General theory for integrated analysis of growth, gene, and protein expression in biofilms.
Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S
2013-01-01
A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques.
Beyond generalized Proca theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-09-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
Generalized scale invariant theories
NASA Astrophysics Data System (ADS)
Padilla, Antonio; Stefanyszyn, David; Tsoukalas, Minas
2014-03-01
We present the most general actions of a single scalar field and two scalar fields coupled to gravity, consistent with second-order field equations in four dimensions, possessing local scale invariance. We apply two different methods to arrive at our results. One method, Ricci gauging, was known to the literature and we find this to produce the same result for the case of one scalar field as a more efficient method presented here. However, we also find our more efficient method to be much more general when we consider two scalar fields. Locally scale invariant actions are also presented for theories with more than two scalar fields coupled to gravity and we explain how one could construct the most general actions for any number of scalar fields. Our generalized scale invariant actions have obvious applications to early Universe cosmology and include, for example, the Bezrukov-Shaposhnikov action as a subset.
Generalized teleparallel theory
NASA Astrophysics Data System (ADS)
Junior, Ednaldo L. B.; Rodrigues, Manuel E.
2016-07-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.
Villarreal, L P
1991-01-01
The historic arguments for the participation of eukaryotic DNA replication in the control of gene expression are reconsidered along with more recent evidence. An earlier view in which gene commitment was achieved with stable chromatin structures which required DNA replication to reset expression potential (D. D. Brown, Cell 37:359-365, 1984) is further considered. The participation of nonspecific stable repressor of gene activity (histones and other chromatin proteins), as previously proposed, is reexamined. The possible function of positive trans-acting factors is now further developed by considering evidence from DNA virus models. It is proposed that these positive factors act to control the initiation of replicon-specific DNA synthesis in the S phase (early or late replication timing). Stable chromatin assembles during replication into potentially active (early S) or inactive (late S) states with prevailing trans-acting factors (early) or repressing factors (late) and may asymmetrically commit daughter templates. This suggests logical schemes for programming differentiation based on replicons and trans-acting initiators. This proposal requires that DNA replication precede major changes in gene commitment. Prior evidence against a role for DNA replication during terminal differentiation is reexamined along with other results from terminal differentiation of lower eukaryotes. This leads to a proposal that DNA replication may yet underlie terminal gene commitment, but that for it to do so there must exist two distinct modes of replication control. In one mode (mitotic replication) replicon initiation is tightly linked to the cell cycle, whereas the other mode (terminal replication) initiation is not cell cycle restricted, is replicon specific, and can lead to a terminally differentiated state. Aberrant control of mitotic and terminal modes of DNA replication may underlie the transformed state. Implications of a replicon basis for chromatin structure-function and
Dahms, Rainer N
2015-05-01
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. The new model preserves the accuracy of previous temperature
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous
Generalized Brans-Dicke theories
De Felice, Antonio; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp
2010-07-01
In Brans-Dicke theory a non-linear self interaction of a scalar field φ allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those theories from the ΛCDM model.
Generalized SU(2) Proca theory
NASA Astrophysics Data System (ADS)
Allys, Erwan; Peter, Patrick; Rodríguez, Yeinzon
2016-10-01
Following previous works on generalized Abelian Proca theory, also called vector Galileon, we investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which could be dubbed non-Abelian vector Galileon. This particular symmetry group permits fruitful applications in cosmology such as inflation driven by gauge fields. Our approach consists in building, in an exhaustive way, all the Lagrangians containing up to six contracted Lorentz indices. For this purpose, and after identifying by group theoretical considerations all the independent Lagrangians which can be written at these orders, we consider the only linear combinations propagating 3 degrees of freedom and having healthy dynamics for their longitudinal mode, i.e., whose pure Stückelberg contribution turns into the SU(2) multi-Galileon dynamics. Finally, and after having considered the curved space-time expansion of these Lagrangians, we discuss the form of the theory at all subsequent orders.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
A general relaxation theory of simple liquids
NASA Technical Reports Server (NTRS)
Merilo, M.; Morgan, E. J.
1973-01-01
A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.
A general waveguide circuit theory
NASA Astrophysics Data System (ADS)
Marks, Roger B.; Williams, Dylan F.
1992-10-01
This work generalizes and extends the classical circuit theory of electromagnetic waveguides. Unlike the conventional theory, the present formulation applies to all waveguides composed of linear, isotropic material, even those involving lossy conductors and hybrid mode fields, in a fully rigorous way. Special attention is given to distinguishing the traveling waves, constructed with respect to a well-defined characteristic impedance, from a set of pseudo-waves, defined with respect to an arbitrary reference impedance. Matrices characterizing a linear circuit are defined, and relationships among them, some newly discovered, are derived. New ramifications of reciprocity are developed. Measurement of various network parameters is given extensive treatment.
Solitons in generalized Galileon theories
NASA Astrophysics Data System (ADS)
Carrillo González, Mariana; Masoumi, Ali; Solomon, Adam R.; Trodden, Mark
2016-12-01
We consider the existence and stability of solitons in generalized Galileons, scalar-field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single Galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized Galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (anti-)de Sitter Galileons. For the case of Dirac-Born-Infeld and conformal Galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
Gestalt Therapy and General System Theory.
ERIC Educational Resources Information Center
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
Cosmology in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-06-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.
Towards a general theory of implementation
2013-01-01
Understanding and evaluating the implementation of complex interventions in practice is an important problem for healthcare managers and policy makers, and for patients and others who must operationalize them beyond formal clinical settings. It has been argued that this work should be founded on theory that provides a foundation for understanding, designing, predicting, and evaluating dynamic implementation processes. This paper sets out core constituents of a general theory of implementation, building on Normalization Process Theory and linking it to key constructs from recent work in sociology and psychology. These are informed by ideas about agency and its expression within social systems and fields, social and cognitive mechanisms, and collective action. This approach unites a number of contending perspectives in a way that makes possible a more comprehensive explanation of the implementation and embedding of new ways of thinking, enacting and organizing practice. PMID:23406398
More about wormholes in generalized Galileon theories
NASA Astrophysics Data System (ADS)
Rubakov, V. A.
2016-08-01
We consider a class of generalized Galileon theories within general relativity in space-times with more than two spatial dimensions. We show that these theories do not admit stable, static, spherically symmetric, asymptotically flat Lorentzian wormholes.
Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M
2014-05-01
A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe's coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer's performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1,ω2) and the individual quality factors (Q1,Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, Iwithinsert/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be
General Systems Theory and Instructional Design.
ERIC Educational Resources Information Center
Salisbury, David F.
The use of general systems theory in the field of instructional systems design (ISD) is explored in this paper. Drawing on work by Young, the writings of 12 representative ISD writers and researchers were surveyed to determine the use of 60 general systems theory concepts by the individual authors. The average number of concepts used by these…
Generalized Expression for Polarization Density
Lu Wang and T.S. Hahm
2009-04-23
A general polarization density which consists of classical and neoclassical parts is system-atically derived via modern gyrokinetics and bounce-kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width (FBW) and finite-Larmor-radius (FLR) effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. Our analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength.
General properties of Nonsignaling Theories
NASA Astrophysics Data System (ADS)
Gisin, Nicolas
2006-03-01
We present a series of properties, usually associated to quantum physics, and show that they are common to all theories that do not allow for superluminal signalling and predict violation of Bell inequalities. These include intrinsic randomness, no cloning, monogamy of correlations, uncertainty relations, privacy of correlations, bounds on the shareability of some states. Finally, we emphasize that correlation data must violate some Bell inequality in order to contain distillable secrecy and introduce a new QKD protocol and prove its security against any individual attack by an adversary only limited by the no-signalling condition.
General properties of nonsignaling theories
NASA Astrophysics Data System (ADS)
Masanes, Ll.; Acin, A.; Gisin, N.
2006-01-01
This article identifies a series of properties common to all theories that do not allow for superluminal signaling and predict the violation of Bell inequalities. Intrinsic randomness, uncertainty due to the incompatibility of two observables, monogamy of correlations, impossibility of perfect cloning, privacy of correlations, bounds in the shareability of some states; all these phenomena are solely a consequence of the no-signaling principle and nonlocality. In particular, it is shown that for any distribution, the properties of (i) nonlocal, (ii) no arbitrarily shareable, and (iii) positive secrecy content are equivalent.
Inflation in general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Huang, Yongqing; Wang, Anzhong; Wu, Qiang
2012-10-01
In this paper, we study inflation in the framework of the nonrelativistic general covariant theory of the Hořava-Lifshitz gravity with the projectability condition and an arbitrary coupling constant λ. We find that the Friedmann-Robterson-Walker (FRW) universe is necessarily flat in such a setup. We work out explicitly the linear perturbations of the flat FRW universe without specifying to a particular gauge, and find that the perturbations are different from those obtained in general relativity, because of the presence of the high-order spatial derivative terms. Applying the general formulas to a single scalar field, we show that in the sub-horizon regions, the metric and scalar field are tightly coupled and have the same oscillating frequencies. In the super-horizon regions, the perturbations become adiabatic, and the comoving curvature perturbation is constant. We also calculate the power spectra and indices of both the scalar and tensor perturbations, and express them explicitly in terms of the slow roll parameters and the coupling constants of the high-order spatial derivative terms. In particular, we find that the perturbations, of both scalar and tensor, are almost scale-invariant, and, with some reasonable assumptions on the coupling coefficients, the spectrum index of the tensor perturbation is the same as that given in the minimum scenario in general relativity (GR), whereas the index for scalar perturbation in general depends on λ and is different from the standard GR value. The ratio of the scalar and tensor power spectra depends on the high-order spatial derivative terms, and can be different from that of GR significantly.
BRST symmetry in the general gauge theories
NASA Astrophysics Data System (ADS)
Hyuk-Jae, Lee; Jae, Hyung, Yee
1994-01-01
By using the residual gauge symmetry interpretation of BRST invariance we have constructed a new BRST formulation for general gauge theories including those with open algebras. For theories with open gauge algebra the formulation leads to a BRST invariant effective action which does not contain any higher order terms in the ghost fields.
Utilizing general information theories for uncertainty quantification
Booker, J. M.
2002-01-01
Uncertainties enter into a complex problem from many sources: variability, errors, and lack of knowledge. A fundamental question arises in how to characterize the various kinds of uncertainty and then combine within a problem such as the verification and validation of a structural dynamics computer model, reliability of a dynamic system, or a complex decision problem. Because uncertainties are of different types (e.g., random noise, numerical error, vagueness of classification), it is difficult to quantify all of them within the constructs of a single mathematical theory, such as probability theory. Because different kinds of uncertainty occur within a complex modeling problem, linkages between these mathematical theories are necessary. A brief overview of some of these theories and their constituents under the label of Generalized lnforrnation Theory (GIT) is presented, and a brief decision example illustrates the importance of linking at least two such theories.
Tests of General Theory of Relativity
NASA Astrophysics Data System (ADS)
Brynjolfsson, Ari
2002-04-01
Einstein’s theory of general relativity and experiments proving it are all in the domain of classical physics. These include experiments by Pound, Rebka, and Snider of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr’s correspondence principle assures that the quantum mechanical theory of general relativity agrees with Einstein’s classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. Quantum theory invalidates some of the assumption made by Einstein. His argument that equally many crests of waves must arrive on Earth as leave Sun is correct in classical physics, but impermissible in quantum mechanics. We will show that solar redshift experiments contradict the classical theory and support a quantum mechanically modified theory of general relativity. This changes drastically the entire theory, including the equivalence principle.
A general theory of linear cosmological perturbations: bimetric theories
NASA Astrophysics Data System (ADS)
Lagos, Macarena; Ferreira, Pedro G.
2017-01-01
We implement the method developed in [1] to construct the most general parametrised action for linear cosmological perturbations of bimetric theories of gravity. Specifically, we consider perturbations around a homogeneous and isotropic background, and identify the complete form of the action invariant under diffeomorphism transformations, as well as the number of free parameters characterising this cosmological class of theories. We discuss, in detail, the case without derivative interactions, and compare our results with those found in massive bigravity.
Splitting fields and general differential Galois theory
Trushin, Dmitry V
2010-11-11
An algebraic technique is presented that does not use results of model theory and makes it possible to construct a general Galois theory of arbitrary nonlinear systems of partial differential equations. The algebraic technique is based on the search for prime differential ideals of special form in tensor products of differential rings. The main results demonstrating the work of the technique obtained are the theorem on the constructedness of the differential closure and the general theorem on the Galois correspondence for normal extensions. Bibliography: 14 titles.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp
2015-10-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
General Relativity theory: tests through time
NASA Astrophysics Data System (ADS)
Yatskiv, Ya. S.; Alexandrov, A. N.; Vavilova, I. B.; Zhdanov, V. I.; Kudrya, Yu. N.; Parnovsky, S. L.; Fedorova, O. V.; Khmil, S. V.
2005-09-01
Theoretical basis of General relativity Theory, its experimental tests as well as GRT applications are briefly summarized taking into account the results of the last decade. The monograph addresses scientists, post-graduated students, and students specialized in the natural sciences as well as everyone who takes a great interest in GRT.
General Potential Theory of Arbitrary Wing Sections
NASA Technical Reports Server (NTRS)
Theodorsen, T.; Garrick, I. E.
1979-01-01
The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.
A Short Introduction to General Gyrokinetic Theory
H. Qin
2005-02-14
Interesting plasmas in the laboratory and space are magnetized. General gyrokinetic theory is about a symmetry, gyro-symmetry, in the Vlasov-Maxwell system for magnetized plasmas. The most general gyrokinetic theory can be geometrically formulated. First, the coordinate-free, geometric Vlasov-Maxwell equations are developed in the 7-D phase space, which is defined as a fiber bundle over the space-time. The Poincar{copyright}-Cartan-Einstein 1-form pullbacked onto the 7-D phase space determines particles' worldlines in the phase space, and realizes the momentum integrals in kinetic theory as fiber integrals. The infinite small generator of the gyro-symmetry is then asymptotically constructed as the base for the gyrophase coordinate of the gyrocenter coordinate system. This is accomplished by applying the Lie coordinate perturbation method to the Poincar{copyright}-Cartan-Einstein 1-form, which also generates the most relaxed condition under which the gyro-symmetry still exists. General gyrokinetic Vlasov-Maxwell equations are then developed as the Vlasov-Maxwell equations in the gyrocenter coordinate system, rather than a set of new equations. Since the general gyrokinetic system-developed is geometrically the same as the Vlasov-Maxwell equations, all the coordinate independent properties of the Vlasov-Maxwell equations, such as energy conservation, momentum conservation, and Liouville volume conservation, are automatically carried over to the general gyrokinetic system. The pullback transformation associated with the coordinate transformation is shown to be an indispensable part of the general gyrokinetic Vlasov-Maxwell equations. Without this vital element, a number of prominent physics features, such as the presence of the compressional Alfven wave and a proper description of the gyrokinetic equilibrium, cannot be readily recovered. Three examples of applications of the general gyrokinetic theory developed in the areas of plasma equilibrium and plasma waves are
Generalized IIB supergravity from exceptional field theory
NASA Astrophysics Data System (ADS)
Baguet, Arnaud; Magro, Marc; Samtleben, Henning
2017-03-01
The background underlying the η-deformed AdS 5 × S 5 sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear dilaton. We show how the generalized IIB supergravity equations can be naturally obtained from exceptional field theory. Within this manifestly duality covariant formulation of maximal supergravity, the generalized IIB supergravity equations emerge upon imposing on the fields a simple Scherk-Schwarz ansatz which respects the section constraint.
Eleven theses of general systems theory (GST)
Waelchli, F.
1992-12-31
This paper chronicles an effort to distill and order (for purposes of discussion and elaboration) frequently mentioned and significant ideas encountered in the literature of General Systems theory (GST). The product is a set of eleven theses, representing the author`s selection and collation of seminal and recurrent GST themes. The author argues that attention to theory could aid the effort to develop practical applications of systems thinking. (Remember that a thesis is a statement or assertion, offered originally without proof, as the basis for an argument, discussion, or empirical test). 10 refs.
A general theory for the Uranian satellites
NASA Technical Reports Server (NTRS)
Laskar, J.
1986-01-01
A general analytical theory of the five main satellites of Uranus, including the secular and short period terms hereafter denoted by GUST, is presented. A comparison is made with an internal numerical integration with nominal masses of Veillet (1983). The precision of the theory goes from about 10 km for Miranda to 100 km for Oberon. The short period terms in the motions of Titania and Oberon are larger than 500 km. They should make possible the determination of the masses of the outer satellites through the optical data of Voyager encounter.
Cosmological Theories of Special and General Relativity - I
NASA Astrophysics Data System (ADS)
Moshe, Carmeli
In the standard cosmological theory one uses the Einstein concepts of space and time as were originally introduced for the special theory of relativity and the general relativity theory. According to this approach all physical quantities are described in terms of the continuum spatial coordinates and time. Using general relativity theory a great progress has been made in understanding the evolution of the Universe. Cosmologists usually measure spatial distances and redshitfs of faraway galaxies as expressed by the Hubble expansion. In recent years this fact was undertaken to develop new theories in terms of distances and velocities (redshift). While in Einstein's relativity the propagation of light plays the major role, in the new theory it is the expansion of the Universe that takes that role and appears at the outset. The cosmic time becomes crucial in these recent theories, which in the standard theory is considered to be absolute but here it is relative. In this lecture this new approach to cosmology is presented.
On the general theory of neural circuitry.
Kingham, D J
1994-05-01
A general theory of neural circuitry is proposed wherein neural impulses travel in a continuous circuit from the brain to the extremities and back to the brain. At the extremities the impulse may be modified by the environment there. At the spinal column the return signal is compared with the outgoing signal and the appropriate motoneuronal 'reflex' signal is generated if the difference is sufficiently large. In the thalamus the return signal is again compared with the outgoing signal and the difference between the two generates a sensory impulse which is sent to the cortical regions of the brain for comparison with stored patterns from similar signals of past experience. This theory allows for an explanation of feelings of pain and pleasure, pain remote from an area of trauma, phantom limb pain and the relationship between sensory impulses and motor impulses. New approaches to reducing pain are suggested by this theory.
