Sample records for expression array analysis

  1. At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana

    PubMed Central

    Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Sachsenberg, Timo; Widmer, Christian K; Naouar, Naïra; Vuylsteke, Marnik; Schölkopf, Bernhard; Rätsch, Gunnar; Weigel, Detlef

    2008-01-01

    Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage. PMID:18613972

  2. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    PubMed Central

    Zhu, Yuerong; Zhu, Yuelin; Xu, Wei

    2008-01-01

    Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103

  3. BeadArray Expression Analysis Using Bioconductor

    PubMed Central

    Ritchie, Matthew E.; Dunning, Mark J.; Smith, Mike L.; Shi, Wei; Lynch, Andy G.

    2011-01-01

    Illumina whole-genome expression BeadArrays are a popular choice in gene profiling studies. Aside from the vendor-provided software tools for analyzing BeadArray expression data (GenomeStudio/BeadStudio), there exists a comprehensive set of open-source analysis tools in the Bioconductor project, many of which have been tailored to exploit the unique properties of this platform. In this article, we explore a number of these software packages and demonstrate how to perform a complete analysis of BeadArray data in various formats. The key steps of importing data, performing quality assessments, preprocessing, and annotation in the common setting of assessing differential expression in designed experiments will be covered. PMID:22144879

  4. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    PubMed

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  5. Characterization of transformation related genes in oral cancer cells.

    PubMed

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  6. Analysis of differential gene expression by bead-based fiber-optic array in nonfunctioning pituitary adenomas.

    PubMed

    Jiang, Z; Gui, S; Zhang, Y

    2011-05-01

    Nonfunctioning pituitary adenomas (NFPAs) are relatively common, accounting for 30% of all pituitary adenomas; however, their pathogenesis remains enigmatic. To explore the possible pathogenesis of NFPAs, we used fiber-optic BeadArray to examine gene expression in 5 NFPAs compared with 3 normal pituitaries. 4 differentially expressed genes were chosen randomly for validation by reverse transcriptase-real time quantitative polymerase chain reaction (RT-qPCR). We then analyzed the differentially expressed gene profile with Kyoto Encyclopedia of Genes and Genomes (KEGG). The array analysis indentified significant increases in the expression of 1,402 genes and 383 expressed sequence tags (ESTs), and decreases in 1,697 genes and 113 ESTs in the NFPAs. Bioinformatic and pathway analysis showed that the genes HIGD1B, FAM5C, PMAIP1 and the pathway cell-cycle regulation may play an important role in tumorigenesis and progression of NFPAs. Our data suggest fiber-optic BeadArray combined with pathway analysis of differential gene expression profile appears to be a valid approach for investigating the pathogenesis of tumors. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Analysis of differential gene expression by bead-based fiber-optic array in growth-hormone-secreting pituitary adenomas.

    PubMed

    Jiang, Zhiquan; Gui, Songbo; Zhang, Yazhuo

    2010-09-01

    Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors.

  8. Analysis of differential gene expression by bead-based fiber-optic array in growth-hormone-secreting pituitary adenomas

    PubMed Central

    JIANG, ZHIQUAN; GUI, SONGBO; ZHANG, YAZHUO

    2010-01-01

    Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors. PMID:22993617

  9. ArrayExpress update--trends in database growth and links to data analysis tools.

    PubMed

    Rustici, Gabriella; Kolesnikov, Nikolay; Brandizi, Marco; Burdett, Tony; Dylag, Miroslaw; Emam, Ibrahim; Farne, Anna; Hastings, Emma; Ison, Jon; Keays, Maria; Kurbatova, Natalja; Malone, James; Mani, Roby; Mupo, Annalisa; Pedro Pereira, Rui; Pilicheva, Ekaterina; Rung, Johan; Sharma, Anjan; Tang, Y Amy; Ternent, Tobias; Tikhonov, Andrew; Welter, Danielle; Williams, Eleanor; Brazma, Alvis; Parkinson, Helen; Sarkans, Ugis

    2013-01-01

    The ArrayExpress Archive of Functional Genomics Data (http://www.ebi.ac.uk/arrayexpress) is one of three international functional genomics public data repositories, alongside the Gene Expression Omnibus at NCBI and the DDBJ Omics Archive, supporting peer-reviewed publications. It accepts data generated by sequencing or array-based technologies and currently contains data from almost a million assays, from over 30 000 experiments. The proportion of sequencing-based submissions has grown significantly over the last 2 years and has reached, in 2012, 15% of all new data. All data are available from ArrayExpress in MAGE-TAB format, which allows robust linking to data analysis and visualization tools, including Bioconductor and GenomeSpace. Additionally, R objects, for microarray data, and binary alignment format files, for sequencing data, have been generated for a significant proportion of ArrayExpress data.

  10. A user-friendly workflow for analysis of Illumina gene expression bead array data available at the arrayanalysis.org portal.

    PubMed

    Eijssen, Lars M T; Goelela, Varshna S; Kelder, Thomas; Adriaens, Michiel E; Evelo, Chris T; Radonjic, Marijana

    2015-06-30

    Illumina whole-genome expression bead arrays are a widely used platform for transcriptomics. Most of the tools available for the analysis of the resulting data are not easily applicable by less experienced users. ArrayAnalysis.org provides researchers with an easy-to-use and comprehensive interface to the functionality of R and Bioconductor packages for microarray data analysis. As a modular open source project, it allows developers to contribute modules that provide support for additional types of data or extend workflows. To enable data analysis of Illumina bead arrays for a broad user community, we have developed a module for ArrayAnalysis.org that provides a free and user-friendly web interface for quality control and pre-processing for these arrays. This module can be used together with existing modules for statistical and pathway analysis to provide a full workflow for Illumina gene expression data analysis. The module accepts data exported from Illumina's GenomeStudio, and provides the user with quality control plots and normalized data. The outputs are directly linked to the existing statistics module of ArrayAnalysis.org, but can also be downloaded for further downstream analysis in third-party tools. The Illumina bead arrays analysis module is available at http://www.arrayanalysis.org . A user guide, a tutorial demonstrating the analysis of an example dataset, and R scripts are available. The module can be used as a starting point for statistical evaluation and pathway analysis provided on the website or to generate processed input data for a broad range of applications in life sciences research.

  11. Development of multitissue microfluidic dynamic array for assessing changes in gene expression associated with channel catfish appetite, growth, metabolism, and intestinal health

    USDA-ARS?s Scientific Manuscript database

    Large-scale, gene expression methods allow for high throughput analysis of physiological pathways at a fraction of the cost of individual gene expression analysis. Systems, such as the Fluidigm quantitative PCR array described here, can provide powerful assessments of the effects of diet, environme...

  12. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    PubMed Central

    Thomas, E. V.; Phillippy, K. H.; Brahamsha, B.; Haaland, D. M.; Timlin, J. A.; Elbourne, L. D. H.; Palenik, B.; Paulsen, I. T.

    2009-01-01

    Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in part to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition. PMID:19404483

  13. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    DOE PAGES

    Thomas, E. V.; Phillippy, K. H.; Brahamsha, B.; ...

    2009-01-01

    Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in partmore » to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.« less

  14. Identification of the collagen type 1 alpha 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma

    PubMed Central

    2014-01-01

    Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death especially among Asian and African populations. It is urgent that we identify carcinogenesis-related genes to establish an innovative treatment strategy for this disease. Methods Triple-combination array analysis was performed using one pair each of HCC and noncancerous liver samples from a 68-year-old woman. This analysis consists of expression array, single nucleotide polymorphism array and methylation array. The gene encoding collagen type 1 alpha 1 (COL1A1) was identified and verified using HCC cell lines and 48 tissues from patients with primary HCC. Results Expression array revealed that COL1A1 gene expression was markedly decreased in tumor tissues (log2 ratio –1.1). The single nucleotide polymorphism array showed no chromosomal deletion in the locus of COL1A1. Importantly, the methylation value in the tumor tissue was higher (0.557) than that of the adjacent liver tissue (0.008). We verified that expression of this gene was suppressed by promoter methylation. Reactivation of COL1A1 expression by 5-aza-2′-deoxycytidine treatment was seen in HCC cell lines, and sequence analysis identified methylated CpG sites in the COL1A1 promoter region. Among 48 pairs of surgical specimens, 13 (27.1%) showed decreased COL1A1 mRNA expression in tumor sites. Among these 13 cases, 10 had promoter methylation at the tumor site. The log-rank test indicated that mRNA down-regulated tumors were significantly correlated with a poor overall survival rate (P = 0.013). Conclusions Triple-combination array analysis successfully identified COL1A1 as a candidate survival-related gene in HCCs. Epigenetic down-regulation of COL1A1 mRNA expression might have a role as a prognostic biomarker of HCC. PMID:24552139

  15. Detection of doublecortin domain-containing 2 (DCDC2), a new candidate tumor suppressor gene of hepatocellular carcinoma, by triple combination array analysis

    PubMed Central

    2013-01-01

    Background To detect genes correlated with hepatocellular carcinoma (HCC), we developed a triple combination array consisting of methylation array, gene expression array and single nucleotide polymorphism (SNP) array analysis. Methods A surgical specimen obtained from a 68-year-old female HCC patient was analyzed by triple combination array, which identified doublecortin domain-containing 2 (DCDC2) as a candidate tumor suppressor gene of HCC. Subsequently, samples from 48 HCC patients were evaluated for their DCDC2 methylation and expression status using methylation specific PCR (MSP) and semi-quantitative reverse transcriptase (RT) PCR, respectively. Then, we investigated the relationship between clinicopathological factors and methylation status of DCDC2. Results DCDC2 was revealed to be hypermethylated (methylation value 0.846, range 0–1.0) in cancer tissue, compared with adjacent normal tissue (0.212) by methylation array in the 68-year-old female patient. Expression array showed decreased expression of DCDC2 in cancerous tissue. SNP array showed that the copy number of chromosome 6p22.1, in which DCDC2 resides, was normal. MSP revealed hypermethylation of the promoter region of DCDC2 in 41 of the tumor samples. DCDC2 expression was significantly decreased in the cases with methylation (P = 0.048). Furthermore, the methylated cases revealed worse prognosis for overall survival than unmethylated cases (P = 0.048). Conclusions The present study indicates that triple combination array is an effective method to detect novel genes related to HCC. We propose that DCDC2 is a tumor suppressor gene of HCC. PMID:24034596

  16. ANALYSIS OF CHANGES IN GENE EXPRESSION PATTERNS IN FISH EXPOSED TO NATURAL PHARMACEUTICAL AND ENVIRONMENTAL ESTROGENS USING GENE ARRAYS.

    EPA Science Inventory

    Denslow, N.D., P. Larkin, T.L. Sabo-Attwood, J. Kocerha, K.J. Kroll, M.J. Hemmer and L.C. Folmar. 2004. Analysis of Changes in Gene Expression Patterns in Fish Exposed to Natural, Pharmaceutical and Environmental Estrogens Using Gene Arrays (Abstract). Mar. Environ. Res. 58(2-5):...

  17. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  18. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis.

    PubMed

    Xiong, Fen; Du, Xinhua; Hu, Jianyan; Li, Tingting; Du, Shanshan; Wu, Qiang

    2014-07-01

    MicroRNAs (miRNAs) - as negative regulators of target genes - are associated with various human diseases, but their precise role(s) in diabetic retinopathy (DR) remains to be elucidated. The aim of this study was to elucidate the involvement of miRNAs in early DR using in silico analysis to explore their gene expression patterns. We used the streptozotocin (STZ)-induced diabetic rat to investigate the roles of miRNAs in early DR. Retinal miRNA expression profiles from diabetic versus healthy control rats were examined by miRNA array analysis. Based on several bioinformatic systems, specifically, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified signatures of the potential pathological processes, gene functions, and signaling pathways that are influenced by dysregulated miRNAs. We used quantitative real-time polymerase chain reaction (qRT-PCR) to validate six (i.e. those with significant changes in expression levels) of the 17 miRNAs that were detected in the miRNA array. We also describe the significant role of the miRNA-gene network, which is based on the interactions between miRNAs and target genes. GO analysis of the 17 miRNAs detected in the miRNA array analysis revealed the most prevalent miRNAs to be those related to biological processes, olfactory bulb development and axonogenesis. These miRNAs also exert significant influence on additional pathways, including the mitogen-activated protein and calcium signaling pathways. Six of the seventeen miRNAs were chosen for qRT-PCR validation. With the exception of a slight difference in miRNA-350, our results are in close agreement with the differential expressions detected by array analysis. This study, which describes miRNA expression during the early developmental phases of DR, revealed extensive miRNA interactions. Based on both their target genes and signaling pathways, we suggest that miRNAs perform critical regulatory functions during the early stages of DR evolution.

  19. Modulation of intestinal gene expression by dietary zinc status: Effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency

    PubMed Central

    Blanchard, Raymond K.; Moore, J. Bernadette; Green, Calvert L.; Cousins, Robert J.

    2001-01-01

    Mammalian nutritional status affects the homeostatic balance of multiple physiological processes and their associated gene expression. Although DNA array analysis can monitor large numbers of genes, there are no reports of expression profiling of a micronutrient deficiency in an intact animal system. In this report, we have tested the feasibility of using cDNA arrays to compare the global changes in expression of genes of known function that occur in the early stages of rodent zinc deficiency. The gene-modulating effects of this deficiency were demonstrated by real-time quantitative PCR measurements of altered mRNA levels for metallothionein 1, zinc transporter 2, and uroguanylin, all of which have been previously documented as zinc-regulated genes. As a result of the low level of inherent noise within this model system and application of a recently reported statistical tool for statistical analysis of microarrays [Tusher, V.G., Tibshirani, R. & Chu, G. (2001) Proc. Natl. Acad. Sci. USA 98, 5116–5121], we demonstrate the ability to reproducibly identify the modest changes in mRNA abundance produced by this single micronutrient deficiency. Among the genes identified by this array profile are intestinal genes that influence signaling pathways, growth, transcription, redox, and energy utilization. Additionally, the influence of dietary zinc supply on the expression of some of these genes was confirmed by real-time quantitative PCR. Overall, these data support the effectiveness of cDNA array expression profiling to investigate the pleiotropic effects of specific nutrients and may provide an approach to establishing markers for assessment of nutritional status. PMID:11717422

  20. Design of a tobacco exon array with application to investigate the differential cadmium accumulation property in two tobacco varieties

    PubMed Central

    2012-01-01

    Background For decades the tobacco plant has served as a model organism in plant biology to answer fundamental biological questions in the areas of plant development, physiology, and genetics. Due to the lack of sufficient coverage of genomic sequences, however, none of the expressed sequence tag (EST)-based chips developed to date cover gene expression from the whole genome. The availability of Tobacco Genome Initiative (TGI) sequences provides a useful resource to build a whole genome exon array, even if the assembled sequences are highly fragmented. Here, the design of a Tobacco Exon Array is reported and an application to improve the understanding of genes regulated by cadmium (Cd) in tobacco is described. Results From the analysis and annotation of the 1,271,256 Nicotiana tabacum fasta and quality files from methyl filtered genomic survey sequences (GSS) obtained from the TGI and ~56,000 ESTs available in public databases, an exon array with 272,342 probesets was designed (four probes per exon) and tested on two selected tobacco varieties. Two tobacco varieties out of 45 accumulating low and high cadmium in leaf were identified based on the GGE biplot analysis, which is analysis of the genotype main effect (G) plus analysis of the genotype by environment interaction (GE) of eight field trials (four fields over two years) showing reproducibility across the trials. The selected varieties were grown under greenhouse conditions in two different soils and subjected to exon array analyses using root and leaf tissues to understand the genetic make-up of the Cd accumulation. Conclusions An Affymetrix Exon Array was developed to cover a large (~90%) proportion of the tobacco gene space. The Tobacco Exon Array will be available for research use through Affymetrix array catalogue. As a proof of the exon array usability, we have demonstrated that the Tobacco Exon Array is a valuable tool for studying Cd accumulation in tobacco leaves. Data from field and greenhouse experiments supported by gene expression studies strongly suggested that the difference in leaf Cd accumulation between the two specific tobacco cultivars is dependent solely on genetic factors and genetic variability rather than on the environment. PMID:23190529

  1. Course 10: Three Lectures on Biological Networks

    NASA Astrophysics Data System (ADS)

    Magnasco, M. O.

    1 Enzymatic networks. Proofreading knots: How DNA topoisomerases disentangle DNA 1.1 Length scales and energy scales 1.2 DNA topology 1.3 Topoisomerases 1.4 Knots and supercoils 1.5 Topological equilibrium 1.6 Can topoisomerases recognize topology? 1.7 Proposal: Kinetic proofreading 1.8 How to do it twice 1.9 The care and proofreading of knots 1.10 Suppression of supercoils 1.11 Problems and outlook 1.12 Disquisition 2 Gene expression networks. Methods for analysis of DNA chip experiments 2.1 The regulation of gene expression 2.2 Gene expression arrays 2.3 Analysis of array data 2.4 Some simplifying assumptions 2.5 Probeset analysis 2.6 Discussion 3 Neural and gene expression networks: Song-induced gene expression in the canary brain 3.1 The study of songbirds 3.2 Canary song 3.3 ZENK 3.4 The blush 3.5 Histological analysis 3.6 Natural vs. artificial 3.7 The Blush II: gAP 3.8 Meditation

  2. Building biochips: a protein production pipeline

    NASA Astrophysics Data System (ADS)

    de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.

    2004-06-01

    Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.

  3. Enhanced identification and biological validation of differential gene expression via Illumina whole-genome expression arrays through the use of the model-based background correction methodology

    PubMed Central

    Ding, Liang-Hao; Xie, Yang; Park, Seongmi; Xiao, Guanghua; Story, Michael D.

    2008-01-01

    Despite the tremendous growth of microarray usage in scientific studies, there is a lack of standards for background correction methodologies, especially in single-color microarray platforms. Traditional background subtraction methods often generate negative signals and thus cause large amounts of data loss. Hence, some researchers prefer to avoid background corrections, which typically result in the underestimation of differential expression. Here, by utilizing nonspecific negative control features integrated into Illumina whole genome expression arrays, we have developed a method of model-based background correction for BeadArrays (MBCB). We compared the MBCB with a method adapted from the Affymetrix robust multi-array analysis algorithm and with no background subtraction, using a mouse acute myeloid leukemia (AML) dataset. We demonstrated that differential expression ratios obtained by using the MBCB had the best correlation with quantitative RT–PCR. MBCB also achieved better sensitivity in detecting differentially expressed genes with biological significance. For example, we demonstrated that the differential regulation of Tnfr2, Ikk and NF-kappaB, the death receptor pathway, in the AML samples, could only be detected by using data after MBCB implementation. We conclude that MBCB is a robust background correction method that will lead to more precise determination of gene expression and better biological interpretation of Illumina BeadArray data. PMID:18450815

  4. Analysis of host response to bacterial infection using error model based gene expression microarray experiments

    PubMed Central

    Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco

    2005-01-01

    A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204

  5. Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima

    PubMed Central

    2011-01-01

    Background Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes. Conclusions This investigation has mapped the spatial distribution for over 2000 ESTs present on PmaxArray 1.0 with reference to specific locations of the mantle. Expression profile clusters have indicated at least five unique functioning zones in the mantle. Three of these zones are likely involved in shell related activities including formation of nacre, periostracum and calcitic prismatic microstructure. A number of novel and known transcripts have been identified from these clusters. The development of PmaxArray 1.0, and the spatial map of its ESTs expression in the mantle has begun characterizing the molecular mechanisms linking the organics and inorganics of the molluscan shell. PMID:21936921

  6. Digital detection of multiple minority mutants and expression levels of multiple colorectal cancer-related genes using digital-PCR coupled with bead-array.

    PubMed

    Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua

    2015-01-01

    To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed "multiplex ligation-dependent probe amplification-digital amplification coupled with hydrogel bead-array" (MLPA-DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA-DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA-DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC.

  7. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  8. PCR array analysis of gene expression profiles in chronic active Epstein-Barr virus infection.

    PubMed

    Murakami, Masanao; Hashida, Yumiko; Imajoh, Masayuki; Maeda, Akihiko; Kamioka, Mikio; Senda, Yasutaka; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2014-07-01

    To determine the host cellular gene expression profiles in chronic active Epstein-Barr virus infection (CAEBV), peripheral blood samples were obtained from three patients with CAEBV and investigated using a PCR array analysis that focused on T-cell/B-cell activation. We identified six genes with expression levels that were tenfold higher in CAEBV patients compared with those in healthy controls. These results were verified by quantitative reverse transcription-PCR. We identified four highly upregulated genes, i.e., IL-10, IL-2, IFNGR1, and INHBA. These genes may be involved in inflammatory responses and cell proliferation, and they may contribute to the development and progression of CAEBV. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. ADGO: analysis of differentially expressed gene sets using composite GO annotation.

    PubMed

    Nam, Dougu; Kim, Sang-Bae; Kim, Seon-Kyu; Yang, Sungjin; Kim, Seon-Young; Chu, In-Sun

    2006-09-15

    Genes are typically expressed in modular manners in biological processes. Recent studies reflect such features in analyzing gene expression patterns by directly scoring gene sets. Gene annotations have been used to define the gene sets, which have served to reveal specific biological themes from expression data. However, current annotations have limited analytical power, because they are classified by single categories providing only unary information for the gene sets. Here we propose a method for discovering composite biological themes from expression data. We intersected two annotated gene sets from different categories of Gene Ontology (GO). We then scored the expression changes of all the single and intersected sets. In this way, we were able to uncover, for example, a gene set with the molecular function F and the cellular component C that showed significant expression change, while the changes in individual gene sets were not significant. We provided an exemplary analysis for HIV-1 immune response. In addition, we tested the method on 20 public datasets where we found many 'filtered' composite terms the number of which reached approximately 34% (a strong criterion, 5% significance) of the number of significant unary terms on average. By using composite annotation, we can derive new and improved information about disease and biological processes from expression data. We provide a web application (ADGO: http://array.kobic.re.kr/ADGO) for the analysis of differentially expressed gene sets with composite GO annotations. The user can analyze Affymetrix and dual channel array (spotted cDNA and spotted oligo microarray) data for four species: human, mouse, rat and yeast. chu@kribb.re.kr http://array.kobic.re.kr/ADGO.

  10. Split-plot microarray experiments: issues of design, power and sample size.

    PubMed

    Tsai, Pi-Wen; Lee, Mei-Ling Ting

    2005-01-01

    This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.

  11. Lectin array and glycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp.

    PubMed

    Zhao, Ran; Qin, Wenjun; Qin, Ruihuan; Han, Jing; Li, Can; Wang, Yisheng; Xu, Congjian

    2017-01-01

    Ovarian cancer is one of the most lethal gynecological malignancies, in which platinum resistance is a common cause of its relapse and death. Glycosylation has been reported to be involved in drug resistance, and glycomic analyses of ovarian cancer may improve our understanding of the mechanisms underlying cancer cell drug resistance and provide potential biomarkers and therapeutic targets. The serous ovarian cancer cell line A2780 and its platinum-resistant counterpart A2780-cp were used in this study. We performed a lectin array analysis to compare the glycosylation patterns of the two cell lines, a gene expression array was employed to probe the differences in glycogenes. Furthermore, the results were verified by lectin blots. A2780-cp cell exhibited stronger intensities of Lens culinaris (LCA) Canavalia ensiformis (ConA), and Lycopersicon esculentum (LEL) and weaker intensities of Sambucus nigra (SNA) lectins. The gene expression array analysis revealed increased expression of Fut8, B3gnt4, B3gnt5, B4galt2 and decreased expression of Fut1 and ST6GalNAc 6 expression were evident in the A2780-cp cells. The lectin blot confirmed the differences in LCA, ConA, SNA and LEL between the A2780 and A2780-cp cells. The combination of the lectin and gene expression analyses showed that the levels of core fucosylation and poly-LacNAc were increased in the A2780-cp cells and the levels of Fuc α1-2(gal β1-4) GlcNAc and α2-6-linked sialic structures were decreased in the A2780-cp cells. These glycans represent potential biomarkers and might be involved in the mechanism of drug resistance in ovarian cancer.

  12. An Array-Based Analysis of MicroRNA Expression Comparing Matched Frozen and Formalin-Fixed Paraffin-Embedded Human Tissue Samples

    PubMed Central

    Zhang, Xiao; Chen, Jiamin; Radcliffe, Tom; LeBrun, Dave P.; Tron, Victor A.; Feilotter, Harriet

    2008-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that suppress gene expression at the posttranscriptional level via an antisense RNA-RNA interaction. miRNAs used for array-based profiling are generally purified from either snap-frozen or fresh samples. Because tissues found in most pathology departments are available only in formalin-fixed and paraffin-embedded (FFPE) states, we sought to evaluate miRNA derived from FFPE samples for microarray analysis. In this study, miRNAs extracted from matched snap-frozen and FFPE samples were profiled using the Agilent miRNA array platform (Agilent, Santa Clara, CA). Each miRNA sample was hybridized to arrays containing probes interrogating 470 human miRNAs. Seven cases were compared in either duplicate or triplicate. Intrachip and interchip analyses demonstrated that the processes of miRNA extraction, labeling, and hybridization from both frozen and FFPE samples are highly reproducible and add little variation to the results; technical replicates showed high correlations with one another (Kendall tau, 0.722 to 0.853; Spearman rank correlation coefficient, 0.891 to 0.954). Our results showed consistent high correlations between matched frozen and FFPE samples (Kendall tau, 0.669 to 0.815; Spearman rank correlation coefficient, 0.847 to 0.948), supporting the use of FFPE-derived miRNAs for array-based, gene expression profiling. PMID:18832457

  13. Heterologous Array Analysis in Pinaceae: Hybridization of Pinus Taeda cDNA Arrays With cDNA From Needles and Embryogenic Cultures of P. Taeda, P. Sylvestris or Picea Abies

    PubMed Central

    van Zyl, Leonel; von Arnold, Sara; Bozhkov, Peter; Chen, Yongzhong; Egertsdotter, Ulrika; MacKay, John; Sederoff, Ronald R.; Shen, Jing; Zelena, Lyubov

    2002-01-01

    Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few conifer cDNA libraries have been sequenced. Because of the high level of sequence conservation between Pinus and Picea we have investigated the use of arrays from one genus for studies of gene expression in the other. The partial cDNAs from 384 identifiable genes expressed in differentiating xylem of Pinus taeda were printed on nylon membranes in randomized replicates. These were hybridized with labelled cDNA from needles or embryogenic cultures of Pinus taeda, P. sylvestris and Picea abies, and with labelled cDNA from leaves of Nicotiana tabacum. The Spearman correlation of gene expression for pairs of conifer species was high for needles (r2 = 0.78 − 0.86), and somewhat lower for embryogenic cultures (r2 = 0.68 − 0.83). The correlation of gene expression for tobacco leaves and needles of each of the three conifer species was lower but sufficiently high (r2 = 0.52 − 0.63) to suggest that many partial gene sequences are conserved in angiosperms and gymnosperms. Heterologous probing was further used to identify tissue-specific gene expression over species boundaries. To evaluate the significance of differences in gene expression, conventional parametric tests were compared with permutation tests after four methods of normalization. Permutation tests after Z-normalization provide the highest degree of discrimination but may enhance the probability of type I errors. It is concluded that arrays of cDNA from loblolly pine are useful for studies of gene expression in other pines or spruces. PMID:18629264

  14. SEURAT: visual analytics for the integrated analysis of microarray data.

    PubMed

    Gribov, Alexander; Sill, Martin; Lück, Sonja; Rücker, Frank; Döhner, Konstanze; Bullinger, Lars; Benner, Axel; Unwin, Antony

    2010-06-03

    In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data.

  15. A proposed metric for assessing the measurement quality of individual microarrays

    PubMed Central

    Kim, Kyoungmi; Page, Grier P; Beasley, T Mark; Barnes, Stephen; Scheirer, Katherine E; Allison, David B

    2006-01-01

    Background High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. Results We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. Conclusion We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements. PMID:16430768

  16. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  17. Gene expression of cell surface antigens in the early phase of murine influenza pneumonia determined by a cDNA expression array technique.

    PubMed

    Sakai, Shinya; Mantani, Naoki; Kogure, Toshiaki; Ochiai, Hiroshi; Shimada, Yutaka; Terasawa, Katsutoshi

    2002-12-01

    Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especially in vivo study. To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis. Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided. We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.

  18. Algorithms on Flag Manifolds for Knowledge Discovery in N-way Arrays

    DTIC Science & Technology

    2015-11-20

    that three of 18 subjects will become symptomatic after only 8 hours. Host pathway analysis of a human endotoxin gene expression data set revealed a 14...pathway analysis of a human endotoxin gene expression data set revealed a 14 pathway signature that identified symptomatic subjects within 2-3 hours post

  19. Dose-response relationships in gene expression profiles in rainbow trout, Oncorhyncus mykiss, exposed to ethynylestradiol.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-07-01

    Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss,were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as "expression signatures". Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that different doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose.

  20. The application of DNA microarrays in gene expression analysis.

    PubMed

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  1. The chemiluminescence based Ziplex automated workstation focus array reproduces ovarian cancer Affymetrix GeneChip expression profiles.

    PubMed

    Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N

    2009-07-06

    As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.

  2. MORPHOLOGIC ANALYSIS CORRELATES WITH GENE EXPRESSION CHANGES IN CULTURED F344 RAT MESOTHELIAL CELLS

    EPA Science Inventory

    The gene expression pattern of mesothelial cells in vitro was determined after 4 or 12 h exposure to the rat mesothelial, kidney and thyroid carcinogen, and oxidative stressor potassium bromate (KBr03). Gene expression changes observed using cDNA arrays indicated oxidative stres...

  3. Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots

    PubMed Central

    Scholma, Jetse; Fuhler, Gwenny M.; Joore, Jos; Hulsman, Marc; Schivo, Stefano; List, Alan F.; Reinders, Marcel J. T.; Peppelenbosch, Maikel P.; Post, Janine N.

    2016-01-01

    Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling. PMID:27225531

  4. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome.

    PubMed

    Tothill, Richard W; Tinker, Anna V; George, Joshy; Brown, Robert; Fox, Stephen B; Lade, Stephen; Johnson, Daryl S; Trivett, Melanie K; Etemadmoghadam, Dariush; Locandro, Bianca; Traficante, Nadia; Fereday, Sian; Hung, Jillian A; Chiew, Yoke-Eng; Haviv, Izhak; Gertig, Dorota; DeFazio, Anna; Bowtell, David D L

    2008-08-15

    The study aim to identify novel molecular subtypes of ovarian cancer by gene expression profiling with linkage to clinical and pathologic features. Microarray gene expression profiling was done on 285 serous and endometrioid tumors of the ovary, peritoneum, and fallopian tube. K-means clustering was applied to identify robust molecular subtypes. Statistical analysis identified differentially expressed genes, pathways, and gene ontologies. Laser capture microdissection, pathology review, and immunohistochemistry validated the array-based findings. Patient survival within k-means groups was evaluated using Cox proportional hazards models. Class prediction validated k-means groups in an independent dataset. A semisupervised survival analysis of the array data was used to compare against unsupervised clustering results. Optimal clustering of array data identified six molecular subtypes. Two subtypes represented predominantly serous low malignant potential and low-grade endometrioid subtypes, respectively. The remaining four subtypes represented higher grade and advanced stage cancers of serous and endometrioid morphology. A novel subtype of high-grade serous cancers reflected a mesenchymal cell type, characterized by overexpression of N-cadherin and P-cadherin and low expression of differentiation markers, including CA125 and MUC1. A poor prognosis subtype was defined by a reactive stroma gene expression signature, correlating with extensive desmoplasia in such samples. A similar poor prognosis signature could be found using a semisupervised analysis. Each subtype displayed distinct levels and patterns of immune cell infiltration. Class prediction identified similar subtypes in an independent ovarian dataset with similar prognostic trends. Gene expression profiling identified molecular subtypes of ovarian cancer of biological and clinical importance.

  5. BEAT: Bioinformatics Exon Array Tool to store, analyze and visualize Affymetrix GeneChip Human Exon Array data from disease experiments

    PubMed Central

    2012-01-01

    Background It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. Results BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza. To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a multivariate AS analysis. Conclusions Despite exon array chips being widely used for transcriptomics studies, there is a lack of analysis tools offering advanced statistical features and requiring no programming knowledge. BEAT provides a user-friendly platform for a comprehensive study of AS events in human diseases, displaying the analysis results with easily interpretable and interactive tables and graphics. PMID:22536968

  6. ArraySolver: an algorithm for colour-coded graphical display and Wilcoxon signed-rank statistics for comparing microarray gene expression data.

    PubMed

    Khan, Haseeb Ahmad

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann-Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n < or = 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform.

  7. ArraySolver: An Algorithm for Colour-Coded Graphical Display and Wilcoxon Signed-Rank Statistics for Comparing Microarray Gene Expression Data

    PubMed Central

    2004-01-01

    The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann–Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n ≤ 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform. PMID:18629036

  8. SEURAT: Visual analytics for the integrated analysis of microarray data

    PubMed Central

    2010-01-01

    Background In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. Results We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. Conclusions The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data. PMID:20525257

  9. Dose–response relationships in gene expression profiles in rainbow trout, Oncorhyncus mykiss, exposed to ethynylestradiol

    PubMed Central

    Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2008-01-01

    Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss, were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as “expression signatures”. Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that diffierent doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose. PMID:16725192

  10. High resolution array CGH and gene expression profiling of alveolar soft part sarcoma

    PubMed Central

    Selvarajah, Shamini; Pyne, Saumyadipta; Chen, Eleanor; Sompallae, Ramakrishna; Ligon, Azra H.; Nielsen, Gunnlaugur P.; Dranoff, Glenn; Stack, Edward; Loda, Massimo; Flavin, Richard

    2014-01-01

    Purpose Alveolar soft part sarcoma (ASPS) is a soft tissue sarcoma with poor prognosis, and little molecular evidence for its origin, initiation and progression. The aim of this study was to elucidate candidate molecular pathways involved in tumor pathogenesis. Experimental Design We employed high-throughput array comparative genomic hybridization and cDNA-Mediated Annealing, Selection, Ligation, and Extension Assay to profile the genomic and expression signatures of primary and metastatic ASPS from 17 tumors derived from 11 patients. We used an integrative bioinformatics approach to elucidate the molecular pathways associated with ASPS progression. Fluorescence in situ hybridization was performed to validate the presence of the t(X;17)(p11.2;q25) ASPL-TFE3 fusion and hence confirm the aCGH observations. Results FISH analysis identified the ASPL-TFE3 fusion in all cases. ArrayCGH revealed a higher number of numerical aberrations in metastatic tumors relative to primaries, but failed to identify consistent alterations in either group. Gene expression analysis highlighted 1,063 genes which were differentially expressed between the two groups. Gene set enrichment analysis identified 16 enriched gene sets (p < 0.1) associated with differentially expressed genes. Notable among these were several stem cell gene expression signatures and pathways related to differentiation. In particular, the paired box transcription factor PAX6 was up-regulated in the primary tumors, along with several genes whose mouse orthologs have previously been implicated in Pax6-DNA binding during neural stem cell differentiation. Conclusion In addition to suggesting a tentative neural line of differentiation for ASPS, these results implicate transcriptional deregulation from fusion genes in the pathogenesis of ASPS. PMID:24493828

  11. Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicumstrains.

    PubMed

    Tummala, Seshu B; Junne, Stefan G; Paredes, Carlos J; Papoutsakis, Eleftherios T

    2003-12-30

    Antisense RNA (asRNA) downregulation alters protein expression without changing the regulation of gene expression. Downregulation of primary metabolic enzymes possibly combined with overexpression of other metabolic enzymes may result in profound changes in product formation, and this may alter the large-scale transcriptional program of the cells. DNA-array based large-scale transcriptional analysis has the potential to elucidate factors that control cellular fluxes even in the absence of proteome data. These themes are explored in the study of large-scale transcriptional analysis programs and the in vivo primary-metabolism fluxes of several related recombinant C. acetobutylicum strains: C. acetobutylicum ATCC 824(pSOS95del) (plasmid control; produces high levels of butanol snd acetone), 824(pCTFB1AS) (expresses antisense RNA against CoA transferase (ctfb1-asRNA); produces very low levels of butanol and acetone), and 824(pAADB1) (expresses ctfb1-asRNA and the alcohol-aldehyde dahydrogenase gene (aad); produce high alcohol and low acetone levels). DNA-array based transcriptional analysis revealed that the large changes in product concentrations (snd notably butanol concentration) due to ctfb1-asRNA expression alone and in combination with aad overexpression resulted in dramatic changes of the cellular transcriptome. Cluster analysis and gene expression patterns of established and putative operons involved in stress response, motility, sporulation, and fatty-acid biosynthesis indicate that these simple genetic changes dramatically alter the cellular programs of C. acetobutylicum. Comparison of gene expression and flux analysis data may point to possible flux-controling steps and suggest unknown regulatory mechanisms. Copyright 2003; Wiley Periodicals, Inc.

  12. Reliability analysis of the solar array based on Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Jianing, Wu; Shaoze, Yan

    2011-07-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  13. Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    PubMed Central

    Kote-Jarai, Zsofia; Saunders, Edward J.; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Dadaev, Tokhir; Jugurnauth-Little, Sarah; Ross-Adams, Helen; Al Olama, Ali Amin; Benlloch, Sara; Halim, Silvia; Russel, Roslin; Dunning, Alison M.; Luccarini, Craig; Dennis, Joe; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Muir, Ken; Giles, Graham G.; Severi, Gianluca; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Lindstrom, Sara; Kraft, Peter; Hunter, David J.; Gapstur, Susan; Chanock, Stephen; Berndt, Sonja I.; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Canzian, Federico; Riboli, Elio; Key, Tim J.; Travis, Ruth C.; Campa, Daniele; Ingles, Sue A.; John, Esther M.; Hayes, Richard B.; Pharoah, Paul; Khaw, Kay-Tee; Stanford, Janet L.; Ostrander, Elaine A.; Signorello, Lisa B.; Thibodeau, Stephen N.; Schaid, Dan; Maier, Christiane; Vogel, Walther; Kibel, Adam S.; Cybulski, Cezary; Lubinski, Jan; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong Y.; Kaneva, Radka; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A.; Teixeira, Manuel R.; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A.; Sawyer, Emma J.; Morgan, Angela; Dicks, Ed; Baynes, Caroline; Conroy, Don; Bojesen, Stig E.; Kaaks, Rudolf; Vincent, Daniel; Bacot, François; Tessier, Daniel C.; Easton, Douglas F.; Eeles, Rosalind A.

    2013-01-01

    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease. PMID:23535824

  14. The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions.

    PubMed

    Tian, J; Ishibashi, K; Honda, S; Boylan, S A; Hjelmeland, L M; Handa, J T

    2005-11-01

    To determine the transcriptional proximity of retinal pigment epithelium (RPE) cells grown under different culture conditions and native RPE. ARPE-19 cells were grown under five conditions in 10% CO(2): "subconfluent" in DMEM/F12+10% FBS, "confluent" in serum and serum withdrawn, and "differentiated" for 2.5 months in serum and serum withdrawn medium. Native RPE was laser microdissected. Total RNA was extracted, reverse transcribed, and radiolabelled probes were hybridised to an array containing 5,353 genes. Arrays were evaluated by hierarchical cluster analysis and significance analysis of microarrays. 78% of genes were expressed by native RPE while 45.3--47.7% were expressed by ARPE-19 cells, depending on culture condition. While the most abundant genes were expressed by native and cultured cells, significant differences in low abundance genes were seen. Hierarchical cluster analysis showed that confluent and differentiated, serum withdrawn cultures clustered closest to native RPE, and that serum segregated cultured cells from native RPE. The number of differentially expressed genes and their function, and profile of expressed and unexpressed genes, demonstrate differences between native and cultured cells. While ARPE-19 cells have significant value for studying RPE behaviour, investigators must be aware of how culture conditions can influence the mRNA phenotype of the cell.

  15. Too much data, but little inter-changeability: a lesson learned from mining public data on tissue specificity of gene expression.

    PubMed

    Li, Shuyu; Li, Yiqun Helen; Wei, Tao; Su, Eric Wen; Duffin, Kevin; Liao, Birong

    2006-10-25

    The tissue expression pattern of a gene often provides an important clue to its potential role in a biological process. A vast amount of gene expression data have been and are being accumulated in public repository through different technology platforms. However, exploitations of these rich data sources remain limited in part due to issues of technology standardization. Our objective is to test the data comparability between SAGE and microarray technologies, through examining the expression pattern of genes under normal physiological states across variety of tissues. There are 42-54% of genes showing significant correlations in tissue expression patterns between SAGE and GeneChip, with 30-40% of genes whose expression patterns are positively correlated and 10-15% of genes whose expression patterns are negatively correlated at a statistically significant level (p = 0.05). Our analysis suggests that the discrepancy on the expression patterns derived from technology platforms is not likely from the heterogeneity of tissues used in these technologies, or other spurious correlations resulting from microarray probe design, abundance of genes, or gene function. The discrepancy can be partially explained by errors in the original assignment of SAGE tags to genes due to the evolution of sequence databases. In addition, sequence analysis has indicated that many SAGE tags and Affymetrix array probe sets are mapped to different splice variants or different sequence regions although they represent the same gene, which also contributes to the observed discrepancies between SAGE and array expression data. To our knowledge, this is the first report attempting to mine gene expression patterns across tissues using public data from different technology platforms. Unlike previous similar studies that only demonstrated the discrepancies between the two gene expression platforms, we carried out in-depth analysis to further investigate the cause for such discrepancies. Our study shows that the exploitation of rich public expression resource requires extensive knowledge about the technologies, and experiment. Informatic methodologies for better interoperability among platforms still remain a gap. One of the areas that can be improved practically is the accurate sequence mapping of SAGE tags and array probes to full-length genes.

  16. Assessment of a novel multi-array normalization method based on spike-in control probes suitable for microRNA datasets with global decreases in expression.

    PubMed

    Sewer, Alain; Gubian, Sylvain; Kogel, Ulrike; Veljkovic, Emilija; Han, Wanjiang; Hengstermann, Arnd; Peitsch, Manuel C; Hoeng, Julia

    2014-05-17

    High-quality expression data are required to investigate the biological effects of microRNAs (miRNAs). The goal of this study was, first, to assess the quality of miRNA expression data based on microarray technologies and, second, to consolidate it by applying a novel normalization method. Indeed, because of significant differences in platform designs, miRNA raw data cannot be normalized blindly with standard methods developed for gene expression. This fundamental observation motivated the development of a novel multi-array normalization method based on controllable assumptions, which uses the spike-in control probes to adjust the measured intensities across arrays. Raw expression data were obtained with the Exiqon dual-channel miRCURY LNA™ platform in the "common reference design" and processed as "pseudo-single-channel". They were used to apply several quality metrics based on the coefficient of variation and to test the novel spike-in controls based normalization method. Most of the considerations presented here could be applied to raw data obtained with other platforms. To assess the normalization method, it was compared with 13 other available approaches from both data quality and biological outcome perspectives. The results showed that the novel multi-array normalization method reduced the data variability in the most consistent way. Further, the reliability of the obtained differential expression values was confirmed based on a quantitative reverse transcription-polymerase chain reaction experiment performed for a subset of miRNAs. The results reported here support the applicability of the novel normalization method, in particular to datasets that display global decreases in miRNA expression similarly to the cigarette smoke-exposed mouse lung dataset considered in this study. Quality metrics to assess between-array variability were used to confirm that the novel spike-in controls based normalization method provided high-quality miRNA expression data suitable for reliable downstream analysis. The multi-array miRNA raw data normalization method was implemented in an R software package called ExiMiR and deposited in the Bioconductor repository.

  17. Assessment of a novel multi-array normalization method based on spike-in control probes suitable for microRNA datasets with global decreases in expression

    PubMed Central

    2014-01-01

    Background High-quality expression data are required to investigate the biological effects of microRNAs (miRNAs). The goal of this study was, first, to assess the quality of miRNA expression data based on microarray technologies and, second, to consolidate it by applying a novel normalization method. Indeed, because of significant differences in platform designs, miRNA raw data cannot be normalized blindly with standard methods developed for gene expression. This fundamental observation motivated the development of a novel multi-array normalization method based on controllable assumptions, which uses the spike-in control probes to adjust the measured intensities across arrays. Results Raw expression data were obtained with the Exiqon dual-channel miRCURY LNA™ platform in the “common reference design” and processed as “pseudo-single-channel”. They were used to apply several quality metrics based on the coefficient of variation and to test the novel spike-in controls based normalization method. Most of the considerations presented here could be applied to raw data obtained with other platforms. To assess the normalization method, it was compared with 13 other available approaches from both data quality and biological outcome perspectives. The results showed that the novel multi-array normalization method reduced the data variability in the most consistent way. Further, the reliability of the obtained differential expression values was confirmed based on a quantitative reverse transcription–polymerase chain reaction experiment performed for a subset of miRNAs. The results reported here support the applicability of the novel normalization method, in particular to datasets that display global decreases in miRNA expression similarly to the cigarette smoke-exposed mouse lung dataset considered in this study. Conclusions Quality metrics to assess between-array variability were used to confirm that the novel spike-in controls based normalization method provided high-quality miRNA expression data suitable for reliable downstream analysis. The multi-array miRNA raw data normalization method was implemented in an R software package called ExiMiR and deposited in the Bioconductor repository. PMID:24886675

  18. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  19. Digital Detection of Multiple Minority Mutants and Expression Levels of Multiple Colorectal Cancer-Related Genes Using Digital-PCR Coupled with Bead-Array

    PubMed Central

    Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua

    2015-01-01

    To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed “multiplex ligation-dependent probe amplification–digital amplification coupled with hydrogel bead-array” (MLPA–DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA–DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA–DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC. PMID:25880764

  20. Transcript Profiling of Common Bean (Phaseolus vulgaris L.) Using the GeneChip(R) Soybean Genome Array: Optimizing Analysis by Masking Biased Probes

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. This suggests that the GeneChip(R) Soybean Genome Array (soybean GeneChip) may be used for gene expression studies using common bean. To evaluate the utility...

  1. In situ synthesis of protein arrays.

    PubMed

    He, Mingyue; Stoevesandt, Oda; Taussig, Michael J

    2008-02-01

    In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.

  2. APPLICATION OF DNA MICROARRAYS TO REPRODUCTIVE TOXICOLOGY AND THE DEVELOPMENT OF A TESTIS ARRAY

    EPA Science Inventory

    With the advent of sequence information for entire mammalian genomes, it is now possible to analyze gene expression and gene polymorphisms on a genomic scale. The primary tool for analysis of gene expression is the DNA microarray. We have used commercially available cDNA micro...

  3. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis

    PubMed Central

    Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.

    1999-01-01

    With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933

  4. Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays.

    PubMed

    Goldstein, Darlene R

    2006-10-01

    Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.

  5. Biomarkers in the Detection of Prostate Cancer in African Americans

    DTIC Science & Technology

    2014-09-01

    tissues by Taqman low density array: application to Hedgehog and Wnt pathway analysis in ovarian endome- trioid adenocarcinoma . J. Mol. Diagn. 8 : 76...2007) Hedgehog pathway expression in heterogeneous pancreatic adenocarcinoma: implications for the molecular analysis of clinically available

  6. Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis.

    PubMed

    Li, Xingrui; Zhang, Dongfeng; Zhang, Huimin; Guan, Zhichao; Song, Yanling; Liu, Ruochen; Zhu, Zhi; Yang, Chaoyong

    2018-02-20

    Compartmentalization of aqueous samples in uniform emulsion droplets has proven to be a useful tool for many chemical, biological, and biomedical applications. Herein, we introduce an array-based emulsification method for rapid and easy generation of monodisperse agarose-in-oil droplets in a PDMS microwell array. The microwells are filled with agarose solution, and subsequent addition of hot oil results in immediate formation of agarose droplets due to the surface-tension of the liquid solution. Because droplet size is determined solely by the array unit dimensions, uniform droplets with preselectable diameters ranging from 20 to 100 μm can be produced with relative standard deviations less than 3.5%. The array-based droplet generation method was used to perform digital PCR for absolute DNA quantitation. The array-based droplet isolation and sol-gel switching property of agarose enable formation of stable beads by chilling the droplet array at -20 °C, thus, maintaining the monoclonality of each droplet and facilitating the selective retrieval of desired droplets. The monoclonality of droplets was demonstrated by DNA sequencing and FACS analysis, suggesting the robustness and flexibility of the approach for single molecule amplification and analysis. We believe our approach will lead to new possibilities for a great variety of applications, such as single-cell gene expression studies, aptamer selection, and oligonucleotide analysis.

  7. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    PubMed

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization.

    PubMed

    Xu, Y; Ehringer, M; Yang, F; Sikela, J M

    2001-06-01

    Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and efficient way to discover potential genes and pathways involved in alcoholism and alcohol-related physiologic processes.

  9. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production

    USDA-ARS?s Scientific Manuscript database

    Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease res...

  10. Toward a Public Toxicogenomics Capability for Supporting Predictive Toxicology: Survey of Current Resources and Chemical Indexing of Experiments in GEO and ArrayExpress

    EPA Science Inventory

    A publicly available toxicogenomics capability for supporting predictive toxicology and meta-analysis depends on availability of gene expression data for chemical treatment scenarios, the ability to locate and aggregate such information by chemical, and broad data coverage within...

  11. Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot.

    PubMed

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-04-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.

  12. Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot

    PubMed Central

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-01-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383

  13. Promoter methylation assay of SASH1 gene in hepatocellular carcinoma.

    PubMed

    Peng, Liu; Wei, He; Liren, Li

    2014-01-01

    To analyse the relationship between the expression of SASH1 and its methylation level in human hepatocellular carcinoma. Expression levels of SASH1 were examined with real-time PCR (RT-PCR) in tissues and cells, and methylation analysis was performed with MassArray. The expression levels of SASH1 were strongly reduced in liver cancer tissues compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed different CpG sites in SASH1 promoter shared similar methylation pattern between liver cancer tissues and adjacent normal tissues and the CpG sites of significant difference in methylation level were found as follows: CpG_3, CpG_17, CpG_21.22, CpG_25, CpG_26.27, CpG_28, CpG_34.35.36 and CpG_51.52. Moreover, 5-aza-2'-deoxycytidine treatment of Hep-G2 cell line caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation degree in the promoter region of SASH1 gene, particularly CpG_26.27 sites, possibly repressed SASH1 expression in liver cancer.

  14. Promoter methylation assay of SASH1 gene in breast cancer.

    PubMed

    Sheyu, Lin; Hui, Liu; Junyu, Zhang; Jiawei, Xu; Honglian, Wang; Qing, Sang; Hengwei, Zhang; Xuhui, Guo; Qinghe, Xing; Lin, He

    2013-01-01

    To analyze the relationship between the expression of SASH1 and its methylation level of SASH1 gene promoter in human breast cancer. Expression levels of SASH1 were examined in breast cancer tissues and adjacent normal tissues with immunohistochemistry and with real time PCR (RT-PCR) methylation analysis was performed with MassArray. Immunohistochemistry showed that SASH1 expression was strongly reduced in breast cancer compared with adjacent normal tissues. Quantitative methylation analysis by MassArray revealed that CpG sites in SASH1 promoter shared similar methylation pattern in tumor tissue and adjacent normal tissue. The CpG sites with significant difference in methylation level were CpG_26.27 and CpG_54.55. Moreover, 5-aza-2'-deoxycytidine (5-Aza-dc) treatment of tumor cell line MDA-MB-231 caused significant elevation of SASH1 mRNA. Based on these data, we propose that increase of DNA methylation level in the promoter region of gene SASH1, particularly CpG_26.27 or CpG_54.55 sites, possibly repressed SASH1 expression in breast cancer.

  15. Analysis of cellular response by exposure to acute or chronic radiation in human lymphoblastoid TK-6 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Yasumoto, J.; Takahashi, A.; Ohnishi, K.

    To clarify the biological effects of low-dose rate radiation on human health for long-term stay in space, we analyzed the induction of apoptosis and apoptosis-related gene expression after irradiation with different dose-rate in human lymphoblastoid TK-6 cells harboring wild-type p53 gene. We irradiated TK-6 cells by X-ray at 1.5 Gy (1 Gy/min) and then sampled at 25 hr after culturing. We also irradiated by gamma-ray at 1.5 Gy (1 mGy/min) and then sampled immediately or 25 hr after irradiation. For DNA ladder analysis, we extracted DNA from these samples and electrophoresed with 2% agarose gel. In addition, we extracted mRNA from these samples for DNA-array analysis. mRNA from non-irradiated cells was used as a control. After labeling the cDNA against mRNA with [α -33P]-dCTP and hybridizing onto DNA array (Human Apoptosis Expression Array, R&D Systems), we scanned the profiles of the spots by a phosphorimager (BAS5000, FUJI FILM) and calculated using a NIH Image program. The data of each DNA-array were normalized with eight kinds of house keeping genes. We analyzed the expression level of apoptosis-related genes such as p53-related, Bcl-2 family, Caspase family and Fas-related genes. DNA ladders were obviously detected in the cells exposed to a high dose-rate radiation. We detected the induction of the gene expression of apoptosis-promotive genes. In contrast, almost no apoptosis was observed in the cells exposed to the chronic radiation at a low dose-rate. In addition, we detected the induction of the gene expression of apoptosis-suppressive genes as compared with apoptosis promotive-genes immediately after chronic irradiation. These results lead the importance of biological meaning of exposure to radiation at low dose-rate from an aspect of carcinogenesis. Finally, the effects of chronic irradiation become a highly important issue in space radiation biology for human health.

  16. [Genetic analysis of two cases with Dandy-Walker deformed fetus].

    PubMed

    Yao, Juan; Fang, Rong; Shen, Xueping; Shen, Guosong; Zhang, Su

    2017-10-10

    To explore the genetic etiology of two fetuses with Dandy-Walker malformation using single nucleotide polymorphism microarray (SNP-array). The fetuses and their parents were subjected to G banding karyotype analysis. The fetuses were also subjected to SNP-array analysis. The parents of both fetuses showed a normal karyotype. One fetus has a 46,X,?i(X)(q10), while for another conventional cell culture has failed. SNP-array showed that one fetus carried a 6p25.3p25.2 microdeletion, and another carried a Xp22.33p22.2 deletion and a Yq11.221q11 duplication. The abnormal fragments have involved FOXC1, SHOX and STS genes, which are associated with Dandy-Walker malformation. Alteration of 6p25.3p25.2, Xp22.33p22.2 copy numbers probably underlies the Dandy-Walker syndrome in the fetuses. The disorder may be attributed to abnormal expression of FOXC1, SHOX, and STS genes. SNP-array can provide an important supplement for prenatal diagnosis.

  17. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit

    PubMed Central

    Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna

    2008-01-01

    Background Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Results Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Conclusion Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development. PMID:18279528

  18. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit.

    PubMed

    Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna

    2008-02-17

    Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.

  19. Three-Dimensional Field Solutions for Multi-Pole Cylindrical Halbach Arrays in an Axial Orientation

    NASA Technical Reports Server (NTRS)

    Thompson, William K.

    2006-01-01

    This article presents three-dimensional B field solutions for the cylindrical Halbach array in an axial orientation. This arrangement has applications in the design of axial motors and passive axial magnetic bearings and couplers. The analytical model described here assumes ideal magnets with fixed and uniform magnetization. The field component functions are expressed as sums of 2-D definite integrals that are easily computed by a number of mathematical analysis software packages. The analysis is verified with sample calculations and the results are compared to equivalent results from traditional finite-element analysis (FEA). The field solutions are then approximated for use in flux linkage and induced EMF calculations in nearby stator windings by expressing the field variance with angular displacement as pure sinusoidal function whose amplitude depends on radial and axial position. The primary advantage of numerical implementation of the analytical approach presented in the article is that it lends itself more readily to parametric analysis and design tradeoffs than traditional FEA models.

  20. Proof of Concept Study to Assess Fetal Gene Expression in Amniotic Fluid by NanoArray PCR

    PubMed Central

    Massingham, Lauren J.; Johnson, Kirby L.; Bianchi, Diana W.; Pei, Shermin; Peter, Inga; Cowan, Janet M.; Tantravahi, Umadevi; Morrison, Tom B.

    2011-01-01

    Microarray analysis of cell-free RNA in amniotic fluid (AF) supernatant has revealed differential fetal gene expression as a function of gestational age and karyotype. Once informative genes are identified, research moves to a more focused platform such as quantitative reverse transcriptase-PCR. Standardized NanoArray PCR (SNAP) is a recently developed gene profiling technology that enables the measurement of transcripts from samples containing reduced quantities or degraded nucleic acids. We used a previously developed SNAP gene panel as proof of concept to determine whether fetal functional gene expression could be ascertained from AF supernatant. RNA was extracted and converted to cDNA from 19 AF supernatant samples of euploid fetuses between 15 to 20 weeks of gestation, and transcript abundance of 21 genes was measured. Statistically significant differences in expression, as a function of advancing gestational age, were observed for 5 of 21 genes. ANXA5, GUSB, and PPIA showed decreasing gene expression over time, whereas CASC3 and ZNF264 showed increasing gene expression over time. Statistically significantly increased expression of MTOR and STAT2 was seen in female compared with male fetuses. This study demonstrates the feasibility of focused fetal gene expression analysis using SNAP technology. In the future, this technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care. PMID:21827969

  1. ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs

    PubMed Central

    2011-01-01

    Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor. PMID:21548938

  2. Analysis of microRNA and gene expression profiling in triazole fungicide-treated HepG2 cell line.

    PubMed

    An, Yu Ri; Kim, Seung Jun; Oh, Moon-Ju; Kim, Hyun-Mi; Shim, Il-Seob; Kim, Pil-Je; Choi, Kyunghee; Hwang, Seung Yong

    2013-01-07

    MicroRNA (miRNA) plays an important role in various diseases and in cellular and molecular responses to toxicants. In the present study, we investigated differential expression of miRNAs in response to three triazole fungicides (myclobutanil, propiconazole, and triadimefon). The human hepatoma cell line (HepG2) was treated with the above triazoles for 3 h or 48 h. miRNA-based microarray experiments were carried out using the Agilent human miRNA v13 array. At early exposure (3h), six miRNAs were differentially expressed and at late exposure (48 h), three miRNAs were significantly expressed. Overall, this study provides an array of potential biomarkers for the above triazole fungicides. Furthermore, these miRNAs induced by triazoles could be the foundation for the development of a miRNA-based toxic biomarker library that can predict environmental toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. The microRNA Expression Profile in Donation after Cardiac Death (DCD) Livers and Its Ability to Identify Primary Non Function.

