viability following efficient transduction of the IL‑1Ra gene. IL‑1Ra was overexpressed following transfection of mBMSCs. In conclusion, lentiviral vector transduced mBMSCs were able to efficiently express exogenous Il‑1Ra under certain conditions and had a marked capacity for proliferation. PMID:26130370

  9. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  10. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    PubMed

    Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  11. Expression of the NS5 (VPg) Protein of Murine Norovirus Induces a G1/S Phase Arrest

    PubMed Central

    Davies, Colin; Ward, Vernon K.

    2016-01-01

    Murine norovirus-1 (MNV-1) is known to subvert host cell division inducing an accumulation of cells in the G0/G1 phase, creating conditions where viral replication is favored. This study identified that NS5 (VPg), is capable of inducing cell cycle arrest in the absence of viral replication or other viral proteins in an analogous manner to MNV-1 infection. NS5 expression induced an accumulation of cells in the G0/G1 phase in an asynchronous population by inhibiting progression at the G1/S restriction point. Furthermore, NS5 expression resulted in a down-regulation of cyclin A expression in asynchronous cells and inhibited cyclin A expression in cells progressing from G1 to S phase. The activity of NS5 on the host cell cycle occurs through an uncharacterized function. Amino acid substitutions of NS5(Y26A) and NS5(F123A) that inhibit the ability for NS5 to attach to RNA and recruit host eukaryotic translation initiation factors, respectively, retained the ability to induce an accumulation of cells in the G0/G1 phase as identified for wild-type NS5. To the best of our knowledge, this is the first report of a VPg protein manipulating the host cell cycle. PMID:27556406

  12. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  13. Expression of infectious woodchuck hepatitis virus in murine and avian fibroblasts.

    PubMed Central

    Seeger, C; Baldwin, B; Tennant, B C

    1989-01-01

    The liver is the primary site for replication of the hepadnavirus genome. We asked whether the posttranscriptional phase of the viral replication cycle would depend on hepatocyte-specific functions. For this purpose, we assayed a previously constructed chimera between sequences of the cytomegalovirus immediate-early promoter-enhancer region and woodchuck hepatitis virus (WHV) (C. Seeger and J. Maragos, J. Virol. 63:1907-1915, 1989) for its ability to direct the synthesis of infectious WHV in hepatoma cells and in murine and avian fibroblast cells. Viruslike particles containing WHV DNA were produced transiently in transfected hepatoma cells and in fibroblasts. Inoculation of woodchucks with culture medium from hepatoma cells or fibroblasts transfected with viral DNA led to productive WHV infection, as observed following infection of woodchucks with serum from WHV-infected animals. These results demonstrate that posttranscriptional events of the hepadnavirus replication cycle are not dependent on hepatocyte-specific functions. Images PMID:2795716

  14. Murine Coronavirus Delays Expression of a Subset of Interferon-Stimulated Genes▿

    PubMed Central

    Rose, Kristine M.; Elliott, Ruth; Martínez-Sobrido, Luis; García-Sastre, Adolfo; Weiss, Susan R.

    2010-01-01

    The importance of the type I interferon (IFN-I) system in limiting coronavirus replication and dissemination has been unequivocally demonstrated by rapid lethality following infection of mice lacking the alpha/beta IFN (IFN-α/β) receptor with mouse hepatitis virus (MHV), a murine coronavirus. Interestingly, MHV has a cell-type-dependent ability to resist the antiviral effects of IFN-α/β. In primary bone-marrow-derived macrophages and mouse embryonic fibroblasts, MHV replication was significantly reduced by the IFN-α/β-induced antiviral state, whereas IFN treatment of cell lines (L2 and 293T) has only minor effects on replication (K. M. Rose and S. R. Weiss, Viruses 1:689-712, 2009). Replication of other RNA viruses, including Theiler's murine encephalitis virus (TMEV), vesicular stomatitis virus (VSV), Sindbis virus, Newcastle disease virus (NDV), and Sendai virus (SeV), was significantly inhibited in L2 cells treated with IFN-α/β, and MHV had the ability to rescue only SeV replication. We present evidence that MHV infection can delay interferon-stimulated gene (ISG) induction mediated by both SeV and IFN-β but only when MHV infection precedes SeV or IFN-β exposure. Curiously, we observed no block in the well-defined IFN-β signaling pathway that leads to STAT1-STAT2 phosphorylation and translocation to the nucleus in cultures infected with MHV. This observation suggests that MHV must inhibit an alternative IFN-induced pathway that is essential for early induction of ISGs. The ability of MHV to delay SeV-mediated ISG production may partially involve limiting the ability of IFN regulatory factor 3 (IRF-3) to function as a transcription factor. Transcription from an IRF-3-responsive promoter was partially inhibited by MHV; however, IRF-3 was transported to the nucleus and bound DNA in MHV-infected cells superinfected with SeV. PMID:20357099

  15. KLF10 Mediated Epigenetic Dysregulation of Epithelial CD40/CD154 Promotes Endometriosis.

    PubMed

    Delaney, Abigail A; Khan, Zaraq; Zheng, Ye; Correa, Luiz F; Zanfagnin, Valentina; Shenoy, Chandra C; Schoolmeester, John K; Saadalla, Abdulrahman M; El-Nashar, Sherif; Famuyide, Abimbola O; Subramaniam, Malayannan; Hawse, John R; Khazaie, Khashayarsha; Daftary, Gaurang S

    2016-09-01

    Endometriosis is a highly prevalent, chronic, heterogeneous, fibro-inflammatory disease that remains recalcitrant to conventional therapy. We previously showed that loss of KLF11, a transcription factor implicated in uterine disease, results in progression of endometriosis. Despite extensive homology, co-expression, and human disease association, loss of the paralog Klf10 causes a unique inflammatory, cystic endometriosis phenotype in contrast to fibrotic progression seen with loss of Klf11. We identify here for the first time a novel role for KLF10 in endometriosis. In an animal endometriosis model, unlike wild-type controls, Klf10(-/-) animals developed cystic lesions with massive immune infiltrate and minimal peri-lesional fibrosis. The Klf10(-/-) disease progression phenotype also contrasted with prolific fibrosis and minimal immune cell infiltration seen in Klf11(-/-) animals. We further found that lesion genotype rather than that of the host determined each unique disease progression phenotype. Mechanistically, KLF10 regulated CD40/CD154-mediated immune pathways. Both inflammatory as well as fibrotic phenotypes are the commonest clinical manifestations in chronic fibro-inflammatory diseases such as endometriosis. The complementary, paralogous Klf10 and Klf11 models therefore offer novel insights into the mechanisms of inflammation and fibrosis in a disease-relevant context. Our data suggests that divergence in underlying gene dysregulation critically determines disease-phenotype predominance rather than the conventional paradigm of inflammation being precedent to fibrotic scarring. Heterogeneity in clinical progression and treatment response are thus likely from disparate gene regulation profiles. Characterization of disease phenotype-associated gene dysregulation offers novel approaches for developing targeted, individualized therapy for recurrent and recalcitrant chronic disease. PMID:27488034

  16. Analysis of the pattern of expression of the Fanconi anemia group C (Facc) gene during murine development

    SciTech Connect

    Krasnoshtein, F.; Buchwald, M.

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by a variety of congenital and skeletal malformations, progressive pancytopanenia and predisposition to malignancies. FA cells display chromosomal instability and hypersensitivity to DNA-damaging agents. Both the human and the corresponding murine cDNAs have been cloned in our lab. Here we describe the expression of Facc during mouse development, using mRNA in situ hybridization. Our aim is to obtain clues on the possible function of the Facc gene product during development that may help elucidate basic defect(s) in FA. In addition, knowledge of the exact pattern of Facc expression will assist in interpreting the phenotypes of mutant mice, currently being developed. In embryos the gene is diffusely expressed over the entire embryo, with higher hybridization levels in the mesenchyme and in both upper and lower extremities. Specific expression of Facc is seen in the perichondrium and marrow of long bones of hind limbs/hip; long bones of front limbs/shoulder region; developing digits of front and hind paws; and ribs. The signal is also detected in the following regions: cranial/frontal; facial/periorbital and maxillary/mandibular, hair follicles, diaphragm and lung. In addition, generalized Facc expression is seen during these embryonic stages. The pattern of Facc expression is consistent with the known skeletal abnormalities in FA patients, which include radial ray deformities, metacarpal hypoplasia, and abnormalities of lower limbs, ribs, head and face. The signal in the lung is consistent with the lung lobe absence and abnormal pulmonary drainage that have been detected in some FA patients. The sloped forehead and microcephaly in FA patients may have some association with the signal seen in the frontal region of the mouse cranium. Taken together, our results suggest that Facc is directly involved in the development of various embryonic tissues, particularly bone.

  17. Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype.

    PubMed Central

    Eldadah, Z A; Brenn, T; Furthmayr, H; Dietz, H C

    1995-01-01

    The Marfan syndrome (MFS) is a connective tissue disorder inherited as an autosomal dominant trait and caused by mutations in the gene encoding fibrillin, a 350-kD glycoprotein that multimerizes to form extracellular microfibrils. It has been unclear whether disease results from a relative deficiency of wild-type fibrillin; from a dominant-negative effect, in which mutant fibrillin monomers disrupt the function of the wild-type protein encoded by the normal allele; or from a dynamic and variable interplay between these two pathogenetic mechanisms. We have now addressed this issue in a cell culture system. A mutant fibrillin allele from a patient with severe MFS was expressed in normal human and murine fibroblasts by stable transfection. Immunohistochemical analysis of the resultant cell lines revealed markedly diminished fibrillin deposition and disorganized microfibrillar architecture. Pulse-chase studies demonstrated normal levels of fibrillin synthesis but substantially reduced deposition into the extracellular matrix. These data illustrate that expression of a mutant fibrillin allele, on a background of two normal alleles, is sufficient to disrupt normal microfibrillar assembly and reproduce the MFS cellular phenotype. This underscores the importance of the fibrillin amino-terminus in normal microfibrillar assembly and suggests that expression of the human extreme 5' fibrillin coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Lastly, this substantiation of a dominant-negative effect offers mutant allele knockout as a potential strategy for gene therapy. Images PMID:7860770

  18. IgE expression on the surface of B1 and B2 lymphocytes in experimental murine schistosomiasis.

    PubMed

    Oliveira, F L; Aguiar, A M; Borojevic, R; El-Cheikh, M C

    2005-07-01

    In a previous study we monitored the distribution and phenotype expression of B1 cells during the evolution of experimental murine schistosomiasis mansoni and we proposed that the B1 cells were heterogeneous: a fraction which originated in the spleen and followed the migratory pathway to mesenteric ganglia, while the other was the resident peritoneal B1-cell pool. In the present study, we have addressed the question of whether these two B1-lymphocyte populations are involved in the production of the late Ig isotype IgE, which is present in high levels in schistosomal infection. Lymphocyte expression of surface markers and immunoglobulins were monitored by immunofluorescence flow cytometry. Both in the spleen and mesenteric ganglia, the B1 and B2 cells were induced to switch from IgM to IgE in the early Th2-dominated phase of the disease, with an increase of IgE in its later phases. Conversely, peritoneal B1-IgM+ switched to the remaining IgE+ present in high numbers in the peritoneal cavity throughout the disease. We correlated the efficient induction of the expression of late Ig isotypes by B1 cells with high levels of inflammatory cytokines due to the intense host response to the presence of worms and their eggs in the abdominal cavity. In conclusion, B1 cells have a different switch behavior from IgM to IgE indicating that these cell sub-populations depend on the microenvironment.

  19. Limitations for purification of murine interleukin-18 when expressed as a fusion protein containing the FLAG peptide.

    PubMed

    Elhofy, A; Bost, K L

    1998-09-01

    As a strategy to purify recombinant murine Interleukin (IL)-18, we cloned the mature coding region of this protein into the pFLAG-1 expression system. The intent was to use the FLAG peptide "tag" as an amino terminal addition to IL-18 so that purification of this fusion protein (FLAG-IL-18) on anti-FLAG antibody affinity columns could be performed. While significant amounts of recombinant IL-18 were present in E. coli lysates, only a small portion of this material could be recovered on immunoaffinity columns conjugated with an anti-FLAG antibody. Surprisingly, the majority of recombinant IL-18 present in E. coli (strain JM83) bacterial lysates did not contain the FLAG peptide and therefore did not bind to immunoaffinity columns conjugated with an anti-FLAG antibody. However, we found that the BL21 strain of E. coli, which has reduced endogenous protease activity, could express the majority of recombinant IL-18 as the fusion protein, FLAG-IL-18. Taken together, these studies show that it is necessary to consider whether protease sites formed at the FLAG-protein junction can be easily cleaved by the bacterial strain used to express the fusion protein.

  20. Reproducibility over time and effect of low-dose aspirin on soluble P-selectin and soluble CD40 ligand.

    PubMed

    Valdes, Vanessa; Nardi, Michael A; Elbaum, Lindsay; Berger, Jeffrey S

    2015-07-01

    Platelet markers [soluble CD40 ligand (sCD40L) and soluble p selectin (sPselectin)] are associated with platelet activation and cardiovascular events. We sought to investigate the reproducibility of these markers over time and the effect of low-dose aspirin on sCD40L and sPselectin in plasma and serum. Following an overnight fast, 40 healthy volunteers had weekly phlebotomy and were administered aspirin 81 mg/day between weeks 3 and 4. Reproducibility over time was assessed by coefficient of variation (CV) and inter-class correlation coefficient. Correlation between markers was assessed using Pearson r statistic. Difference between levels pre- and post-aspirin was measured with Wilcoxon signed-rank test. Data are presented as median (interquartile range). sCD40L and sPselectin measurements were reproducible over time in plasma and serum (CV < 10 %). Measurement of sCD40L and sPselectin in plasma correlated with levels in serum before aspirin and after aspirin. There was no significant correlation between sCD40L and sPselectin. After 1-week of aspirin 81 mg/day, there was a reduction in sCD40L and sPselectin in serum and plasma, respectively. Soluble CD40L and sPselectin are independent markers that are reproducible over time in both plasma and sera and are reduced by 1-week of low-dose aspirin.

  1. Cloning, protein expression and immunogenicity of HBs-murine IL-18 fusion DNA vaccine.

    PubMed

    Channarong, Sunee; Mitrevej, Ampol; Sinchaipanid, Nuttanan; Usuwantim, Kanchana; Kulkeaw, Kasem; Chaicumpa, Wanpen

    2007-12-01

    Hepatitis B is a global serious disease caused by hepatitis B virus (HBV). There is no known cure for hepatitis B. The best way to deal with the disease is by preventing with hepatitis B vaccine. However, the current protein-based vaccines made up of recombinant hepatitis B surface antigen (HBsAg) are ineffective in chronic HBV carriers and a significant number of the vaccinees do not mount the protective immune response. Novel DNA-based immunization may overcome the deficits of the protein-based immunization and may provide more effective prophylactic and therapeutic outcomes. In this study, we constructed a recombinant plasmid carrying gene encoding the HBV surface antigen (HBs) linked to DNA segment encoding full-length murine interleukin-18, i.e. pcDNA-HBs-IL-18. Immunogenicity of the DNA construct was carried out in BALB/c mice in comparison with mock, i.e. pcDNA3.1+ and vaccines comprised of pRc/CMV-HBs and pRc/CMV-HBs plus pcDNA-IL-18. All vaccinated mice revealed significant serum anti-HBs IgG response after two intramuscular injections of the vaccines at 28 day interval as compared to the level of mock. Co-administration of pRc/CMV-HBs and pcDNA-IL-18 elicited arbitrarily higher levels of anti-HBs IgG than the levels in mice immunized with pRc/CMV-HBs alone and mice that received pcDNA-HBs-IL-18 although not statistically different. Further experiments are needed to investigate the subisotypes of the IgG antibody, the kinetics of cytokine and the cell-mediated immune response. For this communication, the prototype HBs-IL-18 DNA vaccine was successfully constructed and the gene encoding murine IL-18 was successfully cloned. The latter can be co-injected with the antigen coding DNA or used as a fusion partner to the DNA for priming the immune response. The recombinant HBs and full-length IL-18 proteins have potential for other research purposes. They may be used also as standard proteins in the protein quantification assay. PMID:18402297

  2. Association of CD40 with rheumatoid arthritis confirmed in a large UK case-control study

    PubMed Central

    Orozco, Gisela; Eyre, Steve; Hinks, Anne; Ke, Xiayi; Wilson, Anthony G; Bax, Deborah E; Morgan, Ann W; Emery, Paul; Steer, Sophia; Hocking, Lynne; Reid, David M; Wordsworth, Paul; Harrison, Pille; Thomson, Wendy; Barton, Anne; Worthington, Jane

    2010-01-01

    Objective A recent meta-analysis of published genome-wide association studies (GWAS) in populations of European descent reported novel associations of markers mapping to the CD40, CCL21 and CDK6 genes with rheumatoid arthritis (RA) susceptibility while a large-scale, case-control association study in a Japanese population identified association with multiple single nucleotide polymorphisms (SNPs) in the CD244 gene. The aim of the current study was to validate these potential RA susceptibility markers in a UK population. Methods A total of 4 SNPs (rs4810485 in CD40, rs2812378 in CCL21, rs42041 in CDK6 and rs6682654 in CD244) were genotyped in a UK cohort comprising 3962 UK patients with RA and 3531 healthy controls using the Sequenom iPlex platform. Genotype counts in patients and controls were analysed with the χ2 test using Stata. Results Association to the CD40 gene was robustly replicated (p=2×10−4, OR 0.86, 95% CI 0.79 to 0.93) and modest evidence was found for association with the CCL21 locus (p=0.04, OR 1.08, 95% CI 1.01 to 1.16). However, there was no evidence for association of rs42041 (CDK6) and rs6682654 (CD244) with RA susceptibility in this UK population. Following a meta-analysis including the original data, association to CD40 was confirmed (p=7.8×10−8, OR 0.87 (95% CI 0.83 to 0.92). Conclusion In this large UK cohort, strong association of the CD40 gene with susceptibility to RA was found, and weaker evidence for association with RA in the CCL21 locus. PMID:19435719

  3. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma

    PubMed Central

    2011-01-01

    Background Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes

  4. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy.

    PubMed

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku; Okada, Naoki

    2016-04-22

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells.

  5. Urocortin-1 Mediated Cardioprotection Involves XIAP and CD40-Ligand Recovery: Role of EPAC2 and ERK1/2

    PubMed Central

    Ordóñez, Antonio; Smani, Tarik

    2016-01-01

    Aims Urocortin-1 (Ucn-1) is an endogenous peptide that protects heart from ischemia and reperfusion (I/R) injuries. Ucn-1 is known to prevent cardiac cell death, but its role in the transcription of specific genes related to survival signaling pathway has not been fully defined. The aim of this study was to investigate the molecular signaling implicated in the improvement of cardiac myocytes survival induced by Ucn-1. Methods and Results Ucn-1 administration before ischemia and at the onset of reperfusion, in rat hearts perfused in Langendorff system, fully recovered heart contractility and other hemodynamic parameters. Ucn-1 enhanced cell viability and decreased lactate dehydrogenase (LDH) release in adult cardiac myocytes subjected to simulated I/R. Annexin V-FITC/PI staining indicated that Ucn-1 promoted cell survival and decreased cell necrosis through Epac2 (exchange protein directly activated by cAMP) and ERK1/2 (extracellular signal–regulated kinases 1/2) activation. We determined that Ucn-1 shifted cell death from necrosis to apoptosis and activated caspases 9 and 3/7. Furthermore, mini-array, RT-qPCR and protein analyses of apoptotic genes showed that Ucn-1 upregulated the expression of CD40lg, Xiap and BAD in cells undergoing I/R, involving Epac2 and ERK1/2 activation. Conclusions Our data indicate that Ucn-1 efficiently protected hearts from I/R damage by increasing the cell survival and stimulated apoptotic genes, CD40lg, Xiap and BAD, overexpression through the activation of Epac2 and ERK1/2. PMID:26840743

  6. Systems Genetics of Liver Fibrosis: Identification of Fibrogenic and Expression Quantitative Trait Loci in the BXD Murine Reference Population

    PubMed Central

    Hall, Rabea A.; Liebe, Roman; Hochrath, Katrin; Kazakov, Andrey; Alberts, Rudi; Laufs, Ulrich; Böhm, Michael; Fischer, Hans-Peter; Williams, Robert W.; Schughart, Klaus

    2014-01-01

    The progression of liver fibrosis in response to chronic injury varies considerably among individual patients. The underlying genetics is highly complex due to large numbers of potential genes, environmental factors and cell types involved. Here, we provide the first toxicogenomic analysis of liver fibrosis induced by carbon tetrachloride in the murine ‘genetic reference panel’ of recombinant inbred BXD lines. Our aim was to define the core of risk genes and gene interaction networks that control fibrosis progression. Liver fibrosis phenotypes and gene expression profiles were determined in 35 BXD lines. Quantitative trait locus (QTL) analysis identified seven genomic loci influencing fibrosis phenotypes (pQTLs) with genome-wide significance on chromosomes 4, 5, 7, 12, and 17. Stepwise refinement was based on expression QTL mapping with stringent selection criteria, reducing the number of 1,351 candidate genes located in the pQTLs to a final list of 11 cis-regulated genes. Our findings demonstrate that the BXD reference population represents a powerful experimental resource for shortlisting the genes within a regulatory network that determine the liver's vulnerability to chronic injury. PMID:24586654

  7. Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo.

    PubMed Central

    Guild, B C; Finer, M H; Housman, D E; Mulligan, R C

    1988-01-01

    A series of retrovirus vectors were constructed in which cellular promoter elements derived from the chicken beta-actin and human histone H4 genes were introduced within the proviral transcriptional unit of Moloney murine leukemia virus in order to promote expression of inserted sequences. Each of these vectors gave rise to high titer of virus capable of transferring the expected proviral structure to cells. Inclusion of normal 5' splice sequences or a portion of viral gag sequences in these constructions resulted in significant increases in virus titer. Each construction was transcriptionally active in NIH 3T3 cells and in undifferentiated F9 cells. One of the vectors, HSG-neo, which contained the human histone H4 promoter, was shown to be transcriptionally active in hematopoietic cells derived from long-term reconstituted bone marrow transplant recipients engrafted with transduced stem cells. These vectors should be of general use for obtaining efficient gene expression in embryonal and hematopoietic cells. Images PMID:3418785

  8. R Region Sequences in the Long Terminal Repeat of a Murine Retrovirus Specifically Increase Expression of Unspliced RNAs

    PubMed Central

    Trubetskoy, Alla M.; Okenquist, Sharon A.; Lenz, Jack

    1999-01-01

    A stem-loop structure at the 5′ end of the R region of the long terminal repeat (LTR) of the murine leukemia virus SL3 and other type C mammalian retroviruses is important for maximum levels of expression of a reporter gene under the control of the viral LTR. This element, termed the R region stem-loop (RSL), has a small effect on transcriptional initiation and no effect on RNA polymerase processivity. Its major effect is on posttranscriptional processing of LTR-driven transcripts. Here we tested whether the RSL affected the production of RNAs from a full-length SL3 genome. Mutation of the RSL in the 5′ LTR of SL3 reduced the cytoplasmic levels of full-length viral transcripts but not those of spliced, env mRNA transcripts. Thus, the RSL specifically affected the cytoplasmic levels of the unspliced viral RNA. To test further whether the effect was specific for unspliced transcripts, a system was devised in which the expression of a reporter gene under the control of the viral LTR was tested in the presence or absence of an intron. Mutation of the RSL resulted in only about a twofold decline in the level of reporter gene expression when the transcripts contained an intron. However, when the intron was removed, mutation of the RSL reduced expression of the reporter gene about 10- to 60-fold in various cell lines. The secondary structure of the RSL was essential for its activity on the intronless transcript. Thus, the RSL appears to be important for the cytoplasmic accumulation of unspliced viral RNA and unspliced RNA from chimeric transcription units under the control of the viral LTR. PMID:10074206

  9. R region sequences in the long terminal repeat of a murine retrovirus specifically increase expression of unspliced RNAs.

    PubMed

    Trubetskoy, A M; Okenquist, S A; Lenz, J

    1999-04-01

    A stem-loop structure at the 5' end of the R region of the long terminal repeat (LTR) of the murine leukemia virus SL3 and other type C mammalian retroviruses is important for maximum levels of expression of a reporter gene under the control of the viral LTR. This element, termed the R region stem-loop (RSL), has a small effect on transcriptional initiation and no effect on RNA polymerase processivity. Its major effect is on posttranscriptional processing of LTR-driven transcripts. Here we tested whether the RSL affected the production of RNAs from a full-length SL3 genome. Mutation of the RSL in the 5' LTR of SL3 reduced the cytoplasmic levels of full-length viral transcripts but not those of spliced, env mRNA transcripts. Thus, the RSL specifically affected the cytoplasmic levels of the unspliced viral RNA. To test further whether the effect was specific for unspliced transcripts, a system was devised in which the expression of a reporter gene under the control of the viral LTR was tested in the presence or absence of an intron. Mutation of the RSL resulted in only about a twofold decline in the level of reporter gene expression when the transcripts contained an intron. However, when the intron was removed, mutation of the RSL reduced expression of the reporter gene about 10- to 60-fold in various cell lines. The secondary structure of the RSL was essential for its activity on the intronless transcript. Thus, the RSL appears to be important for the cytoplasmic accumulation of unspliced viral RNA and unspliced RNA from chimeric transcription units under the control of the viral LTR.

  10. Life-spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs

    PubMed Central

    Kuiper, Raoul V; van der Hoeven, Tessa V; Wackers, P.F.K.; Robinson, Joke; van der Horst, Gijsbertus TJ; Dollé, Martijn ET; Vijg, Jan; Breit, Timo M; Hoeijmakers, Jan HJ; van Steeg, Harry

    2013-01-01

    Summary Aging and age-related pathology is a result of a still incompletely-understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung and brain), in which we compare genome-wide gene expression profiles during chronological aging with pathological changes throughout the entire murine lifespan (13, 26, 52, 78, 104 and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs) and altered gene-sets (AGSs) were found in most organs, indicative of intra-organ generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age-predictive value, albeit with much inter- and intra-individual (organ) variation. Relating gene expression changes to pathology-related aging revealed correlated genes and gene-sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney and brain, a limited number of overlapping pathology-related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility and DNA damage. Comparison of chronological and pathology-related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology-related AGSs which were not detected in chronological aging. The many cellular processes that are only found employing aging–related pathology could provide important new insights into the progress of aging. PMID:23795901

  11. Functions of Smad Transcription Factors in TGF-β1-Induced Selectin Ligand Expression on Murine CD4 Th Cells.

    PubMed

    Ebel, Mark E; Kansas, Geoffrey S

    2016-10-01

    Selectins are carbohydrate-binding adhesion molecules that control leukocyte traffic. Induction of selectin ligands on T cells is controlled primarily by cytokines, including TGF-β1, and requires p38α MAPK, but transcriptional mechanisms that underlie cytokine-driven selectin ligand expression are poorly understood. In this study, we show, using mice with conditional deletions of the TGF-β1-responsive transcription factors Smad2, Smad3, or Smad4, that induction of selectin ligands on CD4 cells in response to TGF-β1 requires Smad4 plus either Smad2 or Smad3. Analysis of CD4 cells from mice with only one functional Smad4 allele revealed a sharp gene dosage effect, suggesting the existence of a threshold of TGF-β1 signal strength required for selectin ligand induction. Both Smad4 plus either Smad2 or Smad3 were selectively required for induction of Fut7 and Gcnt1, glycosyltransferases critical for selectin ligand biosynthesis, but they were not required for St3gal4 or St3gal6 induction. Smad4 plus either Smad2 or Smad3 were also required for induction of Runx transcription factors by TGF-β1. Enforced expression of Runx2, but not Runx1 or Runx3, in Smad2/Smad3 doubly deficient CD4 cells restored selectin ligand expression to wild-type levels. In contrast, enforced expression of Runx1, Runx2, or Runx3 failed to restore differentiation of TGF-β1-dependent Th cell lineages, including Th17, Th9, and induced regulatory T cells. These results show that Smads are directly required for Th cell differentiation independent of Runx induction but only indirectly required via Runx2 for TGF-β1-induced selectin ligand induction on murine CD4 T cells. PMID:27543612

  12. TGF-β1 Upregulates the Expression of Triggering Receptor Expressed on Myeloid Cells 1 in Murine Lungs

    PubMed Central

    Peng, Li; Zhou, Yong; Dong, Liang; Chen, Rui-Qi; Sun, Guo-Ying; Liu, Tian; Ran, Wen-Zhuo; Fang, Xiang; Jiang, Jian-Xin; Guan, Cha-Xiang

    2016-01-01

    Triggering receptor expressed on myeloid cells 1 (TREM-1) increases the expression of TGF-β family genes, which are known as profibrogenic cytokines in the pathogenesis of pulmonary fibrosis. In this study, we determined whether TGF-β1 regulated the expression of TREM-1 in a mouse model of pulmonary fibrosis. The expression of TGF-β1 and TREM-1 was increased on day 7, 14, and 21 after single intratracheal injection of bleomycin (BLM). And there was positive correlation between the expression of TGF-β1 and TREM-1. TGF-β1 increased expression of TREM-1 mRNA and protein in a time- and dose-dependent manner in mouse macrophages. The expression of the activator protein 1 (AP-1) was increased in lung tissues from mouse after BLM injection and in mouse macrophages after TGF-β1 treatment, respectively. TGF-β1 significantly increased the relative activity of luciferase in the cells transfected with plasmid contenting wild type-promoter of TREM-1. But TGF-β1 had no effect on the activity of luciferase in the cells transfected with a mutant-TREM1 plasmid carrying mutations in the AP-1 promoter binding site. In conclusion, we found the expression of TREM-1 was increased in lung tissues from mice with pulmonary fibrosis. TGF-β1 increased the expression of TREM-1 in mouse macrophages partly via the transcription factor AP-1. PMID:26738569

  13. Molecular properties and regulation of mRNA expression for murine T cell-replacing factor/IL-5.

    PubMed

    Tominaga, A; Matsumoto, M; Harada, N; Takahashi, T; Kikuchi, Y; Takatsu, K

    1988-02-15

    We previously cloned cDNA for a T cell-replacing factor (TRF) that has been defined as a T cell-derived lymphokine that acts on activated B cells as a B cell growth and differentiation factor. Based on the diverse activities of rTRF on different target cells, we proposed that TRF be called IL-5. In this study, the molecular characteristics of TRF/IL-5 prepared by rDNA technology and TRF/IL-5 mRNA expression in various T cell lines and normal T cells have been studied. Specific immunoassay showed that rTRF/IL-5, which is transiently translated in vitro by rabbit reticulocyte lysate, has an apparent m.w. of 14,000. By contrast, active forms of rTRF/IL-5 translated in Xenopus oocytes has an apparent m.w. of 45,000 to 50,000 in the nonreducing condition and migrates to the m.w. of 25,000 to 30,000 under the reducing condition, indicating that active form of rTRF/IL-5 consists of dimer forms. The rTRF/IL-5 does not show detectable levels of IL-2, IL-3, and B-cell stimulatory factor 1 (IL-4) activities. Northern blot hybridization of poly (A)+ RNA from constitutively TRF-producing B151K12 T cell hybridoma revealed a single 1.7-kb band hybridizing to the cloned murine TRF/IL-5 cDNA. The expression of TRF/IL-5 mRNA in B151K12 was augmented by the stimulation with PMA plus calcium ionophore. In contrast, neither thymoma BW5147 nor IL-2-producing T cell hybridoma A55, both of which produced an undetectable level of TRF, expressed detectable levels of TRF/IL-5 mRNA. Stimulation of EL 4 and D9 cells with PMA and Con A, respectively, induced an increase in the levels of TRF/IL-5 mRNA expression accompanied by TRF/IL-5 production, whereas both cell lines did not show significant gene expression in the absence of the stimulation. In spleen cells from Mycobacterium tuberculosis-primed mice, significant expression of TRF/IL-5 mRNA was detected only when the cells were stimulated with relevant Ag, PPD. Normal spleen cells stimulated with Con A showed a significant, but approximately

  14. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    PubMed

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  15. Expression of NF-kappaB and cytokines in chronic rejection of transplanted murine heart.