Cosmology in general massive gravity theories
Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@aquila.infn.it
2014-05-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w{sub eff} has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w{sub eff} from -1. Taking into account current limits on w{sub eff} and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w{sub eff} form -1 in a weakly coupled massive gravity theory.
Non-signalling Theories and Generalized Probability
NASA Astrophysics Data System (ADS)
Tylec, Tomasz I.; Kuś, Marek; Krajczok, Jacek
2016-09-01
We provide mathematically rigorous justification of using term probability in connection to the so called non-signalling theories, known also as Popescu's and Rohrlich's box worlds. No only do we prove correctness of these models (in the sense that they describe composite system of two independent subsystems) but we obtain new properties of non-signalling boxes and expose new tools for further investigation. Moreover, it allows strightforward generalization to more complicated systems.
General nonequilibrium theory of colloid dynamics.
Ramírez-González, Pedro; Medina-Noyola, Magdaleno
2010-12-01
A nonequilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time-evolution equations of its mean value n(r,t) and of the covariance [Formula in text] of its fluctuations δn(r,t)=n(r,t)-n(r,t). These two coarse-grained equations involve a local mobility function b(r,t) which, in its turn, is written in terms of the memory function of the two-time correlation function [Formula in text]. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n(0)(r) and σ(0)(r,r') toward its equilibrium state characterized by the equilibrium local concentration profile n(eq)(r) and equilibrium covariance σ(eq)(r,r'). This theory also provides a general theoretical framework to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of spatial heterogeneities.
Possibilistic systems within a general information theory
Joslyn, C.
1999-06-01
The author surveys possibilistic systems theory and place it in the context of Imprecise Probabilities and General Information Theory (GIT). In particular, he argues that possibilistic systems hold a distinct position within a broadly conceived, synthetic GIT. The focus is on systems and applications which are semantically grounded by empirical measurement methods (statistical counting), rather than epistemic or subjective knowledge elicitation or assessment methods. Regarding fuzzy measures as special provisions, and evidence measures (belief and plausibility measures) as special fuzzy measures, thereby he can measure imprecise probabilities directly and empirically from set-valued frequencies (random set measurement). More specifically, measurements of random intervals yield empirical fuzzy intervals. In the random set (Dempster-Shafer) context, probability and possibility measures stand as special plausibility measures in that their distributionality (decomposability) maps directly to an aggregable structure of the focal classes of their random sets. Further, possibility measures share with imprecise probabilities the ability to better handle open world problems where the universe of discourse is not specified in advance. In addition to empirically grounded measurement methods, possibility theory also provides another crucial component of a full systems theory, namely prediction methods in the form of finite (Markov) processes which are also strictly analogous to the probabilistic forms.
On the general theory of thin airfoils for nonuniform motion
NASA Technical Reports Server (NTRS)
Reissner, Eric
1944-01-01
General thin-airfoil theory for a compressible fluid is formulated as boundary problem for the velocity potential, without recourse to the theory of vortex motion. On the basis of this formulation the integral equation of lifting-surface theory for an incompressible fluid is derived with the chordwise component of the fluid velocity at the airfoil as the function to be determined. It is shown how by integration by parts this integral equation can be transformed into the Biot-Savart theorem. A clarification is gained regarding the use of principal value definitions for the integral which occur. The integral equation of lifting-surface theory is used a s the starting point for the establishment of a theory for the nonstationary airfoil which is a generalization of lifting-line theory for the stationary airfoil and which might be called "lifting-strip" theory. Explicit expressions are given for section lift and section moment in terms of the circulation function, which for any given wing deflection is to be determined from an integral equation which is of the type of the equation of lifting-line theory. The results obtained are for airfoils of uniform chord. They can be extended to tapered airfoils. One of the main uses of the results should be that they furnish a practical means for the analysis of the aerodynamic span effect in the problem of wing flutter. The range of applicability of "lifting-strip" theory is the same as that of lifting-line theory so that its results may be applied to airfoils with aspect ratios as low as three.
Generalized Langevin Theory for Inhomogeneous Fluids.
NASA Astrophysics Data System (ADS)
Grant, Martin Garth
This thesis presents a molecular theory of the dynamics of inhomogeneous fluids. Dynamical correlations in a nonuniform system are studied through the generalized Langevin approach. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamic-like quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We apply this formalism to several problems. We study the correlation of currents orthogonal to a diffuse planar, liquid-vapour, interface, introducing new nonlocal elastic moduli and new nonlocal, frequency dependent, viscosities. Novel symmetry breaking contributions are obtained, which are related to the Young-Laplace equation for pressure balance. The normal modes, associated with the symmetry breaking interface in the liquid-vapour system, are analyzed, taking into account the nonlocal nature of the diffuse planar interface. We obtain the classical dispersion relation for capillary waves, observed in light scattering experiments, from an adiabatic (molecular) approach. We consider the 'capillary wave model' (CWM) of the equilibrium liquid-vapour interface. CWM is reformulated to be consistent with capillary waves; corrections to the standard CWM results, due to self-consistent long range coupling, are obtained for finite surface area and nonzero gravitational acceleration. Finally, we obtain the Landau-Lifshitz theory of fluctuating hydrodynamics from the
Covariant generalization of cosmological perturbation theory
Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo
2007-01-15
We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.
General theory of heat diffusion dynamics
NASA Astrophysics Data System (ADS)
Tröster, A.; Schranz, W.
2002-11-01
A detailed theoretical investigation of the influence of heat diffusion processes on the low-frequency dispersion in macroscopic elastic susceptibilities is presented. In particular, a general solution of the heat diffusion equation is derived for arbitrary boundary conditions and externally imposed periodic and spatially inhomogeneous stress. In contrast to other calculations found in the literature, our results indicate that in elastic experiments on monodomain samples of macroscopic dimensions the isothermal-adiabatic crossover function necessarily reduces to a Debye-like dispersion. Experimentally, this is illustated by measurements of the complex dynamic elastic susceptibilities of KSCN and KMnF3. Our approach also allows to discuss heat diffusion in polydomain crystals and heterogeneous systems, for which one obtains dispersions of a non-Debye type. While explicitly derived in an elastic context, the present theory also applies to heat diffusion in dielectric materials.
General theory of the plasmoid instability
Comisso, L.; Lingam, M.; Huang, Y. -M.; Bhattacharjee, A.
2016-10-05
In a general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. We derive and show the scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids that depend on the initial perturbation amplitude ($\\hat{w}$_{0}), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to S^{α}τ^{β}[ln f(S,τ,$\\hat{w}$_{0})]^{σ}. Finally, the detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.
General theory of the plasmoid instability
Comisso, L.; Lingam, M.; Huang, Y. -M.; ...
2016-10-05
In a general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. We derive and show the scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids that depend on the initial perturbation amplitude (more » $$\\hat{w}$$0), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to Sατβ[ln f(S,τ,$$\\hat{w}$$0)]σ. Finally, the detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.« less
Generalized theory of diffusion based on kinetic theory
NASA Astrophysics Data System (ADS)
Schäfer, T.
2016-10-01
We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization of the diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick's law and the diffusion equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless Boltzmann treatment of spin propagation. Spin hydrodynamics avoids unphysical effects that arise when the diffusion equation is used to describe to a strongly interacting gas with a dilute corona. We apply spin hydrodynamics to the problem of spin diffusion in a trapped atomic gas. We find that the observed spin relaxation rate in the high-temperature limit [Sommer et al., Nature (London) 472, 201 (2011), 10.1038/nature09989] is consistent with the diffusion constant predicted by kinetic theory.
Léon Rosenfeld's general theory of constrained Hamiltonian dynamics
NASA Astrophysics Data System (ADS)
Salisbury, Donald; Sundermeyer, Kurt
2017-01-01
This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.
Generalized Rayleigh scattering. I. Basic theory.
NASA Astrophysics Data System (ADS)
Ivanov, V. V.
1995-11-01
The classsical problem of multiple molecular (in particular, Rayleigh) scattering in plane-parallel atmospheres is considered from a somewhat broader viewpoint than usual. The general approach and ideology are borrowed from non-LTE line formation theory. The main emphasis is on the depth dependence of the corresponding source matrix rather than on the emergent radiation. We study the azimuth-averaged radiation field of polarized radiation in a semi-infinite atmosphere with embedded primary sources. The corresponding 2x2 phase matrix of molecular scattering is P=(1-W) P_I_+W P_R_, where P_I_ and P_R_ are the phase matrices of the scalar isotropic scattering and of the Rayleigh scattering, respectively, and W is the depolarization parameter. Contrary to the usual assumption that W{in}[0,1], we assume W{in} [0,{infinity}) and call this generalized Rayleigh scattering (GRS). Using the factorization of P which is intimately related to its diadic expansion, we reduce the problem to an integral equation for the source matrix S(τ) with a matrix displacement kernel. In operator form this equation is S={LAMBDA}S+S^*^, where {LAMBDA} is the matrix {LAMBDA}-operator and S^*^ is the primary source term. This leads to a new concept, the matrix albedo of single scattering λ =diag(λ_I_,λ_Q_), where λ_I_ is the usual (scalar) single scattering albedo and λ_Q_=0.7Wλ_I_. Its use enables one to formulate matrix equivalents of many of the results of the scalar theory in exactly the same form as in the scalar case. Of crucial importance is the matrix equivalent of the sqrt(ɛ) law of the scalar theory. Another useful new concept is the λ-plane, i.e., the plane with the axes (λ_I_,λ_Q_). Systematic use of the matrix sqrt(ɛ) law and of the λ-plane proved to be a useful instrument in classifying various limiting and particular cases of GRS and in discussing numerical data on the matrix source functions (to be given in Paper II of the series).
Generalized interferometry - I: theory for interstation correlations
NASA Astrophysics Data System (ADS)
Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian
2017-02-01
We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on
Dynamical Correspondence in a Generalized Quantum Theory
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
Incorporation of generalized uncertainty principle into Lifshitz field theories
NASA Astrophysics Data System (ADS)
Faizal, Mir; Majumder, Barun
2015-06-01
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
Incorporation of generalized uncertainty principle into Lifshitz field theories
Faizal, Mir; Majumder, Barun
2015-06-15
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
NASA Astrophysics Data System (ADS)
Qin, Hong
2014-10-01
The dynamics of charged particles in general linear focusing lattices is analyzed using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The general focusing lattices are allowed to include quadrupole, skew-quadrupole, solenoidal, and dipole components, as well as variation of beam energy and torsion of the fiducial orbit. The scalar envelope function is generalized into an envelope matrix, and the scalar envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation. The phase advance is generalized into a 4D symplectic rotation, or an U(2) element. Other components of the original CS theory, such as the CS invariant, transfer matrix, and Twiss functions all have their counterparts in the generalized theory with remarkably similar expressions. The gauge group of the generalized theory is analyzed. If the gauge freedom is fixed with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space quantum mechanics and optics has been recently realized. It is shown that the spectral and structural stability properties of a general focusing lattice are uniquely determined by the generalized phase advance. For structural stability, the generalized CS theory developed enables application of the Krein-Moser theory to significantly simplify the theoretical and numerical analysis. The generalized CS theory provides an effective tool to study the coupled dynamics of high-intensity charged particle beams and to discover more optimized lattice designs in the larger parameter space of general focusing lattices. Research supported by the U.S. Department of Energy.
Generalizing Prototype Theory: A Formal Quantum Framework
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
NASA Astrophysics Data System (ADS)
Bozkaya, Uǧur
2014-09-01
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Bozkaya, Uğur
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Bozkaya, Uğur
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Empirical Predictions from a General Theory of Signs
ERIC Educational Resources Information Center
Oller, John W., Jr.; Chen, Liang; Oller, Stephen D.; Pan, Ning
2005-01-01
General sign theory (GST) deals with how distinct sign systems are grounded, developed with increasing abstractness over time, and differentiated in efficacies in experience and discourse. GST has 3 components: The theory of true narrative representations (TNR theory) shows that TNRs are unique in being relatively well determined with respect to…
The general theory of convolutional codes
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Stanley, R. P.
1993-01-01
This article presents a self-contained introduction to the algebraic theory of convolutional codes. This introduction is partly a tutorial, but at the same time contains a number of new results which will prove useful for designers of advanced telecommunication systems. Among the new concepts introduced here are the Hilbert series for a convolutional code and the class of compact codes.
General autocatalytic theory and simple model of financial markets
NASA Astrophysics Data System (ADS)
Thuy Anh, Chu; Lan, Nguyen Tri; Viet, Nguyen Ai
2015-06-01
The concept of autocatalytic theory has become a powerful tool in understanding evolutionary processes in complex systems. A generalization of autocatalytic theory was assumed by considering that the initial element now is being some distribution instead of a constant value as in traditional theory. This initial condition leads to that the final element might have some distribution too. A simple physics model for financial markets is proposed, using this general autocatalytic theory. Some general behaviours of evolution process and risk moment of a financial market also are investigated in framework of this simple model.
Hypermass generalization of Einstein's gravitation theory
NASA Technical Reports Server (NTRS)
Edmonds, J. D., Jr.
1973-01-01
The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.
General Open Systems Theory and the Substrata-Factor Theory of Reading.
ERIC Educational Resources Information Center
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to establish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to discover through a series of…
General Open Systems Theory and the Substrata-Factor Theory of Reading.
ERIC Educational Resources Information Center
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a…
General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.
Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini
2015-12-01
General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy.
1. General context view of Express Building, looking northwest with ...
1. General context view of Express Building, looking northwest with railroad tracks in foreground - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR
Towards a General Theory of Counterdeception
2015-02-20
reducing the remaining search space by one guess. The complexity is often expressed using the guessing entropy , HG(X) Figure 1: The prisoners...logarithmic scale for consistency with logical key lengths: if a 128-bit key is chosen uniformly, its guessing entropy is 128. In adversarial detection...problems, the guessing entropy no longer characterizes the strength or vulnerability of the security system. Instead of guessing one key, an adversary
A generalized differential effective medium theory
NASA Astrophysics Data System (ADS)
Norris, A. N.; Callegari, A. J.; Sheng, P.
A GENERALIZATION of the Differential Effective Medium approximation (DEM) is discussed. The new scheme is applied to the estimation of the effective permittivity of a two phase dielectric composite. Ordinary DEM corresponds to a realizable microgeometry in which the composite is built up incrementally through a process of homogenization, with one phase always in dilute suspension and the other phase associated with the percolating backbone. The generalization of DEM assumes a third phase which acts as a backbone. The other two phases are progressively added to the backbone such that each addition is in an effectively homogeneous medium. A canonical ordinary differential equation is derived which describes the change in material properties as a function of the volume concentration φ of the added phases in the composite. As φ→ 1, the Effective Medium Approximation (EMA) is obtained. For φ < 1, the result depends upon the backbone and the mixture path that is followed. The approach to EMA for φ ≊ 1 is analysed and a generalization of Archie's law for conductor-insulator composites is described. The conductivity mimics EMA above the percolation threshold and DEM as the conducting phase vanishes.
An alternative topological field theory of generalized complex geometry
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki; Tokunaga, Tatsuya
2007-09-01
We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is A model in the case that the generalized complex structure depends on only a symplectic structure. Our new model is B model in the case that the generalized complex structure depends on only a complex structure.
Towards a general theory of optimal testing
NASA Astrophysics Data System (ADS)
Pericchi, Luis R. G.; Pereira, Carlos A. B.
2012-10-01
In Pericchi and Pereira [1] it is argued against the traditional way on which testing is based on fixed significance level, either using p-values (with fixed levels of evidence, like the 5% rule) or α values. We instead, follow an approach put forward by [2], on which an optimal test is chosen by minimizing type I and type II errors. Morris DeGroot in his authoritative book [2], Probability and Statistics 2nd Edition, stated that it is more reasonable to minimize a weighted sum of Type I and Type II error than to specify a value of type I error and then minimize Type II error. He showed it beyond reasonable doubt, but only in the very restrictive scenario of simple VS simple hypothesis, and it is not clear how to generalize it. We propose here a very natural generalization for composite hypothesis, by using general weight functions in the parameter space. This was also the position taken by [3, 4, 5]. We show, in a parallel manner to DeGroot's proof and Pereira's discussion, that the optimal test statistics are Bayes Factors, when the weighting functions are priors with mass on the whole parameter space. On the other hand when the weight functions are point masses in specific parameter values of practical significance, then a procedure is designed for which the sum of Type I error and Type II error in the specified points of practical significance is minimized. This can be seen as bridge between Bayesian Statistics and a new version of Hypothesis testing, more in line with statistical consistency and scientific insight.
Republication of: On the general relativity theory
NASA Astrophysics Data System (ADS)
Weyl, H.
2009-07-01
This English translation of the paper by H. Weyl, "Zur allgemeinen Relativitätstheorie", Physikalische Zeitschrift 24, 230-232 (1923), in which he formulated the geometrical foundations of a model of an expanding Universe, has been selected by the Editors of General Relativity and Gravitation for publication in the Golden Oldies series of the journal. The paper is accompanied by an editorial note written by Juergen Ehlers and by Weyl's brief biography compiled by Andrzej Krasiński from internet sources, with corrections provided by Weyl's son and grandson.
Gauge theories under incorporation of a generalized uncertainty principle
Kober, Martin
2010-10-15
There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.
A generalized theory of chromatography and multistep liquid extraction
NASA Astrophysics Data System (ADS)
Chizhkov, V. P.; Boitsov, V. N.