    PubMed

    Khorsandi, Shirin Elizabeth; Quaglia, Alberto; Salehi, Siamak; Jassem, Wayel; Vilca-Melendez, Hector; Prachalias, Andreas; Srinivasan, Parthi; Heaton, Nigel

    2015-01-01

    Donation after cardiac death (DCD) livers are marginal organs for transplant and their use is associated with a higher risk of primary non function (PNF) or early graft dysfunction (EGD). The aim was to determine if microRNA (miRNA) was able to discriminate between DCD livers of varying clinical outcome. DCD groups were categorized as PNF retransplanted within a week (n=7), good functional outcome (n=7) peak aspartate transaminase (AST) ≤ 1000 IU/L and EGD (n=9) peak AST ≥ 2500 IU/L. miRNA was extracted from archival formalin fixed post-perfusion tru-cut liver biopsies. High throughput expression analysis was performed using miRNA arrays. Bioinformatics for expression data analysis was performed and validated with real time quantitative PCR (RT-qPCR). The function of miRNA of interest was investigated using computational biology prediction algorithms. From the array analysis 16 miRNAs were identified as significantly different (p<0.05). On RT-qPCR miR-155 and miR-940 had the highest expression across all three DCD clinical groups. Only one miRNA, miR-22, was validated with marginal significance, to have differential expression between the three groups (p=0.049). From computational biology miR-22 was predicted to affect signalling pathways that impact protein turnover, metabolism and apoptosis/cell cycle. In conclusion, microRNA expression patterns have a low diagnostic potential clinically in discriminating DCD liver quality and outcome.

  4. Single-cell analysis of Daxx and ATRX-dependent transcriptional repression

    PubMed Central

    Newhart, Alyshia; Rafalska-Metcalf, Ilona U.; Yang, Tian; Negorev, Dmitri G.; Janicki, Susan M.

    2012-01-01

    Summary Histone H3.3 is a constitutively expressed H3 variant implicated in the epigenetic inheritance of chromatin structures. Recently, the PML-nuclear body (PML-NB)/Nuclear Domain 10 (ND10) proteins, Daxx and ATRX, were found to regulate replication-independent histone H3.3 chromatin assembly at telomeres and pericentric heterochromatin. As it is not completely understood how PML-NBs/ND10s regulate transcription and resistance to viral infection, we have used a CMV-promoter-regulated inducible transgene array, at which Daxx and ATRX are enriched, to delineate the mechanisms through which they regulate transcription. When integrated into HeLa cells, which express both Daxx and ATRX, the array is refractory to activation. However, transcription can be induced when ICP0, the HSV-1 E3 ubiquitin ligase required to reverse latency, is expressed. As ATRX and Daxx are depleted from the activated array in ICP0-expressing HeLa cells, this suggests that they are required to maintain a repressed chromatin environment. As histone H3.3 is strongly recruited to the ICP0-activated array but does not co-localize with the DNA, this also suggests that chromatin assembly is blocked during activation. The conclusion that the Daxx and ATRX pathway is required for transcriptional repression and chromatin assembly at this site is further supported by the finding that an array integrated into the ATRX-negative U2OS cell line can be robustly activated and that histone H3.3 is similarly recruited and unincorporated into the chromatin. Therefore, this study has important implications for understanding gene silencing, viral latency and PML-NB/ND10 function. PMID:22976303

  5. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    PubMed Central

    2009-01-01

    Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical. Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments. PMID:19941644

  6. Gene expression profiling of single cells on large-scale oligonucleotide arrays

    PubMed Central

    Hartmann, Claudia H.; Klein, Christoph A.

    2006-01-01

    Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717

  7. Weight Vector Fluctuations in Adaptive Antenna Arrays Tuned Using the Least-Mean-Square Error Algorithm with Quadratic Constraint

    NASA Astrophysics Data System (ADS)

    Zimina, S. V.

    2015-06-01

    We present the results of statistical analysis of an adaptive antenna array tuned using the least-mean-square error algorithm with quadratic constraint on the useful-signal amplification with allowance for the weight-coefficient fluctuations. Using the perturbation theory, the expressions for the correlation function and power of the output signal of the adaptive antenna array, as well as the formula for the weight-vector covariance matrix are obtained in the first approximation. The fluctuations are shown to lead to the signal distortions at the antenna-array output. The weight-coefficient fluctuations result in the appearance of additional terms in the statistical characteristics of the antenna array. It is also shown that the weight-vector fluctuations are isotropic, i.e., identical in all directions of the weight-coefficient space.

  8. Mus musculus-microRNA-449a ameliorates neuropathic pain by decreasing the level of KCNMA1 and TRPA1, and increasing the level of TPTE.

    PubMed

    Lu, Shan; Ma, Sichao; Wang, Yunyun; Huang, Tao; Zhu, Zhihua; Zhao, Guoqing

    2017-07-01

    Neuropathic pain is a nerve disorder characterized by the dysregulation of ion channels in dorsal root ganglion (DRG) neurons. MicroRNAs (miRs) may be associated with the molecular mechanisms underlying the altered levels of ion channels; however, the molecular mechanisms remain widely unknown. To investigate these mechanisms, the present study conducted a genomic analysis of miR between a unilateral spared nerve injury (SNI) model and sham control. Differentially expressed miRs between the SNI and sham groups were selected for transfection of DRG cells, a polymerase chain reaction (PCR) array analysis was subsequently performed. A total of three significantly differently expressed genes were selected from the results of the PCR array and further analyzed by reverse transcription‑quantitative PCR. Genomic analysis revealed that Mus musculus miR‑449a (mmu‑miR‑449a) was reduced in the SNI groups compared with the sham controls. The PCR array indicated that mmu‑miR‑449a‑transfection reduced the mRNA expression levels of transient receptor potential cation channel subfamily A member 1 (TRPA1), and calcium‑activated potassium channel subunit α‑1 (KCNMA1) and increased the level of transmembrane phosphatase with tension homology (TPTE) in the DRG cells (P<0.05). qRT‑PCR analysis further indicated that mmu‑miR‑449a transfection caused similar alterations in the mRNA expression levels of TRPA1, KCNMA1 and TPTE in DRG cells, respectively (P<0.05). Therefore, mmu‑miR‑449a may ameliorate neuropathic pain by decreasing the activity of the channel proteins TRPA1 and KCNMA1 and increasing the levels of TPTE. mmu‑miR‑449a may be a potential therapeutic molecule for the alleviation of neuropathic pain.

  9. A pattern recognition approach to transistor array parameter variance

    NASA Astrophysics Data System (ADS)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  10. Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array.

    PubMed

    Yamada, Keita; Hirabayashi, Jun; Kakehi, Kazuaki

    2013-03-19

    A method is proposed for the analysis of O-glycans as 9-fluorenylmethyl (Fmoc) derivatives. After releasing the O-glycans from the protein backbone in the presence of ammonia-based media, the glycosylamines thus formed are conveniently labeled with Fmoc-Cl and analyzed by HPLC and MALDI-TOF MS after easy purification. Fmoc labeled O-glycans showed 3.5 times higher sensitivities than those labeled with 2-aminobenzoic acid in fluorescent detection. Various types of O-glycans having sialic acids, fucose, and/or sulfate residues were successfully labeled with Fmoc and analyzed by HPLC and MALDI-TOF MS. The method was applied to the comprehensive analysis of O-glycans expressed on MKN45 cells (human gastric adenocarcinoma). In addition, Fmoc-derivatized O-glycans were easily converted to free hemiacetal or glycosylamine-form glycans that are available for fabrication of glycan array and neoglycoproteins. To demonstrate the availability of our methods, we fabricate the glycan array with Fmoc labeled glycans derived from mucin samples and cancer cells. The model studies using the glycan array showed clear interactions between immobilized glycans and some lectins.

  11. A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry.

    PubMed

    Li, Xiao-jun; Yi, Eugene C; Kemp, Christopher J; Zhang, Hui; Aebersold, Ruedi

    2005-09-01

    There is an increasing interest in the quantitative proteomic measurement of the protein contents of substantially similar biological samples, e.g. for the analysis of cellular response to perturbations over time or for the discovery of protein biomarkers from clinical samples. Technical limitations of current proteomic platforms such as limited reproducibility and low throughput make this a challenging task. A new LC-MS-based platform is able to generate complex peptide patterns from the analysis of proteolyzed protein samples at high throughput and represents a promising approach for quantitative proteomics. A crucial component of the LC-MS approach is the accurate evaluation of the abundance of detected peptides over many samples and the identification of peptide features that can stratify samples with respect to their genetic, physiological, or environmental origins. We present here a new software suite, SpecArray, that generates a peptide versus sample array from a set of LC-MS data. A peptide array stores the relative abundance of thousands of peptide features in many samples and is in a format identical to that of a gene expression microarray. A peptide array can be subjected to an unsupervised clustering analysis to stratify samples or to a discriminant analysis to identify discriminatory peptide features. We applied the SpecArray to analyze two sets of LC-MS data: one was from four repeat LC-MS analyses of the same glycopeptide sample, and another was from LC-MS analysis of serum samples of five male and five female mice. We demonstrate through these two study cases that the SpecArray software suite can serve as an effective software platform in the LC-MS approach for quantitative proteomics.

  12. Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting

    PubMed Central

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-01-01

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496

  13. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGES

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  14. Modelling spatiotemporal change using multidimensional arrays Meng

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Appel, Marius; Pebesma, Edzer

    2017-04-01

    The large variety of remote sensors, model simulations, and in-situ records provide great opportunities to model environmental change. The massive amount of high-dimensional data calls for methods to integrate data from various sources and to analyse spatiotemporal and thematic information jointly. An array is a collection of elements ordered and indexed in arbitrary dimensions, which naturally represent spatiotemporal phenomena that are identified by their geographic locations and recording time. In addition, array regridding (e.g., resampling, down-/up-scaling), dimension reduction, and spatiotemporal statistical algorithms are readily applicable to arrays. However, the role of arrays in big geoscientific data analysis has not been systematically studied: How can arrays discretise continuous spatiotemporal phenomena? How can arrays facilitate the extraction of multidimensional information? How can arrays provide a clean, scalable and reproducible change modelling process that is communicable between mathematicians, computer scientist, Earth system scientist and stakeholders? This study emphasises on detecting spatiotemporal change using satellite image time series. Current change detection methods using satellite image time series commonly analyse data in separate steps: 1) forming a vegetation index, 2) conducting time series analysis on each pixel, and 3) post-processing and mapping time series analysis results, which does not consider spatiotemporal correlations and ignores much of the spectral information. Multidimensional information can be better extracted by jointly considering spatial, spectral, and temporal information. To approach this goal, we use principal component analysis to extract multispectral information and spatial autoregressive models to account for spatial correlation in residual based time series structural change modelling. We also discuss the potential of multivariate non-parametric time series structural change methods, hierarchical modelling, and extreme event detection methods to model spatiotemporal change. We show how array operations can facilitate expressing these methods, and how the open-source array data management and analytics software SciDB and R can be used to scale the process and make it easily reproducible.

  15. The Use of Protein-DNA, Chromatin Immunoprecipitation, and Transcriptome Arrays to Describe Transcriptional Circuits in the Dehydrated Male Rat Hypothalamus

    PubMed Central

    Qiu, Jing; Kleineidam, Anna; Gouraud, Sabine; Yao, Song Tieng; Greenwood, Mingkwan; Hoe, See Ziau; Hindmarch, Charles

    2014-01-01

    The supraoptic nucleus (SON) of the hypothalamus is responsible for maintaining osmotic stability in mammals through its elaboration of the antidiuretic hormone arginine vasopressin. Upon dehydration, the SON undergoes a function-related plasticity, which includes remodeling of morphology, electrical properties, and biosynthetic activity. This process occurs alongside alterations in steady state transcript levels, which might be mediated by changes in the activity of transcription factors. In order to identify which transcription factors might be involved in changing patterns of gene expression, an Affymetrix protein-DNA array analysis was carried out. Nuclear extracts of SON from dehydrated and control male rats were analyzed for binding to the 345 consensus DNA transcription factor binding sequences of the array. Statistical analysis revealed significant changes in binding to 26 consensus elements, of which EMSA confirmed increased binding to signal transducer and activator of transcription (Stat) 1/Stat3, cellular Myelocytomatosis virus-like cellular proto-oncogene (c-Myc)-Myc-associated factor X (Max), and pre-B cell leukemia transcription factor 1 sequences after dehydration. Focusing on c-Myc and Max, we used quantitative PCR to confirm previous transcriptomic analysis that had suggested an increase in c-Myc, but not Max, mRNA levels in the SON after dehydration, and we demonstrated c-Myc- and Max-like immunoreactivities in SON arginine vasopressin-expressing cells. Finally, by comparing new data obtained from Roche-NimbleGen chromatin immunoprecipitation arrays with previously published transcriptomic data, we have identified putative c-Myc target genes whose expression changes in the SON after dehydration. These include known c-Myc targets, such as the Slc7a5 gene, which encodes the L-type amino acid transporter 1, ribosomal protein L24, histone deactylase 2, and the Rat sarcoma proto-oncogene (Ras)-related nuclear GTPase. PMID:25144923

  16. Detecting novel genes with sparse arrays

    PubMed Central

    Haiminen, Niina; Smit, Bart; Rautio, Jari; Vitikainen, Marika; Wiebe, Marilyn; Martinez, Diego; Chee, Christine; Kunkel, Joe; Sanchez, Charles; Nelson, Mary Anne; Pakula, Tiina; Saloheimo, Markku; Penttilä, Merja; Kivioja, Teemu

    2014-01-01

    Species-specific genes play an important role in defining the phenotype of an organism. However, current gene prediction methods can only efficiently find genes that share features such as sequence similarity or general sequence characteristics with previously known genes. Novel sequencing methods and tiling arrays can be used to find genes without prior information and they have demonstrated that novel genes can still be found from extensively studied model organisms. Unfortunately, these methods are expensive and thus are not easily applicable, e.g., to finding genes that are expressed only in very specific conditions. We demonstrate a method for finding novel genes with sparse arrays, applying it on the 33.9 Mb genome of the filamentous fungus Trichoderma reesei. Our computational method does not require normalisations between arrays and it takes into account the multiple-testing problem typical for analysis of microarray data. In contrast to tiling arrays, that use overlapping probes, only one 25mer microarray oligonucleotide probe was used for every 100 b. Thus, only relatively little space on a microarray slide was required to cover the intergenic regions of a genome. The analysis was done as a by-product of a conventional microarray experiment with no additional costs. We found at least 23 good candidates for novel transcripts that could code for proteins and all of which were expressed at high levels. Candidate genes were found to neighbour ire1 and cre1 and many other regulatory genes. Our simple, low-cost method can easily be applied to finding novel species-specific genes without prior knowledge of their sequence properties. PMID:20691772

  17. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia.

    PubMed

    Alì, Greta; Borrelli, Nicla; Riccardo, Giannini; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Boldrini, Laura; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-11-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm associated with asbestos exposure. Currently, the molecular mechanisms that induce MPM development are still unknown. The purpose of this study was to identify new molecular biomarkers for mesothelial carcinogenesis. We analyzed a panel of 84 genes involved in extracellular matrix remodeling and cell adhesion by polymerase chain reaction (PCR) array in 15 samples of epithelioid mesothelioma and 10 samples of reactive mesothelial hyperplasia (MH; 3 of 25 samples were inadequate for mRNA analysis). To validate the differentially expressed genes identified by PCR array, we analyzed 27 more samples by immunohistochemistry, in addition to the 25 samples already studied. Twenty-five genes were differentially expressed in MPM and MH by PCR array. Of these we studied matrix metalloproteinase 7 (MMP7), MMP14, CD44, and integrin, alpha3 expression by immunohistochemistry in 26 epithelioid MPM and 26 MH samples from the entire series of 52 cases. We observed higher MMP14 and integrin, alpha3 expression in MPM samples compared with MH samples (p = 0.000002 and p = 0.000002, respectively). Conversely, CD44 expression was low in most (57.7%) mesothelioma samples but only in 11.5% of the MH samples (p = 0.0013). As regards MMP7, we did not observe differential expression between MH and MPM samples. We have extensively studied genes involved in cell adhesion and extracellular matrix remodeling in MPM and MH samples, gaining new insight into the pathophysiology of mesothelioma. Moreover, our data suggest that these factors could be potential biomarkers for MPM.

  18. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    PubMed

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  19. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

    PubMed Central

    2012-01-01

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings. PMID:16964229

  20. Partial Least Squares Based Gene Expression Analysis in EBV- Positive and EBV-Negative Posttransplant Lymphoproliferative Disorders.

    PubMed

    Wu, Sa; Zhang, Xin; Li, Zhi-Ming; Shi, Yan-Xia; Huang, Jia-Jia; Xia, Yi; Yang, Hang; Jiang, Wen-Qi

    2013-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a common complication of therapeutic immunosuppression after organ transplantation. Gene expression profile facilitates the identification of biological difference between Epstein-Barr virus (EBV) positive and negative PTLDs. Previous studies mainly implemented variance/regression analysis without considering unaccounted array specific factors. The aim of this study is to investigate the gene expression difference between EBV positive and negative PTLDs through partial least squares (PLS) based analysis. With a microarray data set from the Gene Expression Omnibus database, we performed PLS based analysis. We acquired 1188 differentially expressed genes. Pathway and Gene Ontology enrichment analysis identified significantly over-representation of dysregulated genes in immune response and cancer related biological processes. Network analysis identified three hub genes with degrees higher than 15, including CREBBP, ATXN1, and PML. Proteins encoded by CREBBP and PML have been reported to be interact with EBV before. Our findings shed light on expression distinction of EBV positive and negative PTLDs with the hope to offer theoretical support for future therapeutic study.

  1. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome.

    PubMed

    Comelli, Elena M; Head, Steven R; Gilmartin, Tim; Whisenant, Thomas; Haslam, Stuart M; North, Simon J; Wong, Nyet-Kui; Kudo, Takashi; Narimatsu, Hisashi; Esko, Jeffrey D; Drickamer, Kurt; Dell, Anne; Paulson, James C

    2006-02-01

    Glycosylation is the most common posttranslational modification of proteins, yet genes relevant to the synthesis of glycan structures and function are incompletely represented and poorly annotated on the commercially available arrays. To fill the need for expression analysis of such genes, we employed the Affymetrix technology to develop a focused and highly annotated glycogene-chip representing human and murine glycogenes, including glycosyltransferases, nucleotide sugar transporters, glycosidases, proteoglycans, and glycan-binding proteins. In this report, the array has been used to generate glycogene-expression profiles of nine murine tissues. Global analysis with a hierarchical clustering algorithm reveals that expression profiles in immune tissues (thymus [THY], spleen [SPL], lymph node, and bone marrow [BM]) are more closely related, relative to those of nonimmune tissues (kidney [KID], liver [LIV], brain [BRN], and testes [TES]). Of the biosynthetic enzymes, those responsible for synthesis of the core regions of N- and O-linked oligosaccharides are ubiquitously expressed, whereas glycosyltransferases that elaborate terminal structures are expressed in a highly tissue-specific manner, accounting for tissue and ultimately cell-type-specific glycosylation. Comparison of gene expression profiles with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) profiling of N-linked oligosaccharides suggested that the alpha1-3 fucosyltransferase 9, Fut9, is the enzyme responsible for terminal fucosylation in KID and BRN, a finding validated by analysis of Fut9 knockout mice. Two families of glycan-binding proteins, C-type lectins and Siglecs, are predominately expressed in the immune tissues, consistent with their emerging functions in both innate and acquired immunity. The glycogene chip reported in this study is available to the scientific community through the Consortium for Functional Glycomics (CFG) (http://www.functionalglycomics.org).

  2. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes.

    PubMed Central

    Schena, M; Shalon, D; Heller, R; Chai, A; Brown, P O; Davis, R W

    1996-01-01

    Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855227

  3. Analysis of gene expression on anodic porous alumina microarrays

    PubMed Central

    Nicolini, Claudio; Singh, Manjul; Spera, Rosanna; Felli, Lamberto

    2013-01-01

    This paper investigates the application of anodic porous alumina as an advancement on chip laboratory for gene expressions. The surface was prepared by a suitable electrolytic process to obtain a regular distribution of deep micrometric holes and printed bypen robot tips under standard conditions. The gene expression within the Nucleic Acid Programmable Protein Array (NAPPA) is realized in a confined environment of 16 spots, containing circular DNA plasmids expressed using rabbit reticulocyte lysate. Authors demonstrated the usefulness of APA in withholding the protein expression by detecting with a CCD microscope the photoluminescence signal emitted from the complex secondary antibody anchored to Cy3 and confined in the pores. Friction experiments proved the mechanical resistance under external stresses by the robot tip pens printing. So far, no attempts have been made to directly compare APA with any other surface/substrate; the rationale for pursuing APA as a potential surface coating is that it provides advantages over the simple functionalization of a glass slide, overcoming concerns about printing and its ability to generate viable arrays. PMID:23783000

  4. Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries

    PubMed Central

    Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans

    2000-01-01

    We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641

  5. DSSTox chemical-index files for exposure-related experiments in ArrayExpress and Gene Expression Omnibus: enabling toxico-chemogenomics data linkages

    EPA Science Inventory

    The Distributed Structure-Searchable Toxicity (DSSTox) ARYEXP and GEOGSE files are newly published, structure-annotated files of the chemical-associated and chemical exposure-related summary experimental content contained in the ArrayExpress Repository and Gene Expression Omnibus...

  6. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  7. Gene chips and arrays revealed: a primer on their power and their uses.

    PubMed

    Watson, S J; Akil, H

    1999-03-01

    This article provides an overview and general explanation of the rapidly developing area of gene chips and expression array technology. These are methods targeted at allowing the simultaneous study of thousands of genes or messenger RNAs under various physiological and pathological states. Their technical basis grows from the Human Genome Project. Both methods place DNA strands on glass computer chips (or microscope slides). Expression arrays start with complementary DNA (cDNA) clones derived from the EST data base, whereas Gene Chips synthesize oligonucleotides directly on the chip itself. Both are analyzed using image analysis systems, are capable of reading values from two different individuals at any one site, and can yield quantitative data for thousands of genes or mRNAs per slide. These methods promise to revolutionize molecular biology, cell biology, neuroscience and psychiatry. It is likely that this technology will radically open up our ability to study the actions and structure of the multiple genes involved in the complex genetics of brain disorders.

  8. THE USE OF GENE ARRAYS TO DETERMINE TEMPORAL GENE INDUCTION IN SHEEPSHEAD MINNOWS EXPOSED TO E2

    EPA Science Inventory

    Gene arrays provide a means to study differential gene expression in fish exposed to environmental estrogens by providing a "snapshot" of the genes expressed at a given time. Such array data may also uncover previously unknown biochemical pathways affected by estrogenic compounds...

  9. Temporal patterns in the transcriptomic response of rainbow trout, Oncorhynchus mykiss, to crude oil.

    PubMed

    Hook, Sharon E; Lampi, Mark A; Febbo, Eric J; Ward, Jeff A; Parkerton, Thomas F

    2010-09-01

    Time is often not characterized as a variable in ecotoxicogenomic studies. In this study, temporal changes in gene expression were determined during exposure to crude oil and a subsequent recovery period. Juvenile rainbow trout, Oncorhynchus mykiss, were exposed for 96 h to the water accommodated fractions of 0.4, 2 or 10 mgl(-1) crude oil loadings. Following 96 h of exposure, fish were transferred to recovery tanks. Gill and liver samples were collected after 24 and 96 h of exposure, and after 96 h of recovery for RNA extraction and microarray analysis. Fluorescently labeled cDNA was hybridized against matched controls, using salmonid cDNA arrays. Each exposure scenario generated unique patterns of altered gene expression. More genes responded to crude oil in the gill than in the liver. In the gill, 1137 genes had altered expression at 24 h, 2003 genes had altered expression levels at 96 h of exposure, yet by 96 h of recovery, no genes were significantly altered in expression. In the liver at 10 mgl(-1), only five genes were changed at 24 h, yet 192 genes had altered expression after 96 h recovery. At 2 mgl(-1) in the liver, many genes had altered regulation at all three time points. The 0.4 mgl(-1) loading also showed 289 genes upregulated at 24 h after exposure. The Gene Ontology terms associated with altered expression in the liver suggested that the processes of protein synthesis, xenobiotic metabolism, and oxidoreductase activity were altered. The concentration-responsive expression profile of cytochrome P450 1A, a biomarker for oil exposure, did not predict the majority of gene expression profiles in any tissue or dose, since direct relationships with dose were not observed for most genes. While the genes and their associated functions agree with known modes of toxic action for crude oil, the gene lists obtained do not match our previously published work, presumably due to array analysis procedures. These results demonstrate that changes in gene expression with time and dose may be complicated, and should be characterized in controlled laboratory settings before attempts are made to interpret responses in field-collected organisms. Further, processes for analyzing microarray data need to be developed such that standardized gene lists are developed, or that analysis does not rely on lists of significantly altered genes before arrays can be further evaluated as a monitoring tool. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  10. SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA

    PubMed Central

    Fosdick, Bailey K.; Hoff, Peter D.

    2014-01-01

    Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353

  11. Analysis of modified SMI method for adaptive array weight control

    NASA Technical Reports Server (NTRS)

    Dilsavor, R. L.; Moses, R. L.

    1989-01-01

    An adaptive array is applied to the problem of receiving a desired signal in the presence of weak interference signals which need to be suppressed. A modification, suggested by Gupta, of the sample matrix inversion (SMI) algorithm controls the array weights. In the modified SMI algorithm, interference suppression is increased by subtracting a fraction F of the noise power from the diagonal elements of the estimated covariance matrix. Given the true covariance matrix and the desired signal direction, the modified algorithm is shown to maximize a well-defined, intuitive output power ratio criterion. Expressions are derived for the expected value and variance of the array weights and output powers as a function of the fraction F and the number of snapshots used in the covariance matrix estimate. These expressions are compared with computer simulation and good agreement is found. A trade-off is found to exist between the desired level of interference suppression and the number of snapshots required in order to achieve that level with some certainty. The removal of noise eigenvectors from the covariance matrix inverse is also discussed with respect to this application. Finally, the type and severity of errors which occur in the covariance matrix estimate are characterized through simulation.

  12. A facial expression of pax: Assessing children's "recognition" of emotion from faces.

    PubMed

    Nelson, Nicole L; Russell, James A

    2016-01-01

    In a classic study, children were shown an array of facial expressions and asked to choose the person who expressed a specific emotion. Children were later asked to name the emotion in the face with any label they wanted. Subsequent research often relied on the same two tasks--choice from array and free labeling--to support the conclusion that children recognize basic emotions from facial expressions. Here five studies (N=120, 2- to 10-year-olds) showed that these two tasks produce illusory recognition; a novel nonsense facial expression was included in the array. Children "recognized" a nonsense emotion (pax or tolen) and two familiar emotions (fear and jealousy) from the same nonsense face. Children likely used a process of elimination; they paired the unknown facial expression with a label given in the choice-from-array task and, after just two trials, freely labeled the new facial expression with the new label. These data indicate that past studies using this method may have overestimated children's expression knowledge. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Application of Whole Genome Expression Analysis to Assess Bacterial Responses to Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Vukanti, R. V.; Mintz, E. M.; Leff, L. G.

    2005-05-01

    Bacterial responses to environmental signals are multifactorial and are coupled to changes in gene expression. An understanding of bacterial responses to environmental conditions is possible using microarray expression analysis. In this study, the utility of microarrays for examining changes in gene expression in Escherichia coli under different environmental conditions was assessed. RNA was isolated, hybridized to Affymetrix E. coli Genome 2.0 chips and analyzed using Affymetrix GCOS and Genespring software. Major limiting factors were obtaining enough quality RNA (107-108 cells to get 10μg RNA)and accounting for differences in growth rates under different conditions. Stabilization of RNA prior to isolation and taking extreme precautions while handling RNA were crucial. In addition, use of this method in ecological studies is limited by availability and cost of commercial arrays; choice of primers for cDNA synthesis, reproducibility, complexity of results generated and need to validate findings. This method may be more widely applicable with the development of better approaches for RNA recovery from environmental samples and increased number of available strain-specific arrays. Diligent experimental design and verification of results with real-time PCR or northern blots is needed. Overall, there is a great potential for use of this technology to discover mechanisms underlying organisms' responses to environmental conditions.

  14. Role of miR-1 expression in clear cell renal cell carcinoma (ccRCC): A bioinformatics study based on GEO, ArrayExpress microarrays and TCGA database.

    PubMed

    Yan, Hai-Biao; Huang, Jia-Cheng; Chen, You-Rong; Yao, Jian-Ni; Cen, Wei-Ning; Li, Jia-Yi; Jiang, Yi-Fan; Chen, Gang; Li, Sheng-Hua

    2018-02-01

    To investigate the clinical value and potential molecular mechanisms of miR-1 in clear cell renal cell carcinoma (ccRCC). We searched the Gene Expression Omnibus (GEO), ArrayExpress, several online publication databases and the Cancer Genome Atlas (TCGA). Continuous variable meta-analysis and diagnostic meta-analysis were conducted, both in Stata 14, to show the expression of miR-1 in ccRCC. Furthermore, we acquired the potential targets of miR-1 from datasets that transfected miR-1 into ccRCC cells, online prediction databases, differentially expressed genes from TCGA and literature. Subsequently bioinformatics analysis based on aforementioned selected target genes was conducted. The combined effect was -0.92 with the 95% confidence interval (CI) of -1.08 to -0.77 based on fixed effect model (I 2  = 81.3%, P < 0.001). No publication bias was found in our investigation. Sensitivity analysis showed that GSE47582 and 2 TCGA studies might cause heterogeneity. After eliminating them, the combined effect was -0.47 (95%CI: -0.78, -0.16) with I 2  = 18.3%. As for the diagnostic meta-analysis, the combined sensitivity and specificity were 0.90 (95%CI: 0.61, 0.98) and 0.63 (95%CI: 0.39, 0.82). The area under the curve (AUC) in the summarized receiver operating characteristic (SROC) curve was 0.83 (95%CI: 0.80, 0.86). No publication bias was found (P = 0.15). We finally got 67 genes which were defined the promising target genes of miR-1 in ccRCC. The most three significant KEGG pathways based on the aforementioned genes were Complement and coagulation cascades, ECM-receptor interaction and Focal adhesion. The downregulation of miR-1 might play an important role in ccRCC by targeting its target genes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Bioinformatic analysis of primary endothelial cell gene array data illustrated by the analysis of transcriptome changes in endothelial cells exposed to VEGF-A and PlGF.

    PubMed

    Schoenfeld, Jonathan; Lessan, Khashayar; Johnson, Nicola A; Charnock-Jones, D Stephen; Evans, Amanda; Vourvouhaki, Ekaterini; Scott, Laurie; Stephens, Richard; Freeman, Tom C; Saidi, Samir A; Tom, Brian; Weston, Gareth C; Rogers, Peter; Smith, Stephen K; Print, Cristin G

    2004-01-01

    We recently published a review in this journal describing the design, hybridisation and basic data processing required to use gene arrays to investigate vascular biology (Evans et al. Angiogenesis 2003; 6: 93-104). Here, we build on this review by describing a set of powerful and robust methods for the analysis and interpretation of gene array data derived from primary vascular cell cultures. First, we describe the evaluation of transcriptome heterogeneity between primary cultures derived from different individuals, and estimation of the false discovery rate introduced by this heterogeneity and by experimental noise. Then, we discuss the appropriate use of Bayesian t-tests, clustering and independent component analysis to mine the data. We illustrate these principles by analysis of a previously unpublished set of gene array data in which human umbilical vein endothelial cells (HUVEC) cultured in either rich or low-serum media were exposed to vascular endothelial growth factor (VEGF)-A165 or placental growth factor (PlGF)-1(131). We have used Affymetrix U95A gene arrays to map the effects of these factors on the HUVEC transcriptome. These experiments followed a paired design and were biologically replicated three times. In addition, one experiment was repeated using serial analysis of gene expression (SAGE). In contrast to some previous studies, we found that VEGF-A and PlGF consistently regulated only small, non-overlapping and culture media-dependant sets of HUVEC transcripts, despite causing significant cell biological changes.

  16. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.

    PubMed

    Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun

    2016-11-01

    The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.

  18. Global analysis of gene expression in mineralizing fish vertebra-derived cell lines: new insights into anti-mineralogenic effect of vanadate

    PubMed Central

    2011-01-01

    Background Fish has been deemed suitable to study the complex mechanisms of vertebrate skeletogenesis and gilthead seabream (Sparus aurata), a marine teleost with acellular bone, has been successfully used in recent years to study the function and regulation of bone and cartilage related genes during development and in adult animals. Tools recently developed for gilthead seabream, e.g. mineralogenic cell lines and a 4 × 44K Agilent oligo-array, were used to identify molecular determinants of in vitro mineralization and genes involved in anti-mineralogenic action of vanadate. Results Global analysis of gene expression identified 4,223 and 4,147 genes differentially expressed (fold change - FC > 1.5) during in vitro mineralization of VSa13 (pre-chondrocyte) and VSa16 (pre-osteoblast) cells, respectively. Comparative analysis indicated that nearly 45% of these genes are common to both cell lines and gene ontology (GO) classification is also similar for both cell types. Up-regulated genes (FC > 10) were mainly associated with transport, matrix/membrane, metabolism and signaling, while down-regulated genes were mainly associated with metabolism, calcium binding, transport and signaling. Analysis of gene expression in proliferative and mineralizing cells exposed to vanadate revealed 1,779 and 1,136 differentially expressed genes, respectively. Of these genes, 67 exhibited reverse patterns of expression upon vanadate treatment during proliferation or mineralization. Conclusions Comparative analysis of expression data from fish and data available in the literature for mammalian cell systems (bone-derived cells undergoing differentiation) indicate that the same type of genes, and in some cases the same orthologs, are involved in mechanisms of in vitro mineralization, suggesting their conservation throughout vertebrate evolution and across cell types. Array technology also allowed identification of genes differentially expressed upon exposure of fish cell lines to vanadate and likely involved in its anti-mineralogenic activity. Many were found to be unknown or they were never associated to bone homeostasis previously, thus providing a set of potential candidates whose study will likely bring insights into the complex mechanisms of tissue mineralization and bone formation. PMID:21668972

  19. Profiling of the yak skeletal muscle tissue gene expression and comparison with the domestic cattle by genome array.

    PubMed

    Wang, H B; Zan, L S; Zhang, Y Y

    2014-01-01

    Of all the mammals of the world, the yak lives at the highest altitude area of more than 3000 m. Comparison between yak and cattle of the low-altitude areas will be informative in studying animal adaptation to higher altitudes. To investigate the molecular mechanism involved in meat quality differences between the two Chinese special varieties Qinghai yak and Qinchuan cattle, 12 chemical-physical characteristics of the longissimus dorsi muscle related to meat quality were compared at the age of 36 months, and the gene expression profiles were constructed by utilizing the bovine genome array. Significant analysis of microarrays was used to identify the differentially expressed genes. Gene ontology and pathway analysis were performed by a free Web-based Molecular Annotation System 2.0. The results reveal ~11 000 probes representing about 10 000 genes that were detected in both the Qinghai yak and Qinchuan cattle. A total of 1922 genes were shown to be differentially expressed, 633 probes were upregulated and 1259 probes were downregulated in the muscle tissue of Qinghai yak that were mainly involved in ubiquitin-mediated proteolysis, muscle growth regulation, glucose metabolism, immune response and so on. Quantitative real-time PCR (qRT-PCR) was performed to validate some differentially expressed genes identified by microarray. Further analysis implied that animals living at a high altitude may supply energy by more active protein catabolism and glycolysis compared with those living in the plain areas. Our results establish the groundwork for further studies on yaks' meat quality and will be beneficial in improving the yaks' breeding by molecular biotechnology.

  20. Chicken ovalbumin upstream promoter-transcription factor II regulates nuclear receptor, myogenic, and metabolic gene expression in skeletal muscle cells.

    PubMed

    Crowther, Lisa M; Wang, Shu-Ching Mary; Eriksson, Natalie A; Myers, Stephen A; Murray, Lauren A; Muscat, George E O

    2011-02-24

    We demonstrate that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) mRNA is more abundantly expressed (than COUP-TFI mRNA) in skeletal muscle C2C12 cells and in (type I and II) skeletal muscle tissue from C57BL/10 mice. Consequently, we have utilized the ABI TaqMan Low Density Array (TLDA) platform to analyze gene expression changes specifically attributable to ectopic COUP-TFII (relative to vector only) expression in muscle cells. Utilizing a TLDA-based platform and 5 internal controls, we analyze the entire NR superfamily, 96 critical metabolic genes, and 48 important myogenic regulatory genes on the TLDA platform utilizing 5 internal controls. The low density arrays were analyzed by rigorous statistical analysis (with Genorm normalization, Bioconductor R, and the Empirical Bayes statistic) using the (integromics) statminer software. In addition, we validated the differentially expressed patho-physiologically relevant gene (identified on the TLDA platform) glucose transporter type 4 (Glut4). We demonstrated that COUP-TFII expression increased the steady state levels of Glut4 mRNA and protein, while ectopic expression of truncated COUP-TFII lacking helix 12 (COUP-TFΔH12) reduced Glut4 mRNA expression in C2C12 cells. Moreover, COUP-TFII expression trans-activated the Glut4 promoter (-997/+3), and ChIP analysis identified selective recruitment of COUP-TFII to a region encompassing a highly conserved SP1 binding site (in mouse, rat, and human) at nt positions -131/-118. Mutation of the SpI site ablated COUP-TFII mediated trans-activation of the Glut4 promoter. In conclusion, this study demonstrates that in skeletal muscle cells, COUP-TFII regulates several nuclear hormone receptors, and critical metabolic and muscle specific genes.

  1. Clofibrate-induced gene expression changes in rat liver: a cross-laboratory analysis using membrane cDNA arrays.

    PubMed Central

    Baker, Valerie A; Harries, Helen M; Waring, Jeff F; Duggan, Colette M; Ni, Hong A; Jolly, Robert A; Yoon, Lawrence W; De Souza, Angus T; Schmid, Judith E; Brown, Roger H; Ulrich, Roger G; Rockett, John C

    2004-01-01

    Microarrays have the potential to significantly impact our ability to identify toxic hazards by the identification of mechanistically relevant markers of toxicity. To be useful for risk assessment, however, microarray data must be challenged to determine reliability and interlaboratory reproducibility. As part of a series of studies conducted by the International Life Sciences Institute Health and Environmental Science Institute Technical Committee on the Application of Genomics to Mechanism-Based Risk Assessment, the biological response in rats to the hepatotoxin clofibrate was investigated. Animals were treated with high (250 mg/kg/day) or low (25 mg/kg/day) doses for 1, 3, or 7 days in two laboratories. Clinical chemistry parameters were measured, livers removed for histopathological assessment, and gene expression analysis was conducted using cDNA arrays. Expression changes in genes involved in fatty acid metabolism (e.g., acyl-CoA oxidase), cell proliferation (e.g., topoisomerase II-Alpha), and fatty acid oxidation (e.g., cytochrome P450 4A1), consistent with the mechanism of clofibrate hepatotoxicity, were detected. Observed differences in gene expression levels correlated with the level of biological response induced in the two in vivo studies. Generally, there was a high level of concordance between the gene expression profiles generated from pooled and individual RNA samples. Quantitative real-time polymerase chain reaction was used to confirm modulations for a number of peroxisome proliferator marker genes. Though the results indicate some variability in the quantitative nature of the microarray data, this appears due largely to differences in experimental and data analysis procedures used within each laboratory. In summary, this study demonstrates the potential for gene expression profiling to identify toxic hazards by the identification of mechanistically relevant markers of toxicity. PMID:15033592

  2. Meta-analysis of Clear Cell Renal Cell Carcinoma Gene Expression Defines a Variant Subgroup and Identifies Gender Influences on Tumor Biology

    PubMed Central

    Brannon, A. Rose; Haake, Scott M.; Hacker, Kathryn E.; Pruthi, Raj S.; Wallen, Eric M.; Nielsen, Matthew E.; Rathmell, W. Kimryn

    2011-01-01

    Background Clear cell renal cell carcinoma (ccRCC) displays molecular and histologic heterogeneity. Previously described subsets of this disease, ccA and ccB, were defined based on multigene expression profiles, but it is unclear whether these subgroupings reflect the full spectrum of disease or how these molecular subtypes relate to histologic descriptions or gender. Objective Determine whether additional subtypes of ccRCC exist and whether these subtypes are related to von Hippel-Lindau (VHL) inactivation, hypoxia-inducible factor (HIF) 1 and 2 expression, tumor histology, or gender. Design, setting, and participants Six large, publicly available ccRCC gene expression databases were identified that cumulatively provided data for 480 tumors for meta-analysis via meta-array compilation. Measurements Unsupervised consensus clustering was performed on the meta-arrays. Tumors were examined for the relationship of multigene-defined consensus subtypes and expression signatures of VHL mutation and HIF status, tumor histology, and gender. Results and limitations Two dominant subsets of ccRCC were observed. However, a minor third cluster was revealed that correlated strongly with a wild type (WT) VHL expression profile and indications of variant histologies. When variant histologies were removed, ccA tumors naturally divided by gender. This technique is limited by the potential for persistent batch effect, tumor sampling bias, and restrictions of annotated information. Conclusions The ccA and ccB subsets of ccRCC are robust in meta-analysis among histologically conventional ccRCC tumors. A third group of tumors was identified that may represent a new variant of ccRCC. Within definitively clear cell tumors, gender may delineate tumors in such a way that it could have implications regarding current treatments and future drug development. PMID:22030119

  3. Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability.

    PubMed

    Looi, Kevin; Troy, Niamh M; Garratt, Luke W; Iosifidis, Thomas; Bosco, Anthony; Buckley, Alysia G; Ling, Kak-Ming; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Shaw, Nicole C; Sutanto, Erika N; Zosky, Graeme R; Rigby, Paul J; Larcombe, Alexander N; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M

    2016-10-11

    No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID 50 ) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT 2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. HRV-1B infection affected viability that was both time and TCID 50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID 50 , while a significant decrease in all three TJ protein expressions occurred at higher TCID 50 . Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.

  4. HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors.

    PubMed

    Dailey, Deanna D; Anfinsen, Kristin P; Pfaff, Liza E; Ehrhart, E J; Charles, J Brad; Bønsdorff, Tina B; Thamm, Douglas H; Powers, Barbara E; Jonasdottir, Thora J; Duval, Dawn L

    2013-07-01

    Hairy and enhancer of split 1 (HES1), a basic helix-loop-helix transcriptional repressor, is a downstream target of Notch signaling. Notch signaling and HES1 expression have been linked to growth and survival in a variety of human cancer types and have been associated with increased metastasis and invasiveness in human osteosarcoma cell lines. Osteosarcoma (OSA) is an aggressive cancer demonstrating both high metastatic rate and chemotherapeutic resistance. The current study examined expression of Notch signaling mediators in primary canine OSA tumors and canine and human osteosarcoma cell lines to assess their role in OSA development and progression. Reverse transcriptase - quantitative PCR (RT-qPCR) was utilized to quantify HES1, HEY1, NOTCH1 and NOTCH2 gene expression in matched tumor and normal metaphyseal bone samples taken from dogs treated for appendicular OSA at the Colorado State University Veterinary Teaching Hospital. Gene expression was also assessed in tumors from dogs with a disease free interval (DFI) of <100 days compared to those with a DFI > 300 days following treatment with surgical amputation followed by standard chemotherapy. Immunohistochemistry was performed to confirm expression of HES1. Data from RT-qPCR and immunohistochemical (IHC) experiments were analyzed using REST2009 software and survival analysis based on IHC expression employed the Kaplan-Meier method and log rank analysis. Unbiased clustered images were generated from gene array analysis data for Notch/HES1 associated genes. Gene array analysis of Notch/HES1 associated genes suggested alterations in the Notch signaling pathway may contribute to the development of canine OSA. HES1 mRNA expression was elevated in tumor samples relative to normal bone, but decreased in tumor samples from dogs with a DFI < 100 days relative to those with a DFI > 300 days. NOTCH2 and HEY1 mRNA expression was also elevated in tumors relative to normal bone, but was not differentially expressed between the DFI tumor groups. Survival analysis confirmed an association between decreased HES1 immunosignal and shorter DFI. Our findings suggest that activation of Notch signaling occurs and may contribute to the development of canine OSA. However, association of low HES1 expression and shorter DFI suggests that mechanisms that do not alter HES1 expression may drive the most aggressive tumors.

  5. Generation of high-order Hermite-Gaussian modes in end-pumped solid-state lasers for square vortex array laser beam generation.

    PubMed

    Chu, Shu-Chun; Chen, Yun-Ting; Tsai, Ko-Fan; Otsuka, Kenju

    2012-03-26

    This study reports the first systematic approach to the excitation of all high-order Hermite-Gaussian modes (HGMs) in end-pumped solid-state lasers. This study uses a metal-wire-inserted laser resonator accompanied with the "off axis pumping" approach. This study presents numerical analysis of the excitation of HGMs in end-pumped solid-state lasers and experimentally generated HGM patterns. This study also experimentally demonstrates the generation of an square vortex array laser beams by passing specific high-order HGMs (HGn,n + 1 or HGn + 1,n modes) through a Dove prism-embedded unbalanced Mach-Zehnder interferometer [Optics Express 16, 19934-19949]. The resulting square vortex array laser beams with embedded vortexes aligned in a square array can be applied to multi-spot dark optical traps in the future.

  6. Simple method for assembly of CRISPR synergistic activation mediator gRNA expression array.

    PubMed

    Vad-Nielsen, Johan; Nielsen, Anders Lade; Luo, Yonglun

    2018-05-20

    When studying complex interconnected regulatory networks, effective methods for simultaneously manipulating multiple genes expression are paramount. Previously, we have developed a simple method for generation of an all-in-one CRISPR gRNA expression array. We here present a Golden Gate Assembly-based system of synergistic activation mediator (SAM) compatible CRISPR/dCas9 gRNA expression array for the simultaneous activation of multiple genes. Using this system, we demonstrated the simultaneous activation of the transcription factors, TWIST, SNAIL, SLUG, and ZEB1 a human breast cancer cell line. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays.

    PubMed

    Molero, Carlos; Rodríguez-Berral, Raúl; Mesa, Francisco; Medina, Francisco; Yakovlev, Alexander B

    2016-01-01

    A wideband equivalent circuit is proposed for the accurate analysis of scattering from a set of stacked slit gratings illuminated by a plane wave with transverse magnetic or electric polarization that impinges normally or obliquely along one of the principal planes of the structure. The slit gratings are printed on dielectric slabs of arbitrary thickness, including the case of closely spaced gratings that interact by higher-order modes. A Π-circuit topology is obtained for a pair of coupled arrays, with fully analytical expressions for all the circuit elements. This equivalent Π circuit is employed as the basis to derive the equivalent circuit of finite stacks with any given number of gratings. Analytical expressions for the Brillouin diagram and the Bloch impedance are also obtained for infinite periodic stacks.

  8. Experimental Approaches to Microarray Analysis of Tumor Samples

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Winter, Michael B.; Meyers, Jacob I.; Furge, Kyle A.

    2008-01-01

    Comprehensive measurement of gene expression using high-density nucleic acid arrays (i.e. microarrays) has become an important tool for investigating the molecular differences in clinical and research samples. Consequently, inclusion of discussion in biochemistry, molecular biology, or other appropriate courses of microarray technologies has…

  9. Transcriptional profiling of Medicago truncatula meristematic root cells

    PubMed Central

    Holmes, Peta; Goffard, Nicolas; Weiller, Georg F; Rolfe, Barry G; Imin, Nijat

    2008-01-01

    Background The root apical meristem of crop and model legume Medicago truncatula is a significantly different stem cell system to that of the widely studied model plant species Arabidopsis thaliana. In this study we used the Affymetrix Medicago GeneChip® to compare the transcriptomes of meristem and non-meristematic root to identify root meristem specific candidate genes. Results Using mRNA from root meristem and non-meristem we were able to identify 324 and 363 transcripts differentially expressed from the two regions. With bioinformatics tools developed to functionally annotate the Medicago genome array we could identify significant changes in metabolism, signalling and the differentially expression of 55 transcription factors in meristematic and non-meristematic roots. Conclusion This is the first comprehensive analysis of M. truncatula root meristem cells using this genome array. This data will facilitate the mapping of regulatory and metabolic networks involved in the open root meristem of M. truncatula and provides candidates for functional analysis. PMID:18302802

  10. Identification of PEG-induced water stress responsive transcripts using co-expression network in Eucalyptus grandis.

    PubMed

    Ghosh Dasgupta, Modhumita; Dharanishanthi, Veeramuthu

    2017-09-05

    Ecophysiological studies in Eucalyptus have shown that water is the principal factor limiting stem growth. Effect of water deficit conditions on physiological and biochemical parameters has been extensively reported in Eucalyptus. The present study was conducted to identify major polyethylene glycol induced water stress responsive transcripts in Eucalyptus grandis using gene co-expression network. A customized array representing 3359 water stress responsive genes was designed to document their expression in leaves of E. grandis cuttings subjected to -0.225MPa of PEG treatment. The differentially expressed transcripts were documented and significantly co-expressed transcripts were used for construction of network. The co-expression network was constructed with 915 nodes and 3454 edges with degree ranging from 2 to 45. Ninety four GO categories and 117 functional pathways were identified in the network. MCODE analysis generated 27 modules and module 6 with 479 nodes and 1005 edges was identified as the biologically relevant network. The major water responsive transcripts represented in the module included dehydrin, osmotin, LEA protein, expansin, arabinogalactans, heat shock proteins, major facilitator proteins, ARM repeat proteins, raffinose synthase, tonoplast intrinsic protein and transcription factors like DREB2A, ARF9, AGL24, UNE12, WLIM1 and MYB66, MYB70, MYB 55, MYB 16 and MYB 103. The coordinated analysis of gene expression patterns and coexpression networks developed in this study identified an array of transcripts that may regulate PEG induced water stress responses in E. grandis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Imaging with hypertelescopes: a simple modal approach

    NASA Astrophysics Data System (ADS)

    Aime, C.

    2008-05-01

    Aims: We give a simple analysis of imaging with hypertelescopes, a technique proposed by Labeyrie to produce snapshot images using arrays of telescopes. The approach is modal: we describe the transformations induced by the densification onto a sinusoidal decomposition of the focal image instead of the usual point spread function approach. Methods: We first express the image formed at the focus of a diluted array of apertures as the product R_0(α) X_F(α) of the diffraction pattern of the elementary apertures R_0(α) by the object-dependent interference term X_F(α) between all apertures. The interference term, which can be written in the form of a Fourier Series for an extremely diluted array, produces replications of the object, which makes observing the image difficult. We express the focal image after the densification using the approach of Tallon and Tallon-Bosc. Results: The result is very simple for an extremely diluted array. We show that the focal image in a periscopic densification of the array can be written as R_0(α) X_F(α/γ), where γ is the factor of densification. There is a dilatation of the interference term while the diffraction term is unchanged. After de-zooming, the image can be written as γ2 X_F(α)R_0(γ α), an expression which clearly indicates that the final image corresponds to the center of the Fizeau image intensified by γ2. The imaging limitations of hypertelescopes are therefore those of the original configuration. The effect of the suppression of image replications is illustrated in a numerical simulation for a fully redundant configuration and a non-redundant one.

  12. Thyroid paraganglioma. Report of 3 cases and description of an immunohistochemical profile useful in the differential diagnosis with medullary thyroid carcinoma, based on complementary DNA array results.

    PubMed

    Castelblanco, Esmeralda; Gallel, Pilar; Ros, Susana; Gatius, Sonia; Valls, Joan; De-Cubas, Aguirre A; Maliszewska, Agnieszka; Yebra-Pimentel, M Teresa; Menarguez, Javier; Gamallo, Carlos; Opocher, Giuseppe; Robledo, Mercedes; Matias-Guiu, Xavier

    2012-07-01

    Thyroid paraganglioma is a rare disorder that sometimes poses problems in differential diagnosis with medullary thyroid carcinoma. So far, differential diagnosis is solved with the help of some markers that are frequently expressed in medullary thyroid carcinoma (thyroid transcription factor 1, calcitonin, and carcinoembryonic antigen). However, some of these markers are not absolutely specific of medullary thyroid carcinoma and may be expressed in other tumors. Here we report 3 new cases of thyroid paraganglioma and describe our strategy to design a diagnostic immunohistochemical battery. First, we performed a comparative analysis of the expression profile of head and neck paragangliomas and medullary thyroid carcinoma, obtained after complementary DNA array analysis of 2 series of fresh-frozen samples of paragangliomas and medullary thyroid carcinoma, respectively. Seven biomarkers showing differential expression were selected (nicotinamide adenine dinucleotide dehydrogenase 1 alpha subcomplex, 4-like 2, NDUFA4L2; cytochrome c oxidase subunit IV isoform 2; vesicular monoamine transporter 2; calcitonin gene-related protein/calcitonin; carcinoembryonic antigen; and thyroid transcription factor 1) for immunohistochemical analysis. Two tissue microarrays were constructed from 2 different series of paraffin-embedded samples of paragangliomas and medullary thyroid carcinoma. We provide a classifying rule for differential diagnosis that combines negativity or low staining for calcitonin gene-related protein (histologic score, <10) or calcitonin (histologic score, <50) together with positivity of any of NADH dehydrogenase 1 alpha subcomplex, 4-like 2; cytochrome c oxidase subunit IV isoform 2; or vesicular monoamine transporter 2 to predict paragangliomas, showing a prediction error of 0%. Finally, the immunohistochemical battery was checked in paraffin-embedded blocks from 4 examples of thyroid paraganglioma (1 previously reported case and 3 new cases), showing also a prediction error of 0%. Our results suggest that the comparative expression profile, obtained by complementary DNA arrays, seems to be a good tool to design immunohistochemical batteries used in differential diagnosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Programmable Self-Assembly of DNA-Dendrimer and DNA-Fullerene Nanostructures

    DTIC Science & Technology

    2004-10-01

    separated by high pressure liquid chromatography ( HPLC ). The resulting material was analytically pure (99%) and monodisperse. Hybridization...bacterial and viral recognition, and gene expression analysis . These major accomplishments have been disseminated by various applications including 16...designing DNA strands with specific structural properties. The direct analysis of genomic DNA and RNA in an array format without labeling or

  14. Transcriptomic and bioinformatics analysis of the early time-course of the response to prostaglandin F2 alpha in the bovine corpus luteum

    USDA-ARS?s Scientific Manuscript database

    RNA expression analysis was performed on the corpus luteum tissue at five time points after prostaglandin F2 alpha treatment of midcycle cows using an Affymetrix Bovine Gene v1 Array. The normalized linear microarray data was uploaded to the NCBI GEO repository (GSE94069). Subsequent statistical ana...

  15. Gene expression pattern recognition algorithm inferences to classify samples exposed to chemical agents

    NASA Astrophysics Data System (ADS)

    Bushel, Pierre R.; Bennett, Lee; Hamadeh, Hisham; Green, James; Ableson, Alan; Misener, Steve; Paules, Richard; Afshari, Cynthia

    2002-06-01

    We present an analysis of pattern recognition procedures used to predict the classes of samples exposed to pharmacologic agents by comparing gene expression patterns from samples treated with two classes of compounds. Rat liver mRNA samples following exposure for 24 hours with phenobarbital or peroxisome proliferators were analyzed using a 1700 rat cDNA microarray platform. Sets of genes that were consistently differentially expressed in the rat liver samples following treatment were stored in the MicroArray Project System (MAPS) database. MAPS identified 238 genes in common that possessed a low probability (P < 0.01) of being randomly detected as differentially expressed at the 95% confidence level. Hierarchical cluster analysis on the 238 genes clustered specific gene expression profiles that separated samples based on exposure to a particular class of compound.

  16. Laser beam projection with adaptive array of fiber collimators. II. Analysis of atmospheric compensation efficiency.

    PubMed

    Lachinova, Svetlana L; Vorontsov, Mikhail A

    2008-08-01

    We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.

  17. An integrated bioinformatics approach to improve two-color microarray quality-control: impact on biological conclusions.

    PubMed

    van Haaften, Rachel I M; Luceri, Cristina; van Erk, Arie; Evelo, Chris T A

    2009-06-01

    Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine polyphenols on rat colon mucosa was used to test the impact of quality control and normalisation steps on the biological conclusions. The integration of data visualization, pathway analysis and clustering revealed an artifact problem that was solved with an adapted normalisation. We propose a possible point to point standard analysis procedure, based on a combination of clustering and data visualization for the analysis of microarray data.