    PubMed Central

    Lee, J. R.; Seok, C. J.; Kim, J. S.; Chang, J. M.; Seo, J. W.

    2001-01-01

    The heart transplantation-associated accelerated graft arteriosclerosis (AGAS) is one of the major causes of cardiac allograft failure. We investigated the early time-course of expresssion patterns of cytokines, transcription factor, and its inhibitor in the intraabdominally transplanted mice hearts that differed only in the D locus of class I histocompatibility antigen. The allograft hearts were harvested at 1-3, 5, 7, 14, 28, and 42 days after the transplantation, and the expressions of NF-kappaB/I-kappaB and cytokines (TNF-alpha, INF-gamma) were examined in these specimens. The expressions of TNF-alpha and INF-gamma were observed on day 1, peaking on day 5 and 7, respectively. Activated NF-kappaB (p65) expression was present on the cytoplasm and perinuclear area in the endothelial cells of coronary arteries on day 1. The peak of translocation of NF-B from cytoplasm to nucleus appeared on day 5 in the endothelial cells, myocytes, and leukocytes within the vessels, and remained elevated until day 42. The I-kappaB expression gradually increased from day 1 until day 5, but a remarkable decrease was detected on day 7. Our data suggest that the increased expressions of NF-kappaB/I-kappaB and cytokines (TNF-alpha, INF-gamma) play an important role in inducing immune responses in the donor allograft heart and hence the blockage of the expressions might be mandatory to avoid a potential graft failure. PMID:11511783

  16. Secretagogue stimulation enhances NBCe1 (electrogenic Na+/HCO3− cotransporter) surface expression in murine colonic crypts

    PubMed Central

    Yu, Haoyang; Riederer, Brigitte; Stieger, Nicole; Boron, Walter F.; Shull, Gary E.; Manns, Michael P.; Seidler, Ursula E.

    2009-01-01

    A Na+/HCO3− cotransporter (NBC) is located in the basolateral membrane of the gastrointestinal epithelium, where it imports HCO3− during stimulated anion secretion. Having previously demonstrated secretagogue activation of NBC in murine colonic crypts, we now asked whether vesicle traffic and exocytosis are involved in this process. Electrogenic NBCe1-B was expressed at significantly higher levels than electroneutral NBCn1 in colonic crypts as determined by QRT-PCR. In cell surface biotinylation experiments, a time-dependent increase in biotinylated NBCe1 was observed, which occurred with a peak of +54.8% after 20 min with forskolin (P < 0.05) and more rapidly with a peak of +59.8% after 10 min with carbachol (P < 0.05) and which corresponded well with the time course of secretagogue-stimulated colonic bicarbonate secretion in Ussing chamber experiments. Accordingly, in isolated colonic crypts pretreated with forskolin and carbachol for 10 min, respectively, and subjected to immunohistochemistry, the NBCe1 signal showed a markedly stronger colocalization with the E-cadherin signal, which was used as a membrane marker, compared with the untreated control. Cytochalasin D did not change the observed increase in membrane abundance, whereas colchicine alone enhanced NBCe1 membrane expression without an additional increase after carbachol or forskolin, and LY294002 had a marked inhibitory effect. Taken together, our results demonstrate a secretagogue-induced increase of NBCe1 membrane expression. Vesicle traffic and exocytosis might thus represent a novel mechanism of intestinal NBC activation by secretagogues. PMID:19779011

  17. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  18. Regulation of Cellular Caveolin-1 Protein Expression in Murine Macrophages by Microbial Products

    PubMed Central

    Lei, Mei G.; Tan, Xiaoyu; Qureshi, Nilofer; Morrison, David C.

    2005-01-01

    Previously, we reported that expression of caveolin-1 in elicited peritoneal mouse macrophages was up-regulated by remarkably low (1.0-pg/ml) concentrations of Escherichia coli O111 lipopolysaccharide (LPS). Here we report that increases in caveolin-1 expression are manifested by different types of LPS, LPS-mimetic taxol, and heat-killed E. coli and to a much lesser extent by zymosan, polysaccharide-peptidoglycan, and heat-killed Staphylococcus aureus. Rhodobacter sphaeroides lipid A (RsDPLA) could not induce caveolin-1 expression in macrophages. Interestingly, polymyxin B (5 μg/ml) and RsDPLA show only a limited capacity to inhibit LPS-induced caveolin-1 expression. These findings suggest that expression of caveolin-1 in response to LPS may only partially be dependent upon lipid A. Recombinant tumor necrosis factor alpha marginally induces caveolin-1, suggesting that the ability of LPS to regulate caveolin-1 is not mediated primarily through an autocrine/paracrine mechanism involving this cytokine. Under conditions in which cellular levels of caveolin-1 are profoundly induced, no significant changes in TLR4 expression are observed. Of interest, caveolin-1 appears to localize to two cellular compartments, one associated with lipid rafts and a second associated with TLR4. Gamma interferon treatment inhibits the induction of caveolin-1 by LPS in macrophages. Inhibition of the p38 kinase-dependent pathway, but not the extracellular signal-regulated kinase pathway, effectively reduced the ability of LPS to mediate caveolin-1 up-regulation. Lactacystin, a potent inhibitor of the proteasome pathway, significantly modulates LPS-independent caveolin-1 expression, and lactacystin inhibits LPS-triggered caveolin-1 responses. These studies suggest that caveolin-1 up-regulation in response to LPS is likely to be proteasome dependent and triggered through the p38 kinase pathway. PMID:16299308

  19. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta.

    PubMed Central

    Coffey, R J; Bascom, C C; Sipes, N J; Graves-Deal, R; Weissman, B E; Moses, H L

    1988-01-01

    Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level. Images PMID:2463471

  20. Development of an inducible gene expression system for primary murine keratinocytes

    PubMed Central

    Nagarajan, Priyadharsini

    2008-01-01

    Background The tetracycline (Tet) responsive system is a valuable tool that is routinely used in a wide variety of mammalian cells for regulatable expression of gene products. However, technical difficulties such as harsh selection conditions and extensive screening processes to identify suitably responsive clones limit the generation of stable cell lines. Hence, application of this system in mammalian cells with relatively slow growth rates and / or the capacity to undergo terminal differentiation such as primary mouse keratinocytes is particularly challenging. Objective To our knowledge, no Tet-responsive stable cell lines have been generated from mouse keratinocytes, presumably due to their sensitivity to selection conditions. Our goal was to utilize a modified and robust Tet-expression system to generate a stable primary mouse keratinocyte cell line. These cells could be then utilized for conditional expression of potentially toxic proteins in an inducible fashion. Methods We utilized a eukaryotic promoter instead of a viral promoter to express a modified reverse tetracycline transactivator in mouse keratinocytes and optimized the selection process for generating stable cell lines. Results Here, we report the generation of a stable mouse keratinocyte cell line for Tet-regulated gene expression with minimal leakiness and high degree of Tet responsivity. This mouse keratinocyte cell line was further engineered for generation of a double stable cell line, which expresses the transcription factor AP-2α in an inducible manner. Importantly, the selected cells retain their inherent keratinocyte morphology, respond to differentiation signals and exhibit a persistent and highly tunable Tet inducibility upon continuous culturing. Conclusion We have generated a tetracycline inducible gene expression model system in mouse epidermal keratinocytes. Such inducible cell lines will serve as valuable in vitro models for future gain-of-function and loss-of-function studies. PMID

  1. ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors.

    PubMed

    Becker, Amy M; Walcheck, Bruce; Bhattacharya, Deepta

    2015-01-01

    All-lymphoid progenitors (ALPs) yield few myeloid cells in vivo, but readily generate such cells in vitro. The basis for this difference remains unknown. We hypothesized that ALPs limit responsiveness to in vivo concentrations of myeloid-promoting cytokines by reducing expression of the corresponding receptors, potentially through posttranscriptional mechanisms. Consistent with such a mechanism, ALPs express higher levels of CSF1R transcripts than their upstream precursors, yet show limited cell-surface protein expression of colony-stimulating factor 1 receptor (CSF1R). All-lymphoid progenitors and other hematopoietic progenitors deficient in A disintegrin and metalloproteinase domain 17 (ADAM17), display elevated cell surface CSF1R expression. ADAM17(-/-) ALPs, however, fail to yield myeloid cells upon transplantation into irradiated recipients. Moreover, ADAM17(-/-) ALPs yield fewer macrophages in vitro than control ALPs at high concentrations of macrophage colony stimulating factor. Mice with hematopoietic-specific deletion of ADAM17 have normal numbers of myeloid and lymphoid progenitors and mature cells in vivo. These data demonstrate that ADAM17 limits CSF1R protein expression on hematopoietic progenitors, but that compensatory mechanisms prevent elevated CSF1R levels from altering lymphoid progenitor potential.

  2. Altered Expression of Bone Morphogenetic Protein Accessory Proteins in Murine and Human Pulmonary Fibrosis.

    PubMed

    Murphy, Noelle; Gaynor, Katherine U; Rowan, Simon C; Walsh, Sinead M; Fabre, Aurelie; Boylan, John; Keane, Michael P; McLoughlin, Paul

    2016-03-01

    Idiopathic pulmonary fibrosis is a chronic, progressive fibrotic disease with a poor prognosis. The balance between transforming growth factor β1 and bone morphogenetic protein (BMP) signaling plays an important role in tissue homeostasis, and alterations can result in pulmonary fibrosis. We hypothesized that multiple BMP accessory proteins may be responsible for maintaining this balance in the lung. Using the bleomycin mouse model for fibrosis, we examined an array of BMP accessory proteins for changes in mRNA expression. We report significant increases in mRNA expression of gremlin 1, noggin, follistatin, and follistatin-like 1 (Fstl1), and significant decreases in mRNA expression of chordin, kielin/chordin-like protein, nephroblastoma overexpressed gene, and BMP and activin membrane-bound inhibitor (BAMBI). Protein expression studies demonstrated increased levels of noggin, BAMBI, and FSTL1 in the lungs of bleomycin-treated mice and in the lungs of idiopathic pulmonary fibrosis patients. Furthermore, we demonstrated that transforming growth factor β stimulation resulted in increased expression of noggin, BAMBI, and FSTL1 in human small airway epithelial cells. These results provide the first evidence that multiple BMP accessory proteins are altered in fibrosis and may play a role in promoting fibrotic injury.

  3. Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities.

    PubMed Central

    Tanese, N; Goff, S P

    1988-01-01

    The reverse transcriptase of Moloney murine leukemia virus, like that of all retroviruses, exhibits a DNA polymerase activity capable of synthesis on RNA or DNA templates and an RNase H activity with specificity for RNA in the form of an RNA.DNA hybrid. We have generated a library of linker insertion mutants of the Moloney murine leukemia virus enzyme expressed in bacteria and assayed these mutants for both enzymatic activities. Those mutations affecting the DNA polymerase activity were clustered in the 5'-proximal two-thirds of the gene, and those affecting RNase H were in the remaining 3' one-third. Based on these maps, plasmids were made that expressed each one of the domains separately; assays of the proteins encoded by these plasmids showed that each domain exhibited only the expected activity. Images PMID:2450347

  4. Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile

    PubMed Central

    Mühlhaus, Jessica; Dinter, Juliane; Nürnberg, Daniela; Rehders, Maren; Depke, Maren; Golchert, Janine; Homuth, Georg; Yi, Chun-Xia; Morin, Silke; Köhrle, Josef; Brix, Klaudia; Tschöp, Matthias; Kleinau, Gunnar; Biebermann, Heike

    2014-01-01

    The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs. PMID:25391046

  5. Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy

    PubMed Central

    Silva Miranda, Mayra; Rodríguez, Kendy Wek; Martínez Cordero, Erasmo; Rojas-Espinosa, Oscar

    2006-01-01

    Murine leprosy is a chronic disease of the mouse, the most popular animal model used in biomedical investigation, which is caused by Mycobacterium lepraemurium (MLM) whose characteristic lesion is the macrophage-made granuloma. From onset to the end of the disease, the granuloma undergoes changes that gradually transform the environment into a more appropriate milieu for the growth of M. lepraemurium. The mechanisms that participate in the formation and maturation of the murine leprosy granulomas are not completely understood; however, microbial and host-factors are believed to participate in their formation. In this study, we analysed the role of various pro-inflammatory and anti-inflammatory proteins in granulomas of murine leprosy after 21 weeks of infection. We assessed the expression of cyclooxygenase-2 (COX-2), alpha acid-glycoprotein (AGP), and inducible nitric oxide synthase (iNOS) at sequential stages of infection. We also looked for the nitric-oxide nitrosylation product, nitrotyrosine (NT) in the granulomatous lesions of murine leprosy. We found that a pro-inflammatory environment predominates in the early granulomas while an anti-inflammatory environment predominates in late granulomas. No obvious signs of bacillary destruction were observed during the entire period of infection, but nitrosylation products and cell alterations were observed in granulomas in the advanced stages of disease. The change from a pro-inflammatory to an anti-inflammatory environment, which is probably driven by the bacillus itself, results in a more conducive environment for both bacillus replication and the disease progression. PMID:17222216

  6. Coronavirus induction of class I major histocompatibility complex expression in murine astrocytes is virus strain specific

    PubMed Central

    1994-01-01

    Neurotropic strains of mouse hepatitis viruses (MHV) such as MHV-A59 (A59) and MHV-4 (JHMV) cause acute and chronic encephalomyelitis and demyelination in susceptible strains of mice and rats. They are widely used as models of human demyelinating diseases such as multiple sclerosis (MS), in which immune mechanisms are thought to participate in the development of lesions in the central nervous system (CNS). The effects of MHV infection on target cell functions in the CNS are not well understood, but A59 has been shown to induce the expression of MHC class I molecules in glial cells after in vivo and in vitro infection. Changes in class I expression in infected cells may contribute to the immunopathogenesis of MHV infection in the CNS. In this communication, a large panel of MHV strains was tested for their ability to stimulate class I expression in primary astrocytes in vitro. The data show that the more hepatotropic strains, such as MHV-A59, MHV-1, MHV-2, MHV-3, MHV-D, MHV-K, and MHV-NuU, were potent inducers of class I expression in astrocytes during acute infection, measured by radioimmunoassay. The Kb molecule was preferentially expressed over Db. By contrast, JHMV and several viral strains derived from it did not stimulate the expression of class I molecules. Assays of virus infectivity indicated that the class I-inducing activity did not correlate with the ability of the individual viral strain to replicate in astrocytes. However, exposure of the viruses or the supernatants from infected astrocytes to ultraviolet light abolished the class I-inducing activity, indicating that infectious virus is required for class I expression. These data also suggest that class I expression was induced directly by virus infection, and not by the secretion of a soluble substance into the medium by infected astrocytes. Finally, analyses of A59/JHMV recombinant viral strains suggest that class I-inducing activity resides in one of the A59 structural genes. PMID:8064222

  7. Expression of TCR-Vβ peptides by murine bone marrow cells does not identify T-cell progenitors

    PubMed Central

    Abbey, Janice L; Karsunky, Holger; Serwold, Thomas; Papathanasiou, Peter; Weissman, Irving L; O’Neill, Helen C

    2015-01-01

    Germline transcription has been described for both immunoglobulin and T-cell receptor (TCR) genes, raising questions of their functional significance during haematopoiesis. Previously, an immature murine T-cell line was shown to bind antibody to TCR-Vβ8.2 in absence of anti-Cβ antibody binding, and an equivalent cell subset was also identified in the mesenteric lymph node. Here, we investigate whether germline transcription and cell surface Vβ8.2 expression could therefore represent a potential marker of T-cell progenitors. Cells with the TCR phenotype of Vβ8.2+Cβ− are found in several lymphoid sites, and among the lineage-negative (Lin−) fraction of hematopoietic progenitors in bone marrow (BM). Cell surface marker analysis of these cells identified subsets reflecting common lymphoid progenitors, common myeloid progenitors and multipotential progenitors. To assess whether the Lin−Vβ8.2+Cβ− BM subset contains hematopoietic progenitors, cells were sorted and adoptively transferred into sub-lethally irradiated recipients. No T-cell or myeloid progeny were detected following introduction of cells via the intrathymic or intravenous routes. However, B-cell development was detected in spleen. This pattern of restricted in vivo reconstitution disputes Lin−Vβ8.2+Cβ− BM cells as committed T-cell progenitors, but raises the possibility of progenitors with potential for B-cell development. PMID:25754612

  8. Autocrine expression of both endostatin and green fluorescent protein provides a synergistic antitumor effect in a murine neuroblastoma model.

    PubMed

    Davidoff, A M; Leary, M A; Ng, C Y; Spurbeck, W W; Frare, P; Vanhove, M; Nienhuis, A W; Vanin, E F

    2001-07-01

    Modalities that act through different mechanisms can often provide synergistic antitumor activity for the treatment of refractory tumors when used in combination. Here we report a gene therapy approach in which the genes for the angiogenesis inhibitor, endostatin, and the marker protein and potent immunogen, green fluorescent protein (GFP), were delivered to murine neuroblastoma cells prior to inoculation of the tumor cells into syngeneic immunocompetent mice. Although the effect of either angiogenesis inhibition or immunomodulation alone resulted in only a modest delay in tumor growth, when these approaches were used in combination, prevention of the formation of appreciable tumors was effected in 15 of 24 (63%) mice. The combination of endostatin and GFP expression elicited a strong immune response that was T cell-mediated and was reactive against both GFP and tumor cell line-specific antigens. This afforded treated mice protection against subsequent tumor challenge with unmodified tumor cells. These results suggest that antiangiogenic and immunotherapy strategies, when used in a gene therapy-mediated approach, can act synergistically in an effective multimodality anticancer approach.

  9. ALDH Enzyme Expression Is Independent of the Spermatogenic Cycle, and Their Inhibition Causes Misregulation of Murine Spermatogenic Processes.

    PubMed

    Kent, Travis; Arnold, Samuel L; Fasnacht, Rachael; Rowsey, Ross; Mitchell, Debra; Hogarth, Cathryn A; Isoherranen, Nina; Griswold, Michael D

    2016-01-01

    Perturbations in the vitamin A metabolism pathway could be a significant cause of male infertility, as well as a target toward the development of a male contraceptive, necessitating the need for a better understanding of how testicular retinoic acid (RA) concentrations are regulated. Quantitative analyses have recently demonstrated that RA is present in a pulsatile manner along testis tubules. However, it is unclear if the aldehyde dehydrogenase (ALDH) enzymes, which are responsible for RA synthesis, contribute to the regulation of these RA concentration gradients. Previous studies have alluded to fluctuations in ALDH enzymes across the spermatogenic cycle, but these inferences have been based primarily on qualitative transcript localization experiments. Here, we show via various quantitative methods that the three well-known ALDH enzymes (ALDH1A1, ALDH1A2, and ALDH1A3), and an ALDH enzyme previously unreported in the murine testis (ALDH8A1), are not expressed in a stage-specific manner in the adult testis, but do fluctuate throughout juvenile development in perfect agreement with the first appearance of each advancing germ cell type. We also show, via treatments with a known ALDH inhibitor, that lowered testicular RA levels result in an increase in blood-testis barrier permeability, meiotic recombination, and meiotic defects. Taken together, these data further our understanding of the complex regulatory actions of RA on various spermatogenic events and, in contrast with previous studies, also suggest that the ALDH enzymes are not responsible for regulating the recently measured RA pulse.

  10. Expression and modulation of nerve growth factor in murine keratinocytes (PAM 212)

    SciTech Connect

    Tron, V.A.; Coughlin, M.D.; Jang, D.E.; Stanisz, J.; Sauder, D.N. )

    1990-04-01

    Nerve growth factor (NGF) is a polypeptide that is required for normal development and maintenance of the sympathetic and sensory nervous systems. Skin has been shown to contain relatively high amounts of NGF, which is in keeping with the finding that the quantity of NGF in a tissue is proportional to the extent of sympathetic innervation of that organ. Since the keratinocyte, a major cellular constituent of the skin, is known to produce other growth factors and cytokines, our experiments were designed to determine whether keratinocytes are a source of NGF. Keratinocyte-conditioned media from the keratinocyte cell line PAM 212 contained NGF-like activity, approximately 2-3 ng/ml, as detected by the neurite outgrowth assay. Freshly isolated BALB/c keratinocytes contained approximately 0.1 ng/ml. Using a cDNA probe directed against NGF, we demonstrated the presence of a 1.3-kb NGF mRNA in both PAM 212 and BALB/c keratinocytes. Since ultraviolet radiation (UV) is a potentially important modulating factor for cytokines in skin, we examined the effect of UV on NGF mRNA expression. Although UV initially inhibited the expression of keratinocyte NGF mRNA (4 h), by 24 h an induction of NGF mRNA was seen. The NGF signal could also be induced by phorbol esters. Thus, keratinocytes synthesize and express NGF, and its expression is modulated by UVB and phorbol esters.

  11. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells

    PubMed Central

    Brocqueville, Guillaume; Chmelar, Renee S.; Bauderlique-Le Roy, Hélène; Deruy, Emeric; Tian, Lu; Vessella, Robert L.; Greenberg, Norman M.; Bourette, Roland P.

    2016-01-01

    Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin− CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells. PMID:27081082

  12. Effects of metoclopramide-induced hyperprolactinemia on the prolactin and prolactin receptor expression of murine adrenal.

    PubMed

    do Amaral, Vinícius Cestari; da Silva, Priscilla Ludovico; Carvalho, Kátia Candido; Simoncini, Tommaso; Maciel, Gustavo Arantes Rosa; Soares-Jr, José Maria; Baracat, Edmund Chada

    2015-01-01

    The aim of this study was to evaluate the effects of metoclopramide-induced hyperprolactinemia on the prolactin (PRL) and prolactin receptor's (PRLR) expression in the adrenal. For this purpose, a total of 12 animals with intact ovaries were allocated to two groups: G1 (saline solution) and G2 (metoclopramide). A total of 30 oophorectomized animals was randomized to five subgroups: G3 (saline solution), G4 (metoclopramide), G5 (metoclopramide + 17β-estradiol), G6 (metoclopramide + progesterone), and G7 (metoclopramide + 17β-estradiol + progesterone). Immunohistochemical analyses were evaluated semi-quantitatively. For PRLR, the area fraction of labeled cells (ALC) varied from 1 (0-10%) to 3 (> 50%). Based on the mean of the immunostaining intensity, G2 and G4 showed strong expression; G6 and G7 presented a mild reaction; and G1, G3, and G5 exhibited a weak reaction. Concerning PRL, the ALC varied from 1 (0-10%) to 3 (> 50%), and groups G6 and G7 showed a strong reaction; G2, G4, and G5 showed a mild reaction; and G1 and G3 exhibited a weak reaction. These findings suggest that metoclopramide-induced hyperprolactinemia increases PRL expression in the adrenal glands of mice. Furthermore, progesterone alone or in association with estrogen also increases PRL expression, but to a lesser extent.

  13. Functional expression of TLR5 in murine salivary gland epithelial cells.

    PubMed

    Iwasa, Satoko; Ota, Hirotaka; Nishio, Kensuke; Ohtsu, Mariko; Kusunoki, Masafumi; Gojoubori, Takahiro; Shirakawa, Tetsuo; Asano, Masatake

    2016-01-01

    Toll-like receptors (TLR) recognize microbe-associated molecular patterns and induce the innate immune response. Among them, TLR5 recognizes the Gram-negative bacterial component flagellin. The aim of this study was to examine the expression of TLR5 in mouse salivary gland (SG). The SG was excised from 8- to 10-week-old female C57BL/6 mice. Salivary gland epithelial cells (SGECs) were purified and subjected to reverse transcription polymerase chain reaction (RT-PCR). Western blotting was performed to detect TLR5 expression at the protein level in several organs. The localization of TLR5 in SG was examined using immunohistochemical staining. The responsiveness of SGECs to flagellin was further examined by evaluating the induction of CXCL1 by real-time PCR and immunoprecipitation followed by Western blotting. TLR5 expression in SG was confirmed at the gene and protein levels. Immunohistochemical staining detected TLR5 in both acinic and ductal cells of the sublingual gland, but not in serous acinic cells of the submandibular gland. Although TLR5 was detected throughout the cytoplasm in ductal cells, positive staining was observed on the basal side of the mucous acinic cells. The purified SGECs responded to flagellin and induced the production of CXCL1. These findings suggest that TLR5 is functionally expressed in the SG and responds to its cognate ligand flagellin. (J Oral Sci 58, 317-323, 2016). PMID:27665969

  14. Expression of steroidogenesis-related genes in murine male germ cells.

    PubMed

    Culty, Martine; Liu, Ying; Manku, Gurpreet; Chan, Wai-Yee; Papadopoulos, Vassilios

    2015-11-01

    For decades, only few tissues and cell types were defined as steroidogenic, capable of de novo steroid synthesis from cholesterol. However, with the refinement of detection methods, several tissues have now been added to the list of steroidogenic tissues. Besides their critical role as long-range acting hormones, steroids are also playing more discreet roles as local mediators and signaling molecules within the tissues they are produced. In testis, steroidogenesis is carried out by the Leydig cells through a broad network of proteins, mediating cholesterol delivery to CYP11A1, the first cytochrome of the steroidogenic cascade, and the sequential action of enzymes insuring the production of active steroids, the main one being testosterone. The knowledge that male germ cells can be directly regulated by steroids and that they express several steroidogenesis-related proteins led us to hypothesize that germ cells could produce steroids, acting as autocrine, intracrine and juxtacrine modulators, as a way to insure synchronized progression within spermatogenic cycles, and preventing inappropriate cell behaviors between neighboring cells. Gene expression and protein analyses of mouse and rat germ cells from neonatal gonocytes to spermatozoa showed that most steroidogenesis-associated genes are expressed in germ cells, showing cell type-, spermatogenic cycle-, and age-specific expression profiles. Highly expressed genes included genes involved in steroidogenesis and other cell functions, such as Acbd1 and 3, Tspo and Vdac1-3, and genes involved in fatty acids metabolism or synthesis, including Hsb17b4 10 and 12, implying broader roles than steroid synthesis in germ cells. These results support the possibility of an additional level of regulation of spermatogenesis exerted between adjacent germ cells.

  15. The effects of lifelong blindness on murine neuroanatomy and gene expression

    PubMed Central

    Abbott, Charles W.; Kozanian, Olga O.; Huffman, Kelly J.