2017-03-01
A generalized theory of chromatography and multistep liquid extraction is developed. The principles of highly efficient processes for fine preparative separation of binary mixture components on a fixed sorbent layer are discussed.
Magnetotail acceleration using generalized drift theory - A kinetic merging scenario
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Rosenberg, M.; Brittnacher, M.
1990-01-01
It is possible to describe particle behavior in the magnetotail, including particle energization, by means of generalized drift theory. Generalized drift velocities are obtained by using the generalized first invariant which has been shown to be useful in such current sheet configurations. Particles whose generalized invariant is preserved gain energy entirely in the field-aligned direction. The form of the accelerated particle velocity distribution is obtained and self-consistency conditions are derived.
General Strain Theory, Peer Rejection, and Delinquency/Crime
ERIC Educational Resources Information Center
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
A generalized theory of preferential linking
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan
2014-12-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.
Density perturbations in general modified gravitational theories
De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji
2010-07-15
We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.
Applications of queueing theory to stochastic models of gene expression
NASA Astrophysics Data System (ADS)
Kulkarni, Rahul
2012-02-01
The intrinsic stochasticity of cellular processes implies that analysis of fluctuations (`noise') is often essential for quantitative modeling of gene expression. Recent single-cell experiments have carried out such analysis to characterize moments and entire probability distributions for quantities of interest, e.g. mRNA and protein levels across a population of cells. Correspondingly, there is a need to develop general analytical tools for modeling and interpretation of data obtained from such single-cell experiments. One such approach involves the mapping between models of stochastic gene expression and systems analyzed in queueing theory. The talk will provide an overview of this approach and discuss how theorems from queueing theory (e.g. Little's Law) can be used to derive exact results for general stochastic models of gene expression. In the limit that gene expression occurs in bursts, analytical results can be obtained which provide insight into the effects of different regulatory mechanisms on the noise in protein steady-state distributions. In particular, the approach can be used to analyze the effect of post-transcriptional regulation by non-coding RNAs leading to new insights and experimentally testable predictions.
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
NASA Astrophysics Data System (ADS)
Song, Jaewon
2016-02-01
We study superconformal indices of 4d {N}=2 class S theories with certain irregular punctures called type I k,N . This class of theories include generalized Argyres-Douglas theories of type ( A k-1 , A N -1) and more. We conjecture the superconformal indices in certain simplified limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture I k,N . We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index for odd N. Fromtheindex,wearguethatcertainshort-multipletwhichcanappearintheOPEof the stress-energy tensor is absent in the ( A 1 , A 2 n ) theory. We also discuss the mixed Schur indices for the {N}=1 class {S} theories with irregular punctures.
Do People Use Their Implicit Theories of Creativity as General Theories?
ERIC Educational Resources Information Center
Lee, Hong; Kim, Jungsik; Ryu, Yeonjae; Song, Seokjong
2015-01-01
This study examines whether people use the general implicit theories of creativity or not when applying them to themselves and others. On the basis of the actor-observer asymmetry theory, the authors propose that conception of creativity would be differently constructed depending on the targets of attention: general, self, and other. Three studies…
Generalized Møller-Plesset Partitioning in Multiconfiguration Perturbation Theory.
Kobayashi, Masato; Szabados, Ágnes; Nakai, Hiromi; Surján, Péter R
2010-07-13
Two perturbation (PT) theories are developed starting from a multiconfiguration (MC) zero-order function. To span the configuration space, the theories employ biorthogonal vector sets introduced in the MCPT framework. At odds with previous formulations, the present construction operates with the full Fockian corresponding to a principal determinant, giving rise to a nondiagonal matrix of the zero-order resolvent. The theories provide a simple, generalized Møller-Plesset (MP) second-order correction to improve any reference function, corresponding either to a complete or incomplete model space. Computational demand of the procedure is determined by the iterative inversion of the Fockian, similarly to the single reference MP theory calculated in a localized basis. Relation of the theory to existing multireference (MR) PT formalisms is discussed. The performance of the present theories is assessed by adopting the antisymmetric product of strongly orthogonal geminal (APSG) wave functions as the reference function.
A general small-deflection theory for flat sandwich plates
NASA Technical Reports Server (NTRS)
Libove, Charles; Batdorf, S B
1948-01-01
A small-deflection theory is developed for the elastic behavior of orthotropic flat plates in which deflections due to shear are taken into account. In this theory, which covers all types of flat sandwich construction, a plate is characterized by seven physical constants (five stiffnesses and two Poisson ratios) of which six are independent. Both the energy expression and the differential equations are developed. Boundary conditions corresponding to simply supported, clamped, and elastically restrained edges are considered.
Generalized kinetic theory of ensembles with variable charges
NASA Astrophysics Data System (ADS)
Ivlev, A. V.; Zhdanov, S. K.; Klumov, B. A.; Morfill, G. E.
2005-09-01
A generalized kinetic theory of gaseous ensembles of particles with variable charges is proposed. The evolution of the ensembles due to the mutual particle collisions is investigated. The cases of inhomogeneous and randomly fluctuating charges are studied. It is shown that the particle temperature in such ensembles increases with time, and in some cases can grow by orders of magnitude. The theory is compared with the molecular-dynamics simulations, the relevance to typical experimental conditions is analyzed, and astrophysical implications are discussed.
General theory of Taylor dispersion phenomena. Part 3. Surface transport
Dill, L.H.; Brenner, H.
1982-01-01
An asymptotic theory of Brownian tracer particle transport phenomena within a bulk fluid, as augmented by surface transport, is presented in the context of generalized Taylor dispersion theory. The analysis expands upon prior work, which was limited to transport wholly within a continuous phase, so as to now include surface adsorption, diffusion, and convection of the tracer along a continuous surface bounding the continuous fluid phase.
Generalized conservation laws in non-local field theories
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele
2016-04-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
2. General context view of Express Building, looking northeast, with ...
2. General context view of Express Building, looking northeast, with Division Street in foreground, showing relationship to the Bend Depot - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR
Theory of functional systems and human general pathology.
Khitrov, N K; Saltykov, A B
2003-07-01
We analyze the role of the theory of functional systems for human general pathology and the necessity of integration of this theory with the concepts of pathological and ambivalent systems. Multiple (qualitatively heterogeneous) nature of system-forming factors and principle possibility of the formation of physiological, pathological, and ambivalent systems by the same factors are discussed. These theses broaden the application of the theory of functional systems as the fundamental basis for studies of informational mechanisms of vital activity under normal and pathological conditions.
The general class of the vacuum spherically symmetric equations of the general relativity theory
Karbanovski, V. V. Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N. Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R.
2012-08-15
The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g{sub 00} and g{sub 22} is obtained. The properties of the found solutions are analyzed.
Computational Complexity of Current GPSG (Generalized Phrase Structure Grammar) Theory,
1986-04-01
universal RP also bears most directly on issues of natural language acquisition. The language learner evidently possesses a mechanism for selecting grammmars... language acquisition, while com- putational considerations demand that the recognition problem be characterized in terms of both input string and...theory to guide the construction of computationally efficient real-world natural language processing systems. At first glance, generalized phrase structure
An Application of General System Theory (GST) to Group Therapy.
ERIC Educational Resources Information Center
Matthews, Charles O.
1992-01-01
Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)
Gender, General Strain Theory, Negative Emotions, and Disordered Eating
ERIC Educational Resources Information Center
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul
2010-01-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…
Strong coupling in nonrelativistic general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Lin, Kai; Wang, Anzhong; Wu, Qiang; Zhu, Tao
2011-08-01
We study the strong coupling problem in the Horava-Melby-Thompson setup of the Horava-Lifshitz theory of gravity with an arbitrary coupling constant λ, generalized recently by da Silva, where λ describes the deviation of the theory in the infrared from general relativity that has λGR=1. We find that a scalar field in the Minkowski background becomes strongly coupled for processes with energy higher than Λω[≡(Mpl/c1)3/2Mpl|λ-1|5/4], where generically c1≪Mpl. However, this problem can be cured by introducing a new energy scale M*, so that M*<Λω, where M* denotes the suppression energy of high-order derivative terms of the theory.
Analysis of general power counting rules in effective field theory
NASA Astrophysics Data System (ADS)
Gavela, Belen; Jenkins, Elizabeth E.; Manohar, Aneesh V.; Merlo, Luca
2016-09-01
We derive the general counting rules for a quantum effective field theory (EFT) in {d} dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χ PT). The relation between Λ and f is generalized to {d} dimensions. We show that the naive dimensional analysis 4π counting is related to hbar counting. The EFT counting rules are applied to χ PT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT.
Yang, Li; Miklavcic, Stanley J
2005-09-01
A generally applicable theoretical model describing light propagating through turbid media is proposed. The theory is a generalization of the revised Kubelka-Munk theory, extending its applicability to accommodate a wider range of absorption influences. A general expression for a factor taking into account the effect of scattering on the total photon path traversed in a turbid medium is derived. The extended model is applied to systems of ink-dyed paper sheets-mixtures of wood fibers with dyes-which represent examples of systems that have thus far eluded the original Kubelka-Munk model. The results of simulations of the spectral dependence of Kubelka-Munk coefficients of absorption and scattering show that they compare very well with those derived from experimental results.
Generalized perturbation theory using two-dimensional, discrete ordinates transport theory
Childs, R.L.
1980-06-01
Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions GAMMA and GAMMA*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions.
General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Tomboulis, E. T.
2011-10-01
We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that might be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.
General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking
Tomboulis, E. T.
2011-10-15
We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that might be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.
NASA Astrophysics Data System (ADS)
Schlickeiser, R.; Yoon, P. H.
2012-02-01
Using the system of the Klimontovich and Maxwell equations, general expressions for the electromagnetic fluctuation spectra (electric and magnetic field, charge and current densities) from uncorrelated plasma particles are derived, which are covariantly correct within the theory of special relativity. The general expressions hold for arbitrary momentum dependences of the plasma particle distribution functions and for collective and non-collective fluctuations. In this first paper of a series, the results are illustrated for the important special case of nonrelativistic isotropic Maxwellian particle distribution functions providing in particular the thermal fluctuations of weakly amplified modes and aperiodic modes.
Gravitation experiments at Stanford. [using general relativity theory
NASA Technical Reports Server (NTRS)
Lipa, J. A.
1980-01-01
The experimental situation in post-Newtonian gravitation is briefly reviewed in order to reexamine the extent to which experiment supports or refutes general relativity. A description is given of the equivalence principle project, the gyroscope experiment, and the search for gravity waves. It is noted that even though some doubt has been cast on the value of the perihelion advance and the gravitational redshift as precise tests of general relativity in the past few years, many competing theories have been ruled out; in particular, the results from the Viking mission significantly reduce the credibility of the Brans-Dicke theory (Brans and Dicke, 1961). The dimensionless constant omega in this theory is now forced to exceed 50, while the value originally proposed was 6 (omega being infinity in general relativity). It is noted that the gyro experiment described is capable of putting much tighter limits on this parameter, and together with the other experiments in progress will help place gravitational theory on a firmer experimental footing.
Entropy and information causality in general probabilistic theories
NASA Astrophysics Data System (ADS)
Barnum, Howard; Barrett, Jonathan; Orloff Clark, Lisa; Leifer, Matthew; Spekkens, Robert; Stepanik, Nicholas; Wilce, Alex; Wilke, Robin
2010-03-01
We investigate the concept of entropy in probabilistic theories more general than quantum mechanics, with particular reference to the notion of information causality (IC) recently proposed by Pawlowski et al (2009 arXiv:0905.2292). We consider two entropic quantities, which we term measurement and mixing entropy. In the context of classical and quantum theory, these coincide, being given by the Shannon and von Neumann entropies, respectively; in general, however, they are very different. In particular, while measurement entropy is easily seen to be concave, mixing entropy need not be. In fact, as we show, mixing entropy is not concave whenever the state space is a non-simplicial polytope. Thus, the condition that measurement and mixing entropies coincide is a strong constraint on possible theories. We call theories with this property monoentropic. Measurement entropy is subadditive, but not in general strongly subadditive. Equivalently, if we define the mutual information between two systems A and B by the usual formula I(A: B)=H(A)+H(B)-H(AB), where H denotes the measurement entropy and AB is a non-signaling composite of A and B, then it can happen that I(A:BC)theory in which measurement entropy is strongly subadditive, and also satisfies a version of the Holevo bound, is informationally causal, and on the other hand we observe that Popescu-Rohrlich boxes, which violate IC, also violate strong subadditivity. We also explore the interplay between measurement and mixing entropy and various natural conditions on theories that arise in quantum axiomatics.
Generalized absorber theory and the Einstein-Podolsky-Rosen paradox
NASA Astrophysics Data System (ADS)
Cramer, John G.
1980-07-01
A generalized form of Wheeler-Feynman absorber theory is used to explain the quantum-mechanical paradox proposed by Einstein, Podolsky, and Rosen (EPR). The advanced solutions of the electromagnetic wave equation and of relativistic quantum-mechanical wave equations are shown to play the role of "verifier" in quantum-mechanical "transactions," providing microscopic communication paths between detectors across spacelike intervals in violation of the EPR locality postulate. The principle of causality is discussed in the context of this approach, and possibilities for experimental tests of the theory are examined.
General Relativity as AN ÆTHER Theory
NASA Astrophysics Data System (ADS)
Dupré, Maurice J.; Tipler, Frank J.
Most early twentieth century relativists — Lorentz, Einstein, Eddington, for examples — claimed that general relativity was merely a theory of the æther. We shall confirm this claim by deriving the Einstein equations using æther theory. We shall use a combination of Lorentz's and Kelvin's conception of the æther. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the æther, a tensor based on Kelvin's æther theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann. In essence, we shall show that the Einstein equations are a special case of Newtonian gravity coupled to a particular type of luminiferous æther. Our derivation of general relativity is simple, and it emphasizes how inevitable general relativity is, given the truth of Newtonian gravity and the Maxwell equations.
Recent advances with generalized entropy theory of glass-formation in polymers
NASA Astrophysics Data System (ADS)
Freed, Karl
The generalized entropy theory (GET) of glass-formation in polymers is a combination of the lattice cluster theory (LCT) for the configurational entropy density with the Adam-Gibbs (AG) theory for the structural relaxation time. A greatly simplified form of the GET (whose expression for the free energy is roughly double that of Flory-Huggins theory) accurately reproduces the four characteristic temperatures of glass-formation (the onset, crossover, glass transition, and Kauzmann temperatures) of the full GET to within 4K for a series of models of polymers composed of semi-flexible chains having the structure of poly(n-alpha olefins). The theory is now simple enough to be used in courses in polymer physics. Although the successes of the GET provide a strong validation of the final form of the AG theory provided the configurational entropy is used, the physical basis of the AG theory has remained an enigma. Hence, we have developed a new, more general, statistical mechanical derivation of AG theory that explains the previously perplexing observations that the string-like elementary excitations have the mass and temperature dependence of systems undergoing equilibrium self-assembly. This work is supported by the (U.S.) Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE- SC0008631.
General theory for the mechanics of confined microtubule asters
NASA Astrophysics Data System (ADS)
Ma, Rui; Laan, Liedewij; Dogterom, Marileen; Pavin, Nenad; Jülicher, Frank
2014-01-01
In cells, dynamic microtubules organize into asters or spindles to assist positioning of organelles. Two types of forces are suggested to contribute to the positioning process: (i) microtubule-growth based pushing forces; and (ii) motor protein mediated pulling forces. In this paper, we present a general theory to account for aster positioning in a confinement of arbitrary shape. The theory takes account of microtubule nucleation, growth, catastrophe, slipping, as well as interaction with cortical force generators. We calculate microtubule distributions and forces acting on microtubule organizing centers in a sphere and in an ellipsoid. Positioning mechanisms based on both pushing forces and pulling forces can be distinguished in our theory for different parameter regimes or in different geometries. In addition, we investigate positioning of microtubule asters in the case of asymmetric distribution of motors. This analysis enables us to characterize situations relevant for Caenorrhabditis elegans embryos.
Generalized approach to global renormalization-group theory for fluids
NASA Astrophysics Data System (ADS)
Ramana, A. Sai Venkata; Menon, S. V. G.
2012-04-01
The global renormalization-group theory (GRGT) for fluids is derived starting with the square-gradient approximation for the Helmholtz free energy functional such that any mean-field free energy density and direct correlation function can be employed. The new derivation uses Wilson's functions for representing density fluctuations, thereby relaxing the assumption of cosine variation of density fluctuations used in earlier approaches. The generality of the present approach is shown by deriving the relationships to the earlier developments. A qualitative way to infer the free parameters in the present form of GRGT is also suggested. The new theory is applied to square-well fluids of ranges 1.5 and 3.0 (in units of hard-sphere diameter) and Lennard-Jones fluids. It is shown that the present theory produces a flat isotherm in the two-phase region. Thus the theory accounts for fluctuations at all length scales and avoids the use of Maxwell's construction. An analysis of the liquid-vapor phase diagrams and the critical constants obtained for different potentials shows that, with a mean-field free energy density that is accurate away from the critical region and an appropriate coarse graining length for the mean-field theory, GRGT can provide results in good agreement with the simulation and experimental results.
Stringy horizons and generalized FZZ duality in perturbation theory
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2017-02-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
NASA Technical Reports Server (NTRS)
Smalley, L. L.
1983-01-01
The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.