  18. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    DTIC Science & Technology

    2009-04-01

    expression of genes involved in metastasis using a focused microarray approach. We have used Human Tumor Metastasis Microarray (Oligo GE array from...ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ovarian cancer cells...PI3K, and STAT3 in the cytosol. PELP1/MNAR regulates meiosis via its interactions with heterotimeric Gbc protein, androgen receptor (AR), and by

  19. Tomato Expression Database (TED): a suite of data presentation and analysis tools

    PubMed Central

    Fei, Zhangjun; Tang, Xuemei; Alba, Rob; Giovannoni, James

    2006-01-01

    The Tomato Expression Database (TED) includes three integrated components. The Tomato Microarray Data Warehouse serves as a central repository for raw gene expression data derived from the public tomato cDNA microarray. In addition to expression data, TED stores experimental design and array information in compliance with the MIAME guidelines and provides web interfaces for researchers to retrieve data for their own analysis and use. The Tomato Microarray Expression Database contains normalized and processed microarray data for ten time points with nine pair-wise comparisons during fruit development and ripening in a normal tomato variety and nearly isogenic single gene mutants impacting fruit development and ripening. Finally, the Tomato Digital Expression Database contains raw and normalized digital expression (EST abundance) data derived from analysis of the complete public tomato EST collection containing >150 000 ESTs derived from 27 different non-normalized EST libraries. This last component also includes tools for the comparison of tomato and Arabidopsis digital expression data. A set of query interfaces and analysis, and visualization tools have been developed and incorporated into TED, which aid users in identifying and deciphering biologically important information from our datasets. TED can be accessed at . PMID:16381976

  20. Tomato Expression Database (TED): a suite of data presentation and analysis tools.

    PubMed

    Fei, Zhangjun; Tang, Xuemei; Alba, Rob; Giovannoni, James

    2006-01-01

    The Tomato Expression Database (TED) includes three integrated components. The Tomato Microarray Data Warehouse serves as a central repository for raw gene expression data derived from the public tomato cDNA microarray. In addition to expression data, TED stores experimental design and array information in compliance with the MIAME guidelines and provides web interfaces for researchers to retrieve data for their own analysis and use. The Tomato Microarray Expression Database contains normalized and processed microarray data for ten time points with nine pair-wise comparisons during fruit development and ripening in a normal tomato variety and nearly isogenic single gene mutants impacting fruit development and ripening. Finally, the Tomato Digital Expression Database contains raw and normalized digital expression (EST abundance) data derived from analysis of the complete public tomato EST collection containing >150,000 ESTs derived from 27 different non-normalized EST libraries. This last component also includes tools for the comparison of tomato and Arabidopsis digital expression data. A set of query interfaces and analysis, and visualization tools have been developed and incorporated into TED, which aid users in identifying and deciphering biologically important information from our datasets. TED can be accessed at http://ted.bti.cornell.edu.

  1. Systolic Processor Array For Recognition Of Spectra

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Peterson, John C.

    1995-01-01

    Spectral signatures of materials detected and identified quickly. Spectral Analysis Systolic Processor Array (SPA2) relatively inexpensive and satisfies need to analyze large, complex volume of multispectral data generated by imaging spectrometers to extract desired information: computational performance needed to do this in real time exceeds that of current supercomputers. Locates highly similar segments or contiguous subsegments in two different spectra at time. Compares sampled spectra from instruments with data base of spectral signatures of known materials. Computes and reports scores that express degrees of similarity between sampled and data-base spectra.

  2. The Long Noncoding RNA Landscape of the Mouse Eye.

    PubMed

    Chen, Weiwei; Yang, Shuai; Zhou, Zhonglou; Zhao, Xiaoting; Zhong, Jiayun; Reinach, Peter S; Yan, Dongsheng

    2017-12-01

    Long noncoding RNAs (lncRNAs) are important regulators of diverse biological functions. However, an extensive in-depth analysis of their expression profile and function in mammalian eyes is still lacking. Here we describe comprehensive landscapes of stage-dependent and tissue-specific lncRNA expression in the mouse eye. Affymetrix transcriptome array profiled lncRNA signatures from six different ocular tissue subsets (i.e., cornea, lens, retina, RPE, choroid, and sclera) in newborn and 8-week-old mice. Quantitative RT-PCR analysis validated array findings. Cis analyses and Gene Ontology (GO) annotation of protein-coding genes adjacent to signature lncRNA loci clarified potential lncRNA roles in maintaining tissue identity and regulating eye maturation during the aforementioned phase. In newborn and 8-week-old mice, we identified 47,332 protein-coding and noncoding gene transcripts. LncRNAs comprise 19,313 of these transcripts annotated in public data banks. During this maturation phase of these six different tissue subsets, more than 1000 lncRNAs expression levels underwent ≥2-fold changes. qRT-PCR analysis confirmed part of the gene microarray analysis results. K-means clustering identified 910 lncRNAs in the P0 groups and 686 lncRNAs in the postnatal 8-week-old groups, suggesting distinct tissue-specific lncRNA clusters. GO analysis of protein-coding genes proximal to lncRNA signatures resolved close correlations with their tissue-specific functional maturation between P0 and 8 weeks of age in the 6 tissue subsets. Characterizating maturational changes in lncRNA expression patterns as well as tissue-specific lncRNA signatures in six ocular tissues suggest important contributions made by lncRNA to the control of developmental processes in the mouse eye.

  3. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    PubMed Central

    2012-01-01

    Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1 protein overexpression was 68% in Asian and 70% in Caucasian. Conclusions Our study provides an invaluable database revealing common and differential imbalance regions at specific chromosomes among Asian and Caucasian lung cancer patients. Four validation methods confirmed our database, which would help in further studies on the mechanism of lung tumorigenesis. PMID:22691236

  4. Integrated Microfluidic Devices for Automated Microarray-Based Gene Expression and Genotyping Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew

    Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows microarray-based DNA analysis in a rapid and automated fashion.

  5. STUDIES OF NORMAL GENE EXPRESSION IN THE RAT NASAL EPITHELIUM USNG CDNA ARRAY TECHNOLOGY

    EPA Science Inventory


    Studies of Normal Gene Expression in the Rat Nasal Epithelium Using cDNA Array

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity .Gene expression data are being used increasingly for studies of such conditions. In or...

  6. Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells.

    PubMed

    Whitmore, S Scott; Braun, Terry A; Skeie, Jessica M; Haas, Christine M; Sohn, Elliott H; Stone, Edwin M; Scheetz, Todd E; Mullins, Robert F

    2013-01-01

    Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = -2.61; raw p value=0.0008). GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker expression. These results are consistent with the notion that choroidal endothelial cell dropout or dedifferentiation occurs early in the pathogenesis of AMD.

  7. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  8. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    PubMed Central

    Gardina, Paul J; Clark, Tyson A; Shimada, Brian; Staples, Michelle K; Yang, Qing; Veitch, James; Schweitzer, Anthony; Awad, Tarif; Sugnet, Charles; Dee, Suzanne; Davies, Christopher; Williams, Alan; Turpaz, Yaron

    2006-01-01

    Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported) transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic predictions of alternative splicing in cancer. Conclusion Differential expression of high confidence transcripts correlated extremely well with known cancer genes and pathways, suggesting that the more speculative transcripts, largely based solely on computational prediction and mostly with no previous annotation, might be novel targets in colon cancer. Five of the identified splicing events affect mediators of cytoskeletal organization (ACTN1, VCL, CALD1, CTTN, TPM1), two affect extracellular matrix proteins (FN1, COL6A3) and another participates in integrin signaling (SLC3A2). Altogether they form a pattern of colon-cancer specific alterations that may particularly impact cell motility. PMID:17192196

  9. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment opportunities.

  10. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence.

    PubMed

    Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad

    2017-12-01

    In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.

  11. Exome Array Analysis Identifies a Common Variant in IL27 Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Parker, Margaret M.; Chen, Han; Lao, Taotao; Hardin, Megan; Qiao, Dandi; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Yim, Jae-Joon; Kim, Woo Jin; Kim, Deog Kyeom; Castaldi, Peter J.; Hersh, Craig P.; Morrow, Jarrett; Celli, Bartolome R.; Pinto-Plata, Victor M.; Criner, Gerald J.; Marchetti, Nathaniel; Bueno, Raphael; Agustí, Alvar; Make, Barry J.; Crapo, James D.; Calverley, Peter M.; Donner, Claudio F.; Lomas, David A.; Wouters, Emiel F. M.; Vestbo, Jorgen; Paré, Peter D.; Levy, Robert D.; Rennard, Stephen I.; Zhou, Xiaobo; Laird, Nan M.; Lin, Xihong; Beaty, Terri H.; Silverman, Edwin K.

    2016-01-01

    Rationale: Chronic obstructive pulmonary disease (COPD) susceptibility is in part related to genetic variants. Most genetic studies have been focused on genome-wide common variants without a specific focus on coding variants, but common and rare coding variants may also affect COPD susceptibility. Objectives: To identify coding variants associated with COPD. Methods: We tested nonsynonymous, splice, and stop variants derived from the Illumina HumanExome array for association with COPD in five study populations enriched for COPD. We evaluated single variants with a minor allele frequency greater than 0.5% using logistic regression. Results were combined using a fixed effects meta-analysis. We replicated novel single-variant associations in three additional COPD cohorts. Measurements and Main Results: We included 6,004 control subjects and 6,161 COPD cases across five cohorts for analysis. Our top result was rs16969968 (P = 1.7 × 10−14) in CHRNA5, a locus previously associated with COPD susceptibility and nicotine dependence. Additional top results were found in AGER, MMP3, and SERPINA1. A nonsynonymous variant, rs181206, in IL27 (P = 4.7 × 10−6) was just below the level of exome-wide significance but attained exome-wide significance (P = 5.7 × 10−8) when combined with results from other cohorts. Gene expression datasets revealed an association of rs181206 and the surrounding locus with expression of multiple genes; several were differentially expressed in COPD lung tissue, including TUFM. Conclusions: In an exome array analysis of COPD, we identified nonsynonymous variants at previously described loci and a novel exome-wide significant variant in IL27. This variant is at a locus previously described in genome-wide associations with diabetes, inflammatory bowel disease, and obesity and appears to affect genes potentially related to COPD pathogenesis. PMID:26771213

  12. Using mummichog (Fundulus heteroclitus) arrays to monitor the effectiveness of remediation at a superfund site in Charleston, South Carolina, U.S.A.

    PubMed

    Roling, Jonathan A; Bain, Lisa J; Gardea-Torresdey, Jorge; Key, Peter B; Baldwin, William S

    2007-06-01

    We previously developed a cDNA array for mummichogs (Fundulus heteroclitus), an estuarine minnow, that is targeted for identifying differentially expressed genes from exposure to polycyclic aromatic hydrocarbons and several metals, including chromium. A chromium-contaminated Superfund site at Shipyard Creek in Charleston, South Carolina, USA, is undergoing remediation, providing us a unique opportunity to study the utility of arrays for monitoring the effectiveness of site remediation. Mummichogs were captured in Shipyard Creek in Charleston prior to remediation (2000) and after remediation began (2003 and 2005). Simultaneously, mummichogs were collected from a reference site at the Winyah Bay National Estuarine Research Reserve (NERR) in Georgetown, South Carolina, USA. The hepatic gene expression pattern of fish captured at Shipyard Creek in 2000 showed wide differences from the fish captured at NERR in 2000. Interestingly, as remediation progressed the gene expression pattern of mummichogs captured at Shipyard Creek became increasingly similar to those captured at NERR. The arrays acted as multidimensional biomarkers as the number of differentially expressed genes dropped from 22 in 2000 to four in 2003, and the magnitude of differential expression dropped from 3.2-fold in 2000 to no gene demonstrating a difference over 1.5-fold in 2003. Furthermore, the arrays indicated changes in the bioavailability of chromium caused by hydraulic dredging in the summer of 2005. This research is, to our knowledge, the first report using arrays as biomarkers for a weight-of-evidence hazard assessment and demonstrates that arrays can be used as multidimensional biomarkers to monitor site mitigation because the gene expression profile is associated with chromium bioavailability and body burden.

  13. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    ERIC Educational Resources Information Center

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  14. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    PubMed

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the biopsy was taken.

  15. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients.

    PubMed

    Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut

    2016-01-01

    Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation.

  16. Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Peyvan, K.; Danley, D.; Ricco, A. J.

    2010-01-01

    To facilitate astrobiological studies on the survival and adaptation of microorganisms and mixed microbial cultures to space environment, we have been developing a fully automated, miniaturized system for measuring their gene expression on small spacecraft. This low-cost, multi-purpose instrument represents a major scientific and technological advancement in our ability to study the impact of the space environment on biological systems by providing data on cellular metabolism and regulation orders of magnitude richer than what is currently available. The system supports growth of the organism, lyse it to release the expressed RNA, label the RNA, read the expression levels of a large number of genes by microarray analysis of labeled RNA and transmit the measurements to Earth. To measure gene expression we use microarray technology developed by CombiMatrix, which is based on electrochemical reactions on arrays of electrodes on a semiconductor substrate. Since the electrical integrity of the microarray remains intact after probe synthesis, the circuitry can be employed to sense nucleic acid binding at each electrode. CombiMatrix arrays can be sectored to allow multiple samples per chip. In addition, a single array can be used for several assays. The array has been integrated into an automated microfluidic cartridge that uses flexible reagent blisters and pinch pumping to move liquid reagents between chambers. The proposed instrument will help to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment, develop effective countermeasures against these effects, and test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration. The instrument is suitable for small satellite platforms, which provide frequent, low cost access to space. It can be also used on any other platform in space, including the ISS. It can be replicated and used with only small modifications in multiple biological experiments with a broad range of goals in mind.

  17. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients

    PubMed Central

    Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A.; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut

    2016-01-01

    Background Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Methods Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Results Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). Conclusions We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation. PMID:26863016

  18. Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew; Danley, David; Payvan, Kia; Ricco, Antonio

    To facilitate astrobiological studies on the survival and adaptation of microorganisms and mixed microbial cultures to space environment, we have been developing a fully automated, minia-turized system for measuring their gene expression on small spacecraft. This low-cost, multi-purpose instrument represents a major scientific and technological advancement in our ability to study the impact of the space environment on biological systems by providing data on cel-lular metabolism and regulation orders of magnitude richer than what is currently available. The system supports growth of the organism, lyse it to release the expressed RNA, label the RNA, read the expression levels of a large number of genes by microarray analysis of labeled RNA and transmit the measurements to Earth. To measure gene expression we use microarray technology developed by CombiMatrix, which is based on electrochemical reactions on arrays of electrodes on a semiconductor substrate. Since the electrical integrity of the microarray re-mains intact after probe synthesis, the circuitry can be employed to sense nucleic acid binding at each electrode. CombiMatrix arrays can be sectored to allow multiple samples per chip. In addition, a single array can be used for several assays. The array has been integrated into an automated microfluidic cartridge that uses flexible reagent blisters and pinch pumping to move liquid reagents between chambers. The proposed instrument will help to understand adaptation of terrestrial life to conditions be-yond the planet of origin, identify deleterious effects of the space environment, develop effective countermeasures against these effects, and test our ability to sustain and grow in space organ-isms that can be used for life support and in situ resource utilization during long-duration space exploration. The instrument is suitable for small satellite platforms, which provide frequent, low cost access to space. It can be also used on any other platform in space, including the ISS. It can be replicated and used with only small modifications in multiple biological experiments with a broad range of goals in mind.

  19. MicroRNA Expression Profiling of the Armed Forces Health Surveillance Branch Cohort for Identification of "Enviro-miRs" Associated With Deployment-Based Environmental Exposure.

    PubMed

    Dalgard, Clifton L; Polston, Keith F; Sukumar, Gauthaman; Mallon, Col Timothy M; Wilkerson, Matthew D; Pollard, Harvey B

    2016-08-01

    The aim of this study was to identify serum microRNA (miRNA) biomarkers that indicate deployment-associated exposures in service members at military installations with open burn pits. Another objective was to determine detection rates of miRNAs in Department of Defense Serum Repository (DoDSR) samples with a high-throughput methodology. Low-volume serum samples (n = 800) were profiled by miRNA-capture isolation, pre-amplification, and measurement by a quantitative PCR-based OpenArray platform. Normalized quantitative cycle values were used for differential expression analysis between groups. Assay specificity, dynamic range, reproducibility, and detection rates by OpenArray passed target desired specifications. Serum abundant miRNAs were consistently measured in study specimens. Four miRNAs were differentially expressed in the case deployment group subjects. miRNAs are suitable RNA species for biomarker discovery in the DoDSR serum specimens. Serum miRNAs are candidate biomarkers for deployment and environmental exposure in military service members.

  20. Expression profiling of microRNAs in human bone tissue from postmenopausal women.

    PubMed

    De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia

    2018-01-01

    Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.

  1. Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray.

    PubMed

    Boswell, Mikki G; Wells, Melissa C; Kirk, Lyndsey M; Ju, Zhenlin; Zhang, Ziping; Booth, Rachell E; Walter, Ronald B

    2009-03-01

    Gene expression profiling using DNA microarray technology is a useful tool for assessing gene transcript level responses after an organism is exposed to environmental stress. Herein, we detail results from studies using an 8 k medaka (Oryzias latipes) microarray to assess modulated gene expression patterns upon hypoxia exposure of the live-bearing aquaria fish, Xiphophorus maculatus. To assess the reproducibility and reliability of using the medaka array in cross-genus hybridization, a two-factor ANOVA analysis of gene expression was employed. The data show the tissue source of the RNA used for array hybridization contributed more to the observed response of modulated gene targets than did the species source of the RNA. In addition, hierarchical clustering via heat map analyses of groupings of tissues and species (Xiphophorus and medaka) suggests that hypoxia induced similar responses in the same tissues from these two diverse aquatic model organisms. Our Xiphophorus results indicate 206 brain, 37 liver, and 925 gill gene targets exhibit hypoxia induced expression changes. Analysis of the Xiphophorus data to determine those features exhibiting a significant (p<0.05)+/-3 fold change produced only two gene targets within brain tissue and 80 features within gill tissue. Of these 82 characterized features, 39 were identified via homology searching (cut-off E-value of 1 x 10(-5)) and placed into one or more biological process gene ontology groups. Among these 39 genes, metabolic energy changes and manipulation was the most affected biological pathway (13 genes).

  2. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data.

    PubMed

    Tintle, Nathan L; Sitarik, Alexandra; Boerema, Benjamin; Young, Kylie; Best, Aaron A; Dejongh, Matthew

    2012-08-08

    Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  3. Marek's Disease Virus-Induced Immunosuppression: Array Analysis of Chicken Immune Response Gene Expression Profiling

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by a highly cell-associated oncogenic alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latency infection within CD4+ T cells. Host-virus interaction, immune responses to...

  4. CLOFIBRATE-INDUCED GENE EXPRESSION CHANGES IN RAT LIVER: A CROSS-LABORATORY ANALYSIS USING MEMBRANE CDNA ARRAYS

    EPA Science Inventory

    Microarrays have the potential to significantly impact our ability to identify toxic hazards by the identification of mechanistically-relevant markers of toxicity. To be useful for risk assessment however, microarray data must be challenged to determine its reliability and inter...

  5. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle

    PubMed Central

    Ron, Micha; Israeli, Galit; Seroussi, Eyal; Weller, Joel I; Gregg, Jeffrey P; Shani, Moshe; Medrano, Juan F

    2007-01-01

    Background Many studies have found segregating quantitative trait loci (QTL) for milk production traits in different dairy cattle populations. However, even for relatively large effects with a saturated marker map the confidence interval for QTL location by linkage analysis spans tens of map units, or hundreds of genes. Combining mapping and arraying has been suggested as an approach to identify candidate genes. Thus, gene expression analysis in the mammary gland of genes positioned in the confidence interval of the QTL can bridge the gap between fine mapping and quantitative trait nucleotide (QTN) determination. Results We hybridized Affymetrix microarray (MG-U74v2), containing 12,488 murine probes, with RNA derived from mammary gland of virgin, pregnant, lactating and involuting C57BL/6J mice in a total of nine biological replicates. We combined microarray data from two additional studies that used the same design in mice with a total of 75 biological replicates. The same filtering and normalization was applied to each microarray data using GeneSpring software. Analysis of variance identified 249 differentially expressed probe sets common to the three experiments along the four developmental stages of puberty, pregnancy, lactation and involution. 212 genes were assigned to their bovine map positions through comparative mapping, and thus form a list of candidate genes for previously identified QTLs for milk production traits. A total of 82 of the genes showed mammary gland-specific expression with at least 3-fold expression over the median representing all tissues tested in GeneAtlas. Conclusion This work presents a web tool for candidate genes for QTL (cgQTL) that allows navigation between the map of bovine milk production QTL, potential candidate genes and their level of expression in mammary gland arrays and in GeneAtlas. Three out of four confirmed genes that affect QTL in livestock (ABCG2, DGAT1, GDF8, IGF2) were over expressed in the target organ. Thus, cgQTL can be used to determine priority of candidate genes for QTN analysis based on differential expression in the target organ. PMID:17584498

  6. ECM1 and TMPRSS4 Are Diagnostic Markers of Malignant Thyroid Neoplasms and Improve the Accuracy of Fine Needle Aspiration Biopsy

    PubMed Central

    Kebebew, Electron; Peng, Miao; Reiff, Emily; Duh, Quan-Yang; Clark, Orlo H.; McMillan, Alex

    2005-01-01

    Objective: The objective of this study was to determine whether genes that regulate cellular invasion and metastasis are differentially expressed and could serve as diagnostic markers of malignant thyroid nodules. Summary and Background Data: Patients whose thyroid nodules have indeterminate or suspicious cytologic features on fine needle aspiration (FNA) biopsy require thyroidectomy because of a 20% to 30% risk of thyroid cancer. Cell invasion and metastasis is a hallmark of malignant phenotype; therefore, genes that regulate these processes might be differentially expressed and could serve as diagnostic markers of malignancy. Methods: Differentially expressed genes (2-fold higher or lower) in malignant versus benign thyroid neoplasms were identified by extracellular matrix and adhesion molecule cDNA array analysis and confirmed by real-time quantitative polymerase chain reaction (PCR). The area under the receiver operating characteristic (AUC) curve was calculated to determine diagnostic accuracy of gene expression level cutoffs established by logistic regression analysis. Results: By cDNA array analysis, ADAMTS8, ECM1, MMP8, PLAU, SELP, and TMPRSS4 were upregulated, and by quantitative PCR, ECM1, SELP, and TMPRSS4 mRNA expression was higher in malignant (n = 57) than in benign (n = 38) thyroid neoplasms (P< 0.002). ECM1 and TMPRSS4 mRNA expression levels were independent predictors of a malignant thyroid neoplasm (P < 0.003). The AUC was 0.956 for ECM1 and 0.926 for TMPRSS4. Combining both markers improved their diagnostic use (AUC 0.985; sensitivity, 91.7%; specificity, 89.8%; positive predictive value, 85.7%; negative predictive value, 82.8%). ECM1 and TMPRSS4 expression analysis improved the diagnostic accuracy of FNA biopsy in 35 of 38 indeterminate or suspicious results. The level of ECM1 mRNA expression was higher in TNM stage I differentiated thyroid cancers than in stage II and III tumors (P ≤ 0.031). Conclusions: ECM1 and TMPRSS4 are excellent diagnostic markers of malignant thyroid nodules and may be used to improve the diagnostic accuracy of FNA biopsy. ECM1 is also a marker of the extent of disease in differentiated thyroid cancers. PMID:16135921

  7. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    DTIC Science & Technology

    2007-04-01

    known about PELP1 role in ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ...Tulane University, New Orleans, LA Introduction PELP1 down regulation reduces tumorigenic potential in vivo PELP1 expression is deregulated in human ...decreases the tumorigenic potential of OVCAR3 cancer cells in nude mice model IHC studies using human ovarian cancer tissue array (n=123) showed that PELP1

  8. A stochastic model for optimizing composite predictors based on gene expression profiles.

    PubMed

    Ramanathan, Murali

    2003-07-01

    This project was done to develop a mathematical model for optimizing composite predictors based on gene expression profiles from DNA arrays and proteomics. The problem was amenable to a formulation and solution analogous to the portfolio optimization problem in mathematical finance: it requires the optimization of a quadratic function subject to linear constraints. The performance of the approach was compared to that of neighborhood analysis using a data set containing cDNA array-derived gene expression profiles from 14 multiple sclerosis patients receiving intramuscular inteferon-beta1a. The Markowitz portfolio model predicts that the covariance between genes can be exploited to construct an efficient composite. The model predicts that a composite is not needed for maximizing the mean value of a treatment effect: only a single gene is needed, but the usefulness of the effect measure may be compromised by high variability. The model optimized the composite to yield the highest mean for a given level of variability or the least variability for a given mean level. The choices that meet this optimization criteria lie on a curve of composite mean vs. composite variability plot referred to as the "efficient frontier." When a composite is constructed using the model, it outperforms the composite constructed using the neighborhood analysis method. The Markowitz portfolio model may find potential applications in constructing composite biomarkers and in the pharmacogenomic modeling of treatment effects derived from gene expression endpoints.

  9. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    PubMed

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a highly adaptable, integrative, yet flexible tool which can be used for automated quality control, analysis, annotation and visualization of microarray data, constituting a starting point for further data interpretation and integration with numerous other tools.

  10. MicroRNA-203 Induces Apoptosis by Targeting Bmi-1 in YD-38 Oral Cancer Cells.

    PubMed

    Kim, Jae-Sung; Choi, Dae Woo; Kim, Chun Sung; Yu, Sun-Kyoung; Kim, Heung-Joong; Go, Dae-San; Lee, Seul Ah; Moon, Sung Min; Kim, Su Gwan; Chun, Hong Sung; Kim, Jeongsun; Kim, Jong-Keun; Kim, DO Kyung

    2018-06-01

    MicroRNAs (miRNAs) are closely associated with a number of cellular processes, including cell development, differentiation, proliferation, carcinogenesis, and apoptosis. The aim of the present study was to elucidate the molecular mechanisms underlying the tumor suppressor activity of miRNA-203 (miR-203) in YD-38 human oral cancer cells. Polymerase chain reaction analysis, MTT assay, DNA fragmentation assay, fluorescence-activated cell-sorting analysis, gene array, immunoblotting, and luciferase assay were carried out in YD-38 cells. miR-203 expression was significantly down-regulated in YD-38 cells compared to expression levels in normal human oral keratinocytes. miR-203 decreased the viability of YD-38 cells in a time- and dose-dependent manner. In addition, over-expression of miR-203 significantly increased not only DNA segmentation, but also the apoptotic population of YD-38 cells. These results indicate that miR-203 overexpression induces apoptosis in YD-38 cells. Target gene array analysis revealed that the expression of the polycomb complex protein gene Bmi-1, a representative oncogene, was significantly down-regulated by miR-203 in YD-38 cells. Moreover, both mRNA and protein levels of Bmi-1 were significantly reduced in YD-38 cells transfected with miR-203. These results indicate that Bmi-1 is a target gene of miR-203. A luciferase reporter assay confirmed that miR-203 suppressed Bmi-1 expression by directly targeting the 3'-untranslated region. miR-203 induces apoptosis in YD-38 cells by directly targeting Bmi-1, which suggests its possible application as an anti-cancer therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. A new normalizing algorithm for BAC CGH arrays with quality control metrics.

    PubMed

    Miecznikowski, Jeffrey C; Gaile, Daniel P; Liu, Song; Shepherd, Lori; Nowak, Norma

    2011-01-01

    The main focus in pin-tip (or print-tip) microarray analysis is determining which probes, genes, or oligonucleotides are differentially expressed. Specifically in array comparative genomic hybridization (aCGH) experiments, researchers search for chromosomal imbalances in the genome. To model this data, scientists apply statistical methods to the structure of the experiment and assume that the data consist of the signal plus random noise. In this paper we propose "SmoothArray", a new method to preprocess comparative genomic hybridization (CGH) bacterial artificial chromosome (BAC) arrays and we show the effects on a cancer dataset. As part of our R software package "aCGHplus," this freely available algorithm removes the variation due to the intensity effects, pin/print-tip, the spatial location on the microarray chip, and the relative location from the well plate. removal of this variation improves the downstream analysis and subsequent inferences made on the data. Further, we present measures to evaluate the quality of the dataset according to the arrayer pins, 384-well plates, plate rows, and plate columns. We compare our method against competing methods using several metrics to measure the biological signal. With this novel normalization algorithm and quality control measures, the user can improve their inferences on datasets and pinpoint problems that may arise in their BAC aCGH technology.

  12. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.

    PubMed

    Sakai, Yusuke; Hattori, Koji; Yanagawa, Fumiki; Sugiura, Shinji; Kanamori, Toshiyuki; Nakazawa, Kohji

    2014-07-01

    Microfluidic devices permit perfusion culture of three-dimensional (3D) tissue, mimicking the flow of blood in vascularized 3D tissue in our body. Here, we report a microfluidic device composed of a two-part microfluidic chamber chip and multi-microwell array chip able to be disassembled at the culture endpoint. Within the microfluidic chamber, an array of 3D tissue aggregates (spheroids) can be formed and cultured under perfusion. Subsequently, detailed post-culture analysis of the spheroids collected from the disassembled device can be performed. This device facilitates uniform spheroid formation, growth analysis in a high-throughput format, controlled proliferation via perfusion flow rate, and post-culture analysis of spheroids. We used the device to culture spheroids of human hepatocellular carcinoma (HepG2) cells under two controlled perfusion flow rates. HepG2 spheroids exhibited greater cell growth at higher perfusion flow rates than at lower perfusion flow rates, and exhibited different metabolic activity and mRNA and protein expression under the different flow rate conditions. These results show the potential of perfusion culture to precisely control the culture environment in microfluidic devices. The construction of spheroid array chambers allows multiple culture conditions to be tested simultaneously, with potential applications in toxicity and drug screening. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Microarray expression technology: from start to finish.

    PubMed

    Elvidge, Gareth

    2006-01-01

    The recent introduction of new microarray expression technologies and the further development of established platforms ensure that the researcher is presented with a range of options for performing an experiment. Whilst this has opened up the possibilities for future applications, such as exon-specific arrays, increased sample throughput and 'chromatin immunoprecipitation (ChIP) on chip' experiments, the initial decision processes and experiment planning are made more difficult. This review will give an overview of the various technologies that are available to perform a microarray expression experiment, from the initial planning stages through to the final data analysis. Both practical aspects and data analysis options will be considered. The relative advantages and disadvantages will be discussed with insights provided for future directions of the technology.

  14. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells.

    PubMed

    Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru

    2016-09-01

    To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.

  15. Parallel gene analysis with allele-specific padlock probes and tag microarrays

    PubMed Central

    Banér, Johan; Isaksson, Anders; Waldenström, Erik; Jarvius, Jonas; Landegren, Ulf; Nilsson, Mats

    2003-01-01

    Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes. PMID:12930977

  16. Organization of Synthetic Alphoid DNA Array in Human Artificial Chromosome (HAC) with a Conditional Centromere

    PubMed Central

    Kouprina, Natalay; Samoshkin, Alexander; Erliandri, Indri; Nakano, Megumi; Lee, Hee-Sheung; Fu, Haiging; Iida, Yuichi; Aladjem, Mirit; Oshimura, Mitsuo; Masumoto, Hiroshi; Earnshaw, William C.; Larionov, Vladimir

    2012-01-01

    Human artificial chromosomes (HACs) represent a novel promising episomal system for functional genomics, gene therapy and synthetic biology. HACs are engineered from natural and synthetic alphoid DNA arrays upon transfection into human cells. The use of HACs for gene expression studies requires the knowledge of their structural organization. However, none of de novo HACs constructed so far has been physically mapped in detail. Recently we constructed a synthetic alphoidtetO-HAC that was successfully used for expression of full-length genes to correct genetic deficiencies in human cells. The HAC can be easily eliminated from cell populations by inactivation of its conditional kinetochore. This unique feature provides a control for phenotypic changes attributed to expression of HAC-encoded genes. This work describes organization of a megabase-size synthetic alphoid DNA array in the alphoidtetO-HAC that has been formed from a ~50 kb synthetic alphoidtetO-construct. Our analysis showed that this array represents a 1.1 Mb continuous sequence assembled from multiple copies of input DNA, a significant part of which was rearranged before assembling. The tandem and inverted alphoid DNA repeats in the HAC range in size from 25 to 150 kb. In addition, we demonstrated that the structure and functional domains of the HAC remains unchanged after several rounds of its transfer into different host cells. The knowledge of the alphoidtetO-HAC structure provides a tool to control HAC integrity during different manipulations. Our results also shed light on a mechanism for de novo HAC formation in human cells. PMID:23411994

  17. Clustering and Network Analysis of Reverse Phase Protein Array Data.

    PubMed

    Byron, Adam

    2017-01-01

    Molecular profiling of proteins and phosphoproteins using a reverse phase protein array (RPPA) platform, with a panel of target-specific antibodies, enables the parallel, quantitative proteomic analysis of many biological samples in a microarray format. Hence, RPPA analysis can generate a high volume of multidimensional data that must be effectively interrogated and interpreted. A range of computational techniques for data mining can be applied to detect and explore data structure and to form functional predictions from large datasets. Here, two approaches for the computational analysis of RPPA data are detailed: the identification of similar patterns of protein expression by hierarchical cluster analysis and the modeling of protein interactions and signaling relationships by network analysis. The protocols use freely available, cross-platform software, are easy to implement, and do not require any programming expertise. Serving as data-driven starting points for further in-depth analysis, validation, and biological experimentation, these and related bioinformatic approaches can accelerate the functional interpretation of RPPA data.

  18. HES1, a target of Notch signaling, is elevated in canine osteosarcoma, but reduced in the most aggressive tumors

    PubMed Central

    2013-01-01

    Background Hairy and enhancer of split 1 (HES1), a basic helix-loop-helix transcriptional repressor, is a downstream target of Notch signaling. Notch signaling and HES1 expression have been linked to growth and survival in a variety of human cancer types and have been associated with increased metastasis and invasiveness in human osteosarcoma cell lines. Osteosarcoma (OSA) is an aggressive cancer demonstrating both high metastatic rate and chemotherapeutic resistance. The current study examined expression of Notch signaling mediators in primary canine OSA tumors and canine and human osteosarcoma cell lines to assess their role in OSA development and progression. Results Reverse transcriptase - quantitative PCR (RT-qPCR) was utilized to quantify HES1, HEY1, NOTCH1 and NOTCH2 gene expression in matched tumor and normal metaphyseal bone samples taken from dogs treated for appendicular OSA at the Colorado State University Veterinary Teaching Hospital. Gene expression was also assessed in tumors from dogs with a disease free interval (DFI) of <100 days compared to those with a DFI > 300 days following treatment with surgical amputation followed by standard chemotherapy. Immunohistochemistry was performed to confirm expression of HES1. Data from RT-qPCR and immunohistochemical (IHC) experiments were analyzed using REST2009 software and survival analysis based on IHC expression employed the Kaplan-Meier method and log rank analysis. Unbiased clustered images were generated from gene array analysis data for Notch/HES1 associated genes. Gene array analysis of Notch/HES1 associated genes suggested alterations in the Notch signaling pathway may contribute to the development of canine OSA. HES1 mRNA expression was elevated in tumor samples relative to normal bone, but decreased in tumor samples from dogs with a DFI < 100 days relative to those with a DFI > 300 days. NOTCH2 and HEY1 mRNA expression was also elevated in tumors relative to normal bone, but was not differentially expressed between the DFI tumor groups. Survival analysis confirmed an association between decreased HES1 immunosignal and shorter DFI. Conclusions Our findings suggest that activation of Notch signaling occurs and may contribute to the development of canine OSA. However, association of low HES1 expression and shorter DFI suggests that mechanisms that do not alter HES1 expression may drive the most aggressive tumors. PMID:23816051

  19. Gene expression and pathway analysis of human hepatocellular carcinoma cells treated with cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartularo, Laura; Laulicht, Freda; Sun, Hong

    Cadmium (Cd) is a toxic and carcinogenic metal naturally occurring in the Earth's crust. A common route of human exposure is via diet and cadmium accumulates in the liver. The effects of Cd exposure on gene expression in human hepatocellular carcinoma (HepG2) cells were examined in this study. HepG2 cells were acutely-treated with 0.1, 0.5, or 1.0 μM Cd for 24 h; or chronically-treated with 0.01, 0.05, or 0.1 μM Cd for three weeks and gene expression analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Acute and chronic exposures significantly altered the expression of 333 and 181more » genes, respectively. The genes most upregulated by acute exposure included several metallothioneins. Downregulated genes included the monooxygenase CYP3A7, involved in drug and lipid metabolism. In contrast, CYP3A7 was upregulated by chronic Cd exposure, as was DNAJB9, an anti-apoptotic J protein. Genes downregulated following chronic exposure included the transcriptional regulator early growth response protein 1. Ingenuity Pathway Analysis revealed that the top networks altered by acute exposure were lipid metabolism, small molecule biosynthesis, cell morphology, organization, and development; while top networks altered by chronic exposure were organ morphology, cell cycle, cell signaling, and renal and urological diseases/cancer. Many of the dysregulated genes play important roles in cellular growth, proliferation, and apoptosis, and may be involved in carcinogenesis. In addition to gene expression changes, HepG2 cells treated with cadmium for 24 h indicated a reduction in global levels of histone methylation and acetylation that persisted 72 h post-treatment. - Highlights: • A common route of human exposure to the carcinogenic metal cadmium is via diet. • HepG2 cells were treated acutely or chronically with varying doses of cadmium. • Gene expression analysis was performed using Affymetrix Human Gene 1.0 Arrays. • Acute and chronic exposures altered the expression of 333 and 181 genes, respectively. • Acute cadmium exposure altered global levels of histone methylation and acetylation.« less

  20. Next Generation Sequencing at the University of Chicago Genomics Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faber, Pieter

    2013-04-24

    The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation). The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis.

  1. Software development guidelines

    NASA Technical Reports Server (NTRS)

    Kovalevsky, N.; Underwood, J. M.

    1979-01-01

    Analysis, modularization, flowcharting, existing programs and subroutines, compatibility, input and output data, adaptability to checkout, and general-purpose subroutines are summarized. Statement ordering and numbering, specification statements, variable names, arrays, arithemtical expressions and statements, control statements, input/output, and subroutines are outlined. Intermediate results, desk checking, checkout data, dumps, storage maps, diagnostics, and program timing are reviewed.

  2. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    USDA-ARS?s Scientific Manuscript database

    Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation....

  3. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power Tools), (ii) the manual loading of preprocessing libraries, and (iii) the management of intermediate files, such as results and metadata. Micro-Analyzer users can directly manage Affymetrix binary data without worrying about locating and invoking the proper preprocessing tools and chip-specific libraries. Moreover, users of the Micro-Analyzer tool can load the preprocessed data directly into the well-known TM4 platform, extending in such a way also the TM4 capabilities. Consequently, Micro Analyzer offers the following advantages: (i) it reduces possible errors in the preprocessing and further analysis phases, e.g. due to the incorrect choice of parameters or due to the use of old libraries, (ii) it enables the combined and centralized pre-processing of different arrays, (iii) it may enhance the quality of further analysis by storing the workflow, i.e. information about the preprocessing steps, and (iv) finally Micro-Analzyer is freely available as a standalone application at the project web site http://sourceforge.net/projects/microanalyzer/. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Array data extractor (ADE): a LabVIEW program to extract and merge gene array data.

    PubMed

    Kurtenbach, Stefan; Kurtenbach, Sarah; Zoidl, Georg

    2013-12-01

    Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Although existing software allows for complex data analyses, the LabVIEW based program presented here, "Array Data Extractor (ADE)", provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge.

  5. Loss of Chromosome 18 in Neuroendocrine Tumors of the Small Intestine: The Enigma Remains.

    PubMed

    Nieser, Maike; Henopp, Tobias; Brix, Joachim; Stoß, Laura; Sitek, Barbara; Naboulsi, Wael; Anlauf, Martin; Schlitter, Anna M; Klöppel, Günter; Gress, Thomas; Moll, Roland; Bartsch, Detlef K; Heverhagen, Anna E; Knoefel, Wolfram T; Kaemmerer, Daniel; Haybaeck, Johannes; Fend, Falko; Sperveslage, Jan; Sipos, Bence

    2017-01-01

    Neuroendocrine tumors of the small intestine (SI-NETs) exhibit an increasing incidence and high mortality rate. Until now, no fundamental molecular event has been linked to the tumorigenesis and progression of these tumors. Only the loss of chromosome 18 (Chr18) has been shown in up to two thirds of SI-NETs, whereby the significance of this alteration is still not understood. We therefore performed the first comprehensive study to identify Chr18-related events at the genetic, epigenetic and gene/protein expression levels. We did expression analysis of all seven putative Chr18-related tumor suppressors by quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry. Next-generation exome sequencing and SNP array analysis were performed with five SI-NETs with (partial) loss of Chr18. Finally, we analyzed all microRNAs (miRNAs) located on Chr18 by qRT-PCR, comparing Chr18+/- and Chr18+/+ SI-NETs. Only DCC (deleted in colorectal cancer) revealed loss of/greatly reduced expression in 6/21 cases (29%). No relevant loss of SMAD2, SMAD4, elongin A3 and CABLES was detected. PMAIP1 and maspin were absent at the protein level. Next-generation sequencing did not reveal relevant recurrent somatic mutations on Chr18 either in an exploratory cohort of five SI-NETs, or in a validation cohort (n = 30). SNP array analysis showed no additional losses. The quantitative analysis of all 27 Chr18-related miRNAs revealed no difference in expression between Chr18+/- and Chr18+/+ SI-NETs. DCC seems to be the only Chr18-related tumor suppressor affected by the monoallelic loss of Chr18 resulting in a loss of DCC protein expression in one third of SI-NETs. No additional genetic or epigenetic alterations were present on Chr18. © 2016 S. Karger AG, Basel.

  6. Statistical analysis of an RNA titration series evaluates microarray precision and sensitivity on a whole-array basis

    PubMed Central

    Holloway, Andrew J; Oshlack, Alicia; Diyagama, Dileepa S; Bowtell, David DL; Smyth, Gordon K

    2006-01-01

    Background Concerns are often raised about the accuracy of microarray technologies and the degree of cross-platform agreement, but there are yet no methods which can unambiguously evaluate precision and sensitivity for these technologies on a whole-array basis. Results A methodology is described for evaluating the precision and sensitivity of whole-genome gene expression technologies such as microarrays. The method consists of an easy-to-construct titration series of RNA samples and an associated statistical analysis using non-linear regression. The method evaluates the precision and responsiveness of each microarray platform on a whole-array basis, i.e., using all the probes, without the need to match probes across platforms. An experiment is conducted to assess and compare four widely used microarray platforms. All four platforms are shown to have satisfactory precision but the commercial platforms are superior for resolving differential expression for genes at lower expression levels. The effective precision of the two-color platforms is improved by allowing for probe-specific dye-effects in the statistical model. The methodology is used to compare three data extraction algorithms for the Affymetrix platforms, demonstrating poor performance for the commonly used proprietary algorithm relative to the other algorithms. For probes which can be matched across platforms, the cross-platform variability is decomposed into within-platform and between-platform components, showing that platform disagreement is almost entirely systematic rather than due to measurement variability. Conclusion The results demonstrate good precision and sensitivity for all the platforms, but highlight the need for improved probe annotation. They quantify the extent to which cross-platform measures can be expected to be less accurate than within-platform comparisons for predicting disease progression or outcome. PMID:17118209

  7. Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers.

    PubMed

    Domínguez-Sánchez, María S; Sáez, Carmen; Japón, Miguel A; Aguilera, Andrés; Luna, Rosa

    2011-02-17

    One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development.

  8. Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial.

    PubMed

    Gerke, Alicia K; Pezzulo, Alejandro A; Tang, Fan; Cavanaugh, Joseph E; Bair, Thomas B; Phillips, Emily; Powers, Linda S; Monick, Martha M

    2014-03-26

    Vitamin D deficiency has been implicated as a factor in a number of infectious and inflammatory lung diseases. In the lung, alveolar macrophages play a key role in inflammation and defense of infection, but there are little data exploring the immunomodulatory effects of vitamin D on innate lung immunity in humans. The objective of this study was to determine the effects of vitamin D supplementation on gene expression of alveolar macrophages. We performed a parallel, double-blind, placebo-controlled, randomized trial to determine the effects of vitamin D on alveolar macrophage gene expression. Vitamin D3 (1000 international units/day) or placebo was administered to adults for three months. Bronchoscopy was performed pre- and post-intervention to obtain alveolar macrophages. Messenger RNA was isolated from the macrophages and subjected to whole genome exon array analysis. The primary outcome was differential gene expression of the alveolar macrophage in response to vitamin D supplementation. Specific genes underwent validation by polymerase chain reaction methods. Fifty-eight subjects were randomized to vitamin D (n = 28) or placebo (n = 30). There was a marginal overall difference between treatment group and placebo group in the change of 25-hydroxyvitaminD levels (4.43 ng/ml vs. 0.2 ng/ml, p = 0.10). Whole genome exon array analysis revealed differential gene expression associated with change in serum vitamin D levels in the treated group. CCL8/MCP-2 was the top-regulated cytokine gene and was further validated. Although only a non-significant increased trend was seen in serum vitamin D levels, subjects treated with vitamin D supplementation had immune-related differential gene expression in alveolar macrophages. ClinicalTrials.org: NCT01967628.

  9. NORMAL NASAL GENE EXPRESSION LEVELS USING CDNA ARRAY TECHNOLOGY

    EPA Science Inventory

    Normal Nasal Gene Expression Levels Using cDNA Array Technology.

    The nasal epithelium is a target site for chemically-induced toxicity and carcinogenicity. To detect and analyze genetic events which contribute to nasal tumor development, we first defined the gene expressi...

  10. GENE EXPRESSION PATTERNS ASSOCIATED WITH INFERTILITY IN HUMAN AND RODENT MODELS

    EPA Science Inventory

    Modern genomic technologies such as DNA arrays provide the means to investigate molecular interactions at an unprecedented level, and arrays have been used to carry out gene expression profiling as a means of identifying candidate genes involved in molecular mechanisms underlying...

  11. A functional genomics tool for the Pacific bluefin tuna: Development of a 44K oligonucleotide microarray from whole-genome sequencing data for global transcriptome analysis.

    PubMed

    Yasuike, Motoshige; Fujiwara, Atushi; Nakamura, Yoji; Iwasaki, Yuki; Nishiki, Issei; Sugaya, Takuma; Shimizu, Akio; Sano, Motohiko; Kobayashi, Takanori; Ototake, Mitsuru

    2016-02-01

    Bluefin tunas are one of the most important fishery resources worldwide. Because of high market values, bluefin tuna farming has been rapidly growing during recent years. At present, the most common form of the tuna farming is based on the stocking of wild-caught fish. Therefore, concerns have been raised about the negative impact of the tuna farming on wild stocks. Recently, the Pacific bluefin tuna (PBT), Thunnus orientalis, has succeeded in completing the reproduction cycle under aquaculture conditions, but production bottlenecks remain to be solved because of very little biological information on bluefin tunas. Functional genomics approaches promise to rapidly increase our knowledge on biological processes in the bluefin tuna. Here, we describe the development of the first 44K PBT oligonucleotide microarray (oligo-array), based on whole-genome shotgun (WGS) sequencing and large-scale expressed sequence tags (ESTs) data. In addition, we also introduce an initial 44K PBT oligo-array experiment using in vitro grown peripheral blood leukocytes (PBLs) stimulated with immunostimulants such as lipopolysaccharide (LPS: a cell wall component of Gram-negative bacteria) or polyinosinic:polycytidylic acid (poly I:C: a synthetic mimic of viral infection). This pilot 44K PBT oligo-array analysis successfully addressed distinct immune processes between LPS- and poly I:C- stimulated PBLs. Thus, we expect that this oligo-array will provide an excellent opportunity to analyze global gene expression profiles for a better understanding of diseases and stress, as well as for reproduction, development and influence of nutrition on tuna aquaculture production. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  13. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy.

    PubMed

    Jung, Ki-Hong; Dardick, Christopher; Bartley, Laura E; Cao, Peijian; Phetsom, Jirapa; Canlas, Patrick; Seo, Young-Su; Shultz, Michael; Ouyang, Shu; Yuan, Qiaoping; Frank, Bryan C; Ly, Eugene; Zheng, Li; Jia, Yi; Hsia, An-Ping; An, Kyungsook; Chou, Hui-Hsien; Rocke, David; Lee, Geun Cheol; Schnable, Patrick S; An, Gynheung; Buell, C Robin; Ronald, Pamela C

    2008-10-06

    Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.

  14. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneuralmore » gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.« less

  15. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray.

    PubMed

    Pedersen, Johannes W; Blixt, Ola; Bennett, Eric P; Tarp, Mads A; Dar, Imran; Mandel, Ulla; Poulsen, Steen S; Pedersen, Anders E; Rasmussen, Susanne; Jess, Per; Clausen, Henrik; Wandall, Hans H

    2011-04-15

    Cancer-associated autoantibodies hold promise as sensitive biomarkers for early detection of cancer. Aberrant post-translational variants of proteins are likely to induce autoantibodies, and changes in O-linked glycosylation represent one of the most important cancer-associated post-translational modifications (PTMs). Short aberrant O-glycans on proteins may introduce novel glycopeptide epitopes that can elicit autoantibodies because of lack of tolerance. Technical barriers, however, have hampered detection of such glycopeptide-specific autoantibodies. Here, we have constructed an expanded glycopeptide array displaying a comprehensive library of glycopeptides and glycoproteins derived from a panel of human mucins (MUC1, MUC2, MUC4, MUC5AC, MUC6 and MUC7) known to have altered glycosylation and expression in cancer. Seromic profiling of patients with colorectal cancer identified cancer-associated autoantibodies to a set of aberrant glycopeptides derived from MUC1 and MUC4. The cumulative sensitivity of the array analysis was 79% with a specificity of 92%. The most prevalent of the identified autoantibody targets were validated as authentic cancer immunogens by showing expression of the epitopes in cancer using novel monoclonal antibodies. Our study provides evidence for the value of glycopeptides and other PTM-peptide arrays in diagnostic measures. Copyright © 2011 UICC.

  16. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation.

    PubMed

    Shaw, Lindsay M; McIntyre, C Lynne; Gresshoff, Peter M; Xue, Gang-Ping

    2009-11-01

    DNA binding with One Finger (Dof) protein is a plant-specific transcription factor implicated in the regulation of many important plant-specific processes, including photosynthesis and carbohydrate metabolism. This study has identified 31 Dof genes (TaDof) in bread wheat through extensive analysis of current nucleotide databases. Phylogenetic analysis suggests that the TaDof family can be divided into four clades. Expression analysis of the TaDof family across all major organs using quantitative RT-PCR and searches of the wheat genome array database revealed that the majority of TaDof members were predominately expressed in vegetative organs. A large number of TaDof members were down-regulated by drought and/or were responsive to the light and dark cycle. Further expression analysis revealed that light up-regulated TaDof members were highly correlated in expression with a number of genes that are involved in photosynthesis or sucrose transport. These data suggest that the TaDof family may have an important role in light-mediated gene regulation, including involvement in the photosynthetic process.

  17. Fabrication and analysis of microfiber array platform for optogenetics with cellular resolution

    PubMed Central

    Chen, Jian-Hong; Chou, Ming-Yi; Pan, Chien-Yuan; Wang, Lon A.

    2016-01-01

    Optogenetics has emerged as a revolutionary technology especially for neuroscience and has advanced continuously over the past decade. Conventional approaches for patterned in vivo optical illumination have a limitation on the implanted device size and achievable spatio-temporal resolution. In this work, we developed a fabrication process for a microfiber array platform. Arrayed poly(methyl methacrylate) (PMMA) microfibers were drawn from a polymer solution and packaged with polydimethylsiloxane (PDMS). The exposed end face of a packaged microfiber was tuned to have a size corresponding to a single cell. To demonstrate its capability for single cell optogenetics, HEK293T cells expressing channelrhodopsin-2 (ChR2) were cultured on the platform and excited with UV laser. We could then observe an elevation in the intracellular Ca2+ concentrations due to the influx of Ca2+ through the activated ChR2 into the cytosol. The statistical and simulation results indicate that the proposed microfiber array platform can be used for single cell optogenetic applications. PMID:27895984

  18. SimArray: a user-friendly and user-configurable microarray design tool

    PubMed Central

    Auburn, Richard P; Russell, Roslin R; Fischer, Bettina; Meadows, Lisa A; Sevillano Matilla, Santiago; Russell, Steven

    2006-01-01

    Background Microarrays were first developed to assess gene expression but are now also used to map protein-binding sites and to assess allelic variation between individuals. Regardless of the intended application, efficient production and appropriate array design are key determinants of experimental success. Inefficient production can make larger-scale studies prohibitively expensive, whereas poor array design makes normalisation and data analysis problematic. Results We have developed a user-friendly tool, SimArray, which generates a randomised spot layout, computes a maximum meta-grid area, and estimates the print time, in response to user-specified design decisions. Selected parameters include: the number of probes to be printed; the microtitre plate format; the printing pin configuration, and the achievable spot density. SimArray is compatible with all current robotic spotters that employ 96-, 384- or 1536-well microtitre plates, and can be configured to reflect most production environments. Print time and maximum meta-grid area estimates facilitate evaluation of each array design for its suitability. Randomisation of the spot layout facilitates correction of systematic biases by normalisation. Conclusion SimArray is intended to help both established researchers and those new to the microarray field to develop microarray designs with randomised spot layouts that are compatible with their specific production environment. SimArray is an open-source program and is available from . PMID:16509966

  19. Global analysis of tomato gene expression during potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling

    USDA-ARS?s Scientific Manuscript database

    Viroids are the smallest known agents of infectious disease – small, single-stranded, highly structured, circular RNAs that lack detectable messenger RNA activity yet are able to replicate autonomously in susceptible plant species. Potato spindle tuber viroid (PSTVd) infection in tomato is accompan...

  20. A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system

    PubMed Central

    Zeier, Zane; Aguilar, J Santiago; Lopez, Cecilia M; Devi-Rao, G B; Watson, Zachary L; Baker, Henry V; Wagner, Edward K; Bloom, David C

    2010-01-01

    Herpes simplex virus type 1 (HSV-1)–based vectors readily transduce neurons and have a large payload capacity, making them particularly amenable to gene therapy applications within the central nervous system (CNS). Because aspects of the host responses to HSV-1 vectors in the CNS are largely unknown, we compared the host response of a nonreplicating HSV-1 vector to that of a replication-competent HSV-1 virus using microarray analysis. In parallel, HSV-1 gene expression was tracked using HSV-specific oligonucleotide-based arrays in order to correlate viral gene expression with observed changes in host response. Microarray analysis was performed following stereotactic injection into the right hippocampal formation of mice with either a replication-competent HSV-1 or a nonreplicating recombinant of HSV-1, lacking the ICP4 gene (ICP4−). Genes that demonstrated a significant change (P < .001) in expression in response to the replicating HSV-1 outnumbered those that changed in response to mock or nonreplicating vector by approximately 3-fold. Pathway analysis revealed that both the replicating and nonreplicating vectors induced robust antigen presentation but only mild interferon, chemokine, and cytokine signaling responses. The ICP4− vector was restricted in several of the Toll-like receptor-signaling pathways, indicating reduced stimulation of the innate immune response. These array analyses suggest that although the nonreplicating vector induces detectable activation of immune response pathways, the number and magnitude of the induced response is dramatically restricted compared to the replicating vector, and with the exception of antigen presentation, host gene expression induced by the non-replicating vector largely resembles mock infection. PMID:20095947

  1. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells.

    PubMed

    Guo, J; Wang, Q; Wai, D; Zhang, Q Z; Shi, S H; Le, A D; Shi, S T; Yen, S L-K

    2015-04-01

    This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830 nm) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, and 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF-beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF-beta protein arrays suggested switching from canonical to non-canonical TGF-beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and MMP 10 followed IR energy density dose-response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell type-specific response is possible. These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Calibration artefacts in radio interferometry - II. Ghost patterns for irregular arrays

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.; Grobler, T. L.; Smirnov, O. M.

    2016-04-01

    Calibration artefacts, like the self-calibration bias, usually emerge when data are calibrated using an incomplete sky model. In the first paper of this series, in which we analysed calibration artefacts in data from the Westerbork Synthesis Radio Telescope, we showed that these artefacts take the form of spurious positive and negative sources, which we refer to as ghosts or ghost sources. We also developed a mathematical framework with which we could predict the ghost pattern of an east-west interferometer for a simple two-source test case. In this paper, we extend our analysis to more general array layouts. This provides us with a useful method for the analysis of ghosts that we refer to as extrapolation. Combining extrapolation with a perturbation analysis, we are able to (1) analyse the ghost pattern for a two-source test case with one modelled and one unmodelled source for an arbitrary array layout, (2) explain why some ghosts are brighter than others, (3) define a taxonomy allowing us to classify the different ghosts, (4) derive closed form expressions for the fluxes and positions of the brightest ghosts, and (5) explain the strange two-peak structure with which some ghosts manifest during imaging. We illustrate our mathematical predictions using simulations of the KAT-7 (seven-dish Karoo Array Telescope) array. These results show the explanatory power of our mathematical model. The insights gained in this paper provide a solid foundation to study calibration artefacts in arbitrary, I.e. more complicated than the two-source example discussed here, incomplete sky models or full synthesis observations including direction-dependent effects.

  3. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome.

    PubMed

    Cerny, Katheryn L; Ribeiro, Rosanne A C; Jeoung, Myoungkun; Ko, CheMyong; Bridges, Phillip J

    2016-01-01

    Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430-2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG's, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG's in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1-regulated gene expression and related bioinformatic analysis is presented to increase our understanding of how estradiol/ESR1 affects function of the oviduct, and to identify genes that may be proven as important regulators of fertility in the future.