    2015-01-01

    Mammalian neocortical development is regulated by neural patterning mechanisms, with distinct sensory and motor areas arising through the process of arealization. This development occurs alongside developing central or peripheral sensory systems. Specifically, the parcellation of neocortex into specific areas of distinct cytoarchitecture, connectivity and function during development is reliant upon both cortically intrinsic mechanisms, such as gene expression, and extrinsic processes, such as input from the sensory receptors. This developmental program shifts from patterning to maintenance as the animal ages and is believed to be active throughout life, where the brain’s organization is stable yet plastic. In this study, we characterize the long-term effects of early removal of visual input via bilateral enucleation at birth. To understand the long-term effects of early blindness we conducted anatomical and molecular assays 18 months after enucleation, near the end of lifespan in the mouse. Bilateral enucleation early in life leads to long-term, stable size reductions of the thalamic lateral geniculate nucleus (LGN) and the primary visual cortex (V1) alongside a increase in individual whisker barrel size. Neocortical gene expression in the aging brain has not been previously identified; we document cortical expression of multiple regionalization genes. Expression patterns of Ephrin A5, COUP-TFI, and RZRβ and patterns of intraneocortical connectivity (INC) are altered in the neocortices of aging blind mice. Sensory inputs from different modalities during development likely play a major role in the development of cortical areal and thalamic nuclear boundaries. We suggest that early patterning by prenatal retinal activity combined with persistent gene expression within the thalamus and cortex is sufficient to establish and preserve a small but present LGN and V1 into late adulthood. PMID:26257648

  16. Expression and Function of S100A8/A9 (Calprotectin) in Human Typhoid Fever and the Murine Salmonella Model

    PubMed Central

    De Jong, Hanna K.; Achouiti, Ahmed; Koh, Gavin C. K. W.; Parry, Christopher M.; Baker, Stephen; Faiz, Mohammed Abul; van Dissel, Jaap T.; Vollaard, Albert M.; van Leeuwen, Ester M. M.; Roelofs, Joris J. T. H.; de Vos, Alex F.; Roth, Johannes; van der Poll, Tom; Vogl, Thomas; Wiersinga, Willem Joost

    2015-01-01

    Background Typhoid fever, caused by the Gram-negative bacterium Salmonella enterica serovar Typhi, is a major cause of community-acquired bacteremia and death worldwide. S100A8 (MRP8) and S100A9 (MRP14) form bioactive antimicrobial heterodimers (calprotectin) that can activate Toll-like receptor 4, promoting lethal, endotoxin-induced shock and multi-organ failure. We aimed to characterize the expression and function of S100A8/A9 in patients with typhoid fever and in a murine invasive Salmonella model. Methods and principal findings S100A8/A9 protein levels were determined in acute phase plasma or feces from 28 Bangladeshi patients, and convalescent phase plasma from 60 Indonesian patients with blood culture or PCR-confirmed typhoid fever, and compared to 98 healthy control subjects. To functionally characterize the role of S100A8/A9, we challenged wildtype (WT) and S100A9-/- mice with S. Typhimurium and determined bacterial loads and inflammation 2- and 5- days post infection. We further assessed the antimicrobial function of recombinant S100A8/A9 on S. Typhimurium and S. Typhi replication in vitro. Typhoid fever patients demonstrated a marked increase of S100A8/A9 in acute phase plasma and feces and this increases correlated with duration of fever prior to admission. S100A8/A9 directly inhibited the growth of S. Typhimurium and S. Typhi in vitro in a dose and time dependent fashion. WT mice inoculated with S. Typhimurium showed increased levels of S100A8/A9 in both the liver and the systemic compartment but S100A9-/- mice were indistinguishable from WT mice with respect to bacterial growth, survival, and inflammatory responses, as determined by cytokine release, histopathology and organ injury. Conclusion S100A8/A9 is markedly elevated in human typhoid, correlates with duration of fever prior to admission and directly inhibits the growth of S. Typhimurium and S. Typhi in vitro. Despite elevated levels in the murine invasive Salmonella model, S100A8/A9 does not

  17. Induction of anti-tumor immunity elicited by tumor cells expressing a murine LFA-3 analog via a recombinant vaccinia virus.

    PubMed

    Lorenz, M G; Kantor, J A; Schlom, J; Hodge, J W

    1999-03-01

    T cell activation requires binding of the T cell receptor to the major histocompatibility molecule-peptide complex in the presence of adhesion and/or costimulatory molecules such as B7-1 (CD80), B7-2 (CD86), ICAM-1 (CD54), and LFA-3 [corrected]. The major ligand of CD2 is CD48, the murine analog of human leukocyte function-associated antigen 3 (LFA-3). To determine the effect of LFA-3 expression on the immunogenicity of tumor cells, we constructed a recombinant vaccinia virus containing the murine LFA-3 gene (designated rV-LFA-3). rV-LFA-3 was shown to be functional in vitro in terms of expression of LFA-3, T cell proliferation, adhesion, and cytotoxicity. Subcutaneous inoculation of rV-LFA-3-infected murine colon adenocarcinoma tumor cells (MC38) into immunocompetent syngeneic C57BL/6 mice resulted in complete lack of tumor growth. Inoculation of MC38 cells infected with equal doses of control wild-type vaccinia virus resulted in tumor growth in all animals. In addition, partial immunological protection was demonstrated against subsequent challenge with uninfected parental tumor cells up to 56 days after vaccination with rV-LFA-3-infected cells. Anti-tumor memory was also demonstrated by using gamma-irradiated MC38 cells and cells from another carcinoma model (CT26). These studies demonstrate that expression of LFA-3 via a poxvirus vector can be used to induce anti-tumor immunity.

  18. Stimulation through CD40 and TLR-4 Is an Effective Host Directed Therapy against Mycobacterium tuberculosis

    PubMed Central

    Khan, Nargis; Pahari, Susanta; Vidyarthi, Aurobind; Aqdas, Mohammad; Agrewala, Javed N.

    2016-01-01

    Tuberculosis (TB) is the leading cause of morbidity and mortality among all infectious diseases. Failure of Bacillus Calmette Guerin as a vaccine and serious side-effects and toxicity due to long-term TB drug regime are the major hurdles associated with TB control. The problem is further compounded by the emergence of drug-resistance strains of Mycobacterium tuberculosis (Mtb). Consequently, it demands a serious attempt to explore safer and superior treatment approaches. Recently, an improved understanding of host–pathogen interaction has opened up new avenues for immunotherapy for treating TB. Although, dendritic cells (DCs) show a profound role in generating immunity against Mtb, their immunotherapeutic potential needs to be precisely investigated in controlling TB. Here, we have devised an approach of bolstering DCs efficacy against Mtb by delivering signals through CD40 and TLR-4 molecules. We found that DCs triggered through CD40 and TLR-4 showed increased secretion of IL-12, IL-6, and TNF-α. It also augmented autophagy. Interestingly, CD40 and TLR-4 stimulation along with the suboptimal dose of anti-TB drugs significantly fortified their efficacy to kill Mtb. Importantly, animals treated with the agonists of CD40 and TLR-4 boosted Th1 and Th17 immunity. Furthermore, it amplified the pool of memory CD4 T cells as well as CD8 T cells. Furthermore, substantial reduction in the bacterial burden in the lungs was observed. Notably, this adjunct therapy employing immunomodulators and chemotherapy can reinvigorate host immunity suppressed due to drugs and Mtb. Moreover, it would strengthen the potency of drugs in curing TB. PMID:27729911

  19. Progesterone receptor membrane component 1 (PGRMC1) expression in murine retina

    PubMed Central

    Shanmugam, Arul K.; Mysona, Barbara A.; Wang, Jing; Zhao, Jing; Tawfik, Amany; Sanders, A.; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Bollinger, Kathryn E.; Smith, Sylvia B.

    2015-01-01

    Purpose Sigma receptor 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1−/− mice. Methods Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild type mouse retina. Tissues from σR1−/− mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. Results In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1−/− mice did not differ from wild type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild type and σR1−/− mice. In contrast, liver, brain and intestine showed increased Pgrmc1 gene expression in σR1−/− mice. Conclusion Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1−/− mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicate a possible tissue specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function. PMID:26642738

  20. Nuclear degradation of particular Fos family members expressed following injections of NMDA and kainate in murine hippocampus.

    PubMed

    Nakamichi, Noritaka; Manabe, Takayuki; Yoneda, Yukio

    2002-02-01

    Transient glutamate signaling often leads to long lasting and permanent alterations of a variety of cellular functions through particular membrane receptors in the brain. For elucidation of mechanisms underlying long-term consolidation of transient extracellular signals, we have examined expression and degradation of particular Fos family member proteins required for assembly to the nuclear transcription factor activator protein-1 in this study. Transcription factors could modulate the activity of RNA polymerase II responsible for the formation of mRNA from genomic DNA in the nucleus and therefore regulate de novo synthesis of particular target functional proteins. Mice were intraperitoneally injected with 100 mg/kg N-methyl-D-aspartic acid (NMDA) or 40 mg/kg kainic acid (KA), followed by homogenization of hippocampus in the presence of different protease and phosphatase inhibitors 2 h after administration, and subsequent preparation of nuclear and cytosolic fractions. The systemic administration of both NMDA and KA induced marked expression of particular Fos family members, including c-Fos and Fra-2 proteins, in hippocampal nuclear and cytosolic fractions. Incubation at 30 degrees C for 1 to 18 h led to differential degradation profiles of each Fos family member protein in nuclear fractions in a manner peculiar to the individual excitants. Degradation rate was also affected by dialysis and subsequent addition of inhibitors for phosphatases and proteases. These results suggest that in vivo NMDA and KA signals may additionally modulate the activity of heterologous machineries responsible for breakdown of each Fos family member in a unique manner in nuclear fractions, rather than cytosolic fractions, of murine hippocampus.

  1. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells.

    PubMed

    Murakami, Takashi; Maki, Wusi; Cardones, Adela R; Fang, Hui; Tun Kyi, Adrian; Nestle, Frank O; Hwang, Sam T

    2002-12-15

    The chemokine receptors CC chemokine receptor (CCR) 7 and CXC chemokine receptor (CXCR) 4 have been implicated in cancer metastasis. To evaluate whether CXCR4 is sufficient to increase tumor metastasis in an organ-specific manner, we transduced murine B16 melanoma cells with CXCR4 (CXCR4-B16) and followed the metastatic fate of the transduced cells in both i.v. and s.c. inoculation models of metastasis. CXCR4-B16 cells demonstrated marked increases (>10-fold) in pulmonary metastasis compared with vector (pLNCX2)-B16 after i.v. and s.c. inoculation of tumor cells. The increase in metastasis could be completely inhibited by T22, a small peptide antagonist of CXCR4. As early as 24 and 48 h after i.v. injection, CXCR4-B16 cells were significantly increased in the lung compared with control B16 cells by 5- and 10-fold (P < 0.05), respectively. CXCR4-B16 cells adhered better to both dermal and pulmonary microvascular endothelial cells relative to control B16 cells. Moreover, CXCL12 promoted the growth of CXCR4-B16 cells in vitro. Whereas expression of CXCR4 in B16 cells dramatically enhanced pulmonary metastasis, metastasis to the lymph nodes, liver, and kidney was rare. Immunohistochemical staining of both primary human cutaneous melanoma and pulmonary metastases revealed CXCR4 expression. Thus, CXCR4 plays a potentially important role in promoting organ-selective metastasis, possibly by stimulating tumor adhesion to microvascular endothelial cells and by enhancing the growth of tumor cells under stress. PMID:12499276

  2. Characterization of ASKP1240, a Fully Human Antibody Targeting Human CD40 With Potent Immunosuppressive Effects

    PubMed Central

    Okimura, K; Maeta, K; Kobayashi, N; Goto, M; Kano, N; Ishihara, T; Ishikawa, T; Tsumura, H; Ueno, A; Miyao, Y; Sakuma, S; Kinugasa, F; Takahashi, N; Miura, T

    2014-01-01

    Blocking the CD40–CD154 interaction is reported to be effective for transplantation management and autoimmune disease models in rodents and nonhuman primates. However, clinical trials with anti-CD154 mAbs were halted because of high incidence of thromboembolic complications. Thus, we generated and characterized a fully human anti-CD40 mAb ASKP1240, as an alternative to anti-CD154 mAb. In vitro ASKP1240 concentration-dependently inhibited human peripheral blood mononuclear cell proliferation induced by soluble CD154. In addition, ASKP1240 did not destabilize platelet thrombi under physiological high shear conditions while mouse anti-human CD154 mAb (mu5C8) did. And ASKP1240 itself did not activate platelet and endothelial cells. In vivo administration of ASKP1240 (1 or 10 mg/kg, intravenously) to cynomolgus monkeys, weekly for 3 weeks, significantly attenuated both delayed-type hypersensitivity and specific antibody formation evoked by tetanus toxoid. The immunosuppressive effect was well correlated with the CD40 receptor saturation. Thus, these results suggest that ASKP1240 is immunosuppressive but not prothromboembolic, and as such appears to be a promising therapeutic candidate for the management of solid organ transplant rejection and autoimmune diseases therapy. PMID:24731050

  3. Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity.

    PubMed

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2013-09-01

    The endoplasmic reticulum transmembrane protein, Unc93b1, is essential for trafficking of endosomal TLRs from the endoplasmic reticulum to endosomes. A genetic defect in the human UNC93B1 gene is associated with immunodeficiency. However, systemic lupus erythematosus (SLE) patients express increased levels of the UNC93B1 protein in B cells. Because SLE in patients and certain mouse models exhibits a sex bias and increased serum levels of type I interferons in patients are associated with the disease activity, we investigated whether the female sex hormone estrogen (E2) or type I interferon signaling could up-regulate the expression of the murine Unc93b1 gene. We found that steady-state levels of Unc93b1 mRNA and protein were measurably higher in immune cells (CD3(+), B220(+), CD11b(+) and CD11c(+)) isolated from C57BL/6 (B6) females than age-matched males. Moreover, treatment of CD11b(+) and B220(+) cells with E2 or interferons (IFN-α, IFN-β or IFN-γ) significantly increased the levels of Unc93b1 mRNA and protein. Accordingly, a deficiency of estrogen receptor-α or STAT1 expression in immune cells decreased the expression levels of the Unc93b1 protein. Interestingly, levels of Unc93b1 protein were appreciably higher in B6.Nba2 lupus-prone female mice compared with age-matched B6 females. Furthermore, increased expression of the interferon- and E2-inducible p202 protein in a murine macrophage cell line (RAW264.7) increased the levels of the Unc93b1 protein, whereas knockdown of p202 expression reduced the levels. To our knowledge, our observations demonstrate for the first time that activation of interferon and estrogen signaling in immune cells up-regulates the expression of murine Unc93b1. PMID:23728775

  4. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis.

    PubMed

    Shevtsova, Zinayida; Garrido, Manuel; Weishaupt, Jochen; Saftig, Paul; Bähr, Mathias; Lühder, Fred; Kügler, Sebastian

    2010-07-01

    Deficiency in Cathepsin D (CtsD), the major cellular lysosomal aspartic proteinase, causes the congenital form of neuronal ceroid lipofuscinoses (NCLs). CtsD-deficient mice show severe visceral lesions like lymphopenia in addition to their central nervous system (CNS) phenotype of ceroid accumulation, microglia activation, and seizures. Here we demonstrate that re-expression of CtsD within the CNS but not re-expression of CtsD in visceral organs prevented both central and visceral pathologies of CtsD(-/-) mice. Our results suggest that CtsD was substantially secreted from CNS neurons and drained from CNS to periphery via lymphatic routes. Through this drainage, CNS-expressed CtsD acts as an important modulator of immune system maintenance and peripheral tissue homeostasis. These effects depended on enzymatic activity and not on proposed functions of CtsD as an extracellular ligand. Our results furthermore demonstrate that the prominent accumulation of ceroid/lipofuscin and activation of microglia in brains of CtsD(-/-) are not lethal factors but can be tolerated by the rodent CNS. PMID:20489146

  5. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    PubMed

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  6. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta.

    PubMed

    Hoggard, N; Hunter, L; Duncan, J S; Williams, L M; Trayhurn, P; Mercer, J G

    1997-09-30

    Leptin is a 167-aa protein that is secreted from adipose tissue and is important in the regulation of energy balance. It also functions in hematopoiesis and reproduction. To assess whether leptin is involved in fetal growth and development we have examined the distribution of mRNAs encoding leptin and the leptin receptor (which has at least six splice variants) in the 14.5-day postcoitus mouse fetus and in the placenta using reverse transcription-PCR and in situ hybridization. High levels of gene expression for leptin, the leptin receptor, and the long splice variant of the leptin receptor with an intracellular signaling domain were observed in the placenta, fetal cartilage/bone, and hair follicles. Receptor expression also was detected in the lung, as well as the leptomeninges and choroid plexus of the fetal brain. Western blotting and immunocytochemistry, using specific antibodies, demonstrated the presence of leptin and leptin receptor protein in these tissues. These results suggest that leptin may play a role in the growth and development of the fetus, both through placental and fetal expression of the leptin and leptin receptor genes. In the fetus, leptin may be multifunctional and have both paracrine and endocrine effects.

  7. Schlafen 4–expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia

    PubMed Central

    Ding, Lin; Hayes, Michael M.; Photenhauer, Amanda; Eaton, Kathryn A.; Li, Qian; Ocadiz-Ruiz, Ramon; Merchant, Juanita L.

    2016-01-01

    Chronic Helicobacter pylori infection triggers neoplastic transformation of the gastric mucosa in a small subset of patients, but the risk factors that induce progression to gastric metaplasia have not been identified. Prior to cancer development, the oxyntic gastric glands atrophy and are replaced by metaplastic cells in response to chronic gastritis. Previously, we identified schlafen 4 (Slfn4) as a GLI1 target gene and myeloid differentiation factor that correlates with spasmolytic polypeptide-expressing metaplasia (SPEM) in mice. Here, we tested the hypothesis that migration of SLFN4-expressing cells from the bone marrow to peripheral organs predicts preneoplastic changes in the gastric microenvironment. Lineage tracing in Helicobacter-infected Slfn4 reporter mice revealed that SLFN4+ cells migrated to the stomach, where they exhibited myeloid-derived suppressor cell (MDSC) markers and acquired the ability to inhibit T cell proliferation. SLFN4+ MDSCs were not observed in infected GLI1-deficient mice. Overexpression of sonic hedgehog ligand (SHH) in infected WT mice accelerated the appearance of SLFN4+ MDSCs in the gastric corpus. Similarly, in the stomachs of H. pylori–infected patients, the human SLFN4 ortholog SLFN12L colocalized to cells that expressed MDSC surface markers CD15+CD33+HLA-DRlo. Together, these results indicate that SLFN4 marks a GLI1-dependent population of MDSCs that predict a shift in the gastric mucosa to a metaplastic phenotype. PMID:27427984

  8. Expression of functional human EGF receptor on murine bone marrow cells.

    PubMed Central

    von Rüden, T; Wagner, E F

    1988-01-01

    The human epidermal growth factor-receptor (EGF-R) was introduced into primary mouse bone marrow cells (BMC), utilizing retrovirus mediated gene transfer. Cultivation of infected BMC in the presence of interleukin-3 (IL-3) led to the outgrowth of IL-3 dependent myeloid cells, which efficiently expressed functional EGF-R, exhibiting its two characteristic affinity states. EGF acts on these cells synergistically with IL-3 in stimulating DNA synthesis and cell proliferation even under IL-3 saturation conditions. However, EGF was not sufficient to replace the requirement for IL-3. In contrast, EGF was able to maintain proliferation of a factor-dependent hemopoietic cell line (FDC-P1) infected with the EGF-R retrovirus in the absence of IL-3, but these cells did not respond to EGF in the presence of IL-3. No influence of EGF on IL-3 induced mast cell differentiation of BMC expressing the EGF-R could be observed by histological criteria. These data show that the expression of EGF-R alone is not sufficient to induce or maintain cell proliferation in IL-3 dependent bone marrow derived cells, although it can do so in established hemopoietic cell lines. Images PMID:3053164

  9. Differential gene expression in the testes of different murine strains under normal and hyperthermic conditions.

    PubMed

    Li, Ying; Zhou, Qing; Hively, Randy; Yang, Lizhong; Small, Christopher; Griswold, Michael D

    2009-01-01

    Cryptorchidism and scrotal heating result in abnormal spermatogenesis, but the mechanism(s) prescribing this temperature sensitivity are unknown. It was previously reported that the AKR/N or MRL/MpJ-+/+ mouse testis is more heat-resistant than the testis from the C57BL/6 strain. We have attempted to probe into the mechanism(s) involved in heat sensitivity by examining global gene expression profiles of normal and heat-treated testes from C57BL/6, AKR/N, and MRL/MpJ-+/+ mice by microarray analysis. In the normal C57BL/6 testis, 415 and 416 transcripts were differentially expressed (at least 2-fold higher or lower) when compared with the normal AKR/N and MRL/MpJ-+/+ testis, respectively. The AKR/N and MRL/MpJ-+/+ strains revealed 268 differentially expressed transcripts between them. There were 231 transcripts differentially expressed between C57BL/6 and 2 purported heat-resistant strains, AKR/N and MRL/MpJ-+/+. Next, the testes of C57BL/6 and AKR/N mice were exposed to 43 degrees C for 15 minutes and harvested at different time points for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) studies and microarrays. An increase of TUNEL-positive germ cell numbers was significant 8 hours after heat exposure in the C57BL/6 mouse. However, this increase was not observed in the AKR/N mouse until 10 hours after heat exposure. All tubules showed germ cell loss and disruption in C57BL/6 testis 24 hours after heat shock. In contrast, although a number of seminiferous tubules showed an abnormal morphology 24 hours post-heat shock in the AKR/N mouse, many tubules still retained a normal structure. Numerous transcripts exhibited differential regulation between the 2 strains within 24 hours after heat exposure. The differentially expressed transcripts in the testes 8 hours after heat exposure were targeted to identify the genes involved in the initial response rather than those attributable to germ cell loss. Twenty transcripts were significantly down

  10. Mycobacterium avium subspecies induce differential expression of pro-inflammatory mediators in a murine macrophage model: evidence for enhanced pathogenicity of Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Basler, Tina; Geffers, Robert; Weiss, Siegfried; Valentin-Weigand, Peter; Goethe, Ralph

    2008-01-01

    Mycobacterium avium subspecies (ssp.) paratuberculosis (MAP) is the etiological agent of paratuberculosis, a chronic, non-treatable granulomatous enteritis of ruminants. MAP is the only mycobacterium affecting the intestinal tract, which is of interest since it is presently the most favoured pathogen linked to Crohn's disease (CD) in humans due to its frequent detection in CD tissues. MAP is genetically closely related to other M. avium ssp. such as M. avium ssp. avium (MAA) and M. avium ssp. hominissuis (MAH) which can cause mycobacteriosis in animals and immunocompromised humans. We have recently shown that murine macrophage cell lines represent suitable systems to analyse M. avium ssp. patho-mechanisms and could show that MAP, but not MAA, specifically inhibited the antigen-specific stimulatory capacity for CD4(+) T-cells. In the present study, we compared gene expression profiles of murine RAW264.7 macrophages in response to infections with MAP or MAA using murine high-density oligonucleotide Affymetrix microarrays. A comparison of MAP and MAA infection revealed 17 differentially expressed genes. They were expressed at a much lower level in MAP-infected macrophages than in MAA-infected macrophages. Among these were the genes for IL-1beta, IL-1alpha, CXCL2, PTGS2 (COX2), lipocalin (LCN2) and TNF, which are important pro-inflammatory factors. The microarray data were confirmed for selected genes by quantitative real-time reverse transcription PCR and, by protein array analyses and ELISA. Similar to MAA, infection with MAH also showed robust induction of IL-1beta, CXCL2, COX2, LCN2 and TNF. Taken together, our results from M. avium ssp.-infected murine macrophages provide evidence that MAP in contrast to MAA and MAH specifically suppresses the pro-inflammatory defence mechanisms of infected macrophages.

  11. Ultrasound Molecular Imaging of Secreted Frizzled Related Protein-2 Expression in Murine Angiosarcoma

    PubMed Central

    Streeter, Jason; Samples, Jennifer; Patterson, Cam; Mumper, Russell J.; Ketelsen, David; Dayton, Paul

    2014-01-01

    Angiosarcoma is a biologically aggressive vascular malignancy with a high metastatic potential. In the era of targeted medicine, knowledge of specific molecular tumor characteristics has become more important. Molecular imaging using targeted ultrasound contrast agents can monitor tumor progression non-invasively. Secreted frizzled related protein 2 (SFRP2) is a tumor endothelial marker expressed in angiosarcoma. We hypothesize that SFRP2-directed imaging could be a novel approach to imaging the tumor vasculature. To develop an SFRP2 contrast agent, SFRP2 polyclonal antibody was biotinylated and incubated with streptavidin-coated microbubbles. SVR angiosarcoma cells were injected into nude mice, and when tumors were established the mice were injected intravenously with the SFRP2 -targeted contrast agent, or a control streptavidin-coated contrast agent. SFRP2 -targeted contrast agent detected tumor vasculature with significantly more signal intensity than control contrast agent: the normalized fold-change was 1.6±0.27 (n = 13, p = 0.0032). The kidney was largely devoid of echogenicity with no significant difference between the control contrast agent and the SFRP2-targeted contrast agent demonstrating that the SFRP2-targeted contrast agent was specific to tumor vessels. Plotting average pixel intensity obtained from SFRP2-targeted contrast agent against tumor volume showed that the average pixel intensity increased as tumor volume increased. In conclusion, molecularly-targeted imaging of SFRP2 visualizes angiosarcoma vessels, but not normal vessels, and intensity increases with tumor size. Molecular imaging of SFRP2 expression may provide a rapid, non-invasive method to monitor tumor regression during therapy for angiosarcoma and other SFRP2 expressing cancers, and contribute to our understanding of the biology of SFRP2 during tumor development and progression. PMID:24489757

  12. Expression of Monocyte Chemotactic Protein-3 Following Simulated Birth Trauma in a Murine Model of Obesity

    PubMed Central

    Vricella, Gino J.; Tao, Mingfang; Altuntas, Cengiz Z.; Liu, Guiming; Kavran, Michael; Daneshgari, Firouz; Hijaz, Adonis K.

    2014-01-01

    Objective To determine the effect of obesity on simulated birth trauma in leptin-deficient obese mice as measured by relative MCP-3 expression. Materials and Methods A total of 25 wild-type and 25 obese C57BL/6 virgin female mice underwent 1 hour of vaginal distension (VD), sham VD or anesthesia without VD. Pelvic organ tissues were then harvested either immediately or 24-hours post VD and subsequent real-time PCR analysis was performed. Results Urethral MCP-3 levels in wild-type mice were elevated from baseline at 0-hours with a return to baseline at 24-hours in both VD and sham VD groups. In obese mice, there was a 6-fold elevation in MCP-3 levels at 0-hours after sham VD versus control (P < 0.05), which then returned to baseline levels at 24-hours. After undergoing VD, MCP-3 levels increased to 6-fold baseline values (P = 0.002) at 0-hours, with continued elevation in MCP-3 levels to 15 times control levels (P = 0.0003) at 24-hours. Conclusions MCP-3 is significantly over expressed in the urethral tissues of both wild-type and obese mice immediately after any urethral manipulation. At 24-hours, the MCP-3 expression patterns become divergent between VD and sham VD in obese mice. With a greater degree of trauma, MCP-3 continued to rise at 24-hours, suggesting that the underlying obesity resulted in alterations in response to tissue injury paralleling the degree of injury. Such associations warrant further investigation into the role of MCP-3 as a chemokine for stem cell migration with implications for subsequent tissue repair mechanisms after birth trauma. PMID:20970834

  13. Intraosseous delivery of lentiviral vectors targeting factor VIII expression in platelets corrects murine hemophilia A.