General Relativity Theory - Well Proven and Also Incomplete: Further Arguments
NASA Astrophysics Data System (ADS)
Brandes, Jürgen
In the former article "General Relativity Theory - well proven and also incomplete?" with a few arguments it was proven that general relativity (GRT) makes contradictory predictions about the total energy of a particle resting in the gravitational field. With a few further arguments it was proven that this contradiction is resolved by expanding general relativity. General relativity is contradictious in energy questions since on one side the total energy of a particle resting in the gravitational field is lower than its rest mass (there is energy needed to pull out the particle from the gravitational field) while on the other side it is equal to its rest mass (this is a consequence of the equivalence principle). In the following article these considerations are generalized to a moving particle. A particle moving in the gravitational field has a total energy less than its rest mass times the relativistic γ-factor since there is energy needed to pull the particle out without changing its velocity. On the other side total energy of a moving particle is equal to its rest mass times the relativistic γ-factor (this is a consequence of the equivalence principle, too). This contradiction is resolved by expanding general relativity in the same manner as above. The other fact: Though it is not the aim of the author to reject general relativity but to expand it, he is treated as some uncritical anti-relativist - since the start of his considerations and meanwhile for more than 20 years.
The Equivariant Cohomology Theory of Twisted Generalized Complex Manifolds
NASA Astrophysics Data System (ADS)
Lin, Yi
2008-07-01
It has been shown recently by Kapustin and Tomasiello that the mathematical notion of Hamiltonian actions on twisted generalized Kähler manifolds is in perfect agreement with the physical notion of general (2, 2) gauged sigma models with three-form fluxes. In this article, we study the twisted equivariant cohomology theory of Hamiltonian actions on H-twisted generalized complex manifolds. If the manifold satisfies the {overline{partial} partial}-lemma, we establish the equivariant formality theorem. If in addition, the manifold satisfies the generalized Kähler condition, we prove the Kirwan injectivity in this setting. We then consider the Hamiltonian action of a torus on an H-twisted generalized Calabi-Yau manifold and extend to this case the Duistermaat-Heckman theorem for the push-forward measure. As a side result, we show in this paper that the generalized Kähler quotient of a generalized Kähler vector space can never have a (cohomologically) non-trivial twisting. This gives a negative answer to a question asked by physicists whether one can construct (2, 2) gauged linear sigma models with non-trivial fluxes.
Generality with Specificity: The Dynamic Field Theory Generalizes across Tasks and Time Scales
ERIC Educational Resources Information Center
Simmering, Vanessa R.; Spencer, John P.
2008-01-01
A central goal in cognitive and developmental science is to develop models of behavior that can generalize across both tasks and development while maintaining a commitment to detailed behavioral prediction. This paper presents tests of one such model, the Dynamic Field Theory (DFT). The DFT was originally proposed to capture delay-dependent biases…
ERIC Educational Resources Information Center
Moon, Byongook; Hwang, Hye-Won; McCluskey, John D.
2011-01-01
A growing number of studies indicate the ubiquity of school bullying: It is a global concern, regardless of cultural differences. Little previous research has examined whether leading criminological theories can explain bullying, despite the commonality between bullying and delinquency. The current investigation uses longitudinal data on 655…
Kanazawa, Takuya
2009-08-15
We extend the inequality of Tomboulis and Yaffe in SU(2) lattice gauge theory (LGT) to SU(N) LGT and to general classical spin systems, by use of reflection positivity. Basically the inequalities guarantee that a system in a box that is sufficiently insensitive to boundary conditions has a non-zero mass gap. We explicitly illustrate the theorem in some solvable models. Strong-coupling expansion is then utilized to discuss some aspects of the theorem. Finally, a conjecture for exact expression to the off-axis mass gap of the triangular Ising model is presented. The validity of the conjecture is tested in multiple ways.
General Theory of Aerodynamic Instability and the Mechanism of Flutter
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1979-01-01
The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom were determined. The problem resolves itself into the solution of certain definite integrals, which were identified as Bessel functions of the first and second kind, and of zero and first order. The theory, based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability was analyzed. An exact solution, involving potential flow and the adoption of the Kutta condition, was derived. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The flutter velocity, treated as the unknown quantity, was determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any magnitudes and combinations of the airfoil-aileron parameters.
General Theory of Aerodynamic Instability and the Mechanism of Flutter
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1949-01-01
The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived at. The solution is of a simple form and is expressed by means of an auxiliary parameter K.
General theory of electron detachment in negative ion collisions
Wang, T.S.
1983-01-01
In this thesis a general theory of electron detachment in slow collisions of negative ions with atoms is presented. The theory is based upon a semiclassical close-coupling framework, following the work of Taylor and Delos. The Schrodinger equation is reduced, under certain assumptions, to a non-denumerably infinite set of coupled equations. A new method for solving these equations is developed that is more general than the methods used by Taylor and Delos. A zero-order approximation of the solution is applied to the case of H-(D-) on Ne collisions, the results are compared with the experimental data, and good agreement between theory and experiment, particularly with regard to the isotope effect, is found. A first-order approximation of the solution is proved to be very close to the exact solution, and it is applied to the case of H-(D-) on He collisions. Quadratic and quartic approximations are used for the energy gap ..delta..(t) to calculate, among other things, the survival probability and electron energy spectrum. There are some interesting results of the electron energy spectrum which have not yet been observed in experiments.
Generalization of Equivalent Crystal Theory to Include Angular Dependence
NASA Technical Reports Server (NTRS)
Ferrante, John; Zypman, Fredy R.
2004-01-01
In the original Equivalent Crystal Theory, each atomic site in the real crystal is assigned an equivalent lattice constant, in general different from the ground state one. This parameter corresponds to a local compression or expansion of the lattice. The basic method considers these volumetric transformations and, in addition, introduces the possibility that the reference lattice is anisotropically distorted. These distortions however, were introduced ad-hoc. In this work, we generalize the original Equivalent Crystal Theory by systematically introducing site-dependent directional distortions of the lattice, whose corresponding distortions account for the dependence of the energy on anisotropic local density variations. This is done in the spirit of the original framework, but including a gradient term in the density. This approach is introduced to correct a deficiency in the original Equivalent Crystal Theory and other semiempirical methods in quantitatively obtaining the correct ratios of the surface energies of low index planes of cubic metals (100), (110), and (111). We develop here the basic framework, and apply it to the calculation of Fe (110) and Fe (111) surface energy formation. The results, compared with first principles calculations, show an improvement over previous semiempirical approaches.
Young infants' generalization of emotional expressions: effects of familiarity.
Walker-Andrews, Arlene S; Krogh-Jespersen, Sheila; Mayhew, Estelle M Y; Coffield, Caroline N
2011-08-01
From birth, infants are exposed to a wealth of emotional information in their interactions. Much research has been done to investigate the development of emotion perception, and factors influencing that development. The current study investigates the role of familiarity on 3.5-month-old infants' generalization of emotional expressions. Infants were assigned to one of two habituation sequences: in one sequence, infants were visually habituated to parental expressions of happy or sad. At test, infants viewed either a continuation of the habituation sequence, their mother depicting a novel expression, an unfamiliar female depicting the habituated expression, or an unfamiliar female depicting a novel expression. In the second sequence, a new sample of infants was matched to the infants in the first sequence. These infants viewed the same habituation and test sequences, but the actors were unfamiliar to them. Only those infants who viewed their own mothers and fathers during the habituation sequence increased looking. They dishabituated looking to maternal novel expressions, the unfamiliar female's novel expression, and the unfamiliar female depicting the habituated expression, especially when sad parental expressions were followed by an expression change to happy or to a change in person. Infants are guided in their recognition of emotional expressions by the familiarity of their parents, before generalizing to others.
General Strain Theory and Substance Use among American Indian Adolescents
Eitle, Tamela McNulty; Eitle, David; Johnson-Jennings, Michelle
2013-01-01
Despite the well-established finding that American Indian adolescents are at a greater risk of illicit substance use and abuse than the general population, few generalist explanations of deviance have been extended to American Indian substance use. Using a popular generalist explanation of deviance, General Strain Theory, we explore the predictive utility of this model with a subsample of American Indian adolescents from waves one and two of the National Longitudinal Study of Adolescent Health (Add-Health). Overall, we find mixed support for the utility of General Strain Theory to account for American Indian adolescent substance use. While exposure to recent life events, a common measure of stress exposure, was found to be a robust indicator of substance use, we found mixed support for the thesis that negative affect plays a key role in mediating the link between strain and substance use. However, we did find evidence that personal and social resources serve to condition the link between stress exposure and substance use, with parental control, self-restraint, religiosity, and exposure to substance using peers each serving to moderate the association between strain and substance use, albeit in more complex ways than expected. PMID:23826511
Subsonic potential aerodynamics for complex configurations - A general theory
NASA Technical Reports Server (NTRS)
Morino, L.; Kuo, C.-C.
1974-01-01
A general theory of subsonic potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. Under the small perturbation assumption, the potential at any point in the field depends only upon the values of the potential and its normal derivative on the surface of the body. On the surface of the body, this representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface. The theory is applied to finite-thickness wings in subsonic steady and oscillatory flows.
Generalized Bogolubov-de Gennes theory for nanoscale superconductors
NASA Astrophysics Data System (ADS)
Deloof, B.; Moshchalkov, V. V.; Chibotaru, L. F.
2014-03-01
The generalized Bogolubov-de Gennes (BdG) theory, including explicitly the Zeeman energy of electrons, is developed for nanoscale superconductors. To this end the system of four BdG equations is derived, corresponding to four coherent functions (instead of two in conventional BdG theory), two for electron-like excitations and two for hole-like excitations. These equations are transformed into matrix equations by using the basis set of particle-in-the-box problem and solved self-consistently with the equation for the order parameter and the chemical potential. The proposed microscopic approach is suitable for the study of unconventional vortex states and the appearance of FFLO phase in thin nanoscale superconductors.
Dynamics of the solvent around a solute: generalized Langevin theory.
Ishizuka, R; Hirata, F
2010-01-01
The generalized Langevin theory for a solution has been derived as the infinite dilution limit of the theory for a two component mixture. Following a similar formalism, the mode coupling approximations of the memory kernel have been also obtained. We have applied this method for one component bulk liquid of Lennard-Jones spheres and proved this approximation theoretically. The analysis of the space and time pair correlation proposed by Van Hove has been carried out as a function of solute particle sizes. It is found that the size of the solute particle is deeply related to the relaxation process of the solvation structure characterized around a solute particle at equilibrium. We have also investigated the relation between the different thermodynamic environments and relaxation process. From these studies, we have obtained the useful information about the rapidity of the relaxation of the solvation structure around a solute at equilibrium.
The general theory of relativity - Why 'It is probably the most beautiful of all existing theories'
NASA Astrophysics Data System (ADS)
Chandrasekhar, S.
1984-03-01
An attempt is made to objectively evaluate the frequent judgment of Einstein's general theory of relativity, by such distinguished physicists as Pauli (1921), Dirac, Born, and Rutherford, as 'beautiful' and 'a work of art'. The criteria applied are that of Francis Bacon ('There is no excellent beauty that hath not some strangeness in the proportions') and that of Heisenberg ('Beauty is the proper conformity of the parts to one another and to the whole'). The strangeness in the proportions of the theory of general relativity consists in its relating, through juxtaposition, the concepts of space and time and those of matter and motion; these had previously been considered entirely independent. The criterion of 'conformity' is illustrated through the directness with which the theory allows the description of black holes.
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
Song, Jaewon
2016-02-05
We present superconformal indices of 4d N = 2 class S theories with certain irregular punctures called type Ik,N. This class of theories include generalized Argyres-Douglas theories of type (Ak-1, AN-1) and more. We conjecture the superconformal indices in certain simplifi ed limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture Ik,N. We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index formore » odd N. From the index, we argue that certain short-multiplet which can appear in the OPE of the stress-energy tensor is absent in the (A1,A2n) theory. In addition, we discuss the mixed Schur indices for the N = 1 class S theories with irregular punctures.« less
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
Song, Jaewon
2016-02-05
We present superconformal indices of 4d N = 2 class S theories with certain irregular punctures called type I_{k,N}. This class of theories include generalized Argyres-Douglas theories of type (A_{k-1}, A_{N-1}) and more. We conjecture the superconformal indices in certain simplifi ed limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture I_{k,N}. We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index for odd N. From the index, we argue that certain short-multiplet which can appear in the OPE of the stress-energy tensor is absent in the (A_{1},A_{2n}) theory. In addition, we discuss the mixed Schur indices for the N = 1 class S theories with irregular punctures.
The arrow of electromagnetic time and the generalized absorber theory
NASA Astrophysics Data System (ADS)
Cramer, John G.
1983-09-01
The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler-Feynman absorber theory in an open expanding universe with a singularity at T=0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.
NASA Astrophysics Data System (ADS)
Manchon, A.; Slonczewski, J. C.
2006-05-01
Extensions of an existing circuit theory for current perpendicular to plane magnetoresistance and current-driven torque in noncollinear magnetic-multilayer pillar devices are presented. Our expressions for monodomain critical-current threshold Jc and giant magnetoresistance ΔR are firstly derived in terms of assumed spin-channel resistances for each of the two ferromagnets. Spinflips are thus neglected. We find a class of closed linear relationships connecting Jc-1 and ΔR . We then derive more general expressions for these quantities which take into account spin-flip relaxation. In this case, we assume analytically calculable linear 2×2 current-voltage matrices for the separate two-channel ferromagnets. These expressions again lead to a class of closed linear relationships connecting Jc-1 and ΔR . The latter generalization gives a simple theoretical framework to take into account bulk and interfacial spin flip and more complicated multilayer structures often used in experiments.
Entanglement witnesses for graph states: General theory and examples
Jungnitsch, Bastian; Moroder, Tobias; Guehne, Otfried
2011-09-15
We present a general theory for the construction of witnesses that detect genuine multipartite entanglement in graph states. First, we present explicit witnesses for all graph states of up to six qubits which are better than all criteria so far. Therefore, lower fidelities are required in experiments that aim at the preparation of graph states. Building on these results, we develop analytical methods to construct two different types of entanglement witnesses for general graph states. For many classes of states, these operators exhibit white noise tolerances that converge to 1 when increasing the number of particles. We illustrate our approach for states such as the linear and the 2D cluster state. Finally, we study an entanglement monotone motivated by our approach for graph states.
General Theory of Relativity: Will It Survive the Next Decade?
NASA Technical Reports Server (NTRS)
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
The trouble with psychopathy as a general theory of crime.
Walters, Glenn D
2004-04-01
The concept of psychopathy, as defined by Robert Hare, is reviewed with respect to its status as a general theory of crime. A hybrid of the medical pathology model and personality trait approach, the psychopathy concept proposes that a significant portion of serious crime is committed by psychopathic individuals. Hare's version of psychopathy, besides demonstrating weak applicability and a propensity for tautology, is subject to labeling effects, oversimplicity, reductionism, the fundamental attributional error, inattention to context, and disregard for the dynamic nature of human behavior. It is concluded that the psychopathy concept is substantially limited with respect to its ability to describe and clarify general criminal behavior but that it may still have value as a partial explanation for certain types of non-criminal predatory behavior.
General theory of spherically symmetric boundary-value problems of the linear transport theory.
NASA Technical Reports Server (NTRS)
Kanal, M.
1972-01-01
A general theory of spherically symmetric boundary-value problems of the one-speed neutron transport theory is presented. The formulation is also applicable to the 'gray' problems of radiative transfer. The Green's function for the purely absorbing medium is utilized in obtaining the normal mode expansion of the angular densities for both interior and exterior problems. As the integral equations for unknown coefficients are regular, a general class of reduction operators is introduced to reduce such regular integral equations to singular ones with a Cauchy-type kernel. Such operators then permit one to solve the singular integral equations by the standard techniques due to Muskhelishvili. We discuss several spherically symmetric problems. However, the treatment is kept sufficiently general to deal with problems lacking azimuthal symmetry. In particular the procedure seems to work for regions whose boundary coincides with one of the coordinate surfaces for which the Helmholtz equation is separable.
Vertex topological indices and tree expressions, generalizations of continued fractions
2010-01-01
We expand on the work of Hosoya to describe a generalization of continued fractions called “tree expressions.” Each rooted tree will be shown to correspond to a unique tree expression which can be evaluated as a rational number (not necessarily in lowest terms) whose numerator is equal to the Hosoya index of the entire tree and whose denominator is equal to the tree with the root deleted. In the development, we use Z(G) to define a natural candidate ζ(G, v) for a “vertex topological index” which is a value applied to each vertex of a graph, rather than a value assigned to the graph overall. Finally, we generalize the notion of tree expression to “labeled tree expressions” that correspond to labeled trees and show that such expressions can be evaluated as quotients of determinants of matrices that resemble adjacency matrices. PMID:20490285
Mass bounds for compact spherically symmetric objects in generalized gravity theories
NASA Astrophysics Data System (ADS)
Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2016-09-01
We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-á-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density, and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respectively. For Higgs-type models, we find that these bounds can be expressed in terms of the value of the potential at the surface of the compact object. Minimizing the energy with respect to the radius, we obtain explicit upper and lower bounds on the mass, which admits a Chandrasekhar-type representation. For charged compact objects, we consider the effects of the Poincaré stresses on the equilibrium structure and obtain bounds on the radial and tangential stresses. As a possible astrophysical test of our results, we obtain the general bound on the gravitational redshift for compact objects in extended gravity theories and explicitly compute the redshift restrictions for objects with nonzero effective surface pressure. General implications of minimum mass bounds for the gravitational stability of fundamental particles and for the existence of holographic duality between bulk and boundary degrees of freedom are also considered.
Double metric, generalized metric, and α' -deformed double field theory
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2016-03-01
We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
On truncated generalized Gibbs ensembles in the Ising field theory
NASA Astrophysics Data System (ADS)
Essler, F. H. L.; Mussardo, G.; Panfil, M.
2017-01-01
We discuss the implementation of two different truncated Generalized Gibbs Ensembles (GGE) describing the stationary state after a mass quench process in the Ising Field Theory. One truncated GGE is based on the semi-local charges of the model, the other on regularized versions of its ultra-local charges. We test the efficiency of the two different ensembles by comparing their predictions for the stationary state values of the single-particle Green’s function G(x)=< {{\\psi}\\dagger}(x)\\psi (0)> of the complex fermion field \\psi (x) . We find that both truncated GGEs are able to recover G(x), but for a given number of charges the semi-local version performs better.