  4. Impact of S100A8 expression on kidney cancer progression and molecular docking studies for kidney cancer therapeutics.

    PubMed

    Mirza, Zeenat; Schulten, Hans-Juergen; Farsi, Hasan Ma; Al-Maghrabi, Jaudah A; Gari, Mamdooh A; Chaudhary, Adeel Ga; Abuzenadah, Adel M; Al-Qahtani, Mohammed H; Karim, Sajjad

    2014-04-01

    The proinflammatory protein S100A8, which is expressed in myeloid cells under physiological conditions, is strongly expressed in human cancer tissues. Its role in tumor cell differentiation and tumor progression is largely unclear and virtually unstudied in kidney cancer. In the present study, we investigated whether S100A8 could be a potential anticancer drug target and therapeutic biomarker for kidney cancer, and the underlying molecular mechanisms by exploiting its interaction profile with drugs. Microarray-based transcriptomics experiments using Affymetrix HuGene 1.0 ST arrays were applied to renal cell carcinoma specimens from Saudi patients for identification of significant genes associated with kidney cancer. In addition, we retrieved selected expression data from the National Center for Biotechnology Information Gene Expression Omnibus database for comparative analysis and confirmation of S100A8 expression. Ingenuity Pathway Analysis (IPA) was used to elucidate significant molecular networks and pathways associated with kidney cancer. The probable polar and non-polar interactions of possible S100A8 inhibitors (aspirin, celecoxib, dexamethasone and diclofenac) were examined by performing molecular docking and binding free energy calculations. Detailed analysis of bound structures and their binding free energies was carried out for S100A8, its known partner (S100A9), and S100A8-S100A9 complex (calprotectin). In our microarray experiments, we identified 1,335 significantly differentially expressed genes, including S100A8, in kidney cancer using a cut-off of p<0.05 and fold-change of 2. Functional analysis of kidney cancer-associated genes showed overexpression of genes involved in cell-cycle progression, DNA repair, cell death, tumor morphology and tissue development. Pathway analysis showed significant disruption of pathways of atherosclerosis signaling, liver X receptor/retinoid X receptor (LXR/RXR) activation, notch signaling, and interleukin-12 (IL-12) signaling. We identified S100A8 as a prospective biomarker for kidney cancer and in silico analysis showed that aspirin, celecoxib, dexamethasone and diclofenac binds to S100A8 and may inhibit downstream signaling in kidney cancer. The present study provides an initial overview of differentially expressed genes in kidney cancer of Saudi Arabian patients using whole-transcript, high-density expression arrays. Our analysis suggests distinct transcriptomic signatures, with significantly high levels of S100A8, and underlying molecular mechanisms contributing to kidney cancer progression. Our docking-based findings shed insight into S100A8 protein as an attractive anticancer target for therapeutic intervention in kidney cancer. To our knowledge, this is the first structure-based docking study for the selected protein targets using the chosen ligands.

  5. Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1996-01-01

    The integral expression for the mutual admittance between circular apertures in a planar array is evaluated in closed form. Very good accuracy is realized when compared with values that were obtained by numerical integration. Utilization of this closed-form expression, for all element pairs that are separated by more than one element spacing, yields extremely accurate results and significantly reduces the computation time that is required to analyze the performance of a large electronically scanning antenna array.

  6. Array data extractor (ADE): a LabVIEW program to extract and merge gene array data

    PubMed Central

    2013-01-01

    Background Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Findings Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Conclusions Although existing software allows for complex data analyses, the LabVIEW based program presented here, “Array Data Extractor (ADE)”, provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge. PMID:24289243

  7. Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation

    NASA Astrophysics Data System (ADS)

    Filik, T.; Tuncer, T. E.

    2009-10-01

    In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropic V angle for different array types. The DOA performance of the UI V array is compared with the uniform circular array (UCA) for correlated signals and in case of mutual coupling between array elements. The modeling error for the sensor positions is also investigated. It is shown that V array and circular array have similar robustness for the position errors while the performance of UI V array is better than the UCA for correlated source signals and when there is mutual coupling. Nonuniform V-shaped isotropic arrays are investigated which allow good DOA performance with limited number of sensors. Furthermore, a new design method for the directional V-shaped arrays is proposed. This method is based on the Cramer-Rao Bound for joint estimation where the angle coupling effect between the azimuth and elevation DOA angles is taken into account. The design method finds an optimum angle between the linear subarrays of the V array. The proposed method can be used to obtain directional arrays with significantly better DOA performance.

  8. Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response

    PubMed Central

    2009-01-01

    Background Soybeans grown in the upper Midwestern United States often suffer from iron deficiency chlorosis, which results in yield loss at the end of the season. To better understand the effect of iron availability on soybean yield, we identified genes in two near isogenic lines with changes in expression patterns when plants were grown in iron sufficient and iron deficient conditions. Results Transcriptional profiles of soybean (Glycine max, L. Merr) near isogenic lines Clark (PI548553, iron efficient) and IsoClark (PI547430, iron inefficient) grown under Fe-sufficient and Fe-limited conditions were analyzed and compared using the Affymetrix® GeneChip® Soybean Genome Array. There were 835 candidate genes in the Clark (PI548553) genotype and 200 candidate genes in the IsoClark (PI547430) genotype putatively involved in soybean's iron stress response. Of these candidate genes, fifty-eight genes in the Clark genotype were identified with a genetic location within known iron efficiency QTL and 21 in the IsoClark genotype. The arrays also identified 170 single feature polymorphisms (SFPs) specific to either Clark or IsoClark. A sliding window analysis of the microarray data and the 7X genome assembly coupled with an iterative model of the data showed the candidate genes are clustered in the genome. An analysis of 5' untranslated regions in the promoter of candidate genes identified 11 conserved motifs in 248 differentially expressed genes, all from the Clark genotype, representing 129 clusters identified earlier, confirming the cluster analysis results. Conclusion These analyses have identified the first genes with expression patterns that are affected by iron stress and are located within QTL specific to iron deficiency stress. The genetic location and promoter motif analysis results support the hypothesis that the differentially expressed genes are co-regulated. The combined results of all analyses lead us to postulate iron inefficiency in soybean is a result of a mutation in a transcription factor(s), which controls the expression of genes required in inducing an iron stress response. PMID:19678937

  9. Molecular Profile of Peripheral Blood Mononuclear Cells from Patients with Rheumatoid Arthritis

    PubMed Central

    Edwards, Christopher J; Feldman, Jeffrey L; Beech, Jonathan; Shields, Kathleen M; Stover, Jennifer A; Trepicchio, William L; Larsen, Glenn; Foxwell, Brian MJ; Brennan, Fionula M; Feldmann, Marc; Pittman, Debra D

    2007-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory arthritis. Currently, diagnosis of RA may take several weeks, and factors used to predict a poor prognosis are not always reliable. Gene expression in RA may consist of a unique signature. Gene expression analysis has been applied to synovial tissue to define molecularly distinct forms of RA; however, expression analysis of tissue taken from a synovial joint is invasive and clinically impractical. Recent studies have demonstrated that unique gene expression changes can be identified in peripheral blood mononuclear cells (PBMCs) from patients with cancer, multiple sclerosis, and lupus. To identify RA disease-related genes, we performed a global gene expression analysis. RNA from PBMCs of 9 RA patients and 13 normal volunteers was analyzed on an oligonucleotide array. Compared with normal PBMCs, 330 transcripts were differentially expressed in RA. The differentially regulated genes belong to diverse functional classes and include genes involved in calcium binding, chaperones, cytokines, transcription, translation, signal transduction, extracellular matrix, integral to plasma membrane, integral to intracellular membrane, mitochondrial, ribosomal, structural, enzymes, and proteases. A k-nearest neighbor analysis identified 29 transcripts that were preferentially expressed in RA. Ten genes with increased expression in RA PBMCs compared with controls mapped to a RA susceptibility locus, 6p21.3. These results suggest that analysis of RA PBMCs at the molecular level may provide a set of candidate genes that could yield an easily accessible gene signature to aid in early diagnosis and treatment. PMID:17515956

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, Poupak; Chiu, Sally; Bowlus, Christopher L.

    Obesity is a complex disease. To date, over 100 chromosomal loci for body weight, body fat, regional white adipose tissue weight, and other obesity-related traits have been identified in humans and in animal models. For most loci, the underlying genes are not yet identified; some of these chromosomal loci will be alleles of known obesity genes, whereas many will represent alleles of unknown genes. Microarray analysis allows simultaneous multiple gene and pathway discovery. cDNA and oligonucleotide arrays are commonly used to identify differentially expressed genes by surveys of large numbers of known and unnamed genes. Two papers previously identified genesmore » differentially expressed in adipose tissue of mouse models of obesity and diabetes by analysis of hybridization to Affymetrix oligonucleotide chips.« less

  11. Gene array analysis reveals a common Runx transcriptional program controlling cell adhesion and survival

    PubMed Central

    Wotton, Sandy; Terry, Anne; Kilbey, Anna; Jenkins, Alma; Herzyk, Pawel; Cameron, Ewan; Neil, James C.

    2008-01-01

    The Runx genes play divergent roles in development and cancer, where they can act either as oncogenes or tumour suppressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias towards genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins, reflecting the marked effects of Runx on cell adhesion. Furthermore, in silico prediction of resistance to glucocorticoid growth inhibition was confirmed in fibroblasts and lymphoid cells expressing ectopic Runx. The effects of fibroblast expression of common RUNX1 fusion oncoproteins (RUNX1-ETO, TEL-RUNX1, CBFB-MYH11) were also tested. While two direct Runx activation target genes were repressed (Ncam1, Rgc32), the fusion proteins appeared to disrupt regulation of down-regulated targets (Cebpd, Id2, Rgs2) rather than impose constitutive repression. These results elucidate the oncogenic potential of the Runx family and reveal novel targets for therapeutic inhibition. PMID:18560354

  12. Defining Genomic Changes in Triple-Negative Breast Cancer in Women of African Descent

    DTIC Science & Technology

    2012-06-01

    Triple negative breast cancer • Ethnic disparities • Breast cancer amongst African Americans and Africans • Gene expression profiling • Array... negative cases seen in both African and African - American breast cancer cases. Gene Expression Array Studies The 31 triple negative Kijabe... African - American Adjacent Normal Breast Tissue PI: Pegram &

  13. THE USE OF GENE ARRAYS TO MEASURE CHANGES IN GENE EXPRESSION PATTERNS IN FISH EXPOSED TO COMPOUNDS THAT MIMIC ESTROGEN

    EPA Science Inventory

    We have developed estrogen-sensitive gene arrays to measure changes in gene expression in sheepshead minnows and largemouth bass exposed to anthropogenic chemicals that mimic estrogen. The in vivo exposures, which realize the full physiological response in fish, result in changes...

  14. DEVELOPMENT OF A 950-GENE DNA ARRAY FOR EXAMINING GENE EXPRESSION PATTERNS IN MOUSE TESTIS

    EPA Science Inventory

    Development of a 950-gene DNA array for examining gene expression patterns in mouse testis.

    Rockett JC, Christopher Luft J, Brian Garges J, Krawetz SA, Hughes MR, Hee Kirn K, Oudes AJ, Dix DJ.

    Reproductive Toxicology Division, National Health and Environmental Effec...

  15. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method).

    PubMed

    He, M; Taussig, M J

    2001-08-01

    We describe a format for production of protein arrays termed 'protein in situ array' (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface to which the tagged protein adheres as soon as it is synthesised. Because proteins generated by cell-free synthesis are usually soluble and functional, this method can overcome problems of insolubility or degradation associated with bacterial expression of recombinant proteins. Moreover, the use of PCR-generated DNA enables rapid production of proteins or domains based on genome information alone and will be particularly useful where cloned material is not available. Here we show that human single-chain antibody fragments (three domain, V(H)/K form) and an enzyme (luciferase) can be functionally arrayed by the PISA method.

  16. Analysis of magnetic-dipole transitions in tungsten plasmas using detailed and configuration-average descriptions

    NASA Astrophysics Data System (ADS)

    Na, Xieyu; Poirier, Michel

    2017-06-01

    This paper is devoted to the analysis of transition arrays of magnetic-dipole (M1) type in highly charged ions. Such transitions play a significant role in highly ionized plasmas, for instance in the tungsten plasma present in tokamak devices. Using formulas recently published and their implementation in the Flexible Atomic Code for M1-transition array shifts and widths, absorption and emission spectra arising from transitions inside the 3*n complex of highly-charged tungsten ions are analyzed. A comparison of magnetic-dipole transitions with electric-dipole (E1) transitions shows that, while the latter are better described by transition array formulas, M1 absorption and emission structures reveal some insufficiency of these formulas. It is demonstrated that the detailed spectra account for significantly richer structures than those predicted by the transition array formalism. This is due to the fact that M1 transitions may occur between levels inside the same relativistic configuration, while such inner configuration transitions are not accounted for by the currently available averaging expression. In addition, because of configuration interaction, transition processes involving more than one electron jump, such as 3p1/23d5/2 → 3p3/23d3/2, are possible but not accounted for in the transition array formulas. These missing transitions are collected in pseudo-arrays using a post-processing method described in this paper. The relative influence of inner- and inter-configuration transitions is carefully analyzed in cases of tungsten ions with net charge around 50. The need for an additional theoretical development is emphasized.

  17. LDL oxidation by THP-1 monocytes: implication of HNP-1, SgIII and DMT-1.

    PubMed

    He, Chunyan; Huang, Rui; Du, Fen; Zheng, Fang; Wei, Lei; Wu, Junzhu

    2009-04-01

    Oxidized low-density lipoprotein (oxLDL) plays an important role in the pathogenesis of atherosclerosis. However, the mechanisms of the initiation and progression of LDL oxidation by cells are still unknown. We investigated the molecular mechanism underlying THP-1 cell-mediated LDL oxidation. LDL oxidation was monitored at 234 nm by detecting the formation of conjugated dienes. cDNA array analysis was applied to profile changes in gene expression of human THP-1 monocytes in response to LDL stimulation. The mRNA and protein levels of secretogranin III (SgIII), divalent metal transporter (DMT-1) and human alpha-defensin 1 (HNP-1) were determined by real-time RT-PCR and Western blotting respectively. Eukaryotic expression vectors containing full-length cDNA sequence of HNP-1 (pEGFP-C1/HNP-1) SgIII (pEGFP-C1/SgIII) or DMT-1 (pEGFP-C1/DMT-1) were constructed and transfected to THP-1 cells. The effects of overexpression of these three genes on THP-1 cell-mediated LDL oxidation were observed. LDL oxidation was most pronounced after LDL was incubated with THP-1 cells for 9 h. 1651 genes in total were detected by cDNA array analysis in THP-1 cells with or without LDL treatment for 9 h. Thirteen genes with >2-fold relative expression difference were identified, including nine genes whose expression was up-regulated and four genes whose expression was down-regulated. Among the up-regulated genes, SgIII, DMT-1 and HNP-1 were reported to be associated with atherosclerosis. The increased mRNA expressions of these three genes were confirmed by real-time RT-PCR. Western blotting analysis demonstrated that protein expressions of SgIII and DMT-1 were also enhanced in THP-1 cells in response to LDL. Furthermore, transient overexpression of HNP-1, SgIII or DMT-1 in THP-1 cells significantly increased THP-1 cell-mediated LDL oxidation. Our data suggest that SgIII, DMT-1 and HNP-1 are implicated in cell-mediated LDL oxidation.

  18. Analysis of gene expression profiles in tympanic membrane following perforation using PCR Array in rats--preliminary investigation.

    PubMed

    Hassmann-Poznańska, Elżbieta; Taranta, Andrzej; Bialuk, Izabela; Poznańska, Maria; Zajączkiewicz, Hanna; Winnicka, Maria Małgorzata

    2013-10-01

    The goal of this work was to identify genes, known to be involved in the skin wound healing, that express differentially in the healthy and injured tympanic membrane (TM), and designate the molecules potentially beneficial for treatment of TM perforation. The molecular mechanisms controlling the course of TM regeneration are far from being elucidated. Twenty rats had their tympanic membranes perforated, while four served as a control. Animals were sacrificed on either days 1, 2, 3, 5 and 10 post injury, and TMs were immediately dissected and frozen in liquid nitrogen. Total TM RNA was isolated and reversely transcribed. qPCR was performed using Rat Wound Healing RT(2) Profiler PCR Array (QIAGEN) containing primers for 84 genes. Statistically significant changes in the expression of 42 genes were found in various stages of TM healing. The increased expression of genes taking part in the inflammatory reaction (interleukin 6, granulocyte and macrophage chemotactic proteins) was observed from day 2. The expression of several genes of extracellular matrix components and their remodeling enzymes was also changed. Among growth factor genes: Vegfa, Igf1 and Hbegf showed increased expression at the beginning of the healing process, while Hgf expression was highest on day 3. Several changes in the expression of genes involved in remodeling of extracellular matrix point to important role of connective tissue in TM healing. The molecules accelerating this process, like HbEGF and HGF, seem to be good candidates for further evaluation of their possible use in clinical treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  20. Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers

    PubMed Central

    2011-01-01

    Background One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. Methods The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. Results We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. Conclusions These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development. PMID:21329510

  1. An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube format.

    PubMed

    Schüler, Susann; Wenz, Ingrid; Wiederanders, B; Slickers, P; Ehricht, R

    2006-06-12

    Recent developments in DNA microarray technology led to a variety of open and closed devices and systems including high and low density microarrays for high-throughput screening applications as well as microarrays of lower density for specific diagnostic purposes. Beside predefined microarrays for specific applications manufacturers offer the production of custom-designed microarrays adapted to customers' wishes. Array based assays demand complex procedures including several steps for sample preparation (RNA extraction, amplification and sample labelling), hybridization and detection, thus leading to a high variability between several approaches and resulting in the necessity of extensive standardization and normalization procedures. In the present work a custom designed human proteinase DNA microarray of lower density in ArrayTube format was established. This highly economic open platform only requires standard laboratory equipment and allows the study of the molecular regulation of cell behaviour by proteinases. We established a procedure for sample preparation and hybridization and verified the array based gene expression profile by quantitative real-time PCR (QRT-PCR). Moreover, we compared the results with the well established Affymetrix microarray. By application of standard labelling procedures with e.g. Klenow fragment exo-, single primer amplification (SPA) or In Vitro Transcription (IVT) we noticed a loss of signal conservation for some genes. To overcome this problem we developed a protocol in accordance with the SPA protocol, in which we included target specific primers designed individually for each spotted oligomer. Here we present a complete array based assay in which only the specific transcripts of interest are amplified in parallel and in a linear manner. The array represents a proof of principle which can be adapted to other species as well. As the designed protocol for amplifying mRNA starts from as little as 100 ng total RNA, it presents an alternative method for detecting even low expressed genes by microarray experiments in a highly reproducible and sensitive manner. Preservation of signal integrity is demonstrated out by QRT-PCR measurements. The little amounts of total RNA necessary for the analyses make this method applicable for investigations with limited material as in clinical samples from, for example, organ or tumour biopsies. Those are arguments in favour of the high potential of our assay compared to established procedures for amplification within the field of diagnostic expression profiling. Nevertheless, the screening character of microarray data must be mentioned, and independent methods should verify the results.

  2. Pupil geometry and pupil re-imaging in telescope arrays

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    1990-01-01

    This paper considers the issues of lateral and longitudinal pupil geometry in ground-based telescope arrays, such as IOTA. In particular, it is considered whether or not pupil re-imaging is required before beam combination. By considering the paths of rays through the system, an expression is derived for the optical path errors in the combined wavefront as a function of array dimensions, telescope magnification factor, viewing angle, and field-of-view. By examining this expression for the two cases of pupil-plane and image-plane combination, operational limits can be found for any array. As a particular example, it is shown that for IOTA no pupil re-imaging optics will be needed.

  3. Inhibition of IGF-1-Mediated Cellular Migration and Invasion by Migracin A in Ovarian Clear Cell Carcinoma Cells.

    PubMed

    Ukaji, Tamami; Lin, Yinzhi; Banno, Kouji; Okada, Shoshiro; Umezawa, Kazuo

    2015-01-01

    Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.

  4. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    PubMed

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P < 0.05). We concentrated on the 'peroxisome proliferator-activated receptor (PPAR) signaling pathway' (P = 3.19 × 10(-11)), because it is closely associated with the regulation of glucose and lipid profiles. In the PPAR signaling pathway, seven genes (PPARγ, Dbi, Acsl3, Lpl, Me1, Scd1, Fads2) in the UCP2-/- mice were significantly upregulated. The present study used gene arrays to show that activity of the PPAR signaling pathway involved in the improvement of glucose and lipid metabolism in the liver of UCP2-deficient mice on a long-term high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  5. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  6. Therapeutic Effects of Tangshen Formula on Diabetic Nephropathy in db/db Mice Using Cytokine Antibody Array

    PubMed Central

    Huang, Chun Lian; Wang, Yi Ming; Li, Ning; Liang, Qiong Lin

    2018-01-01

    Objective Cytokines are essential promoters in the pathogenesis of diabetic nephropathy (DN) in type 2 diabetes. The following study investigates the adjustment mechanism of Tangshen formula (TSF) on cytokine expressions in db/db mice (DN animal model). Materials and Methods Db/db mice were randomly divided into three groups. The treated groups were orally administered with TSF and losartan for 12 weeks. Biochemical and histological examinations were determined at 8 and 12 weeks posttreatment, while the cytokine antibody array analysis was applied to analyze the expression of 144 cytokines in kidney tissues at the end of the 12th week posttreatment. Results TSF significantly reduced urinary albumin excretion and the levels of blood glucose, cholesterol, triglyceride, creatinine, and urea nitrogen. Furthermore, a significant decrease in glomerulus and mesangial area, as well as the downregulation of 24 cytokines and upregulated expressions of 5 cytokines, was found in the TSF-treated mice. Conclusions The present study reveals that TSF could ameliorate the metabolic anomalies and renal injury in db/db mice. One of the important mechanisms for treatment of DN using the treatment of TSF is the control of the JAK/STAT signaling pathway via regulation of IL-2, IL-6, IL-13, Il-15, and IFN-γ expression. PMID:29682583

  7. Effects of soluble and particulate Cr(VI) on genome-wide DNA methylation in human B lymphoblastoid cells.

    PubMed

    Lou, Jianlin; Wang, Yu; Chen, Junqiang; Ju, Li; Yu, Min; Jiang, Zhaoqiang; Feng, Lingfang; Jin, Lingzhi; Zhang, Xing

    2015-10-01

    Several previous studies highlighted the potential epigenetic effects of Cr(VI), especially DNA methylation. However, few studies have compared the effects of Cr(VI) on DNA methylation profiles between soluble and particulate chromate in vitro. Accordingly, Illumina Infinium Human Methylation 450K BeadChip array was used to analyze DNA methylation profiles of human B lymphoblastoid cells exposed to potassium dichromate or lead chromate, and the cell viability was also studied. Array based DNA methylation analysis showed that the impacts of Cr(VI) on DNA methylation were limited, only about 40 differentially methylated CpG sites, with an overlap of 15CpG sites, were induced by both potassium dichromate and lead chromate. The results of mRNA expression showed that after Cr(VI) treatment, mRNA expression changes of four genes (TBL1Y, FZD5, IKZF2, and KIAA1949) were consistent with their DNA methylation alteration, but DNA methylation changes of other six genes did not correlate with mRNA expression. In conclusion, both of soluble and particulate Cr(VI) could induce a small amount of differentially methylated sites in human B lymphoblastoid cells, and the correlations between DNA methylation changes and mRNA expression varied between different genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Toll like receptors gene expression of human keratinocytes cultured of severe burn injury.

    PubMed

    Cornick, Sarita Mac; Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Cezillo, Marcus V B; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    To evaluate the expression profile of genes related to Toll Like Receptors (TLR) pathways of human Primary Epidermal keratinocytes of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific TLR pathways PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 21% of these genes were differentially expressed, of which 100% were repressed or hyporegulated. Among these, the following genes (fold decrease): HSPA1A (-58), HRAS (-36), MAP2K3 (-23), TOLLIP (-23), RELA (-18), FOS (-16), and TLR1 (-6.0). This study contributes to the understanding of the molecular mechanisms related to TLR pathways and underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  9. Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury.

    PubMed

    Bijangi-Vishehsaraei, Khadijeh; Blum, Kevin; Zhang, Hongji; Safa, Ahmad R; Halum, Stacey L

    2016-03-01

    The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries. © The Author(s) 2015.

  10. A Customized Quantitative PCR MicroRNA Panel Provides a Technically Robust Context for Studying Neurodegenerative Disease Biomarkers and Indicates a High Correlation Between Cerebrospinal Fluid and Choroid Plexus MicroRNA Expression.

    PubMed

    Wang, Wang-Xia; Fardo, David W; Jicha, Gregory A; Nelson, Peter T

    2017-12-01

    MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized CSF-miRNA low-density array (TLDA) panel that contains 47 targets: miRNAs shown previously to be relevant to neurodegenerative disease, miRNAs that are abundant in CSF, data normalizers, and controls for potential blood and tissue contamination. The advantages of using this CSF-miRNA TLDA panel include specificity, sensitivity, fast processing and data analysis, and cost effectiveness. We optimized technical parameters for this assay. Further, the TLDA panel can be tailored to other specific purposes. We tested whether the profile of miRNAs in the CSF resembled miRNAs isolated from brain tissue (hippocampus or cerebellum), blood, or the choroid plexus. We found that the CSF miRNA expression profile most closely resembles that of choroid plexus tissue, underscoring the potential importance of choroid plexus-derived signaling through CSF miRNAs. In summary, the TLDA miRNA array panel will enable evaluation and discovery of CSF miRNA biomarkers and can potentially be utilized in clinical diagnosis and disease stage monitoring.

  11. Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway

    PubMed Central

    2011-01-01

    Background Sporadic amyotrophic lateral sclerosis (sALS) is a motor neuron disease with poorly understood etiology. Results of gene expression profiling studies of whole blood from ALS patients have not been validated and are difficult to relate to ALS pathogenesis because gene expression profiles depend on the relative abundance of the different cell types present in whole blood. We conducted microarray analyses using Agilent Human Whole Genome 4 × 44k Arrays on a more homogeneous cell population, namely purified peripheral blood lymphocytes (PBLs), from ALS patients and healthy controls to identify molecular signatures possibly relevant to ALS pathogenesis. Methods Differentially expressed genes were determined by LIMMA (Linear Models for MicroArray) and SAM (Significance Analysis of Microarrays) analyses. The SAFE (Significance Analysis of Function and Expression) procedure was used to identify molecular pathway perturbations. Proteasome inhibition assays were conducted on cultured peripheral blood mononuclear cells (PBMCs) from ALS patients to confirm alteration of the Ubiquitin/Proteasome System (UPS). Results For the first time, using SAFE in a global gene ontology analysis (gene set size 5-100), we show significant perturbation of the KEGG (Kyoto Encyclopedia of Genes and Genomes) ALS pathway of motor neuron degeneration in PBLs from ALS patients. This was the only KEGG disease pathway significantly upregulated among 25, and contributing genes, including SOD1, represented 54% of the encoded proteins or protein complexes of the KEGG ALS pathway. Further SAFE analysis, including gene set sizes >100, showed that only neurodegenerative diseases (4 out of 34 disease pathways) including ALS were significantly upregulated. Changes in UBR2 expression correlated inversely with time since onset of disease and directly with ALSFRS-R, implying that UBR2 was increased early in the course of ALS. Cultured PBMCs from ALS patients accumulated more ubiquitinated proteins than PBMCs from healthy controls in a serum-dependent manner confirming changes in this pathway. Conclusions Our study indicates that PBLs from sALS patients are strong responders to systemic signals or local signals acquired by cell trafficking, representing changes in gene expression similar to those present in brain and spinal cord of sALS patients. PBLs may provide a useful means to study ALS pathogenesis. PMID:22027401

  12. Changes in expression of cytokines in polyhexamethylene guanidine-induced lung fibrosis in mice: Comparison of bleomycin-induced lung fibrosis.

    PubMed

    Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Kyuhong

    2018-01-15

    Inhalation of polyhexamethylene guanidine (PHMG) causes irreversible pulmonary injury, such as pulmonary fibrosis. However, the mechanism underlying PHMG-induced lung injury is unclear. In this study, we compared the difference in time-dependent lung injury between PHMG- and bleomycin (BLM)-treated mice and determined cytokines involved in inducing lung injury by performing cytokine antibody array analysis. Mice were treated once with 1.8mg/kg BLM or 1.2mg/kg PHMG through intratracheal instillation and were sacrificed on days 7 and 28. Bronchoalveolar lavage fluid (BALF) analysis showed that the number of neutrophils was significantly higher in PHMG-treated mice than in BLM-treated mice on day 7. Histopathological analysis showed inflammatory cell infiltration and fibrosis mainly in the terminal bronchioles and alveoli in the lungs of PHMG- and BLM-treated mice. However, continuous macrophage infiltration in the alveolar space and bronchioloalveolar epithelial hyperplasia (BEH) were only observed in PHMG-treated mice. Cytokine antibody array analysis showed that 15 and eight cytokines were upregulated in PHMG- and BLM-treated mice, respectively, on day 7. On day 28, 13 and five cytokines were upregulated in PHMG and BLM-treated mice, respectively. In addition, the expressed cytokines between days 7 and 28 in BLM-treated mice were clearly different, but were similar in PHMG-treated mice. Consequently, between PHMG- and BLM-treated mice, we observed differences in the expression patterns and types of cytokines. These differences are considered to be a result of the inflammatory processes induced by both substances, which may mainly involve macrophage infiltration. Therefore, continuous induction of the inflammatory response by PHMG may play an important role in the development of pulmonary fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Digital analysis of the expression levels of multiple colorectal cancer-related genes by multiplexed digital-PCR coupled with hydrogel bead-array.

    PubMed

    Qi, Zongtai; Ma, Yinjiao; Deng, Lili; Wu, Haiping; Zhou, Guohua; Kajiyama, Tomoharu; Kambara, Hideki

    2011-06-07

    To digitally analyze expression levels of multiple genes in one reaction, we proposed a method termed as 'MDHB' (Multiplexed Digital-PCR coupled with Hydrogel Bead-array). The template for bead-based emulsion PCR (emPCR) was prepared by reverse transcription using sequence-tagged primers. The beads recovered from emPCR were immobilized with hydrogel to form a single-bead layer on a chip, and then decoded by gene-specific probe hybridization and Cy3-dUTP based primer extension reaction. The specificity of probe hybridization was improved by using electrophoresis to remove mismatched probes on the bead's surface. The number of positive beads reflects the abundance of expressed genes; the expression levels of target genes were normalized to a housekeeping gene and expressed as the number ratio of green beads to red beads. The discrimination limit of MDHB is 0.1% (i.e., one target molecule from 1000 background molecules), and the sensitivity of the method is below 100 cells when using the β-actin gene as the detection target. We have successfully employed MDHB to detect the relative expression levels of four colorectal cancer (CRC)-related genes (c-myc, COX-2, MMP7, and DPEP1) in 8 tissue samples and 9 stool samples from CRC patients, giving the detection rates of 100% and 77%, respectively. The results suggest that MDHB could be a potential tool for early non-invasive diagnosis of CRC.

  14. Streamwise evolution of statistical events and the triple correlation in a model wind turbine array

    NASA Astrophysics Data System (ADS)

    Viestenz, Kyle; Cal, Raúl Bayoán

    2013-11-01

    Hot-wire anemometry data, obtained from a wind tunnel experiment containing a 3 × 3 wind turbine array, are used to conditionally average the Reynolds stresses. Nine profiles at the centerline behind the array are analyzed to characterize the turbulent velocity statistics of the wake flow. Quadrant analysis yields statistical events occurring in the wake of the wind farm, where quadrants 2 and 4 produce ejections and sweeps, respectively. A balance between these quadrants is expressed via the ΔSo parameter, which attains a maximum value at the bottom tip and changes sign near the top tip of the rotor. These are then associated to the triple correlation term present in the turbulent kinetic energy equation of the fluctuations. The development of these various quantities is assessed in light of wake remediation, energy transport and possess significance in closure models. National Science Foundation: ECCS-1032647.

  15. Inhibition of inflammatory cytokine-induced response in human islet cells by withaferin A.

    PubMed

    Peng, H; Olsen, G; Tamura, Y; Noguchi, H; Matsumoto, S; Levy, M F; Naziruddin, B

    2010-01-01

    After islet cell transplantation, a substantial mass of islets are lost owing to nonspecific inflammatory reactions. Cytokine exposure before or after transplantation can upregulate expression of proinflammatory genes via the nuclear factor-kappaB signaling pathway, eventually resulting in islet loss. To test the effects of a naturally occurring nuclear factor-kappaB inhibitor, withaferin A, on regulation of inflammatory genes in human islets. Human pancreatic islets were isolated using a modified Ricordi protocol. Purified islets were cultured for 2 days. The effect of withaferin A treatment on islet cell viability was examined using the fluorescein diacetate-propidium iodide dye exclusion test, and on function using a static glucose stimulation assay. Islet cells were treated with a cytokine mixture (50 U/mL of interleukin-1beta, 1000 U/mL of tumor necrosis factor-alpha, and 1000 U/mL of interferon-gamma) for 48 hours with or without withaferin A, 1 microg/mL. Treated islets were used for real-time polymerase chain reaction (PCR) array analysis for expression of inflammatory genes, and expression of other selected genes was analyzed using real-time PCR with single primers. Glucose stimulation and viability assays demonstrated that withaferin A was not toxic to islet cells. Of 84 inflammation-related genes examined using real-time PCR array analysis, 9 were significantly upregulated by cytokine treatment compared with the control group. However, addition of withaferin A to the culture significantly inhibited expression of all genes. Withaferin A significantly inhibits the inflammatory response of islet cells with cytokine exposure. Copyright 2010 Elsevier Inc. All rights reserved.

  16. EPConDB: a web resource for gene expression related to pancreatic development, beta-cell function and diabetes.

    PubMed

    Mazzarelli, Joan M; Brestelli, John; Gorski, Regina K; Liu, Junmin; Manduchi, Elisabetta; Pinney, Deborah F; Schug, Jonathan; White, Peter; Kaestner, Klaus H; Stoeckert, Christian J

    2007-01-01

    EPConDB (http://www.cbil.upenn.edu/EPConDB) is a public web site that supports research in diabetes, pancreatic development and beta-cell function by providing information about genes expressed in cells of the pancreas. EPConDB displays expression profiles for individual genes and information about transcripts, promoter elements and transcription factor binding sites. Gene expression results are obtained from studies examining tissue expression, pancreatic development and growth, differentiation of insulin-producing cells, islet or beta-cell injury, and genetic models of impaired beta-cell function. The expression datasets are derived using different microarray platforms, including the BCBC PancChips and Affymetrix gene expression arrays. Other datasets include semi-quantitative RT-PCR and MPSS expression studies. For selected microarray studies, lists of differentially expressed genes, derived from PaGE analysis, are displayed on the site. EPConDB provides database queries and tools to examine the relationship between a gene, its transcriptional regulation, protein function and expression in pancreatic tissues.

  17. DNA ARRAYS TO MONITOR GENE EXPRESSION IN RAT BLOOD AND UTERUS FOLLOWING 17-BETA-ESTRADIOL EXPOSURE: BIOMONITORING ENVIRONMENTAL EFFECTS USING SURROGATE TISSUES

    EPA Science Inventory

    DNA arrays to monitor gene expression in rat blood and uterus following 17-b-estradiol exposure - biomonitoring environmental effects using surrogate tissues
    John C. Rockett, Robert J. Kavlock, Christy R. Lambright, Louise G. Parks, Judith E. Schmid, Vickie S. Wilson, Carmen W...

  18. Profiling differential gene expression of corals along a transect of waters adjacent to the Bermuda municipal dump.

    PubMed

    Morgan, Michael B; Edge, Sara E; Snell, Terry W

    2005-01-01

    A coral cDNA array containing 32 genes was used to examine the gene expression profiles of coral populations located at four sites that varied with distance from a semi-submerged municipal dump in Castle Harbour, Bermuda (previously identified as a point source of anthropogenic stressors). Genes on the array represent transcripts induced under controlled laboratory conditions to a variety of stressors both natural (temperature, sediment, salinity, darkness) and xenobiotic (heavy metals, pesticides, PAH) in origin. The gene expression profiles produced revealed information about the types of stressors. Consistent with other studies undertaken in Castle Harbour, the coral cDNA array detected responses to heavy metals, sedimentation, as well as oxidative stress.

  19. Assessing differential gene expression with small sample sizes in oligonucleotide arrays using a mean-variance model.

    PubMed

    Hu, Jianhua; Wright, Fred A

    2007-03-01

    The identification of the genes that are differentially expressed in two-sample microarray experiments remains a difficult problem when the number of arrays is very small. We discuss the implications of using ordinary t-statistics and examine other commonly used variants. For oligonucleotide arrays with multiple probes per gene, we introduce a simple model relating the mean and variance of expression, possibly with gene-specific random effects. Parameter estimates from the model have natural shrinkage properties that guard against inappropriately small variance estimates, and the model is used to obtain a differential expression statistic. A limiting value to the positive false discovery rate (pFDR) for ordinary t-tests provides motivation for our use of the data structure to improve variance estimates. Our approach performs well compared to other proposed approaches in terms of the false discovery rate.

  20. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    PubMed

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  1. Data-adaptive test statistics for microarray data.

    PubMed

    Mukherjee, Sach; Roberts, Stephen J; van der Laan, Mark J

    2005-09-01

    An important task in microarray data analysis is the selection of genes that are differentially expressed between different tissue samples, such as healthy and diseased. However, microarray data contain an enormous number of dimensions (genes) and very few samples (arrays), a mismatch which poses fundamental statistical problems for the selection process that have defied easy resolution. In this paper, we present a novel approach to the selection of differentially expressed genes in which test statistics are learned from data using a simple notion of reproducibility in selection results as the learning criterion. Reproducibility, as we define it, can be computed without any knowledge of the 'ground-truth', but takes advantage of certain properties of microarray data to provide an asymptotically valid guide to expected loss under the true data-generating distribution. We are therefore able to indirectly minimize expected loss, and obtain results substantially more robust than conventional methods. We apply our method to simulated and oligonucleotide array data. By request to the corresponding author.

  2. Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer

    NASA Astrophysics Data System (ADS)

    Petersson, Linn; Berthet Duroure, Nathalie; Auger, Angèle; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Ait Ikhlef, Ali; Wingren, Christer

    2014-07-01

    Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm-2) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, BioplumeTM—consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um2, Ø 10 μm) at a 7-125-times increased spot density (250 000 spots cm-2), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined.

  3. Channel capacity of an array system for Gaussian channels with applications to combining and noise cancellation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Vilnrotter, V.

    1996-01-01

    A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.

  4. Channel Capacity of an Array System for Gaussian Channels With Applications to Combining and Noise Cancellation

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Vilnrotter, V.

    1996-01-01

    A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.

  5. Correction of Spatial Bias in Oligonucleotide Array Data

    PubMed Central

    Lemieux, Sébastien

    2013-01-01

    Background. Oligonucleotide microarrays allow for high-throughput gene expression profiling assays. The technology relies on the fundamental assumption that observed hybridization signal intensities (HSIs) for each intended target, on average, correlate with their target's true concentration in the sample. However, systematic, nonbiological variation from several sources undermines this hypothesis. Background hybridization signal has been previously identified as one such important source, one manifestation of which appears in the form of spatial autocorrelation. Results. We propose an algorithm, pyn, for the elimination of spatial autocorrelation in HSIs, exploiting the duality of desirable mutual information shared by probes in a common probe set and undesirable mutual information shared by spatially proximate probes. We show that this correction procedure reduces spatial autocorrelation in HSIs; increases HSI reproducibility across replicate arrays; increases differentially expressed gene detection power; and performs better than previously published methods. Conclusions. The proposed algorithm increases both precision and accuracy, while requiring virtually no changes to users' current analysis pipelines: the correction consists merely of a transformation of raw HSIs (e.g., CEL files for Affymetrix arrays). A free, open-source implementation is provided as an R package, compatible with standard Bioconductor tools. The approach may also be tailored to other platform types and other sources of bias. PMID:23573083

  6. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development.

    PubMed

    Tran, Frances; Penniket, Carolyn; Patel, Rohan V; Provart, Nicholas J; Laroche, André; Rowland, Owen; Robert, Laurian S

    2013-06-01

    Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser. © 2013 Her Majesty the Queen in Right of Canada as represented by the Minister of Agriculture and Agri-Food Canada.

  7. Response of Human Skin to Aesthetic Scarification

    PubMed Central

    Gabriel, Vincent A.; McClellan, Elizabeth A.; Scheuermann, Richard H.

    2014-01-01

    This study was undertaken to investigate changes in RNA expression in previously healthy adult human skin following thermal injury induced by contact with hot metal that was undertaken as part of aesthetic scarification, a body modification practice. Subjects were recruited to have pre-injury skin and serial wound biopsies performed. 4 mm punch biopsies were taken prior to branding and 1 hour, 1 week, and 1, 2 and 3 months post injury. RNA was extracted and quality assured prior to the use of a whole-genome based bead array platform to describe expression changes in the samples using the pre-injury skin as a comparator. Analysis of the array data was performed using k-means clustering and a hypergeometric probability distribution without replacement and corrections for multiple comparisons were done. Confirmatory q-PCR was performed. Using a k of 10, several clusters of genes were shown to co-cluster together based on Gene Ontology classification with probabilities unlikely to occur by chance alone. OF particular interest were clusters relating to cell cycle, proteinaceous extracellular matrix and keratinization. Given the consistent expression changes at one week following injury in the cell cycle cluster, there is an opportunity to intervene early following burn injury to influence scar development. PMID:24582755

  8. University of Texas Southwestern Medical Center: Functional Signature Ontology Tool: Triplicate Measurements of Reporter Gene Expression in Response to Individual Genetic and Chemical Perturbations in HCT116 Cells | Office of Cancer Genomics

    Cancer.gov

    The goal of this project is to use an eight-gene expression profile to define functional signatures for small molecules and natural products with heretofore undefined mechanism of action. Two genes in the eight gene set are used as internal controls and do not vary across gene expression array data collected from the public domain. The remaining six genes are found to vary independently across a large collection of publically available gene expression array datasets.  Read the abstract

  9. GATE: software for the analysis and visualization of high-dimensional time series expression data.

    PubMed

    MacArthur, Ben D; Lachmann, Alexander; Lemischka, Ihor R; Ma'ayan, Avi

    2010-01-01

    We present Grid Analysis of Time series Expression (GATE), an integrated computational software platform for the analysis and visualization of high-dimensional biomolecular time series. GATE uses a correlation-based clustering algorithm to arrange molecular time series on a two-dimensional hexagonal array and dynamically colors individual hexagons according to the expression level of the molecular component to which they are assigned, to create animated movies of systems-level molecular regulatory dynamics. In order to infer potential regulatory control mechanisms from patterns of correlation, GATE also allows interactive interroga-tion of movies against a wide variety of prior knowledge datasets. GATE movies can be paused and are interactive, allowing users to reconstruct networks and perform functional enrichment analyses. Movies created with GATE can be saved in Flash format and can be inserted directly into PDF manuscript files as interactive figures. GATE is available for download and is free for academic use from http://amp.pharm.mssm.edu/maayan-lab/gate.htm

  10. Gene Expression Profiling of Multiple Leiomyomata Uteri and Matched Normal Tissue from a Single Patient

    PubMed Central

    Dimitrova, Irina K.; Richer, Jennifer K.; Rudolph, Michael C.; Spoelstra, Nicole S.; Reno, Elaine M.; Medina, Theresa M.; Bradford, Andrew P.

    2009-01-01

    Objective To identify differentially expressed genes between fibroid and adjacent normal myometrium in an identical hormonal and genetic background. Design Array analysis of 3 leiomyomata and matched adjacent normal myometrium in a single patient. Setting University of Colorado Hospital. Patient(s) A single female undergoing medically indicated hysterectomy for symptomatic fibroids. Interventions(s) mRNA isolation and microarray analysis, reverse-transcriptase polymerase chain reaction, western blotting and immunohistochemistry. Main Outcome Measure(s) Changes in mRNA and protein levels in leiomyomata and matched normal myometrium. Result(s) Expression of 197 genes was increased and 619 decreased, significantly by at least 2 fold, in leiomyomata relative to normal myometrium. Expression profiles between tumors were similar and normal myometrial samples showed minimal variation. Changes in, and variation of, expression of selected genes were confirmed in additional normal and leiomyoma samples from multiple patients. Conclusion(s) Analysis of multiple tumors from a single patient confirmed changes in expression of genes described in previous, apparently disparate, studies and identified novel targets. Gene expression profiles in leiomyomata are consistent with increased activation of mitogenic pathways and inhibition of apoptosis. Down-regulation of genes implicated in invasion and metastasis, of cancers, was observed in fibroids. This expression pattern may underlie the benign nature of uterine leiomyomata and may aid in the differential diagnosis of leiomyosarcoma. PMID:18672237

  11. Molecular profiling of tumor progression in head and neck cancer.

    PubMed

    Belbin, Thomas J; Singh, Bhuvanesh; Smith, Richard V; Socci, Nicholas D; Wreesmann, Volkert B; Sanchez-Carbayo, Marta; Masterson, Jessica; Patel, Snehal; Cordon-Cardo, Carlos; Prystowsky, Michael B; Childs, Geoffrey

    2005-01-01

    To assess gene expression changes associated with tumor progression in patients with squamous cell carcinoma of the oral cavity. A microarray containing 17 840 complementary DNA clones was used to measure gene expression changes associated with tumor progression in 9 patients with squamous cell carcinoma of the oral cavity. Samples were taken for analysis from the primary tumor, nodal metastasis, and "normal" mucosa from the patients' oral cavity. Tertiary care facility. Patients Nine patients with stage III or stage IV untreated oral cavity squamous cell carcinoma. Our analysis to categorize genes based on their expression patterns has identified 140 genes that consistently increased in expression during progression from normal tissue to invasive tumor and subsequently to metastatic node (in at least 4 of the 9 cases studied). A similar list of 94 genes has been identified that decreased in expression during tumor progression and metastasis. We validated this gene discovery approach by selecting moesin (a member of the ezrin/radixin/moesin [ERM] family of cytoskeletal proteins) and one of the genes that consistently increased in expression during tumor progression for subsequent immunohistochemical analysis using a head and neck squamous cell carcinoma tissue array. A distinct pattern of gene expression, with progressive up- or down-regulation of expression, is found during the progression from histologically normal tissue to primary carcinoma and to nodal metastasis.

  12. Oracle Database 10g: a platform for BLAST search and Regular Expression pattern matching in life sciences.

    PubMed

    Stephens, Susie M; Chen, Jake Y; Davidson, Marcel G; Thomas, Shiby; Trute, Barry M

    2005-01-01

    As database management systems expand their array of analytical functionality, they become powerful research engines for biomedical data analysis and drug discovery. Databases can hold most of the data types commonly required in life sciences and consequently can be used as flexible platforms for the implementation of knowledgebases. Performing data analysis in the database simplifies data management by minimizing the movement of data from disks to memory, allowing pre-filtering and post-processing of datasets, and enabling data to remain in a secure, highly available environment. This article describes the Oracle Database 10g implementation of BLAST and Regular Expression Searches and provides case studies of their usage in bioinformatics. http://www.oracle.com/technology/software/index.html.

  13. Glycan array data management at Consortium for Functional Glycomics.

    PubMed

    Venkataraman, Maha; Sasisekharan, Ram; Raman, Rahul

    2015-01-01

    Glycomics or the study of structure-function relationships of complex glycans has reshaped post-genomics biology. Glycans mediate fundamental biological functions via their specific interactions with a variety of proteins. Recognizing the importance of glycomics, large-scale research initiatives such as the Consortium for Functional Glycomics (CFG) were established to address these challenges. Over the past decade, the Consortium for Functional Glycomics (CFG) has generated novel reagents and technologies for glycomics analyses, which in turn have led to generation of diverse datasets. These datasets have contributed to understanding glycan diversity and structure-function relationships at molecular (glycan-protein interactions), cellular (gene expression and glycan analysis), and whole organism (mouse phenotyping) levels. Among these analyses and datasets, screening of glycan-protein interactions on glycan array platforms has gained much prominence and has contributed to cross-disciplinary realization of the importance of glycomics in areas such as immunology, infectious diseases, cancer biomarkers, etc. This manuscript outlines methodologies for capturing data from glycan array experiments and online tools to access and visualize glycan array data implemented at the CFG.

  14. Building quantitative, three-dimensional atlases of gene expression and morphology at cellular resolution.

    PubMed

    Knowles, David W; Biggin, Mark D

    2013-01-01

    Animals comprise dynamic three-dimensional arrays of cells that express gene products in intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A rigorous understanding of these developmental processes requires automated methods that quantitatively record and analyze complex morphologies and their associated patterns of gene expression at cellular resolution. Here we summarize light microscopy-based approaches to establish permanent, quantitative datasets-atlases-that record this information. We focus on experiments that capture data for whole embryos or large areas of tissue in three dimensions, often at multiple time points. We compare and contrast the advantages and limitations of different methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary collaborations and integrated experimental pipelines that link sample preparation, image acquisition, image analysis, database design, visualization, and quantitative analysis. Copyright © 2013 Wiley Periodicals, Inc.

  15. The protein expression landscape of mitosis and meiosis in diploid budding yeast.

    PubMed

    Becker, Emmanuelle; Com, Emmanuelle; Lavigne, Régis; Guilleux, Marie-Hélène; Evrard, Bertrand; Pineau, Charles; Primig, Michael

    2017-03-06

    Saccharomyces cerevisiae is an established model organism for the molecular analysis of fundamental biological processes. The genomes of numerous strains have been sequenced, and the transcriptome and proteome ofmajor phases during the haploid and diploid yeast life cycle have been determined. However, much less is known about dynamic changes of the proteome when cells switch from mitotic growth to meiotic development. We report a quantitative protein profiling analysis of yeast cell division and differentiation based on mass spectrometry. Information about protein levels was integrated with strand-specific tiling array expression data. We identified a total of 2366 proteins in at least one condition, including 175 proteins showing a statistically significant>5-fold change across the sample set, and 136 proteins detectable in sporulating but not respiring cells. We correlate protein expression patterns with biological processes and molecular function by Gene Ontology term enrichment, chemoprofiling, transcription interference and the formation of double stranded RNAs by overlapping sense/antisense transcripts. Our work provides initial quantitative insight into protein expression in diploid respiring and differentiating yeast cells. Critically, it associates developmentally regulated induction of antisense long noncoding RNAs and double stranded RNAs with fluctuating protein concentrations during growth and development. This integrated genomics analysis helps better understand how the transcriptome and the proteome correlate in diploid yeast cells undergoing mitotic growth in the presence of acetate (respiration) versus meiotic differentiation (Meiosis I and II). The study (i) provides quantitative expression data for 2366 proteins and their cognate mRNAs in at least one sample, (ii) shows strongly fluctuating protein levels during growth and differentiation for 175 cases, and (iii) identifies 136 proteins absent in mitotic but present in meiotic yeast cells. We have integrated protein profiling data using mass spectrometry with tiling array RNA profiling data and information on double-stranded RNAs (dsRNAs) by overlapping sense/antisense transcripts from an RNA-Sequencing experiment. This work therefore provides quantitative insight into protein expression during cell division and development and associates changing protein levels with developmental stage specific induction of antisense transcripts and the formation of dsRNAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip

    PubMed Central

    Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum. PMID:23409153

  17. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum.

  18. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome.

    PubMed

    Duker, Angela L; Ballif, Blake C; Bawle, Erawati V; Person, Richard E; Mahadevan, Sangeetha; Alliman, Sarah; Thompson, Regina; Traylor, Ryan; Bejjani, Bassem A; Shaffer, Lisa G; Rosenfeld, Jill A; Lamb, Allen N; Sahoo, Trilochan

    2010-11-01

    Prader-Willi syndrome (PWS) is a neurobehavioral disorder manifested by infantile hypotonia and feeding difficulties in infancy, followed by morbid obesity secondary to hyperphagia. It is caused by deficiency of paternally expressed transcript(s) within the human chromosome region 15q11.2. PWS patients harboring balanced chromosomal translocations with breakpoints within small nuclear ribonucleoprotein polypeptide N (SNRPN) have provided indirect evidence for a role for the imprinted C/D box containing small nucleolar RNA (snoRNA) genes encoded downstream of SNRPN. In addition, recently published data provide strong evidence in support of a role for the snoRNA SNORD116 cluster (HBII-85) in PWS etiology. In this study, we performed detailed phenotypic, cytogenetic, and molecular analyses including chromosome analysis, array comparative genomic hybridization (array CGH), expression studies, and single-nucleotide polymorphism (SNP) genotyping for parent-of-origin determination of the 15q11.2 microdeletion on an 11-year-old child expressing the major components of the PWS phenotype. This child had an ∼236.29 kb microdeletion at 15q11.2 within the larger Prader-Willi/Angelman syndrome critical region that included the SNORD116 cluster of snoRNAs. Analysis of SNP genotypes in proband and mother provided evidence in support of the deletion being on the paternal chromosome 15. This child also met most of the major PWS diagnostic criteria including infantile hypotonia, early-onset morbid obesity, and hypogonadism. Identification and characterization of this case provide unequivocal evidence for a critical role for the SNORD116 snoRNA molecules in PWS pathogenesis. Array CGH testing for genomic copy-number changes in cases with complex phenotypes is proving to be invaluable in detecting novel alterations and enabling better genotype-phenotype correlations.

  19. Evaluation of the X-Linked High-Grade Myopia Locus (MYP1) with Cone Dysfunction and Color Vision Deficiencies

    PubMed Central

    Metlapally, Ravikanth; Michaelides, Michel; Bulusu, Anuradha; Li, Yi-Ju; Schwartz, Marianne; Rosenberg, Thomas; Hunt, David M.; Moore, Anthony T.; Züchner, Stephan; Rickman, Catherine Bowes; Young, Terri L.

    2014-01-01

    Purpose X-linked high myopia with mild cone dysfunction and color vision defects has been mapped to chromosome Xq28 (MYP1 locus). CXorf2/TEX28 is a nested, intercalated gene within the red-green opsin cone pigment gene tandem array on Xq28. The authors investigated whether TEX28 gene alterations were associated with the Xq28-linked myopia phenotype. Genomic DNA from five pedigrees (with high myopia and either protanopia or deuteranopia) that mapped to Xq28 were screened for TEX28 copy number variations (CNVs) and sequence variants. Methods To examine for CNVs, ultra-high resolution array-comparative genomic hybridization (array-CGH) assays were performed comparing the subject genomic DNA with control samples (two pairs from two pedigrees). Opsin or TEX28 gene-targeted quantitative real-time gene expression assays (comparative CT method) were performed to validate the array-CGH findings. All exons of TEX28, including intron/exon boundaries, were amplified and sequenced using standard techniques. Results Array-CGH findings revealed predicted duplications in affected patient samples. Although only three copies of TEX28 were previously reported within the opsin array, quantitative real-time analysis of the TEX28 targeted assay of affected male or carrier female individuals in these pedigrees revealed either fewer (one) or more (four or five) copies than did related and control unaffected individuals. Sequence analysis of TEX28 did not reveal any variants associated with the disease status. Conclusions CNVs have been proposed to play a role in disease inheritance and susceptibility as they affect gene dosage. TEX28 gene CNVs appear to be associated with the MYP1 X-linked myopia phenotypes. PMID:19098318

  20. Design of a large-scale femtoliter droplet array for single-cell analysis of drug-tolerant and drug-resistant bacteria.

    PubMed

    Iino, Ryota; Matsumoto, Yoshimi; Nishino, Kunihiko; Yamaguchi, Akihito; Noji, Hiroyuki

    2013-01-01

    Single-cell analysis is a powerful method to assess the heterogeneity among individual cells, enabling the identification of very rare cells with properties that differ from those of the majority. In this Methods Article, we describe the use of a large-scale femtoliter droplet array to enclose, isolate, and analyze individual bacterial cells. As a first example, we describe the single-cell detection of drug-tolerant persisters of Pseudomonas aeruginosa treated with the antibiotic carbenicillin. As a second example, this method was applied to the single-cell evaluation of drug efflux activity, which causes acquired antibiotic resistance of bacteria. The activity of the MexAB-OprM multidrug efflux pump system from Pseudomonas aeruginosa was expressed in Escherichia coli and the effect of an inhibitor D13-9001 were assessed at the single cell level.

  1. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.

    2000-05-05

    Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared withmore » the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.« less

  2. Knock down of GCN5 histone acetyltransferase by siRNA decreases ethanol-induced histone acetylation and affects differential expression of genes in human hepatoma cells.

    PubMed

    Choudhury, Mahua; Pandey, Ravi S; Clemens, Dahn L; Davis, Justin Wade; Lim, Robert W; Shukla, Shivendra D

    2011-06-01

    We have investigated whether Gcn5, a histone acetyltransferase (HAT), is involved in ethanol-induced acetylation of histone H3 at lysine 9 (H3AcK9) and has any effect on the gene expression. Human hepatoma HepG2 cells transfected with ethanol-metabolizing enzyme alcohol dehydrogenase 1 (VA 13 cells) were used. Knock down of Gcn5 by siRNA silencing decreased mRNA and protein levels of general control nondepressible 5 (GCN5), HAT activity, and also attenuated ethanol-induced H3AcK9 in VA13 cells. Illumina gene microarray analysis using total RNA showed 940 transcripts affected by GCN5 silencing or ethanol. Silencing caused differential expression of 891 transcripts (≥1.5-fold upregulated or downregulated). Among these, 492 transcripts were upregulated and 399 were downregulated compared with their respective controls. Using a more stringent threshold (≥2.5-fold), the array data from GCN5-silenced samples showed 57 genes differentially expressed (39 upregulated and 18 downregulated). Likewise, ethanol caused differential regulation of 57 transcripts with ≥1.5-fold change (35 gene upregulated and 22 downregulated). Further analysis showed that eight genes were differentially regulated that were common for both ethanol treatment and GCN5 silencing. Among these, SLC44A2 (a putative choline transporter) was strikingly upregulated by ethanol (three fold), and GCN5 silencing downregulated it (1.5-fold). The quantitative real-time polymerase chain reaction profile corroborated the array findings. This report demonstrates for the first time that (1) GCN5 differentially affects expression of multiple genes, (2) ethanol-induced histone H3-lysine 9 acetylation is mediated via GCN5, and (3) GCN5 is involved in ethanol-induced expression of the putative choline transporter SLC44A2. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Xylella fastidiosa gene expression analysis by DNA microarrays.