    PubMed

    Wang, Xuefeng; Shin, Simon C; Chiang, Andy F J; Khan, Iram; Pan, Dao; Rawlings, David J; Miao, Carol H

    2015-04-01

    Intraosseous (IO) infusion of lentiviral vectors (LVs) for in situ gene transfer into bone marrow may avoid specific challenges posed by ex vivo gene delivery, including, in particular, the requirement of preconditioning. We utilized IO delivery of LVs encoding a GFP or factor VIII (FVIII) transgene directed by ubiquitous promoters (a MND or EF-1α-short element; M-GFP-LV, E-F8-LV) or a platelet-specific, glycoprotein-1bα promoter (G-GFP-LV, G-F8-LV). A single IO infusion of M-GFP-LV or G-GFP-LV achieved long-term and efficient GFP expression in Lineage(-)Sca1(+)c-Kit(+) hematopoietic stem cells and platelets, respectively. While E-F8-LV produced initially high-level FVIII expression, robust anti-FVIII immune responses eliminated functional FVIII in circulation. In contrast, IO delivery of G-F8-LV achieved long-term platelet-specific expression of FVIII, resulting in partial correction of hemophilia A. Furthermore, similar clinical benefit with G-F8-LV was achieved in animals with pre-existing anti-FVIII inhibitors. These findings further support platelets as an ideal FVIII delivery vehicle, as FVIII, stored in α-granules, is protected from neutralizing antibodies and, during bleeding, activated platelets locally excrete FVIII to promote clot formation. Overall, a single IO infusion of G-F8-LV was sufficient to correct hemophilia phenotype for long term, indicating that this approach may provide an effective means to permanently treat FVIII deficiency. PMID:25655313

  14. Intraosseous Delivery of Lentiviral Vectors Targeting Factor VIII Expression in Platelets Corrects Murine Hemophilia A

    PubMed Central

    Wang, Xuefeng; Shin, Simon C; Chiang, Andy F J; Khan, Iram; Pan, Dao; Rawlings, David J; Miao, Carol H

    2015-01-01

    Intraosseous (IO) infusion of lentiviral vectors (LVs) for in situ gene transfer into bone marrow may avoid specific challenges posed by ex vivo gene delivery, including, in particular, the requirement of preconditioning. We utilized IO delivery of LVs encoding a GFP or factor VIII (FVIII) transgene directed by ubiquitous promoters (a MND or EF-1α-short element; M-GFP-LV, E-F8-LV) or a platelet-specific, glycoprotein-1bα promoter (G-GFP-LV, G-F8-LV). A single IO infusion of M-GFP-LV or G-GFP-LV achieved long-term and efficient GFP expression in Lineage-Sca1+c-Kit+ hematopoietic stem cells and platelets, respectively. While E-F8-LV produced initially high-level FVIII expression, robust anti-FVIII immune responses eliminated functional FVIII in circulation. In contrast, IO delivery of G-F8-LV achieved long-term platelet-specific expression of FVIII, resulting in partial correction of hemophilia A. Furthermore, similar clinical benefit with G-F8-LV was achieved in animals with pre-existing anti-FVIII inhibitors. These findings further support platelets as an ideal FVIII delivery vehicle, as FVIII, stored in α-granules, is protected from neutralizing antibodies and, during bleeding, activated platelets locally excrete FVIII to promote clot formation. Overall, a single IO infusion of G-F8-LV was sufficient to correct hemophilia phenotype for long term, indicating that this approach may provide an effective means to permanently treat FVIII deficiency. PMID:25655313

  15. The effects of deoxynivalenol on gene expression in the murine thymus

    SciTech Connect

    Kol, Sandra W.M. van; Hendriksen, Peter J.M.; Loveren, Henk van; Peijnenburg, Ad

    2011-02-01

    Deoxynivalenol (DON) is a mycotoxin produced by several Fusarium species and is often detected in grains. Because of its high abundance, there has been a large interest in the effects of DON in animals and humans. DON is known to be immunosuppressive at high concentrations and immunostimulatory at low concentrations. The present study aimed to acquire insight into the modes of action of DON. For this, C57Bl6 mice were orally exposed to 5, 10, or 25 mg/kg bw DON for 3, 6, or 24 h and thymuses were subjected to genome-wide expression microarray analysis. Gene set enrichment analysis (GSEA) demonstrated that DON downregulated genes involved in proliferation, mitochondria, protein synthesis, and ribosomal proteins. Furthermore, GSEA showed a selective downregulation of genes highly expressed at the early precursor thymocytes stage. This indicates that early precursor thymocytes, particularly at the double-positive CD4+CD8+ stage, are more vulnerable to DON than very early or late precursor thymocytes. There was a large overlap of genes upregulated by DON with genes previously reported to be either upregulated during T cell activation or upregulated during negative selection of thymocytes that recognize 'self-antigens'. This indicates that DON induces cellular events that also occur after activation of the T cell receptor, for example, release of calcium from the endoplasmatic reticulum. This T cell activation in the thymus then evokes negative selection and depletion of thymocytes, which provides a plausible explanation for the high sensitivity of the thymus for DON exposure. The expression patterns of four genes indicative for some of the processes that were affected after DON treatment were confirmed using real-time PCR. Immunocytological experiments with primary mouse thymocytes demonstrated the translocation of NFAT from the cytoplasm into the nucleus upon exposure top DON, thus providing further evidence for the involvement of T cell activation.

  16. Human and murine osteocalcin gene expression: conserved tissue restricted expression and divergent responses to 1,25-dihydroxyvitamin D3 in vivo.

    PubMed

    Sims, N A; White, C P; Sunn, K L; Thomas, G P; Drummond, M L; Morrison, N A; Eisman, J A; Gardiner, E M

    1997-10-01

    Human and murine osteocalcin genes demonstrate similar cell-specific expression patterns despite significant differences in gene locus organization and sequence variations in cis-acting regulatory elements. To investigate whether differences in these regulatory regions result in an altered response to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in vivo, we compared the response of the endogenous mouse osteocalcin gene to a bacterial reporter gene directed by flanking regions of the human osteocalcin gene in transgenic mice. Transgene expression colocalized with endogenous osteocalcin expression in serial sections, being detected in osteoblasts, osteocytes and hypertrophic chondrocytes. In calvarial cell culture lysates from transgenic and nontransgenic mice, the endogenous mouse osteocalcin gene did not respond to 1,25-(OH)2D3 treatment. Despite this, transgene activity was significantly increased in the same cells. Similarly, Northern blots of total cellular RNA and in situ hybridization studies of transgenic animals demonstrated a maximal increase in transgene expression at 6 h after 1,25-(OH)2D3 injection (23.6+/-3.6-fold) with a return to levels equivalent to uninjected animals by 24 h (1.2+/-0.1-fold). This increase in transgene expression was also observed at 6 h after 1,25-(OH)2D3 treatment in animals on a low calcium diet (25.2+/-7.7-fold) as well as in transgenic mice fed a vitamin D-deficient diet containing strontium chloride to block endogenous 1,25-(OH)2D3 production (7.5+/-0.9-fold). In contrast to the increased transgene expression levels, neither endogenous mouse osteocalcin mRNA levels nor serum osteocalcin levels were significantly altered after 1,25-(OH)2D3 injection in transgenic or nontransgenic mice, regardless of dietary manipulations, supporting evidence for different mechanisms regulating the response of human and mouse osteocalcin genes to 1,25-(OH)2D3. Although the cis- and trans-acting mechanisms directing cell-specific gene expression

  17. Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes.

    PubMed Central

    Borzillo, G V; Ashmun, R A; Sherr, C J

    1990-01-01

    fms genes encoding either wild-type or constitutively activated colony-stimulating factor 1 receptors (CSF-1R) were introduced by retroviral infection into long-term mouse lymphoid cultures. Four early pre-B-cell lines transformed by the feline v-fms oncogene underwent spontaneous and irreversible differentiation to macrophages when transferred from RPMI 1640 to Iscove modified Dulbecco medium. Expression of wild-type human CSF-1R in early pre-B cells conferred no proliferative advantage unless human CSF-1 was added to the culture medium. A clonal, factor-dependent early pre-B-cell line (D1F9), selected for continuous growth on NIH 3T3 cell feeder layers producing human CSF-1, could be maintained in RPMI 1640 medium containing interleukin-7 (IL-7) but also differentiated to macrophages when grown in Iscove modified Dulbecco medium containing human CSF-1. The macrophages retained parental immunoglobulin gene rearrangements and proviral insertions, lost B-cell antigens, expressed butyrate esterase and MAC-1, were actively phagocytic, and no longer survived in IL-7. Unlike factor-independent v-fms transformants, the irreversible commitment of D1F9 cells to differentiate in the macrophage lineage could be suppressed by IL-7, depended on human (but not mouse) CSF-1, and was inhibited by an antibody to human CSF-1R. Signals mediated by transduced CSF-1R can therefore play a deterministic role in cell differentiation. Images PMID:2160584

  18. Differential expression of Gs in a murine model of homocysteinemic heart failure

    PubMed Central

    Vacek, Thomas P; Sen, Utpal; Tyagi, Neetu; Vacek, Jonathan C; Kumar, Munish; Hughes, William M; Passmore, John C; Tyagi, Suresh C

    2009-01-01

    High plasma homocysteine levels are a known risk factor in heart failure and sudden cardiac death. The G proteins, Gs (stimulatory) and Gi (inhibitory), are involved in calcium regulation; overexpression has pathological consequences. The aims of this study were to examine the differential expression of Gs G protein and Gi in the hearts of hyperhomocysteinemic (Hhcy) mice, and to determine if homocysteine (Hcy) acts as an agonist in cell culture to mediate the change in G protein isoforms. To create Hhcy, heterozygous cystathionine-β-synthase (CBS) knockout (KO) mice were used. Mice were sacrificed, hearts were excised, cardiac tissue homogenates were prepared, and Western blots were performed. The results suggested that Gs G protein was downregulated in cardiac tissue of heterozygous CBS KO mice to 46% that of control hearts. However, the intracellular Gi G protein content remained the same in heterozygous CBS KO mice. Transformed cardiomyocyte HL-1 cells were treated with varying concentrations of homocysteine. The results suggested no detectable differential Gs and Gi expression. This suggested that Hcy did not act as an agonist in vitro to alter G protein content, but that Hcy produced some other in vivo effects to incur these results. PMID:19436674

  19. Influence of helper T cells on the expression of a murine intrastrain crossreactive idiotype.

    PubMed Central

    Hathcock, K S; Gurish, M F; Nisonoff, A; Conger, J D; Hodes, R J

    1986-01-01

    The requirement for idiotype-specific helper T (Th) cells in the generation of a major intrastrain crossreactive idiotype was investigated. This idiotype, designated CRIA, is associated with a large proportion of anti-p-azobenzenearsonate (anti-Ar) antibodies in A/J mice. Secondary in vitro responses were studied. Using carrier-primed heterogeneous Th-cell populations, it was found that CRIA expression is determined by the mouse strain that provides the responding B cells and is independent of the strain of the Th cells functioning in vitro. Thus, A/J or A.BY (Ighe) B-plus-accessory-cell populations, primed in vivo to keyhole limpet hemocyanin-Ar (KLH-Ar), generated CRIA-dominant responses in vitro in the presence of KLH-Ar regardless of whether the KLH-primed Th cells were derived from CRIA+ strains (A/J or A.BY, Ighe) or CRIA- strains (B10.A or C57BL/10, Ighb). Further, when major histocompatibility complex-restricted, KLH-specific Th-cell clones were used, the CRIA dominance of the Ar-specific responses was again determined by the strain providing B plus accessory cells. Similar levels of expression of CRIA in Ar-specific antibodies were generated in the presence of heterogeneous or cloned Th cells. The results suggest that there is no absolute requirement for idiotype-specific Th cells in generating an Ar-specific secondary antibody response in vitro. PMID:2934739

  20. Ethanol-related alterations in gene expression patterns in the developing murine hippocampus.

    PubMed

    Mandal, Chanchal; Park, Kyoung Sun; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-08-01

    It is well known that consuming alcohol prior to and during pregnancy can cause harm to the developing fetus. Fetal alcohol spectrum disorder is a term commonly used to describe a range of disabilities that may arise from prenatal alcohol exposure such as fetal alcohol syndrome, partial fetal alcohol syndrome, alcohol-related neurodevelopmental disorders, and alcohol-related birth defects. Here, we report that maternal binge alcohol consumption alters several important genes that are involved in nervous system development in the mouse hippocampus at embryonic day 18. Microarray analysis revealed that Nova1, Ntng1, Gal, Neurog2, Neurod2, and Fezf2 gene expressions are altered in the fetal hippocampus. Pathway analysis also revealed the association of the calcium signaling pathway in addition to other pathways with the differentially expressed genes during early brain development. Alteration of such important genes and dynamics of the signaling pathways may cause neurodevelopmental disorders. Our findings offer insight into the molecular mechanism involved in neurodevelopmental disorders associated with alcohol-related defects.

  1. Murine bone cell lines as models for spaceflight induced effects on differentiation and gene expression

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.; Reitz, G.

    Critical health factors for space crews especially on long-term missions are radiation exposure and the absence of gravity DNA double strand breaks DSB are presumed to be the most deleterious DNA lesions after radiation as they disrupt both DNA strands in close proximity Besides radiation risk the absence of gravity influences the complex skeletal apparatus concerning muscle and especially bone remodelling which results from mechanical forces exerting on the body Bone is a dynamic tissue which is life-long remodelled by cells from the osteoblast and osteoclast lineage Any imbalance of this system leads to pathological conditions such as osteoporosis or osteopetrosis Osteoblastic cells play a crucial role in bone matrix synthesis and differentiate either into bone-lining cells or into osteocytes Premature terminal differentiation has been reported to be induced by a number of DNA damaging or cell stress inducing agents including ionising and ultraviolet radiation as well as treatment with mitomycin C In the present study we compare the effects of sequential differentiation by adding osteoinductive substances ss -glycerophosphate and ascorbic acid Radiation-induced premature differentiation was investigated regarding the biosynthesis of specific osteogenic marker molecules and the differentiation dependent expression of marker genes The bone cell model established in our laboratory consists of the osteocyte cell line MLO-Y4 the osteoblast cell line OCT-1 and the subclones 4 and 24 of the osteoblast cell line MC3T3-E1 expressing several

  2. The murine ufo receptor: molecular cloning, chromosomal localization and in situ expression analysis.

    PubMed

    Faust, M; Ebensperger, C; Schulz, A S; Schleithoff, L; Hameister, H; Bartram, C R; Janssen, J W

    1992-07-01

    We have cloned the mouse homologue of the ufo oncogene. It encodes a novel tyrosine kinase receptor characterized by a unique extracellular domain containing two immunoglobulin-like and two fibronectin type III repeats. Comparison of the predicted ufo amino acid sequences of mouse and man revealed an overall identity of 87.6%. The ufo locus maps to mouse chromosome 7A3-B1 and thereby extends the known conserved linkage group between mouse chromosome 7 and human chromosome 19. RNA in situ hybridization analysis established the onset of specific ufo expression in the late embryogenesis at day 12.5 post coitum (p.c.) and localized ufo transcription to distinct substructures of a broad spectrum of developing tissues (e.g. subepidermal cells of the skin, mesenchymal cells of the periosteum). In adult animals ufo is expressed in cells forming organ capsules as well as in connective tissue structures. ufo may function as a signal transducer between specific cell types of mesodermal origin.

  3. Ethanol-related alterations in gene expression patterns in the developing murine hippocampus.

    PubMed

    Mandal, Chanchal; Park, Kyoung Sun; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-08-01

    It is well known that consuming alcohol prior to and during pregnancy can cause harm to the developing fetus. Fetal alcohol spectrum disorder is a term commonly used to describe a range of disabilities that may arise from prenatal alcohol exposure such as fetal alcohol syndrome, partial fetal alcohol syndrome, alcohol-related neurodevelopmental disorders, and alcohol-related birth defects. Here, we report that maternal binge alcohol consumption alters several important genes that are involved in nervous system development in the mouse hippocampus at embryonic day 18. Microarray analysis revealed that Nova1, Ntng1, Gal, Neurog2, Neurod2, and Fezf2 gene expressions are altered in the fetal hippocampus. Pathway analysis also revealed the association of the calcium signaling pathway in addition to other pathways with the differentially expressed genes during early brain development. Alteration of such important genes and dynamics of the signaling pathways may cause neurodevelopmental disorders. Our findings offer insight into the molecular mechanism involved in neurodevelopmental disorders associated with alcohol-related defects. PMID:26063602

  4. Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth

    PubMed Central

    Simon, Trang; Cook, Victoria R.; Rao, Anuradha; Weinberg, Richard B.

    2011-01-01

    Apolipoprotein A-IV (apoA-IV) is synthesized by intestinal enterocytes during lipid absorption and secreted into lymph on the surface of nascent chylomicrons. A compelling body of evidence supports a central role of apoA-IV in facilitating intestinal lipid absorption and in regulating satiety, yet a longstanding conundrum is that no abnormalities in fat absorption, feeding behavior, or weight gain were observed in chow-fed apoA-IV knockout (A4KO) mice. Herein we reevaluated the impact of apoA-IV expression in C57BL6 and A4KO mice fed a high-fat diet. Fat balance and lymph cannulation studies found no effect of intestinal apoA-IV gene expression on the efficiency of fatty acid absorption, but gut sac transport studies revealed that apoA-IV differentially modulates lipid transport and the number and size of secreted triglyceride-rich lipoproteins in different anatomic regions of the small bowel. ApoA-IV gene deletion increased expression of other genes involved in chylomicron assembly, impaired the ability of A4KO mice to gain weight and increase adipose tissue mass, and increased the distal gut hormone response to a high-fat diet. Together these findings suggest that apoA-IV may play a unique role in integrating feeding behavior, intestinal lipid absorption, and energy storage. PMID:21840868

  5. Abnormal costimulatory phenotype and function of dendritic cells before and after the onset of severe murine lupus.

    PubMed

    Colonna, Lucrezia; Dinnall, Joudy-Ann; Shivers, Debra K; Frisoni, Lorenza; Caricchio, Roberto; Gallucci, Stefania

    2006-01-01

    We analyzed the activation and function of dendritic cells (DCs) in the spleens of diseased, lupus-prone NZM2410 and NZB-W/F1 mice and age-matched BALB/c and C57BL/6 control mice. Lupus DCs showed an altered ex vivo costimulatory profile, with a significant increase in the expression of CD40, decreased expression of CD80 and CD54, and normal expression of CD86. DCs from young lupus-prone NZM2410 mice, before the development of the disease, expressed normal levels of CD80 and CD86 but already overexpressed CD40. The increase in CD40-positive cells was specific for DCs and involved the subset of myeloid and CD8alpha+ DCs before disease onset, with a small involvement of plasmacytoid DCs in diseased mice. In vitro data from bone marrow-derived DCs and splenic myeloid DCs suggest that the overexpression of CD40 is not due to a primary alteration of CD40 regulation in DCs but rather to an extrinsic stimulus. Our analyses suggest that the defect of CD80 in NZM2410 and NZB-W/F1 mice, which closely resembles the costimulatory defect found in DCs from humans with systemic lupus erythematosus, is linked to the autoimmune disease. The increase in CD40 may instead participate in disease pathogenesis, being present months before any sign of autoimmunity, and its downregulation should be explored as an alternative to treatment with anti-CD40 ligand in lupus.

  6. Identification of specific recognition molecules on murine mononuclear phagocytes and B lymphocytes for Vi capsular polysaccharide: modulation of MHC class II expression on stimulation with the polysaccharide.

    PubMed Central

    Qadri, A

    1997-01-01

    Vi bacterial polysaccharide is a homopolymer of alpha 1-4 N-acetyl polygalacturonic acid with variable O-acetylation at position C-3 and forms a capsule around many bacteria. It has been referred to as the virulence factor of Salmonella typhi and is also a candidate vaccine against typhoid fever. The present study reports the interaction of this polysaccharide with murine mononuclear phagocytes and lymphocytes, and with human monocytes. Vi showed a dose-dependent binding to the murine monocyte cell lines WEHI-274.1 and J774. This binding was abrogated if the polysaccharide was deacetylated, suggesting involvement of acetyl groups in this interaction. Vi also bound to the murine B-cell lymphoma line A20, to peritoneal exudate cells and to a lesser degree to spleen cells and thymocytes from BALB/c mice. The polysaccharide also interacted with the human histiocytic lymphoma line U937 but not with the human monocyte cell line THP-1. Stimulation with Vi led to up-regulation of surface major histocompatibility complex (MHC) class II expression on A20 cells. Immunoprecipitation of Vi-bound molecules from cell surface biotinylated A20 and WEHI-274.1 revealed two bands with MW of about 32,000 and 36,000. The study demonstrates that Vi capsular polysaccharide can interact with mononuclear phagocytes and lymphocytes through specific cell surface molecules and modulate MHC class II expression. Images Figure 5 PMID:9370937

  7. Potential predictive role of chemotherapy-induced changes of soluble CD40 ligand in untreated advanced pancreatic ductal adenocarcinoma.

    PubMed

    Azzariti, Amalia; Brunetti, Oronzo; Porcelli, Letizia; Graziano, Giusi; Iacobazzi, Rosa Maria; Signorile, Michele; Scarpa, Aldo; Lorusso, Vito; Silvestris, Nicola

    2016-01-01

    Pancreas ductal adenocarcinoma lacks predictive biomarkers. CD40 is a member of the tumor necrosis factor superfamily. CD40-sCD40L interaction is considered to contribute to the promotion of tumor cell growth and angiogenesis. The aim of the present study was to investigate the role of serum sCD40L as a predictor in metastatic pancreatic cancer. We evaluated 27 consecutive pancreatic cancer patients treated with FOLFIRINOX (21 patients) or gemcitabine plus nab-paclitaxel combination (six patients). The sCD40L level was measured in serum by enzyme-linked immunosorbent assay at baseline, at first evaluation (all patients), and at time to progression (18 patients). The radiological response was evaluated according to the Response Evaluation Criteria in Solid Tumors, Version 1.1. The Wilcoxon signed-rank test was used to compare pre-post treatment sCD40L levels with respect to clinical response, while Pearson's correlation coefficient was used for the correlation between sCD40L and CA19.9 pre- and post-treatment. The Kruskal-Wallis test was also conducted for further comparisons. We observed a statistically significant reduction in the sCD40L level after 3 months of treatment in patients with partial response (11,718.05±7,097.13 pg/mL vs 4,689.42±5,409.96 pg/mL; P<0.01). Conversely, in patients with progressive disease, the biomarker statistically increased in the same time (9,351.51±7,356.91 pg/mL vs 22,282.92±11,629.35 pg/mL; P<0.01). This trend of sCD40L was confirmed in 18 patients at time to progression after the first evaluation. No differences were recorded within the stable disease group. Moreover, there was a positive correlation between the sCD40L and CA19.9 pre-post treatment variation percentage (Pearson's correlation coefficient =0.52; P<0.05). Our data suggest a possible predictive role of sCD40L in pancreatic cancer patients, similar to CA19.9. PMID:27555786

  8. Potential predictive role of chemotherapy-induced changes of soluble CD40 ligand in untreated advanced pancreatic ductal adenocarcinoma

    PubMed Central

    Azzariti, Amalia; Brunetti, Oronzo; Porcelli, Letizia; Graziano, Giusi; Iacobazzi, Rosa Maria; Signorile, Michele; Scarpa, Aldo; Lorusso, Vito; Silvestris, Nicola

    2016-01-01

    Pancreas ductal adenocarcinoma lacks predictive biomarkers. CD40 is a member of the tumor necrosis factor superfamily. CD40–sCD40L interaction is considered to contribute to the promotion of tumor cell growth and angiogenesis. The aim of the present study was to investigate the role of serum sCD40L as a predictor in metastatic pancreatic cancer. We evaluated 27 consecutive pancreatic cancer patients treated with FOLFIRINOX (21 patients) or gemcitabine plus nab-paclitaxel combination (six patients). The sCD40L level was measured in serum by enzyme-linked immunosorbent assay at baseline, at first evaluation (all patients), and at time to progression (18 patients). The radiological response was evaluated according to the Response Evaluation Criteria in Solid Tumors, Version 1.1. The Wilcoxon signed-rank test was used to compare pre–post treatment sCD40L levels with respect to clinical response, while Pearson’s correlation coefficient was used for the correlation between sCD40L and CA19.9 pre- and post-treatment. The Kruskal–Wallis test was also conducted for further comparisons. We observed a statistically significant reduction in the sCD40L level after 3 months of treatment in patients with partial response (11,718.05±7,097.13 pg/mL vs 4,689.42±5,409.96 pg/mL; P<0.01). Conversely, in patients with progressive disease, the biomarker statistically increased in the same time (9,351.51±7,356.91 pg/mL vs 22,282.92±11,629.35 pg/mL; P<0.01). This trend of sCD40L was confirmed in 18 patients at time to progression after the first evaluation. No differences were recorded within the stable disease group. Moreover, there was a positive correlation between the sCD40L and CA19.9 pre–post treatment variation percentage (Pearson’s correlation coefficient =0.52; P<0.05). Our data suggest a possible predictive role of sCD40L in pancreatic cancer patients, similar to CA19.9. PMID:27555786

  9. Bacterially expressed murine CSF-1 possesses agonistic activity in its monomeric form.

    PubMed

    Krautwald, S; Baccarini, M

    1993-04-30

    CSF-1 is a dimeric peptide growth factor, stabilized by disulfide bonds. We expressed mouse CSF-1 in bacteria as a fusion protein either with glutathione S-transferase (GST) or with a six histidine tag (His-tag). Large amounts of recombinant material were obtained and purified by a single affinity chromatography step. Purified CSF-1-His-tag monomers efficiently dimerized in vitro, but the presence of variable amounts of GST-moiety in CSF-1 preparations obtained by thrombin cleavage of GST-fusion proteins (thrombin-released CSF-1) interfered with dimerization. However, the thrombin-released CSF-1 monomers possessed agonistic activity, being capable of stimulating tyrosine phosphorylation of the CSF-1 receptor and of an array of cellular proteins in living macrophages and of supporting their growth. These results show that CSF-1 dimerization is not essential for receptor activation in vivo. PMID:8484779

  10. Effects of Representative Glucocorticoids on TNFα– and CD40L–Induced NF-κB Activation in Sensor Cells

    PubMed Central

    Cechin, Sirlene R.; Buchwald, Peter

    2014-01-01

    Glucocorticoids are an important class of anti-inflammatory/immunosuppressive drugs. A crucial part of their anti-inflammatory action results from their ability to repress proinflammatory transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) upon binding to the glucocorticoid receptor (GR). Accordingly, sensor cells quantifying their effect on inflammatory signal-induced NF-κB activation can provide useful information regarding their potencies as well as their transrepression abilities. Here, we report results obtained on their effect in suppressing both the TNFα- and the CD40L-induced activation of NF-κB in sensor cells that contain an NF-κB–inducible SEAP construct. In these cells, we confirmed concentration-dependent NF-κB activation for both TNFα and CD40L at low nanomolar concentrations (EC50). Glucocorticoids tested included hydrocortisone, prednisolone, dexamethasone, loteprednol etabonate, triamcinolone acetonide, beclomethasone dipropionate, and clobetasol propionate. They all caused significant, but only partial inhibition of these activations in concentration-dependent manners that could be well described by sigmoid response-functions. Despite the limitations of only partial maximum inhibitions, this cell-based assay could be used to quantitate the suppressing ability of glucocorticoids (transrepression potency) on the expression of proinflammatory transcription factors caused by two different cytokines in parallel both in a detailed, full dose-response format as well as in a simpler single-dose format. Whereas inhibitory potencies obtained in the TNF assay correlated well with consensus glucocorticoid potencies (receptor-binding affinities, Kd, RBA, at the GR) for all compounds, the non-halogenated steroids (hydrocortisone, prednisolone, and loteprednol etabonate) were about an order of magnitude more potent than expected in the CD40 assay in this system. PMID:24747770

  11. Mycobacterium-Specific γ9δ2 T Cells Mediate Both Pathogen-Inhibitory and CD40 Ligand-Dependent Antigen Presentation Effects Important for Tuberculosis Immunity.

    PubMed

    Abate, Getahun; Spencer, Charles T; Hamzabegovic, Fahreta; Blazevic, Azra; Xia, Mei; Hoft, Daniel F

    2016-02-01

    Numerous pathogens, including Mycobacterium tuberculosis, can activate human γ9δ2 T cells to proliferate and express effector mechanisms. γ9δ2 T cells can directly inhibit the growth of intracellular mycobacteria and may also act as antigen-presenting cells (APC). Despite evidence for γδ T cells having the capacity to function as APC, the mechanisms involved and importance of these effects on overall tuberculosis (TB) immunity are unknown. We prepared M. tuberculosis-specific γ9δ2 T cell lines to study their direct protective effects and APC functions for M. tuberculosis-specific αβ T cells. The direct inhibitory effects on intracellular mycobacteria were measured, and the enhancing effects on proliferative and effector responses of αβ T cells assessed. Furthermore, the importance of cell-to-cell contact and soluble products for γ9δ2 T cell effector responses and APC functions were investigated. We demonstrate, in addition to direct inhibitory effects on intracellular mycobacteria, the following: (i) γ9δ2 T cells enhance the expansion of M. tuberculosis-specific αβ T cells and increase the ability of αβ T cells to inhibit intracellular mycobacteria; (ii) although soluble mediators are critical for the direct inhibitory effects of γ9δ2 T cells, their APC functions do not require soluble mediators; (iii) the APC functions of γ9δ2 T cells involve cell-to-cell contact that is dependent on CD40-CD40 ligand (CD40L) interactions; and (iv) fully activated CD4(+) αβ T cells and γ9δ2 T cells provide similar immune enhancing/APC functions for M. tuberculosis-specific T cells. These effector and helper effects of γ9δ2 T cells further indicate that these T cells should be considered important new targets for new TB vaccines.

  12. A Trypanosoma cruzi alkaline antigen induces polyclonal B-cell activation of normal murine spleen cells by T-cell-independent, BCR-directed stimulation.

    PubMed

    Montes, C L; Zuñiga, E; Minoprio, P; Vottero-Cima, E; Gruppi, A

    1999-08-01

    We have previously reported that a cytosolic alkaline fraction (FI) obtained from epimastigotes of Trypanosoma cruzi promotes the activation, proliferation and differentiation of normal murine B cells into antibody-secreting plasmocytes. Neither the mechanism nor the cells involved in the FI-induced polyclonal B-cell activation were established. In this work we report that accessory cells are required for FI-induced polyclonal B-cell activation as no proliferative responses were obtained following treatment of normal spleen mononuclear cells (NSMC) with L-leucine methyl ester. Furthermore, FI did not induce the expression of CD25 on T cells and it promoted the proliferation of a T-cell-depleted population, indicating that it acts in a T-independent manner. We observed that NSMC were stimulated in vitro by FI-released cytokines, such as interleukin (IL)-4, IL-6 and IL-10, which are involved in B-cell proliferation and differentiation. Interestingly, while significant amounts of interferon-gamma (IFN-gamma) were found in culture supernatants we did not observe detectable levels of IL-2. Additionally, we found that B-cell receptor (BCR) and major histocompatibility complex (MHC) class II antigens were involved in the proliferative response induced by FI because antibodies directed against cell-surface immunoglobulin M (IgM), CD45 and MHC class II molecules inhibited the FI-induced B-cell proliferation. CD40 ligand (CD40L) did not participate in such a phenomenon.

  13. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model.