Aerodynamic coefficients in generalized unsteady thin airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1980-01-01
Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).
Riemannian geometry of Hamiltonian chaos: hints for a general theory.
Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco
2008-10-01
We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.
Cosmology in nonrelativistic general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Wang, Anzhong; Wu, Yumei
2011-02-01
Horava and Melby-Thompson recently proposed a new version of the Horava-Lifshitz theory of gravity, in which the spin-0 graviton is eliminated by introducing a Newtonian prepotential φ and a local U(1) gauge field A. In this paper, we first derive the corresponding Hamiltonian, supermomentum constraints, the dynamical equations, and the equations for φ and A, in the presence of matter fields. Then, we apply the theory to cosmology and obtain the modified Friedmann equation and the conservation law of energy, in addition to the equations for φ and A. When the spatial curvature is different from zero, terms behaving like dark radiation and stiff-fluid exist, from which, among other possibilities, a bouncing universe can be constructed. We also study linear perturbations of the Friedmann-Robertson-Walker universe with any given spatial curvature k, and we derive the most general formulas for scalar perturbations. The vector and tensor perturbations are the same as those recently given by one of the present authors [A. Wang, Phys. Rev. DPRVDAQ1550-7998 82, 124063 (2010).] in the setup of Sotiriou, Visser, and Weinfurtner. Applying these formulas to the Minkowski background, we have shown explicitly that the scalar and vector perturbations of the metric indeed vanish, and the only remaining modes are the massless spin-2 gravitons.
Gender, General Strain Theory, negative emotions, and disordered eating.
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R; Capowich, George; Mazerolle, Paul
2010-04-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal-especially violent-activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally female-specific self-directed outcome. Using a sample of 338 young adults (54% female, 95% white), this article applies GST to disordered eating by examining how strain and negative emotions relate to this particular outcome across gender. Findings indicate that two types of strain measures predict depressive symptoms among males and females, that inequitable strainful experiences relate to disordered eating among females but not males, that depressive symptoms but not anger increase disordered eating for both males and females, and that membership in Greek organizations (sororities or fraternities) is associated with disordered eating but only for males. Implications for theory and directions for future research are highlighted.
A General Theory of Unsteady Compressible Potential Aerodynamics
NASA Technical Reports Server (NTRS)
Morino, L.
1974-01-01
The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-08-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
Candidate General Ontologies for Situating Quantum Field Theory
NASA Astrophysics Data System (ADS)
Simons, Peter
Ontology is traditionally an a priori discipline purveying its categories and principles independently of mere facts, but this arrogance of philosophers has led them into latent or patent incompatibility with good science and has landed them with philosophical aporiai such as the mind-body problem and the universals dispute. So while maintaining the abstractness and systematic universality of ontology it pays to craft one's categories with an eye to the best empirical science, while not necessarily trying to read the ontology off that science. I present desiderata for a systematic ontology and give several reasons why one cannot use physical theory alone as the source of one's a posteriori ontology. With this in mind I survey six ontological theories as possible frameworks for QFT, four briefly, two at greater length. The first is the traditional substanceattribute metaphysic, which is clearly obsolete, and on which I expend little time. The second is its modern logico-linguistic replacement, the ontology of individuals and sets touted as semantic values in logical semantics. This too falls by the wayside for several reasons. A third is the closely related ontology or ontologies of facts, against which I argue on general grounds. A fourth is Whiteheadian process ontology, which is an improvement over the previous three but still leaves several questions unsatisfactorily answered. The most flexible and promising to date is the ontology of tropes and trope bundles, which I have discussed in several places. After expounding this I reject it not because it is false but because it is neither broad nor deep enough. As a final, sixth alternative, I present an ontology of invariant factors inspired in part by Whitehead and in part by remarks of Max Planck, and offer it as a promising future abstract framework within which to situate the physics of QFT.
Temperature of critical clusters in nucleation theory: generalized Gibbs' approach.
Schmelzer, Jürn W P; Boltachev, Grey Sh; Abyzov, Alexander S
2013-07-21
According to the classical Gibbs' approach to the description of thermodynamically heterogeneous systems, the temperature of the critical clusters in nucleation is the same as the temperature of the ambient phase, i.e., with respect to temperature the conventional macroscopic equilibrium conditions are assumed to be fulfilled. In contrast, the generalized Gibbs' approach [J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 119, 6166 (2003); and ibid. 124, 194503 (2006)] predicts that critical clusters (having commonly spatial dimensions in the nanometer range) have, as a rule, a different temperature as compared with the ambient phase. The existence of a curved interface may lead, consequently, to an equilibrium coexistence of different phases with different temperatures similar to differences in pressure as expressed by the well-known Laplace equation. Employing the generalized Gibbs' approach, it is demonstrated that, for the case of formation of droplets in a one-component vapor, the temperature of the critical droplets can be shown to be higher as compared to the vapor. In this way, temperature differences between critically sized droplets and ambient vapor phase, observed in recent molecular dynamics simulations of argon condensation by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)], can be given a straightforward theoretical interpretation. It is shown as well that - employing the same model assumptions concerning bulk and interfacial properties of the system under consideration - the temperature of critical bubbles in boiling is lower as compared to the bulk liquid.
A general theory of multimetric indices and their properties
Schoolmaster, Donald R.; Grace, James B.; Schweiger, E. William
2012-01-01
1. Stewardship of biological and ecological resources requires the ability to make integrative assessments of ecological integrity. One of the emerging methods for making such integrative assessments is multimetric indices (MMIs). These indices synthesize data, often from multiple levels of biological organization, with the goal of deriving a single index that reflects the overall effects of human disturbance. Despite the widespread use of MMIs, there is uncertainty about why this approach can be effective. An understanding of MMIs requires a quantitative theory that illustrates how the properties of candidate metrics relates to MMIs generated from those metrics. 2. We present the initial basis for such a theory by deriving the general mathematical characteristics of MMIs assembled from metrics. We then use the theory to derive quantitative answers to the following questions: Is there an optimal number of metrics to comprise an index? How does covariance among metrics affect the performance of the index derived from those metrics? And what are the criteria to decide whether a given metric will improve the performance of an index? 3. We find that the optimal number of metrics to be included in an index depends on the theoretical distribution of signal of the disturbance gradient contained in each metric. For example, if the rank-ordered parameters of a metric-disturbance regression can be described by a monotonically decreasing function, then an optimum number of metrics exists and can often be derived analytically. We derive the conditions by which adding a given metric can be expected to improve an index. 4. We find that the criterion defining such conditions depends nonlinearly of the signal of the disturbance gradient, the noise (error) of the metric and the correlation of the metric errors. Importantly, we find that correlation among metric errors increases the signal required for the metric to improve the index. 5. The theoretical framework presented in this
A very general rate expression for charge hopping in semiconducting polymers
Fornari, Rocco P.; Aragó, Juan; Troisi, Alessandro
2015-05-14
We propose an expression of the hopping rate between localized states in semiconducting disordered polymers that contain the most used rates in the literature as special cases. We stress that these rates cannot be obtained directly from electron transfer rate theories as it is not possible to define diabatic localized states if the localization is caused by disorder, as in most polymers, rather than nuclear polarization effects. After defining the separate classes of accepting and inducing nuclear modes in the system, we obtain a general expression of the hopping rate. We show that, under the appropriate limits, this expression reduces to (i) a single-phonon rate expression or (ii) the Miller-Abrahams rate or (iii) a multi-phonon expression. The description of these limits from a more general expression is useful to interpolate between them, to validate the assumptions of each limiting case, and to define the simplest rate expression that still captures the main features of the charge transport. When the rate expression is fed with a range of realistic parameters the deviation from the Miller-Abrahams rate is large or extremely large, especially for hopping toward lower energy states, due to the energy gap law.
NASA Technical Reports Server (NTRS)
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Information theory as a general language for functional systems
NASA Astrophysics Data System (ADS)
Collier, John
2000-05-01
Function refers to a broad family of concepts of varying abstractness and range of application, from a many-one mathematical relation of great generality to, for example, highly specialized roles of designed elements in complex machines such as degaussing in a television set, or contributory processes to control mechanisms in complex metabolic pathways, such as the inhibitory function of the appropriate part of the lac-operon on the production of lactase through its action on the genome in the absence of lactose. We would like a language broad enough, neutral enough, but yet powerful enough to cover all such cases, and at the same time to give a framework form explanation both of the family resemblances and differences. General logic and mathematics are too abstract, but more importantly, too broad, whereas other discourses of function, such as the biological and teleological contexts, are too narrow. Information is especially suited since it is mathematically grounded, but also has a well-known physical interpretation through the Schrodinger/Brillouin Negentropy. Principle of Information, and an engineering or design interpretation through Shannon's communication theory. My main focus will be on the functions of autonomous anticipatory systems, but I will try to demonstrate both the connections between this notion of function and the others, especially to dynamical systems with a physical interpretation on the one side and intentional systems on the other. The former are based in concepts like force, energy and work, while the latter involve notions like representation, control and purpose, traditionally, at least in Modern times, on opposite sides of the Cartesian divide. In principle, information can be reduced to energy, but it has the advantage of being more flexible, and easier to apply to higher level phenomena.
Density functional theory based generalized effective fragment potential method
Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
[The issue of feasibility of a general theory of aging I. Generalized Gompertz-Makeham Law].
Golubev, A G
2009-01-01
Aging and longevity are interrelated so intimately that they should be treated with a unified theory. The longevity of every single cohort of living beings is determined by the rate of their dying-out. In most cases, mortality rates increase in accelerated fashions to reach values making the bulk of each finite cohort completely exhausted within a relatively narrow time interval shifted to the end of its resulting lifespan. Among simple functions with biologically interpretable parameters, the best fit to this pattern is demonstrated by the Gompertz-Makeham Law (GML): mu = C + lambda x e(gamma x t). A generalized form of GML mu = C(t) + lambda x e(-E(t)) is suggested and interpreted as a law of the dependency of mortality upon vitality rather than on age. It is reduced to the conventional GML when E depends linearly on t, that the age is an observable correlate of unobservable vitality. C(t) captures the inherently irresistible causes of death. The generalized GML can accommodate any mode of age-dependent functional decline, which should be placed into the exponent index to be translated into changes in mortality rate, and is compatible with any sort of cohort heterogeneity, which may be captured by substituting of GML parameters with relevant distributions or by combining of several generalized GML models. The generalized GML is suggested to result from the origin of life from the chemical world, which was associated with the transition of the role of the main variable in the Arrhenius equation k = A x exp[-Ea/(R x T)] for the dependency of chemical disintegration on temperature from T to Ea upon the transition from molecular to multimolecular prebiotic entities. Thus, the generalized GML is not a result of biological evolution but is a sort of chemical legacy of biology, which makes an important condition for life to evolve.
Facial Expressions in Context: Contributions to Infant Emotion Theory.
ERIC Educational Resources Information Center
Camras, Linda A.
To make the point that infant emotions are more dynamic than suggested by Differential Emotions Theory, which maintains that infants show the same prototypical facial expressions for emotions as adults do, this paper explores two questions: (1) when infants experience an emotion, do they always show the corresponding prototypical facial…
On the role of general system theory for functional neuroimaging
Stephan, Klaas Enno
2004-01-01
One of the most important goals of neuroscience is to establish precise structure–function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure–function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure–function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples. PMID:15610393
GENERAL STRAIN THEORY, PERSISTENCE, AND DESISTANCE AMONG YOUNG ADULT MALES
Eitle, David
2010-01-01
Purpose Despite the surge in scholarly activity investigating the criminal career, relatively less attention has been devoted to the issue of criminal desistance versus persistence (until recently). The present study contributed to our understanding of this process by exploring the suitability of General Strain Theory (GST) for predicting changes in criminal activity across time. Methods Data from a longitudinal study of males in South Florida are examined using robust regression analyses. Results The core GST relationship, that changes in strain should predict changes in criminal activity, was supported, even after controlling for important adult social roles such as marriage, labor force participation, and education. While no support for the proposition that changes in self-esteem and social support moderate the strain-criminal desistance association was evinced, evidence was found that angry disposition, a measure of negative emotionality, moderated the association between change in chronic stressors and change in criminal activity. Conclusions While exploratory in nature, these findings demonstrate the utility of employing GST principles in studies of criminal desistance. PMID:21499526
Generalized Pauli constraints in reduced density matrix functional theory
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Marques, Miguel A. L.
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
Teaching Discourse Study To Resist General Discourse Theories.
ERIC Educational Resources Information Center
Yarbrough, Stephen R.
If an instructor teaches in a rhetoric and composition program, one of the most important ways to teach discourse study as a resistance to discourse theory is by tracing the fundamental founding dichotomies of discourse theory through the history of rhetorical theory, examining how assumptions of the legitimacy of such founding dichotomies has…
Temperature of critical clusters in nucleation theory: Generalized Gibbs' approach
NASA Astrophysics Data System (ADS)
Schmelzer, Jürn W. P.; Boltachev, Grey Sh.; Abyzov, Alexander S.
2013-07-01
According to the classical Gibbs' approach to the description of thermodynamically heterogeneous systems, the temperature of the critical clusters in nucleation is the same as the temperature of the ambient phase, i.e., with respect to temperature the conventional macroscopic equilibrium conditions are assumed to be fulfilled. In contrast, the generalized Gibbs' approach [J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 119, 6166 (2003), 10.1063/1.1602066; J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 124, 194503 (2006)], 10.1063/1.2196412 predicts that critical clusters (having commonly spatial dimensions in the nanometer range) have, as a rule, a different temperature as compared with the ambient phase. The existence of a curved interface may lead, consequently, to an equilibrium coexistence of different phases with different temperatures similar to differences in pressure as expressed by the well-known Laplace equation. Employing the generalized Gibbs' approach, it is demonstrated that, for the case of formation of droplets in a one-component vapor, the temperature of the critical droplets can be shown to be higher as compared to the vapor. In this way, temperature differences between critically sized droplets and ambient vapor phase, observed in recent molecular dynamics simulations of argon condensation by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)], 10.1063/1.2752154, can be given a straightforward theoretical interpretation. It is shown as well that - employing the same model assumptions concerning bulk and interfacial properties of the system under consideration - the temperature of critical bubbles in boiling is lower as compared to the bulk liquid.
A general theory of interference fringes in x-ray phase grating imaging
Yan, Aimin; Wu, Xizeng E-mail: liu@ou.edu; Liu, Hong E-mail: liu@ou.edu
2015-06-15
Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.
General theory of peak compression in liquid chromatography.
Gritti, Fabrice
2016-02-12
A new and general expression of the peak compression factor in liquid chromatography is derived. It applies to any type of gradients induced by non-uniform columns (stationary) or by temporal variations (dynamic) of the elution strength related to changes in solvent composition, temperature, or in any external field. The new equation is validated in two ideal cases for which the exact solutions are already known. From a practical viewpoint, it is used to predict the achievable degree of peak compression for curved retention models, retained solvent gradients, and for temperature-programmed liquid chromatography. The results reveal that: (1) curved retention models affect little the compression factor with respect to the best linear strength retention models, (2) gradient peaks can be indefinitely compressed with respect to isocratic peaks if the propagation speed of the gradient (solvent or temperature) becomes smaller than the chromatographic velocity, (3) limitations are inherent to the maximum intensity of the experimental intrinsic gradient steepness, and (4) dynamic temperature gradients can be advantageously combined to solvent gradients in order to improve peak capacities of microfluidic separation devices.
Toward a General Research Process for Using Dubin's Theory Building Model
ERIC Educational Resources Information Center
Holton, Elwood F.; Lowe, Janis S.
2007-01-01
Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…
Stationary waves on nonlinear quantum graphs: General framework and canonical perturbation theory.
Gnutzmann, Sven; Waltner, Daniel
2016-03-01
In this paper we present a general framework for solving the stationary nonlinear Schrödinger equation (NLSE) on a network of one-dimensional wires modeled by a metric graph with suitable matching conditions at the vertices. A formal solution is given that expresses the wave function and its derivative at one end of an edge (wire) nonlinearly in terms of the values at the other end. For the cubic NLSE this nonlinear transfer operation can be expressed explicitly in terms of Jacobi elliptic functions. Its application reduces the problem of solving the corresponding set of coupled ordinary nonlinear differential equations to a finite set of nonlinear algebraic equations. For sufficiently small amplitudes we use canonical perturbation theory, which makes it possible to extract the leading nonlinear corrections over large distances.
Chemical Principles Revisited: Updating the Atomic Theory in General Chemistry.
ERIC Educational Resources Information Center
Whitman, Mark
1984-01-01
Presents a descriptive overview of recent achievements in atomic structure to provide instructors with the background necessary to enhance their classroom presentations. Topics considered include hadrons, quarks, leptons, forces, and the unified fields theory. (JN)
Generalized uncertainty principle as a consequence of the effective field theory
NASA Astrophysics Data System (ADS)
Faizal, Mir; Ali, Ahmed Farag; Nassar, Ali
2017-02-01
We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.
Gauge theory generalization of the fermion doubling theorem.
Kravec, S M; McGreevy, John
2013-10-18
It is possible to characterize certain states of matter by properties of their edge states. This implies a notion of "surface-only models": models which can only be regularized at the edge of a higher-dimensional system. After incorporating the fermion-doubling results of Nielsen and Ninomiya into this framework, we employ this idea to identify new obstructions to symmetry-preserving regulators of quantum field theory. We focus on an example which forbids regulated models of Maxwell theory with manifest electromagnetic duality symmetry.