    PubMed

    Travensolo, Regiane F; Carareto-Alves, Lucia M; Costa, Maria V C G; Lopes, Tiago J S; Carrilho, Emanuel; Lemos, Eliana G M

    2009-04-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM(2) and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  4. Comparative analysis of gene expression profiles of OPN signaling pathway in four kinds of liver diseases.

    PubMed

    Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.

  5. Expression analysis of G Protein-Coupled Receptors in mouse macrophages.

    PubMed

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-04-29

    Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery.

  6. Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array.

    PubMed

    van Geest, Geert; Voorrips, Roeland E; Esselink, Danny; Post, Aike; Visser, Richard Gf; Arens, Paul

    2017-08-07

    Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6× = 54) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183 k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5). With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage. The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance.

  7. Genomewide Analysis of Aryl Hydrocarbon Receptor Binding Targets Reveals an Extensive Array of Gene Clusters that Control Morphogenetic and Developmental Programs

    PubMed Central

    Sartor, Maureen A.; Schnekenburger, Michael; Marlowe, Jennifer L.; Reichard, John F.; Wang, Ying; Fan, Yunxia; Ma, Ci; Karyala, Saikumar; Halbleib, Danielle; Liu, Xiangdong; Medvedovic, Mario; Puga, Alvaro

    2009-01-01

    Background The vertebrate aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular responses to environmental polycyclic and halogenated compounds. The naive receptor is believed to reside in an inactive cytosolic complex that translocates to the nucleus and induces transcription of xenobiotic detoxification genes after activation by ligand. Objectives We conducted an integrative genomewide analysis of AHR gene targets in mouse hepatoma cells and determined whether AHR regulatory functions may take place in the absence of an exogenous ligand. Methods The network of AHR-binding targets in the mouse genome was mapped through a multipronged approach involving chromatin immunoprecipitation/chip and global gene expression signatures. The findings were integrated into a prior functional knowledge base from Gene Ontology, interaction networks, Kyoto Encyclopedia of Genes and Genomes pathways, sequence motif analysis, and literature molecular concepts. Results We found the naive receptor in unstimulated cells bound to an extensive array of gene clusters with functions in regulation of gene expression, differentiation, and pattern specification, connecting multiple morphogenetic and developmental programs. Activation by the ligand displaced the receptor from some of these targets toward sites in the promoters of xenobiotic metabolism genes. Conclusions The vertebrate AHR appears to possess unsuspected regulatory functions that may be potential targets of environmental injury. PMID:19654925

  8. MAGIC database and interfaces: an integrated package for gene discovery and expression.

    PubMed

    Cordonnier-Pratt, Marie-Michèle; Liang, Chun; Wang, Haiming; Kolychev, Dmitri S; Sun, Feng; Freeman, Robert; Sullivan, Robert; Pratt, Lee H

    2004-01-01

    The rapidly increasing rate at which biological data is being produced requires a corresponding growth in relational databases and associated tools that can help laboratories contend with that data. With this need in mind, we describe here a Modular Approach to a Genomic, Integrated and Comprehensive (MAGIC) Database. This Oracle 9i database derives from an initial focus in our laboratory on gene discovery via production and analysis of expressed sequence tags (ESTs), and subsequently on gene expression as assessed by both EST clustering and microarrays. The MAGIC Gene Discovery portion of the database focuses on information derived from DNA sequences and on its biological relevance. In addition to MAGIC SEQ-LIMS, which is designed to support activities in the laboratory, it contains several additional subschemas. The latter include MAGIC Admin for database administration, MAGIC Sequence for sequence processing as well as sequence and clone attributes, MAGIC Cluster for the results of EST clustering, MAGIC Polymorphism in support of microsatellite and single-nucleotide-polymorphism discovery, and MAGIC Annotation for electronic annotation by BLAST and BLAT. The MAGIC Microarray portion is a MIAME-compliant database with two components at present. These are MAGIC Array-LIMS, which makes possible remote entry of all information into the database, and MAGIC Array Analysis, which provides data mining and visualization. Because all aspects of interaction with the MAGIC Database are via a web browser, it is ideally suited not only for individual research laboratories but also for core facilities that serve clients at any distance.

  9. Expression Profiling Smackdown: Human Transcriptome Array HTA 2.0 vs. RNA-Seq

    PubMed Central

    Palermo, Meghann; Driscoll, Heather; Tighe, Scott; Dragon, Julie; Bond, Jeff; Shukla, Arti; Vangala, Mahesh; Vincent, James; Hunter, Tim

    2014-01-01

    The advent of both microarray and massively parallel sequencing have revolutionized high-throughput analysis of the human transcriptome. Due to limitations in microarray technology, detecting and quantifying coding transcript isoforms, in addition to non-coding transcripts, has been challenging. As a result, RNA-Seq has been the preferred method for characterizing the full human transcriptome, until now. A new high-resolution array from Affymetrix, GeneChip Human Transcriptome Array 2.0 (HTA 2.0), has been designed to interrogate all transcript isoforms in the human transcriptome with >6 million probes targeting coding transcripts, exon-exon splice junctions, and non-coding transcripts. Here we compare expression results from GeneChip HTA 2.0 and RNA-Seq data using identical RNA extractions from three samples each of healthy human mesothelial cells in culture, LP9-C1, and healthy mesothelial cells treated with asbestos, LP9-A1. For GeneChip HTA 2.0 sample preparation, we chose to compare two target preparation methods, NuGEN Ovation Pico WTA V2 with the Encore Biotin Module versus Affymetrix's GeneChip WT PLUS with the WT Terminal Labeling Kit, on identical RNA extractions from both untreated and treated samples. These same RNA extractions were used for the RNA-Seq library preparation. All analyses were performed in Partek Genomics Suite 6.6. Expression profiles for control and asbestos-treated mesothelial cells prepared with NuGEN versus Affymetrix target preparation methods (GeneChip HTA 2.0) are compared to each other as well as to RNA-Seq results.

  10. Estrogen regulation of uterine genes in vivo detected by complementary DNA array.

    PubMed

    Andrade, P M; Silva, I D C G; Borra, R C; de Lima, G R; Baracat, E C

    2002-05-01

    In the present study, our aim was to identify differentially expressed genes involved in estrogen actions at the endometrium level in rats. Thirty adult rats were ovariectomized four days prior to drug administration for 48 days. Rats were divided in 2 groups: I, control and II, conjugated equine estrogens (CCE). Total RNA was isolated from uterus, and differential expression was analyzed by array technology and RT-PCR. A total of 32 candidate genes were shown to be upregulated or downregulated in groups I or II. Among them, differential expression was already confirmed by RT-PCR for IGFBP5, S12, c-kit, and VEGF, genes whose expression was up regulated during CCE therapy, and casein kinase II and serine kinase expression was the same level in both groups. We have demonstrated that cDNA array represents a powerful approach to identify key molecules in the estrogens therapy. A number of the candidates reported here should provide new markers that may contribute to the detection of target estrogen receptor. This information may also aid the development of new approaches to therapeutic intervention.

  11. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer.

    PubMed

    Romero-Cordoba, Sandra; Rodriguez-Cuevas, Sergio; Rebollar-Vega, Rosa; Quintanar-Jurado, Valeria; Maffuz-Aziz, Antonio; Jimenez-Sanchez, Gerardo; Bautista-Piña, Veronica; Arellano-Llamas, Rocio; Hidalgo-Miranda, Alfredo

    2012-01-01

    microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.

  12. University of Texas Southwestern Medical Center (UTSW): Functional Signature Ontology Tool: Triplicate Measurements of Reporter Gene Expression in Response to Individual Genetic and Chemical Perturbations in HCT116 Cells | Office of Cancer Genomics

    Cancer.gov

    The goal of this project is to use an eight-gene expression profile to define functional signatures for small molecules and natural products with heretofore undefined mechanism of action. Two genes in the eight gene set are used as internal controls and do not vary across gene expression array data collected from the public domain. The remaining six genes are found to vary independently across a large collection of publically available gene expression array datasets.  Read the abstract

  13. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale

    PubMed Central

    Cox, Laura A; Schlabritz-Loutsevitch, Natalia; Hubbard, Gene B; Nijland, Mark J; McDonald, Thomas J; Nathanielsz, Peter W

    2006-01-01

    Interpretation of gene array data presents many potential pitfalls in adult tissues. Gene array techniques applied to fetal tissues present additional confounding pitfalls. The left lobe of the fetal liver is supplied with blood containing more oxygen than the right lobe. Since synthetic activity and cell function are oxygen dependent, we hypothesized major differences in mRNA expression between the fetal right and left liver lobes. Our aim was to demonstrate the need to evaluate RNA samples from both lobes. We performed whole genome expression profiling on left and right liver lobe RNA from six 90-day gestation baboon fetuses (term 180 days). Comparing right with left, we found 875 differentially expressed genes – 312 genes were up-regulated and 563 down-regulated. Pathways for damaged DNA binding, endonuclease activity, interleukin binding and receptor activity were up-regulated in right lobe; ontological pathways related to cell signalling, cell organization, cell biogenesis, development, intracellular transport, phospholipid metabolism, protein biosynthesis, protein localization, protein metabolism, translational regulation and vesicle mediated transport were down-regulated in right lobe. Molecular pathway analysis showed down-regulation of pathways related to heat shock protein binding, ion channel and transporter activities, oxygen binding and transporter activities, translation initiation and translation regulator activities. Genes involved in amino acid biosynthesis, lipid biosynthesis and oxygen transport were also differentially expressed. This is the first demonstration of RNA differences between the two lobes of the fetal liver. The data support the argument that a complete interpretation of gene expression in the developing liver requires data from both lobes. PMID:16484296

  14. Multivariate analysis of the geochemistry and mineralogy of soils along two continental-scale transects in North America

    USGS Publications Warehouse

    Drew, L.J.; Grunsky, E.C.; Sutphin, D.M.; Woodruff, L.G.

    2010-01-01

    Soils collected in 2004 along two North American continental-scale transects were subjected to geochemical and mineralogical analyses. In previous interpretations of these analyses, data were expressed in weight percent and parts per million, and thus were subject to the effect of the constant-sum phenomenon. In a new approach to the data, this effect was removed by using centered log-ratio transformations to 'open' the mineralogical and geochemical arrays. Multivariate analyses, including principal component and linear discriminant analyses, of the centered log-ratio data reveal the effects of soil-forming processes, including soil parent material, weathering, and soil age, at the continental-scale of the data arrays that were not readily apparent in the more conventionally presented data. Linear discriminant analysis of the data arrays indicates that the majority of the soil samples collected along the transects can be more successfully classified with Level 1 ecological regional-scale classification by the soil geochemistry than soil mineralogy. A primary objective of this study is to discover and describe, in a parsimonious way, geochemical processes that are both independent and inter-dependent and manifested through compositional data including estimates of the elements and corresponding mineralogy. ?? 2010.

  15. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity.

    PubMed

    Mattout, Anna; Pike, Brietta L; Towbin, Benjamin D; Bank, Erin M; Gonzalez-Sandoval, Adriana; Stadler, Michael B; Meister, Peter; Gruenbaum, Yosef; Gasser, Susan M

    2011-10-11

    In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity. Using ablation of the unique lamin gene in C. elegans, we show that lamin is necessary for the perinuclear positioning of heterochromatin. We then express at low levels in otherwise wild-type worms a lamin carrying a point mutation, Y59C, which in humans is linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy. Using embryos and differentiated tissues, we track the subnuclear position of integrated heterochromatic arrays and their expression. In LMN-1 Y59C-expressing worms, we see abnormal retention at the nuclear envelope of a gene array bearing a muscle-specific promoter. This correlates with impaired activation of the array-borne myo-3 promoter and altered expression of a number of muscle-specific genes. However, an equivalent array carrying the intestine-specific pha-4 promoter is expressed normally and shifts inward when activated in gut cells of LMN-1 Y59C worms. Remarkably, adult LMN-1 Y59C animals have selectively perturbed body muscle ultrastructure and reduced muscle function. Lamin helps sequester heterochromatin at the nuclear envelope, and wild-type lamin permits promoter release following tissue-specific activation. A disease-linked point mutation in lamin impairs muscle-specific reorganization of a heterochromatic array during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction in LMN-1 Y59C worms phenocopies Emery-Dreifuss muscular dystrophy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, Jennifer E.; Tulane Cancer Center, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL79, New Orleans, LA 70112; Fewell, Claire

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lowermore » in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers.« less

  17. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome

    PubMed Central

    Yu, Shoukai; Lemos, Bernardo

    2016-01-01

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. PMID:27797956

  18. MicroRNA array normalization: an evaluation using a randomized dataset as the benchmark.

    PubMed

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays.

  19. MicroRNA Array Normalization: An Evaluation Using a Randomized Dataset as the Benchmark

    PubMed Central

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays. PMID:24905456

  20. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.

    PubMed

    Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W

    2014-11-01

    Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Insulin Response Genes in Different Stages of Periodontal Disease

    PubMed Central

    Yu, N.; Barros, S.P.; Zhang, S.; Moss, K.L.; Phillips, S.T.; Offenbacher, S.

    2015-01-01

    Bacterial infections are known to alter glucose metabolism within tissues via mechanisms of inflammation. We conducted this study to examine whether insulin response genes are differentially expressed in gingival tissues, comparing samples from experimental gingivitis and periodontitis subjects to those from healthy individuals. Total RNA was extracted from gingival biopsies from 26 participants: 8 periodontally healthy, 9 experimental gingivitis, and 9 periodontitis subjects. Gene expression patterns were evaluated with a polymerase chain reaction array panel to examine 84 candidate genes involved with glucose metabolism, insulin resistance, and obesity. Array data were evaluated with a t test adjusted by the false discover rate (P < 0.05), and ingenuity pathway analysis was performed for statistical testing of pathways. Although tissue samples were not sufficient to enable protein quantification, we confirmed the upregulation of the key gene using lipopolysaccharide-stimulated primary gingival epithelial cells by Western blot. The mRNA expression patterns of genes that are associated with insulin response and glucose metabolism are markedly different in experimental gingivitis subjects compared with healthy controls. Thirty-two genes are upregulated significantly by at least 2-fold, adjusted for false discover rate (P < 0.05). Periodontitis subjects show similar but attenuated changes in gene expression patterns, and no genes meet the significance criteria. Ingenuity pathway analysis demonstrates significant activation of the carbohydrate metabolism network in experimental gingivitis but not in periodontitis. G6PD protein increases in response to lipopolysaccharide stimulation in primary gingival epithelial cells, which is in the same direction as upregulated mRNA in tissues. Acute gingival inflammation may be associated with tissue metabolism changes, but these changes are not evident in chronic periodontitis. This study suggests that acute gingival inflammation may induce localized changes that modify tissue insulin/glucose metabolism. PMID:25924856

  2. Tenascin-C Deficiency in Apo E−/− Mouse Increases Eotaxin Levels: Implications for Atherosclerosis

    PubMed Central

    Wang, Lai; Shah, Prediman K.; Wang, Wei; Song, Lei; Yang, Mingjie; Sharifi, Behrooz G.

    2013-01-01

    Aim To investigate the potential role of inflammatory cytokines in apo E−/− mouse in response to deletion of Tenascin-C (TNC) gene. Methods and results We used antibody array and ELISA to compare the profile of circulating inflammatory cytokines in apo E−/− mice and apo E−/− TNC−/− double knockout mice. In addition, tissue culture studies were performed to investigate the activity of cells from each mouse genotype in vitro. Cytokine array analysis and subsequent ELISA showed that circulating eotaxin levels were selectively and markedly increased in response to TNC gene deletion in apo E−/− mice. In addition, considerable variation was noted in the circulating level of eotaxin among the control apo E−/− mouse group. Inbreeding of apo E−/− mice with high or low levels of plasma eotaxin showed that the level of eotaxin per se determines the extent of atherosclerosis in this mouse genotype. While endothelial cells from apo E−/− mice had low level of eotaxin expression, cells derived from apo E−/−TNC−/− mice expressed a high level of eotaxin. Transient transfection of eotaxin promoter-reporter constructs revealed that eotaxin expression is regulated at the transcriptional level by TNC. Histochemical analysis of aortic sections revealed the massive accumulation of mast cells in the adventitia of double KO mice lesions whereas no such accumulation was detected in the control group. Plasma from the apo E−/−TNC−/− mice markedly stimulated mast cell migration whereas plasma from the apo E−/− mice had no such effect. Conclusion These observations support the emerging hypothesis that TNC expression controls eotaxin level in apo E−/− mice and that this chemokine plays a key role in the development of atherosclerosis. PMID:23433402

  3. Differentially expressed microRNAs in the corpus cavernosum from a murine model with type 2 diabetes mellitus-associated erectile dysfunction.

    PubMed

    Pan, Feng; You, Jinwei; Liu, Yuan; Qiu, Xuefeng; Yu, Wen; Ma, Jiehua; Pan, Lianjun; Zhang, Aixia; Zhang, Qipeng

    2016-12-01

    To better understand the molecular aetiology of type 2 diabetes mellitus-associated erectile dysfunction (T2DMED) and to provide candidates for further study of its diagnosis and treatment, this study was designed to investigate differentially expressed microRNAs (miRNAs) in the corpus cavernosum (CC) of mice with T2DMED using GeneChip array techniques (Affymetrix miRNA 4.0 Array) and to predict target genes and signalling pathways regulated by these miRNAs based on bioinformatic analysis using TargetScan, the DAIAN web platform and DAVID. In the initial screening, 21 miRNAs appeared distinctly expressed in the T2DMED group (fold change ≥3, p ≤ 0.01). Among them, the differential expression of miR-18a, miR-206, miR-122, and miR-133 were confirmed by qRT-PCR (p < 0.05 and FDR <5 %). According to bioinformatic analysis, the four miRNAs were speculated to play potential roles in the mechanisms of T2DMED via regulating 28 different genes and several pathways, including apoptosis, fibrosis, eNOS/cGMP/PKG, and vascular smooth muscle contraction processes, which mainly focused on influencing the functions of the endothelium and smooth muscle in the CC. IGF-1, as one of the target genes, was verified to decrease in the CCs of T2DMED animals via ELISA and was confirmed as the target of miR-18a or miR-206 via luciferase assay. Finally, these four miRNAs deserve further confirmation as biomarkers of T2DMED in larger studies. Additionally, miR-18a and/or miR-206 may provide new preventive/therapeutic targets for ED management by targeting IGF-1.

  4. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    PubMed Central

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  5. Innate and adaptive immunity gene expression of human keratinocytes cultured of severe burn injury.

    PubMed

    Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Lanziani, Larissa Elias; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    Evaluate the expression profile of genes related to Innate and Adaptive Immune System (IAIS) of human Primary Epidermal keratinocytes (hPEKP) of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific IAIS PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 63% of these genes were differentially expressed, of which 77% were repressed and 23% were hyper-regulated. Among these, the following genes (fold increase or decrease): IL8 (41), IL6 (32), TNF (-92), HLA-E (-86), LYS (-74), CCR6 (- 73), CD86 (-41) and HLA-A (-35). This study contributes to the understanding of the molecular mechanisms underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  6. Epigenome-Wide DNA Methylation in Hearing Ability: New Mechanisms for an Old Problem

    PubMed Central

    Wolber, Lisa E.; Steves, Claire J.; Tsai, Pei-Chien; Deloukas, Panos; Spector, Tim D.

    2014-01-01

    Epigenetic regulation of gene expression has been shown to change over time and may be associated with environmental exposures in common complex traits. Age-related hearing impairment is a complex disorder, known to be heritable, with heritability estimates of 57–70%. Epigenetic regulation might explain the observed difference in age of onset and magnitude of hearing impairment with age. Epigenetic epidemiology studies using unrelated samples can be limited in their ability to detect small effects, and recent epigenetic findings in twins underscore the power of this well matched study design. We investigated the association between venous blood DNA methylation epigenome-wide and hearing ability. Pure-tone audiometry (PTA) and Illumina HumanMethylation array data were obtained from female twin volunteers enrolled in the TwinsUK register. Two study groups were explored: first, an epigenome-wide association scan (EWAS) was performed in a discovery sample (n = 115 subjects, age range: 47–83 years, Illumina 27 k array), then replication of the top ten associated probes from the discovery EWAS was attempted in a second unrelated sample (n = 203, age range: 41–86 years, Illumina 450 k array). Finally, a set of monozygotic (MZ) twin pairs (n = 21 pairs) within the discovery sample (Illumina 27 k array) was investigated in more detail in an MZ discordance analysis. Hearing ability was strongly associated with DNA methylation levels in the promoter regions of several genes, including TCF25 (cg01161216, p = 6.6×10−6), FGFR1 (cg15791248, p = 5.7×10−5) and POLE (cg18877514, p = 6.3×10−5). Replication of these results in a second sample confirmed the presence of differential methylation at TCF25 (p(replication) = 6×10−5) and POLE (p(replication) = 0.016). In the MZ discordance analysis, twins' intrapair difference in hearing ability correlated with DNA methylation differences at ACP6 (cg01377755, r = −0.75, p = 1.2×10−4) and MEF2D (cg08156349, r = −0.75, p = 1.4×10−4). Examination of gene expression in skin, suggests an influence of differential methylation on expression, which may account for the variation in hearing ability with age. PMID:25184702

  7. Resonator modes and mode dynamics for an external cavity-coupled laser array

    NASA Astrophysics Data System (ADS)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  8. MiR-422a as a Potential Cellular MicroRNA Biomarker for Postmenopausal Osteoporosis

    PubMed Central

    Cao, Zheng; Moore, Benjamin T.; Wang, Yang; Peng, Xian-Hao; Lappe, Joan M.; Recker, Robert R.; Xiao, Peng

    2014-01-01

    Background MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that regulate gene expression by targeting mRNAs. Recently, miRNAs have been shown to play important roles in the etiology of various diseases. However, little is known about their roles in the development of osteoporosis. Circulating monocytes are osteoclast precursors that also produce various factors important for osteoclastogenesis. Previously, we have identified a potential biomarker miR-133a in circulating monocytes for postmenopausal osteoporosis. In this study, we aimed to further identify significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis. Methodology/Principal Findings We used ABI TaqMan miRNA array followed by qRT-PCR validation in human circulating monocytes from 10 high BMD and 10 low BMD postmenopausal Caucasian women to identify miRNA biomarkers. MiR-422a was up-regulated with marginal significance (P = 0.065) in the low compared with the high BMD group in the array analysis. However, a significant up-regulation of miR-422a was identified in the low BMD group by qRT-PCR analysis (P = 0.029). We also performed bioinformatic target gene analysis and found several potential target genes of miR-422a which are involved in osteoclastogenesis. Further qRT-PCR analyses of the target genes in the same study subjects showed that the expression of five of these genes (CBL, CD226, IGF1, PAG1, and TOB2) correlated negatively with miR-422a expression. Conclusions/Significance Our study suggests that miR-422a in human circulating monocytes (osteoclast precursors) is a potential miRNA biomarker underlying postmenopausal osteoporosis. PMID:24820117

  9. MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis.

    PubMed

    Cao, Zheng; Moore, Benjamin T; Wang, Yang; Peng, Xian-Hao; Lappe, Joan M; Recker, Robert R; Xiao, Peng

    2014-01-01

    MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that regulate gene expression by targeting mRNAs. Recently, miRNAs have been shown to play important roles in the etiology of various diseases. However, little is known about their roles in the development of osteoporosis. Circulating monocytes are osteoclast precursors that also produce various factors important for osteoclastogenesis. Previously, we have identified a potential biomarker miR-133a in circulating monocytes for postmenopausal osteoporosis. In this study, we aimed to further identify significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis. We used ABI TaqMan miRNA array followed by qRT-PCR validation in human circulating monocytes from 10 high BMD and 10 low BMD postmenopausal Caucasian women to identify miRNA biomarkers. MiR-422a was up-regulated with marginal significance (P = 0.065) in the low compared with the high BMD group in the array analysis. However, a significant up-regulation of miR-422a was identified in the low BMD group by qRT-PCR analysis (P = 0.029). We also performed bioinformatic target gene analysis and found several potential target genes of miR-422a which are involved in osteoclastogenesis. Further qRT-PCR analyses of the target genes in the same study subjects showed that the expression of five of these genes (CBL, CD226, IGF1, PAG1, and TOB2) correlated negatively with miR-422a expression. Our study suggests that miR-422a in human circulating monocytes (osteoclast precursors) is a potential miRNA biomarker underlying postmenopausal osteoporosis.

  10. A novel VLSI processor architecture for supercomputing arrays

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Pattabiraman, S.; Devanathan, R.; Ahmed, Ashaf; Venkataraman, S.; Ganesh, N.

    1993-01-01

    Design of the processor element for general purpose massively parallel supercomputing arrays is highly complex and cost ineffective. To overcome this, the architecture and organization of the functional units of the processor element should be such as to suit the diverse computational structures and simplify mapping of complex communication structures of different classes of algorithms. This demands that the computation and communication structures of different class of algorithms be unified. While unifying the different communication structures is a difficult process, analysis of a wide class of algorithms reveals that their computation structures can be expressed in terms of basic IP,IP,OP,CM,R,SM, and MAA operations. The execution of these operations is unified on the PAcube macro-cell array. Based on this PAcube macro-cell array, we present a novel processor element called the GIPOP processor, which has dedicated functional units to perform the above operations. The architecture and organization of these functional units are such to satisfy the two important criteria mentioned above. The structure of the macro-cell and the unification process has led to a very regular and simpler design of the GIPOP processor. The production cost of the GIPOP processor is drastically reduced as it is designed on high performance mask programmable PAcube arrays.

  11. Molecular Targeted Therapies of Childhood Choroid Plexus Carcinoma

    DTIC Science & Technology

    2011-10-01

    were analyzed in PGS, using the benign human choroid plexus papilloma (CPP) samples as an expression baseline reference. This analysis highlights...Task 1: Generation of additional human and mouse CPC genomic profiles (timeframe: months 1-5). The goal of these studies is to expand our...number of genomic profiles (DNA and mRNA arrays) of both human and mouse CPCs to provide a comprehensive dataset with which to identify key candidate

  12. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats.

    PubMed

    Martínez, María-Aránzazu; Ares, Irma; Rodríguez, José-Luis; Martínez, Marta; Roura-Martínez, David; Castellano, Victor; Lopez-Torres, Bernardo; Martínez-Larrañaga, María-Rosa; Anadón, Arturo

    2018-08-01

    This study aimed to examine in rats the effects of the Type II pyrethroid lambda-cyhalothrin on hepatic microsomal cytochrome P450 (CYP) isoform activities, oxidative stress markers, gene expression of proinflammatory, oxidative stress and apoptosis mediators, and CYP isoform gene expression and metabolism phase I enzyme PCR array analysis. Lambda-cyhalothrin, at oral doses of 1, 2, 4 and 8mg/kg bw for 6days, increased, in a dose-dependent manner, hepatic activities of ethoxyresorufin O-deethylase (CYP1A1), methoxyresorufin O-demethylase (CYP1A2), pentoxyresorufin O-depentylase (CYP2B1/2), testosterone 7α- (CYP2A1), 16β- (CYP2B1), and 6β-hydroxylase (CYP3A1/2), and lauric acid 11- and 12-hydroxylase (CYP4A1/2). Similarly, lambda-cyhalothrin (4 and 8mg/kg bw, for 6days), in a dose-dependent manner, increased significantly hepatic CYP1A1, 1A2, 2A1, 2B1, 2B2, 2E1, 3A1, 3A2 and 4A1 mRNA levels and IL-1β, NFκB, Nrf2, p53, caspase-3 and Bax gene expressions. PCR array analysis showed from 84 genes examined (P<0.05; fold change>1.5), changes in mRNA levels in 18 genes: 13 up-regulated and 5 down-regulated. A greater fold change reversion than 3-fold was observed on the up-regulated ALDH1A1, CYP2B2, CYP2C80 and CYP2D4 genes. Ingenuity Pathway Analysis (IPA) groups the expressed genes into biological mechanisms that are mainly related to drug metabolism. In the top canonical pathways, Oxidative ethanol degradation III together with Fatty Acid α-oxidation may be significant pathways for lambda-cyhalothrin. Our results may provide further understanding of molecular aspects involved in lambda-cyhalothrin-induced liver injury. Copyright © 2018. Published by Elsevier B.V.

  13. Multiplexed chemiluminescent assays in ArrayPlates for high-throughput measurement of gene expression

    NASA Astrophysics Data System (ADS)

    Martel, Ralph R.; Rounseville, Matthew P.; Botros, Ihab W.; Seligmann, Bruce E.

    2002-06-01

    Multiplexed Molecular Profiling (MMP) assays for drug discovery are performed in ArrayPlates. ArrayPlates are 96- well microtiter plates that contain a 16-element array at the bottom of each well. Each element within an array measures one analyte in a sample. A CCD imager records the quantitative chemiluminescent readout of all 1,536 elements in a 96-well plate simultaneously. Since array elements are reagent modifiable by the end-user, ArrayPlates can be adapted to a broad range of nucleic acid- and protein-based assays. Such multiplexed assays are rapidly established, flexible, robust, automation-friendly and cost-effective. Nucleic acid assays in ArrayPlates can detect DNA and RNA, including SNPs and ESTs. A multiplexed mRNA assay to measure the expression of 16 genes is described. The assay combines a homogeneous nuclease protection assay with subsequent probe immobilization to the array by means of a sandwich hybridization followed with chemiluminescent detection. This assay was used to examine cells grown and treated in microplates and avoided cloning, transfection, RNA insolation, reverse transcription, amplification and fluorochrome labeling. Standard deviations for the measurement of 16 genes ranged from 3 percent to 13 percent in samples of 30,000 cells. Such ArrayPlates transcription assays are useful in drug discovery and development for target validation, screening, lead optimization, metabolism and toxicity profiling. Chemiluminescent detection provides ArrayPlates assays with high signal-to-noise readout and simplifies imager requirements. Imaging a 2D surface that contains arrays simplifies lens requirements relative to imaging columns of liquid in microtiter plate wells. The Omix imager for ArrayPlates is described.

  14. Optimal expression evaluation for data parallel architectures

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    A data parallel machine represents an array or other composite data structure by allocating one processor (at least conceptually) per data item. A pointwise operation can be performed between two such arrays in unit time, provided their corresponding elements are allocated in the same processors. If the arrays are not aligned in this fashion, the cost of moving one or both of them is part of the cost of the operation. The choice of where to perform the operation then affects this cost. If an expression with several operands is to be evaluated, there may be many choices of where to perform the intermediate operations. An efficient algorithm is given to find the minimum-cost way to evaluate an expression, for several different data parallel architectures. This algorithm applies to any architecture in which the metric describing the cost of moving an array is robust. This encompasses most of the common data parallel communication architectures, including meshes of arbitrary dimension and hypercubes. Remarks are made on several variations of the problem, some of which are solved and some of which remain open.

  15. Oracle Database 10g: a platform for BLAST search and Regular Expression pattern matching in life sciences

    PubMed Central

    Stephens, Susie M.; Chen, Jake Y.; Davidson, Marcel G.; Thomas, Shiby; Trute, Barry M.

    2005-01-01

    As database management systems expand their array of analytical functionality, they become powerful research engines for biomedical data analysis and drug discovery. Databases can hold most of the data types commonly required in life sciences and consequently can be used as flexible platforms for the implementation of knowledgebases. Performing data analysis in the database simplifies data management by minimizing the movement of data from disks to memory, allowing pre-filtering and post-processing of datasets, and enabling data to remain in a secure, highly available environment. This article describes the Oracle Database 10g implementation of BLAST and Regular Expression Searches and provides case studies of their usage in bioinformatics. http://www.oracle.com/technology/software/index.html PMID:15608287

  16. Transcriptomic data analysis and differential gene expression of antioxidant pathways in king penguin juveniles (Aptenodytes patagonicus) before and after acclimatization to marine life.

    PubMed

    Rey, Benjamin; Dégletagne, Cyril; Duchamp, Claude

    2016-12-01

    In this article, we present differentially expressed gene profiles in the pectoralis muscle of wild juvenile king penguins that were either naturally acclimated to cold marine environment or experimentally immersed in cold water as compared with penguin juveniles that never experienced cold water immersion. Transcriptomic data were obtained by hybridizing penguins total cDNA on Affymetrix GeneChip Chicken Genome arrays and analyzed using maxRS algorithm , " Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays " (Dégletagne et al., 2010) [1] . We focused on genes involved in multiple antioxidant pathways. For better clarity, these differentially expressed genes were clustered into six functional groups according to their role in controlling redox homeostasis. The data are related to a comprehensive research study on the ontogeny of antioxidant functions in king penguins, "Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus)" (Rey et al., 2016) [2] . The raw microarray dataset supporting the present analyses has been deposited at the Gene Expression Omnibus (GEO) repository under accessions GEO: GSE17725 and GEO: GSE82344.

  17. Coordinated transcriptional regulation patterns associated with infertility phenotypes in men

    PubMed Central

    Ellis, Peter J I; Furlong, Robert A; Conner, Sarah J; Kirkman‐Brown, Jackson; Afnan, Masoud; Barratt, Christopher; Griffin, Darren K; Affara, Nabeel A

    2007-01-01

    Introduction Microarray gene‐expression profiling is a powerful tool for global analysis of the transcriptional consequences of disease phenotypes. Understanding the genetic correlates of particular pathological states is important for more accurate diagnosis and screening of patients, and thus for suggesting appropriate avenues of treatment. As yet, there has been little research describing gene‐expression profiling of infertile and subfertile men, and thus the underlying transcriptional events involved in loss of spermatogenesis remain unclear. Here we present the results of an initial screen of 33 patients with differing spermatogenic phenotypes. Methods Oligonucleotide array expression profiling was performed on testis biopsies for 33 patients presenting for testicular sperm extraction. Significantly regulated genes were selected using a mixed model analysis of variance. Principle components analysis and hierarchical clustering were used to interpret the resulting dataset with reference to the patient history, clinical findings and histological composition of the biopsies. Results Striking patterns of coordinated gene expression were found. The most significant contains multiple germ cell‐specific genes and corresponds to the degree of successful spermatogenesis in each patient, whereas a second pattern corresponds to inflammatory activity within the testis. Smaller‐scale patterns were also observed, relating to unique features of the individual biopsies. PMID:17496197

  18. Dual RNA regulatory control of a Staphylococcus aureus virulence factor.

    PubMed

    Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice

    2014-04-01

    In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.

  19. Kidney Transplant Rejection and Tissue Injury by Gene Profiling of Biopsies and Peripheral Blood Lymphocytes

    PubMed Central

    Flechner, Stuart M.; Kurian, Sunil M.; Head, Steven R.; Sharp, Starlette M.; Whisenant, Thomas C.; Zhang, Jie; Chismar, Jeffrey D.; Horvath, Steve; Mondala, Tony; Gilmartin, Timothy; Cook, Daniel J.; Kay, Steven A.; Walker, John R.; Salomon, Daniel R.

    2007-01-01

    A major challenge for kidney transplantation is balancing the need for immunosuppression to prevent rejection, while minimizing drug-induced toxicities. We used DNA microarrays (HG-U95Av2 GeneChips, Affymetrix) to determine gene expression profiles for kidney biopsies and peripheral blood lymphocytes (PBLs) in transplant patients including normal donor kidneys, well-functioning transplants without rejection, kidneys undergoing acute rejection, and transplants with renal dysfunction without rejection. We developed a data analysis schema based on expression signal determination, class comparison and prediction, hierarchical clustering, statistical power analysis and real-time quantitative PCR validation. We identified distinct gene expression signatures for both biopsies and PBLs that correlated significantly with each of the different classes of transplant patients. This is the most complete report to date using commercial arrays to identify unique expression signatures in transplant biopsies distinguishing acute rejection, acute dysfunction without rejection and well-functioning transplants with no rejection history. We demonstrate for the first time the successful application of high density DNA chip analysis of PBL as a diagnostic tool for transplantation. The significance of these results, if validated in a multicenter prospective trial, would be the establishment of a metric based on gene expression signatures for monitoring the immune status and immunosuppression of transplanted patients. PMID:15307835

  20. Analytic solution of field distribution and demagnetization function of ideal hollow cylindrical field source

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-09-01

    The Halbach type hollow cylindrical permanent magnet array (HCPMA) is a volume compact and energy conserved field source, which have attracted intense interests in many practical applications. Here, using the complex variable integration method based on the Biot-Savart Law (including current distributions inside the body and on the surfaces of magnet), we derive analytical field solutions to an ideal multipole HCPMA in entire space including the interior of magnet. The analytic field expression inside the array material is used to construct an analytic demagnetization function, with which we can explain the origin of demagnetization phenomena in HCPMA by taking into account an ideal magnetic hysteresis loop with finite coercivity. These analytical field expressions and demagnetization functions provide deeper insight into the nature of such permanent magnet array systems and offer guidance in designing optimized array system.

  1. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR.

    PubMed

    Handschuh, Luiza; Kaźmierczak, Maciej; Milewski, Marek C; Góralski, Michał; Łuczak, Magdalena; Wojtaszewska, Marzena; Uszczyńska-Ratajczak, Barbara; Lewandowski, Krzysztof; Komarnicki, Mieczysław; Figlerowicz, Marek

    2018-03-01

    Acute myeloid leukemia (AML) is the most common and severe form of acute leukemia diagnosed in adults. Owing to its heterogeneity, AML is divided into classes associated with different treatment outcomes and specific gene expression profiles. Based on previous studies on AML, in this study, we designed and generated an AML-array containing 900 oligonucleotide probes complementary to human genes implicated in hematopoietic cell differentiation and maturation, proliferation, apoptosis and leukemic transformation. The AML-array was used to hybridize 118 samples from 33 patients with AML of the M1 and M2 subtypes of the French-American‑British (FAB) classification and 15 healthy volunteers (HV). Rigorous analysis of the microarray data revealed that 83 genes were differentially expressed between the patients with AML and the HV, including genes not yet discussed in the context of AML pathogenesis. The most overexpressed genes in AML were STMN1, KITLG, CDK6, MCM5, KRAS, CEBPA, MYC, ANGPT1, SRGN, RPLP0, ENO1 and SET, whereas the most underexpressed genes were IFITM1, LTB, FCN1, BIRC3, LYZ, ADD3, S100A9, FCER1G, PTRPE, CD74 and TMSB4X. The overexpression of the CPA3 gene was specific for AML with mutated NPM1 and FLT3. Although the microarray-based method was insufficient to differentiate between any other AML subgroups, quantitative PCR approaches enabled us to identify 3 genes (ANXA3, S100A9 and WT1) whose expression can be used to discriminate between the 2 studied AML FAB subtypes. The expression levels of the ANXA3 and S100A9 genes were increased, whereas those of WT1 were decreased in the AML-M2 compared to the AML-M1 group. We also examined the association between the STMN1, CAT and ABL1 genes, and the FLT3 and NPM1 mutation status. FLT3+/NPM1- AML was associated with the highest expression of STMN1, and ABL1 was upregulated in FLT3+ AML and CAT in FLT3- AML, irrespectively of the NPM1 mutation status. Moreover, our results indicated that CAT and WT1 gene expression levels correlated with the response to therapy. CAT expression was highest in patients who remained longer under complete remission, whereas WT1 expression increased with treatment resistance. On the whole, this study demonstrates that the AML-array can potentially serve as a first-line screening tool, and may be helpful for the diagnosis of AML, whereas the differentiation between AML subgroups can be more successfully performed with PCR-based analysis of a few marker genes.

  2. The Design of Simple Bacterial Microarrays: Development towards Immobilizing Single Living Bacteria on Predefined Micro-Sized Spots on Patterned Surfaces.

    PubMed

    Arnfinnsdottir, Nina Bjørk; Ottesen, Vegar; Lale, Rahmi; Sletmoen, Marit

    2015-01-01

    In this paper we demonstrate a procedure for preparing bacterial arrays that is fast, easy, and applicable in a standard molecular biology laboratory. Microcontact printing is used to deposit chemicals promoting bacterial adherence in predefined positions on glass surfaces coated with polymers known for their resistance to bacterial adhesion. Highly ordered arrays of immobilized bacteria were obtained using microcontact printed islands of polydopamine (PD) on glass surfaces coated with the antiadhesive polymer polyethylene glycol (PEG). On such PEG-coated glass surfaces, bacteria were attached to 97 to 100% of the PD islands, 21 to 62% of which were occupied by a single bacterium. A viability test revealed that 99% of the bacteria were alive following immobilization onto patterned surfaces. Time series imaging of bacteria on such arrays revealed that the attached bacteria both divided and expressed green fluorescent protein, both of which indicates that this method of patterning of bacteria is a suitable method for single-cell analysis.

  3. A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers.

    PubMed

    Kawamura, Ryuzo; Miyazaki, Minami; Shimizu, Keita; Matsumoto, Yuta; Silberberg, Yaron R; Sathuluri, Ramachandra Rao; Iijima, Masumi; Kuroda, Shun'ichi; Iwata, Futoshi; Kobayashi, Takeshi; Nakamura, Chikashi

    2017-11-08

    Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.

  4. Asymptotic Analysis Of The Total Least Squares ESPRIT Algorithm'

    NASA Astrophysics Data System (ADS)

    Ottersten, B. E.; Viberg, M.; Kailath, T.

    1989-11-01

    This paper considers the problem of estimating the parameters of multiple narrowband signals arriving at an array of sensors. Modern approaches to this problem often involve costly procedures for calculating the estimates. The ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm was recently proposed as a means for obtaining accurate estimates without requiring a costly search of the parameter space. This method utilizes an array invariance to arrive at a computationally efficient multidimensional estimation procedure. Herein, the asymptotic distribution of the estimation error is derived for the Total Least Squares (TLS) version of ESPRIT. The Cramer-Rao Bound (CRB) for the ESPRIT problem formulation is also derived and found to coincide with the variance of the asymptotic distribution through numerical examples. The method is also compared to least squares ESPRIT and MUSIC as well as to the CRB for a calibrated array. Simulations indicate that the theoretic expressions can be used to accurately predict the performance of the algorithm.

  5. Microbial Diagnostic Array Workstation (MDAW): a web server for diagnostic array data storage, sharing and analysis

    PubMed Central

    Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu

    2008-01-01

    Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays. PMID:18811969

  6. Microbial Diagnostic Array Workstation (MDAW): a web server for diagnostic array data storage, sharing and analysis.

    PubMed

    Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu

    2008-09-23

    Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.

  7. Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology.

    PubMed

    Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R

    2007-09-01

    To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.

  8. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope.

    PubMed

    Huang, Yu-Juan; Zhou, Zai-wei; Xu, Miao; Ma, Qing-wen; Yan, Jing-bin; Wang, Jian-yi; Zhang, Quo-qin; Huang, Min; Bao, Liming

    2015-03-01

    Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.

  9. Molecular pathology of acute kidney injury in a choline-deficient model and fish oil protective effect.

    PubMed

    Denninghoff, Valeria; Ossani, Georgina; Uceda, Ana; Rugnone, Matias; Fernández, Elmer; Fresno, Cristóbal; González, German; Díaz, Maria Luisa; Avagnina, Alejandra; Elsner, Boris; Monserrat, Alberto

    2014-04-01

    The aim of this work was to investigate the potential protective effects of fish oil on the basis of kidney transcriptomic data on a nutritional experimental model. Male weanling Wistar rats were divided into four groups and fed choline-deficient (CD) and choline-supplemented (CS) diets with vegetable oil (VO) and menhaden oil (MO): CSVO, CDVO, CSMO and CDMO. Animals were killed after receiving the diets for 6 days. Total RNA was purified from the right kidney and hybridized to Affymetrix GeneChip Rat Gene 1.0 ST Array. Differentially expressed genes were analyzed. All CSVO, CSMO and CDMO rats showed no renal alterations, while all CDVO rats showed renal cortical necrosis. A thorough analysis of the differential expression between groups CSMO and CDMO was carried out. There were no differential genes for p < 0.01. The analysis of the differential expression between groups CSVO and CSMO revealed 32 genes, 11 were over-expressed and 21 were under-expressed in CSMO rats. This work was part of a large set of experiments and was used in a hypothesis-generating manner. The comprehensive analysis of genetic expression allowed confirming that menhaden oil has a protective effect on this nutritional experimental model and identifying 32 genes that could be responsible for that protection, including Gstp1. These results reveal that gene changes could play a role in renal injury.

  10. Differential Protein Expression Profiles in Glaucomatous Trabecular Meshwork: An Evaluation Study on a Small Primary Open Angle Glaucoma Population.

    PubMed

    Micera, Alessandra; Quaranta, Luciano; Esposito, Graziana; Floriani, Irene; Pocobelli, Augusto; Saccà, Sergio Claudio; Riva, Ivano; Manni, Gianluca; Oddone, Francesco

    2016-02-01

    Primary open angle glaucoma (POAG) is a progressive optic neuropathy characterized by impaired aqueous outflow and extensive remodeling in the trabecular meshwork (TM). The aim of this study was to characterize and compare the expression patterns of selected proteins belonging to the tissue remodeling, inflammation and growth factor pathways in ex vivo glaucomatous and post-mortem TMs using protein-array analysis. TM specimens were collected from 63 white subjects, including 40 patients with glaucoma and 23 controls. Forty POAG TMs were collected at the time of surgery and 23 post-mortem specimens were from non-glaucomatous donor sclerocorneal tissues. Protein profiles were evaluated using a chip-based array consisting of 60 literature-selected antibodies. A different expression of some factors was observed in POAG TMs with respect to post-mortem specimens, either in abundance (interleukin [IL]10, IL6, IL5, IL7, IL12, IL3, macrophage inflammatory protein [MIP]1δ/α, vascular endothelial growth factor [VEGF], transforming growth factor beta 1 [TGFβ1], soluble tumor necrosis factor receptor I [sTNFRI]) or in scarcity (IL16, IL18, intercellular adhesion molecule 3 [ICAM3], matrix metalloproteinase-7 [MMP7], tissue inhibitor of metalloproteinase 1 [TIMP1]). MMP2, MMP7, TGFβ1, and VEGF expressions were confirmed by Western blot, zymography, and polymerase chain reaction. No difference in protein profile expression was detected between glaucomatous subtypes. The analysis of this small TM population highlighted some proteins linked to POAG, some previously reported and others of new detection (IL7, MIPs, sTNFαRI). A larger POAG population is required to select promising disease-associated biomarker candidates. This study was partially supported by the Fondazione Roma, the Italian Ministry of Health and the "National 5xMille 2010 tax donation to IRCCS-G.B. Bietti Foundation".

  11. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  12. Modeling and analysis of a novel planar eddy current damper

    NASA Astrophysics Data System (ADS)

    Zhang, He; Kou, Baoquan; Jin, Yinxi; Zhang, Lu; Zhang, Hailin; Li, Liyi

    2014-05-01

    In this paper, a novel 2-DOF permanent magnet planar eddy current damper is proposed, of which the stator is made of a copper plate and the mover is composed of two orthogonal 1-D permanent magnet arrays with a double sided structure. The main objective of the planar eddy current damper is to provide two orthogonal damping forces for dynamic systems like the 2-DOF high precision positioning system. Firstly, the basic structure and the operating principle of the planar damper are introduced. Secondly, the analytical model of the planar damper is established where the magnetic flux density distribution of the permanent magnet arrays is obtained by using the equivalent magnetic charge method and the image method. Then, the analytical expressions of the damping force and damping coefficient are derived. Lastly, to verify the analytical model, the finite element method (FEM) is adopted for calculating the flux density and a planar damper prototype is manufactured and thoroughly tested. The results from FEM and experiments are in good agreement with the ones from the analytical expressions indicating that the analytical model is reasonable and correct.

  13. Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells.

    PubMed

    Tao, Yan-Fang; Wang, Na-Na; Xu, Li-Xiao; Li, Zhi-Heng; Li, Xiao-Lu; Xu, Yun-Yun; Fang, Fang; Li, Mei; Qian, Guang-Hui; Li, Yan-Hong; Li, Yi-Ping; Wu, Yi; Ren, Jun-Li; Du, Wei-Wei; Lu, Jun; Feng, Xing; Wang, Jian; He, Wei-Qi; Hu, Shao-Yan; Pan, Jian

    2017-01-01

    Overexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear. Leukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16 INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis. Our studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G 1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16 INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2. We demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G 1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.

  14. Alterations of LKB1 and KRAS and risk of brain metastasis: comprehensive characterization by mutation analysis, copy number, and gene expression in non-small-cell lung carcinoma.

    PubMed

    Zhao, Ni; Wilkerson, Matthew D; Shah, Usman; Yin, Xiaoying; Wang, Anyou; Hayward, Michele C; Roberts, Patrick; Lee, Carrie B; Parsons, Alden M; Thorne, Leigh B; Haithcock, Benjamin E; Grilley-Olson, Juneko E; Stinchcombe, Thomas E; Funkhouser, William K; Wong, Kwok-Kin; Sharpless, Norman E; Hayes, D Neil

    2014-11-01

    Brain metastases are one of the most malignant complications of lung cancer and constitute a significant cause of cancer related morbidity and mortality worldwide. Recent years of investigation suggested a role of LKB1 in NSCLC development and progression, in synergy with KRAS alteration. In this study, we systematically analyzed how LKB1 and KRAS alteration, measured by mutation, gene expression (GE) and copy number (CN), are associated with brain metastasis in NSCLC. Patients treated at University of North Carolina Hospital from 1990 to 2009 with NSCLC provided frozen, surgically extracted tumors for analysis. GE was measured using Agilent 44,000 custom-designed arrays, CN was assessed by Affymetrix GeneChip Human Mapping 250K Sty Array or the Genome-Wide Human SNP Array 6.0 and gene mutation was detected using ABI sequencing. Integrated analysis was conducted to assess the relationship between these genetic markers and brain metastasis. A model was proposed for brain metastasis prediction using these genetic measurements. 17 of the 174 patients developed brain metastasis. LKB1 wild type tumors had significantly higher LKB1 CN (p<0.001) and GE (p=0.002) than the LKB1 mutant group. KRAS wild type tumors had significantly lower KRAS GE (p<0.001) and lower CN, although the latter failed to be significant (p=0.295). Lower LKB1 CN (p=0.039) and KRAS mutation (p=0.007) were significantly associated with more brain metastasis. The predictive model based on nodal (N) stage, patient age, LKB1 CN and KRAS mutation had a good prediction accuracy, with area under the ROC curve of 0.832 (p<0.001). LKB1 CN in combination with KRAS mutation predicted brain metastasis in NSCLC. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Expression analysis of G Protein-Coupled Receptors in mouse macrophages

    PubMed Central

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-01-01

    Background Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Results Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. Conclusion The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery. PMID:18442421

  16. Comparative analysis of conditional reporter alleles in the developing embryo and embryonic nervous system.

    PubMed

    Ellisor, Debra; Koveal, Dorothy; Hagan, Nellwyn; Brown, Ashly; Zervas, Mark

    2009-10-01

    A long-standing problem in development is understanding how progenitor cells transiently expressing genes contribute to complex anatomical and functional structures. In the developing nervous system an additional level of complexity arises when considering how cells of distinct lineages relate to newly established neural circuits. To address these problems, we used both cumulative marking with Cre/loxP and Genetic Inducible Fate Mapping (GIFM), which permanently and heritably marks small populations of progenitors and their descendants with fine temporal control using CreER/loxP. A key component used in both approaches is a conditional phenotyping allele that has the potential to be expressed in all cell types, but is quiescent because of a loxP flanked Stop sequence, which precedes a reporter allele. Upon recombination, the resulting phenotyping allele is 'turned on' and then constitutively expressed. Thus, the reporter functions as a high fidelity genetic lineage tracer in vivo. Currently there is an array of reporter alleles that can be used in marking strategies, but their recombination efficiency and applicability to a wide array of tissues has not been thoroughly described. To assess the recombination/marking potential of the reporters, we utilized CreER(T) under the control of a Wnt1 transgene (Wnt1-CreER(T)) as well as a cumulative, non-inducible En1(Cre) knock-in line in combination with three different reporters: R26R (LacZ reporter), Z/EG (EGFP reporter), and Tau-Lox-STOP-Lox-mGFP-IRES-NLS-LacZ (membrane-targeted GFP/nuclear LacZ reporter). We marked the Wnt1 lineage using each of the three reporters at embryonic day (E) 8.5 followed by analysis at E10.0, E12.5, and in the adult. We also compared cumulative marking of cells with a history of En1 expression at the same stages. We evaluated the reporters by whole-mount and section analysis and ascertained the strengths and weaknesses of each of the reporters. Comparative analysis with the reporters elucidated complexities of how the Wnt1 and En1 lineages contribute to developing embryos and to axonal projection patterns of neurons derived from these lineages.

  17. Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics

    DTIC Science & Technology

    2010-06-01

    the systems described in the following, ultrathin, spin- cast films of polyimide (PI) served as a support for arrays of electrodes designed for...micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008). 20. Murphy, A. R., John, P. S...analysis of induced colour change on periodically nanopatterned silk films. Opt. Express 17, 21271–21279 (2009). 25. Parker, S. T. et al. Biocompatible

  18. Novel Array-Based Target Identification for Synergistic Sensitization of Breast Cancer to Herceptin

    DTIC Science & Technology

    2010-05-01

    Tatsuya Azum, Eileen Adamson, Ryan Alipio, Becky Pio, Frank Jones, Dan Mercola. Chip- on- chip analysis of mechanism of action of HER2 inhibition in...Munawar, Kutbuddin S. Doctor, Michael Birrer, Michael McClelland, Eileen Adamson, Dan Mercola. Egr1 regulates the coordinated expression of numerous...Kemal Korkmaz, Mashide Ohmichi, Eileen Adamson, Michael McClelland, Dan Mercola. Identification of genes bound and regulated by ATF2/c-Jun

  19. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays

    PubMed Central

    2017-01-01

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C2-phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers. PMID:28486805

  20. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays.

    PubMed

    Li, Ping; Dou, Xiaoqiu; Feng, Chuanliang; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger

    2017-08-08

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C 2 -phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers.