    PubMed

    Liu, Jinfeng; Xiao, Siyu; Huang, Shiguang; Pei, Fuquan; Lu, Fangli

    2016-02-01

    Malaria is the most relevant parasitic disease worldwide, and severe malaria is characterized by cerebral edema, acute lung injury (ALI), and multiple organ dysfunctions; however, the mechanisms of lung damage need to be better clarified. In this study, we used Kunming outbred mice infected with Plasmodium berghei ANKA (PbANKA) to elucidate the profiles of T cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand galecin-9 (Gal-9) in the development of ALI. Mice were injected intraperitoneally with 10(6) PbANKA-infected red blood cells. The lungs and mediastinal lymph nodes (MLNs) were harvested at days 5, 10, 15, and 20 post infections (p.i.). The grade of lung injury was histopathologically evaluated. Tim-3- and Gal-9-positive cells in the lungs and MLNs were stained by immunohistochemistry, and the messenger RNA (mRNA) expressions of Tim-3, Gal-9, and related cytokines were assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Bronchoalveolar lavage fluid (BALF) analyses were performed from days 18 to 20 p.i. The results showed that the pathological severities in the lungs were increased with times and the total protein level in the BALFs was significantly elevated in PbANKA-infected mice. The numbers of Gal-9(+) and Tim-3(+) cells in the lungs were significantly increased, and the mRNA levels of both Gal-9 and Tim-3 in the lungs and MLNs were over-expressed in PbANKA-infected mice. In conclusion, our data suggested that Tim-3/Gal-9 may play a role in PbANKA-induced ALI. PMID:26494364

  14. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model.

    PubMed

    Liu, Jinfeng; Xiao, Siyu; Huang, Shiguang; Pei, Fuquan; Lu, Fangli

    2016-02-01

    Malaria is the most relevant parasitic disease worldwide, and severe malaria is characterized by cerebral edema, acute lung injury (ALI), and multiple organ dysfunctions; however, the mechanisms of lung damage need to be better clarified. In this study, we used Kunming outbred mice infected with Plasmodium berghei ANKA (PbANKA) to elucidate the profiles of T cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand galecin-9 (Gal-9) in the development of ALI. Mice were injected intraperitoneally with 10(6) PbANKA-infected red blood cells. The lungs and mediastinal lymph nodes (MLNs) were harvested at days 5, 10, 15, and 20 post infections (p.i.). The grade of lung injury was histopathologically evaluated. Tim-3- and Gal-9-positive cells in the lungs and MLNs were stained by immunohistochemistry, and the messenger RNA (mRNA) expressions of Tim-3, Gal-9, and related cytokines were assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Bronchoalveolar lavage fluid (BALF) analyses were performed from days 18 to 20 p.i. The results showed that the pathological severities in the lungs were increased with times and the total protein level in the BALFs was significantly elevated in PbANKA-infected mice. The numbers of Gal-9(+) and Tim-3(+) cells in the lungs were significantly increased, and the mRNA levels of both Gal-9 and Tim-3 in the lungs and MLNs were over-expressed in PbANKA-infected mice. In conclusion, our data suggested that Tim-3/Gal-9 may play a role in PbANKA-induced ALI.

  15. A Genetically Engineered Adenovirus Vector Targeted to CD40 Mediates Transduction of Canine Dendritic Cells and Promotes Antigen-Specific Immune Responses In Vivo

    PubMed Central

    Thacker, Erin E.; Nakayama, Masaharu; Smith, Bruce F.; Bird, R. Curtis; Muminova, Zhanat; Strong, Theresa; Timares, Laura; Korokhov, Nikolay; O'Neill, Ann Marie; de Gruijl, Tanja D.; Glasgow, Joel N.; Tani, Kenzaburo; Curiel, David T.

    2009-01-01

    Targeting viral vectors encoding tumor-associated antigens to dendritic cells (DCs) in vivo is likely to enhance the effectiveness of immunotherapeutic cancer vaccines. We have previously shown that genetic modification of adenovirus (Ad) 5 to incorporate CD40 ligand (CD40L) rather than native fiber allows selective transduction and activation of DCs in vitro. Here, we examine the capacity of this targeted vector to induce immune responses to the tumor antigen CEA in a stringent in vivo canine model. CD40-targeted Ad5 transduced canine DCs via the CD40-CD40L pathway in vitro, and following vaccination of healthy dogs, CD40-targeted Ad5 induced strong anti-CEA cellular and humoral responses. These data validate the canine model for future translational studies and suggest targeting of Ad5 vectors to CD40 for in vivo delivery of tumor antigens to DCs is a feasible approach for successful cancer therapy. PMID:19786146

  16. Does Pattern Scan Laser (PASCAL) photocoagulation really induce less VEGF expression in murine retina than conventional laser treatment?

    PubMed

    Konac, Ece; Sonmez, Kenan; Bahcelioglu, Meltem; Kaplanoglu, Gulnur Take; Varol, Nuray; Sarac, Gulce Naz; Ozcan, P Yasin

    2014-10-01

    To investigate the differences in the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in murine retina between mice subjected to conventional laser (AG) and those subjected to Pattern Scan Laser (PASCAL) system. Male C57BL/6 mice were randomly assigned to one of three groups: Group 1 (G1) receiving retinal scatter laser photocoagulation using with AG photocoagulator (n=16), Group 2 (G2) receiving retinal scatter laser photocoagulation using with PASCAL (n=16) and Group 3 (G3) served as an untreated control group (n=6). Molecular and morphological analyses of VEGF were performed on days 1, 2 and 5 by ELISA, real-time PCR and immuno-histochemical analysis. In samples which underwent AG (G1), when compared with the control group (G3), VEGF mRNA level increased 2.4 folds on day 2, whereas it decreased on day 5 (p□0.001). In samples which underwent PASCAL (G2), on the other hand, VEGF mRNA level increased 1.8 folds on day 1 and 2.2 folds on day 5 when compared with the control group (G3). In samples which underwent AG (G1), when compared with the control group (G3), VEGF protein level increased significantly on day 2, whereas it decreased on day 5 (p□0.001). In group G2, the VEGF levels in the sensory retina significantly increased as compared to control groups at both 2 and 5 days after laser photocoagulation using PASCAL laser (p=0.012, both time points). The peak expressions of VEGF protein in samples which underwent PASCAL and conventional laser were found on day 5 and day 2 respectively. In retinas of PASCAL-treated mice, VEGF immunoreactivity gradually increased during the 5-day follow-up. However, in argon laser group, the strongest VEGF immunoreactivity was detected on day 2, then started to decrease on day 5. In summary, the expression of VEGF protein and mRNA gradually increase during a 5-day follow-up period in PASCAL-treated mouse eyes, whereas in AG group they reach their peak levels on the second day of follow-up and

  17. Immunoliposome co-delivery of bufalin and anti-CD40 antibody adjuvant induces synergetic therapeutic efficacy against melanoma

    PubMed Central

    Li, Ying; Yuan, Jiani; Yang, Qian; Cao, Wei; Zhou, Xuanxuan; Xie, Yanhua; Tu, Honghai; Zhang, Ya; Wang, Siwang

    2014-01-01

    Liposomes constitute one of the most popular nanocarriers for improving the delivery and efficacy of agents in cancer patients. The purpose of this study was to design and evaluate immunoliposome co-delivery of bufalin and anti-CD40 to induce synergetic therapeutic efficacy while eliminating systemic side effects. Bufalin liposomes (BFL) conjugated with anti-CD40 antibody (anti-CD40-BFL) showed enhanced cytotoxicity compared with bufalin alone. In a mouse B16 melanoma model, intravenous injection of anti-CD40-BFL achieved smaller tumor volume than did treatment with BFL (average: 117 mm3 versus 270 mm3, respectively); the enhanced therapeutic efficacy through a caspase-dependent pathway induced apoptosis, which was confirmed using terminal deoxynucleotidyl transferase-mediated dUTP-Fluorescein nick end labeling and Western blot assay. Meanwhile, anti-CD40-BFL elicited unapparent body-weight changes and a significant reduction in serum levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, interferon-γ, and hepatic enzyme alanine transaminase, suggesting minimized systemic side effects. This may be attributed to the mechanism by which liposomes are retained within the tumor site for an extended period of time, which is supported by the following biodistribution and flow cytometric analyses. Taken together, the results demonstrated a highly promising strategy for liposomal vehicle transport of anti-CD40 plus bufalin that can be used to enhance antitumor effects via synergetic systemic immunity while blocking systemic toxicity. PMID:25506218

  18. Osteopontin Modulates Inflammation, Mucin Production, and Gene Expression Signatures After Inhalation of Asbestos in a Murine Model of Fibrosis

    PubMed Central

    Sabo-Attwood, Tara; Ramos-Nino, Maria E.; Eugenia-Ariza, Maria; MacPherson, Maximilian B.; Butnor, Kelly J.; Vacek, Pamela C.; McGee, Sean P.; Clark, Jessica C.; Steele, Chad; Mossman, Brooke T.

    2011-01-01

    Inflammation and lung remodeling are hallmarks of asbestos-induced fibrosis, but the molecular mechanisms that control these events are unclear. Using laser capture microdissection (LCM) of distal bronchioles in a murine asbestos inhalation model, we show that osteopontin (OPN) is up-regulated by bronchiolar epithelial cells after chrysotile asbestos exposures. In contrast to OPN wild-type mice (OPN+/+) inhaling asbestos, OPN null mice (OPN−/−) exposed to asbestos showed less eosinophilia in bronchoalveolar lavage fluids, diminished lung inflammation, and decreased mucin production. Bronchoalveolar lavage fluid concentrations of inflammatory cytokines (IL-1β, IL-4, IL-6, IL-12 subunit p40, MIP1α, MIP1β, and eotaxin) also were significantly less in asbestos-exposed OPN−/− mice. Microarrays performed on lung tissues from asbestos-exposed OPN+/+ and OPN−/− mice showed that OPN modulated the expression of a number of genes (Col1a2, Timp1, Tnc, Eln, and Col3a1) linked to fibrosis via initiation and cross talk between IL-1β and epidermal growth factor receptor-related signaling pathways. Novel targets of OPN identified include genes involved in cell signaling, immune system/defense, extracellular matrix remodeling, and cell cycle regulation. Although it is unclear whether the present findings are specific to chrysotile asbestos or would be observed after inhalation of other fibers in general, these results highlight new potential mechanisms and therapeutic targets for asbestosis and other diseases (asthma, smoking-related interstitial lung diseases) linked to OPN overexpression. PMID:21514415

  19. Impact of Enriched Environment on Murine T Cell Differentiation and Gene Expression Profile

    PubMed Central

    Rattazzi, Lorenza; Piras, Giuseppa; Brod, Samuel; Smith, Koval; Ono, Masahiro; D’Acquisto, Fulvio

    2016-01-01

    T cells are known to be plastic and to change their phenotype according to the cellular and biochemical milieu they are embedded in. In this study, we transposed this concept at a macroscopic level assessing whether changes in the environmental housing conditions of C57/BL6 mice would influence the phenotype and function of T cells. Our study shows that exposure to 2 weeks in an enriched environment (EE) does not impact the T cell repertoire in vivo and causes no changes in the early TCR-driven activation events of these cells. Surprisingly, however, T cells from enriched mice showed a unique T helper effector cell phenotype upon differentiation in vitro. This was featured by a significant reduction in their ability to produce IFN-γ and by an increased release of IL-10 and IL-17. Microarray analysis of these cells also revealed a unique gene fingerprint with key signaling pathways involved in autoimmunity being modulated. Together, our results provide first evidence for a specific effect of EE on T cell differentiation and its associated changes in gene expression profile. In addition, our study sheds new light on the possible mechanisms by which changes in environmental factors can significantly influence the immune response of the host and favor the resolution of the inflammatory response. PMID:27746779

  20. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    SciTech Connect

    Ohara, Kazuaki; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa; Shindo, Kazutoshi; Yajima, Hiroaki; Yoshida, Aruto

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  1. [Mutant gene expression in murine aggregation chimeras. 5. The ocular retardation and fidget genes].

    PubMed

    Kindiakov, B N; Koniukhov, B V

    1986-01-01

    Analysis of ocular retardation (or) and fidget (fi) genes expression in 18 day old embryos, 10 and 20 day old or/or C/C----+/+ c/c and fi/fi or/or C/C----+/+ +/+ c/c mice has shown that genes or and fi are active in developing retina and suppress cell proliferation. Structural defects of retina and decrease in the eye size in the chimaeras, compared to the normal embryos, were observed already in the presence of 13-16% of mutant cells. As the fraction of mutant cells increased, the degree of eye disturbances increased as well. In the fi/fi or/or----+/+ +/+ chimaeras structural defects of retina and decrease in the eye size are more pronounced than in the or/or----+/+ chimaeras, due to the synergetical effect of both mutant genes in the fi/fi or/or cell clones. In the ontogenesis of the or/or----+/+ chimaeras the development of the retinal photoreceptor layer is normalized due to the substitution of mutant cells for actively proliferating normal cells. No metabolic cooperation between the mutant and normal cells was observed in the developing retina of chimaeras.

  2. Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells.

    PubMed

    Rangaswamy, Udaya S; Speck, Samuel H

    2014-01-01

    Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner--leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4). Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA) resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- -mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4--a key player in plasma cell differentiation--which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation.

  3. Murine Gammaherpesvirus M2 Protein Induction of IRF4 via the NFAT Pathway Leads to IL-10 Expression in B Cells

    PubMed Central

    Rangaswamy, Udaya S.; Speck, Samuel H.

    2014-01-01

    Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner – leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4). Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA) resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4 – a key player in plasma cell differentiation – which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation. PMID:24391506

  4. miRNA Expression Profiling of the Murine TH-MYCN Neuroblastoma Model Reveals Similarities with Human Tumors and Identifies Novel Candidate MiRNAs

    PubMed Central

    Terrile, Marta; Bryan, Kenneth; Vaughan, Lynsey; Hallsworth, Albert; Webber, Hannah

    2011-01-01

    Background MicroRNAs are small molecules which regulate gene expression post-transcriptionally and aberrant expression of several miRNAs is associated with neuroblastoma, a childhood cancer arising from precursor cells of the sympathetic nervous system. Amplification of the MYCN transcription factor characterizes the most clinically aggressive subtype of this disease, and although alteration of p53 signaling is not commonly found in primary tumors, deregulation of proteins involved in this pathway frequently arise in recurrent disease after pharmacological treatment. TH-MYCN is a well-characterized transgenic model of MYCN-driven neuroblastoma which recapitulates many clinicopathologic features of the human disease. Here, we evaluate the dysregulation of miRNAs in tumors from TH-MYCN mice that are either wild-type (TH-MYCN) or deficient (TH-MYCN/p53ERTAM) for the p53 tumor suppressor gene. Principal Findings We analyzed the expression of 591 miRNAs in control (adrenal) and neuroblastoma tumor tissues derived from either TH-MYCN or TH-MYCN/p53ERTAM mice, respectively wild-type or deficient in p53. Comparing miRNA expression in tumor and control samples, we identified 159 differentially expressed miRNAs. Using data previously obtained from human neuroblastoma samples, we performed a comparison of miRNA expression between murine and human tumors to assess the concordance between murine and human expression data. Notably, the miR-17-5p-92 oncogenic polycistronic cluster, which is over-expressed in human MYCN amplified tumors, was over-expressed in mouse tumors. Moreover, analyzing miRNAs expression in a mouse model (TH-MYCN/p53ERTAM) possessing a transgenic p53 allele that drives the expression of an inactive protein, we identified miR-125b-3p and miR-676 as directly or indirectly regulated by the level of functional p53. Significance Our study represents the first miRNA profiling of an important mouse model of neuroblastoma. Similarities and differences in mi

  5. Flanking regulatory sequences of the locus encoding the murine GDNF receptor, c-ret, directs lac Z (beta-galactosidase) expression in developing somatosensory system.

    PubMed

    Sukumaran, M; Waxman, S G; Wood, J N; Pachnis, V

    2001-11-01

    RET forms the catalytic component within the receptor complex that transmits signals from the GDNF family of neurotrophic factors. To study the mechanisms regulating the cell-type specific expression of this gene, we have cloned and characterised the murine c-ret locus. A cosmid contig comprising approximately 60 kb of the mouse genome encompassing the entire structural gene and flanking sequences have been isolated and the transcription initiation site identified and promoter characterised. The murine c-ret promoter lacks a TATA initiation motif and has GC enriched DNA sequences reminiscent of CpG islands. Analysis of transgenic mice lines bearing the Lac Z (beta-galactosidase) reporter gene under the control of 5' flanking sequences show modularity in the organisation of cis-regulatory domains within the locus. Cloned 5' flanking sequences comprise a distal regulatory domain directing Lac Z expression at the primitive streak, lateral mesoderm and facial ganglia and a proximal sensory neurones specific regulatory domain inducing Lac Z expression primarily within the developing somatosensory system. The spatial and temporal progression of transgene expression precisely recapitulates endogenous gene expression in developing sensory ganglia including its induction in postnatal Isolectin B4 binding nociceptive neurones. PMID:11747074

  6. Lipopolysaccharide of Aggregatibacter actinomycetemcomitans induces the expression of chemokines MCP-1, MIP-1α, and IP-10 via similar but distinct signaling pathways in murine macrophages.

    PubMed

    Park, Ok-Jin; Cho, Min-Kyung; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium frequently isolated from lesions of patients with localized aggressive periodontitis. Lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria, stimulates innate immune cells via Toll-like receptor 4 (TLR4) to initiate inflammatory responses. In this study, we purified LPS from A. actinomycetemcomitans (AaLPS) and investigated its ability to induce the expression of chemokines, which play an important role in recruitment of leukocytes to the infection site. AaLPS induced the expression of chemokines, MCP-1, MIP-1α, and IP-10 in murine macrophages, leading to the infiltration of peripheral blood mononuclear cells in a transwell system. Although TLR4 was essential for the induction of all these chemokines by AaLPS, MCP-1 and MIP-1α expressions were MyD88-dependent, but IP-10 expression was MyD88-independent, as determined using macrophages from mice deficient in TLR4 or MyD88. Furthermore, the activation of ERK and JNK were necessary for the expression of MCP-1 and MIP-1α, whereas p38 MAP kinase and JNK activations were required for IP-10 expression. In addition, IFN-β/STAT1 signaling was exclusively involved in IP-10 expression but not in MCP-1 or MIP-1α expression. AaLPS also activated the transcription factors, NF-κB, AP-1, NF-IL6, and ISRE, all of which are involved in chemokine gene expression. These results suggest that AaLPS induces the expression of chemokines MCP-1, MIP-1α, and IP-10 through TLR4 in murine macrophages. Further, the induction of MCP-1 and MIP-1α requires MyD88, ERK, and JNK, whereas the induction of IP-10 requires JNK, p38 MAP kinase, and IFN-β/STAT1.

  7. Translational initiation factor expression and ribosomal protein gene expression are repressed coordinately but by different mechanisms in murine lymphosarcoma cells treated with glucocorticoids.

    PubMed Central

    Huang, S; Hershey, J W

    1989-01-01

    P1798 murine lymphosarcoma cells cease to proliferate upon exposure to 10(-7) M dexamethasone and exhibit a dramatic inhibition of rRNA and ribosomal protein synthesis (O. Meyuhas, E. Thompson, Jr., and R. P. Perry, Mol. Cell Biol. 7:2691-2699, 1987). These workers demonstrated that ribosomal protein synthesis is regulated primarily at the level of translation, since dexamethasone did not alter mRNA levels but shifted the mRNAs from active polysomes into inactive messenger ribonucleoproteins. We have examined the effects of dexamethasone on the biosynthesis of initiation factor proteins in the same cell line. The relative protein synthesis rates of eIF-4A and eIF-2 alpha were inhibited by about 70% by the hormone, a reduction comparable to that for ribosomal proteins. The mRNA levels of eIF-4A, eIF-4D, and eIF-2 alpha also were reduced by 60 to 70%, indicating that synthesis rates are proportional to mRNA concentrations. Analysis of polysome profiles showed that the average number of ribosomes per initiation factor polysome was only slightly reduced by dexamethasone, and little or no mRNA was present in messenger ribonucleoproteins. The results indicate that initiation factor gene expression is coordinately regulated with ribosomal protein synthesis but is controlled primarily by modulating mRNA levels rather than mRNA efficiency. Images PMID:2779563

  8. Increased Gal-9 and Tim-3 expressions during liver damage in a murine malarial model.

    PubMed

    Xiao, Siyu; Liu, Jinfeng; Huang, Shiguang; Lu, Fangli

    2016-02-01

    Malaria has been one of the most devastating tropical parasite infectious diseases popular around the world. Severe malaria is characterized by multiple organ dysfunctions, especially liver damage. However, the mechanisms of malarial liver injury remain to be better clarified. In this study, Kunming mice inoculated intraperitoneally (i.p.) with 10(6) Plasmodium berghei ANKA (PbANKA)-infected red blood cells (iRBCs) were investigated at days 5, 10, 15, and 20 post-infection (p.i.) to elucidate the profiles of T-cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand galecin-9 (Gal-9) in the development of liver injury. The histopathology of livers and spleens from PbANKA-infected mice were observed, the parasite burdens of the livers and spleens using quantitative real-time PCR (qRT-PCR), Tim-3- and Gal-9-positive cells in the livers and spleens using immunohistochemical staining, and the mRNA levels of Tim-3, Gal-9, and cytokines in both the livers and spleens using qRT-PCR were examined. Our results showed that parasite burdens in the livers and spleens were significantly increased with time after PbANKA infection. Histological scores of both the liver and spleen tissues were significantly increased with time; the numbers of Tim-3- and Gal-9-positive cells were significantly increased in both the livers and spleens using immunohistochemical staining, and the mRNA levels of Tim-3 and Gal-9 in the livers and spleens were also significantly increased after infection. Our data suggests that the increase of Tim-3/Gal-9 expressions may play an important role in the liver damage during P. berghei infection.

  9. Adenoviral expression of murine serum amyloid A proteins to study amyloid fibrillogenesis.

    PubMed

    Kindy, M S; King, A R; Yu, J; Gerardot, C; Whitley, J; de Beer, F C

    1998-06-15

    Serum amyloid A (SAA) proteins are one of the most inducible acute-phase reactants and are precursors of secondary amyloidosis. In the mouse, SAA1 and SAA2 are induced in approximately equal quantities in response to amyloid induction models. These two isotypes differ in only 9 of 103 amino acid residues; however, only SAA2 is selectively deposited into amyloid fibrils. SAA expression in the CE/J mouse species is an exception in that gene duplication did not occur and the CE/J variant is a hybrid molecule sharing features of SAA1 and SAA2. However, even though it is more closely related to SAA2 it is not deposited as amyloid fibrils. We have developed an adenoviral vector system to overexpress SAA proteins in cell culture to determine the ability of these proteins to form amyloid fibrils, and to study the structural features in relation to amyloid formation. Both the SAA2 and CE/J SAA proteins were synthesized in large quantities and purified to homogeneity. Electron microscopic analysis of the SAA proteins revealed that the SAA2 protein was capable of forming amyloid fibrils, whereas the CE/J SAA was incapable. Radiolabelled SAAs were associated with normal or acute-phase high-density lipoproteins (HDLs); we examined them for their clearance from the circulation. In normal mice, SAA2 had a half-life of 70 min and CE/J SAA had a half-life of 120 min; however, in amyloid mice 50% of the SAA2 cleared in 55 min, compared with 135 min for the CE/J protein. When the SAA proteins were associated with acute-phase HDLs, SAA2 clearance was decreased to 60 min in normal mice compared with 30 min in amyloidogenic mice. Both normal and acute-phase HDLs were capable of depositing SAA2 into preformed amyloid fibrils, whereas the CE/J protein did not become associated with amyloid fibrils. This established approach opens the doors for large-scale SAA production and for the examination of specific amino acids involved in the fibrillogenic capability of the SAA2 molecule in vitro

  10. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse

    NASA Technical Reports Server (NTRS)

    Tidball, James G.; Spencer, Melissa J.

    2002-01-01

    Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.

  11. Rearrangement and expression of endogenous immunoglobulin genes occur in many murine B cells expressing transgenic membrane IgM.

    PubMed

    Stall, A M; Kroese, F G; Gadus, F T; Sieckmann, D G; Herzenberg, L A; Herzenberg, L A

    1988-05-01

    Transgenic mice carrying immunoglobulin genes coding for mu heavy chain and kappa light chain have been used to study the mechanisms involved in allelic and isotypic exclusion. We report here that individual cells from transgenic mice carrying a functionally rearranged mu heavy chain gene (capable of generating both membrane and secreted forms of IgM) can rearrange an endogenous mu heavy chain gene and simultaneously produce both transgenic and endogenous IgM. These "double-producing" cells express both endogenous and transgenic IgM in the cytoplasm (detected by immunohistology) and on the cell surface (detected by multiparameter fluorescence-activated cell sorter analysis). In addition, they secrete mixed IgM molecules containing both transgenic and endogenous mu heavy chains (detected in serum by radioimmune assay). The transgenic mice studied also have relatively large numbers of cells that produce endogenous immunoglobulin in the absence of detectable transgenic immunoglobulin ("endogenous-only cells"). The mechanisms that generate double-producing cells and endogenous-only cells appear to be under genetic control because the frequencies of these B-cell populations are characteristic for a given transgenic line. Thus, our findings indicate that more is involved in triggering allelic exclusion than the simple presence or absence of membrane mu heavy chains (as has been previously postulated).

  12. Expression of Clu and Tgfb1 during murine tooth development: effects of in-vivo transfection with anti-miR-214.

    PubMed

    Khan, Qalb-E-Saleem; Sehic, Amer; Khuu, Cuong; Risnes, Steinar; Osmundsen, Harald

    2013-08-01

    Expression of clusterin (Clu) in the murine first molar tooth germ was markedly increased at postnatal developmental stages. The time-course of expression of this gene paralleled those of other genes encoding proteins involved during the secretory phase of odontogenesis, as described previously. Immunohistochemical studies of clusterin in murine molar tooth germs suggested this protein to be located in outer enamel epithelium, regressing enamel organ, secretory ameloblasts, and the dental epithelium connecting the tooth to the oral epithelium at an early eruptive stage. Immunolabelling of transforming growth factor beta-1 (TGF-β1) revealed it to be located close to clusterin. The levels of expression of Clu and Tgfb1 were markedly decreased following in-vivo transfection with anti-miR-214. In contrast, the expression of several genes associated with regulation of growth and development were increased by this treatment. We suggest that clusterin has functions during secretory odontogenesis and the early eruptive phase. Bioinformatic analysis after treatment with anti-miR-214 suggested that, whilst cellular activities associated with tooth mineralization and eruption were inhibited, activities associated with an alternative developmental activity (i.e. biosynthesis of contractile proteins) appeared to be stimulated. These changes probably occur through regulation mediated by a common cluster of transcription factors and support suggestions that microRNAs (miRNAs) are highly significant as regulators of differentiation during odontogenesis.

  13. Primary structure and developmental expression pattern of Hox 3.1, a member of the murine Hox 3 homeobox gene cluster.

    PubMed Central

    Breier, G; Dressler, G R; Gruss, P

    1988-01-01

    The murine Hox 3.1 gene maps to a cluster of homeobox-containing genes on chromosome 15. We report the primary structure of the Hox 3.1 protein, as deduced from cDNA sequences, and the expression of Hox 3.1 mRNA during embryogenesis. In addition, a second member of the gene cluster, Hox 3.2, is characterized. The predicted Hox 3.1 protein consists of 242 amino acid residues and has a calculated mol. wt of 28 kd. Besides the homeodomain, it shares with other murine homeodomain proteins a conserved hexapeptide, a region rich in glutamic acid residues at the carboxy terminus and homology at the amino terminus. During embryogenesis, Hox 3.1 transcripts are detected first in the posterior neural tube of 9.5 days post-coital embryos. At later developmental stages, a ventral-dorsal gradient of Hox 3.1 transcript accumulation is established. Hox 3.1 transcripts also are detected in the thoracic sclerotomes from the 6th to the 10th thoracic pre-vertebrae. The data support the hypothesis that the Hox 3.1 gene specifies positional information during murine embryogenesis. Images PMID:2900757

  14. Short-term regulation of murine colonic NBCe1-B (electrogenic Na+/HCO3(-) cotransporter) membrane expression and activity by protein kinase C.

    PubMed

    May, Oliver; Yu, Haoyang; Riederer, Brigitte; Manns, Michael P; Seidler, Ursula; Bachmann, Oliver

    2014-01-01

    The colonic mucosa actively secretes HCO3(-), and several lines of evidence point to an important role of Na+/HCO3(-) cotransport (NBC) as a basolateral HCO3(-) import pathway. We could recently demonstrate that the predominant NBC isoform in murine colonic crypts is electrogenic NBCe1-B, and that secretagogues cause NBCe1 exocytosis, which likely represents a component of NBC activation. Since protein kinase C (PKC) plays a key role in the regulation of ion transport by trafficking events, we asked whether it is also involved in the observed NBC activity increase. Crypts were isolated from murine proximal colon to assess PKC activation as well as NBC function and membrane abundance using fluorometric pHi measurements and cell surface biotinylation, respectively. PKC isoform translocation and phosphorylation occurred in response to PMA-, as well as secretagogue stimulation. The conventional and novel PKC inhibitors Gö6976 or Gö6850 did not alter NBC function or surface expression by themselves, but stimulation with forskolin (10(-5) M) or carbachol (10(-4) M) in their presence led to a significant decrease in NBC-mediated proton flux, and biotinylated NBCe1. Our data thus indicate that secretagogues lead to PKC translocation and phosphorylation in murine colonic crypts, and that PKC is necessary for the increase in NBC transport rate and membrane abundance caused by cholinergic and cAMP-dependent stimuli.