A general theory to analyse and design wireless power transfer based on impedance matching
NASA Astrophysics Data System (ADS)
Liu, Shuo; Chen, Linhui; Zhou, Yongchun; Cui, Tie Jun
2014-10-01
We propose a general theory to analyse and design the wireless power transfer (WPT) systems based on impedance matching. We take two commonly used structures as examples, the transformer-coupling-based WPT and the series/parallel capacitor-based WPT, to show how to design the impedance matching network (IMN) to obtain the maximum transfer efficiency and the maximum output power. Using the impedance matching theory (IMT), we derive a simple expression of the overall transfer efficiency by the coils' quality factors and the coupling coefficient, which has perfect accuracy compared to full-circuit simulations. Full-wave electromagnetic software, CST Microwave Studio, has been used to extract the parameters of coils, thus providing us a comprehensive way to simulate WPT systems directly from the coils' physical model. We have also discussed the relationship between the output power and the transfer efficiency, and found that the maximum output power and the maximum transfer efficiency may occur at different frequencies. Hence, both power and efficiency should be considered in real WPT applications. To validate the proposed theory, two types of WPT experiments have been conducted using 30 cm-diameter coils for lighting a 20 W light bulb with 60% efficiency over a distance of 50 cm. The experimental results have very good agreements to the theoretical predictions.
Linking Theory of Mind and Central Coherence Bias in Autism and in the General Population.
ERIC Educational Resources Information Center
Jarrold, Christopher; Butler, David W.; Cottington, Emily M.; Jimenez, Flora
2000-01-01
Three experiments investigated whether theory-of-mind deficits and weak central coherence might be functionally related. Found that theory-of-mind performance was inversely related to a measure of central coherence bias in the general population. Poor theory-of-mind performance was linked to weak central coherence among children with typical…
Bf and Anti-Bf Theories in the Generalized Connection Formalism
NASA Astrophysics Data System (ADS)
Aidaoui, A.; Doebner, H.-D.; Tahiri, M.
We present a generalized connection formalism to explicitly determine an off-shell BRST-anti-BRST algebra for BF theories. This results in the construction of anti-BF theories based on an anti-BRST exact quantum action. These are not fundamentally different from BF theories, since they are in complete duality with respect to a mirror symmetry of the ghost numbers.
IFLA General Conference, 1990. Section on Research and Theory.
ERIC Educational Resources Information Center
International Federation of Library Associations, The Hague (Netherlands).
The three papers in this collection were presented during the meeting of the Section on Research and Theory. In the first paper, "BIEF: A North-South Knowledge Transfer Tool," Suzanne Richer examines the vital importance of scientific and technical information (STI) for developing countries, and notes that BIEF (Banque internationale…
Dynamical analysis of generalized f (R ,L ) theories
NASA Astrophysics Data System (ADS)
Azevedo, R. P. L.; Páramos, J.
2016-09-01
In this work, we use a dynamical system approach to analyze the viability of f (R ,L ) candidates for dark energy. We compare these with nonminimal coupled f (R ) theories and study the solutions for exponential and power-law forms in order to constrain the allowed range of model parameters.
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
Avoiding the Goldstone Boson Catastrophe in general renormalisable field theories at two loops
NASA Astrophysics Data System (ADS)
Braathen, Johannes; Goodsell, Mark D.
2016-12-01
We show how the infra-red divergences associated to Goldstone bosons in the minimum condition of the two-loop Landau-gauge effective potential can be avoided in general field theories. This extends the resummation formalism recently developed for the Standard Model and the MSSM, and we give compact, infra-red finite expressions in closed form for the tadpole equations. We also show that the results at this loop order are equivalent to (and are most easily obtained by) imposing an "on-shell" condition for the Goldstone bosons. Moreover, we extend the approach to show how the infra-red divergences in the calculation of the masses of neutral scalars (such as the Higgs boson) can be eliminated. For the mass computation, we specialise to the gaugeless limit and extend the effective potential computation to allow the masses to be determined without needing to solve differential equations for the loop functions — opening the door to fast, infra-red safe determinations of the Higgs mass in general theories.
Marcel Grossmann and his Contribution to the General Theory of Relativity
NASA Astrophysics Data System (ADS)
Sauer, Tilman
2015-01-01
This article reviews the biography of the Swiss mathematician Marcel Grossmann (1878-1936) and his contributions to the emergence of the general theory of relativity. The first part is his biography, while the second part reviews his collaboration with Einstein in Zurich which resulted in the Einstein-Grossmann theory of 1913. This theory is a precursor version of the final theory of general relativity with all the ingredients of that theory except for the correct gravitational field equations. Their collaboration is analyzed in some detail with a focus on the question of exactly what role Grossmann played in it.
Generalized Bezout's Theorem and its applications in coding theory
NASA Technical Reports Server (NTRS)
Berg, Gene A.; Feng, Gui-Liang; Rao, T. R. N.
1996-01-01
This paper presents a generalized Bezout theorem which can be used to determine a tighter lower bound of the number of distinct points of intersection of two or more curves for a large class of plane curves. A new approach to determine a lower bound on the minimum distance (and also the generalized Hamming weights) for algebraic-geometric codes defined from a class of plane curves is introduced, based on the generalized Bezout theorem. Examples of more efficient linear codes are constructed using the generalized Bezout theorem and the new approach. For d = 4, the linear codes constructed by the new construction are better than or equal to the known linear codes. For d greater than 5, these new codes are better than the known codes. The Klein code over GF(2(sup 3)) is also constructed.
Generalized topological spaces in evolutionary theory and combinatorial chemistry.
Stadler, Bärbel M R; Stadler, Peter F
2002-01-01
The search spaces in combinatorial chemistry as well as the sequence spaces underlying (molecular) evolution are conventionally thought of as graphs. Recombination, however, implies a nongraphical structure of the combinatorial search spaces. These structures, and their implications for search process itself, are heretofore not well understood in general. In this contribution we review a very general formalism from point set topology and discuss its application to combinatorial search spaces, fitness landscapes, evolutionary trajectories, and artificial chemistries.
Generally covariant vs. gauge structure for conformal field theories
Campigotto, M.; Fatibene, L.
2015-11-15
We introduce the natural lift of spacetime diffeomorphisms for conformal gravity and discuss the physical equivalence between the natural and gauge natural structure of the theory. Accordingly, we argue that conformal transformations must be introduced as gauge transformations (affecting fields but not spacetime point) and then discuss special structures implied by the splitting of the conformal group. -- Highlights: •Both a natural and a gauge natural structure for conformal gravity are defined. •Global properties and natural lift of spacetime transformations are described. •The possible definitions of physical state are considered and discussed. •The gauge natural theory has less physical states than the corresponding natural one. •The dynamics forces to prefer the gauge natural structure over the natural one.
Cosmological Theories of Special and General Relativity - II
NASA Astrophysics Data System (ADS)
Carmeli, Moshe
Astronomers measure distances to faraway galaxies and their velocities. They do that in order to determine the expansion rate of the Universe. In Part I of these lectures the foundations of the theory of the expansion of the Universe was given. In this part we present the theory. A formula for the distance of the galaxy in terms of its velocity is given. It is very simple: r(v) = cτ/β sinh βv/c, where τ is the Big Bang time, β = √1 - Ω m , and Ω m is the mass density of the Universe. For Ω m < 1 this formula clearly indicates that the Universe is expanding with acceleration, as experiments clearly show.
General topology meets model theory, on p and t.
Malliaris, Maryanthe; Shelah, Saharon
2013-08-13
Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258-262] that the continuum is uncountable, and Hilbert's first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220-224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143-1148], Hilbert's first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen's introduction of forcing. The oldest and perhaps most famous of these is whether " p = t," which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29-46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241-255]. In this paper we explain how our work on the structure of Keisler's order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory.
Zhang, Zhen-Lu; Huang, Yong-Chang
2014-03-15
Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system. -- Highlights: •We decompose the general gauge potential into two orthogonal parts according to general field theory. •We identify a new approach for quantizing the general singular QED system. •The results obtained are superior to those for the Lorentz gauge condition. •The theory presented solves dilemmas such as the nucleon spin crisis.
General Relativity Theory -- Well Proven and Also Incomplete?
NASA Astrophysics Data System (ADS)
Brandes, Jürgen
2013-09-01
With a few arguments (half a page) it is proven that general relativity (GRT) makes contradictory predictions about the total energy of a particle resting in the gravitational field. With a few further arguments (one page) it is proven that these contradictions are resolved by expanding general relativity. The other situation: Though it is not the aim of the author to reject general relativity but to expand it, he is treated as some uncritical anti-relativist - since the start of his considerations and meanwhile for more than 20 years. My public question: Are relativists - on account of their many famous results - unable to admit imperfections of general relativity? General relativity is contradictious in energy questions since on one side the total energy of a particle resting in the gravitational field is lower than its rest mass (there is energy needed to pull out the particle from the gravitational field) while on the other side it is equal to its rest mass (this is a consequence of the equivalence principle).
Transcriptional Bursting in Gene Expression: Analytical Results for General Stochastic Models
Kumar, Niraj; Singh, Abhyudai; Kulkarni, Rahul V.
2015-01-01
Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Such bursting has important consequences for cell-fate decisions in diverse processes ranging from HIV-1 viral infections to stem-cell differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for complex burst arrival processes, highlighting the need for analysis of more general stochastic models. To address this issue, we invoke a mapping between general stochastic models of gene expression and systems studied in queueing theory to derive exact analytical expressions for the moments associated with mRNA/protein steady-state distributions. These results are then used to derive noise signatures, i.e. explicit conditions based entirely on experimentally measurable quantities, that determine if the burst distributions deviate from the geometric distribution or if burst arrival deviates from a Poisson process. For non-Poisson arrivals, we develop approaches for accurate estimation of burst parameters. The proposed approaches can lead to new insights into transcriptional bursting based on measurements of steady-state mRNA/protein distributions. PMID:26474290
Generalized Langevin theory for inhomogeneous fluids: The equations of motion
NASA Astrophysics Data System (ADS)
Grant, Martin; Desai, Rashmi C.
1982-05-01
We use the generalized Langevin approach to study the dynamical correlations in an inhomogeneous system. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor, and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamiclike quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low-density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We also indicate how the resulting general set of equations would simplify for systems in which the inhomogeneity is unidirectional, e.g., a liquid-vapor interface.
Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.
2015-11-21
The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.
NASA Astrophysics Data System (ADS)
Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.
2015-11-01
The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κE and/or magnetic κM components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.
Bose-Einstein condensation of light: general theory.
Sob'yanin, Denis Nikolaevich
2013-08-01
A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.
General theory for Rydberg states of atoms: The nonrelativistic case
NASA Astrophysics Data System (ADS)
Wang, Xiao-Feng; Yan, Zong-Chao
2017-02-01
We carry out a complete derivation on nonrelativistic energies of atomic Rydberg states, including finite nuclear mass corrections. Several missing terms are found and a discrepancy is confirmed in the works of Drachman [in Long Range Casimir Forces: Theory and Recent Experiments on Atomic Systems, edited by F. S. Levin and D. A. Micha (Plenum, New York, 1993)] and Drake [Adv. At., Mol., Opt. Phys. 31, 1 (1993)]., 10.1016/S1049-250X(08)60087-7 As a benchmark, we present a detailed tabulation of different energy levels.
NASA Astrophysics Data System (ADS)
Webb, S.; McQuaid, D.
2009-07-01
In this paper it is formally shown that the dynamic multileaf collimator (MLC) IMRT delivery technique remains valid if the MLC is supported on a 1D moving platform. It is also shown that, in such circumstances, it is always time preferable to deliver overlapping modulating fields as a single swept field rather than as separate fields. The most general formulism is presented and then related to simpler equations in limiting cases. The paper explains in detail how a 'small-arc approximation' can be invoked to relate the 1D linear theory to the MLC-on-moving-platform-(gantry) delivery technique involving rotation therapy and known as volume-modulated arc therapy (VMAT). It is explained how volume-modulated arc therapy delivered with open unmodulated fields and which can deliver conformal dose distributions can be interpreted as an IMRT delivery. The (Elekta adopted) term VMAT will be used in a generic sense to include a similar (Varian) method known as RapidArc. Approximate expressions are derived for the 'amount of modulation' possible in a VMAT delivery. This paper does not discuss the actual VMAT planning but gives an insight at a deep level into VMAT delivery. No universal theory of VMAT is known in the sense that there is no theory that can predict precisely the performance of a VMAT delivery in terms of the free parameters available (variable gantry speed, variable fluence-delivery rate, set of MLC shapes, MLC orientation, number of arcs, coplanarity versus non-coplanarity, etc). This is in stark contrast to the situation with several other IMRT delivery techniques where such theoretical analyses are known. In this paper we do not provide such a theory; the material presented is a stepping stone on the path towards this.
Generalizations of Karp's theorem to elastic scattering theory
NASA Astrophysics Data System (ADS)
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
Mathematical developments regarding the general theory of the Earth magnetism
NASA Technical Reports Server (NTRS)
Schmidt, A.
1983-01-01
A literature survey on the Earth's magnetic field, citing the works of Gauss, Erman-Petersen, Quintus Icilius and Neumayer is presented. The general formulas for the representation of the potential and components of the Earth's magnetic force are presented. An analytical representation of magnetic condition of the Earth based on observations is also made.
Theory of Alfven wave heating in general toroidal geometry
Tataronis, J.A.; Salat, A.
1981-09-01
A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.
Generalized theory for current-source-density analysis in brain tissue
NASA Astrophysics Data System (ADS)
Bédard, Claude; Destexhe, Alain
2011-10-01
The current-source density (CSD) analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that the surrounding extracellular medium is resistive and uniform, and in some versions of the theory, that the current sources are exclusively made by dipoles. Because of these assumptions, this standard model does not correctly describe the contributions of monopolar sources or of nonresistive aspects of the extracellular medium. We propose here a general framework to model electric fields and potentials resulting from current source densities, without relying on the above assumptions. We develop a mean-field formalism that is a generalization of the standard model and that can directly incorporate nonresistive (nonohmic) properties of the extracellular medium, such as ionic diffusion effects. This formalism recovers the classic results of the standard model such as the CSD analysis, but in addition, we provide expressions to generalize the CSD approach to situations with nonresistive media and arbitrarily complex multipolar configurations of current sources. We found that the power spectrum of the signal contains the signature of the nature of current sources and extracellular medium, which provides a direct way to estimate those properties from experimental data and, in particular, estimate the possible contribution of electric monopoles.
Einstein-aether theory with a Maxwell field: General formalism
Balakin, Alexander B.; Lemos, José P.S.
2014-11-15
We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.
The origin of continental crust: Outlines of a general theory
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1985-01-01
The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).
Generalized mixing angles in gauge theories with natural flavor conservation
Rothman, Arthur C.; Kang, Kyungsik
1981-01-01
A number of theorems, relating Natural Flavor Conservation and Calculability are proven for general gauge models of the weak and electromagnetic interactions with an unbroken U(1) symmetry. The concept of nontriviality - a necessary condition that all naturally flavor conserving gauge models must obey in order to have nontrivial mixing angles - is introduced. It is found that naturality groups guaranteeing Natural Flavor Conservation cannot generate meaningful mixing angles in any gauge model.
Modeling the Pineapple Express phenomenon via Multivariate Extreme Value Theory
NASA Astrophysics Data System (ADS)
Weller, G.; Cooley, D. S.
2011-12-01
The pineapple express (PE) phenomenon is responsible for producing extreme winter precipitation events in the coastal and mountainous regions of the western United States. Because the PE phenomenon is also associated with warm temperatures, the heavy precipitation and associated snowmelt can cause destructive flooding. In order to study impacts, it is important that regional climate models from NARCCAP are able to reproduce extreme precipitation events produced by PE. We define a daily precipitation quantity which captures the spatial extent and intensity of precipitation events produced by the PE phenomenon. We then use statistical extreme value theory to model the tail dependence of this quantity as seen in an observational data set and each of the six NARCCAP regional models driven by NCEP reanalysis. We find that most NCEP-driven NARCCAP models do exhibit tail dependence between daily model output and observations. Furthermore, we find that not all extreme precipitation events are pineapple express events, as identified by Dettinger et al. (2011). The synoptic-scale atmospheric processes that drive extreme precipitation events produced by PE have only recently begun to be examined. Much of the current work has focused on pattern recognition, rather than quantitative analysis. We use daily mean sea-level pressure (MSLP) fields from NCEP to develop a "pineapple express index" for extreme precipitation, which exhibits tail dependence with our observed precipitation quantity for pineapple express events. We build a statistical model that connects daily precipitation output from the WRFG model, daily MSLP fields from NCEP, and daily observed precipitation in the western US. Finally, we use this model to simulate future observed precipitation based on WRFG output driven by the CCSM model, and our pineapple express index derived from future CCSM output. Our aim is to use this model to develop a better understanding of the frequency and intensity of extreme
2010-12-02
of successful operational command. Complexity theory is compared with how Ridgway understood, perceived, and approached the complexity of his...is chosen for the historical case study, as an exemplar of successful operational command. Complexity theory is compared with how Ridgway understood...prepared for the challenges they will face in an uncertain future. 4 Table of Contents Introduction 5 The Korean War and General Ridgway
A General Learning Theory and Its Application to the Acquisition of Proof Skills in Geometry.
1980-06-20
AD-A087 189 CARN4EGIE-MELLON U IV PITTSBURGH PA DEPT OF PSYCHOLOGY F/6 5/10 GENERAL LEARNING THEORY AND ITS APPLICATION TO THE ACQUISITIO-ETC(U) JUN... psychology could provide an explanation of how cognitive skills are acquired. We have been working on a general theory of learning called ACT. We have...J.R., Kline, P.J., and Beasley, C.M. A general learning theory and its application to schema abstraction. In G.H. Bower (Ed.), The Psychology of
Brustein, Ram; Hadad, Merav
2009-09-04
We show that the equations of motion of generalized theories of gravity are equivalent to the thermodynamic relation deltaQ=TdeltaS. Our proof relies on extending previous arguments by using a more general definition of the Noether charge entropy. We have thus completed the implementation of Jacobson's proposal to express Einstein's equations as a thermodynamic equation of state. Additionally, we find that the Noether charge entropy obeys the second law of thermodynamics if the energy-momentum tensor obeys the null energy condition. Our results support the idea that gravitation on a macroscopic scale is a manifestation of the thermodynamics of the vacuum.