  1. Responses of Murine and Human Macrophages to Leptospiral Infection: A Study Using Comparative Array Analysis

    PubMed Central

    Yang, Yingchao; Zhao, Jinping; Yang, Yutao; Cao, Yongguo; Hong, Cailing; Liu, Yuan; Sun, Lan; Huang, Minjun; Gu, Junchao

    2013-01-01

    Leptospirosis is a re-emerging tropical infectious disease caused by pathogenic Leptospira spp. The different host innate immune responses are partially related to the different severities of leptospirosis. In this study, we employed transcriptomics and cytokine arrays to comparatively calculate the responses of murine peritoneal macrophages (MPMs) and human peripheral blood monocytes (HBMs) to leptospiral infection. We uncovered a series of different expression profiles of these two immune cells. The percentages of regulated genes in several biological processes of MPMs, such as antigen processing and presentation, membrane potential regulation, and the innate immune response, etc., were much greater than those of HBMs (>2-fold). In MPMs and HBMs, the caspase-8 and Fas-associated protein with death domain (FADD)-like apoptosis regulator genes were significantly up-regulated, which supported previous results that the caspase-8 and caspase-3 pathways play an important role in macrophage apoptosis during leptospiral infection. In addition, the key component of the complement pathway, C3, was only up-regulated in MPMs. Furthermore, several cytokines, e.g. interleukin 10 (IL-10) and tumor necrosis factor alpha (TNF-alpha), were differentially expressed at both mRNA and protein levels in MPMs and HBMs. Some of the differential expressions were proved to be pathogenic Leptospira-specific regulations at mRNA level or protein level. Though it is still unclear why some animals are resistant and others are susceptible to leptospiral infection, this comparative study based on transcriptomics and cytokine arrays partially uncovered the differences of murine resistance and human susceptibility to leptospirosis. Taken together, these findings will facilitate further molecular studies on the innate immune response to leptospiral infection. PMID:24130911

  2. CXCL8 hyper-signaling in the aortic abdominal aneurysm.

    PubMed

    Kokje, Vivianne B C; Gäbel, Gabor; Dalman, Ron L; Koole, Dave; Northoff, Bernd H; Holdt, Lesca M; Hamming, Jaap F; Lindeman, Jan H N

    2018-08-01

    There are indications for elevated CXCL8 levels in abdominal aortic aneurysm disease (AAA). CXCL8 is concurrently involved in neutrophil-mediated inflammation and angiogenesis, two prominent and distinctive characteristics of AAA. As such we considered an evaluation of a role for CXCL8 in AAA progression relevant. ELISA's, real time PCR and array analysis were used to explore CXCL8 signaling in AAA wall samples. A role for CXCL8 in AAA disease was tested through the oral CXCR1/2 antagonist DF2156A in the elastase model of AAA disease. There is an extreme disparity in aortic wall CXCL8 content between AAA and aortic atherosclerotic disease (median [IQR] aortic wall CXCL8 content: 425 [141-1261] (AAA) vs. 23 [2.8-89] (atherosclerotic aorta) µg/g protein (P < 1 · 10 -14 )), and abundant expression of the CXCR1 and 2 receptors in AAA. Array analysis followed by pathway analysis showed that CXCL8 hyper-expression in AAA is followed increased by IL-8 signaling (Z-score for AAA vs. atherosclerotic control: 2.97, p < 0.0001). Interference with CXCL8 signaling through DF2156A fully abrogated AAA formation and prevented matrix degradation in the murine elastase model of AAA disease (p < 0.001). CXCL8-signaling is a prominent and distinctive feature of AAA, interference with the pathway constitutes a promising target for medical stabilization of AAA. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Supercontinuum white light lasers for flow cytometry

    PubMed Central

    Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2009-01-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836

  4. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection

    PubMed Central

    2012-01-01

    Background Pulmonary tuberculosis (TB) is a highly lethal infectious disease and early diagnosis of TB is critical for the control of disease progression. The objective of this study was to profile a panel of serum microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary TB infection. Methods Using TaqMan Low-Density Array (TLDA) analysis followed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) validation, expression levels of miRNAs in serum samples from 30 patients with active tuberculosis and 60 patients with Bordetella pertussis (BP), varicella-zoster virus (VZV) and enterovirus (EV) were analyzed. Results The Low-Density Array data showed that 97 miRNAs were differentially expressed in pulmonary TB patient sera compared with healthy controls (90 up-regulated and 7 down-regulated). Following qRT-PCR confirmation and receiver operational curve (ROC) analysis, three miRNAs (miR-361-5p, miR-889 and miR-576-3p) were shown to distinguish TB infected patients from healthy controls and other microbial infections with moderate sensitivity and specificity (area under curve (AUC) value range, 0.711-0.848). Multiple logistic regression analysis of a combination of these three miRNAs showed an enhanced ability to discriminate between these two groups with an AUC value of 0.863. Conclusions Our study suggests that altered levels of serum miRNAs have great potential to serve as non-invasive biomarkers for early detection of pulmonary TB infection. PMID:23272999

  5. NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer

    PubMed Central

    Kumar, S; Das, S; Rachagani, S; Kaur, S; Joshi, S; Johansson, SL; Ponnusamy, MP; Jain, M; Batra, SK

    2015-01-01

    Pancreatic cancer (PC) is characterized by aberrant overexpression of mucins that contribute to its pathogenesis. Although the inflammatory cytokines contribute to mucin overexpression, the mucin profile of PC is markedly distinct from that of normal or inflamed pancreas. We postulated that de novo expression of various mucins in PC involves chromatin modifications. Analysis of chromatin modifying enzymes by PCR array identified differential expression of NCOA3 in MUC4-expressing PC cell lines. Immunohistochemistry analysis in tumor tissues from patients and spontaneous mouse models, and microarray analysis following the knockdown of NCOA3 were performed to elucidate its role in mucin regulation and overall impact on PC. Silencing of NCOA3 in PC cell lines resulted in significant downregulation of two most differentially expressed mucins in PC, MUC4 and MUC1 (P<0.01). Immunohistochemistry analysis in PC tissues and metastatic lesions established an association between NCOA3 and mucin (MUC1 and MUC4) expression. Spontaneous mouse model of PC (K-rasG12D; Pdx-1cre) showed early expression of Ncoa3 during preneoplastic lesions. Mechanistically, NCOA3 knockdown abrogated retinoic acid-mediated MUC4 upregulation by restricting MUC4 promoter accessibility as demonstrated by micrococcus nuclease digestion (P<0.05) and chromatin immuno-precipitation analysis. NCOA3 also created pro-inflammatory conditions by upregulating chemokines like CXCL1, 2, 5 and CCL20 (P<0.001). AKT, ubiquitin C, ERK1/2 and NF-κB occupied dominant nodes in the networks significantly modulated after NCOA3 silencing. In addition, NCOA3 stabilized mucins post translationally through fucosylation by FUT8, as the knockdown of FUT8 resulted in the downregulation of MUC4 and MUC1 at protein levels. PMID:25531332

  6. Genome-Wide Survey of Cold Stress Regulated Alternative Splicing in Arabidopsis thaliana with Tiling Microarray

    PubMed Central

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682

  7. ArrayVigil: a methodology for statistical comparison of gene signatures using segregated-one-tailed (SOT) Wilcoxon's signed-rank test.

    PubMed

    Khan, Haseeb Ahmad

    2005-01-28

    Due to versatile diagnostic and prognostic fidelity molecular signatures or fingerprints are anticipated as the most powerful tools for cancer management in the near future. Notwithstanding the experimental advancements in microarray technology, methods for analyzing either whole arrays or gene signatures have not been firmly established. Recently, an algorithm, ArraySolver has been reported by Khan for two-group comparison of microarray gene expression data using two-tailed Wilcoxon signed-rank test. Most of the molecular signatures are composed of two sets of genes (hybrid signatures) wherein up-regulation of one set and down-regulation of the other set collectively define the purpose of a gene signature. Since the direction of a selected gene's expression (positive or negative) with respect to a particular disease condition is known, application of one-tailed statistics could be a more relevant choice. A novel method, ArrayVigil, is described for comparing hybrid signatures using segregated-one-tailed (SOT) Wilcoxon signed-rank test and the results compared with integrated-two-tailed (ITT) procedures (SPSS and ArraySolver). ArrayVigil resulted in lower P values than those obtained from ITT statistics while comparing real data from four signatures.

  8. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    PubMed Central

    2010-01-01

    Background Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is co-expressed with several genes encoding isoflavonoid-related metabolic enzymes. We then focused on nodulation-induced P450s and found that CYP728H1 was co-expressed with the genes involved in phenylpropanoid metabolism. Similarly, CYP736A34 was highly co-expressed with lipoxygenase, lectin and CYP83D1, all of which are involved in root and nodule development. Conclusions The genome scale analysis of P450s in soybean reveals many unique features of these important enzymes in this crop although the functions of most of them are largely unknown. Gene co-expression analysis proves to be a useful tool to infer the function of uncharacterized genes. Our work presented here could provide important leads toward functional genomics studies of soybean P450s and their regulatory network through the integration of reverse genetics, biochemistry, and metabolic profiling tools. The identification of nodule-specific P450s and their further exploitation may help us to better understand the intriguing process of soybean and rhizobium interaction. PMID:21062474

  9. Differential gene expression profiles of peripheral blood mononuclear cells in childhood asthma.

    PubMed

    Kong, Qian; Li, Wen-Jing; Huang, Hua-Rong; Zhong, Ying-Qiang; Fang, Jian-Pei

    2015-05-01

    Asthma is a common childhood disease with strong genetic components. This study compared whole-genome expression differences between asthmatic young children and healthy controls to identify gene signatures of childhood asthma. Total RNA extracted from peripheral blood mononuclear cells (PBMC) was subjected to microarray analysis. QRT-PCR was performed to verify the microarray results. Classification and functional characterization of differential genes were illustrated by hierarchical clustering and gene ontology analysis. Multiple logistic regression (MLR) analysis, receiver operating characteristic (ROC) curve analysis, and discriminate power were used to scan asthma-specific diagnostic markers. For fold-change>2 and p < 0.05, there were 758 named differential genes. The results of QRT-PCR confirmed successfully the array data. Hierarchical clustering divided 29 highly possible genes into seven categories and the genes in the same cluster were likely to possess similar expression patterns or functions. Gene ontology analysis presented that differential genes primarily enriched in immune response, response to stress or stimulus, and regulation of apoptosis in biological process. MLR and ROC curve analysis revealed that the combination of ADAM33, Smad7, and LIGHT possessed excellent discriminating power. The combination of ADAM33, Smad7, and LIGHT would be a reliable and useful childhood asthma model for prediction and diagnosis.

  10. Partial least squares based identification of Duchenne muscular dystrophy specific genes.

    PubMed

    An, Hui-bo; Zheng, Hua-cheng; Zhang, Li; Ma, Lin; Liu, Zheng-yan

    2013-11-01

    Large-scale parallel gene expression analysis has provided a greater ease for investigating the underlying mechanisms of Duchenne muscular dystrophy (DMD). Previous studies typically implemented variance/regression analysis, which would be fundamentally flawed when unaccounted sources of variability in the arrays existed. Here we aim to identify genes that contribute to the pathology of DMD using partial least squares (PLS) based analysis. We carried out PLS-based analysis with two datasets downloaded from the Gene Expression Omnibus (GEO) database to identify genes contributing to the pathology of DMD. Except for the genes related to inflammation, muscle regeneration and extracellular matrix (ECM) modeling, we found some genes with high fold change, which have not been identified by previous studies, such as SRPX, GPNMB, SAT1, and LYZ. In addition, downregulation of the fatty acid metabolism pathway was found, which may be related to the progressive muscle wasting process. Our results provide a better understanding for the downstream mechanisms of DMD.

  11. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar).

    PubMed

    Bourret, Vincent; Kent, Matthew P; Primmer, Craig R; Vasemägi, Anti; Karlsson, Sten; Hindar, Kjetil; McGinnity, Philip; Verspoor, Eric; Bernatchez, Louis; Lien, Sigbjørn

    2013-02-01

    Atlantic salmon (Salmo salar) is one of the most extensively studied fish species in the world due to its significance in aquaculture, fisheries and ongoing conservation efforts to protect declining populations. Yet, limited genomic resources have hampered our understanding of genetic architecture in the species and the genetic basis of adaptation to the wide range of natural and artificial environments it occupies. In this study, we describe the development of a medium-density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing. The array was used in the most extensive assessment of population genetic structure performed to date in this species. A total of 6176 informative SNPs were successfully genotyped in 38 anadromous and freshwater wild populations distributed across the species natural range. Principal component analysis clearly differentiated European and North American populations, and within Europe, three major regional genetic groups were identified for the first time in a single analysis. We assessed the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups. In Europe, secondary contact zones were identified between major clusters where endogenous and exogenous barriers could be associated, rendering the interpretation of environmental influence on potentially adaptive divergence equivocal. A small number of markers highly divergent in allele frequencies (outliers) were observed between (multiple) freshwater and anadromous populations, between northern and southern latitudes, and when comparing Baltic populations to all others. We also discuss the potential future applications of the SNP array for conservation, management and aquaculture. © 2012 Blackwell Publishing Ltd.

  12. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast, reversible format with the detection limit of a few hundred molecules.

  13. Model of experts for decision support in the diagnosis of leukemia patients.

    PubMed

    Corchado, Juan M; De Paz, Juan F; Rodríguez, Sara; Bajo, Javier

    2009-07-01

    Recent advances in the field of biomedicine, specifically in the field of genomics, have led to an increase in the information available for conducting expression analysis. Expression analysis is a technique used in transcriptomics, a branch of genomics that deals with the study of messenger ribonucleic acid (mRNA) and the extraction of information contained in the genes. This increase in information is reflected in the exon arrays, which require the use of new techniques in order to extract the information. The purpose of this study is to provide a tool based on a mixture of experts model that allows the analysis of the information contained in the exon arrays, from which automatic classifications for decision support in diagnoses of leukemia patients can be made. The proposed model integrates several cooperative algorithms characterized for their efficiency for data processing, filtering, classification and knowledge extraction. The Cancer Institute of the University of Salamanca is making an effort to develop tools to automate the evaluation of data and to facilitate de analysis of information. This proposal is a step forward in this direction and the first step toward the development of a mixture of experts tool that integrates different cognitive and statistical approaches to deal with the analysis of exon arrays. The mixture of experts model presented within this work provides great capacities for learning and adaptation to the characteristics of the problem in consideration, using novel algorithms in each of the stages of the analysis process that can be easily configured and combined, and provides results that notably improve those provided by the existing methods for exon arrays analysis. The material used consists of data from exon arrays provided by the Cancer Institute that contain samples from leukemia patients. The methodology used consists of a system based on a mixture of experts. Each one of the experts incorporates novel artificial intelligence techniques that improve the process of carrying out various tasks such as pre-processing, filtering, classification and extraction of knowledge. This article will detail the manner in which individual experts are combined so that together they generate a system capable of extracting knowledge, thus permitting patients to be classified in an automatic and efficient manner that is also comprehensible for medical personnel. The system has been tested in a real setting and has been used for classifying patients who suffer from different forms of leukemia at various stages. Personnel from the Cancer Institute supervised and participated throughout the testing period. Preliminary results are promising, notably improving the results obtained with previously used tools. The medical staff from the Cancer Institute considers the tools that have been developed to be positive and very useful in a supporting capacity for carrying out their daily tasks. Additionally the mixture of experts supplies a tool for the extraction of necessary information in order to explain the associations that have been made in simple terms. That is, it permits the extraction of knowledge for each classification made and generalized in order to be used in subsequent classifications. This allows for a large amount of learning and adaptation within the proposed system.

  14. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development.

    PubMed

    Gavazzi, Floriana; Pigna, Gaia; Braglia, Luca; Gianì, Silvia; Breviario, Diego; Morello, Laura

    2017-12-08

    Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.

  15. Brain region-specific gene expression changes after chronic intermittent ethanol exposure and early withdrawal in C57BL/6J mice

    PubMed Central

    Melendez, Roberto I.; McGinty, Jacqueline F.; Kalivas, Peter W.; Becker, Howard C.

    2014-01-01

    Neuroadaptations that participate in the ontogeny of alcohol dependence are likely a result of altered gene expression in various brain regions. The present study investigated brain region-specific changes in the pattern and magnitude of gene expression immediately following chronic intermittent ethanol (CIE) exposure and 8 hours following final ethanol exposure [i.e. early withdrawal (EWD)]. High-density oligonucleotide microarrays (Affymetrix 430A 2.0, Affymetrix, Santa Clara, CA, USA) and bioinformatics analysis were used to characterize gene expression and function in the prefrontal cortex (PFC), hippocampus (HPC) and nucleus accumbens (NAc) of C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, USA). Gene expression levels were determined using gene chip robust multi-array average followed by statistical analysis of microarrays and validated by quantitative real-time reverse transcription polymerase chain reaction and Western blot analysis. Results indicated that immediately following CIE exposure, changes in gene expression were strikingly greater in the PFC (284 genes) compared with the HPC (16 genes) and NAc (32 genes). Bioinformatics analysis revealed that most of the transcriptionally responsive genes in the PFC were involved in Ras/MAPK signaling, notch signaling or ubiquitination. In contrast, during EWD, changes in gene expression were greatest in the HPC (139 genes) compared with the PFC (four genes) and NAc (eight genes). The most transcriptionally responsive genes in the HPC were involved in mRNA processing or actin dynamics. Of the few genes detected in the NAc, the most representatives were involved in circadian rhythms. Overall, these findings indicate that brain region-specific and time-dependent neuroadaptive alterations in gene expression play an integral role in the development of alcohol dependence and withdrawal. PMID:21812870

  16. A phase 1 trial of ABT-510 concurrent with standard chemoradiation for patients with newly diagnosed glioblastoma.

    PubMed

    Nabors, Louis B; Fiveash, John B; Markert, James M; Kekan, Manasi S; Gillespie, George Y; Huang, Zhi; Johnson, Martin J; Meleth, Sreelatha; Kuo, Huichien; Gladson, Candece L; Fathallah-Shaykh, Hassan M

    2010-03-01

    To determine the maximum tolerated dose of ABT-510, a thrombospondin-1 mimetic drug with antiangiogenic properties, when used concurrently with temozolomide and radiotherapy in patients with newly diagnosed glioblastoma. Phase 1 dose-escalation clinical trial. Comprehensive Cancer Center, University of Alabama at Birmingham. Patients A total of 23 patients with newly diagnosed, histologically verified glioblastoma enrolled between April 2005 and January 2007. Four cohorts of 3 patients each received subcutaneous ABT-510 injection at doses of 20, 50, 100, or 200 mg/d. The maximum cohort was expanded to 14 patients to obtain additional safety and gene expression data. The treatment plan included 10 weeks of induction phase (temozolomide and radiotherapy with ABT-510 for 6 weeks plus ABT-510 monotherapy for 4 weeks) followed by a maintenance phase of ABT-510 and monthly temozolomide. Patients were monitored with brain magnetic resonance imaging and laboratory testing for dose-limiting toxicities, defined as grades 3 or 4 nonhematological toxicities and grade 4 hematological toxicities. Therapy was discontinued if 14 maintenance cycles were completed, disease progression occurred, or if the patient requested withdrawal. Disease progression, survival statistics, and gene expression arrays were analyzed. There were no grade 3 or 4 dose-limiting toxicity events that appeared related to ABT-510 for the dose range of 20 to 200 mg/d. A maximum tolerated dose was not defined. Most adverse events were mild, and injection-site reactions. The median time to tumor progression was 45.9 weeks, and the median overall survival time was 64.4 weeks. Gene expression analysis using TaqMan low-density arrays identified angiogenic genes that were differentially expressed in the brains of controls compared with patients with newly diagnosed glioblastoma, and identified FGF-1 and TIE-1 as being downregulated in patients who had better clinical outcomes. ABT-510, at subcutaneous doses up to 200 mg/d, is tolerated well with concurrent temozolomide and radiotherapy in patients with newly diagnosed glioblastoma, and low-density arrays provide a useful method of exploring gene expression profiles.

  17. Duplication of 17(p11.2p11.2) in a male child with autism and severe language delay.

    PubMed

    Nakamine, Alisa; Ouchanov, Leonid; Jiménez, Patricia; Manghi, Elina R; Esquivel, Marcela; Monge, Silvia; Fallas, Marietha; Burton, Barbara K; Szomju, Barbara; Elsea, Sarah H; Marshall, Christian R; Scherer, Stephen W; McInnes, L Alison

    2008-03-01

    Duplications of 17(p11.2p11.2) have been associated with various behavioral manifestations including attention deficits, obsessive-compulsive symptoms, autistic traits, and language delay. We are conducting a genetic study of autism and are screening all cases for submicroscopic chromosomal abnormalities, in addition to standard karyotyping, and fragile X testing. Using array-based comparative genomic hybridization analysis of data from the Affymetrix GeneChip(R) Human Mapping Array set, we detected a duplication of approximately 3.3 Mb on chromosome 17p11.2 in a male child with autism and severe expressive language delay. The duplication was confirmed by measuring the copy number of genomic DNA using quantitative polymerase chain reaction. Gene expression analyses revealed increased expression of three candidate genes for the Smith-Magenis neurobehavioral phenotype, RAI1, DRG2, and RASD1, in transformed lymphocytes from Case 81A, suggesting gene dosage effects. Our results add to a growing body of evidence suggesting that duplications of 17(p11.2p11.2) result in language delay as well as autism and related phenotypes. As Smith-Magenis syndrome is also associated with language delay, a gene involved in acquisition of language may lie within this interval. Whether a parent of origin effect, gender of the case, the presence of allelic variation, or changes in expression of genes outside the breakpoints influence the resultant phenotype remains to be determined. (c) 2007 Wiley-Liss, Inc.

  18. Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer.

    PubMed

    Alldinger, Ingo; Dittert, Dag; Peiper, Matthias; Fusco, Alberto; Chiappetta, Gennaro; Staub, Eike; Lohr, Matthias; Jesnowski, Ralf; Baretton, Gustavo; Ockert, Detlef; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2005-01-01

    Pancreatic cancer is one of the leading causes of cancer-related death. Using DNA gene expression analysis based on a custom made Affymetrix cancer array, we investigated the expression pattern of both primary and established pancreatic carcinoma cell lines. We analyzed the gene expression of 5 established pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, Capan-2 and HPAF II) and 5 primary isolates, 1 of them derived from benign pancreatic duct cells. Out of 1,540 genes which were expressed in at least 3 experiments, we found 122 genes upregulated and 18 downregulated in tumor cell lines compared to benign cells with a fold change >3. Several of the upregulated genes (like Prefoldin 5, ADAM9 and E-cadherin) have been associated with pancreatic cancer before. The other differentially regulated genes, however, play a so far unknown role in the course of human pancreatic carcinoma. By means of immunohistochemistry we could show that thymosin beta-10 (TMSB10), upregulated in tumor cell lines, is expressed in human pancreatic carcinoma, but not in non-neoplastic pancreatic tissue, suggesting a role for TMSB10 in the carcinogenesis of pancreatic carcinoma. Using gene expression profiling of pancreatic cell lines we were able to identify genes differentially expressed in pancreatic adenocarcinoma, which might contribute to pancreatic cancer development. Copyright 2005 S. Karger AG, Basel.

  19. Transcriptome Profiling of In-Vivo Produced Bovine Pre-implantation Embryos Using Two-color Microarray Platform.

    PubMed

    Salehi, Reza; Tsoi, Stephen C M; Colazo, Marcos G; Ambrose, Divakar J; Robert, Claude; Dyck, Michael K

    2017-01-30

    Early embryonic loss is a large contributor to infertility in cattle. Moreover, bovine becomes an interesting model to study human preimplantation embryo development due to their similar developmental process. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. Microarray technology allows quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. One of the main decisions that have to be made when planning a microarray experiment is whether to use a one- or two-color approach. Two-color design increases technical replication, minimizes variability, improves sensitivity and accuracy as well as allows having loop designs, defining the common reference samples. Although microarray is a powerful biological tool, there are potential pitfalls that can attenuate its power. Hence, in this technical paper we demonstrate an optimized protocol for RNA extraction, amplification, labeling, hybridization of the labeled amplified RNA to the array, array scanning and data analysis using the two-color analysis strategy.

  20. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    DOE PAGES

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; ...

    2015-11-04

    Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less

  1. High-throughput multiplex HLA-typing by ligase detection reaction (LDR) and universal array (UA) approach.

    PubMed

    Consolandi, Clarissa

    2009-01-01

    One major goal of genetic research is to understand the role of genetic variation in living systems. In humans, by far the most common type of such variation involves differences in single DNA nucleotides, and is thus termed single nucleotide polymorphism (SNP). The need for improvement in throughput and reliability of traditional techniques makes it necessary to develop new technologies. Thus the past few years have witnessed an extraordinary surge of interest in DNA microarray technology. This new technology offers the first great hope for providing a systematic way to explore the genome. It permits a very rapid analysis of thousands genes for the purpose of gene discovery, sequencing, mapping, expression, and polymorphism detection. We generated a series of analytical tools to address the manufacturing, detection and data analysis components of a microarray experiment. In particular, we set up a universal array approach in combination with a PCR-LDR (polymerase chain reaction-ligation detection reaction) strategy for allele identification in the HLA gene.

  2. miR-340 alleviates chemoresistance of osteosarcoma cells by targeting ZEB1.

    PubMed

    Yan, Haibin; Zhang, Bingyun; Fang, Chongbin; Chen, Liqiu

    2018-06-01

    Chemoresistance during treatment of osteosarcoma (OS) is attracting more and more attention as the main clinical obstacle. The purpose of this study was to elucidate the role of miR-340 in chemoresistance of OS. Plasmid construction and transfection, miRNA arrays, PCR analyses, and western blot analysis, as well as MTT, apoptosis, and luciferase assays were carried out in MG-63 cells and MG-63/cisplatin (DDP)-resistant cells. The results showed that miR-340 was downregulated in OS tissues and drug-resistant OS cells. Moreover, a negative correlation was observed between miR-340 and ZEB1 expression in OS tissues. Forced expression of miR-340 in drug-resistant OS cells significantly reduced multidrug resistance-1 and P-gp expression. Overexpression of miR-340 enhanced sensitivity to DDP by inhibiting viability and promoting apoptosis. The luciferase assay and western blot analysis identified ZEB1 as a direct target of miR-340, and miR-340 negatively regulated ZEB1 expression. Ectopic expression of ZEB1 reversed the effects of miR-340 on P-gp expression, cell viability, and apoptosis. miR-340 alleviated chemoresistance of OS cells by targeting ZEB1. Our results indicate that targeting miR-340 may be a potential therapeutic approach to treat drug-resistant OS.

  3. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    PubMed

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  4. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat

    PubMed Central

    Hashim, Noor Haza Fazlin; Bharudin, Izwan; Abu Bakar, Mohd Faizal; Huang, Kie Kyon; Alias, Halimah; Lee, Bernard K. B.; Mat Isa, Mohd Noor; Mat-Sharani, Shuhaila; Sulaiman, Suhaila; Tay, Lih Jinq; Zolkefli, Radziah; Muhammad Noor, Yusuf; Law, Douglas Sie Nguong; Abdul Rahman, Siti Hamidah; Md-Illias, Rosli; Abu Bakar, Farah Diba; Najimudin, Nazalan; Abdul Murad, Abdul Munir; Mahadi, Nor Muhammad

    2018-01-01

    Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival. PMID:29385175

  5. Type 2 diabetes mellitus disease risk genes identified by genome wide copy number variation scan in normal populations.

    PubMed

    Prabhanjan, Manasa; Suresh, Raviraj V; Murthy, Megha N; Ramachandra, Nallur B

    2016-03-01

    To identify the role of copy number variations (CNVs) on disease risk genes and its effect on disease phenotypes in type 2 diabetes mellitus (T2DM) in 12 random populations using high throughput arrays. CNV analysis was carried out on a total of 1715 individuals from 12 populations, from ArrayExpress Archive of the European Bioinformatics Institute along with our subjects using Affymetrix Genome Wide SNP 6.0 array. CNV effect on T2DM genes were analyzed using several bioinformatics tools and a molecular protein interaction network was constructed to identify the disease mechanism altered by the CNVs. Analysis showed 34.4% of the total population to be under CNV burden for T2DM, with 83 disease causal and associated genes being under CNV influence. Hotspots were identified on chromosomes 22, 12, 6, 19 and 11.Overlap studies with case cohorts revealed significant disease risk genes such as EGFR, E2F1, PPP1R3A, HLA and TSPAN8. CNVs play a significant role in predisposing T2DM in normal cohorts and contribute to the phenotypic effects. Thus, CNVs should be considered as one of the major contributors in predisposition of the disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. CHESS (CgHExpreSS): a comprehensive analysis tool for the analysis of genomic alterations and their effects on the expression profile of the genome.

    PubMed

    Lee, Mikyung; Kim, Yangseok

    2009-12-16

    Genomic alterations frequently occur in many cancer patients and play important mechanistic roles in the pathogenesis of cancer. Furthermore, they can modify the expression level of genes due to altered copy number in the corresponding region of the chromosome. An accumulating body of evidence supports the possibility that strong genome-wide correlation exists between DNA content and gene expression. Therefore, more comprehensive analysis is needed to quantify the relationship between genomic alteration and gene expression. A well-designed bioinformatics tool is essential to perform this kind of integrative analysis. A few programs have already been introduced for integrative analysis. However, there are many limitations in their performance of comprehensive integrated analysis using published software because of limitations in implemented algorithms and visualization modules. To address this issue, we have implemented the Java-based program CHESS to allow integrative analysis of two experimental data sets: genomic alteration and genome-wide expression profile. CHESS is composed of a genomic alteration analysis module and an integrative analysis module. The genomic alteration analysis module detects genomic alteration by applying a threshold based method or SW-ARRAY algorithm and investigates whether the detected alteration is phenotype specific or not. On the other hand, the integrative analysis module measures the genomic alteration's influence on gene expression. It is divided into two separate parts. The first part calculates overall correlation between comparative genomic hybridization ratio and gene expression level by applying following three statistical methods: simple linear regression, Spearman rank correlation and Pearson's correlation. In the second part, CHESS detects the genes that are differentially expressed according to the genomic alteration pattern with three alternative statistical approaches: Student's t-test, Fisher's exact test and Chi square test. By successive operations of two modules, users can clarify how gene expression levels are affected by the phenotype specific genomic alterations. As CHESS was developed in both Java application and web environments, it can be run on a web browser or a local machine. It also supports all experimental platforms if a properly formatted text file is provided to include the chromosomal position of probes and their gene identifiers. CHESS is a user-friendly tool for investigating disease specific genomic alterations and quantitative relationships between those genomic alterations and genome-wide gene expression profiling.

  7. Construction and application of a bovine immune-endocrine cDNA microarray.

    PubMed

    Tao, Wenjing; Mallard, Bonnie; Karrow, Niel; Bridle, Byram

    2004-09-01

    A variety of commercial DNA arrays specific for humans and rodents are widely available; however, microarrays containing well-characterized genes to study pathway-specific gene expression are not as accessible for domestic animals, such as cattle, sheep and pigs. Therefore, a small-scale application-targeted bovine immune-endocrine cDNA array was developed to evaluate genetic pathways involved in the immune-endocrine axis of cattle during periods of altered homeostasis provoked by physiological or environmental stressors, such as infection, vaccination or disease. For this purpose, 167 cDNA sequences corresponding to immune, endocrine and inflammatory response genes were collected and categorized. Positive controls included 5 housekeeping genes (glyceraldehydes-3-phosphate dehydrogenase, hypoxanthine phosphoribosyltransferase, ribosomal protein L19, beta-actin, beta2-microglobulin) and bovine genomic DNA. Negative controls were a bacterial gene (Rhodococcus equi 17-kDa virulence-associated protein) and a partial sequence of the plasmid pACYC177. In addition, RNA extracted from un-stimulated, as well as superantigen (Staphylococcus aureus enterotoxin-A, S. aureus Cowan Pansorbin Cells) and mitogen-stimulated (LPS, ConA) bovine blood leukocytes was mixed, reverse transcribed and PCR amplified using gene-specific primers. The endocrine-associated genes were amplified from cDNA derived from un-stimulated bovine hypothalamus, pituitary, adrenal and thyroid gland tissues. The array was constructed in 4 repeating grids of 180 duplicated spots by coupling the PCR amplified 213-630 bp gene fragments onto poly-l-lysine coated glass slides. The bovine immune-endocrine arrays were standardized and preliminary gene expression profiles generated using Cy3 and Cy5 labelled cDNA from un-stimulated and ConA (5 microg/ml) stimulated PBMC of 4 healthy Holstein cows (2-4 replicate arrays/cow) in a time course study. Mononuclear cell-derived cytokine and chemokine (IL-2, IL-1alpha, TNFalpha, IFN-gamma, TGFbeta-1, MCP-1, MCP-2 and MIP-3alpha) mRNA exhibited a repeatable and consistently low expression in un-stimulated cells and at least a two-fold increased expression following 6 and 24 h ConA stimulation as compared to 0 h un-stimulated controls. In contrast, expression of antigen presenting molecules, MHC-DR, MHC-DQ and MHC-DY, were consistently at least two-fold lower following 6 and 24 h ConA stimulation. The only endocrine gene with differential expression following ConA stimulation was prolactin. Additionally, due to the high level of genetic homology between ovine, swine and bovine genes, RNA similarly acquired from sheep and pigs was evaluated and similar gene expression patterns were noted. These data demonstrate that this application-targeted array containing a set of well characterized genes can be used to determine the relative gene expression corresponding to immune-endocrine responses of cattle and related species, sheep and pigs.

  8. Genome Expression Pathway Analysis Tool – Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context

    PubMed Central

    Weniger, Markus; Engelmann, Julia C; Schultz, Jörg

    2007-01-01

    Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at . Conclusion GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at . PMID:17543125

  9. High density diffusion-free nanowell arrays.

    PubMed

    Takulapalli, Bharath R; Qiu, Ji; Magee, D Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin G; LaBaer, Joshua; Wiktor, Peter

    2012-08-03

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA) is a robust in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced interspot spacing. To address this limitation, we have developed an innovative platform using photolithographically etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8000 nanowell arrays. This is the highest density of individual proteins in nanovessels demonstrated on a single slide. We further present proof of principle results on ultrahigh density protein arrays capable of up to 24000 nanowells on a single slide.

  10. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    PubMed

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fundamental formulae for wave-energy conversion

    PubMed Central

    Falnes, Johannes; Kurniawan, Adi

    2015-01-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612

  12. Fundamental formulae for wave-energy conversion.

    PubMed

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  13. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    PubMed

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreasedmore » steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine ingestion inhibits the expression of SR-BI. • Prenatal caffeine ingestion induces increased DNA methylation of SR-BI promoter.« less

  15. Detection of Her2-overexpressing cancer cells using keyhole shaped chamber array employing a magnetic droplet-handling system.

    PubMed

    Okochi, Mina; Koike, Shinji; Tanaka, Masayoshi; Honda, Hiroyuki

    2017-07-15

    An on-chip gene expression analysis compartmentalized in droplets was developed for detection of cancer cells at a single-cell level. The chip consists of a keyhole-shaped reaction chamber with hydrophobic modification employing a magnetic bead-droplet-handling system with a gate for bead separation. Using three kinds of water-based droplets in oil, a droplet with sample cells, a lysis buffer with magnetic beads, and RT-PCR buffer, parallel magnetic manipulation and fusion of droplets were performed using a magnet-handling device containing small external magnet patterns in an array. The actuation with the magnet offers a simple system for droplet manipulation that allows separation and fusion of droplets containing magnetic beads. After reverse transcription and amplification by thermal cycling, fluorescence was obtained for detection of overexpressing genes. For clinical detection of gastric cancer cells in peritoneal washing, the Her2-overexpressing gastric cancer cells spiked within normal cells was detected by gene expression analysis of droplets containing an average of 2.5 cells. Our developed droplet-based cancer detection system manipulated by external magnetic force without pumps or valves offers a simple and flexible set-up for transcriptional detection of cancer cells, and will be greatly advantageous for less-invasive clinical diagnosis and prognostic prediction. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation.

    PubMed

    Fröhlich, Dominik; Kuo, Wen Ping; Frühbeis, Carsten; Sun, Jyh-Jang; Zehendner, Christoph M; Luhmann, Heiko J; Pinto, Sheena; Toedling, Joern; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2014-09-26

    Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell-cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen-glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production.

    PubMed

    Dowd, Patrick F; Johnson, Eric T

    2015-05-01

    Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease resistance-associated genes in milk stage kernels from commercial popcorn fields over 3 years. Relatively lower expression of resistance gene types was noted in years with higher temperatures and lower rainfall, which was consistent with prior results for many previously identified resistance response-associated genes. The lower rates of expression occurred for genes such as chitinases, protease inhibitors, and peroxidases; enzymes involved in the synthesis of cell wall barriers and secondary metabolites; and regulatory proteins. However, expression of several specific resistance genes previously associated with mycotoxins, such as aflatoxin in dent maize, was not affected. Insect damage altered the spectrum of resistance gene expression differences compared to undamaged ears. Correlation analyses showed expression differences of some previously reported resistance genes that were highly associated with mycotoxin levels and included glucanases, protease inhibitors, peroxidases, and thionins.

  18. Molecular Profiles for Lung Cancer Pathogenesis and Detection in US Veterans

    DTIC Science & Technology

    2011-10-01

    expression data was analyzed using the BRB-ArrayTools v .4.1.0 developed by Dr. Richard Simon and the BRB-ArrayTools Development Team and then normalized...14. Spira A, Beane J, Shah V , et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A 2004;101...10143-10148 15. Spira A, Beane JE, Shah V , et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer

  19. Microreactor Array Device

    NASA Astrophysics Data System (ADS)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  20. Regulatory logic of pan-neuronal gene expression in C. elegans

    PubMed Central

    Stefanakis, Nikolaos; Carrera, Ines; Hobert, Oliver

    2015-01-01

    While neuronal cell types display an astounding degree of phenotypic diversity, most if not all neuron types share a core panel of terminal features. However, little is known about how pan-neuronal expression patterns are genetically programmed. Through an extensive analysis of the cis-regulatory control regions of a battery of pan-neuronal C.elegans genes, including genes involved in synaptic vesicle biology and neuropeptide signaling, we define a common organizational principle in the regulation of pan-neuronal genes in the form of a surprisingly complex array of seemingly redundant, parallel-acting cis-regulatory modules that direct expression to broad, overlapping domains throughout the nervous system. These parallel-acting cis-regulatory modules are responsive to a multitude of distinct trans-acting factors. Neuronal gene expression programs therefore fall into two fundamentally distinct classes. Neuron type-specific genes are generally controlled by discrete and non-redundantly acting regulatory inputs, while pan-neuronal gene expression is controlled by diverse, coincident and seemingly redundant regulatory inputs. PMID:26291158

  1. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis

    PubMed Central

    Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.

    2002-01-01

    Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730

  2. Abstract number and arithmetic in preschool children.

    PubMed

    Barth, Hilary; La Mont, Kristen; Lipton, Jennifer; Spelke, Elizabeth S

    2005-09-27

    Educated humans use language to express abstract number, applying the same number words to seven apples, whistles, or sins. Is language or education the source of numerical abstraction? Claims to the contrary must present evidence for numerical knowledge that applies to disparate entities, in people who have received no formal mathematics instruction and cannot express such knowledge in words. Here we show that preschool children can compare and add large sets of elements without counting, both within a single visual-spatial modality (arrays of dots) and across two modalities and formats (dot arrays and tone sequences). In two experiments, children viewed animations and either compared one visible array of dots to a second array or added two successive dot arrays and compared the sum to a third array. In further experiments, a dot array was replaced by a sequence of sounds, so that participants had to integrate quantity information presented aurally and visually. Children performed all tasks successfully, without resorting to guessing strategies or responding to continuous variables. Their accuracy varied with the ratio of the two quantities: a signature of large, approximate number representations in adult humans and animals. Addition was as accurate as comparison, even though children showed no relevant knowledge when presented with symbolic versions of the addition tasks. Abstract knowledge of number and addition therefore precedes, and may guide, language-based instruction in mathematics.

  3. Aberrant expression and DNA methylation of lipid metabolism genes in PCOS: a new insight into its pathogenesis.

    PubMed

    Pan, Jie-Xue; Tan, Ya-Jing; Wang, Fang-Fang; Hou, Ning-Ning; Xiang, Yu-Qian; Zhang, Jun-Yu; Liu, Ye; Qu, Fan; Meng, Qing; Xu, Jian; Sheng, Jian-Zhong; Huang, He-Feng

    2018-01-01

    Polycystic ovary syndrome (PCOS), whose etiology remains uncertain, is a highly heterogenous and genetically complex endocrine disorder. The aim of this study was to identify differentially expressed genes (DEGs) in granulosa cells (GCs) from PCOS patients and make epigenetic insights into the pathogenesis of PCOS. Included in this study were 110 women with PCOS and 119 women with normal ovulatory cycles undergoing in vitro fertilization acting as the control group. RNA-seq identified 92 DEGs unique to PCOS GCs in comparison with the control group. Bioinformatic analysis indicated that synthesis of lipids and steroids was activated in PCOS GCs. 5-Methylcytosine analysis demonstrated that there was an approximate 25% reduction in global DNA methylation of GCs in PCOS women (4.44 ± 0.65%) compared with the controls (6.07 ± 0.72%; P  < 0.05). Using MassArray EpiTYPER quantitative DNA methylation analysis, we also found hypomethylation of several gene promoters related to lipid and steroid synthesis, which might result in the aberrant expression of these genes. Our results suggest that hypomethylated genes related to the synthesis of lipid and steroid may dysregulate expression of these genes and promote synthesis of steroid hormones including androgen, which could partially explain mechanisms of hyperandrogenism in PCOS.

  4. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study

    PubMed Central

    Joehanes, Roby; Johnson, Andrew D.; Barb, Jennifer J.; Raghavachari, Nalini; Liu, Poching; Woodhouse, Kimberly A.; O'Donnell, Christopher J.; Munson, Peter J.

    2012-01-01

    Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL. PMID:22045913

  5. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse

    PubMed Central

    Srivastava, Meera; Montagna, Cristina; Leighton, Ximena; Glasman, Mirta; Naga, Shanmugam; Eidelman, Ofer; Ried, Thomas; Pollard, Harvey B.

    2003-01-01

    Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes. PMID:14608035

  6. Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping.

    PubMed

    Jørgensen, Malene; Bæk, Rikke; Pedersen, Shona; Søndergaard, Evo K L; Kristensen, Søren R; Varming, Kim

    2013-01-01

    Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define their phenotype and determine their concentration in biological fluids. To identify circulating as well as cell culture-derived vesicles, the current standard is immunoblotting or a flow cytometrical analysis for specific proteins, both of which requires large amounts of purified vesicles. Based on the technology of protein microarray, we hereby present a highly sensitive Extracellular Vesicle (EV) Array capable of detecting and phenotyping exosomes and other extracellular vesicles from unpurified starting material in a high-throughput manner. To only detect the exosomes captured on the EV Array, a cocktail of antibodies against the tetraspanins CD9, CD63 and CD81 was used. These antibodies were selected to ensure that all exosomes captured are detected, and concomitantly excluding the detection of other types of microvesicles. The limit of detection (LOD) was determined on exosomes derived from the colon cancer cell line LS180. It clarified that supernatant from only approximately 10(4) cells was needed to obtain signals or that only 2.5×10(4) exosomes were required for each microarray spot (~1 nL). Phenotyping was performed on plasma (1-10 µL) from 7 healthy donors, which were applied to the EV Array with a panel of antibodies against 21 different cellular surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the expression levels of individual markers. The protein profiles of the exosomes (defined as positive for CD9, CD63 and CD81) revealed that only the expression level of CD9 and CD81 was approximately equal in the 7 donors. This implies questioning the use of CD63 as a standard exosomal marker since the expression level of this tetraspanin was considerably lower.

  7. Altered expression of four miRNA (miR-1238-3p, miR-202-3p, miR-630 and miR-766-3p) and their potential targets in peripheral blood from vitiligo patients.

    PubMed

    Shang, Zhiwei; Li, Hongwen

    2017-10-01

    Vitiligo is an acquired skin disease with pigmentary disorder. Autoimmune destruction of melanocytes is thought to be major factor in the etiology of vitiligo. miRNA-based regulators of gene expression have been reported to play crucial roles in autoimmune disease. Therefore, we attempt to profile the miRNA expressions and predict their potential targets, assessing the biological functions of differentially expressed miRNA. Total RNA was extracted from peripheral blood of vitiligo (experimental group, n = 5) and non-vitiligo (control group, n = 5) age-matched patients. Samples were hybridized to a miRNA array. Box, scatter and principal component analysis plots were performed, followed by unsupervised hierarchical clustering analysis to classify the samples. Quantitative reverse transcription polymerase chain reaction (RT-PCR) was conducted for validation of microarray data. Three different databases, TargetScan, PITA and microRNA.org, were used to predict the potential target genes. Gene ontology (GO) annotation and pathway analysis were performed to assess the potential functions of predicted genes of identified miRNA. A total of 100 (29 upregulated and 71 downregulated) miRNA were filtered by volcano plot analysis. Four miRNA were validated by quantitative RT-PCR as significantly downregulated in the vitiligo group. The functions of predicted target genes associated with differentially expressed miRNA were assessed by GO analysis, showing that the GO term with most significantly enriched target genes was axon guidance, and that the axon guidance pathway was most significantly correlated with these miRNA. In conclusion, we identified four downregulated miRNA in vitiligo and assessed the potential functions of target genes related to these differentially expressed miRNA. © 2017 Japanese Dermatological Association.

  8. Gene Expression Profiling of Acute Lymphoblastic Leukemia in Children with Very Early Relapse.

    PubMed

    Núñez-Enríquez, Juan Carlos; Bárcenas-López, Diego Alberto; Hidalgo-Miranda, Alfredo; Jiménez-Hernández, Elva; Bekker-Méndez, Vilma Carolina; Flores-Lujano, Janet; Solis-Labastida, Karina Anastacia; Martínez-Morales, Gabriela Bibiana; Sánchez-Muñoz, Fausto; Espinoza-Hernández, Laura Eugenia; Velázquez-Aviña, Martha Margarita; Merino-Pasaye, Laura Elizabeth; García Velázquez, Alejandra Jimena; Pérez-Saldívar, María Luisa; Mojica-Espinoza, Raúl; Ramírez-Bello, Julián; Jiménez-Morales, Silvia; Mejía-Aranguré, Juan Manuel

    2016-11-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide. Mexican patients have high mortality rates, low frequency of good prognosis biomarkers (i.e., ETV6-RUNX1) and a high proportion is classified at the time of diagnosis with a high risk to relapse according to clinical features. In addition, very early relapses are more frequently observed than in other populations. The aim of the study was to identify new potential biomarkers associated with very early relapse in Mexican ALL children through transcriptome analysis. Microarray gene expression profiling on bone marrow samples of 54 pediatric ALL patients, collected at time of diagnosis and/or at relapse, was performed. Eleven patients presented relapse within the first 18 months after diagnosis. Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) was used to perform gene expression analysis. Annotation and functional enrichment analyses were carried out using Gene Ontology, KEGG pathway analysis and Ingenuity Pathway Analysis tools. BLVRB, ZCCHC7, PAX5, EBF1, TMOD1 and BLNK were differentially expressed (fold-change >2.0 and p value <0.01) between relapsed and non-relapsed patients. Functional analysis of abnormally expressed genes revealed their important role in cellular processes related to the development of hematological diseases, cancer, cell death and survival and in cell-to-cell signaling interaction. Our data support previous findings showing the relevance of PAX5, EBF1 and ZCCHC7 as potential biomarkers to identify a subgroup of ALL children in high risk to relapse. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  9. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    PubMed Central

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield. PMID:27600348

  10. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array.

    PubMed

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2014-11-13

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r² = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r² = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  11. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines.

    PubMed

    Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G

    2014-09-09

    Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT-PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients.

  12. Absence of Genomic Ikaros/IKZF1 Deletions in Pediatric B-Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Qazi, Sanjive; Ma, Hong; Uckun, Fatih M

    2013-01-01

    Here we report the results of gene expression analyses using multiple probesets aimed at determining the incidence of Ikaros/IKZF1 deletions in pediatric B-precursor acute lymphoblastic leukemia (BPL). Primary leukemia cells from 122 Philadelphia chromosome (Ph)+ BPL patients and 237 Ph− BPL patients as well as normal hematopoietic cells from 74 normal non-leukemic bone marrow specimens were organized according to expression levels of IKZF1 transcripts utilizing two-way hierarchical clustering technique to identify specimens with low IKZF1 expression for the 10 probesets interrogating Exons 1 through 4 and Exon 8. Our analysis demonstrated no changes in expression that would be expected from homozygous or heterozygous deletions of IKZF1 in primary leukemic cells. Similar results were obtained in gene expression analysis of primary leukemic cells from 20 Ph+ positive and 155 Ph− BPL patients in a validation dataset. Taken together, our gene expression analyses in 534 pediatric BPL cases, including 142 cases with Ph+ BPL, contradict previous reports that were based on SNP array data and suggested that Ph+ pediatric BPL is characterized by a high frequency of homozygous or heterozygous IKZF1 deletions. Further, exon-specific genomic PCR analysis of primary leukemia cells from 21 high-risk pediatric BPL patients and 11 standard-risk pediatric BPL patients, and 8 patients with infant BPL did not show any evidence for homozygous IKZF1 locus deletions. Nor was there any evidence for homozygous or heterozygous intragenic IKZF1 deletions. PMID:24478816

  13. Hopping transport through an array of Luttinger liquid stubs

    NASA Astrophysics Data System (ADS)

    Chudnovskiy, A. L.

    2004-01-01

    We consider a thermally activated transport across and array of parallel one-dimensional quantum wires of finite length (quantum stubs). The disorder enters as a random tunneling between the nearest-neighbor stubs as well as a random shift of the bottom of the energy band in each stub. Whereas one-particle wave functions are localized across the array, the plasmons are delocalized, which affects the variable-range hopping. A perturbative analytical expression for the low-temperature resistance across the array is obtained for a particular choice of plasmon dispersion.

  14. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice.

    PubMed

    Zeng, Huawei; Cheng, Wen-Hsing; Johnson, Luann K

    2013-05-01

    It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth. Copyright © 2013. Published by Elsevier Inc.

  15. Experimental design for three-color and four-color gene expression microarrays.

    PubMed

    Woo, Yong; Krueger, Winfried; Kaur, Anupinder; Churchill, Gary

    2005-06-01

    Three-color microarrays, compared with two-color microarrays, can increase design efficiency and power to detect differential expression without additional samples and arrays. Furthermore, three-color microarray technology is currently available at a reasonable cost. Despite the potential advantages, clear guidelines for designing and analyzing three-color experiments do not exist. We propose a three- and a four-color cyclic design (loop) and a complementary graphical representation to help design experiments that are balanced, efficient and robust to hybridization failures. In theory, three-color loop designs are more efficient than two-color loop designs. Experiments using both two- and three-color platforms were performed in parallel and their outputs were analyzed using linear mixed model analysis in R/MAANOVA. These results demonstrate that three-color experiments using the same number of samples (and fewer arrays) will perform as efficiently as two-color experiments. The improved efficiency of the design is somewhat offset by a reduced dynamic range and increased variability in the three-color experimental system. This result suggests that, with minor technological improvements, three-color microarrays using loop designs could detect differential expression more efficiently than two-color loop designs. http://www.jax.org/staff/churchill/labsite/software Multicolor cyclic design construction methods and examples along with additional results of the experiment are provided at http://www.jax.org/staff/churchill/labsite/pubs/yong.

  16. Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.

    PubMed

    Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei

    2016-07-01

    The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.

  17. Unraveling unusual X-chromosome patterns during fragile-X syndrome genetic testing.

    PubMed

    Esposito, Gabriella; Tremolaterra, Maria Roberta; Savarese, Maria; Spiniello, Michele; Patrizio, Maria Pia; Lombardo, Barbara; Pastore, Lucio; Salvatore, Francesco; Carsana, Antonella

    2018-01-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID). Together with fragile X-associated tremor and ataxia (FXTAS) and fragile X-associated premature ovarian failure (POF)/primary ovarian insufficiency (POI), FXS depends on dysfunctional expression of the FMR1 gene on Xq27.3. In most cases, FXS is caused by a >200 CGG repeats in FMR1 5'-untranslated region (UTR) and by promoter hypermethylation that results in gene silencing. Males and females with unmethylated premutated alleles (repeats between 55 and 200) are at risk for FXTAS and POF/POI. FXS molecular testing relied on PCR and methylation-specific Southern blot analysis of the FMR1 5'UTR. Atypical Southern blot patterns were studied by X-chromosome microsatellite analysis, copy number dosage at DMD locus, amelogenin gender-marker analysis and array-comparative genomic hybridization (array-CGH). Six men affected by ID and three women affected by ID and POF/POI underwent FXS molecular testing. They had normal FMR1 CGG repeats, but atypical X chromosome patterns. Further investigations revealed that the six males had Klinefelter syndrome (XXY), one female was a Turner mosaic (X0/XX) and two women had novel rearrangements involving X chromosome. Diagnostic investigation of atypical patterns at FMR1 locus can address patients and/or their relatives to further verify the condition by performing karyotyping and/or array-CGH. Copyright © 2017. Published by Elsevier B.V.

  18. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    PubMed

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    PubMed Central

    Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo

    2005-01-01

    Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681

  20. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography

    PubMed Central

    Weiler, Nicholas C; Collman, Forrest; Vogelstein, Joshua T; Burns, Randal; Smith, Stephen J

    2014-01-01

    A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces. PMID:25977797

  1. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography.

    PubMed

    Weiler, Nicholas C; Collman, Forrest; Vogelstein, Joshua T; Burns, Randal; Smith, Stephen J

    2014-01-01

    A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces.

  2. Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain

    PubMed Central

    Maratou, Klio; Wallace, Victoria C.J.; Hasnie, Fauzia S.; Okuse, Kenji; Hosseini, Ramine; Jina, Nipurna; Blackbeard, Julie; Pheby, Timothy; Orengo, Christine; Dickenson, Anthony H.; McMahon, Stephen B.; Rice, Andrew S.C.

    2009-01-01

    To elucidate the mechanisms underlying peripheral neuropathic pain in the context of HIV infection and antiretroviral therapy, we measured gene expression in dorsal root ganglia (DRG) of rats subjected to systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) and concomitant delivery of HIV-gp120 to the rat sciatic nerve. L4 and L5 DRGs were collected at day 14 (time of peak behavioural change) and changes in gene expression were measured using Affymetrix whole genome rat arrays. Conventional analysis of this data set and Gene Set Enrichment Analysis (GSEA) was performed to discover biological processes altered in this model. Transcripts associated with G protein coupled receptor signalling and cell adhesion were enriched in the treated animals, while ribosomal proteins and proteasome pathways were associated with gene down-regulation. To identify genes that are directly relevant to neuropathic mechanical hypersensitivity, as opposed to epiphenomena associated with other aspects of the response to a sciatic nerve lesion, we compared the gp120 + ddC-evoked gene expression with that observed in a model of traumatic neuropathic pain (L5 spinal nerve transection), where hypersensitivity to a static mechanical stimulus is also observed. We identified 39 genes/expressed sequence tags that are differentially expressed in the same direction in both models. Most of these have not previously been implicated in mechanical hypersensitivity and may represent novel targets for therapeutic intervention. As an external control, the RNA expression of three genes was examined by RT-PCR, while the protein levels of two were studied using western blot analysis. PMID:18606552

  3. EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling.

    PubMed

    Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae

    2011-07-01

    Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.

  4. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

    PubMed

    Rose, Amy E; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega Y Saenz de Miera, Eleazar C; Medicherla, Ratna; Christos, Paul J; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-04-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathologic, and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (6.0; Affymetrix) with gene expression array (U133A 2.0; Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N = 114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, and ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P < 0.05; Spearman's rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene MTAP (methylthioadenosine phosphorylase) in SSM resulted in reduced cell growth. The differential expression of another metabolic-related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level by using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM.

  5. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression

    PubMed Central

    Rose, Amy E.; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega y Saenz de Miera, Eleazar C.; Medicherla, Ratna; Christos, Paul J.; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-01-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathological and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (SNP 6.0, Affymetrix) with gene expression array (U133A 2.0, Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N=114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P<0.05, Spearman’s rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene methylthioadenosine phosphorylase (MTAP) in SSM resulted in reduced cell growth. The differential expression of another metabolic related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM. PMID:21343389

  6. [Effects of aconite root on energy metabolism and expression of related genes in rats].

    PubMed

    Yu, Huayun; Ji, Xuming; Wu, Zhichun; Wang, Shijun

    2011-09-01

    To study the influence of aconite root, a Chinese medicinal herb with hot property, on energy metabolism and gene expression spectrum, and to analyze the possible mechanism of it effect. Thirty two SPF Wistar rats were randomly divided into aconite root group and control group. Decoction of aconite root and NS were intragastrically administrated with the concentration of 10 mL x kg(-1) respectively once a day for 20 days. Temperature, energy intake (EI), digestive energy (DE) and metabolic energy (ME) were measured. The activity of ATPase and succinate dehydrogenase (SDH) in liver was detected by colorimetry. The gene expression of liver was detected with Illumina's rat ref-12 gene array. The differential expression genes were selected, annotated and classified based on gene ontology (GO). Real-time quantitative reverse-transcriptase PCR (Q-RT-PCR) was used to test the accuracy of the array results. Compared with the control group, the toe temperature (TT) on the 10th and 20th day after the administration,the EI/BM( body mass), DE/BM, ME/BM and the activity of Na+ - K+ - ATPase, Ca2+ - Mg2+ - ATPase and SDH of liver in the aconite root group increased significantly (P<0.05). There were 592 differential expression genes in aconite root group compared with the control group. Based on Go analysis, the most significant genes was related to metabolic process (lgP = - 15.5897). Aconite root could improve the energy metabolism in rats, by influencing the metabolic process of sugar, lipid and amino acid, which may be the main molecular mechanism of warming yang and dispelling cold for the treatment of the cold syndrome according to Chinese medicine theory.

  7. Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH.

    PubMed

    Kresse, Stine H; Berner, Jeanne-Marie; Meza-Zepeda, Leonardo A; Gregory, Simon G; Kuo, Wen-Lin; Gray, Joe W; Forus, Anne; Myklebost, Ola

    2005-11-07

    Amplification of the q21-q23 region on chromosome 1 is frequently found in sarcomas and a variety of other solid tumours. Previous analyses of sarcomas have indicated the presence of at least two separate amplicons within this region, one located in 1q21 and one located near the apolipoprotein A-II (APOA2) gene in 1q23. In this study we have mapped and characterized the amplicon in 1q23 in more detail. We have used fluorescence in situ hybridisation (FISH) and microarray-based comparative genomic hybridisation (array CGH) to map and define the borders of the amplicon in 10 sarcomas. A subregion of approximately 800 kb was identified as the core of the amplicon. The amplification patterns of nine possible candidate target genes located to this subregion were determined by Southern blot analysis. The genes activating transcription factor 6 (ATF6) and dual specificity phosphatase 12 (DUSP12) showed the highest level of amplification, and they were also shown to be over-expressed by quantitative real-time reverse transcription PCR (RT-PCR). In general, the level of expression reflected the level of amplification in the different tumours. DUSP12 was expressed significantly higher than ATF6 in a subset of the tumours. In addition, two genes known to be transcriptionally activated by ATF6, glucose-regulated protein 78 kDa and -94 kDa (GRP78 and GRP94), were shown to be over-expressed in the tumours that showed over-expression of ATF6. ATF6 and DUSP12 seem to be the most likely candidate target genes for the 1q23 amplification in sarcomas. Both genes have possible roles in promoting cell growth, which makes them interesting candidate targets.

  8. Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer

    PubMed Central

    Wen, Yunfei; Graybill, Whitney S.; Previs, Rebecca A.; Hu, Wei; Ivan, Cristina; Mangala, Lingegowda S.; Zand, Behrouz; Nick, Alpa M.; Jennings, Nicholas B.; Dalton, Heather J.; Sehgal, Vasudha; Ram, Prahlad; Lee, Ju-Seog; Vivas-Mejia, Pablo E.; Coleman, Robert L.; Sood, Anil K.