  15. CD40: Novel Association with Crohn's Disease and Replication in Multiple Sclerosis Susceptibility

    PubMed Central

    Alcina, Antonio; Teruel, María; Díaz-Gallo, Lina M.; Gómez-García, María; López-Nevot, Miguel A.; Rodrigo, Luis; Nieto, Antonio; Cardeña, Carlos; Alcain, Guillermo; Díaz-Rubio, Manuel; de la Concha, Emilio G.; Fernandez, Oscar; Arroyo, Rafael

    2010-01-01

    Background A functional polymorphism located at −1 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves' disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS) susceptibility. However, the protective allele associated with Graves' disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn's disease (CD) lesions. Methodology Genotyping of rs1883832C>T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC) Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. Principal Findings The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p = 0.025; OR (95% CI) = 1.12 (1.01–1.23)]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p = 0.002; OR (95% CI) = 1.19 (1.06–1.33)]. This increased predisposition was not detected in UC patients [p = 0.5; OR (95% CI) = 1.04 (0.93–1.17)]. Conclusion The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions. PMID:20634952

  16. Topical glucocorticoids application induced an augmentation in the expression of IL-1alpha while inhibiting the expression of IL-10 in the epidermis in murine contact hypersensitivity.

    PubMed

    Igawa, K; Yokozeki, H; Miyazaki, Y; Minatohara, K; Satoh, T; Katayama, I; Nishioka, K

    2001-03-01

    The repeated application of glucocorticoids (GC) on the skin augmented the inflammatory response of both allergic and irritant contact dermatitis in our studies. In order to further clarify the mechanism of such an augmentation of contact hypersensitivity (CHS), we investigated the modulatory effects of cytokines in the epidermis after the administration of GC at challenged sites in CHS. Diflucortolone valerate was applied to BALB/c mice on alternate days for a total of nine times. On day 12, they were contact sensitized with dinitrofluorobenzene (DNFB). Next, on day 17, one day after the last application of GC, they were challenged with DNFB on the ear. The whole challenged ear lobes were removed after a hapten challenge and then were analysed by the RT-PCR method or underwent an immunohistochemical analysis. To clarify the modulatory effects of cytokines in vivo, DNFB sensitized mice pre-treated with GC were injected with rIL-10, IL-1 receptor antagonist (ra) and anti-IL-1alpha monoclonal antibody (mAb) and thereafter were challenged with DNFB. A RT-PCR analysis has demonstrated IL-10 mRNA to be detected in the challenged skin of non-GC-pretreated mice but not in that of GC-pre-treated mice after challenge. On the other hand, the expression of IL-1alpha mRNA in the challenged skin of mice pretreated with GC was more strongly detected that that in mice without GC-pretreatment. Furthermore, an immuno-histochemical analysis in the challenge showed the expression of IL-10 in the skin showed the expression of IL-10 in the challenged epidermis of the non-GC-pretreated mice but not in the GC-pretreated mice and IL-1alpha was also strongly expressed in the epidermis of the GC-pretreated mice. A subcutaneous injection of anti-IL-1alpha mAb or IL-1 ra inhibited the augmented CHS reaction in the GC-pretreated mice. A subcutaneous injection of rIL-10 also inhibited the augmentation of the CHS reaction in the GC-pretreated mice; however, no such inhibition was observed in the

  17. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL.

    PubMed

    Kostenuik, Paul J; Nguyen, Hung Q; McCabe, James; Warmington, Kelly S; Kurahara, Carol; Sun, Ning; Chen, Ching; Li, Luke; Cattley, Russ C; Van, Gwyneth; Scully, Shelia; Elliott, Robin; Grisanti, Mario; Morony, Sean; Tan, Hong Lin; Asuncion, Frank; Li, Xiaodong; Ominsky, Michael S; Stolina, Marina; Dwyer, Denise; Dougall, William C; Hawkins, Nessa; Boyle, William J; Simonet, William S; Sullivan, John K

    2009-02-01

    RANKL is a TNF family member that mediates osteoclast formation, activation, and survival by activating RANK. The proresorptive effects of RANKL are prevented by binding to its soluble inhibitor osteoprotegerin (OPG). Recombinant human OPG-Fc recognizes RANKL from multiple species and reduced bone resorption and increased bone volume, density, and strength in a number of rodent models of bone disease. The clinical development of OPG-Fc was discontinued in favor of denosumab, a fully human monoclonal antibody that specifically inhibits primate RANKL. Direct binding assays showed that denosumab bound to human RANKL but not to murine RANKL, human TRAIL, or other human TNF family members. Denosumab did not suppress bone resorption in normal mice or rats but did prevent the resorptive response in mice challenged with a human RANKL fragment encoded primarily by the fifth exon of the RANKL gene. To create mice that were responsive to denosumab, knock-in technology was used to replace exon 5 from murine RANKL with its human ortholog. The resulting "huRANKL" mice exclusively express chimeric (human/murine) RANKL that was measurable with a human RANKL assay and that maintained bone resorption at slightly reduced levels versus wildtype controls. In young huRANKL mice, denosumab and OPG-Fc each reduced trabecular osteoclast surfaces by 95% and increased bone density and volume. In adult huRANKL mice, denosumab reduced bone resorption, increased cortical and cancellous bone mass, and improved trabecular microarchitecture. These huRANKL mice have potential utility for characterizing the activity of denosumab in a variety of murine bone disease models.

  18. Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders.

    PubMed

    Davidson, Donna C; Hirschman, Michael P; Sun, Anita; Singh, Meera V; Kasischke, Karl; Maggirwar, Sanjay B

    2012-01-01

    Despite the use of anti-retroviral therapies, a majority of HIV-infected individuals still develop HIV-Associated Neurocognitive Disorders (HAND), indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistently, we have previously shown that levels of the inflammatory mediator soluble CD40L (sCD40L) are elevated in the circulation of HIV-infected, cognitively impaired individuals as compared to their infected, non-impaired counterparts. Recent studies from our group suggest a role for the CD40/CD40L dyad in blood brain barrier (BBB) permeability and interestingly, sCD40L is thought to regulate BBB permeability in other inflammatory disorders of the CNS. Using complementary multiphoton microscopy and quantitative analyses in wild-type and CD40L deficient mice, we now reveal that the HIV transactivator of transcription (Tat) can induce BBB permeability in a CD40L-dependent manner. This permeability of the BBB was found to be the result of aberrant platelet activation induced by Tat, since depletion of platelets prior to treatment reversed Tat-induced BBB permeability. Furthermore, Tat treatment led to an increase in granulocyte antigen 1 (Gr1) positive monocytes, indicating an expansion of the inflammatory subset of cells in these mice, which were found to adhere more readily to the brain microvasculature in Tat treated animals. Exploring the mechanisms by which the BBB becomes compromised during HIV infection has the potential to reveal novel therapeutic targets, thereby aiding in the development of adjunct therapies for the management of HAND, which are currently lacking.

  19. Cell enrichment-free massive ex-vivo expansion of peripheral CD20⁺ B cells via CD40-CD40L signals in non-human primates.

    PubMed

    Kim, Jung-Sik; Byun, Nari; Chung, Hyunwoo; Kim, Hyun-Je; Kim, Jong-Min; Chun, Taehoon; Lee, Won-Woo; Park, Chung-Gyu

    2016-04-22

    Non-human primates (NHPs) are valuable as preclinical resources that bridge the gap between basic science and clinical application. B cells from NHPs have been utilized for the development of B-cell targeted drugs and cell-based therapeutic modalities; however, few studies on the ex-vivo expansion of monkey B cells have been reported. In this study, we developed a highly efficient ex-vivo expansion protocol for monkey B cells resulting in 99% purity without the requirement for prior cell-enrichment procedures. To this end, monkey peripheral blood mononuclear cells (PBMCs) were stimulated for 12 days with cells constitutively expressing monkey CD40L in expansion medium optimized for specific and massive expansion of B cells. The B cells expansion rates obtained were 2-5 times higher than those previously reported in humans, with rates ranging from 7.9 to 16.6 fold increase. Moreover, expanded B cells sustained high expression of co-stimulatory molecules including CD83 and CD86 until day 12 of culture, and the simple application of a brief centrifugation resulted in a CD20(+) B cell purity rate of greater than 99%. Furthermore, small amounts of CD3(+)CD20(+)BT-like cells were generated and CD16 was expressed at moderate levels on expanded B cells. Thus, the establishment of this protocol provides a method to produce quantities of homogeneous, mature B cells in numbers sufficient for the in vitro study of B cell immunity as well as for the development of B cell-diagnostic tools and cell-based therapeutic modalities.

  20. MURINE PULMONARY MACROPHAGE EXPRESSION AND PRODUCTION OF TNFA AND MIP-2 AFTER EXPOSURE TO DIESEL EXHAUST PARTICLES (DEP) AND EXTRACTS

    EPA Science Inventory

    DEP constitute an important fraction of particulate air pollution and have been shown to cause inflammation of the airways. The aim of this study was to investigate the inflammatory cytokine response of alveolar macrophages exposed to DEP and DEP-extracts. A murine alveolar macr...

  1. Alpha 4 beta 7 integrin expression is associated with the leukemic evolution of human and murine T-cell lymphoblastic lymphomas.

    PubMed Central

    Dolcetti, R.; Giardini, R.; Doglioni, C.; Cariati, R.; Pomponi, F.; D'Orazi, C.; Rao, S.; Lazarovits, A. I.; Butcher, E. C.; Boiocchi, M.

    1997-01-01

    We have previously shown that the in vivo coordinated expression of individual alpha 4 and beta 7 integrin chains correlated with the leukemic potential displayed by cell lines derived from murine lymphoblastic T-cell lymphomas (T-LBLs) when transplanted subcutaneously into syngeneic AKR mice. In the present study, by using immunofluorescence and immunocytochemical analyses, we have confirmed that the in vivo up-regulation of the alpha 4 beta 7 heterodimeric complex is associated with the leukemic behavior of AKR T-LBLs. In addition, when compared with the parental, highly leukemic NQ22 cells, the variant cell line NQ22V exhibited a reduced leukemic potential that was invariably associated with a delayed alpha 4 beta 7 up-regulation in vivo Moreover, the leukemic cell line SJ-1, derived from a spontaneous T-LBL of the SJL strain, also displayed high levels of alpha 4 beta 7 expression with a pattern of tissue distribution similar to that of NQ22 cells from leukemic AKR animals. Of note, in most of the tissues involved by murine T-LBL dissemination, and particularly in liver, kidney, and lung, alpha 4 beta 7-positive leukemic cells were always located around strongly VCAM-1-positive vascular spaces. These findings are consistent with a possible role of alpha 4 beta 7/VCAM-1 interactions in the extravasation and, consequently, in the leukemic dissemination of murine T-LBL cells. Immunocytochemical analysis carried out in 11 human T-LBLs showed that pathological lymph nodes from all 7 cases with bone marrow infiltration at presentation carried alpha 4 beta 7-positive cells, whereas all 4 aleukemic T-LBLs were repeatedly alpha 4 beta 7 negative, also in metachronous lesions. These findings suggest that alpha 4 beta 7-positive human T-LBLs may represent a distinct clinicopathological entity. In addition, alpha 4 beta 7 expression was significantly more prevalent in younger patients (< 11 years; P = 0.02), further supporting such a hypothesis. Moreover, as in murine T

  2. Effect of genetic SSTR4 ablation on inflammatory peptide and receptor expression in the non-inflamed and inflamed murine intestine.

    PubMed

    Van Op den Bosch, Joeri; Torfs, Pascal; De Winter, Benedicte Y; De Man, Joris G; Pelckmans, Paul A; Van Marck, Eric; Grundy, David; Van Nassauw, Luc; Timmermans, Jean-Pierre

    2009-09-01

    The recently suggested pivotal role of somatostatin (SOM) receptor 4 (SSTR4) in inflammation and nociception in several non-intestinal organs and in gastrointestinal (GI) physiology, necessitates exploration of the role of SSTR4 in GI pathophysiology. Therefore, the role of SSTR4 in GI activity was explored by investigating the effects of SSTR4 deficiency on intestinal motility, smooth muscle contractility and on the expression of SSTRs and neuropeptides in the healthy and Schistosoma mansoni-infected murine small intestine. Functional experiments revealed no differences in intestinal motility or smooth muscle cell contractility between wild-type and SSTR4 knockout (SSTR4(-/-)) mice in physiological conditions. As revealed by multiple immunofluorescent labellings, RT-PCR and quantitative real time RT-PCR (qPCR), genetic deficiency of SSTR4 considerably altered the expression of SOM and SSTRs in non-inflamed and inflamed conditions, affecting both extrinsic and intrinsic components of the intestinal innervation, along with SSTR expression in several non-neuronal cell types. Moreover, substance P and calcitonin gene-related peptide expression were significantly elevated in SSTR4(-/-) mice, confirming the modulatory role of SSTR4 on intestinal pro-inflammatory neuropeptide expression. These data suggest that SSTR4 plays a previously unexpected modulatory role in the regulation of intestinal SSTR expression. Moreover, in addition to the recently described inhibitory effects of SSTR4 on the neuronal release of pro-inflammatory peptides, SSTR4 appears also to be involved in the neuronal expression of both pro- and anti-inflammatory peptides in the murine small intestine.

  3. Induced expression from the Moloney murine leukemia virus long terminal repeat during differentiation of human myeloid cells is mediated through its transcriptional enhancer.

    PubMed Central

    Reisman, D; Rotter, V

    1989-01-01

    Transcription from the Moloney murine leukemia virus (Mo-MuLV) long terminal repeat (LTR) is inhibited in murine stem cells and induced during maturation of these cells. We have investigated whether alterations in the activity of this viral regulatory element also occur during differentiation of human myeloid leukemia cells. The Mo-MuLV LTR and the simian virus 40 (SV40) early promoter were introduced into HL-60 promyelocytes on Epstein-Barr virus-derived chloramphenicol acetyltransferase expression vectors. When these cells were induced to terminally differentiate, transcription from the Mo-MuLV LTR was induced approximately 10-fold. Expression from the SV40 promoter remained constant during differentiation of these cells. Replacing the SV40 transcriptional enhancer with the Mo-MuLV LTR transcriptional enhancer rendered the SV40 promoter inducible during differentiation. We conclude that sequences within the transcriptional enhancer of the Mo-MuLV LTR contain cis-acting elements responsible for induction of gene expression during differentiation of human myeloid cells. Images PMID:2477690

  4. CD209a Expression on Dendritic Cells is Critical for the Development of Pathogenic Th17 Cell Responses in Murine Schistosomiasis1

    PubMed Central

    Ponichtera, Holly E.; Shainheit, Mara G.; Liu, Beiyun C.; Raychowdhury, Raktima; Larkin, Bridget M.; Russo, Joanne M.; Salantes, D. Brenda; Lai, Chao-Qiang; Parnell, Laurence D.; Yun, Tae J.; Cheong, Cheolho; Bunnell, Stephen C.; Hacohen, Nir; Stadecker, Miguel J.

    2014-01-01

    In murine schistosomiasis, immunopathology and cytokine production in response to parasite eggs is uneven and strain dependent. CBA mice develop severe hepatic granulomatous inflammation associated with prominent T helper 17 (Th17) cell responses driven by dendritic cell (DC)-derived IL-1β and IL-23. Such Th17 cells fail to develop in low-pathology BL/6 mice, and the reasons for these strain-specific differences in antigen (Ag) presenting cell (APC) reactivity to eggs remain unclear. We show by gene profiling that CBA DCs display an 18-fold higher expression of the C-type lectin receptor (CLR) CD209a, a murine homologue of human DC-specific ICAM-3-grabbing non-integrin (DC-SIGN), than BL/6 DCs. Higher CD209a expression was observed in CBA splenic and granuloma APC subpopulations, but only DCs induced Th17 cell differentiation in response to schistosome eggs. Gene silencing in CBA DCs, and over-expression in BL/6 DCs, demonstrated that CD209a is essential for egg-elicited IL-1β and IL-23 production and subsequent Th17 cell development, which is associated with SRC, RAF-1, and ERK1/2 activation. These findings reveal a novel mechanism controlling the development of Th17 cell-mediated severe immunopathology in helminthic disease. PMID:24729611

  5. Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf.

    PubMed

    Jiao, Zhongxian; Mollaaghababa, Ramin; Pavan, William J; Antonellis, Anthony; Green, Eric D; Hornyak, Thomas J

    2004-08-01

    The murine dopachrome tautomerase (Dct) gene is expressed early in melanocyte development during embryogenesis, prior to other members of the tyrosinase gene family important for regulating pigmentation. We have used deletion mutants of the Dct promoter, transfections with developmentally relevant transcription factors, and gel shift assays to define transcriptional determinants of Dct expression. Deletion mutagenesis studies show that sequences within the proximal 459 nucleotides are critical for high level expression in melanocytic cells. This region of the promoter contains candidate binding sites for the transcription factors Sox10 and Mitf. Transfections into 293T and NIH3T3 cells show that Sox10 and Mitf independently activate Dct expression, and, when co-transfected, synergistically activate Dct expression. To support the notion that Sox10 acts directly upon the Dct promoter to activate gene expression, direct interaction of Sox10 was demonstrated using gel shifts of oligonucleotide probes derived from promoter sequences within the region required for Sox10-dependent induction. These results suggest that a combinatorial transcription factor interaction is important for expression of Dct in neural crest-derived melanocytes, and support a model for sequential gene activation in melanocyte development whereby Mitf, a Sox10-dependent transcription factor, is expressed initially before an early melanocyte differentiation gene, Dct, is expressed.

  6. Induction of functional CD154 (CD40 ligand) in neonatal T cells by cAMP-elevating agents

    PubMed Central

    Suárez, A; Mozo, L; Gayo, A; Simó, A; Gutiérrez, C

    2000-01-01

    A deficiency of neonatal T lymphocytes to express CD154 antigen in response to ionomycin and phorbol 12-myrsistate 13-acetate (PMA) stimulation or after CD3 cross-linking has been described. In the present report we describe that CD45RA+ newborn cells are able to synthesize and express CD154 at similar or even higher levels than adult cells in response to ionomycin and cAMP-elevating agents which trigger the protein kinase A (PKA) -mediated metabolic pathway. Peak CD154 protein concentrations in newborn cells were found between 4 and 8 hr after stimulation with ionomycin and dibutyryl cAMP. These agents, however, did not induce expression of the early activation antigen CD69. Surface levels of CD154 did not correlate with specific mRNA concentration, indicating that dibutyryl cAMP up-regulates CD154 by acting at a post-transcriptional stage. The CD154 antigen induced by PKA activation of newborn cells was functional, since upon binding to CD40 on B lymphocytes in the presence of interleukin-4 (IL-4), it promoted immunoglobulin heavy-class switching to IgE. We also found a different pattern of cytokine production between neonatal and adult CD4+ T cells. In response to ionomycin and dibutyryl cAMP, cord blood cells were more prone than adult lymphocytes to secrete the T helper type 2-derived immunosuppressive cytokines IL-4 and IL-10. Taking into account that the feto–maternal environment is rich in cAMP-elevating agents, the reduced risk of graft versus host disease associated with cord blood trasplantation, as compared with the risk with adult bone marrow cell transplants, may be due to the bias of neonatal cells to differentiate towards the T helper type 2 functional cell subset. PMID:10929069

  7. CTLA4Ig prevents alloantibody formation following nonhuman primate islet transplantation using the CD40-specific antibody 3A8.

    PubMed

    Badell, I R; Russell, M C; Cardona, K; Shaffer, V O; Turner, A P; Avila, J G; Cano, J A; Leopardi, F V; Song, M; Strobert, E A; Ford, M L; Pearson, T C; Kirk, A D; Larsen, C P

    2012-07-01

    Islet transplantation to treat type 1 diabetes has been limited in part by toxicities of current immunosuppression and recipient humoral sensitization. Blockade of the CD28/CD80/86 and CD40/CD154 pathways has shown promise to remedy both these limitations, but translation has been hampered by difficulties in translating CD154-directed therapies. Prior CD40-directed regimens have led to prolonged islet survival, but fail to prevent humoral allosensitization. We therefore evaluated the addition of CTLA4Ig to a CD40 blockade-based regimen in nonhuman primate (NHP) alloislet transplantation. Diabetic rhesus macaques were transplanted allogeneic islets using the CD40-specific antibody 3A8, basiliximab induction, and sirolimus with or without CTLA4Ig maintenance therapy. Allograft survival was determined by fasting blood glucose levels and flow cytometric techniques were used to test for donor-specific antibody (DSA) formation. CTLA4Ig plus 3A8, basiliximab and sirolimus was well tolerated and induced long-term islet allograft survival. The addition of CTLA4Ig prevented DSA formation, but did not facilitate withdrawal of the 3A8-based regimen. Thus, CTLA4Ig combines with a CD40-specific regimen to prevent DSA formation in NHPs, and offers a potentially translatable calcineurin inhibitor-free protocol inclusive of a single investigational agent for use in clinical islet transplantation without relying upon CD154 blockade. PMID:22458552

  8. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified aromatic-turmerone (AR).

    PubMed

    Yonggang, Tan; Yiming, Meng; Heying, Zhang; Cheng, Sun; Qiushi, Wang; Xianghong, Yang; Wei, Zheng; Huawei, Zhou; Shan, Fengping

    2012-10-01

    The aim of this work is to evaluate the effects of purified aromatic-turmerone (ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs.

  9. Classification of dendritic cell phenotypes from gene expression data

    PubMed Central

    2011-01-01

    Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%). Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%). These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4%) and Nearest Neighbour (92.6%) gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The robustness of the data mining

  10. Replacing the Promoter of the Murine Gene Encoding P-selectin with the Human Promoter Confers Human-like Basal and Inducible Expression in Mice.

    PubMed

    Liu, Zhenghui; Zhang, Nan; Shao, Bojing; Panicker, Sumith R; Fu, Jianxin; McEver, Rodger P

    2016-01-15

    In humans and mice, megakaryocytes/platelets and endothelial cells constitutively synthesize P-selectin and mobilize it to the plasma membrane to mediate leukocyte rolling during inflammation. TNF-α, interleukin 1β, and LPS markedly increase P-selectin mRNA in mice but decrease P-selectin mRNA in humans. Transgenic mice bearing the entire human SELP gene recapitulate basal and inducible expression of human P-selectin and reveal human-specific differences in P-selectin function. Differences in the human SELP and murine Selp promoters account for divergent expression in vitro, but their significance in vivo is not known. Here we generated knockin mice that replace the 1.4-kb proximal Selp promoter with the corresponding SELP sequence (Selp(KI)). Selp(KI) (/) (KI) mice constitutively expressed more P-selectin on platelets and more P-selectin mRNA in tissues but only slightly increased P-selectin mRNA after injection of TNF-α or LPS. Consistent with higher basal expression, leukocytes rolled more slowly on P-selectin in trauma-stimulated venules of Selp(KI) (/) (KI) mice. However, TNF-α did not further reduce P-selectin-dependent rolling velocities. Blunted up-regulation of P-selectin mRNA during contact hypersensitivity reduced P-selectin-dependent inflammation in Selp(KI) (/-) mice. Higher basal P-selectin in Selp(KI) (/) (KI) mice compensated for this defect. Therefore, divergent sequences in a short promoter mediate most of the functionally significant differences in expression of human and murine P-selectin in vivo.

  11. Chemokine gene expression in the murine renal cell carcinoma, RENCA, following treatment in vivo with interferon-alpha and interleukin-2.

    PubMed Central

    Sonouchi, K.; Hamilton, T. A.; Tannenbaum, C. S.; Tubbs, R. R.; Bukowski, R.; Finke, J. H.

    1994-01-01

    The expression of three chemoattractant cytokine (chemokine) messenger (m)RNAs in the murine renal cell carcinoma (RENCA) from mice treated with a combination of interferon-alpha (IFN-alpha) and interleukin-2 was examined and related to tumor infiltration by inflammatory leukocytes. Using a semi-quantitative reverse transcriptase polymerase chain reaction assay, mRNAs encoding the KC, JE, and IP-10 genes were all elevated in tumor tissue from mice treated systemically with IFN-alpha/interleukin-2 for 4 days. Similarly, the mRNA for tumor necrosis factor-alpha (TNF-alpha) was also increased in tumors from treated as compared to control animals. The same tumors showed a significant increase in Mac-1+ leukocytes, which correlated well with the increase in chemokine and TNF-alpha gene expression. The renal cell carcinoma tumor itself may be responsible for the expression of chemokine genes in the tumor bed following cytokine therapy. Cultures of freshly explanted RENCA cells expressed significant levels of chemokine mRNAs when stimulated in vitro with IFN alpha, IFN gamma, and/or interleukin-2, demonstrating that this tumor cell has potential for expression of these genes in vivo. In contrast, TNF-alpha expression was not detected in cultured tumor cells. Thus TNF-alpha may be expressed by infiltrating monocytes following exposure to recombinant cytokine therapy. Images Figure 1 Figure 2 Figure 4 PMID:8160774

  12. TNF receptor-associated factor-3 signaling mediates activation of p38 and Jun N-terminal kinase, cytokine secretion, and Ig production following ligation of CD40 on human B cells.

    PubMed

    Grammer, A C; Swantek, J L; McFarland, R D; Miura, Y; Geppert, T; Lipsky, P E

    1998-08-01

    CD40 engagement induces a variety of functional outcomes following association with adaptor molecules of the TNF receptor-associated factor (TRAF) family. Whereas TRAF2, -5, and -6 initiate NF-kappaB activation, the outcomes of TRAF3-initiated signaling are less characterized. To delineate CD40-induced TRAF3-dependent events, Ramos B cells stably transfected with a dominant negative TRAF3 were stimulated with membranes expressing recombinant CD154/CD40 ligand. In the absence of TRAF3 signaling, activation of p38 and control of Ig production were abrogated, whereas Jun N-terminal kinase activation and secretion of IL-10, lymphotoxin-alpha, and TNF-alpha were partially blocked. By contrast, induction of apoptosis, activation of NF-kappaB, generation of granulocyte-macrophage CSF, and up-regulation of CD54, MHC class II, and CD95 were unaffected by the TRAF3 dominant negative. Together, these results indicate that TRAF3 initiates independent signaling pathways via p38 and JNK that are associated with specific functional outcomes.

  13. Detection of restricted predominant epitopes of Theiler's murine encephalomyelitis virus capsid proteins expressed in the lambda gt11 system: differential patterns of antibody reactivity among different mouse strains.

    PubMed

    Crane, M A; Jue, C; Mitchell, M; Lipton, H; Kim, B S

    1990-05-01

    Intracerebral injection of mice with Theiler's murine encephalomyelitis virus results in chronic demyelination in susceptible strains, and serves as a model system for the study of multiple sclerosis. The role of individual epitopes in the disease process remains to be elucidated. Random fragments of DNA from the viral capsid protein genome covering the coding regions from VP1, VP2, and VP3 have been expressed in the lambda gt11 vector system. Fusion proteins from the clones were expressed and probed with antibodies from both resistant and susceptible strains of mice. Each strain displays a distinctive pattern with certain fusion proteins recognized by all of the strains and others recognized uniquely by either the susceptible or the resistant strains.

  14. A murine platelet-activating factor receptor gene: cloning, chromosomal localization and up-regulation of expression by lipopolysaccharide in peritoneal resident macrophages.

    PubMed Central

    Ishii, S; Matsuda, Y; Nakamura, M; Waga, I; Kume, K; Izumi, T; Shimizu, T

    1996-01-01

    A murine gene encoding a platelet-activating factor receptor (PAFR) was cloned. The gene was mapped to a region of the D2.2 band of chromosome 4 both by fluorescence in situ hybridization and by molecular linkage analysis. Northern blot analysis showed a high expression of the PAFR message in peritoneal macrophages. When C3H/HeN macrophages were treated with bacterial lipopolysaccharide (LPS) or synthetic lipid A, the PAFR gene expression was induced. Bacterial LPS, but not lipid A, induced the level of PAFR mRNA in LPS unresponsive C3H/HeJ macrophages. These induction patterns were parallel to those of tumor necrosis factor-alpha mRNA. Thus the PAFR in macrophages is important in LPS-induced pathologies. PMID:8670084

  15. Analysis of telomerase target gene expression effects from murine models in patient cohorts by homology translation and random survival forest modeling

    PubMed Central

    Bagger, Frederik Otzen; Bruedigam, Claudia; Lane, Steven W.

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive and rapidly fatal blood cancer that affects patients of any age group. Despite an initial response to standard chemotherapy, most patients relapse and this relapse is mediated by leukemia stem cell (LSC) populations. We identified a functional requirement for telomerase in sustaining LSC populations in murine models of AML and validated this requirement using an inhibitor of telomerase in human AML. Here, we describe in detail the contents, quality control and methods of the gene expression analysis used in the published study (Gene Expression Omnibus GSE63242). Additionally, we provide annotated gene lists of telomerase regulated genes in AML and R code snippets to access and analyze the data used in the original manuscript. PMID:26981425

  16. Enhancement of the anti-melanoma response of Hu14.18K322A by αCD40 + CpG.

    PubMed

    Alderson, Kory L; Luangrath, Mitchell; Elsenheimer, Megan M; Gillies, Stephen D; Navid, Fariba; Rakhmilevich, Alexander L; Sondel, Paul M

    2013-04-01

    Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.

  17. Selective IAP inhibition results in sensitization of unstimulated but not CD40-stimulated chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis.

    PubMed

    Zhuang, Jianguo; Laing, Naomi; Oates, Melanie; Lin, Ke; Johnson, Gillian; Pettitt, Andrew R

    2014-12-01

    Despite recent advances in therapy, chronic lymphocytic leukaemia (CLL) remains incurable and new treatment strategies are therefore urgently required. Inhibitor of apoptosis proteins (IAPs) are over-expressed in CLL, suggesting both a role in disease pathogenesis and the potential for therapeutic targeting. To explore these questions, we evaluated the effects on primary CLL cells of AZD5582, a novel potent and selective inhibitor of IAPs. AZD5582 at nanomolar concentrations induced extensive degradation of cIAP-1 and cIAP-2, but minimally of X chromosome-linked IAP (XIAP). However, these effects of AZD5582 produced little or no direct cytotoxicity, nor did they sensitize CLL cells to p53-dependent killing by fludarabine or p53-independent killing by dexamethasone. In contrast, AZD5582 significantly enhanced apoptosis induced by the death receptor (DR) agonist tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Importantly, killing by TRAIL plus AZD5582 was independent of adverse prognostic features including TP53 deletion which is strongly associated with chemoresistance in CLL. Coculture experiments involving transfected mouse fibroblasts expressing human CD40L (CD154) to mimic the effect of T cells at sites of tissue involvement showed that CD40 stimulation almost completely prevented the killing of CLL cells by TRAIL plus AZD5582 despite up-regulating TRAIL receptors 1 and 2. In conclusion, our findings confirm the rate-limiting, upstream involvement of IAPs in the extrinsic but not intrinsic apoptotic pathway of CLL cells and suggest that drug combinations that simultaneously activate DRs and inhibit IAPs may have therapeutic potential in patients with CLL who have failed T-cell-depleting chemotherapy.