A superconducting gyroscope to test Einstein's general theory of relativity
NASA Technical Reports Server (NTRS)
Everitt, C. W. F.
1978-01-01
Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.
Density Functional Theory for General Hard-Core Lattice Gases
NASA Astrophysics Data System (ADS)
Lafuente, Luis; Cuesta, José A.
2004-09-01
We put forward a general procedure to obtain an approximate free-energy density functional for any hard-core lattice gas, regardless of the shape of the particles, the underlying lattice, or the dimension of the system. The procedure is conceptually very simple and recovers effortlessly previous results for some particular systems. Also, the obtained density functionals belong to the class of fundamental measure functionals and, therefore, are always consistent through dimensional reduction. We discuss possible extensions of this method to account for attractive lattice models.
Absence of solid angle deficit singularities in beyond-generalized proca theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-12-01
In Gleyzes-Langlois-Piazza-Vernizzi (GLPV) scalar-tensor theories, which are outside the domain of second-order Horndeski theories, it is known that there exists a solid angle deficit singularity in the case where the parameter αH characterizing the deviation from Horndeski theories approaches a nonvanishing constant at the center of a spherically symmetric body. Meanwhile, it was recently shown that second-order generalized Proca theories with a massive vector field Aμ can be consistently extended to beyond-generalized Proca theories, which recover shift-symmetric GLPV theories in the scalar limit Aμ→∇μχ . In beyond-generalized Proca theories up to quartic-order Lagrangians, we show that solid angle deficit singularities are generally absent due to the existence of a temporal vector component. We also derive the vector-field profiles around a compact object and show that the success of the Vainshtein mechanism operated by vector Galileons is not prevented by new interactions in beyond generalized Proca theories.
Quasilinear theory of general electromagnetic fluctuations in unmagnetized plasmas
Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu
2014-09-15
The general quasilinear Fokker-Planck kinetic equation for the plasma particle distribution functions in unmagnetized plasmas is derived, making no restrictions on the frequency of the electromagnetic fluctuations. The derived kinetic particle equation complements our earlier study of the general fluctuation's kinetic equation. For collective plasma eigenmodes and gyrotropic particle distribution functions, the two coupled kinetic equations describe the self-consistent dynamical evolution of the plasma. The limit of weakly damped collective modes correctly reproduces the well-known textbook kinetic particle equation with longitudinal Langmuir and ion-acoustic fluctuations, demonstrating, in particular, the resonant nature of parallel momentum diffusion of particles. In the limit of aperiodic modes, the Fokker-Planck equation contains the nonresonant diffusion of particles in momentum and the parallel and perpendicular momentum drag coefficients. As an application these drag and diffusion coefficients are calculated for extragalactic cosmic ray particles propagating in the unmagnetized intergalactic medium. Whereas for all cosmic rays, the perpendicular momentum diffusion in intergalactic aperiodic fluctuations is negligibly small; cosmic ray protons with energies below 10{sup 5 }GeV are affected by the plasma drag.
The general theory of secondary weak gravitational lensing
Clarkson, Chris
2015-09-01
Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a 'Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.
Toward a general theory of momentum-like effects.
Hubbard, Timothy L
2017-02-28
The future actions, behaviors, and outcomes of objects, individuals, and processes can often be anticipated, and some of these anticipations have been hypothesized to result from momentum-like effects. Five types of momentum-like effects (representational momentum, operational momentum, attentional momentum, behavioral momentum, psychological momentum) are briefly described. Potential similarities involving properties of momentum-like effects (continuation, coherence, role of chance or guessing, role of sensory processing, imperviousness to practice or error feedback, shifts in memory for position, effects of changes in velocity, rapid occurrence, effects of retention interval, attachment to an object rather than an abstract frame of reference, nonrigid transformation) are described, and potential constraints on a future theory of momentum-like effects (dynamic representation, nature of extrapolation, sensitivity to environmental contingencies, bridging gaps between stimulus and response, increasing adaptiveness to the environment, serving as a heuristic for perception and action, insensitivity to stimulus format, importance of subjective consequences, role of knowledge and belief, automaticity of occurrence, properties of functional architecture) are discussed. The similarity and ubiquity of momentum-like effects suggests such effects might result from a single or small number of mechanisms that operate over different dimensions, modalities, and time-scales and provide a fundamental adaptation for perception and action.
A general theory of acute and chronic heart failure.
MacIver, David H; Dayer, Mark J; Harrison, Andrew J I
2013-04-30
Current concepts of heart failure propose multiple heterogeneous pathophysiological mechanisms. Recently a theoretical framework for understanding chronic heart failure was suggested. This paper develops this framework to include acute heart failure syndromes. We propose that all acute heart failure syndromes may be understood in terms of a relative fall in left ventricular stroke volume. The initial compensatory mechanism is frequently a tachycardia often resulting in a near normal cardiac output. In more severe forms a fall in cardiac output causes hypotension or cardiogenic shock. In chronic heart failure the stroke volume and cardiac output is returned to normal predominantly through ventricular remodeling or dilatation. Ejection fraction is simply the ratio of stroke volume and end-diastolic volume. The resting stroke volume is predetermined by the tissue's needs; therefore, if the ejection fraction changes, the end-diastolic volume must change in a reciprocal manner. The potential role of the right heart in influencing the presentation of left heart disease is examined. We propose that acute pulmonary edema occurs when the right ventricular stroke volume exceeds left ventricular stroke volume leading to fluid accumulation in the alveoli. The possible role of the right heart in determining pulmonary hypertension and raised filling pressures in left-sided heart disease are discussed. Different clinical scenarios are presented to help clarify these proposed mechanisms and the clinical implications of these theories are discussed. Finally an alternative definition of heart failure is proposed.
General theory of frictional heating with application to rubber friction
NASA Astrophysics Data System (ADS)
Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.
2015-05-01
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.
Generalized On-Shell Ward Identities in String Theory
NASA Astrophysics Data System (ADS)
Lee, J.
1994-02-01
It is demonstrated that an infinite set of string-tree level on shell Ward identities, which are valid to all σ-model loop orders, can be systematically constructed without referring to the string field thoery. As examples, bosonic massive scattering amplitudes are calculated explicitly up to the second massive excited states. Ward identities satisfied by these amplitudes are derived by using zero-norm states in the spectrum. In particulalr the inter-particle Ward identity generated by the D2 otimes D2' zero-norm state at the second massive level is demonstrated. The four physical propagating states of this mass level are then shown to form a large gauge multiplet. This result justifies our previous consideration on higher inter-spin symmetry from the generalized worldsheet σ-model point of view.
Are Singularities Integral to General Theory of Relativity?
NASA Astrophysics Data System (ADS)
Krori, K.; Dutta, S.
2011-11-01
Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.
Asymptotic boundary conditions for dissipative waves: General theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Cosmological Relativity: A General-Relativistic Theory for the Accelerating Expanding Universe
NASA Astrophysics Data System (ADS)
Carmeli, M.; Behar, S.
Recent observations of distant supernovae imply, in defiance of expectations, that the universe growth is accelerating, contrary to what has always been assumed that the expansion is slowing down due to gravity. In this paper a general-relativistic cosmological theory that gives a direct relationship between distances and redshifts in an expanding universe is presented. The theory is actually a generalization of Hubble's law taking gravity into account by means of Einstein's theory of general relativity. The theory predicts that the universe can have three phases of expansion, decelerating, constant and accelerating, but it is shown that at present the first two cases are excluded, although in the past it had experienced them. Our theory shows that the universe now is definitely in the stage of accelerating expansion, confirming the recent experimental results.
Cloning, Broadcasting and the de Finetti theorem in Generalized Probablistic Theories
NASA Astrophysics Data System (ADS)
Leifer, Matthew; Barnum, Howard; Barrett, Jonathan; Wilce, Alexander
2007-03-01
We give a lightning overview of a framework for generalized probablistic theories, proposed by Barrett, that includes classical probability and quantum theory as special cases. The framework also includes theories that support ``superquantum'' correlations, which violate Bell inequalities to a larger extent than quantum theory whilst still not allowing signalling. In recent years, many similarities between quantum entanglement/nonlocality and ``superquantum'' correlations have been found by researchers studying quantum information and foundations. These can be seen to emerge from the common structure of all theories in Barrett's framework. In particular, some results from quantum information that can be generalized to all theories in the framework are described, including versions of the no-cloning theorem, the no-broadcasting theorem and the de Finetti theorem.
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory.
Burgess, Cliff P
2004-01-01
This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.
A Partial Test of Agnew's General Theory of Crime and Delinquency
ERIC Educational Resources Information Center
Zhang, Yan; Day, George; Cao, Liqun
2012-01-01
In 2005, Agnew introduced a new integrated theory, which he labels a general theory of crime and delinquency. He proposes that delinquency is more likely to occur when constraints against delinquency are low and motivations for delinquency are high. In addition, he argues that constraints and motivations are influenced by variables in five life…
Toward a general theory of estuarine salinity structure
NASA Astrophysics Data System (ADS)
Maccready, P.
2003-04-01
Equations are developed for the tidally-averaged circulation and salinity structure of an estuary. Averaging over top and bottom layers for the steady case leads to a single governing equation. This is a first-order, nonlinear ODE for the section-averaged salinity as a function of along-channel distance. Among the many parameters affecting solutions to this equation, the section-averaged, along-channel salt flux due to tidal stirring (the "diffusive" flux, as distinct from the "advective" flux due to the gravitational circulation) has been assumed in the literature to have widely different values and along-channel distributions. The equation presented here provides a unified framework under which the effects of different assumptions about the along-channel diffusivity may be evaluated. In particular we may recover both the Hansen and Rattray solution, which is shown to be fundamentally diffusive, and the Chatwin solution, which is wholly advective. Under more general conditions a simple numerical solution may be found. These solutions are useful for rapid exploration of the nonlinear estuarine response to different tidal mixing conditions.
General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.
1990-01-01
The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.
NASA Astrophysics Data System (ADS)
Othman, Mohamed I. A.; Elmaklizi, Yassmin D.; Said, Samia M.
2013-03-01
The problem of the generalized thermoelastic medium for three different theories under the effect of a gravity field is investigated. The Lord-Shulman (L-S), Green-Lindsay (G-L), and classical-coupled (CD) theories are discussed. The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions for the displacement components, temperature, and stress components are obtained by using normal mode analysis. Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of gravity. A comparison also is made between the three theories for the results with and without a temperature dependence.
Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong
2007-01-01
Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the
Relativistic many-body perturbation theory for general open-shell multiplet states of atoms
NASA Astrophysics Data System (ADS)
Ishikawa, Yasuyuki; Koc, Konrad
1996-06-01
A relativistic many-body perturbation theory, which accounts for relativistic and electron-correlation effects for general open-shell multiplet states of atoms and molecules, is developed and implemented with analytic basis sets of Gaussian spinors. The theory retains the essential aspects of Mo/ller-Plesset perturbation theory by employing the relativistic single-Fock-operator method of Koc and Ishikawa [Phys. Rev. A 49, 794 (1994)] for general open-shell systems. Open-shell Dirac-Fock and relativistic many-body perturbation calculations are reported for the ground and low-lying excited states of Li, B2+, Ne7+, and Ca11+.
Symmetric Set Theory, a General Theory of Isomorphism, Abstraction, and Representation.
1983-08-01
natural notion of what it means for two Turing machines, or context free grammars, or topological spaces to be isomorphic. ZF set theory provides no...context free grammars, Thuring machines, and topological spaces all have a natural associated notion of isomorphism. All of these notions of
Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices
NASA Astrophysics Data System (ADS)
Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco
2016-10-01
We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.
ERIC Educational Resources Information Center
Cheung, Nicole W. T.; Cheung, Yuet W.
2008-01-01
The objectives of this study were to test the predictive power of self-control theory for delinquency in a Chinese context, and to explore if social factors as predicted in social bonding theory, differential association theory, general strain theory, and labeling theory have effects on delinquency in the presence of self-control. Self-report data…
Generalization of Spatial Channel Theory to Three-Dimensional x-y-z Transport Computations
I. K. Abu-Shumays; M. A. Hunter; R. L. Martz; J. M. Risner
2002-03-12
Spatial channel theory, initially introduced in 1977 by M. L. Williams and colleagues at ORNL, is a powerful tool for shield design optimization. It focuses on so called ''contributon'' flux and current of particles (a fraction of the total of neutrons, photons, etc.) which contribute directly or through their progeny to a pre-specified response, such as a detector reading, dose rate, reaction rate, etc., at certain locations of interest. Particles that do not contribute directly or indirectly to the pre-specified response, such as particles that are absorbed or leak out, are ignored. Contributon fluxes and currents are computed based on combined forward and adjoint transport solutions. The initial concepts were considerably improved by Abu-Shumays, Selva, and Shure by introducing steam functions and response flow functions. Plots of such functions provide both qualitative and quantitative information on dominant particle flow paths and identify locations within a shield configuration that are important in contributing to the response of interest. Previous work was restricted to two dimensional (2-D) x-y rectangular and r-z cylindrical geometries. This paper generalizes previous work to three-dimensional x-y-z geometry, since it is now practical to solve realistic 3-D problems with multidimensional transport programs. As in previous work, new analytic expressions are provided for folding spherical harmonics representations of forward and adjoint transport flux solutions. As a result, the main integrals involve in spatial channel theory are computed exactly and more efficiently than by numerical quadrature. The analogy with incompressible fluid flow is also applied to obtain visual qualitative and quantitative measures of important streaming paths that could prove vital for shield design optimization. Illustrative examples are provided. The connection between the current paper and the excellent work completed by M. L. Williams in 1991 is also discussed.
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
The parasite-stress theory may be a general theory of culture and sociality.
Fincher, Corey L; Thornhill, Randy
2012-04-01
In the target article, we presented the hypothesis that parasite-stress variation was a causal factor in the variation of in-group assortative sociality, cross-nationally and across the United States, which we indexed with variables that measured different aspects of the strength of family ties and religiosity. We presented evidence supportive of our hypothesis in the form of analyses that controlled for variation in freedom, wealth resources, and wealth inequality across nations and the states of the USA. Here, we respond to criticisms from commentators and attempt to clarify and expand the parasite-stress theory of sociality used to fuel our research presented in the target article.
NASA Astrophysics Data System (ADS)
Barnum, Howard; Ortiz, Gerardo; Somma, Rolando; Viola, Lorenza
2005-12-01
We define what it means for a state in a convex cone of states on a space of observables to be generalized-entangled relative to a subspace of the observables, in a general ordered linear spaces framework for operational theories. This extends the notion of ordinary entanglement in quantum information theory to a much more general framework. Some important special cases are described, in which the distinguished observables are subspaces of the observables of a quantum system, leading to results like the identification of generalized unentangled states with Lie-group-theoretic coherent states when the special observables form an irreducibly represented Lie algebra. Some open problems, including that of generalizing the semigroup of local operations with classical communication to the convex cones setting, are discussed.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
Renormalization group equations and matching in a general quantum field theory with kinetic mixing
NASA Astrophysics Data System (ADS)
Fonseca, Renato M.; Malinský, Michal; Staub, Florian
2013-11-01
We work out a set of simple rules for adopting the two-loop renormalization group equations of a generic gauge field theory given in the seminal works of Machacek and Vaughn to the most general case with an arbitrary number of Abelian gauge factors and comment on the extra subtleties possibly encountered upon matching a set of effective gauge theories in such a framework.
Generalized Dirac duality and CP violation in a two-photon theory
NASA Astrophysics Data System (ADS)
Arias, Paola; Das, Ashok K.; Gamboa, Jorge; Méndez, Fernando
2017-02-01
A kinetic mixing term, which generalizes the duality symmetry of Dirac, is studied in a theory with two photons (visible and hidden). This theory can be either CP conserving or CP violating depending on the transformation of fields in the hidden sector. However, if CP is violated, it necessarily occurs in the hidden sector. This opens up an interesting possibility of new sources of CP violation.
General Relativity: The most beautiful of theories. Applications and trends after 100 years
NASA Astrophysics Data System (ADS)
Rovelli, Carlo
2015-02-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. While applications in the beginning were restricted to isolated effects such as a proper understanding of Mercury's orbit, the second half of the twentieth century saw a massive development of applications. These include cosmology, gravitational waves, and even very practical results for satellite based positioning systems as well as different approaches to unite general relativity with another very successful branch of physics - quantum theory. On the occassion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as "the most beautiful of the existing physical theories".
Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory
Kerner, Boris S.
2015-03-10
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2013-11-01
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliably used for control and optimization in traffic networks. It is shown that the generally accepted fundamentals and methodologies of the traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of the traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular (fixed or stochastic) value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of the traffic and transportation theory, we discuss the three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
Numerical validation of the generalized Harvey-Shack surface scatter theory
NASA Astrophysics Data System (ADS)
Choi, Narak; Harvey, James E.
2013-11-01
The generalized Harvey-Shack (GHS) surface scatter theory is numerically compared to the classical small perturbation method, the Kirchhoff approximation method, and the rigorous method of moments for one-dimensional ideally conducting surfaces whose surface power spectral density function is Gaussian or exhibits an inverse power law (fractal) behavior. In spite of its simple analytic form, our numerical comparison shows that the new GHS theory is valid (with reasonable accuracy) over a broader range of surface parameter space than either of the two classical surface scatter theories.
NASA Astrophysics Data System (ADS)
Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.