    2014-01-01

    Purpose Cancer cells are highly dependent on folate metabolism, making them susceptible to drugs that inhibit folate receptor activities. Targeting overexpressed folate receptor alpha (FRα) in cancer cells offers a therapeutic opportunity. We investigated the functional mechanisms of MORAB-003 (farletuzumab), a humanized monoclonal antibody against FRα, in ovarian cancer models. Experimental Design We first examined FRα expression in an array of human ovarian cancer cell lines and then assessed the in vivo effect of MORAB-003 on tumor growth and progression in several orthotopic mouse models of ovarian cancer derived from these cell lines. Molecular mechanisms of tumor cell death induced by MORAB-003 were investigated by cDNA and protein expression profiling analysis. Mechanistic studies were performed to determine the role of autophagy in MORAB-003–induced cell death. Results MORAB-003 significantly decreased tumor growth in the high-FRα IGROV1 and SKOV3ip1 models but not in the low-FRα A2780 model. MORAB-003 reduced proliferation but had no significant effect on apoptosis. Protein expression and cDNA microarray analyses showed that MORAB-003 regulated an array of autophagy-related genes. It also significantly increased expression of LC3 isoform II and enriched autophagic vacuolization. Blocking autophagy with hydroxychloroquine or bafilomycin A1 reversed the growth inhibition induced by MORAB-003. In add, alteration of FOLR1 gene copy number significantly correlated with shorter disease-free survival in patients with ovarian serous cystadenocarcinoma. Conclusions MORAB-003 displays prominent antitumor activity in ovarian cancer models expressing FRα at high levels. Blockade of folate receptor by MORAB-003 induced sustained autophagy and suppressed cell proliferation. PMID:25416196

  9. Test plane uniformity analysis for the MSFC solar simulator lamp array

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1976-01-01

    A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.

  10. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  11. Testicular Lumicrine Factors Regulate ERK, STAT, and NFKB Pathways in the Initial Segment of the Rat Epididymis to Prevent Apoptosis1

    PubMed Central

    Xu, Bingfang; Abdel-Fattah, Rana; Yang, Ling; Crenshaw, Sallie A.; Black, Michael B.; Hinton, Barry T.

    2011-01-01

    The initial segment of the epididymis is vital for male fertility; therefore, it is important to understand the mechanisms that regulate this important region. Deprival of testicular luminal fluid factors/lumicrine factors from the epididymis results in a wave of apoptosis in the initial segment. In this study, a combination of protein array and microarray analyses was used to examine the early changes in downstream signal transduction pathways following loss of lumicrine factors. We discovered the following cascade of events leading to the loss of protection and eventual apoptosis: in the first 6 h after loss of lumicrine factors, down-regulation of the ERK pathway components was observed at the mRNA expression and protein activity levels. Microarray analysis revealed that mRNA levels of several key components of the ERK pathway, Dusp6, Dusp5, and Etv5, decreased sharply, while the analysis from the protein array revealed a decline in the activities of MAP2K1/2 and MAPK1. Immunostaining of phospho-MAPK3/1 indicated that down-regulation of the ERK pathway was specific to the epithelial cells of the initial segment. Subsequently, after 12 h of loss of lumicrine factors, levels of mRNA expression of STAT and NFKB pathway components increased, mRNA levels of several genes encoding cell cycle inhibitors increased, and levels of protein expression of several proapoptotic phosphatases increased. Finally, after 18 h of loss of protection from lumicrine factors, apoptosis was observed. In conclusion, testicular lumicrine factors protect the cells of the initial segment by activating the ERK pathway, repressing STAT and NFKB pathways, and thereby preventing apoptosis. PMID:21311037

  12. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wenwan

    2003-01-01

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in thismore » manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.« less

  13. Single atom array to form a Rydberg ring

    NASA Astrophysics Data System (ADS)

    Zhan, Mingsheng; Xu, Peng; He, Xiaodong; Liu, Min; Wang, Jin

    2012-02-01

    Single atom arrays are ideal quantum systems for studying few-body quantum simulation and quantum computation [1]. Towards realizing a fully controllable array we did a lot of experimental efforts, which include rotating single atoms in a ring optical lattice generated by a spatial light modulator [2], high efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator [3], and trapping a single atom in a blue detuned optical bottle beam trap [4]. Recently, we succeeded in trapping up to 6 atoms in a ring optical lattice with one atom in each site. Further laser cooling the array and manipulation of the inner states will provide chance to form Ryberg rings for quantum simulation. [4pt] [1] M. Saffman et al., Rev. Mod. Phys. 82, 2313 (2010)[0pt] [2] X.D. He et al., Opt. Express 17, 21014 (2009)[0pt] [3] X.D. He et al., Opt. Express 18, 13586 (2010)[0pt] [4] P. Xu et al., Opt. Lett. 35, 2164 (2010)

  14. Transdermal Delivery of siRNA through Microneedle Array

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  15. Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities.

    PubMed

    Uchida, Yoko; Irie, Koichiro; Fukuhara, Daiki; Kataoka, Kota; Hattori, Takako; Ono, Mitsuaki; Ekuni, Daisuke; Kubota, Satoshi; Morita, Manabu

    2018-06-23

    Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of γ-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin , which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II , and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1 . In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and enhances both osteoblast and osteoclast activity by regulating specific transcription factors.

  16. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    DTIC Science & Technology

    2008-04-01

    IHC studies using human ovarian cancer tissue arrays (n=123) showed that PELP1/MNAR is 2 to 3 fold over expressed in 60% of ovarian tumors To...cancers, however little is known about PELP1 role in ovarian cancer progression. Analysis of human genome databases and SAGE data suggested...PELP1/MNAR can facilitate ER nonge- nomic signaling via Src kinase, PI3K, and STAT3 in the cytosol. PELP1/MNAR regulates meiosis via its interactions

  17. Genome-wide analysis of endogenously expressed ZEB2 binding sites reveals inverse correlations between ZEB2 and GalNAc-transferase GALNT3 in human tumors.

    PubMed

    Balcik-Ercin, Pelin; Cetin, Metin; Yalim-Camci, Irem; Odabas, Gorkem; Tokay, Nurettin; Sayan, A Emre; Yagci, Tamer

    2018-03-07

    ZEB2 is a transcriptional repressor that regulates epithelial-to-mesenchymal transition (EMT) through binding to bipartite E-box motifs in gene regulatory regions. Despite the abundant presence of E-boxes within the human genome and the multiplicity of pathophysiological processes regulated during ZEB2-induced EMT, only a small fraction of ZEB2 targets has been identified so far. Hence, we explored genome-wide ZEB2 binding by chromatin immunoprecipitation-sequencing (ChIP-seq) under endogenous ZEB2 expression conditions. For ChIP-Seq we used an anti-ZEB2 monoclonal antibody, clone 6E5, in SNU398 hepatocellular carcinoma cells exhibiting a high endogenous ZEB2 expression. The ChIP-Seq targets were validated using ChIP-qPCR, whereas ZEB2-dependent expression of target genes was assessed by RT-qPCR and Western blotting in shRNA-mediated ZEB2 silenced SNU398 cells and doxycycline-induced ZEB2 overexpressing colorectal carcinoma DLD1 cells. Changes in target gene expression were also assessed using primary human tumor cDNA arrays in conjunction with RT-qPCR. Additional differential expression and correlation analyses were performed using expO and Human Protein Atlas datasets. Over 500 ChIP-Seq positive genes were annotated, and intervals related to these genes were found to include the ZEB2 binding motif CACCTG according to TOMTOM motif analysis in the MEME Suite database. Assessment of ZEB2-dependent expression of target genes in ZEB2-silenced SNU398 cells and ZEB2-induced DLD1 cells revealed that the GALNT3 gene serves as a ZEB2 target with the highest, but inversely correlated, expression level. Remarkably, GALNT3 also exhibited the highest enrichment in the ChIP-qPCR validation assays. Through the analyses of primary tumor cDNA arrays and expO datasets a significant differential expression and a significant inverse correlation between ZEB2 and GALNT3 expression were detected in most of the tumors. We also explored ZEB2 and GALNT3 protein expression using the Human Protein Atlas dataset and, again, observed an inverse correlation in all analyzed tumor types, except malignant melanoma. In contrast to a generally negative or weak ZEB2 expression, we found that most tumor tissues exhibited a strong or moderate GALNT3 expression. Our observation that ZEB2 negatively regulates a GalNAc-transferase (GALNT3) that is involved in O-glycosylation adds another layer of complexity to the role of ZEB2 in cancer progression and metastasis. Proteins glycosylated by GALNT3 may be exploited as novel diagnostics and/or therapeutic targets.

  18. Microreactor Array Device

    PubMed Central

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua

    2015-01-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721

  19. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants

    PubMed Central

    Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2008-01-01

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4′-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1–3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA’s. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as “expression signatures”. The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action. PMID:16488489

  20. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-05-25

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4'-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1-3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as "expression signatures". The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action.

  1. Correlating cellular and molecular signatures of mucosal immunity that distinguish HIV controllers from noncontrollers.

    PubMed

    Loke, P'ng; Favre, David; Hunt, Peter W; Leung, Jacqueline M; Kanwar, Bittoo; Martin, Jeffrey N; Deeks, Steven G; McCune, Joseph M

    2010-04-15

    HIV "controllers" are persons infected with human immunodeficiency virus, type I (HIV) who maintain long-term control of viremia without antiviral therapy and who usually do not develop the acquired immune deficiency syndrome (AIDS). In this study, we have correlated results from polychromatic flow cytometry and oligonucleotide expression arrays to characterize the mucosal immune responses of these subjects in relation to untreated HIV(+) persons with high viral loads and progressive disease ("noncontrollers"). Paired peripheral blood and rectosigmoid biopsies were analyzed from 9 controllers and 11 noncontrollers. Several cellular immune parameters were found to be concordant between the 2 compartments. Compared with noncontrollers, the mucosal tissues of controllers had similar levels of effector T cells and fewer regulatory T cells (Tregs). Using principal component analysis to correlate immunologic parameters with gene expression profiles, transcripts were identified that accurately distinguished between controllers and noncontrollers. Direct 2-way comparison also revealed genes that are significantly different in their expression between controllers and noncontrollers, all of which had reduced expression in controllers. In addition to providing an approach that integrates flow cytometry datasets with transcriptional profiling analysis, these results underscore the importance of the sustained inflammatory response that attends progressive HIV disease.

  2. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    PubMed

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  3. Gene expression profiles in liver of mouse after chronic exposure to drinking water.

    PubMed

    Wu, Bing; Zhang, Yan; Zhao, Dayong; Zhang, Xuxiang; Kong, Zhiming; Cheng, Shupei

    2009-10-01

    cDNA micorarray approach was applied to hepatic transcriptional profile analysis in male mouse (Mus musculus, ICR) to assess the potential health effects of drinking water in Nanjing, China. Mice were treated with continuous exposure to drinking water for 90 days. Hepatic gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 arrays, and pathway analysis was carried out by Molecule Annotation System 2.0 and KEGG pathway database. A total of 836 genes were found to be significantly altered (1.5-fold, P < or = 0.05), including 294 up-regulated genes and 542 down-regulated genes. According to biological pathway analysis, drinking water exposure resulted in aberration of gene expression and biological pathways linked to xenobiotic metabolism, signal transduction, cell cycle and oxidative stress response. Further, deregulation of several genes associated with carcinogenesis or tumor progression including Ccnd1, Egfr, Map2k3, Mcm2, Orc2l and Smad2 was observed. Although transcription changes in identified genes are unlikely to be used as a sole indicator of adverse health effects, the results of this study could enhance our understanding of early toxic effects of drinking water exposure and support future studies on drinking water safety.

  4. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells.

    PubMed

    Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.

  5. Advances in Mixed Signal Processing for Regional and Teleseismic Arrays

    DTIC Science & Technology

    2006-08-15

    1: Mixture of signals from two earthquakes from south of Africa and the Philippines observed at USAEDS long-period seismic array in Korea. Correct...window where the detector will miss valid signals . 2 Approaches to detecting signals on arrays all focus on the basic model that expresses the observed...possible use in detecting infrasound signals . The approach is based on orthogonal- ity properties of the eigen vectors of the spectral matrix under a

  6. Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays* | Office of Cancer Genomics

    Cancer.gov

    Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data.

  7. High Density Diffusion-Free Nanowell Arrays

    PubMed Central

    Takulapalli, Bharath R; Qiu, Ji; Magee, D. Mitchell; Kahn, Peter; Brunner, Al; Barker, Kristi; Means, Steven; Miersch, Shane; Bian, Xiaofang; Mendoza, Alex; Festa, Fernanda; Syal, Karan; Park, Jin; LaBaer, Joshua; Wiktor, Peter

    2012-01-01

    Proteomics aspires to elucidate the functions of all proteins. Protein microarrays provide an important step by enabling high-throughput studies of displayed proteins. However, many functional assays of proteins include untethered intermediates or products, which could frustrate the use of planar arrays at very high densities because of diffusion to neighboring features. The nucleic acid programmable protein array (NAPPA), is a robust, in situ synthesis method for producing functional proteins just-in-time, which includes steps with diffusible intermediates. We determined that diffusion of expressed proteins led to cross-binding at neighboring spots at very high densities with reduced inter-spot spacing. To address this limitation, we have developed an innovative platform using photolithographically-etched discrete silicon nanowells and used NAPPA as a test case. This arrested protein diffusion and cross-binding. We present confined high density protein expression and display, as well as functional protein-protein interactions, in 8,000 nanowell arrays. This is the highest density of individual proteins in nano-vessels demonstrated on a single slide. We further present proof of principle results on ultra-high density protein arrays capable of up to 24,000 nanowells on a single slide. PMID:22742968

  8. Toward a public toxicogenomics capability for supporting predictive toxicology: survey of current resources and chemical indexing of experiments in GEO and ArrayExpress.

    PubMed

    Williams-Devane, ClarLynda R; Wolf, Maritja A; Richard, Ann M

    2009-06-01

    A publicly available toxicogenomics capability for supporting predictive toxicology and meta-analysis depends on availability of gene expression data for chemical treatment scenarios, the ability to locate and aggregate such information by chemical, and broad data coverage within chemical, genomics, and toxicological information domains. This capability also depends on common genomics standards, protocol description, and functional linkages of diverse public Internet data resources. We present a survey of public genomics resources from these vantage points and conclude that, despite progress in many areas, the current state of the majority of public microarray databases is inadequate for supporting these objectives, particularly with regard to chemical indexing. To begin to address these inadequacies, we focus chemical annotation efforts on experimental content contained in the two primary public genomic resources: ArrayExpress and Gene Expression Omnibus. Automated scripts and extensive manual review were employed to transform free-text experiment descriptions into a standardized, chemically indexed inventory of experiments in both resources. These files, which include top-level summary annotations, allow for identification of current chemical-associated experimental content, as well as chemical-exposure-related (or "Treatment") content of greatest potential value to toxicogenomics investigation. With these chemical-index files, it is possible for the first time to assess the breadth and overlap of chemical study space represented in these databases, and to begin to assess the sufficiency of data with shared protocols for chemical similarity inferences. Chemical indexing of public genomics databases is a first important step toward integrating chemical, toxicological and genomics data into predictive toxicology.

  9. microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma.

    PubMed

    Etoh, Mitsuhiko; Jinnin, Masatoshi; Makino, Katsunari; Yamane, Keitaro; Nakayama, Wakana; Aoi, Jun; Honda, Noritoshi; Kajihara, Ikko; Makino, Takamitsu; Fukushima, Satoshi; Ihn, Hironobu

    2013-01-01

    Localized scleroderma (LSc), a connective tissue disorder restricted to the skin and subcutaneous tissue, is characterized by skin fibrosis due to an excessive deposition of types I collagen. The mechanism of such fibrosis is still unknown, but epigenetics may play some roles in the excessive collagen expression. In the present study, we investigated the mechanism of fibrosis seen in LSc, focusing on microRNA (miRNA). miRNA expression was determined by PCR array, real-time PCR, and in situ hybridization. The function of miRNA was evaluated using specific inhibitor. Immunoblotting was performed to detect α2(I) collagen protein. PCR array analysis using tissue miRNA demonstrated miR-7 level was significantly decreased in LSc skin as well as keloid tissue compared to normal skin in vivo. In situ hybridization also showed miR-7 expression in dermal fibroblasts was decreased in LSc dermis. The transfection of specific inhibitor for miR-7 into cultured normal dermal fibroblasts resulted in the up-regulation of α2(I) collagen protein in vitro. Also, the serum levels of miR-7 were significantly decreased in LSc patients compared with healthy controls, but serum miR-29a levels not. Systemic or local down-regulation of miR-7 may contribute to the pathogenesis of LSc via the overexpression of α2(I) collagen, and serum miR-7 may be useful as a disease marker. Investigation of the regulatory mechanisms of LSc by miRNA may lead to new treatments by the transfection into the lesional skin of this disease.

  10. Whole Transcriptome Analysis of Pre-invasive and Invasive Early Squamous Lung Carcinoma in Archival Laser Microdissected Samples.

    PubMed

    Koper, Andre; Zeef, Leo A H; Joseph, Leena; Kerr, Keith; Gosney, John; Lindsay, Mark A; Booton, Richard

    2017-01-10

    Preinvasive squamous cell cancer (PSCC) are local transformations of bronchial epithelia that are frequently observed in current or former smokers. Their different grades and sizes suggest a continuum of dysplastic change with increasing severity, which may culminate in invasive squamous cell carcinoma (ISCC). As a consequence of the difficulty in isolating cancerous cells from biopsies, the molecular pathology that underlies their histological variability remains largely unknown. To address this issue, we have employed microdissection to isolate normal bronchial epithelia and cancerous cells from low- and high-grade PSCC and ISCC, from paraffin embedded (FFPE) biopsies and determined gene expression using Affymetric Human Exon 1.0 ST arrays. Tests for differential gene expression were performed using the Bioconductor package limma followed by functional analyses of differentially expressed genes in IPA. Examination of differential gene expression showed small differences between low- and high-grade PSCC but substantial changes between PSCC and ISCC samples (184 vs 1200 p-value <0.05, fc ±1.75). However, the majority of the differentially expressed PSCC genes (142 genes: 77%) were shared with those in ISCC samples. Pathway analysis showed that these shared genes are associated with DNA damage response, DNA/RNA metabolism and inflammation as major biological themes. Cluster analysis identified 12 distinct patterns of gene expression including progressive up or down-regulation across PSCC and ISCC. Pathway analysis of incrementally up-regulated genes revealed again significant enrichment of terms related to DNA damage response, DNA/RNA metabolism, inflammation, survival and proliferation. Altered expression of selected genes was confirmed using RT-PCR, as well as immunohistochemistry in an independent set of 45 ISCCs. Gene expression profiles in PSCC and ISCC differ greatly in terms of numbers of genes with altered transcriptional activity. However, altered gene expression in PSCC affects canonical pathways and cellular and biological processes, such as inflammation and DNA damage response, which are highly consistent with hallmarks of cancer.

  11. Expression Profiling and Proteomic Analysis of JIN Chinese Herbal Formula in Lung Carcinoma H460 Xenografts

    PubMed Central

    Zheng, Luyu; Zhang, Weiyi; Jiang, Miao; Zhang, Huarong; Xiong, Fei; Yu, Yang; Chen, Meijuan; Zhou, Jing; Dai, Xiaoming; Jiang, Ming; Wang, Mingyan; Cheng, Ge; Duan, Jinao; Yu, Wei; Lin, Biaoyang; Fu, Haian; Zhang, Xu

    2013-01-01

    Many traditional Chinese medicine (TCM) formulae have been used in cancer therapy. The JIN formula is an ancient herbal formula recorded in the classic TCM book Jin Kui Yao Lue (Golden Chamber). The JIN formula significantly delayed the growth of subcutaneous human H460 xenografted tumors in vivo compared with the growth of mock controls. Gene array analysis of signal transduction in cancer showed that the JIN formula acted on multiple targets such as the mitogen-activated protein kinase, hedgehog, and Wnt signaling pathways. The coformula treatment of JIN and diamminedichloroplatinum (DDP) affected the stress/heat shock pathway. Proteomic analysis showed 36 and 84 differentially expressed proteins between the mock and DDP groups and between the mock and JIN groups, respectively. GoMiner analysis revealed that the differentially expressed proteins between the JIN and mock groups were enriched during cellular metabolic processes, and so forth. The ones between the DDP and mock groups were enriched during protein-DNA complex assembly, and so forth. Most downregulated proteins in the JIN group were heat shock proteins (HSPs) such as HSP90AA1 and HSPA1B, which could be used as markers to monitor responses to the JIN formula therapy. The mechanism of action of the JIN formula on HSP proteins warrants further investigation. PMID:24066008

  12. Evolutionary divergence of vertebrate Hoxb2 expression patterns and transcriptional regulatory loci.

    PubMed

    Scemama, Jean-Luc; Hunter, Michael; McCallum, Jeff; Prince, Victoria; Stellwag, Edmund

    2002-10-15

    Hox gene expression is regulated by a complex array of cis-acting elements that control spatial and temporal gene expression in developing embryos. Here, we report the isolation of the striped bass Hoxb2a gene, comparison of its expression to the orthologous gene from zebrafish, and comparative genomic analysis of the upstream regulatory region to that of other vertebrates. Comparison of the Hoxb2a gene expression patterns from striped bass to zebrafish revealed similar expression patterns within rhombomeres 3, 4, and 5 of the hindbrain but a notable absence of expression in neural crest tissues of striped bass while neural crest expression is observed in zebrafish and common to other vertebrates. Comparative genomic analysis of the striped bass Hoxb2a-b3a intergenic region to those from zebrafish, pufferfish, human, and mouse demonstrated the presence of common Meis, Hox/Pbx, Krox-20, and Box 1 elements, which are necessary for rhombomere 3, 4, and 5 expression. Despite their common occurrence, the location and orientation of these transcription elements differed among the five species analyzed, such that Krox-20 and Box 1 elements are located 3' to the Meis, Hox/Pbx elements in striped bass, pufferfish, and human while they are located 5' of this r4 enhancer in zebrafish and mouse. Our results suggest that the plasticity exhibited in the organization of key regulatory elements responsible for rhombomere-specific Hoxb2a expression may reflect the effects of stabilizing selection in the evolution cis-acting elements. Copyright 2002 Wiley-Liss, Inc.

  13. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles.

    PubMed

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection.

  14. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection. PMID:25664019

  15. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans.

    PubMed

    Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart

    2017-04-24

    High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.

  16. DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cells response to platinum with corresponding alteration in the expression of BRCA1

    PubMed Central

    2012-01-01

    Background Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC). In our previous work Decoy Receptor 3 (DcR3) was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. Methods We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. Results High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02). None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs) Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Conclusions Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The paradoxical responses seen were related to the expression pattern of HSPGs available on the cells surface to interact with. Although the mechanism behind this is not completely known alterations in DNA repair pathways including the expression of BRCA1 appear to be involved. PMID:22583667

  17. Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.

    This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides formore » calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of CACNA1C (Cav1.2).« less

  18. Genome-Wide Prediction of the Polymorphic Ser Gene Family in Tetrahymena thermophila Based on Motif Analysis

    PubMed Central

    Ponsuwanna, Patrath; Kümpornsin, Krittikorn; Chookajorn, Thanat

    2014-01-01

    Even though antigenic variation is employed among parasitic protozoa for host immune evasion, Tetrahymena thermophila, a free-living ciliate, can also change its surface protein antigens. These cysteine-rich glycosylphosphatidylinositol (GPI)-linked surface proteins are encoded by a family of polymorphic Ser genes. Despite the availability of T. thermophila genome, a comprehensive analysis of the Ser family is limited by its high degree of polymorphism. In order to overcome this problem, a new approach was adopted by searching for Ser candidates with common motif sequences, namely length-specific repetitive cysteine pattern and GPI anchor site. The candidate genes were phylogenetically compared with the previously identified Ser genes and classified into subtypes. Ser candidates were often found to be located as tandem arrays of the same subtypes on several chromosomal scaffolds. Certain Ser candidates located in the same chromosomal arrays were transcriptionally expressed at specific T. thermophila developmental stages. These Ser candidates selected by the motif analysis approach can form the foundation for a systematic identification of the entire Ser gene family, which will contribute to the understanding of their function and the basis of T. thermophila antigenic variation. PMID:25133747

  19. Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc.

    PubMed

    Gruber, Helen E; Mougeot, Jean-Luc; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N

    2007-05-15

    Five Thompson Grade I/II discs (Group 1), 7 Grade III discs (Group 2), and 3 Grade IV discs (Group IV) were studied here in a project approved by the authors' Human Subjects Institutional Review Board. Our objective was to use laser capture microdissection (LCM) to harvest cells from the human anulus and to derive gene expression profiles using microarray analysis. Appropriate gene expression is essential in the intervertebral disc for maintenance of extracellular matrix (ECM), ECM remodeling, and maintenance of a viable disc cell population. During disc degeneration, cell numbers drop, making gene expression studies challenging. LCM was used to harvest cells from paraffin-embedded sections of human anulus tissue. Gene profiling used Affymetrix GeneChip Human X3P arrays. ANOVA and SAM permutation analysis were applied to dCHIP normalized, filtered, and log-transformed gene expression data ( approximately 33,500 probes), and data analyzed to identify genes that were significantly differentially expressed between the 3 groups. We identified 47 genes that were significantly differentially expressed between the 3 groups (P < 0.001 and lowest q values). Compared with the healthiest discs (Grade I/II), 13 genes were up-regulated and 19 down-regulated in both the Grade III and the Grade IV discs. Genes with biologic significance regulated during degeneration involved cell senescence, low cell division rates, hypoxia-related genes, heat-shock protein 70 interacting protein, neuropilin 2, and interleukin-23p19 (interleukin-12 family). Results expand our understanding of disc aging and degeneration and show that LCM is a valuable technique that can be used to collect mRNA amounts adequate for microarray analysis from the sparse cell population of the human anulus.

  20. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction.

    PubMed Central

    Galfalvy, Hanga C; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Pavlidis, Paul; Ellis, Steven P; Mann, J John; Sibille, Etienne; Arango, Victoria

    2003-01-01

    Background Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Results Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. Conclusion In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects. PMID:12962547

  1. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction.

    PubMed

    Galfalvy, Hanga C; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Pavlidis, Paul; Ellis, Steven P; Mann, J John; Sibille, Etienne; Arango, Victoria

    2003-09-08

    Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects.

  2. The CRISPR-Associated Gene cas2 of Legionella pneumophila Is Required for Intracellular Infection of Amoebae

    PubMed Central

    Gunderson, Felizza F.; Cianciotto, Nicholas P.

    2013-01-01

    ABSTRACT Recent studies have shown that the clustered regularly interspaced palindromic repeats (CRISPR) array and its associated (cas) genes can play a key role in bacterial immunity against phage and plasmids. Upon analysis of the Legionella pneumophila strain 130b chromosome, we detected a subtype II-B CRISPR-Cas locus that contains cas9, cas1, cas2, cas4, and an array with 60 repeats and 58 unique spacers. Reverse transcription (RT)-PCR analysis demonstrated that the entire CRISPR-Cas locus is expressed during 130b extracellular growth in both rich and minimal media as well as during intracellular infection of macrophages and aquatic amoebae. Quantitative reverse transcription-PCR (RT-PCR) further showed that the levels of cas transcripts, especially those of cas1 and cas2, are elevated during intracellular growth relative to exponential-phase growth in broth. Mutants lacking components of the CRISPR-Cas locus were made and found to grow normally in broth and on agar media. cas9, cas1, cas4, and CRISPR array mutants also grew normally in macrophages and amoebae. However, cas2 mutants, although they grew typically in macrophages, were significantly impaired for infection of both Hartmannella and Acanthamoeba species. A complemented cas2 mutant infected the amoebae at wild-type levels, confirming that cas2 is required for intracellular infection of these host cells. PMID:23481601

  3. TEMPORAL GENE INDUCTION PATTERNS IN SHEEPSHEAD MINNOWS EXPOSED TO 17-ESTRADIOL

    EPA Science Inventory

    Gene arrays provide a powerful method to examine changes in gene expression in fish due to chemical exposures in the environment. In this study, we expanded an existing gene array for sheepshead minnows (Cyprinodon variegatus) (SHM) and used it to examine temporal changes in gene...

  4. Identification of suitable genes contributes to lung adenocarcinoma clustering by multiple meta-analysis methods.

    PubMed

    Yang, Ze-Hui; Zheng, Rui; Gao, Yuan; Zhang, Qiang

    2016-09-01

    With the widespread application of high-throughput technology, numerous meta-analysis methods have been proposed for differential expression profiling across multiple studies. We identified the suitable differentially expressed (DE) genes that contributed to lung adenocarcinoma (ADC) clustering based on seven popular multiple meta-analysis methods. Seven microarray expression profiles of ADC and normal controls were extracted from the ArrayExpress database. The Bioconductor was used to perform the data preliminary preprocessing. Then, DE genes across multiple studies were identified. Hierarchical clustering was applied to compare the classification performance for microarray data samples. The classification efficiency was compared based on accuracy, sensitivity and specificity. Across seven datasets, 573 ADC cases and 222 normal controls were collected. After filtering out unexpressed and noninformative genes, 3688 genes were remained for further analysis. The classification efficiency analysis showed that DE genes identified by sum of ranks method separated ADC from normal controls with the best accuracy, sensitivity and specificity of 0.953, 0.969 and 0.932, respectively. The gene set with the highest classification accuracy mainly participated in the regulation of response to external stimulus (P = 7.97E-04), cyclic nucleotide-mediated signaling (P = 0.01), regulation of cell morphogenesis (P = 0.01) and regulation of cell proliferation (P = 0.01). Evaluation of DE genes identified by different meta-analysis methods in classification efficiency provided a new perspective to the choice of the suitable method in a given application. Varying meta-analysis methods always present varying abilities, so synthetic consideration should be taken when providing meta-analysis methods for particular research. © 2015 John Wiley & Sons Ltd.

  5. Meta-analysis of gene expression patterns in animal models of prenatal alcohol exposure suggests role for protein synthesis inhibition and chromatin remodeling

    PubMed Central

    Rogic, Sanja; Wong, Albertina; Pavlidis, Paul

    2017-01-01

    Background Prenatal alcohol exposure (PAE) can result in an array of morphological, behavioural and neurobiological deficits that can range in their severity. Despite extensive research in the field and a significant progress made, especially in understanding the range of possible malformations and neurobehavioral abnormalities, the molecular mechanisms of alcohol responses in development are still not well understood. There have been multiple transcriptomic studies looking at the changes in gene expression after PAE in animal models, however there is a limited apparent consensus among the reported findings. In an effort to address this issue, we performed a comprehensive re-analysis and meta-analysis of all suitable, publically available expression data sets. Methods We assembled ten microarray data sets of gene expression after PAE in mouse and rat models consisting of samples from a total of 63 ethanol-exposed and 80 control animals. We re-analyzed each data set for differential expression and then used the results to perform meta-analyses considering all data sets together or grouping them by time or duration of exposure (pre- and post-natal, acute and chronic, respectively). We performed network and Gene Ontology enrichment analysis to further characterize the identified signatures. Results For each sub-analysis we identified signatures of differential expressed genes that show support from multiple studies. Overall, the changes in gene expression were more extensive after acute ethanol treatment during prenatal development than in other models. Considering the analysis of all the data together, we identified a robust core signature of 104 genes down-regulated after PAE, with no up-regulated genes. Functional analysis reveals over-representation of genes involved in protein synthesis, mRNA splicing and chromatin organization. Conclusions Our meta-analysis shows that existing studies, despite superficial dissimilarity in findings, share features that allow us to identify a common core signature set of transcriptome changes in PAE. This is an important step to identifying the biological processes that underlie the etiology of FASD. PMID:26996386

  6. Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression

    PubMed Central

    Almlöf, Jonas Carlsson; Lundmark, Per; Lundmark, Anders; Ge, Bing; Maouche, Seraya; Göring, Harald H. H.; Liljedahl, Ulrika; Enström, Camilla; Brocheton, Jessy; Proust, Carole; Godefroy, Tiphaine; Sambrook, Jennifer G.; Jolley, Jennifer; Crisp-Hihn, Abigail; Foad, Nicola; Lloyd-Jones, Heather; Stephens, Jonathan; Gwilliam, Rhian; Rice, Catherine M.; Hengstenberg, Christian; Samani, Nilesh J.; Erdmann, Jeanette; Schunkert, Heribert; Pastinen, Tomi; Deloukas, Panos; Goodall, Alison H.; Ouwehand, Willem H.; Cambien, François; Syvänen, Ann-Christine

    2012-01-01

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers. PMID:23300628

  7. NCBI GEO: mining millions of expression profiles--database and tools.

    PubMed

    Barrett, Tanya; Suzek, Tugba O; Troup, Dennis B; Wilhite, Stephen E; Ngau, Wing-Chi; Ledoux, Pierre; Rudnev, Dmitry; Lash, Alex E; Fujibuchi, Wataru; Edgar, Ron

    2005-01-01

    The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest fully public repository for high-throughput molecular abundance data, primarily gene expression data. The database has a flexible and open design that allows the submission, storage and retrieval of many data types. These data include microarray-based experiments measuring the abundance of mRNA, genomic DNA and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. GEO currently holds over 30,000 submissions representing approximately half a billion individual molecular abundance measurements, for over 100 organisms. Here, we describe recent database developments that facilitate effective mining and visualization of these data. Features are provided to examine data from both experiment- and gene-centric perspectives using user-friendly Web-based interfaces accessible to those without computational or microarray-related analytical expertise. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  8. Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics.

    PubMed

    Gamwell, Lisa F; Gambaro, Karen; Merziotis, Maria; Crane, Colleen; Arcand, Suzanna L; Bourada, Valerie; Davis, Christopher; Squire, Jeremy A; Huntsman, David G; Tonin, Patricia N; Vanderhyden, Barbara C

    2013-02-21

    The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. Spectral karyotyping revealed a largely normal diploid karyotype (in greater than 95% of cells) with a visibly shorter chromosome 20 contig. High density SNP array analysis also revealed few genomic anomalies in BIN-67 cells, which included loss of heterozygosity of an estimated 16.7 Mb interval on chromosome 20. SNP array analyses of four SCCOHT samples also indicated a low frequency of genomic anomalies in the majority of cases. Although resistant to platinum chemotherapeutic drugs, BIN-67 cell viability in vitro was reduced by > 75% after infection with oncolytic viruses. These results show that SCCOHT differs from high-grade serous carcinomas by exhibiting few chromosomal anomalies and lacking TP53 mutations. Although BIN-67 cells are resistant to standard chemotherapeutic agents, their sensitivity to oncolytic viruses suggests that their therapeutic use in SCCOHT should be considered.

  9. Analysis of plasma microRNA expression profiles revealed different cancer susceptibility in healthy young adult smokers and middle-aged smokers

    PubMed Central

    Shi, Bing; Gao, Hongmin; Zhang, Tianyang; Cui, Qinghua

    2016-01-01

    Cigarette smoking is a world-wide habit and an important risk factor for cancer. It was known that cigarette smoking can change the expression of circulating microRNAs (miRNAs) in healthy middle-aged adults. However, it remains unclear whether cigarette smoking can change the levels of circulating miRNAs in young healthy smokers and whether there are differences in cancer susceptibility for the two cases. In this study, the miRNA expression profiles of 28 smokers and 12 non-smokers were determined by Agilent human MicroRNA array. We further performed bioinformatics analysis for the differentially expressed miRNAs. The result showed that 35 miRNAs were differentially expressed. Among them, 24 miRNAs were up-regulated and 11 miRNAs were down-regulated in smokers. Functional enrichment analysis showed that the deregulated miRNAs are related to immune system and hormones regulation. Strikingly, the up-regulated miRNAs are mostly associated with hematologic cancers, such as lymphoma, leukemia. As a comparison, the up-regulated plasma miRNAs in middle-aged smokers are mostly associated with solid cancers, such as hepatocellular carcinoma and lung cancer, suggesting that smoking could have different influences on young adults and middle-aged adults. In a conclusion, we identified the circulating miRNAs deregulated by cigarette smoking and revealed that the age-dependent deregulated miRNAs tend to be mainly involved in different types of human cancers. PMID:26943588

  10. Analysis of plasma microRNA expression profiles revealed different cancer susceptibility in healthy young adult smokers and middle-aged smokers.

    PubMed

    Shi, Bing; Gao, Hongmin; Zhang, Tianyang; Cui, Qinghua

    2016-04-19

    Cigarette smoking is a world-wide habit and an important risk factor for cancer. It was known that cigarette smoking can change the expression of circulating microRNAs (miRNAs) in healthy middle-aged adults. However, it remains unclear whether cigarette smoking can change the levels of circulating miRNAs in young healthy smokers and whether there are differences in cancer susceptibility for the two cases. In this study, the miRNA expression profiles of 28 smokers and 12 non-smokers were determined by Agilent human MicroRNA array. We further performed bioinformatics analysis for the differentially expressed miRNAs. The result showed that 35 miRNAs were differentially expressed. Among them, 24 miRNAs were up-regulated and 11 miRNAs were down-regulated in smokers. Functional enrichment analysis showed that the deregulated miRNAs are related to immune system and hormones regulation. Strikingly, the up-regulated miRNAs are mostly associated with hematologic cancers, such as lymphoma, leukemia. As a comparison, the up-regulated plasma miRNAs in middle-aged smokers are mostly associated with solid cancers, such as hepatocellular carcinoma and lung cancer, suggesting that smoking could have different influences on young adults and middle-aged adults. In a conclusion, we identified the circulating miRNAs deregulated by cigarette smoking and revealed that the age-dependent deregulated miRNAs tend to be mainly involved in different types of human cancers.

  11. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    PubMed

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  12. Biologic consequences of Stat1-independent IFN signaling

    PubMed Central

    Gil, M. Pilar; Bohn, Erwin; O'Guin, Andrew K.; Ramana, Chilakamarti V.; Levine, Beth; Stark, George R.; Virgin, Herbert W.; Schreiber, Robert D.

    2001-01-01

    Although Stat1 is required for many IFN-dependent responses, recent work has shown that IFNγ functions independently of Stat1 to affect the growth of tumor cells or immortalized fibroblasts. We now demonstrate that both IFNγ and IFNα/β regulate proliferative responses in cells of the mononuclear phagocyte lineage derived from Stat1-null mice. Using both representational difference analysis and gene arrays, we show that IFNγ exerts its Stat1-independent actions on mononuclear phagocytes by regulating the expression of many genes. This result was confirmed by monitoring changes in expression and function of the corresponding gene products. Regulation of the expression of these genes requires the IFNγ receptor and Jak1. The physiologic relevance of IFN-dependent, Stat1-independent signaling was demonstrated by monitoring antiviral responses in Stat1-null mice. Thus, the IFN receptors engage alternative Stat1-independent signaling pathways that have important physiological consequences. PMID:11390995

  13. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation.

    PubMed

    Senesi, Pamela; Luzi, Livio; Montesano, Anna; Mazzocchi, Nausicaa; Terruzzi, Ileana

    2013-07-19

    Betaine (BET) is a component of many foods, including spinach and wheat. It is an essential osmolyte and a source of methyl groups. Recent studies have hypothesized that BET might play a role in athletic performance. However, BET effects on skeletal muscle differentiation and hypertrophy are still poorly understood. We examined BET action on neo myotubes maturation and on differentiation process, using C2C12 murine myoblastic cells. We used RT2-PCR array, Western blot and immunofluorescence analysis to study the BET effects on morphological features of C2C12 and on signaling pathways involved in muscle differentiation and hypertrophy. We performed a dose-response study, establishing that 10 mM BET was the dose able to stimulate morphological changes and hypertrophic process in neo myotubes. RT2-PCR array methodology was used to identify the expression profile of genes encoding proteins involved in IGF-1 pathway. A dose of 10 mM BET was found to promote IGF-1 receptor (IGF-1 R) expression. Western blot and immunofluorescence analysis, performed in neo myotubes, pointed out that 10 mM BET improved IGF-1 signaling, synthesis of Myosin Heavy Chain (MyHC) and neo myotubes length. Our findings provide the first evidence that BET could promote muscle fibers differentiation and increase myotubes size by IGF-1 pathway activation, suggesting that BET might represent a possible new drug/integrator strategy, not only in sport performance but also in clinical conditions characterized by muscle function impairment.

  14. Design and Fabrication of Aspheric Microlens Array for Optical Read-Only-Memory Card System

    NASA Astrophysics Data System (ADS)

    Kim, Hongmin; Jeong, Gibong; Kim, Young‑Joo; Kang, Shinill

    2006-08-01

    An optical head based on the Talbot effect with an aspheric microlens array for an optical read-only-memory (ROM) card system was designed and fabricated. The mathematical expression for the wavefield diffracted by a periodic microlens array showed that the amplitude distribution at the Talbot plane from the focal plane of the microlens array was identically equal to that at the focal plane. To use a reflow microlens array as a master pattern of an ultraviolet-imprinted (UV-imprinted) microlens array, the reflow microlens was defined as having an aspheric shape. To obtain optical probes with good optical qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. The reflow condition was optimized to realize the master pattern of a microlens with a designed aspheric shape. The intensity distribution of the optical probes at the Talbot plane from the focal plane showed a diffraction-limited shape.

  15. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines

    PubMed Central

    Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G

    2014-01-01

    Background: Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Methods: Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT–PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Results: Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Conclusions: Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients. PMID:25010864

  16. An Intelligent Architecture Based on Field Programmable Gate Arrays Designed to Detect Moving Objects by Using Principal Component Analysis

    PubMed Central

    Bravo, Ignacio; Mazo, Manuel; Lázaro, José L.; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel

    2010-01-01

    This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices. PMID:22163406

  17. An intelligent architecture based on Field Programmable Gate Arrays designed to detect moving objects by using Principal Component Analysis.

    PubMed

    Bravo, Ignacio; Mazo, Manuel; Lázaro, José L; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel

    2010-01-01

    This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices.

  18. Comparison of the Predictive Accuracy of DNA Array-Based Multigene Classifiers across cDNA Arrays and Affymetrix GeneChips

    PubMed Central

    Stec, James; Wang, Jing; Coombes, Kevin; Ayers, Mark; Hoersch, Sebastian; Gold, David L.; Ross, Jeffrey S; Hess, Kenneth R.; Tirrell, Stephen; Linette, Gerald; Hortobagyi, Gabriel N.; Symmans, W. Fraser; Pusztai, Lajos

    2005-01-01

    We examined how well differentially expressed genes and multigene outcome classifiers retain their class-discriminating values when tested on data generated by different transcriptional profiling platforms. RNA from 33 stage I-III breast cancers was hybridized to both Affymetrix GeneChip and Millennium Pharmaceuticals cDNA arrays. Only 30% of all corresponding gene expression measurements on the two platforms had Pearson correlation coefficient r ≥ 0.7 when UniGene was used to match probes. There was substantial variation in correlation between different Affymetrix probe sets matched to the same cDNA probe. When cDNA and Affymetrix probes were matched by basic local alignment tool (BLAST) sequence identity, the correlation increased substantially. We identified 182 genes in the Affymetrix and 45 in the cDNA data (including 17 common genes) that accurately separated 91% of cases in supervised hierarchical clustering in each data set. Cross-platform testing of these informative genes resulted in lower clustering accuracy of 45 and 79%, respectively. Several sets of accurate five-gene classifiers were developed on each platform using linear discriminant analysis. The best 100 classifiers showed average misclassification error rate of 2% on the original data that rose to 19.5% when tested on data from the other platform. Random five-gene classifiers showed misclassification error rate of 33%. We conclude that multigene predictors optimized for one platform lose accuracy when applied to data from another platform due to missing genes and sequence differences in probes that result in differing measurements for the same gene. PMID:16049308

  19. Epigenetic suppression of the immunoregulator MZB1 is associated with the malignant phenotype of gastric cancer.

    PubMed

    Kanda, Mitsuro; Tanaka, Chie; Kobayashi, Daisuke; Tanaka, Haruyoshi; Shimizu, Dai; Shibata, Masahiro; Takami, Hideki; Hayashi, Masamichi; Iwata, Naoki; Niwa, Yukiko; Yamada, Suguru; Fujii, Tsutomu; Nakayama, Goro; Fujiwara, Michitaka; Kodera, Yasuhiro

    2016-11-15

    Prediction of tumor recurrence after curative resection is critical for determining the prognosis of patients with gastric cancer (GC). The initiation and progression of GC are associated with inappropriate immune responses caused by chronic inflammation of the gastric mucosa. To identify immunoregulatory molecules involved in GC progression, GC cell lines and 200 pairs of tumor and normal tissues from patients with GC were analyzed for gene expression, amplification and methylation as well as function of a differentially expressed gene. The transcriptome analysis revealed that marginal zone B and B1 cell specific protein (MZB1) was expressed at significantly decreased levels in primary GC tissues when compared with the corresponding normal gastric mucosa. PCR array analysis exploring genes expressed cooperatively with MZB1 revealed that differential expression of MZB1 mRNA in GC cell lines correlated positively with the levels of the mRNAs encoding estrogen receptor 1 and desumoylating isopeptidase 1. Hypermethylation of the MZB1 promoter was frequent in cell lines with decreased levels of MZB1 mRNA. siRNA-mediated knockdown of MZB1 significantly increased proliferation, invasion and migration of GC cell lines. Low MZB1 expression was an independent prognostic factor for recurrence after curative gastrectomy and was associated significantly with increased hematogenous recurrence. MZB1 acts as a suppressor of GC. Low MZB1 expression in the primary GC tissue is predictive of recurrence after curative resection. © 2016 UICC.

  20. Detection of growth hormone doping by gene expression profiling of peripheral blood.

    PubMed

    Mitchell, Christopher J; Nelson, Anne E; Cowley, Mark J; Kaplan, Warren; Stone, Glenn; Sutton, Selina K; Lau, Amie; Lee, Carol M Y; Ho, Ken K Y

    2009-12-01

    GH abuse is a significant problem in many sports, and there is currently no robust test that allows detection of doping beyond a short window after administration. Our objective was to evaluate gene expression profiling in peripheral blood leukocytes in-vivo as a test for GH doping in humans. Seven men and thirteen women were administered GH, 2 mg/d sc for 8 wk. Blood was collected at baseline and at 8 wk. RNA was extracted from the white cell fraction. Microarray analysis was undertaken using Agilent 44K G4112F arrays using a two-color design. Quantitative RT-PCR using TaqMan gene expression assays was performed for validation of selected differentially expressed genes. GH induced an approximately 2-fold increase in circulating IGF-I that was maintained throughout the 8 wk of the study. GH induced significant changes in gene expression with 353 in women and 41 in men detected with a false discovery rate of less than 5%. None of the differentially expressed genes were common between men and women. The maximal changes were a doubling for up-regulated or halving for down-regulated genes, similar in magnitude to the variation between individuals. Quantitative RT-PCR for seven target genes showed good concordance between microarray and quantitative PCR data in women but not in men. Gene expression analysis of peripheral blood leukocytes is unlikely to be a viable approach for the detection of GH doping.

  1. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  2. Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning Petri net

    NASA Astrophysics Data System (ADS)

    Wu, Jianing; Yan, Shaoze; Xie, Liyang

    2011-12-01

    To address the impact of solar array anomalies, it is important to perform analysis of the solar array reliability. This paper establishes the fault tree analysis (FTA) and fuzzy reasoning Petri net (FRPN) models of a solar array mechanical system and analyzes reliability to find mechanisms of the solar array fault. The index final truth degree (FTD) and cosine matching function (CMF) are employed to resolve the issue of how to evaluate the importance and influence of different faults. So an improvement reliability analysis method is developed by means of the sorting of FTD and CMF. An example is analyzed using the proposed method. The analysis results show that harsh thermal environment and impact caused by particles in space are the most vital causes of the solar array fault. Furthermore, other fault modes and the corresponding improvement methods are discussed. The results reported in this paper could be useful for the spacecraft designers, particularly, in the process of redesigning the solar array and scheduling its reliability growth plan.

  3. Expression of monoacylglycerol lipase as a marker of tumour invasion and progression in malignant melanoma.

    PubMed

    Baba, Yuko; Funakoshi, T; Mori, M; Emoto, K; Masugi, Y; Ekmekcioglu, S; Amagai, M; Tanese, K

    2017-12-01

    Accumulating evidence suggests that the lipid lytic enzyme monoacylglycerol lipase (MAGL) promotes tumour invasion and metastasis through up-regulation of pro-tumorigenic signalling lipids in several tumour cell lines. However, the expression status of MAGL in clinical melanoma tissues and its clinicopathological significance remain unclear. To correlate the tumour expression status of MAGL with the clinicopathological information of patients with malignant melanoma. Polymerase chain reaction (PCR) array screening was performed, and the results were validated using immunocytochemical analysis of tumour and non-tumour melanocytic cell lines. Immunohistochemical staining for MAGL was performed for 74 melanoma samples, including 48 primary and 26 metastatic tumours, in which the expression of MAGL was determined by evaluating the percentage of MAGL-positive tumour cells and the MAGL staining intensity. Finally, we analysed the association of MAGL expression status with tumour progression, tumour thickness and vascular invasion of the primary lesion. Immunocytochemical analysis revealed that MAGL was expressed in all 12 melanoma cell lines, but not in normal human epidermal melanocytes. In the immunohistochemical analysis, positive staining for MAGL was noted in 32 of 48 (64.5%) primary lesions, 14 of 17 (82.4%) lymph node metastatic lesions and 7 of 9 (77.8%) skin metastatic lesions. Metastatic tumours had a significantly higher staining intensity (P = 0.033 for lymph node, P = 0.010 for skin). In the analysis of primary lesions, higher MAGL expression correlated with greater tumour thickness (P = 0.015) and the presence of vascular invasion (P = 0.017). On further evaluation of MAGL-positive primary lesions, staining intensity of MAGL tended to be higher in deeper areas of the tumour mass. The expression of MAGL in tumour cells reflects the aggressiveness of melanoma cells and may serve as a marker of tumour progression. © 2017 European Academy of Dermatology and Venereology.

  4. Joint analysis of BICEP2/keck array and Planck Data.

    PubMed

    Ade, P A R; Aghanim, N; Ahmed, Z; Aikin, R W; Alexander, K D; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barkats, D; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Benton, S J; Bernard, J-P; Bersanelli, M; Bielewicz, P; Bischoff, C A; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Brevik, J A; Bucher, M; Buder, I; Bullock, E; Burigana, C; Butler, R C; Buza, V; Calabrese, E; Cardoso, J-F; Catalano, A; Challinor, A; Chary, R-R; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Connors, J; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J-M; Désert, F-X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dowell, C D; Duband, L; Ducout, A; Dunkley, J; Dupac, X; Dvorkin, C; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Filippini, J P; Finelli, F; Fliescher, S; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerløw, E; Golwala, S R; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Halpern, M; Hansen, F K; Hanson, D; Harrison, D L; Hasselfield, M; Helou, G; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hilton, G C; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hristov, V V; Huffenberger, K M; Hui, H; Hurier, G; Irwin, K D; Jaffe, A H; Jaffe, T R; Jewell, J; Jones, W C; Juvela, M; Karakci, A; Karkare, K S; Kaufman, J P; Keating, B G; Kefeli, S; Keihänen, E; Kernasovskiy, S A; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kovac, J M; Krachmalnicoff, N; Kunz, M; Kuo, C L; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J-M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leitch, E M; Leonardi, R; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Lueker, M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Mason, P; Matarrese, S; Megerian, K G; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M-A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nguyen, H T; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; O'Brient, R; Ogburn, R W; Orlando, A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Pryke, C; Puget, J-L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Richter, S; Ristorcelli, I; Rocha, G; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Schwarz, R; Scott, D; Seiffert, M D; Sheehy, C D; Spencer, L D; Staniszewski, Z K; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A-S; Sygnet, J-F; Tauber, J A; Teply, G P; Terenzi, L; Thompson, K L; Toffolatti, L; Tolan, J E; Tomasi, M; Tristram, M; Tucci, M; Turner, A D; Valenziano, L; Valiviita, J; Van Tent, B; Vibert, L; Vielva, P; Vieregg, A G; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Weber, A C; Wehus, I K; White, M; White, S D M; Willmert, J; Wong, C L; Yoon, K W; Yvon, D; Zacchei, A; Zonca, A

    2015-03-13

    We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400  deg^{2} patch of sky centered on RA 0 h, Dec. -57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2  μK deg in Q and U at 143 GHz). We detect 150×353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies ≥150  GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r_{0.05}<0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0σ significance.

  5. Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients.

    PubMed

    Pelloni, Marianna; Coltrinari, Giulia; Paoli, Donatella; Pallotti, Francesco; Lombardo, Francesco; Lenzi, Andrea; Gandini, Loredana

    2017-09-01

    Various microRNAs from the miR-371-3 and miR-302a-d clusters have recently been proposed as markers for testicular germ cell tumours. Upregulation of these miRNAs has been found in both the tissue and serum of testicular cancer patients, but they have never been studied in human seminal plasma. The aim of this study was, therefore, to assess the differences in the expression of miR-371-3 and miR-302a-d between the seminal plasma and serum of testicular cancer patients, and to identify new potential testicular cancer markers in seminal plasma. We investigated the serum and seminal plasma of 28 pre-orchiectomy patients subsequently diagnosed with testicular cancer, the seminal plasma of another 20 patients 30 days post-orchiectomy and a control group consisting of 28 cancer-free subjects attending our centre for an andrological check-up. Serum microRNA expression was analysed using RT-qPCR. TaqMan Array Card 3.0 platform was used for microRNA profiling in the seminal plasma of cancer patients. Results for both miR-371-3 and the miR-302 cluster in the serum of testicular cancer patients were in line with literature reports, while miR-371and miR-372 expression in seminal plasma showed the opposite trend to serum. On array analysis, 37 miRNAs were differentially expressed in the seminal plasma of cancer patients, and the upregulated miR-142 and the downregulated miR-34b were validated using RT-qPCR. Our study investigated the expression of miRNAs in the seminal plasma of patients with testicular cancer for the first time. Unlike in serum, miR-371-3 cannot be considered as markers in seminal plasma, whereas miR-142 levels in seminal plasma may be a potential marker for testicular cancer.

  6. Slow down to stay alive: HER4 protects against cellular stress and confers chemoresistance in neuroblastoma.

    PubMed

    Hua, Yingqi; Gorshkov, Kirill; Yang, Yanwen; Wang, Wenyi; Zhang, Nianxiang; Hughes, Dennis P M

    2012-10-15

    Neuroblastoma (NBL) is a common pediatric solid tumor, and outcomes for patients with advanced neuroblastoma remain poor despite extremely aggressive treatment. Chemotherapy resistance at relapse contributes heavily to treatment failure. The poor survival of patients with high-risk NBL prompted this investigation into novel treatment options with the objective of gaining a better understanding of resistance mechanisms. On the basis of previous work and on data from publicly available studies, the authors hypothesized that human epidermal growth factor receptor 4 (Her4) contributes to resistance. Her4 expression was reduced with small-hairpin RNA (shRNA) to over express intracellular HER4, and the authors tested its impact on tumor cell survival under various culture conditions. The resulting changes in gene expression after HER4 knockdown were measured by using a messenger RNA (mRNA) array. HER4 expression was up-regulated in tumor spheres compared with the expression in monolayer culture. With HER4 knockdown, NBL cells became less resistant to anoikis and serum starvation. Moreover, HER4 knockdown increased the chemosensitivity of NBL cells to cisplatin, doxorubicin, etoposide, and activated ifosfamide. In mRNA array analysis, HER4 knockdown predominately altered genes related to cell cycle regulation. In NBL spheres compared with monolayers, cell proliferation was decreased, and cyclin D expression was reduced. HER4 knockdown reversed cyclin D suppression. Overexpressed intracellular HER4 slowed the cell cycle and induced chemoresistance. The current results indicated that HER4 protects NBL cells from multiple exogenous apoptotic stimuli, including anoikis, nutrient deficiency, and cytotoxic chemotherapy. The intracellular fragment of HER4 was sufficient to confer this phenotype. HER4 functions as a cell cycle suppressor, maintaining resistance to cellular stress. The current findings indicate that HER4 overexpression may be associated with refractory disease, and HER4 may be an important therapeutic target. Copyright © 2012 American Cancer Society.

  7. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    PubMed

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  8. Oligonucleotide Arrays vs. Metaphase-Comparative Genomic Hybridisation and BAC Arrays for Single-Cell Analysis: First Applications to Preimplantation Genetic Diagnosis for Robertsonian Translocation Carriers

    PubMed Central

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307

  9. Use of planar array electrophysiology for the development of robust ion channel cell lines.

    PubMed

    Clare, Jeffrey J; Chen, Mao Xiang; Downie, David L; Trezise, Derek J; Powell, Andrew J

    2009-01-01

    The tractability of ion channels as drug targets has been significantly improved by the advent of planar array electrophysiology platforms which have dramatically increased the capacity for electrophysiological profiling of lead series compounds. However, the data quality and through-put obtained with these platforms is critically dependent on the robustness of the expression reagent being used. The generation of high quality, recombinant cell lines is therefore a key step in the early phase of ion channel drug discovery and this can present significant challenges due to the diversity and organisational complexity of many channel types. This article focuses on several complex and difficult to express ion channels and illustrates how improved stable cell lines can be obtained by integration of planar array electrophysiology systems into the cell line generation process per se. By embedding this approach at multiple stages (e.g., during development of the expression strategy, during screening and validation of clonal lines, and during characterisation of the final cell line), the cycle time and success rate in obtaining robust expression of complex multi-subunit channels can be significantly improved. We also review how recent advances in this technology (e.g., population patch clamp) have further widened the versatility and applicability of this approach.

  10. Keratinocyte growth factor and the expression of wound-healing-related genes in primary human keratinocytes from burn patients.