  18. Transfer to in vitro conditions influences expression and intracellular distribution of galectin-3 in murine peritoneal macrophages.

    PubMed

    Dumić, J; Lauc, G; Hadzija, M; Flögel, M

    2000-01-01

    Galectin-3 is a beta-galactoside-binding lectin that has been implicated in numerous physiological processes, including mRNA splicing, cell differentiation, tumor metastasis and the stress response. We have studied effects of transfer of resident murine peritoneal macrophages to in vitro conditions on galectin-3 in different cell compartments. Galectin-3 was purified by immunoprecipitation with rat monoclonal antibody M3/38, and analyzed by immunoblotting using the same antibody. Transfer to in vitro conditions nearly doubled the total amount of galectin-3 in cells, and caused significant alterations in its intracellular distribution, indicating that galectin-3 is involved in the adaptation of peritoneal macrophages to in vitro conditions.

  19. TGF-beta 1 inhibits both endotoxin-induced prostaglandin synthesis and expression of the TIS10/prostaglandin synthase 2 gene in murine macrophages.

    PubMed

    Reddy, S T; Gilbert, R S; Xie, W; Luner, S; Herschman, H R

    1994-02-01

    Activated macrophages produce substantial quantities of paracrine mediators, including cytokines, nitric oxide, and prostaglandins. Transforming growth factor beta 1 (TGF-beta) is a potent modulator of immune function. TGF-beta inhibits the cytotoxic activity of endotoxin/lipopolysaccharide (LPS)-activated macrophage cell lines and primary macrophage cultures, reducing their expression of cytokines and nitric oxide. In this report we demonstrate that TGF-beta also attenuates the LPS-induced synthesis and secretion of prostaglandin E2 in murine RAW 264.7 macrophage cells. Macrophage activation also induces accumulation of the recently described ligand-responsive prostaglandin synthase (PGS) TIS10/PGS-2. While TGF-beta alone has no effect on expression from the TIS10/PGS-2 gene, this cytokine inhibits LPS-induced TIS10/PGS-2 protein accumulation and synthesis, as well as LPS-induced TIS10/PGS-2 message accumulation in RAW 264.7 cells. TGF-beta concentrations in the range of 0.1-1.0 ng/ml (4-40 pM) maximally inhibit LPS-induced TIS10/PGS-2 message accumulation. In contrast, neither LPS nor TGF-beta has any effect on the level of PGS-1 (EC 1.14.99.1) message. TGF-beta also attenuates LPS-induced accumulation of unspliced TIS10/PGS-2 transcripts in RAW 264.7 cells, suggesting that this cytokine exerts its effects on TIS10/PGS-2 expression at the transcriptional level. TGF-beta inhibits the LPS-induced accumulation of TIS10/PGS-2 protein and message in cultured murine peritoneal macrophages, as well as in macrophage cell lines.

  20. Expression of transfected vimentin genes in differentiating murine erythroleukemia cells reveals divergent cis-acting regulation of avian and mammalian vimentin sequences.

    PubMed Central

    Ngai, J; Bond, V C; Wold, B J; Lazarides, E

    1987-01-01

    We studied the expression of transfected chicken and hamster vimentin genes in murine erythroleukemia (MEL) cells. MEL cells normally repress the levels of endogenous mouse vimentin mRNA during inducermediated differentiation, resulting in a subsequent loss of vimentin filaments. Expression of vimentin in differentiating MEL cells reflects the disappearance of vimentin filaments during mammalian erythropoiesis in vivo. In contrast, chicken erythroid cells express high levels of vimentin mRNA and vimentin filaments during terminal differentiation. We demonstrate here that chicken vimentin mRNA levels increase significantly in differentiating transfected MEL cells, whereas similarly transfected hamster vimentin genes are negatively regulated. In conjunction with in vitro nuclear run-on transcription experiments, these results suggest that the difference in vimentin expression in avian and mammalian erythropoiesis is due to a divergence of cis-linked vimentin sequences that are responsible for transcriptional and posttranscriptional regulation of vimentin gene expression. Transfected chicken vimentin genes produce functional vimentin protein and stable vimentin filaments during MEL cell differentiation, further demonstrating that the accumulation of vimentin filaments is determined by the abundance of newly synthesized vimentin. Images PMID:3481037

  1. Expression of chimeric tRNA-driven antisense transcripts renders NIH 3T3 cells highly resistant to Moloney murine leukemia virus replication.

    PubMed Central

    Sullenger, B A; Lee, T C; Smith, C A; Ungers, G E; Gilboa, E

    1990-01-01

    NIH 3T3 cells infected with Moloney murine leukemia virus (MoMLV) express high levels of virus-specific RNA. To inhibit replication of the virus, we stably introduced chimeric tRNA genes encoding antisense templates into NIH 3T3 cells via a retroviral vector. Efficient expression of hybrid tRNA-MoMLV antisense transcripts and inhibition of MoMLV replication were dependent on the use of a particular type of retroviral vector, the double-copy vector, in which the chimeric tRNA gene was inserted in the 3' long terminal repeat. MoMLV replication was inhibited up to 97% in cells expressing antisense RNA corresponding to the gag gene and less than twofold in cells expressing antisense RNA corresponding to the pol gene. RNA and protein analyses suggest that inhibition was exerted at the level of translation. These results suggest that RNA polymerase III-based antisense inhibition systems can be used to inhibit highly expressed viral genes and render cells resistant to viral replication via intracellular immunization strategies. Images PMID:2247070

  2. CBP/p300 and associated transcriptional co-activators exhibit distinct expression patterns during murine craniofacial and neural tube development

    PubMed Central

    BHATTACHERJEE, VASKER; HORN, KRISTIN H.; SINGH, SAURABH; WEBB, CYNTHIA L.; PISANO, M. MICHELE; GREENE, ROBERT M.

    2009-01-01

    Mutations in each of the transcriptional co-activator genes - CBP, p300, Cited2, Cart1 and Carm1 - result in neural tube defects in mice. The present study thus furnishes a complete and comparative temporal and spatial expression map of CBP/p300 and associated transcriptional co-activators, Cited2, Cart1 and Carm1 during the period of murine neural tube development (embryonic days 8.5 to 10.5). Each co-activator except Cart1 was expressed in the dorsal neural folds on E8.5. Although CBP and p300 are functionally interchangeable in vitro, their respective expression patterns diverge during embryogenesis before neural fold fusion is complete. CBP gene expression was lost from the neural folds by E8.75 and was thereafter weakly expressed in the maxillary region and limb buds, while p300 exhibited strong expression in the first branchial arch, limb bud and telencephalic regions on E9.5. Cart1 exhibited strong expression in the forebrain mesenchyme from E9.0 through E10.5. Although CBP, p300, Carm1 and Cited2 share temporal expression on E8.5, these co-activators have different spatial expression in mesenchyme and/or the neuroepithelium. Nevertheless, co-localization to the dorsal neural folds on E8.5 suggests a functional role in elevation and/or fusion of the neural folds. Target genes, and pathways that promote cranial neural tube fusion that are activated by CBP/p300/Carm1/Cited2/Cart1-containing transcriptional complexes await elucidation. PMID:19598128

  3. Human and murine serine-palmitoyl-CoA transferase--cloning, expression and characterization of the key enzyme in sphingolipid synthesis.

    PubMed

    Weiss, B; Stoffel, W

    1997-10-01

    Serine palmitoyltransferase (SPT, EC 2.3.1.50) is the key enzyme in sphingolipid biosynthesis. It catalyzes the pyridoxal-5'-phosphate-dependent condensation of L-serine and palmitoyl-CoA to 3-oxosphinganine. Human expressed-sequence-tag (EST) clones are similar to the two yeast genes for synthesis of long-chain bases, LCB1 and LCB2, which are believed to encode two subunits of SPT [Buede, R., Pinto, W. J., Lester, R. L. & Dickson, R. C. (1991) J. Bacteriol. 173, 4325-5332; Nagiec, M. M., Baltisberger, J. A., Wells, G. B., Lester, R. L. & Dickson, R. C. (1994) Proc. Natl Acad. Sci. USA 91, 7899-7902]. We have cloned and characterized two complete human and murine cDNA sequences named hLCB1 & mLCB1 and hLCB2 & mLCB2, respectively, similar to the yeast LCB1 and LCB2 genes. Human embryonic kidney cells (HEK 293) transfected with murine sequences of LCB1 (mLCB1) and LCB2 (mLCB2) independently and in coexpression showed an overexpression of the transcripts on the mRNA and protein level. The enzymatic activity of cells expressing mLCB2 alone or coexpressed with mLCB1 was three times higher than the activity of untransfected HEK cells. mLCB1 expression was not required for the synthesis of 3-oxo-sphinganine in mammalian cells. Transcription/translation in vitro yielded mLCB1 (53 kDa) and mLCB2 (63 kDa). The two proteins do not contain a signal peptide nor are they glycosylated. The endogenous and overexpressed SPT activity were both sensitive to common SPT inhibitors. Labeling studies with [1-(14)C]palmitic acid indicated that cell lines transfected with mLCB2 preferentially use the excess sphingoid bases for glucocerebroside and galactocerebroside synthesis. Our results provide conclusive genetic and biochemical evidence that the human and murine LCB2 genes described here encode serine palmitoyltransferase. Further studies will be required to unravel the function of the LCB1 gene in mammalian cells. PMID:9363775

  4. Agonistic Anti-CD40 Enhances the CD8+ T Cell Response during Vesicular Stomatitis Virus Infection

    PubMed Central

    Zickovich, Julianne M.; Meyer, Susan I.; Yagita, Hideo; Obar, Joshua J.

    2014-01-01

    Intracellular pathogens are capable of inducing vigorous CD8+ T cell responses. However, we do not entirely understand the factors driving the generation of large pools of highly protective memory CD8+ T cells. Here, we studied the generation of endogenous ovalbumin-specific memory CD8+ T cells following infection with recombinant vesicular stomatitis virus (VSV) and Listeria monocytogenes (LM). VSV infection resulted in the generation of a large ovalbumin-specific memory CD8+ T cell population, which provided minimal protective immunity that waned with time. In contrast, the CD8+ T cell population of LM-ova provided protective immunity and remained stable with time. Agonistic CD40 stimulation during CD8+ T cell priming in response to VSV infection enabled the resultant memory CD8+ T cell population to provide strong protective immunity against secondary infection. Enhanced protective immunity by agonistic anti-CD40 was dependent on CD70. Agonistic anti-CD40 not only enhanced the size of the resultant memory CD8+ T cell population, but enhanced their polyfunctionality and sensitivity to antigen. Our data suggest that immunomodulation of CD40 signaling may be a key adjuvant to enhance CD8+ T cell response during development of VSV vaccine strategies. PMID:25166494

  5. Role of platelet CD40 ligand for endothelial cell-monocyte interaction in the presence of flow

    NASA Astrophysics Data System (ADS)

    Wagner, Andreas H.; Schwarz, Manuel; König, Gerd; Hecker, Markus

    2014-11-01

    CD40 ligand (CD154)-induced ultra-large von Willebrand factor (vWF) multimer-mediated endothelial cell-platelet-monocyte interaction may play an important role in adaptive and maladaptive vascular remodeling processes. Here we analyzed the impact of and conditions favouring the deposition of these multimers on the endothelial cell (EC) surface by way of CD40-CD154 co-stimulation in settings mimicking different forms of blood flow. Upon exposure to low oscillatory shear stress and sCD154, a release of vWF multimers comparable to histamine stimulation was monitored on the EC surface in a string-like fashion. Moreover, ex vivo perfused carotid arteries of wild type mice at low laminar shear stress rates showed a luminal release of vWF as ultra-large vWF multimers (ULVWF) upon stimulation with sCD154 which was absent in blood vessels of CD40 knockout mice. The observed CD40- and flow-dependent vWF release from intact endothelial cells and subsequent vWF multimer formation may facilitate adhesion and subsequent activation of circulating platelets at atherosclerotic predilection sites, which are characterized by disturbed flow patterns. This in turn may amplify endothelial cell-monocyte interaction, thus possibly initiating or promoting early atherosclerotic lesion formation.

  6. CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    X-linked hyper-IgM syndrome (XHM) is a combined immune deficiency disorder caused by mutations in CD40 ligand. We tested CP-870,893, a human CD40 agonist monoclonal antibody, in the treatment of two XHM patients with biliary Cryptosporidiosis. CP-870,893 activated B cells and APCs in vitro, restori...

  7. A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion.

    PubMed

    Cordoba, F; Wieczorek, G; Audet, M; Roth, L; Schneider, M A; Kunkler, A; Stuber, N; Erard, M; Ceci, M; Baumgartner, R; Apolloni, R; Cattini, A; Robert, G; Ristig, D; Munz, J; Haeberli, L; Grau, R; Sickert, D; Heusser, C; Espie, P; Bruns, C; Patel, D; Rush, J S

    2015-11-01

    CD40-CD154 pathway blockade prolongs renal allograft survival in nonhuman primates (NHPs). However, antibodies targeting CD154 were associated with an increased incidence of thromboembolic complications. Antibodies targeting CD40 prolong renal allograft survival in NHPs without thromboembolic events but with accompanying B cell depletion, raising the question of the relative contribution of B cell depletion to the efficacy of anti-CD40 blockade. Here, we investigated whether fully silencing Fc effector functions of an anti-CD40 antibody can still promote graft survival. The parent anti-CD40 monoclonal antibody HCD122 prolonged allograft survival in MHC-mismatched cynomolgus monkey renal allograft transplantation (52, 22, and 24 days) with accompanying B cell depletion. Fc-silencing yielded CFZ533, an antibody incapable of B cell depletion but still able to potently inhibit CD40 pathway activation. CFZ533 prolonged allograft survival and function up to a defined protocol endpoint of 98-100 days (100, 100, 100, 98, and 76 days) in the absence of B cell depletion and preservation of good histological graft morphology. CFZ533 was well-tolerated, with no evidence of thromboembolic events or CD40 pathway activation and suppressed a gene signature associated with acute rejection. Thus, use of the Fc-silent anti-CD40 antibody CFZ533 appears to be an attractive approach for preventing solid organ transplant rejection.

  8. INFLUENCE OF TYPE II DIABETES, OBESITY, AND EXPOSURE TO 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) EXPOSURE ON THE EXPRESSION OF HEPATIC CYP1A2 IN A MURIN MODEL OF TYPE II DIABETES

    EPA Science Inventory

    Influence of type II diabetes, obesity and exposure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on the expression of hepatic CYPIA2 in a murine model of type II diabetes. SJ Godin', VM Richardson2, JJ Diliberto2, LS Birnbaum', MJ DeVito2; 'Curriculum In Toxicology, UNC-CH...

  9. Lunar soil simulant uptake produces a concentration-dependent increase in inducible nitric oxide synthase expression in murine RAW 264.7 macrophage cells.

    PubMed

    Chatterjee, Anuran; Wang, Angela; Lera, Matthew; Bhattacharya, Sharmila

    2010-01-01

    One of NASA's long-term objectives is to be able to stay on the moon for extended periods, and to provide a stepping-stone for future Mars explorations. The lunar soil simulant JSC-1 has been developed by NASA from volcanic ash found in Arizona to facilitate testing of toxicity and system requirements for lunar exploration. A concentration-response study of JSC-1 was undertaken on the murine macrophage cell line RAW 264.7. Results demonstrated concentrations of 50-2000 microg/ml JSC-1 induced enhanced expression of inducible nitric oxide synthase (iNOS). Data suggest that extraterrestrial regolith has the potential to induce an inflammatory response, and that future development of anti-inflammatory mitigative strategies may be necessary to counteract lunar dust-associated cellular toxicity.

  10. Lunar soil simulant uptake produces a concentration-dependent increase in inducible nitric oxide synthase expression in murine RAW 264.7 macrophage cells.

    PubMed

    Chatterjee, Anuran; Wang, Angela; Lera, Matthew; Bhattacharya, Sharmila

    2010-01-01

    One of NASA's long-term objectives is to be able to stay on the moon for extended periods, and to provide a stepping-stone for future Mars explorations. The lunar soil simulant JSC-1 has been developed by NASA from volcanic ash found in Arizona to facilitate testing of toxicity and system requirements for lunar exploration. A concentration-response study of JSC-1 was undertaken on the murine macrophage cell line RAW 264.7. Results demonstrated concentrations of 50-2000 microg/ml JSC-1 induced enhanced expression of inducible nitric oxide synthase (iNOS). Data suggest that extraterrestrial regolith has the potential to induce an inflammatory response, and that future development of anti-inflammatory mitigative strategies may be necessary to counteract lunar dust-associated cellular toxicity. PMID:20391141

  11. Expression of the murine retinol dehydrogenase 10 (Rdh10) gene correlates with many sites of retinoid signalling during embryogenesis and organ differentiation.

    PubMed

    Cammas, Laura; Romand, Raymond; Fraulob, Valérie; Mura, Carole; Dollé, Pascal

    2007-10-01

    Retinoic acid acts as a signalling molecule regulating many developmental events in vertebrates. As this molecule directly influences gene expression by activating nuclear receptors, its patterns of synthesis have to be tightly regulated, and it is well established that at least three retinaldehyde dehydrogenases (RALDHs) are involved in such tissue-specific synthesis. Whereas embryos from oviparous species can obtain retinaldehyde by metabolizing carotenoids stored in the yolk, placental embryos rely on retinol transferred from the maternal circulation. Here, we show that the gene encoding one of the murine retinol dehydrogenases, Rdh10, is expressed according to complex profiles both during early embryogenesis and organ differentiation. Many of its expression sites correlate with regions of active retinoid signalling and Raldh gene expression, especially with Raldh2 in the early presomitic and somitic mesoderm, retrocardiac and posterior branchial arch region, or later in the pleural mesothelium and kidney cortical region. Rdh10 also shows cell-type and/or regional specificity during development of the palate, teeth, and olfactory system. During limb bud development, it may participate in retinoic acid production in proximal/posterior cells, and eventually in interdigital mesenchyme. These data implicate the retinol to retinaldehyde conversion as the first step in the tissue-specific regulation of retinoic acid synthesis, at least in mammalian embryos.

  12. The fatty acid binding protein 6 gene (Fabp6) is expressed in murine granulosa cells and is involved in ovulatory response to superstimulation

    PubMed Central

    DUGGAVATHI, Raj; SIDDAPPA, Dayananda; SCHUERMANN, Yasmin; PANSERA, Melissa; MENARD, Isabelle J.; PRASLICKOVA, Dana; AGELLON, Luis B.

    2015-01-01

    The fatty acid binding protein 6 (Fabp6) is commonly regarded as a bile acid binding protein found in the distal portion of the small intestine and has been shown to be important in maintaining bile acid homeostasis. Previous studies have also reported the presence of Fabp6 in human, rat and fish ovaries, but the significance of Fabp6 in this organ is largely unknown. Therefore, we surveyed murine ovaries for Fabp6 gene expression and evaluated its role in ovarian function using mice with whole body Fabp6 deficiency. Here we show that the Fabp6 gene is expressed in granulosa and luteal cells of the mouse ovary. Treatment with gonadotropins stimulated Fabp6 gene expression in large antral follicles. The ovulation rate in response to superovulatory treatment in Fabp6-deficient mice was markedly decreased compared to wildtype (C57BL/6) mice. The results of this study suggest that expression of Fabp6 gene in granulosa cells serves an important and previously unrecognized function in fertility. PMID:25754072

  13. Requirement of the expression of 3-phosphoglycerate dehydrogenase for traversing S phase in murine T lymphocytes following immobilized anti-CD3 activation.

    PubMed

    Jun, Do Youn; Taub, Dennis; Chrest, Francis J; Kim, Young Ho

    2014-02-01

    Murine resting (G(0)) T lymphocytes contained no detectable mRNA of 3-phosphoglycerate dehydrogenase (PHGDH) catalyzing the first step in the phosphorylated pathway of l-serine biosynthesis. Immobilized anti-CD3 activation of G(0) T cells expressed the PHGDH mRNA in G(1) with a maximum level in S phase. G(0) T cells activated with either immobilized anti-CD3 plus CsA or PBu(2), which failed to drive the activated T cells to enter S phase, did not express the PHGDH mRNA unless exogenous rIL-2 was added. Blocking of IL-2R signaling by adding anti-IL-2 and anti-IL-2Rα resulted in no expression of the PHGDH mRNA during immobilized anti-CD3 activation of G(0) T cells. Deprivation of l-serine from culture medium or addition of antisense PHGDH oligonucleotide significantly reduced [(3)H]TdR incorporation of activated T cells. These results indicate that the PHGDH gene expression, dictated by IL-2R signaling, is a crucial event for DNA synthesis during S phase of activated T cells. PMID:24434753

  14. Soluble M3 proteins of murine gammaherpesviruses 68 and 72 expressed in Escherichia coli: analysis of chemokine-binding properties.

    PubMed

    Matúšková, R; Pančík, P; Štibrániová, I; Belvončíková, P; Režuchová, I; Kúdelová, M

    2015-12-01

    M3 protein of murine gammaherpesvirus 68 (MHV-68) was identified as a viral chemokine-binding protein 3 (vCKBP-3) capable to bind a broad spectrum of chemokines and their receptors. During both acute and latent infection MHV-68 M3 protein provides a selective advantage for the virus by inhibiting the antiviral and inflammatory response. A unique mutation Asp307Gly was identified in the M3 protein of murine gammaherpesvirus 72 (MHV-72), localized near chemokine-binding domain. Study on chemokine-binding properties of MHV-72 M3 protein purified from medium of infected cells implied reduced binding to some chemokines when compared to MHV-68 M3 protein. It was suggested that the mutation in the M3 protein might be involved in the attenuation of immune response to infection with MHV-72. Recently, Escherichia coli cells were used to prepare native recombinant M3 proteins of murine gammaherpesviruses 68 and 72 (Pančík et al., 2013). In this study, we assessed the chemokine-binding properties of three M3 proteins prepared in E. coli Rosetta-gami 2 (DE3) cells, the full length M3 protein of both MHV-68 and MHV-72 and MHV-68 M3 protein truncated in the signal sequence (the first 24 aa). They all displayed binding activity to human chemokines CCL5 (RANTES), CXCL8 (IL-8), and CCL3 (MIP-1α). The truncated MHV-68 M3 protein had more than twenty times reduced binding activity to CCL5, but only about five and three times reduced binding to CXCL8 and CCL3 when compared to its full length counterpart. Binding of the full length MHV-72 M3 protein to all chemokines was reduced when compared to MHV-68 M3 protein. Its binding to CCL5 and CCL3 was reduced over ten and seven times. However, its binding to CXCL8 was only slightly reduced (64.8 vs 91.8%). These data implied the significance of the signal sequence and also of a single mutation (at aa 307) for efficient M3 protein binding to some chemokines.

  15. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  16. Characterization of an In Vitro Differentiation Assay for Pancreatic-Like Cell Development from Murine Embryonic Stem Cells: Detailed Gene Expression Analysis

    PubMed Central

    Chen, Chialin; Chai, Jing; Singh, Lipi; Kuo, Ching-Ying; Jin, Liang; Feng, Tao; Marzano, Scott; Galeni, Sheetal; Zhang, Nan; Iacovino, Michelina; Qin, Lihui; Hara, Manami; Stein, Roland; Bromberg, Jonathan S.; Kyba, Michael

    2011-01-01

    Abstract Embryonic stem (ES) cell technology may serve as a platform for the discovery of drugs to treat diseases such as diabetes. However, because of difficulties in establishing reliable ES cell differentiation methods and in creating cost-effective plating conditions for the high-throughput format, screening for molecules that regulate pancreatic beta cells and their immediate progenitors has been limited. A relatively simple and inexpensive differentiation protocol that allows efficient generation of insulin-expressing cells from murine ES cells was previously established in our laboratories. In this report, this system is characterized in greater detail to map developmental cell stages for future screening experiments. Our results show that sequential activation of multiple gene markers for undifferentiated ES cells, epiblast, definitive endoderm, foregut, and pancreatic lineages was found to follow the sequence of events that mimics pancreatic ontogeny. Cells that expressed enhanced green fluorescent protein, driven by pancreatic and duodenal homeobox 1 or insulin 1 promoter, correctly expressed known beta cell lineage markers. Overexpression of Sox17, an endoderm fate-determining transcription factor, at a very early stage of differentiation (days 2–3) enhanced pancreatic gene expression. Overexpression of neurogenin3, an endocrine progenitor cell marker, induced glucagon expression at stages when pancreatic and duodenal homeobox 1 message was present (days 10–16). Forced expression (between days 16 and 25) of MafA, a pancreatic maturation factor, resulted in enhanced expression of insulin genes, glucose transporter 2 and glucokinase, and glucose-responsive insulin secretion. Day 20 cells implanted in vivo resulted in pancreatic-like cells. Together, our differentiation assay recapitulates the proceedings and behaviors of pancreatic development and will be valuable for future screening of beta cell effectors. PMID:21395400

  17. Murine embryonic stem cell line CGR8 expresses all subtypes of muscarinic receptors and multiple nicotinic receptor subunits: Down-regulation of α4- and β4-subunits during early differentiation.

    PubMed

    Kaltwasser, Susanne; Schmitz, Luise; Michel-Schmidt, Rosmarie; Anspach, Laura; Kirkpatrick, Charles James; Wessler, Ignaz

    2015-11-01

    Non-neuronal acetylcholine mediates its cellular effects via stimulation of the G-protein-coupled muscarinic receptors and the ligand-gated ion channel nicotinic receptors. The murine embryonic stem cell line CGR8 synthesizes and releases non-neuronal acetylcholine. In the present study a systematic investigation of the expression of nicotinic receptor subunits and muscarinic receptors was performed, when the stem cells were grown in the presence or absence of LIF, as the latter condition induces early differentiation. CGR8 cells expressed multiple nicotinic receptor subtypes (α3, α4, α7, α9, α10, β1, β2, β3, β4, γ, δ, ε) and muscarinic receptors (M1, M3, M4, M5); M2 was detected only in 2 out of 8 cultures. LIF removal caused a down-regulation only of the α4- and β4-subunit. In conclusion, more or less the whole repertoire of cholinergic receptors is expressed on the murine embryonic stem cell line CGR8 for mediating cellular signaling of non-neuronal acetylcholine which acts via auto- and paracrine pathways. During early differentiation of the murine CGR8 stem cell signaling via nicotinic receptors containing α4- or β4 subunits is reduced. Thus, the so-called neuronal α4 nicotine receptor composed of these subunits may be involved in the regulation of pluripotency in this murine stem cell line.

  18. Bmp6 Expression in Murine Liver Non Parenchymal Cells: A Mechanism to Control their High Iron Exporter Activity and Protect Hepatocytes from Iron Overload?

    PubMed Central

    Rausa, Marco; Pagani, Alessia; Nai, Antonella; Campanella, Alessandro; Gilberti, Maria Enrica; Apostoli, Pietro; Camaschella, Clara; Silvestri, Laura

    2015-01-01

    Bmp6 is the main activator of hepcidin, the liver hormone that negatively regulates plasma iron influx by degrading the sole iron exporter ferroportin in enterocytes and macrophages. Bmp6 expression is modulated by iron but the molecular mechanisms are unknown. Although hepcidin is expressed almost exclusively by hepatocytes (HCs), Bmp6 is produced also by non-parenchymal cells (NPCs), mainly sinusoidal endothelial cells (LSECs). To investigate the regulation of Bmp6 in HCs and NPCs, liver cells were isolated from adult wild type mice whose diet was modified in iron content in acute or chronic manner and in disease models of iron deficiency (Tmprss6 KO mouse) and overload (Hjv KO mouse). With manipulation of dietary iron in wild-type mice, Bmp6 and Tfr1 expression in both HCs and NPCs was inversely related, as expected. When hepcidin expression is abnormal in murine models of iron overload (Hjv KO mice) and deficiency (Tmprss6 KO mice), Bmp6 expression in NPCs was not related to Tfr1. Despite the low Bmp6 in NPCs from Tmprss6 KO mice, Tfr1 mRNA was also low. Conversely, despite body iron overload and high expression of Bmp6 in NPCs from Hjv KO mice, Tfr1 mRNA and protein were increased. However, in the same cells ferritin L was only slightly increased, but the iron content was not, suggesting that Bmp6 in these cells reflects the high intracellular iron import and export. We propose that NPCs, sensing the iron flux, not only increase hepcidin through Bmp6 with a paracrine mechanism to control systemic iron homeostasis but, controlling hepcidin, they regulate their own ferroportin, inducing iron retention or release and further modulating Bmp6 production in an autocrine manner. This mechanism, that contributes to protect HC from iron loading or deficiency, is lost in disease models of hepcidin production. PMID:25860887

  19. Bmp6 expression in murine liver non parenchymal cells: a mechanism to control their high iron exporter activity and protect hepatocytes from iron overload?