    PubMed

    Chomiski, Verônica; Gragnani, Alfredo; Bonucci, Jéssica; Correa, Silvana Aparecida Alves; Noronha, Samuel Marcos Ribeiro de; Ferreira, Lydia Masako

    2016-08-01

    To evaluate the effect of keratinocyte growth factor (KGF) treatment on the expression of wound-healing-related genes in cultured keratinocytes from burn patients. Keratinocytes were cultured and divided into 4 groups (n=4 in each group): TKB (KGF-treated keratinocytes from burn patients), UKB (untreated keratinocytes from burn patients), TKC (KGF-treated keratinocytes from controls), and UKC (untreated keratinocytes from controls). Gene expression analysis using quantitative polymerase chain reaction (qPCR) array was performed to compare (1) TKC versus UKC, (2) UKB versus UKC, (3) TKB versus UKC, (4) TKB versus UKB, (5) TKB versus TKC, and (6) UKB versus TKC. Comparison 1 showed one down-regulated and one up-regulated gene; comparisons 2 and 3 resulted in the same five down-regulated genes; comparison 4 had no significant difference in relative gene expression; comparison 5 showed 26 down-regulated and 7 up-regulated genes; and comparison 6 showed 25 down-regulated and 11 up-regulated genes. There was no differential expression of wound-healing-related genes in cultured primary keratinocytes from burn patients treated with keratinocyte growth factor.

  11. Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines

    PubMed Central

    Elling, Axel A; Mitreva, Makedonka; Recknor, Justin; Gai, Xiaowu; Martin, John; Maier, Thomas R; McDermott, Jeffrey P; Hewezi, Tarek; McK Bird, David; Davis, Eric L; Hussey, Richard S; Nettleton, Dan; McCarter, James P; Baum, Thomas J

    2007-01-01

    Background The soybean cyst nematode Heterodera glycines is the most important parasite in soybean production worldwide. A comprehensive analysis of large-scale gene expression changes throughout the development of plant-parasitic nematodes has been lacking to date. Results We report an extensive genomic analysis of H. glycines, beginning with the generation of 20,100 expressed sequence tags (ESTs). In-depth analysis of these ESTs plus approximately 1,900 previously published sequences predicted 6,860 unique H. glycines genes and allowed a classification by function using InterProScan. Expression profiling of all 6,860 genes throughout the H. glycines life cycle was undertaken using the Affymetrix Soybean Genome Array GeneChip. Our data sets and results represent a comprehensive resource for molecular studies of H. glycines. Demonstrating the power of this resource, we were able to address whether arrested development in the Caenorhabditis elegans dauer larva and the H. glycines infective second-stage juvenile (J2) exhibits shared gene expression profiles. We determined that the gene expression profiles associated with the C. elegans dauer pathway are not uniformly conserved in H. glycines and that the expression profiles of genes for metabolic enzymes of C. elegans dauer larvae and H. glycines infective J2 are dissimilar. Conclusion Our results indicate that hallmark gene expression patterns and metabolism features are not shared in the developmentally arrested life stages of C. elegans and H. glycines, suggesting that developmental arrest in these two nematode species has undergone more divergent evolution than previously thought and pointing to the need for detailed genomic analyses of individual parasite species. PMID:17919324

  12. miRNA-135b Contributes to Triple Negative Breast Cancer Molecular Heterogeneity: Different Expression Profile in Basal-like Versus non-Basal-like Phenotypes.

    PubMed

    Uva, Paolo; Cossu-Rocca, Paolo; Loi, Federica; Pira, Giovanna; Murgia, Luciano; Orrù, Sandra; Floris, Matteo; Muroni, Maria Rosaria; Sanges, Francesca; Carru, Ciriaco; Angius, Andrea; De Miglio, Maria Rosaria

    2018-01-01

    The clinical and genetic heterogeneity of Triple Negative Breast Cancer (TNBC) and the lack of unambiguous molecular targets contribute to the inadequacy of current therapeutic options for these variants. MicroRNAs (miRNA) are a class of small highly conserved regulatory endogenous non-coding RNA, which can alter the expression of genes encoding proteins and may play a role in the dysregulation of cellular pathways. Our goal was to improve the knowledge of the molecular pathogenesis of TNBC subgroups analyzing the miRNA expression profile, and to identify new prognostic and predictive biomarkers. We conducted a human miRNome analysis by TaqMan Low Density Array comparing different TNBC subtypes, defined by immunohistochemical basal markers EGFR and CK5/6. RT-qPCR confirmed differential expression of microRNAs. To inspect the function of the selected targets we perform Gene Ontology and KEGG enrichment analysis. We identified a single miRNA signature given by miR-135b expression level, which was strictly related to TNBC with basal-like phenotype. miR-135b target analysis revealed a role in the TGF-beta, WNT and ERBB pathways. A significant positive correlation was identified between neoplastic proliferative index and miR-135b expression. These findings confirm the oncogenic roles of miR-135b in the pathogenesis of TNBC expressing basal markers. A potential negative prognostic role of miR-135b overexpression might be related to the positive correlation with high proliferative index. Our study implies potential clinical applications: miR-135b could be a potential therapeutic target in basal-like TNBCs.

  13. miRNA-135b Contributes to Triple Negative Breast Cancer Molecular Heterogeneity: Different Expression Profile in Basal-like Versus non-Basal-like Phenotypes

    PubMed Central

    Uva, Paolo; Cossu-Rocca, Paolo; Loi, Federica; Pira, Giovanna; Murgia, Luciano; Orrù, Sandra; Floris, Matteo; Muroni, Maria Rosaria; Sanges, Francesca; Carru, Ciriaco; Angius, Andrea; De Miglio, Maria Rosaria

    2018-01-01

    The clinical and genetic heterogeneity of Triple Negative Breast Cancer (TNBC) and the lack of unambiguous molecular targets contribute to the inadequacy of current therapeutic options for these variants. MicroRNAs (miRNA) are a class of small highly conserved regulatory endogenous non-coding RNA, which can alter the expression of genes encoding proteins and may play a role in the dysregulation of cellular pathways. Our goal was to improve the knowledge of the molecular pathogenesis of TNBC subgroups analyzing the miRNA expression profile, and to identify new prognostic and predictive biomarkers. We conducted a human miRNome analysis by TaqMan Low Density Array comparing different TNBC subtypes, defined by immunohistochemical basal markers EGFR and CK5/6. RT-qPCR confirmed differential expression of microRNAs. To inspect the function of the selected targets we perform Gene Ontology and KEGG enrichment analysis. We identified a single miRNA signature given by miR-135b expression level, which was strictly related to TNBC with basal-like phenotype. miR-135b target analysis revealed a role in the TGF-beta, WNT and ERBB pathways. A significant positive correlation was identified between neoplastic proliferative index and miR-135b expression. These findings confirm the oncogenic roles of miR-135b in the pathogenesis of TNBC expressing basal markers. A potential negative prognostic role of miR-135b overexpression might be related to the positive correlation with high proliferative index. Our study implies potential clinical applications: miR-135b could be a potential therapeutic target in basal-like TNBCs. PMID:29725243

  14. Identification of Temporal and Region-Specific Myocardial Gene Expression Patterns in Response to Infarction in Swine

    PubMed Central

    Nonell, Lara; Puigdecanet, Eulàlia; Astier, Laura; Solé, Francesc; Bayes-Genis, Antoni

    2013-01-01

    Molecular mechanisms associated with pathophysiological changes in ventricular remodelling due to myocardial infarction (MI) remain poorly understood. We analyzed changes in gene expression by microarray technology in porcine myocardial tissue at 1, 4, and 6 weeks post-MI. MI was induced by coronary artery ligation in 9 female pigs (30–40 kg). Animals were randomly sacrificed at 1, 4, or 6 weeks post-MI (n = 3 per group) and 3 healthy animals were also included as control group. Total RNA from myocardial samples was hybridized to GeneChip® Porcine Genome Arrays. Functional analysis was obtained with the Ingenuity Pathway Analysis (IPA) online tool. Validation of microarray data was performed by quantitative real-time PCR (qRT-PCR). More than 8,000 different probe sets showed altered expression in the remodelling myocardium at 1, 4, or 6 weeks post-MI. Ninety-seven percent of altered transcripts were detected in the infarct core and 255 probe sets were differentially expressed in the remote myocardium. Functional analysis revealed 28 genes de-regulated in the remote myocardial region in at least one of the three temporal analyzed stages, including genes associated with heart failure (HF), systemic sclerosis and coronary artery disease. In the infarct core tissue, eight major time-dependent gene expression patterns were recognized among 4,221 probe sets commonly altered over time. Altered gene expression of ACVR2B, BID, BMP2, BMPR1A, LMNA, NFKBIA, SMAD1, TGFB3, TNFRSF1A, and TP53 were further validated. The clustering of similar expression patterns for gene products with related function revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes at different stages after MI. PMID:23372767

  15. Genome-wide profiling of gene expression in the epididymis of alpha-chlorohydrin-induced infertile rats using an oligonucleotide microarray

    PubMed Central

    2010-01-01

    Background As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals. Methods Rats were treated with ACH for ten consecutive days, and then each male rat copulated with two female rats in proestrus. Then sperm maturation and other fertility parameters were analyzed. Furthermore, we identified epididymal-specific genes that are associated with fertility between control and ACH groups using an Affymetrix Rat 230 2.0 oligo-microarray. Finally, we performed RT-PCR analysis for several differentially expressed genes to validate the alteration in gene expression observed by oligonucleotide microarray. Results Among all the differentially expressed genes, we analyzed and screened the down-regulated genes associated with metabolism processes, which are considered the major targets of ACH action. Simultaneously, the genes that were up-regulated by chlorohydrin were detected. The genes that negatively regulate sperm maturation and fertility include apoptosis and immune-related genes and have not been reported previously. The overall results of PCR analysis for selected genes were consistent with the array data. Conclusions In this study, we have described the genome-wide profiles of gene expression in the epididymides of infertile rats induced by ACH, which could become potential epididymal specific targets for male contraception and infertility treatment. PMID:20409345

  16. Genome-wide profiling of gene expression in the epididymis of alpha-chlorohydrin-induced infertile rats using an oligonucleotide microarray.

    PubMed

    Xie, Shuwu; Zhu, Yan; Ma, Li; Lu, Yingying; Zhou, Jieyun; Gui, Youlun; Cao, Lin

    2010-04-22

    As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals. Rats were treated with ACH for ten consecutive days, and then each male rat copulated with two female rats in proestrus. Then sperm maturation and other fertility parameters were analyzed. Furthermore, we identified epididymal-specific genes that are associated with fertility between control and ACH groups using an Affymetrix Rat 230 2.0 oligo-microarray. Finally, we performed RT-PCR analysis for several differentially expressed genes to validate the alteration in gene expression observed by oligonucleotide microarray. Among all the differentially expressed genes, we analyzed and screened the down-regulated genes associated with metabolism processes, which are considered the major targets of ACH action. Simultaneously, the genes that were up-regulated by chlorohydrin were detected. The genes that negatively regulate sperm maturation and fertility include apoptosis and immune-related genes and have not been reported previously. The overall results of PCR analysis for selected genes were consistent with the array data. In this study, we have described the genome-wide profiles of gene expression in the epididymides of infertile rats induced by ACH, which could become potential epididymal specific targets for male contraception and infertility treatment.

  17. Investigating the Trade-Off Between Power Generation and Environmental Impact of Tidal-Turbine Arrays Using Array Layout Optimisation and Habitat Sustainability Modelling.

    NASA Astrophysics Data System (ADS)

    du Feu, R. J.; Funke, S. W.; Kramer, S. C.; Hill, J.; Piggott, M. D.

    2016-12-01

    The installation of tidal turbines into the ocean will inevitably affect the environment around them. However, due to the relative infancy of this sector the extent and severity of such effects is unknown. The layout of an array of turbines is an important factor in determining not only the array's final yield but also how it will influence regional hydrodynamics. This in turn could affect, for example, sediment transportation or habitat suitability. The two potentially competing objectives of extracting energy from the tidal current, and of limiting any environmental impact consequent to influencing that current, are investigated here. This relationship is posed as a multi-objective optimisation problem. OpenTidalFarm, an array layout optimisation tool, and MaxEnt, habitat sustainability modelling software, are used to evaluate scenarios off the coast of the UK. MaxEnt is used to estimate the likelihood of finding a species in a given location based upon environmental input data and presence data of the species. Environmental features which are known to impact habitat, specifically those affected by the presence of an array, such as bed shear stress, are chosen as inputs. MaxEnt then uses a maximum-entropy modelling approach to estimate population distribution across the modelled area. OpenTidalFarm is used to maximise the power generated by an array, or multiple arrays, through adjusting the position and number of turbines within them. It uses a 2D shallow water model with turbine arrays represented as adjustable friction fields. It has the capability to also optimise for user created functionals that can be expressed mathematically. This work uses two functionals; power extracted by the array, and the suitability of habitat as predicted by MaxEnt. A gradient-based local optimisation is used to adjust the array layout at each iteration. This work presents arrays that are optimised for both yield and the viability of habitat for chosen species. In each scenario studied, a range of array formations is found expressing varying preferences for either functional. Further analyses then allow for the identification of trade-offs between the two key societal objectives of energy production and conservation. This in turn produces information valuable to stakeholders and policymakers when making decisions on array design.

  18. The word disgust may refer to more than one emotion.

    PubMed

    Yoder, Anne M; Widen, Sherri C; Russell, James A

    2016-04-01

    Contrary to a common presupposition, the word disgust may refer to more than one emotion. From an array of 3 facial expressions (produced in our lab), participants (N = 44) in Study 1 selected the one that best matched 11 types of emotion-eliciting events: anger, sadness, and 9 types of disgust (7 types of physical disgust plus moral disgust and simply feeling ill). From an array of 4 facial expressions (two from Matsumoto & Ekman, 1988; two produced in lab), participants (N = 120) in Study 2 selected the one that best matched 14 types of disgust-eliciting events (8 physical and 6 moral). In both studies, the modal facial expression for physical disgust was the "sick face" developed by Widen, Pochedly, Pieloch, and Russell (2013), which shows someone about to vomit. The modal facial expression for the moral violations was the standard disgust face or, when available, an anger face. If facial expression is a constituent of an emotion, physical disgust and moral disgust are separate emotions. (c) 2016 APA, all rights reserved).

  19. Propagation of a phase-locked circular dark hollow beams array in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Xu, Xiaojun; Liu, Zejin

    2010-10-01

    The propagation of phase-locked circular dark hollow beams array in a turbulent atmosphere is studied. An analytical expression for the average intensity distribution at the receiving plane is obtained based on the extended Huygens-Fresnel principle. The effects of turbulence, dark parameter and beam order of the beams array on the intensity pattern are studied and analyzed. It is found that the intensity pattern of the phase-locked circular dark hollow beams array will evolve from a multiple-spot-pattern into a Gaussian beam spot under the isotropic influence of the turbulence. The intensity pattern of beam array with a larger dark parameter and beam order evolves into the Gaussian-shape faster with increasing propagation distance.

  20. Selective deposition and self-assembly of triblock copolymers into matrix arrays for membrane protein production.

    PubMed

    Andreasson-Ochsner, Mirjam; Fu, Zhikang; May, Sylvia; Xiu, Low Ying; Nallani, Madhavan; Sinner, Eva-Kathrin

    2012-01-31

    To improve the stability of cell membrane mimics, there has been growing interest in the use of block copolymers. Here, we present an easy approach to create an array of planar polymeric matrices capable of hosting membrane proteins. The array of polymeric matrices was formed by the selective deposition of triblock copolymers onto an array of hydrophilic islands situated within a hydrophobic background. The thickness of these matrices corresponds to the length of a single polymer chain. These polymeric matrices were used to host cell-free expressed membrane proteins, and offers a prototype from which a membrane protein array can be created for diagnostics or drug discovery purposes. © 2011 American Chemical Society

  1. Adaptive antenna arrays for weak interfering signals. [in satellite communication

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.; Ksienski, A. A.

    1986-01-01

    It is shown that conventional adaptive arrays are unable to suppress weak interfering signals. To overcome this problem, the feedback loops controlling the array weights were modified, reducing the noise level by reducing the correlation between the noise components of the two inputs to the loop correlator. Various techniques to decorrelate these noise components are discussed. An expression is derived for the amount of noise decorrelation required to achieve a specified interference suppression. The results are of interest in connection with satellite communications.

  2. Target-based coherent beam combining of an optical phased array fed by a broadband laser source

    NASA Astrophysics Data System (ADS)

    Hyde, Milo W., IV; McCrae, Jack E.; Tyler, Glenn A.

    2017-11-01

    The target-based phasing of an optical phased array (OPA) fed by a broadband master oscillator laser source is investigated. The specific scenario examined here considers an OPA phasing through atmospheric turbulence on a rough curved object. An analytical expression for the detected or received intensity is derived. Gleaned from this expression are the conditions under which target-based phasing is possible. A detailed OPA wave optics simulation is performed to validate the theoretical findings. Key aspects of the simulation set-up as well as the results are thoroughly discussed.

  3. Molecular classification of gastric cancer: a new paradigm.

    PubMed

    Shah, Manish A; Khanin, Raya; Tang, Laura; Janjigian, Yelena Y; Klimstra, David S; Gerdes, Hans; Kelsen, David P

    2011-05-01

    Gastric cancer may be subdivided into 3 distinct subtypes--proximal, diffuse, and distal gastric cancer--based on histopathologic and anatomic criteria. Each subtype is associated with unique epidemiology. Our aim is to test the hypothesis that these distinct gastric cancer subtypes may also be distinguished by gene expression analysis. Patients with localized gastric adenocarcinoma being screened for a phase II preoperative clinical trial (National Cancer Institute, NCI #5917) underwent endoscopic biopsy for fresh tumor procurement. Four to 6 targeted biopsies of the primary tumor were obtained. Macrodissection was carried out to ensure more than 80% carcinoma in the sample. HG-U133A GeneChip (Affymetrix) was used for cDNA expression analysis, and all arrays were processed and analyzed using the Bioconductor R-package. Between November 2003 and January 2006, 57 patients were screened to identify 36 patients with localized gastric cancer who had adequate RNA for expression analysis. Using supervised analysis, we built a classifier to distinguish the 3 gastric cancer subtypes, successfully classifying each into tightly grouped clusters. Leave-one-out cross-validation error was 0.14, suggesting that more than 85% of samples were classified correctly. Gene set analysis with the false discovery rate set at 0.25 identified several pathways that were differentially regulated when comparing each gastric cancer subtype to adjacent normal stomach. Subtypes of gastric cancer that have epidemiologic and histologic distinctions are also distinguished by gene expression data. These preliminary data suggest a new classification of gastric cancer with implications for improving our understanding of disease biology and identification of unique molecular drivers for each gastric cancer subtype. ©2011 AACR.

  4. Molecular Classification of Gastric Cancer: A new paradigm

    PubMed Central

    Shah, Manish A.; Khanin, Raya; Tang, Laura; Janjigian, Yelena Y.; Klimstra, David S.; Gerdes, Hans; Kelsen, David P.

    2011-01-01

    Purpose Gastric cancer may be subdivided into three distinct subtypes –proximal, diffuse, and distal gastric cancer– based on histopathologic and anatomic criteria. Each subtype is associated with unique epidemiology. Our aim is to test the hypothesis that these distinct gastric cancer subtypes may also be distinguished by gene expression analysis. Experimental Design Patients with localized gastric adenocarcinoma being screened for a phase II preoperative clinical trial (NCI 5917) underwent endoscopic biopsy for fresh tumor procurement. 4–6 targeted biopsies of the primary tumor were obtained. Macrodissection was performed to ensure >80% carcinoma in the sample. HG-U133A GeneChip (Affymetrix) was used for cDNA expression analysis, and all arrays were processed and analyzed using the Bioconductor R-package. Results Between November 2003 and January 2006, 57 patients were screened to identify 36 patients with localized gastric cancer who had adequate RNA for expression analysis. Using supervised analysis, we built a classifier to distinguish the three gastric cancer subtypes, successfully classifying each into tightly grouped clusters. Leave-one-out cross validation error was 0.14, suggesting that >85% of samples were classified correctly. Gene set analysis with the False Discovery Rate set at 0.25 identified several pathways that were differentially regulated when comparing each gastric cancer subtype to adjacent normal stomach. Conclusions Subtypes of gastric cancer that have epidemiologic and histologic distinction are also distinguished by gene expression data. These preliminary data suggest a new classification of gastric cancer with implications for improving our understanding of disease biology and identification of unique molecular drivers for each gastric cancer subtype. PMID:21430069

  5. Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array

    USDA-ARS?s Scientific Manuscript database

    A large number of genetic variations have been identified in rice. Such variations must in many cases control phenotypic differences in abiotic stress tolerance and other traits. A single feature polymorphism (SFP) is an oligonucleotide array-based polymorphism which can be used for identification o...

  6. Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution.

    PubMed

    Afrimzon, E; Botchkina, G; Zurgil, N; Shafran, Y; Sobolev, M; Moshkov, S; Ravid-Hermesh, O; Ojima, I; Deutsch, M

    2016-03-21

    Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.

  7. Compressed Symmetric Nested Arrays and Their Application for Direction-of-Arrival Estimation of Near-Field Sources.

    PubMed

    Li, Shuang; Xie, Dongfeng

    2016-11-17

    In this paper, a new sensor array geometry, called a compressed symmetric nested array (CSNA), is designed to increase the degrees of freedom in the near field. As its name suggests, a CSNA is constructed by getting rid of some elements from two identical nested arrays. The closed form expressions are also presented for the sensor locations and the largest degrees of freedom obtainable as a function of the total number of sensors. Furthermore, a novel DOA estimation method is proposed by utilizing the CSNA in the near field. By employing this new array geometry, our method can identify more sources than sensors. Compared with other existing methods, the proposed method achieves higher resolution because of increased array aperture. Simulation results are demonstrated to verify the effectiveness of the proposed method.

  8. Cortisol inhibits mTOR signaling in avascular necrosis of the femoral head.

    PubMed

    Liao, Yun; Su, Rui; Zhang, Ping; Yuan, Bo; Li, Ling

    2017-10-18

    ANFH is a major health problem, to which long lasting and definitive treatments are lacking. The aim of this study is to study RNA alterations attributed to cortisol-induced ANFH. Rat models were stratified into three groups: in vitro group (n = 20) for molecular biological assays, control group (n = 3), and ANFH group induced using lipopolysaccharide and dexamethasone (n = 3). Bone marrow-derived endothelial progenitor cells (BM-EPCs) were extracted from the rats. An RNA expression array was performed on BM-EPCs, and enriched genes were subject to pathway analysis. In vitro studies following findings of array results were also performed using the isolated BM-EPCs. Significant alterations in mammalian target of rapamycin (mTOR) and HIF signaling pathways were identified in BM-EPCs of ANFH. By applying cortisol and dexamethasone to BM-EPCs, significant changes in mTOR and HIF elements were identified. The alteration of HIF pathways appeared to be downstream of mTOR signaling. Glucocorticoid receptor (GR) expression was related to glucocorticoid-dependent mRNA expression of mTOR/HIF genes. mTOR-dependent angiogenesis but not anabolism was the target of GR in ANFH. Inhibition of mTOR signaling also induced apoptosis of BM-EPCs via CHOP-dependent DR5 induction in response to GR stimulation. Decreased mTOR signaling in response to GR stimulation leading to downregulated HIF pathway as well as increased apoptosis could be the pathophysiology.

  9. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.).

    PubMed

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between "on year" and "off year" leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree.

  10. Selection of internal reference genes for normalization of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis in the rumen epithelium.

    PubMed

    Die, Jose V; Baldwin, Ransom L; Rowland, Lisa J; Li, Robert; Oh, Sunghee; Li, Congjun; Connor, Erin E; Ranilla, Maria-Jose

    2017-01-01

    The rumen is lined on the luminal side by a stratified squamous epithelium that is responsible for not only absorption, but also transport, extensive short-chain fatty acid (SCFA) metabolism and protection. Butyrate has been demonstrated to initiate the differentiation of the tissue following introduction of solid feed to the weaning neonate as well as affecting the metabolism of other nutrients and absorption of nutrients in in vitro experiments. The objective of the present study was to validate expression stability of eight putative reference genes bovine rumen, considering the intrinsic heterogeneity of bovine rumen with regard to different luminal characteristics due to direct infusion of butyrate to double the intra-ruminal content of the rumen liquor. Our focus was on identifying stable reference genes which are suitable to normalize real-time RT-qPCR experiments from rumen samples collected from clinical assays, irrespective of localization within the organ and the across physiological state. The most stably expressed genes included: ACTB, UXT, DBNDD2, RPS9, DDX54 and HMBS. Their high stability values suggest these reference genes will facilitate better evaluation of variation of across an array of conditions including: localization within the rumen, differences among cattle fed an array of rations, as well as response to development in the weaning animal. Moreover, we anticipate these reference genes may be useful for expression studies in other ruminants.

  11. Therapeutic targeting of sunitinib-induced AR phosphorylation in renal cell carcinoma.

    PubMed

    Adelaiye-Ogala, Remi; Damayanti, Nur P; Orillion, Ashley R; Arisa, Sreevani; Chintala, Sreenivasulu; Titus, Mark A; Kao, Chinghai; Pili, Roberto

    2018-03-23

    Androgen receptor (AR) plays a crucial role in the development and progression of prostate cancer. AR expression has also been reported in other solid tumors, including renal cell carcinoma (RCC), but its biological role here remains unclear. Through integrative analysis of a reverse phase protein array (RPPA), we discovered increased expression of AR in an RCC patient-derived xenograft model of acquired resistance to the receptor tyrosine kinase inhibitor (RTKi) sunitinib. AR expression was increased in RCC cell lines with either acquired or intrinsic sunitinib resistance in vitro. An AR signaling gene array profiler indicated elevated levels of AR target genes in sunitinib-resistant cells. Sunitinib-induced AR transcriptional activity was associated with increased phosphorylation of serine 81 (pS81) on AR. Additionally, AR overexpression resulted in acquired sunitinib resistance, and the AR antagonist enzalutamide-induced AR degradation and attenuated AR downstream activity in sunitinib-resistant cells, also indicated by decreased secretion of human kallikrein 2 (KLK2). Enzalutamide-induced AR degradation was rescued by either proteasome inhibition or by knockdown of the AR ubiquitin ligase speckle-type POZ protein (SPOP). In vivo treatment with enzalutamide and sunitinib demonstrated that this combination efficiently induced tumor regression in an RCC model following acquired sunitinib resistance. Overall, our results suggest the potential role of AR as a target for therapeutic interventions, in combination with RTKi, to overcome drug resistance in RCC. Copyright ©2018, American Association for Cancer Research.

  12. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  13. miRNA expression profiling in formalin-fixed paraffin-embedded endometriosis and ovarian cancer samples

    PubMed Central

    Braicu, Ovidiu-Leonard; Budisan, Liviuta; Buiga, Rares; Jurj, Ancuta; Achimas-Cadariu, Patriciu; Pop, Laura Ancuta; Braicu, Cornelia; Irimie, Alexandru; Berindan-Neagoe, Ioana

    2017-01-01

    Endometriosis is an inflammatory pathology associated with a negative effect on life quality. Recently, this pathology was connected to ovarian cancer, in particular with endometrioid ovarian cancer. microRNAs (miRNAs) are a class of RNA transcripts ~19–22 nucleotides in length, the altered miRNA pattern being connected to pathological status. miRNAs are highly stable transcripts, and these can be assessed from formalin-fixed paraffin-embedded (FFPE) samples leading to the identification of miRNAs that could be developed as diagnostic and prognostic biomarkers, in particular those involved in malignant transformation. The aim of our study was to evaluate miRNA expression pattern in FFPE samples from endometriosis and ovarian cancer patients using PCR-array technology and also to compare the differential expression pattern in ovarian cancer versus endometriosis. For the PCR-array study, we have used nine macrodissected FFPE samples from endometriosis tissue, eight samples of ovarian cancers and five normal ovarian tissues. Quantitative real-time PCR (qRT-PCR) was used for data validation in a new patient cohort of 17 normal samples, 33 endometriosis samples and 28 ovarian cancer macrodissected FFPE samples. Considering 1.5-fold expression difference as a cut-off level and a P-value <0.05, we have identified four miRNAs being overexpressed in endometrial tissue, while in ovarian cancer 15 were differentially expressed (nine overexpressed and six downregulated). The expression level was confirmed by qRT-PCR for miR-93, miR-141, miR-155, miR-429, miR-200c, miR-205 and miR-492. Using the interpretative program Ingenuity Pathway Analysis revealed several deregulated pathways due to abnormal miRNA expression in endometriosis and ovarian cancer, which in turn is responsible for pathogenesis; this differential expression of miRNAs can be exploited as a therapeutic target. A higher number of altered miRNAs were detected in endometriosis versus ovarian cancer tissue, most of them being linked with epithelial-to-mesenchymal transition. PMID:28894379

  14. Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.

    PubMed

    Memon, Farhat N; Owen, Anne M; Sanchez-Graillet, Olivia; Upton, Graham J G; Harrison, Andrew P

    2010-01-15

    A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays.

  15. Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Qu, Ye; Wu, Ying

    2018-03-01

    Asymmetric resonances are currently the subject of considerable research efforts in photonic nanostructures. Here we propose a feasible method to achieve multiple Fano resonances and their control in an optical compound system consisting of an array of on-chip microresonators without mutual coupling and two parallel fiber waveguides side-coupled to the microresonator array by means of a local oscillator. We derive analytical and transparent expressions for the power transmission function summing over the two light transporting paths within the framework of quantum optics. It is clearly shown that introducing the local oscillator as an additional light propagating path plays an important role in the formation of narrow and multiple Fano resonance lineshapes. The power transmission spectrum through the combination of both the microresonator array and the local oscillator is very sensitive to the system parameters, for example, the intrinsic decay rate of the resonator, the phase shift factor of the local oscillator, the transmission coefficient of the fiber beam splitter, and the total number of the microresonators. Through detailed analysis, we identify the optimums for generating Fano resonance lineshapes. Also, we assess the experimental feasibility of the scheme using currently available technology. The proposed method is relatively straightforward as it requires only one local oscillator as one interferometer arm and it is mostly fiber-based. We believe that our work will help to understand and improve multiple Fano resonance engineering.

  16. Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD

    NASA Technical Reports Server (NTRS)

    Granger, C. L.; Cyr, R. J.

    2000-01-01

    Microtubule organization plays an important role in plant morphogenesis; however, little is known about how microtubule arrays transit from one organized state to another. The use of a genetically incorporated fluorescent marker would allow long-term observation of microtubule behavior in living cells. Here, we have characterized a Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell line that had been stably transformed with a gfp-mbd construct previously demonstrated to label microtubules (J. Marc et al., 1998, Plant Cell 10: 1927-1939). Fluorescence levels were low, but interphase and mitotic microtubule arrays, as well as the transitions between these arrays, could be observed in individual gfp-mbd-transformed cells. By comparing several attributes of transformed and untransformed cells it was concluded that the transgenic cells are not adversely affected by low-level expression of the transgene and that these cells will serve as a useful and accurate model system for observing microtubule reorganization in vivo. Indeed, some initial observations were made that are consistent with the involvement of motor proteins in the transition between the spindle and phragmoplast arrays. Our observations also support the role of the perinuclear region in nucleating microtubules at the end of cell division with a progressive shift of these microtubules and/or nucleating activity to the cortex to form the interphase cortical array.

  17. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma.

    PubMed

    Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L

    2014-04-15

    Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization. © 2013 Elsevier B.V. All rights reserved.

  18. ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery.

    PubMed

    Krishnakumar, Vivek; Contrino, Sergio; Cheng, Chia-Yi; Belyaeva, Irina; Ferlanti, Erik S; Miller, Jason R; Vaughn, Matthew W; Micklem, Gos; Town, Christopher D; Chan, Agnes P

    2017-01-01

    ThaleMine (https://apps.araport.org/thalemine/) is a comprehensive data warehouse that integrates a wide array of genomic information of the model plant Arabidopsis thaliana. The data collection currently includes the latest structural and functional annotation from the Araport11 update, the Col-0 genome sequence, RNA-seq and array expression, co-expression, protein interactions, homologs, pathways, publications, alleles, germplasm and phenotypes. The data are collected from a wide variety of public resources. Users can browse gene-specific data through Gene Report pages, identify and create gene lists based on experiments or indexed keywords, and run GO enrichment analysis to investigate the biological significance of selected gene sets. Developed by the Arabidopsis Information Portal project (Araport, https://www.araport.org/), ThaleMine uses the InterMine software framework, which builds well-structured data, and provides powerful data query and analysis functionality. The warehoused data can be accessed by users via graphical interfaces, as well as programmatically via web-services. Here we describe recent developments in ThaleMine including new features and extensions, and discuss future improvements. InterMine has been broadly adopted by the model organism research community including nematode, rat, mouse, zebrafish, budding yeast, the modENCODE project, as well as being used for human data. ThaleMine is the first InterMine developed for a plant model. As additional new plant InterMines are developed by the legume and other plant research communities, the potential of cross-organism integrative data analysis will be further enabled. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. EMAAS: An extensible grid-based Rich Internet Application for microarray data analysis and management

    PubMed Central

    Barton, G; Abbott, J; Chiba, N; Huang, DW; Huang, Y; Krznaric, M; Mack-Smith, J; Saleem, A; Sherman, BT; Tiwari, B; Tomlinson, C; Aitman, T; Darlington, J; Game, L; Sternberg, MJE; Butcher, SA

    2008-01-01

    Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data management and analysis tasks through a single easy-to-use web application. The system architecture is flexible and scalable to allow new array types, analysis algorithms and tools to be added with relative ease and to cope with large increases in data volume. PMID:19032776

  20. ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma.

    PubMed

    Pieraccioli, Marco; Nicolai, Sara; Pitolli, Consuelo; Agostini, Massimiliano; Antonov, Alexey; Malewicz, Michal; Knight, Richard A; Raschellà, Giuseppe; Melino, Gerry

    2018-06-25

    Derangement of cellular differentiation because of mutation or inappropriate expression of specific genes is a common feature in tumors. Here, we show that the expression of ZNF281, a zinc finger factor involved in several cellular processes, decreases during terminal differentiation of murine cortical neurons and in retinoic acid-induced differentiation of neuroblastoma (NB) cells. The ectopic expression of ZNF281 inhibits the neuronal differentiation of murine cortical neurons and NB cells, whereas its silencing causes the opposite effect. Furthermore, TAp73 inhibits the expression of ZNF281 through miR34a. Conversely, MYCN promotes the expression of ZNF281 at least in part by inhibiting miR34a. These findings imply a functional network that includes p73, MYCN, and ZNF281 in NB cells, where ZNF281 acts by negatively affecting neuronal differentiation. Array analysis of NB cells silenced for ZNF281 expression identified GDNF and NRP2 as two transcriptional targets inhibited by ZNF281. Binding of ZNF281 to the promoters of these genes suggests a direct mechanism of repression. Bioinformatic analysis of NB datasets indicates that ZNF281 expression is higher in aggressive, undifferentiated stage 4 than in localized stage 1 tumors supporting a central role of ZNF281 in affecting the differentiation of NB. Furthermore, patients with NB with high expression of ZNF281 have a poor clinical outcome compared with low-expressors. These observations suggest that ZNF281 is a controller of neuronal differentiation that should be evaluated as a prognostic marker in NB. Copyright © 2018 the Author(s). Published by PNAS.

  1. Unique gene expression profiles of donor-matched human retinal and choroidal vascular endothelial cells.

    PubMed

    Smith, Justine R; Choi, Dongseok; Chipps, Timothy J; Pan, Yuzhen; Zamora, David O; Davies, Michael H; Babra, Bobby; Powers, Michael R; Planck, Stephen R; Rosenbaum, James T

    2007-06-01

    Consistent with clinical observations that posterior uveitis frequently involves the retinal vasculature and recent recognition of vascular heterogeneity, the hypothesis for this study was that retinal vascular endothelium was a cell population of unique molecular phenotype. Donor-matched cultures of primary retinal and choroidal endothelial cells from six human cadavers were incubated with either Toxoplasma gondii tachyzoites (10:1, parasites per cell) or Escherichia coli lipopolysaccharide (100 ng/mL); control cultures were simultaneously incubated with medium. Gene expression profiling of endothelial cells was performed using oligonucleotide arrays containing probes designed to detect 8746 human transcripts. After normalization, differential gene expression was assessed by the significance analysis of microarrays, with the false-discovery rate set at 5%. For selected genes, differences in the level of expression between retinal and choroidal cells were evaluated by real-time RT-PCR. Graphic descriptive analysis demonstrated a strong correlation between gene expression of unstimulated retinal and choroidal endothelial cells, but also highlighted distinctly different patterns of expression that were greater than differences noted between donors or between unstimulated and stimulated cells. Overall, 779 (8.9%) of 8746 transcripts were differentially represented. Of note, the 330 transcripts that were present at higher levels in retinal cells included a larger percentage of transcripts encoding molecules involved in the immune response. Differential gene expression was confirmed for 12 transcripts by RT-PCR. Retinal and choroidal vascular endothelial cells display distinctive gene expression profiles. The findings suggest the possibility of treating posterior uveitis by targeting specific interactions between the retinal endothelial cell and an infiltrating leukocyte.

  2. TOXICOGENOMICS AND HUMAN DISEASE RISK ASSESSMENT

    EPA Science Inventory


    Toxicogenomics and Human Disease Risk Assessment.

    Complete sequencing of human and other genomes, availability of large-scale gene
    expression arrays with ever-increasing numbers of genes displayed, and steady
    improvements in protein expression technology can hav...

  3. A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data.

    PubMed

    Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R; Del Río-Navarro, Blanca E; Mendoza-Vargas, Alfredo; Sánchez, Filiberto; Ochoa-Leyva, Adrian

    2017-01-01

    In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6-10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments.

  4. Homoeolog-specific transcriptional bias in allopolyploid wheat

    PubMed Central

    2010-01-01

    Background Interaction between parental genomes is accompanied by global changes in gene expression which, eventually, contributes to growth vigor and the broader phenotypic diversity of allopolyploid species. In order to gain a better understanding of the effects of allopolyploidization on the regulation of diverged gene networks, we performed a genome-wide analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat created by the hybridization of a tetraploid derivative of hexaploid wheat with the diploid ancestor of the wheat D genome Ae. tauschii. Results Affymetrix wheat genome arrays were used for both the discovery of divergent homoeolog-specific mutations and analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat. More than 34,000 detectable parent-specific features (PSF) distributed across the wheat genome were used to assess AB genome (could not differentiate A and B genome contributions) and D genome parental expression in the allopolyploid transcriptome. In re-synthesized polyploid 81% of PSFs detected mid-parent levels of gene expression, and only 19% of PSFs showed the evidence of non-additive expression. Non-additive expression in both AB and D genomes was strongly biased toward up-regulation of parental type of gene expression with only 6% and 11% of genes, respectively, being down-regulated. Of all the non-additive gene expression, 84% can be explained by differences in the parental genotypes used to make the allopolyploid. Homoeolog-specific co-regulation of several functional gene categories was found, particularly genes involved in photosynthesis and protein biosynthesis in wheat. Conclusions Here, we have demonstrated that the establishment of interactions between the diverged regulatory networks in allopolyploids is accompanied by massive homoeolog-specific up- and down-regulation of gene expression. This study provides insights into interactions between homoeologous genomes and their role in growth vigor, development, and fertility of allopolyploid species. PMID:20849627

  5. Expression of Y-box-binding protein YB-1 allows stratification into long- and short-term survivors of head and neck cancer patients.

    PubMed

    Kolk, A; Jubitz, N; Mengele, K; Mantwill, K; Bissinger, O; Schmitt, M; Kremer, M; Holm, P S

    2011-12-06

    Histology-based classifications and clinical parameters of head and neck squamous cell carcinoma (HNSCC) are limited in their clinical capacity to provide information on prognosis and treatment choice of HNSCC. The primary aim of this study was to analyse Y-box-binding protein-1 (YB-1) protein expression in different grading groups of HNSCC patients, and to correlate these findings with the disease-specific survival (DSS). We investigated the expression and cellular localisation of the oncogenic transcription/translation factor YB-1 by immunohistochemistry on tissue micro arrays in a total of 365 HNSCC specimens and correlated expression data with clinico-pathological parameters including DSS. Compared with control tissue from healthy individuals, a significantly (P<0.01) increased YB-1 protein expression was observed in high-grade HNSCC patients. By univariate survival data analysis, HNSCC patients with elevated YB-1 protein expression had a significantly (P<0.01) decreased DSS. By multivariate Cox regression analysis, high YB-1 expression and nuclear localisation retained its significance as a statistically independent (P<0.002) prognostic marker for DSS. Within grade 2 group of HNSCC patients, a subgroup defined by high nuclear and cytoplasmic YB-1 levels (co-expression pattern) in the cells of the tumour invasion front had a significantly poorer 5-year DSS rate of only 38% compared with overall 55% for grade 2 patients. Vice versa, the DSS rate was markedly increased to 74% for grade 2 cancer patients with low YB-1 protein expression at the same localisation. Our findings point to the fact that YB-1 expression in combination with histological classification in a double stratification strategy is superior to classical grading in the prediction of tumour progression in HNSCC.

  6. Expression of Y-box-binding protein YB-1 allows stratification into long- and short-term survivors of head and neck cancer patients

    PubMed Central

    Kolk, A; Jubitz, N; Mengele, K; Mantwill, K; Bissinger, O; Schmitt, M; Kremer, M; Holm, P S

    2011-01-01

    Background: Histology-based classifications and clinical parameters of head and neck squamous cell carcinoma (HNSCC) are limited in their clinical capacity to provide information on prognosis and treatment choice of HNSCC. The primary aim of this study was to analyse Y-box-binding protein-1 (YB-1) protein expression in different grading groups of HNSCC patients, and to correlate these findings with the disease-specific survival (DSS). Methods: We investigated the expression and cellular localisation of the oncogenic transcription/translation factor YB-1 by immunohistochemistry on tissue micro arrays in a total of 365 HNSCC specimens and correlated expression data with clinico-pathological parameters including DSS. Results: Compared with control tissue from healthy individuals, a significantly (P<0.01) increased YB-1 protein expression was observed in high-grade HNSCC patients. By univariate survival data analysis, HNSCC patients with elevated YB-1 protein expression had a significantly (P<0.01) decreased DSS. By multivariate Cox regression analysis, high YB-1 expression and nuclear localisation retained its significance as a statistically independent (P<0.002) prognostic marker for DSS. Within grade 2 group of HNSCC patients, a subgroup defined by high nuclear and cytoplasmic YB-1 levels (co-expression pattern) in the cells of the tumour invasion front had a significantly poorer 5-year DSS rate of only 38% compared with overall 55% for grade 2 patients. Vice versa, the DSS rate was markedly increased to 74% for grade 2 cancer patients with low YB-1 protein expression at the same localisation. Conclusion: Our findings point to the fact that YB-1 expression in combination with histological classification in a double stratification strategy is superior to classical grading in the prediction of tumour progression in HNSCC. PMID:22095225

  7. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Sengupta, M.; Reda, I.

    2014-11-01

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  8. Baseline-dependent averaging in radio interferometry

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.; Willis, A. G.; Salvini, S.

    2018-05-01

    This paper presents a detailed analysis of the applicability and benefits of baseline-dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array. We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80 per cent.

  9. Fabrication of high quality cDNA microarray using a small amount of cDNA.

    PubMed

    Park, Chan Hee; Jeong, Ha Jin; Jung, Jae Jun; Lee, Gui Yeon; Kim, Sang-Chul; Kim, Tae Soo; Yang, Sang Hwa; Chung, Hyun Cheol; Rha, Sun Young

    2004-05-01

    DNA microarray technology has become an essential part of biological research. It enables the genome-scale analysis of gene expression in various types of model systems. Manufacturing high quality cDNA microarrays of microdeposition type depends on some key factors including a printing device, spotting pins, glass slides, spotting solution, and humidity during spotting. UsingEthe Microgrid II TAS model printing device, this study defined the optimal conditions for producing high density, high quality cDNA microarrays with the least amount of cDNA product. It was observed that aminosilane-modified slides were superior to other types of surface modified-slides. A humidity of 30+/-3% in a closed environment and the overnight drying of the spotted slides gave the best conditions for arraying. In addition, the cDNA dissolved in 30% DMSO gave the optimal conditions for spotting compared to the 1X ArrayIt, 3X SSC and 50% DMSO. Lastly, cDNA in the concentration range of 100-300 ng/ micro l was determined to be best for arraying and post-processing. Currently, the printing system in this study yields reproducible 9000 spots with a spot size 150 mm diameter, and a 200 nm spot spacing.

  10. Three gangliogliomas: results of GTG-banding, SKY, genome-wide high resolution SNP-array, gene expression and review of the literature.

    PubMed

    Xu, Li-Xin; Holland, Heidrun; Kirsten, Holger; Ahnert, Peter; Krupp, Wolfgang; Bauer, Manfred; Schober, Ralf; Mueller, Wolf; Fritzsch, Dominik; Meixensberger, Jürgen; Koschny, Ronald

    2015-04-01

    According to the World Health Organization gangliogliomas are classified as well-differentiated and slowly growing neuroepithelial tumors, composed of neoplastic mature ganglion and glial cells. It is the most frequent tumor entity observed in patients with long-term epilepsy. Comprehensive cytogenetic and molecular cytogenetic data including high-resolution genomic profiling (single nucleotide polymorphism (SNP)-array) of gangliogliomas are scarce but necessary for a better oncological understanding of this tumor entity. For a detailed characterization at the single cell and cell population levels, we analyzed genomic alterations of three gangliogliomas using trypsin-Giemsa banding (GTG-banding) and by spectral karyotyping (SKY) in combination with SNP-array and gene expression array experiments. By GTG and SKY, we could confirm frequently detected chromosomal aberrations (losses within chromosomes 10, 13 and 22; gains within chromosomes 5, 7, 8 and 12), and identify so far unknown genetic aberrations like the unbalanced non-reciprocal translocation t(1;18)(q21;q21). Interestingly, we report on the second so far detected ganglioglioma with ring chromosome 1. Analyses of SNP-array data from two of the tumors and respective germline DNA (peripheral blood) identified few small gains and losses and a number of copy-neutral regions with loss of heterozygosity (LOH) in germline and in tumor tissue. In comparison to germline DNA, tumor tissues did not show substantial regions with significant loss or gain or with newly developed LOH. Gene expression analyses of tumor-specific genes revealed similarities in the profile of the analyzed samples regarding different relevant pathways. Taken together, we describe overlapping but also distinct and novel genetic aberrations of three gangliogliomas. © 2014 Japanese Society of Neuropathology.

  11. Creation of a Human Secretome: A Novel Composite Library of Human Secreted Proteins: Validation Using Ovarian Cancer Gene Expression Data and a Virtual Secretome Array.

    PubMed

    Vathipadiekal, Vinod; Wang, Victoria; Wei, Wei; Waldron, Levi; Drapkin, Ronny; Gillette, Michael; Skates, Steven; Birrer, Michael

    2015-11-01

    To generate a comprehensive "Secretome" of proteins potentially found in the blood and derive a virtual Affymetrix array. To validate the utility of this database for the discovery of novel serum-based biomarkers using ovarian cancer transcriptomic data. The secretome was constructed by aggregating the data from databases of known secreted proteins, transmembrane or membrane proteins, signal peptides, G-protein coupled receptors, or proteins existing in the extracellular region, and the virtual array was generated by mapping them to Affymetrix probeset identifiers. Whole-genome microarray data from ovarian cancer, normal ovarian surface epithelium, and fallopian tube epithelium were used to identify transcripts upregulated in ovarian cancer. We established the secretome from eight public databases and a virtual array consisting of 16,521 Affymetrix U133 Plus 2.0 probesets. Using ovarian cancer transcriptomic data, we identified candidate blood-based biomarkers for ovarian cancer and performed bioinformatic validation by demonstrating rediscovery of known biomarkers including CA125 and HE4. Two novel top biomarkers (FGF18 and GPR172A) were validated in serum samples from an independent patient cohort. We present the secretome, comprising the most comprehensive resource available for protein products that are potentially found in the blood. The associated virtual array can be used to translate gene-expression data into cancer biomarker discovery. A list of blood-based biomarkers for ovarian cancer detection is reported and includes CA125 and HE4. FGF18 and GPR172A were identified and validated by ELISA as being differentially expressed in the serum of ovarian cancer patients compared with controls. ©2015 American Association for Cancer Research.

  12. The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy

    PubMed Central

    Large, Michael J.; Wetendorf, Margeaux; Lanz, Rainer B.; Hartig, Sean M.; Creighton, Chad J.; Mancini, Michael A.; Kovanci, Ertug; Lee, Kuo-Fen; Threadgill, David W.; Lydon, John P.; Jeong, Jae-Wook; DeMayo, Francesco J.

    2014-01-01

    Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets. PMID:24945252

  13. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    PubMed Central

    2012-01-01

    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600

  14. Research resource: Tissue-specific transcriptomics and cistromics of nuclear receptor signaling: a web research resource.

    PubMed

    Ochsner, Scott A; Watkins, Christopher M; LaGrone, Benjamin S; Steffen, David L; McKenna, Neil J

    2010-10-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that recruit coregulators and other transcription factors to gene promoters to effect regulation of tissue-specific transcriptomes. The prodigious rate at which the NR signaling field has generated high content gene expression and, more recently, genome-wide location analysis datasets has not been matched by a committed effort to archiving this information for routine access by bench and clinical scientists. As a first step towards this goal, we searched the MEDLINE database for studies, which referenced either expression microarray and/or genome-wide location analysis datasets in which a NR or NR ligand was an experimental variable. A total of 1122 studies encompassing 325 unique organs, tissues, primary cells, and cell lines, 35 NRs, and 91 NR ligands were retrieved and annotated. The data were incorporated into a new section of the Nuclear Receptor Signaling Atlas Molecule Pages, Transcriptomics and Cistromics, for which we designed an intuitive, freely accessible user interface to browse the studies. Each study links to an abstract, the MEDLINE record, and, where available, Gene Expression Omnibus and ArrayExpress records. The resource will be updated on a regular basis to provide a current and comprehensive entrez into the sum of transcriptomic and cistromic research in this field.

  15. Tissue matrix arrays for high throughput screening and systems analysis of cell function

    PubMed Central

    Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.

    2015-01-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475

  16. Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma.

    PubMed

    Vavougios, Georgios D; Solenov, Evgeniy I; Hatzoglou, Chrissi; Baturina, Galina S; Katkova, Liubov E; Molyvdas, Paschalis Adam; Gourgoulianis, Konstantinos I; Zarogiannis, Sotirios G

    2015-10-01

    The aim of our study was to assess the differential gene expression of Parkinson protein 7 (PARK7) interactome in malignant pleural mesothelioma (MPM) using data mining techniques to identify novel candidate genes that may play a role in the pathogenicity of MPM. We constructed the PARK7 interactome using the ConsensusPathDB database. We then interrogated the Oncomine Cancer Microarray database using the Gordon Mesothelioma Study, for differential gene expression of the PARK7 interactome. In ConsensusPathDB, 38 protein interactors of PARK7 were identified. In the Gordon Mesothelioma Study, 34 of them were assessed out of which SUMO1, UBC3, KIAA0101, HDAC2, DAXX, RBBP4, BBS1, NONO, RBBP7, HTRA2, and STUB1 were significantly overexpressed whereas TRAF6 and MTA2 were significantly underexpressed in MPM patients (network 2). Furthermore, Kaplan-Meier analysis revealed that MPM patients with high BBS1 expression had a median overall survival of 16.5 vs. 8.7 mo of those that had low expression. For validation purposes, we performed a meta-analysis in Oncomine database in five sarcoma datasets. Eight network 2 genes (KIAA0101, HDAC2, SUMO1, RBBP4, NONO, RBBP7, HTRA2, and MTA2) were significantly differentially expressed in an array of 18 different sarcoma types. Finally, Gene Ontology annotation enrichment analysis revealed significant roles of the PARK7 interactome in NuRD, CHD, and SWI/SNF protein complexes. In conclusion, we identified 13 novel genes differentially expressed in MPM, never reported before. Among them, BBS1 emerged as a novel predictor of overall survival in MPM. Finally, we identified that PARK7 interactome is involved in novel pathways pertinent in MPM disease. Copyright © 2015 the American Physiological Society.

  17. DNA Microarray Profiling Highlights Nrf2-Mediated Chemoprevention Targeted by Wasabi-Derived Isothiocyanates in HepG2 Cells.

    PubMed

    Trio, Phoebe Zapanta; Kawahara, Atsuyoshi; Tanigawa, Shunsuke; Sakao, Kozue; Hou, De-Xing

    2017-01-01

    6-MSITC and 6-MTITC are sulforaphane (SFN) analogs found in Japanese Wasabi. As we reported previously, Wasabi isothiocyanates (ITCs) are activators of Nrf2-antioxidant response element pathway, and also inhibitors of pro-inflammatory cyclooxygenase-2. This study is the first to assess the global changes in transcript levels by Wasabi ITCs, comparing with SFN, in HepG2 cells. We performed comparative gene expression profiling by treating HepG2 cells with ITCs, followed by DNA microarray analyses using HG-U133 plus 2.0 oligonucleotide array. Partial array data on selected gene products were confirmed by RT-PCR and Western blotting. Ingenuity Pathway Analysis (IPA) was used to identify functional subsets of genes and biologically significant network pathways. 6-MTITC showed the highest number of differentially altered (≥2 folds) gene expression, of which 114 genes were upregulated and 75 were downregulated. IPA revealed that Nrf2-mediated pathway, together with glutamate metabolism, is the common significantly modulated pathway across treatments. Interestingly, 6-MSITC exhibited the most potent effect toward Nrf2-mediated pathway. Our data suggest that 6-MSITC could exert chemopreventive role against cancer through its underlying antioxidant activity via the activation of Nrf2-mediated subsequent induction of cytoprotective genes.

  18. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells.

    PubMed

    Su, Huafang; Lin, Fuqiang; Deng, Xia; Shen, Lanxiao; Fang, Ya; Fei, Zhenghua; Zhao, Lihao; Zhang, Xuebang; Pan, Huanle; Xie, Deyao; Jin, Xiance; Xie, Congying

    2016-07-28

    Acquired radioresistance during radiotherapy is considered as the most important reason for local tumor recurrence or treatment failure. Circular RNAs (circRNAs) have recently been identified as microRNA sponges and involve in various biological processes. The purpose of this study is to investigate the role of circRNAs in the radioresistance of esophageal cancer. Total RNA was isolated from human parental cell line KYSE-150 and self-established radioresistant esophageal cancer cell line KYSE-150R, and hybridized to Arraystar Human circRNA Array. Quantitative real-time PCR was used to confirm the circRNA expression profiles obtained from the microarray data. Bioinformatic tools including gene ontology (GO) analysis, KEGG pathway analysis and network analysis were done for further assessment. Among the detected candidate 3752 circRNA genes, significant upregulation of 57 circRNAs and downregulation of 17 circRNAs in human radioresistant esophageal cancer cell line KYSE-150R were observed compared with the parental cell line KYSE-150 (fold change ≥2.0 and P < 0.05). There were 9 out of these candidate circRNAs were validated by real-time PCR. GO analysis revealed that numerous target genes, including most microRNAs were involved in the biological processes. There were more than 400 target genes enrichment on Wnt signaling pathway. CircRNA_001059 and circRNA_000167 were the two largest nodes in circRNA/microRNA co-expression network. Our study revealed a comprehensive expression and functional profile of differentially expressed circRNAs in radioresistant esophageal cancer cells, indicating possible involvement of these dysregulated circRNAs in the development of radiation resistance.

  19. Whole-transcriptome, high-throughput RNA sequence analysis of the bovine macrophage response to Mycobacterium bovis infection in vitro.

    PubMed

    Nalpas, Nicolas C; Park, Stephen D E; Magee, David A; Taraktsoglou, Maria; Browne, John A; Conlon, Kevin M; Rue-Albrecht, Kévin; Killick, Kate E; Hokamp, Karsten; Lohan, Amanda J; Loftus, Brendan J; Gormley, Eamonn; Gordon, Stephen V; MacHugh, David E

    2013-04-08

    Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA. A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology. This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA.

  20. Changes in the expression profiles of claudins during gonocyte differentiation and in seminomas.

    PubMed

    Manku, G; Hueso, A; Brimo, F; Chan, P; Gonzalez-Peramato, P; Jabado, N; Gayden, T; Bourgey, M; Riazalhosseini, Y; Culty, M

    2016-01-01

    Testicular germ cell tumors (TGCTs) are the most common type of cancer in young men and their incidence has been steadily increasing for the past decades. TGCTs and their precursor carcinoma in situ (CIS) are thought to arise from the deficient differentiation of gonocytes, precursors of spermatogonial stem cells. However, the mechanisms relating failed gonocyte differentiation to CIS formation remain unknown. The goal of this study was to uncover genes regulated during gonocyte development that would show abnormal patterns of expression in testicular tumors, as prospective links between failed gonocyte development and TGCT. To identify common gene and protein signatures between gonocytes and seminomas, we first performed gene expression analyses of transitional rat gonocytes, spermatogonia, human normal testicular, and TGCT specimens. Gene expression arrays, pathway analysis, and quantitative real-time PCR analysis identified cell adhesion molecules as a functional gene category including genes downregulated during gonocyte differentiation and highly expressed in seminomas. In particular, the mRNA and protein expressions of claudins 6 and 7 were found to decrease during gonocyte transition to spermatogonia, and to be abnormally elevated in seminomas. The dynamic changes in these genes suggest that they may play important physiological roles during gonocyte development. Moreover, our findings support the idea that TGCTs arise from a disruption of gonocyte differentiation, and position claudins as interesting genes to further study in relation to testicular cancer. © 2015 American Society of Andrology and European Academy of Andrology.

Top