    PubMed

    Rausa, Marco; Pagani, Alessia; Nai, Antonella; Campanella, Alessandro; Gilberti, Maria Enrica; Apostoli, Pietro; Camaschella, Clara; Silvestri, Laura

    2015-01-01

    Bmp6 is the main activator of hepcidin, the liver hormone that negatively regulates plasma iron influx by degrading the sole iron exporter ferroportin in enterocytes and macrophages. Bmp6 expression is modulated by iron but the molecular mechanisms are unknown. Although hepcidin is expressed almost exclusively by hepatocytes (HCs), Bmp6 is produced also by non-parenchymal cells (NPCs), mainly sinusoidal endothelial cells (LSECs). To investigate the regulation of Bmp6 in HCs and NPCs, liver cells were isolated from adult wild type mice whose diet was modified in iron content in acute or chronic manner and in disease models of iron deficiency (Tmprss6 KO mouse) and overload (Hjv KO mouse). With manipulation of dietary iron in wild-type mice, Bmp6 and Tfr1 expression in both HCs and NPCs was inversely related, as expected. When hepcidin expression is abnormal in murine models of iron overload (Hjv KO mice) and deficiency (Tmprss6 KO mice), Bmp6 expression in NPCs was not related to Tfr1. Despite the low Bmp6 in NPCs from Tmprss6 KO mice, Tfr1 mRNA was also low. Conversely, despite body iron overload and high expression of Bmp6 in NPCs from Hjv KO mice, Tfr1 mRNA and protein were increased. However, in the same cells ferritin L was only slightly increased, but the iron content was not, suggesting that Bmp6 in these cells reflects the high intracellular iron import and export. We propose that NPCs, sensing the iron flux, not only increase hepcidin through Bmp6 with a paracrine mechanism to control systemic iron homeostasis but, controlling hepcidin, they regulate their own ferroportin, inducing iron retention or release and further modulating Bmp6 production in an autocrine manner. This mechanism, that contributes to protect HC from iron loading or deficiency, is lost in disease models of hepcidin production.

  20. Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body.

    PubMed Central

    Izpisúa-Belmonte, J C; Falkenstein, H; Dollé, P; Renucci, A; Duboule, D

    1991-01-01

    The cloning, characterization and developmental expression patterns of two novel murine Hox genes, Hox-4.6 and Hox-4.7, are reported. Structural data allow us to classify the four Hox-4 genes located in the most upstream (5') position in the HOX-4 complex as members of a large family of homeogenes related to the Drosophila homeotic gene Abdominal B (AbdB). It therefore appears that these vertebrate genes are derived from a selective amplification of an ancestral gene which gave rise, during evolution, to the most posterior of the insect homeotic genes so far described. In agreement with the structural colinearity, these genes have very posteriorly restricted expression profiles. In addition, their developmental expression is temporally regulated according to a cranio-caudal sequence which parallels the physical ordering of these genes along the chromosome. We discuss the phylogenetic alternative in the evolution of genetic complexity by amplifying either genes or regulatory sequences, as exemplified by this system in the mouse and Drosophila. Furthermore, the possible role of 'temporal colinearity' in the ontogeny of all coelomic (metamerized) metazoans showing a temporal anteroposterior morphogenetic progression is addressed. Images PMID:1676674

  1. Decreased spinal cord opioid receptor mRNA expression and antinociception in a Theiler’s murine encephalomyelitis virus model of multiple sclerosis

    PubMed Central

    Lynch, Jessica L.; Alley, Jeremy F.; Wellman, Lori; Beitz, Alvin J.

    2008-01-01

    Multiple sclerosis patients typically experience increased pain that is relatively insensitive to opiate treatment. The mechanistic basis for this increased nociception is currently poorly understood. In the present study, we utilized the Theiler’s murine encephalomyelitis virus (TMEV) model of MS to examine possible changes in spinal cord opioid receptor mRNA over the course of disease progression. TMEV infection led to significantly decreased mu, delta and kappa opioid receptor mRNA expression as analyzed by quantitative Real-Time PCR in both male and female mice at days 90, 150 and 180 post-infection (PI). Since opioid receptor mRNA expression decreased in TMEV mice, we examined whether opiate analgesia is also altered. TMEV infected female mice had significantly decreased opiate analgesia in thermal nociceptive tests beginning at day 90 PI, while TMEV-infected male mice did not display significantly decreased opiate analgesia until day 120 PI. The novel finding that opioid receptor expression is significantly decreased in the spinal cord of TMEV mice could explain the increased nociception and loss of opiate analgesia observed in both TMEV mice and multiple sclerosis patients. PMID:18096140

  2. Establishment and evaluation of a murine αvβ3-integrin-expressing cell line with increased susceptibility to Foot-and-mouth disease virus

    PubMed Central

    Zhang, Wei; Lian, Kaiqi; Yang, Fan; Yang, Yang; Zhu, Zhijian; Zhu, Zixiang; Cao, Weijun; Mao, Ruoqing; Jin, Ye; He, Jijun; Guo, Jianhong; Liu, Xiangtao

    2015-01-01

    Integrin αvβ3 plays a major role in various signaling pathways, cell apoptosis, and tumor angiogenesis. To examine the functions and roles of αvβ3 integrin, a stable CHO-677 cell line expressing the murine αvβ3 heterodimer (designated as "CHO-677-mαvβ3" cells) was established using a highly efficient lentiviral-mediated gene transfer technique. Integrin subunits αv and β3 were detected at the gene and protein levels by polymerase chain reaction (PCR) and indirect immunofluorescent assay (IFA), respectively, in the CHO-677-mαvβ3 cell line at the 20th passage, implying that these genes were successfully introduced into the CHO-677 cells and expressed stably. A plaque-forming assay, 50% tissue culture infective dose (TCID50), real-time quantitative reverse transcription-PCR, and IFA were used to detect the replication levels of Foot-and-mouth disease virus (FMDV) in the CHO-677-mαvβ3 cell line. After infection with FMDV/O/ZK/93, the cell line showed a significant increase in viral RNA and protein compared with CHO-677 cells. These findings suggest that we successfully established a stable αvβ3-receptor-expressing cell line with increased susceptibility to FMDV. This cell line will be very useful for further investigation of αvβ3 integrin, and as a cell model for FMDV research. PMID:25643796

  3. Generation of an attenuated Salmonella-delivery strains expressing adhesin and toxin antigens for progressive atrophic rhinitis, and evaluation of its immune responses in a murine model.

    PubMed

    Byeon, Hoyeon; Hur, Jin; Kim, Bo Ram; Lee, John Hwa

    2014-09-01

    An expression/secretion plasmid containing genes encoding the FimA, CP39, PtfA, ToxA and F1P2 antigens associated with porcine pneumonic pasteurellosis and progressive atrophic rhinitis (PAR) was constructed and harbored in an attenuated Salmonella Typhimurium, which was used as the vaccine candidate. The immune responses induced by this delivery strain were investigated in a murine model. Each antigen secreted from the delivery strain was confirmed by Western blot analysis. Thirty BALB/c mice were divided equally into two groups; group A were intranasally inoculated with the mixture of the five delivery strains, and group B were inoculated with sterile PBS. In group A, all antigen-specific serum IgG were significantly increased compared to those of group B from the 2nd week post-inoculation (WPI) till the 8th WPI. All antigen-specific mucosal IgA in group A were also significantly greater than those of group B. In addition, the significant splenic lymphocyte proliferative responses, the elevations of CD3(+)CD4(+), CD3(+)CD8(+) and B-cell populations, and the induction of IFN-γ expression in group A were observed. In conclusion, the mixture of five delivery strains expressing specific antigen for these diseases was found to be capable of inducing significant humoral and cellular immune responses. PMID:25045826

  4. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients.

    PubMed

    Wilming, L G; Snoeren, C A; van Rijswijk, A; Grosveld, F; Meijers, C

    1997-02-01

    A wide spectrum of birth defects is caused by deletions of the DiGeorge syndrome chromosomal region at 22q11. Characteristic features include cranio-facial, cardiac and thymic malformations, which are thought to arise form disturbances in the interactions between hindbrain neural crest cells and the endoderm of the pharyngeal pouches. Several genes have been identified in the shortest region of deletion overlap at 22q11, but nothing is known about the expression of these genes in mammalian embryos. We report here the isolation of several murine embryonic cDNAs of the DiGeorge syndrome candidate gene HIRA. We identified several alternatively spliced transcripts. Sequence analysis reveals that Hira bears homology to the p60 subunit of the human Chromatin Assembly Factor I and yeast hir1p and Hir2p, suggesting that Hira might have some role in chromatin assembly and/or histone regulation. Whole mount in situ hybridization of mouse embryos at various stages of development show that Hira is ubiquitously expressed. However, higher levels of transcripts are detected in the cranial neural folds, frontonasal mass, first two pharyngeal arches, circumpharyngeal neural crest and the limb buds. Since many of the structures affected in DiGeorge syndrome derive from these Hira expressing cell populations we propose that haploinsufficiency of HIRA contributes to at least some of the features of the DiGeorge phenotype.

  5. Generation of Functional CLL-Specific Cord Blood CTL Using CD40-Ligated CLL APC

    PubMed Central

    Decker, William K.; Shah, Nina; Xing, Dongxia; Lapushin, Ruth; Li, Sufang; Robinson, Simon N.; Yang, Hong; Parmar, Simrit; Halpert, Matthew M.; Keating, Michael J.; Gribben, John G.; Molldrem, Jeffrey J.; Shpall, Elizabeth J.; Wierda, William G.

    2012-01-01

    Though remissions have been observed following allo-HSCT for the treatment of CLL, many CLL patients are ineligible for transplant due to the lack of HLA-compatible donors. The use of umbilical cord blood (UCB) permits transplantation of many patients who lack HLA-compatible donors due to reduced requirements for stringent HLA matching between graft and recipient; however, disease relapse remains a concern with this modality. The generation of CLL-specific CTL from UCB T-cells, primed and expanded against the leukemic clone, might enhance the GVL effect and improve outcomes with UCB transplantation. Here we report the generation of functional, CLL-specific CTL using CD40-ligated CLL cells to prime partially-HLA matched UCB T-cells. Functionality and specificity were demonstrated by immune synapse assay, IFN-γ ELISpot, multi-parametric intracellular cytokine flow cytometry, and 51Cr release assay. The use of patient-specific, non-CLL controls demonstrated the generation of both alloantigen and CLL-specific responses. Subsequently, we developed a clinically-applicable procedure permitting separation of alloreactive CTL from leukemia-specific CTL. Leukemia-specific CTL were able to mediate in vivo killing of CLL in humanized mice without concurrent or subsequent development of xenoGVHD. Our results demonstrate that generation of CLL-specific effectors from UCB is feasible and practical, and the results support further exploration of this strategy as a treatment modality for CLL. PMID:23284688

  6. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody.

    PubMed

    Gu, Luo; Ruff, Laura E; Qin, Zhengtao; Corr, Maripat; Hedrick, Stephen M; Sailor, Michael J

    2012-08-01

    One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as self-malignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30-40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs.

  7. Murine aortic smooth muscle cells acquire, though fail to present exogenous protein antigens on major histocompatibility complex class II molecules.

    PubMed

    Maddaluno, Marcella; MacRitchie, Neil; Grassia, Gianluca; Ialenti, Armando; Butcher, John P; Garside, Paul; Brewer, James M; Maffia, Pasquale

    2014-01-01

    In the present study aortic murine smooth muscle cell (SMC) antigen presentation capacity was evaluated using the Eα-GFP/Y-Ae system to visualize antigen uptake through a GFP tag and tracking of Eα peptide/MHCII presentation using the Y-Ae Ab. Stimulation with IFN-γ (100 ng/mL) for 72 h caused a significant (P < 0.01) increase in the percentage of MHC class II positive SMCs, compared with unstimulated cells. Treatment with Eα-GFP (100 μg/mL) for 48 h induced a significant (P < 0.05) increase in the percentage of GFP positive SMCs while it did not affect the percentage of Y-Ae positive cells, being indicative of antigen uptake without its presentation in the context of MHC class II. After IFN-γ-stimulation, ovalbumin- (OVA, 1 mg/mL) or OVA323-339 peptide-(0.5 μg/mL) treated SMCs failed to induce OT-II CD4(+) T cell activation/proliferation; this was also accompanied by a lack of expression of key costimulatory molecules (OX40L, CD40, CD70, and CD86) on SMCs. Finally, OVA-treated SMCs failed to induce DO11.10-GFP hybridoma activation, a process independent of costimulation. Our results demonstrate that while murine primary aortic SMCs express MHC class II and can acquire exogenous antigens, they fail to activate T cells through a failure in antigen presentation and a lack of costimulatory molecule expression.

  8. Severe congenital neutropenia or hyper-IgM syndrome? A novel mutation of CD40 ligand in a patient with severe neutropenia.

    PubMed

    Rezaei, Nima; Aghamohammadi, Asghar; Ramyar, Asghar; Pan-Hammarstrom, Qiang; Hammarstrom, Lennart

    2008-01-01

    Severe congenital neutropenia (SCN) and CD40 ligand deficiency (CD40LD) are two primary immunodeficiency diseases caused by different underlying genetic defects. In this report, we present a case who clinically presented as a SCN patient, but subsequent mutation analysis of this patient was compatible with CD40LD. The patient is a 3-year-old boy, who was referred to our center because of pneumonia, oral and anal ulcers, and periodontitis. As severe consistent neutropenia and maturation arrest in the myeloid series were observed in the bone marrow, a diagnosis of SCN was made. However, no mutations were found in the ELA2 and HAX1 genes. As functional T cell defects were observed, we suspected CD40LD. DNA sequencing showed a 17-base pair deletion in the CD40L gene. Although the patient did not have a decreased serum level of IgA, and his serum IgM level was within the normal range, the diagnosis of CD40LD was confirmed, suggesting that CD40LD should be suspected in any male patient with recurrent infections and neutropenia. PMID:18594157

  9. CD40-TNF activation in mice induces extended sickness behavior syndrome co-incident with but not dependent on activation of the kynurenine pathway.

    PubMed

    Cathomas, Flurin; Fuertig, Rene; Sigrist, Hannes; Newman, Gregory N; Hoop, Vanessa; Bizzozzero, Manuela; Mueller, Andreas; Luippold, Andreas; Ceci, Angelo; Hengerer, Bastian; Seifritz, Erich; Fontana, Adriano; Pryce, Christopher R

    2015-11-01

    The similarity between sickness behavior syndrome (SBS) in infection and autoimmune disorders and certain symptoms in major depressive disorder (MDD), and the high co-morbidity of autoimmune disorders and MDD, constitutes some of the major evidence for the immune-inflammation hypothesis of MDD. CD40 ligand-CD40 immune-activation is important in host response to infection and in development of autoimmunity. Mice given a single intra-peritoneal injection of CD40 agonist antibody (CD40AB) develop SBS for 2-3days characterized by weight loss and increased sleep, effects that are dependent on the cytokine, tumor necrosis factor (TNF). Here we report that CD40AB also induces behavioral effects that extend beyond acute SBS and co-occur with but are not mediated by kynurenine pathway activation and recovery. CD40AB led to decreased saccharin drinking (days 1-7) and decreased Pavlovian fear conditioning (days 5-6), and was without effect on physical fatigue (day 5). These behavioral effects co-occurred with increased plasma and brain levels of kynurenine and its metabolites (days 1-7/8). Co-injection of TNF blocker etanercept with CD40AB prevented each of SBS, reduced saccharin drinking, and kynurenine pathway activation in plasma and brain. Repeated oral administration of a selective indoleamine 2,3-dioxygenase (IDO) inhibitor blocked activation of the kynurenine pathway but was without effect on SBS and saccharin drinking. This study provides novel evidence that CD40-TNF activation induces deficits in saccharin drinking and Pavlovian fear learning and activates the kynurenine pathway, and that CD40-TNF activation of the kynurenine pathway is not necessary for induction of the acute or extended SBS effects.

  10. Murine regulatory T cells contain hyper-proliferative and death-prone subsets with differential ICOS expression

    PubMed Central

    Chen, Yong; Shen, Shudan; Gorentla, Balachandra; Gao, Jimin; Zhong, Xiao-Ping

    2011-01-01

    Regulatory T cells (Treg) are crucial for self-tolerance. It has been an enigma that Treg exhibit an anergic phenotype reflected by hypo-proliferation in vitro following T cell receptor (TCR) stimulation but undergo vigorous proliferation in vivo. We report here that, different from conventional T cells (Tcon), murine Treg are prone to death but hyper-proliferative in vitro and in vivo. During in vitro culture, most Treg die with or without TCR stimulation, correlated with constitutive activation of the intrinsic death pathway. However, a small portion of the Treg population is more sensitive to TCR stimulation, particularly weak stimulation, proliferates more vigorously than CD4+ Tcon, and are resistant to activation induced cell death. Treg proliferation is enhanced by IL-2 but less dependent on CD28-mediated costimulation than Tcon. We demonstrate further that the surviving and proliferative Treg are ICOS positive while the death-prone Treg are ICOS negative. Moreover, ICOS+ Treg contain much stronger suppressive activity than ICOS− Treg. Our data indicates that massive death contributes to the anergic phenotype of Treg in vitro and suggest modulating Treg survival as a therapeutic strategy for treatment of autoimmune diseases and cancer. PMID:22231701

  11. [Immunostimulatory CpG oligodeoxynucleotides (CpG-ODN) in an orthotopic murine transitional cell carcinoma (TCC) model. Effect on local cytokine expression].

    PubMed

    Olbert, P J; Schrader, A J; Hofmann, R; Hegele, A

    2008-09-01

    CpG-oligodeoxynucleotides (CpG-ODN) are potent stimulators of the innate immune system. They promote a Th1-biased immune response with antineoplastic potential. We recently demonstrated antitumoral effects of CpG-ODN in murine transitional cell carcinoma (TCC) models. The purpose of the present work was to more precisely define the immunological nature of this immunotherapeutic approach to TCC.MB-49 TCC was established in female C57/Bl6 mice by intravesical tumor cell instillation after poly-L-lysine conditioning of the bladder (day 0) as described previously. Three groups of six mice were treated: intravesical instillation of 50 microl PBS on days 1, 3, 5, and 7 (group 1, untreated control); 10 nmol CpG 1668 on days 1, 3, 5, and 7 (group 2); and 10 nmol GpC 1668 on days 1, 3, 5, and 7 (group 3). Six native bladders served as no-treatment/no-tumor controls (group 4). Mice were sacrificed on day 11; bladders and draining lymph nodes were removed, and mRNA was prepared for quantitative real-time polymerase chain reaction. Samples were analyzed on a Bio-Rad iCycler for IL 10, TGF-beta, IL 12, and IFNgamma expression; threshold values were compared to beta-actin as housekeeping gene.Tumor take was 100%. Three animals in group 1 had to be sacrificed in advance due to rapid tumor progression. Relative cytokine expression was comparable in groups 1 and 4. IL-10, IL-12, TGF-beta, and IFNgamma were overexpressed in groups 2 and 3. CpG-ODN treatment of murine TCC results in overexpression of both classic Th1 cytokines (IL 12 and IFNgamma) and the Th2 marker IL 10. TGF-beta expression is increased as well. These phenomena are not induced by the growing TCC but by CpG-ODN therapy. They are accompanied by an objective clinical response, as we were able to show recently. Immunostimulatory DNA holds promise to be a novel therapeutic agent in TCC.

  12. Expression of Hairy/Enhancer of Split genes, Hes1 and Hes5, during murine nephron morphogenesis.

    PubMed

    Piscione, Tino D; Wu, Megan Y J; Quaggin, Susan E

    2004-10-01

    Hairy/Enhancer of Split (Hes) genes encode transcriptional repressors that function as downstream targets of activated Notch receptors in cell fate decisions during tissue development. During nephrogenesis, multiple Notch pathway genes are co-expressed in multi-potent epithelial progenitors (i.e. pre-tubular aggregates), but demonstrate distinct expression patterns in early nephrons (i.e. S-shaped bodies), suggesting that Notch signaling functions in patterning epithelial cell fate during nephron morphogenesis. To define the spatial activation of the Notch pathway in developing nephrons, we analyzed the expression of Hes1 and Hes5 by mRNA in situ hybridization in cryosections of developing kidneys, and compared their spatiotemporal expression with the expression of other Notch pathway genes in nephron progenitors. Hes1, and to a lesser extent Hes5, were expressed in pre-tubular aggregates and comma-shaped bodies of embryonic day (E) 13.5 and newborn kidneys. In S-shaped bodies, Hes1 expression was detected in the middle part which gives rise to the proximal tubule, but also extended into the lower and upper parts which give rise to the glomerulus and distal tubule, respectively, and was similar to the proximal-distal expression patterns for Notch1 and Jagged1 in these nephrogenic structures. In contrast, strong Hes5 expression was restricted to the middle segment of S-shaped bodies, and resembled Delta-like 1 expression. These data show that Hes1 and Hes5 expression are independently regulated along the proximal-distal axis of the developing nephron. Consequently, the differential, spatial regulation of Hes1 and Hes5 gene expression by the Notch signaling pathway in developing nephrons may be a mechanism for patterning cell fate decisions during nephron morphogenesis. PMID:15465493

  13. Tacrolimus (FK506) Suppresses TREM-1 Expression at an Early but Not at a Late Stage in a Murine Model of Fungal Keratitis

    PubMed Central

    Jia, Xiuhua; Lin, Binwu; Huang, Xi; Zhong, Jing; Li, Weihua; Lin, Xiaolei; Sun, Yifang; Yuan, Jin

    2014-01-01

    Purpose To investigate the efficacy and mechanism of tacrolimus(FK506), which is a novel macrolide immunosuppressant, in inhibiting triggering receptor expressed on myeloid cells-1 (TREM-1) expression in a murine keratitis model induced by Aspergillus fumigatus. Method TREM-1 was detected in 11 fungus-infected human corneas by quantitative real-time PCR (qRT-PCR). RAW264.7 macrophages were divided into four groups, which received treatment with zymosan (100 µg/ml), zymosan (100 µg/ml) + mTREM-1/Fc protein (1 µg/ml), or zymosan (100 µg/ml) + FK506 (20 µM) or negative-control treatment. After this treatment, the expression of TREM-1, interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) was assayed using qRT-PCR and ELISA. The mouse model of fungal keratitis was created by intrastromal injection with Aspergillus fumigatus, and the mice were divided into 2 groups: group A received vehicle eye drops 4 times each day, and group B received 4 doses of FK506 eye drops each day. Corneal damage was evaluated by clinical scoring and histologic examination,and myeloperoxidase (MPO) protein levels were also detected by ELISA. The expression of TREM-1, IL-1β and TNFα was then determined at different time points using qRT-PCR and ELISA. Results TREM-1 expression dramatically increased in the human corneas with fungal keratitis. In contrast, FK506 reduced the expression of TREM-1, IL-1β and TNFα in RAW264.7 macrophages stimulated with zymosan. In the mouse model, at day 1 post-infection, the corneal score of the FK506-treated group was lower than that of the control, and polymorphonuclear neutrophil (PMN) infiltration was diminished. TREM-1, IL-1β and TNFα expression was significantly reduced at the same time point. However, the statistically significant differences in cytokine expression, clinical scores and infiltration disappeared at 5 days post-infection. Conclusions FK506 may inhibit the inflammation induced by fungi and alleviate the severity of corneal

  14. B cell TLR1/2, TLR4, TLR7 and TLR9 interact in induction of class switch DNA recombination: modulation by BCR and CD40, and relevance to T-independent antibody responses.

    PubMed

    Pone, Egest J; Lou, Zheng; Lam, Tonika; Greenberg, Milton L; Wang, Rui; Xu, Zhenming; Casali, Paolo

    2015-02-01

    Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS-mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing

  15. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve

    PubMed Central

    Touahri, Yacine; Stratton, Jo Anne; Biernaskie, Jeff; Schuurmans, Carol

    2016-01-01

    Schwann cells (SCs) arise from neural crest cells (NCCs) that first give rise to SC precursors (SCPs), followed by immature SCs, pro-myelinating SCs, and finally, non-myelinating or myelinating SCs. After nerve injury, mature SCs ‘de-differentiate’, downregulating their myelination program while transiently re-activating early glial lineage genes. To better understand molecular parallels between developing and de-differentiated SCs, we characterized the expression profiles of a panel of 12 transcription factors from the onset of NCC migration through postnatal stages, as well as after acute nerve injury. Using Sox10 as a pan-glial marker in co-expression studies, the earliest transcription factors expressed in E9.0 Sox10+ NCCs were Sox9, Pax3, AP2α and Nfatc4. E10.5 Sox10+ NCCs coalescing in the dorsal root ganglia differed slightly, expressing Sox9, Pax3, AP2α and Etv5. E12.5 SCPs continued to express Sox10, Sox9, AP2α and Pax3, as well as initiating Sox2 and Egr1 expression. E14.5 immature SCs were similar to SCPs, except that they lost Pax3 expression. By E18.5, AP2α, Sox2 and Egr1 expression was turned off in the nerve, while Jun, Oct6 and Yy1 expression was initiated in pro-myelinating Sox9+/Sox10+ SCs. Early postnatal and adult SCs continued to express Sox9, Jun, Oct6 and Yy1 and initiated Nfatc4 and Egr2 expression. Notably, at all stages, expression of each marker was observed only in a subset of Sox10+ SCs, highlighting the heterogeneity of the SC pool. Following acute nerve injury, Egr1, Jun, Oct6, and Sox2 expression was upregulated, Egr2 expression was downregulated, while Sox9, Yy1, and Nfatc4 expression was maintained at similar frequencies. Notably, de-differentiated SCs in the injured nerve did not display a transcription factor profile corresponding to a specific stage in the SC lineage. Taken together, we demonstrate that uninjured and injured SCs are heterogeneous and distinct from one another, and de-differentiation recapitulates

  16. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve.

    PubMed

    Balakrishnan, Anjali; Stykel, Morgan G; Touahri, Yacine; Stratton, Jo Anne; Biernaskie, Jeff; Schuurmans, Carol

    2016-01-01

    Schwann cells (SCs) arise from neural crest cells (NCCs) that first give rise to SC precursors (SCPs), followed by immature SCs, pro-myelinating SCs, and finally, non-myelinating or myelinating SCs. After nerve injury, mature SCs 'de-differentiate', downregulating their myelination program while transiently re-activating early glial lineage genes. To better understand molecular parallels between developing and de-differentiated SCs, we characterized the expression profiles of a panel of 12 transcription factors from the onset of NCC migration through postnatal stages, as well as after acute nerve injury. Using Sox10 as a pan-glial marker in co-expression studies, the earliest transcription factors expressed in E9.0 Sox10+ NCCs were Sox9, Pax3, AP2α and Nfatc4. E10.5 Sox10+ NCCs coalescing in the dorsal root ganglia differed slightly, expressing Sox9, Pax3, AP2α and Etv5. E12.5 SCPs continued to express Sox10, Sox9, AP2α and Pax3, as well as initiating Sox2 and Egr1 expression. E14.5 immature SCs were similar to SCPs, except that they lost Pax3 expression. By E18.5, AP2α, Sox2 and Egr1 expression was turned off in the nerve, while Jun, Oct6 and Yy1 expression was initiated in pro-myelinating Sox9+/Sox10+ SCs. Early postnatal and adult SCs continued to express Sox9, Jun, Oct6 and Yy1 and initiated Nfatc4 and Egr2 expression. Notably, at all stages, expression of each marker was observed only in a subset of Sox10+ SCs, highlighting the heterogeneity of the SC pool. Following acute nerve injury, Egr1, Jun, Oct6, and Sox2 expression was upregulated, Egr2 expression was downregulated, while Sox9, Yy1, and Nfatc4 expression was maintained at similar frequencies. Notably, de-differentiated SCs in the injured nerve did not display a transcription factor profile corresponding to a specific stage in the SC lineage. Taken together, we demonstrate that uninjured and injured SCs are heterogeneous and distinct from one another, and de-differentiation recapitulates

  17. Whiskey congeners suppress LPS/IFNγ-induced NO production in murine macrophage RAW 264 cells by inducing heme oxygenase-1 expression.

    PubMed

    Itoh, Tomohiro; Ando, Masashi; Tsukamasa, Yasuyuki; Wakimoto, Toshiyuki; Nukaya, Haruo

    2012-12-26

    Whiskey includes many nonvolatile substances (whiskey congeners; Whc) that seep from the oak cask during the maturation process. To date, many functions of Whc have reported, such as antiallergy and antimelanogenesis. This study examined the effect of Whc on LPS/IFNγ-induced nitric oxide (NO) production in murine macrophage RAW 264 cells. Whc suppressed LPS/IFNγ-induced NO production in a concentration-dependent manner. To determine the active compounds in Whc, the effect of 10 major compounds isolated from Whc on LPS/IFNγ-induced NO production was examined. Coniferylaldehyde (CA) and sinapylaldehyde (SiA) strongly suppressed LPS/IFNγ-induced NO production. Pretreatment with Whc, CA, and SiA induced heme oxygenase-1 (HO-1) expression. The expression of HO-1 by Whc, CA, and SiA pretreatment was due to activation of Nrf2/ARE signaling via the elevation of intracellular reactive oxygen species. To investigate the in vivo effects of Whc, Whc was administered to mice with antitype II collagen antibody-induced arthritis, and we the arthritis score and hind paw volume were measured. Administration of Whc remarkably suppressed the arthritis score and hind paw volume. Taken together, these findings suggest that Whc is beneficial for the treatment of inflammatory disease.

  18. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    PubMed

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  19. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    PubMed

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts.

  20. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells.

    PubMed

    Villareal, Myra O; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Kashiwagi, Kenichi; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders. PMID:23935660