2008-04-01
The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the
General Medical Practitioners Need to Be Aware of the Theories on Which Our Work Depend
Thomas, Paul
2006-01-01
When general practitioners and family physicians listen, reflect, and diagnose, we use 3 different theories of knowledge. This essay explores these theories to highlight an approach to clinical practice, inquiry, and learning that can do justice to the complex and uncertain world we experience. The following points are made: (1) A variety of approaches to research and audit are needed to illuminate the richness of experience witnessed by general medical practitioners. (2) Evidence about the past cannot predict the future except in simple, short-term, or slowly changing situations. (3) We consciously or unconsciously weave together evidence generated through 3 fundamental theories of knowledge, termed postpositivism, critical theory, and constructivism, to make sense of everyday experience. We call it listening, reflecting, and diagnosing. (4) These 3 fundamental theories of knowledge highlight different aspects within a world that is more complex, integrated, and changing than any single theory can reveal on its own; they frame what we see and how we act in everyday situations. (5) Moving appropriately between these different theories helps us to see a fuller picture and provides a framework for improving our skills as clinicians, researchers, and learners. (6) Narrative unity offers a way to bring together different kinds of evidence to understand the overall health of patients and of communities; evidence of all kinds provides discrete snapshots of more complex stories in evolution. (7) We need to understand these issues so we can create an agenda for clinical practice, inquiry, and learning appropriate to our discipline. PMID:17003147
General medical practitioners need to be aware of the theories on which our work depend.
Thomas, Paul
2006-01-01
When general practitioners and family physicians listen, reflect, and diagnose, we use 3 different theories of knowledge. This essay explores these theories to highlight an approach to clinical practice, inquiry, and learning that can do justice to the complex and uncertain world we experience. The following points are made: (1) A variety of approaches to research and audit are needed to illuminate the richness of experience witnessed by general medical practitioners. (2) Evidence about the past cannot predict the future except in simple, short-term, or slowly changing situations. (3) We consciously or unconsciously weave together evidence generated through 3 fundamental theories of knowledge, termed postpositivism, critical theory, and constructivism, to make sense of everyday experience. We call it listening, reflecting, and diagnosing. (4) These 3 fundamental theories of knowledge highlight different aspects within a world that is more complex, integrated, and changing than any single theory can reveal on its own; they frame what we see and how we act in everyday situations. (5) Moving appropriately between these different theories helps us to see a fuller picture and provides a framework for improving our skills as clinicians, researchers, and learners. (6) Narrative unity offers a way to bring together different kinds of evidence to understand the overall health of patients and of communities; evidence of all kinds provides discrete snapshots of more complex stories in evolution. (7) We need to understand these issues so we can create an agenda for clinical practice, inquiry, and learning appropriate to our discipline.
About the origins of the general theory of relativity: Einstein's search for the truth
NASA Astrophysics Data System (ADS)
Trainer, Matthew
2005-11-01
On the 20th June 1933 Professor Einstein addressed a large and enthusiastic audience in the Victorian Gothic Bute Hall of the University of Glasgow. Einstein spoke 'About the Origins of the General Theory of Relativity'. In 1905 Einstein had changed the face of physics forever with the publication of his radical new ideas on special relativity. His general theory of relativity was introduced to the world in 1915. However in 1933, Einstein faced another challenge—survival in a world of change. This paper explores Einstein's fascinating address to the Glasgow audience in that year.
The most general second-order field equations of bi-scalar-tensor theory in four dimensions
NASA Astrophysics Data System (ADS)
Ohashi, Seiju; Tanahashi, Norihiro; Kobayashi, Tsutomu; Yamaguchi, Masahide
2015-07-01
The Horndeski theory is known as the most general scalar-tensor theory with second-order field equations. In this paper, we explore the bi-scalar extension of the Horndeski theory. Following Horndeski's approach, we determine all the possible terms appearing in the second-order field equations of the bi-scalar-tensor theory. We compare the field equations with those of the generalized multi-Galileons, and confirm that our theory contains new terms that are not included in the latter theory. We also discuss the construction of the Lagrangian leading to our most general field equations.
Greenwald, Jared; Satheeshkumar, V.H.; Wang, Anzhong E-mail: VHSatheeshkumar@baylor.edu
2010-12-01
We study spherically symmetric static spacetimes generally filled with an anisotropic fluid in the nonrelativistic general covariant theory of gravity. In particular, we find that the vacuum solutions are not unique, and can be expressed in terms of the U(1) gauge field A. When solar system tests are considered, severe constraints on A are obtained, which seemingly pick up the Schwarzschild solution uniquely. In contrast to other versions of the Horava-Lifshitz theory, non-singular static stars made of a perfect fluid without heat flow can be constructed, due to the coupling of the fluid with the gauge field. These include the solutions with a constant pressure. We also study the general junction conditions across the surface of a star. In general, the conditions allow the existence of a thin matter shell on the surface. When applying these conditions to the perfect fluid solutions with the vacuum ones as describing their external spacetimes, we find explicitly the matching conditions in terms of the parameters appearing in the solutions. Such matching is possible even without the presence of a thin matter shell.
Quantized Brans-Dicke theory: Phase transition, strong coupling limit, and general relativity
NASA Astrophysics Data System (ADS)
Pal, Sridip
2016-10-01
We show that Friedmann-Robertson-Walker geometry with a flat spatial section in quantized (Wheeler deWitt quantization) Brans-Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor a ↦λ a for some constant λ . In the weak coupling (ω ) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of a phase boundary is an obstruction to another classical symmetry [see V. Faraoni, Phys. Rev. D 59, 084021 (1999).] (which relates two BD theories with different couplings) admitted by BD theory with scale invariant matter content, i.e., Tμμ=0 . Classically, this prohibits the BD theory from reducing to general relativity (GR) for scale invariant matter content. We show that a strong coupling limit of both BD and GR preserves the symmetry involving the scale factor. We also show that with scale invariant matter content (radiation, i.e., P =1/3 ρ ), the quantized BD theory does reduce to GR as ω →∞ , which is in sharp contrast to classical behavior. This is a first known illustration of a scenario where quantized BD theory provides an example of anomalous symmetry breaking and resulting binary phase structure. We make a conjecture regarding the strong coupling limit of the BD theory in a generic scenario.
Robson, Barry
2005-01-01
A new approach, a Zeta Theory of observations, data, and data mining, is being forged from a theory of expected information into an even more cohesive and comprehensive form by the challenge of general genomic, pharmacogenomic, and proteomic data. In this paper, the focus is not on studies using the specific tool FANO (CliniMiner) but on extensions to a new broader theoretical approach, aspects of which can easily be implemented into, or otherwise support, excellent existing methods, such as forms of multivariate analysis and IBM's product Intelligent Miner. The theory should perhaps be distinguished from an existing purely number-theoretic area sometimes also known as Zeta Theory, which focuses on the Riemann Zeta Function and the ways in which it governs the distribution of prime numbers. However, Zeta Theory as used here overlaps heavily with it and actually makes use of these same matters. The distinction is that it enters from a Bayesian information theory and data representation perspective. It could thus be considered an application of the 'mathematician's version'. The application is by no means confined to areas of modern biomedicine, and indeed its generality, even merging into quantum mechanics, is a key feature. Other areas with some similar challenges as modern biology, and which have inspired data mining methods such as IBM's Intelligent Miner, include commerce. But for several reasons discussed, modern molecular biology and medicine seem particularly challenging, and this relates to the often irreducible high dimensionality of the data. This thus remains our main target.
Chaos and Crisis: Propositions for a General Theory of Crisis Communication.
ERIC Educational Resources Information Center
Seeger, Matthew W.
2002-01-01
Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004
PROJECT STAFF
2004-12-01
The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).
General Strain Theory and Delinquency: Extending a Popular Explanation to American Indian Youth
ERIC Educational Resources Information Center
Eitle, David; Eitle, Tamela McNulty
2016-01-01
Despite evidence that American Indian (AI) adolescents are disproportionately involved in crime and delinquent behavior, there exists scant research exploring the correlates of crime among this group. We posit that Agnew's General Strain Theory (GST) is well suited to explain AI delinquent activity. Using the National Longitudinal Study of…
Superfield generalization of the classical action-at-a-distance theory
NASA Astrophysics Data System (ADS)
Tugai, V. V.; Zheltukhin, A. A.
1995-04-01
A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.
A superfield generalization of the classical action-at-a-distance theory
NASA Astrophysics Data System (ADS)
Tugai, V. V.; Zheltukhin, A. A.
1994-07-01
A generalization of the Fokker-Schwarzschild- Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.
General Strain Theory as a Basis for the Design of School Interventions
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry
2013-01-01
The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…
Communication: The simplified generalized entropy theory of glass-formation in polymer melts
Freed, Karl F.
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Communication: The simplified generalized entropy theory of glass-formation in polymer melts.
Freed, Karl F
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Da Fonseca, D; Cury, F; Fakra, E; Rufo, M; Poinso, F; Bounoua, L; Huguet, P
2008-04-01
During the past decade, several studies have reported positive effects of cognitive-behavioral therapy (CBT) in the treatment of children and adolescents with mental disorders. One of the most important CBT interventions is to teach children and adolescents to challenge negative thoughts that lead to maladjusted behaviors. Based on the implicit theories of intelligence framework, the main purpose of this study was to test whether an incremental theory manipulation could be used to affect IQ test performance in adolescents with Generalized Anxiety Disorder (GAD). Results showed that patients demonstrated enhanced IQ performance and experienced less state anxiety when they were exposed to an incremental theory of intelligence manipulation. Our findings suggest that incremental theory manipulation provides a useful cognitive strategy for addressing school-related anxiety in adolescents with mental disorders such as GAD.
Gender, general theory of crime and computer crime: an empirical test.
Moon, Byongook; McCluskey, John D; McCluskey, Cynthia P; Lee, Sangwon
2013-04-01
Regarding the gender gap in computer crime, studies consistently indicate that boys are more likely than girls to engage in various types of computer crime; however, few studies have examined the extent to which traditional criminology theories account for gender differences in computer crime and the applicability of these theories in explaining computer crime across gender. Using a panel of 2,751 Korean youths, the current study tests the applicability of the general theory of crime in explaining the gender gap in computer crime and assesses the theory's utility in explaining computer crime across gender. Analyses show that self-control theory performs well in predicting illegal use of others' resident registration number (RRN) online for both boys and girls, as predicted by the theory. However, low self-control, a dominant criminogenic factor in the theory, fails to mediate the relationship between gender and computer crime and is inadequate in explaining illegal downloading of software in both boy and girl models. Theoretical implication of the findings and the directions for future research are discussed.
Extensions and evaluations of a general quantitative theory of forest structure and dynamics
Enquist, Brian J.; West, Geoffrey B.; Brown, James H.
2009-01-01
Here, we present the second part of a quantitative theory for the structure and dynamics of forests under demographic and resource steady state. The theory is based on individual-level allometric scaling relations for how trees use resources, fill space, and grow. These scale up to determine emergent properties of diverse forests, including size–frequency distributions, spacing relations, canopy configurations, mortality rates, population dynamics, successional dynamics, and resource flux rates. The theory uniquely makes quantitative predictions for both stand-level scaling exponents and normalizations. We evaluate these predictions by compiling and analyzing macroecological datasets from several tropical forests. The close match between theoretical predictions and data suggests that forests are organized by a set of very general scaling rules. Our mechanistic theory is based on allometric scaling relations, is complementary to “demographic theory,” but is fundamentally different in approach. It provides a quantitative baseline for understanding deviations from predictions due to other factors, including disturbance, variation in branching architecture, asymmetric competition, resource limitation, and other sources of mortality, which are not included in the deliberately simplified theory. The theory should apply to a wide range of forests despite large differences in abiotic environment, species diversity, and taxonomic and functional composition. PMID:19363161
ERIC Educational Resources Information Center
Bloom, Elana; Heath, Nancy
2010-01-01
Children with nonverbal learning disabilities (NVLD) have been found to be worse at recognizing facial expressions than children with verbal learning disabilities (LD) and without LD. However, little research has been done with adolescents. In addition, expressing and understanding facial expressions is yet to be studied among adolescents with LD…
Three-Dimensional Topological Field Theory Induced from Generalized Complex Structure
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki
We construct a three-dimensional topological sigma model which is induced from a generalized complex structure on a target generalized complex manifold. This model is constructed from maps from a three-dimensional manifold X to an arbitrary generalized complex manifold M. The theory is invariant under the diffeomorphism on the worldvolume and the b-transformation on the generalized complex structure. Moreover the model is manifestly invariant under the mirror symmetry. We derive from this model the Zucchini's two-dimensional topological sigma model with a generalized complex structure as a boundary action on ∂X. As a special case, we obtain three-dimensional realization of a WZ-Poisson manifold.
NASA Astrophysics Data System (ADS)
Ervens, Barbara; Feingold, Graham
2013-06-01
Ice particle number concentrations are often described deterministically, i.e., ice nucleation is singular and occurs on active sites unambiguously at a given temperature. Other approaches are based on classical nucleation theory (CNT) that describes ice nucleation stochastically as a function of time and nucleation rate. Sensitivity studies of CNT for immersion freezing performed here show that ice nucleation has by far the lowest sensitivity to time as compared to temperature, ice nucleus (IN) diameter, and contact angle. Sensitivities generally decrease with decreasing temperature. Our study helps to reconcile the apparent differences in stochastic and singular freezing behavior, and suggests that over a wide range of temperatures and IN parameters, time-independent CNT-based expressions for immersion freezing may be derived for use in large-scale models.
Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories
Tsujikawa, Shinji
2015-04-27
It is known that Horndeski theories can be transformed to a sub-class of Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories under the disformal transformation of the metric g{sub μν}→Ω{sup 2}(ϕ)g{sub μν}+Γ(ϕ,X)∇{sub μ}ϕ∇{sub ν}ϕ, where Ω is a function of a scalar field ϕ and Γ is another function depending on both ϕ and X=g{sup μν}∇{sub μ}ϕ∇{sub ν}ϕ. We show that, with the choice of unitary gauge, both curvature and tensor perturbations on the flat isotropic cosmological background are generally invariant under the disformal transformation. By means of the effective field theories encompassing Horndeski and GLPV theories, we obtain the second-order actions of scalar/tensor perturbations and present the relations for physical quantities between the two frames. The invariance of the inflationary power spectra under the disformal transformation is explicitly proved up to next-to-leading order in slow-roll. In particular, we identify the existence of the Einstein frame in which the tensor power spectrum is of the same form as that in General Relativity and derive the condition under which the spectrum of gravitational waves in GLPV theories is red-tilted.
Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories
Tsujikawa, Shinji
2015-04-01
It is known that Horndeski theories can be transformed to a sub-class of Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories under the disformal transformation of the metric g{sub μ ν} → Ω{sup 2}(φ)g{sub μ ν}+Γ (φ,X) ∇{sub μ} φ ∇{sub ν} φ, where Ω is a function of a scalar field φ and Γ is another function depending on both φ and X=g{sup μ ν}∇{sub μ} φ ∇{sub ν} φ. We show that, with the choice of unitary gauge, both curvature and tensor perturbations on the flat isotropic cosmological background are generally invariant under the disformal transformation. By means of the effective field theories encompassing Horndeski and GLPV theories, we obtain the second-order actions of scalar/tensor perturbations and present the relations for physical quantities between the two frames. The invariance of the inflationary power spectra under the disformal transformation is explicitly proved up to next-to-leading order in slow-roll. In particular, we identify the existence of the Einstein frame in which the tensor power spectrum is of the same form as that in General Relativity and derive the condition under which the spectrum of gravitational waves in GLPV theories is red-tilted.
Chapter 10 Quantum Mechanics and the Special and General Theory of Relativity
NASA Astrophysics Data System (ADS)
Brändas, Erkki J.
The old dilemma of quantum mechanics versus the theory of relativity is reconsidered. A first principles relativistically invariant theory will be provided through a model, which is basically quantum mechanical. Moreover, by analytically extending quantum mechanics into the complex plane, it is possible to include dynamical features such as time-, length-, and temperature-scales into the theory. The flexibility of including complex symmetric interactions will in the same way support a transition from firmly quantum mechanical non-local behaviour to a decidedly classical-local appearance. Furthermore, the extended formulation gives rise to so-called Jordan blocks. They will be shown to appear logically in the present generalized dynamical picture and a compelling interpretation is microscopic self-organization (MSO). Not only have the manifestation of quantum-thermal correlations, and the emergence of generic time scales been established, but the present viewpoint also appears to throw new light on the age-old problem of quantum mechanics versus relativity. To bring all these ideas together, we will demonstrate that our model (i) displays the simple occurrence of such a degenerate unit, (ii) demonstrates the link with the Klein-Gordon-Dirac relativistic theory and (iii) provides dynamical features of both special and general relativity theory.
Applications of a general random-walk theory for confined diffusion
NASA Astrophysics Data System (ADS)
Calvo-Muñoz, Elisa M.; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J.; Nicholson, Donald M.; Egami, Takeshi
2011-01-01
A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.
NASA Astrophysics Data System (ADS)
Gilmore, James Brian
2010-12-01
General Relativity is the standard framework by which all gravitational systems are analyzed in modern research, and it provides the theme for all the investigations in this thesis. Beyond this common platform, very different gravitating problems are examined here, and several analytical approaches are used to investigate these systems. Effective field theory, a methodological approach prominent in quantum field theory, plays an important role in the analysis of two of the problems in this thesis. In the first instance, an effective field theory for bound gravitational states is used to compute the interaction Lagrangian of a binary system at the second post-Newtonian order. A metric parametrization based on a temporal Kaluza-Klein decomposition is also used. In this effective field theory calculation, the post-Newtonian results for the equations of motion are elegantly reproduced. In the next problem considered, effective field theory is used to investigate the thermodynamics of compactified charged black holes. The relevant thermodynamic quantities are all computed to second order in the perturbation parameter and finite size effects are incorporated through higher order worldline operators. Complete agreement is found with an exact extremal black hole solution constructed with traditional General Relativistic methods. The results indicate that the addition of charge to a compactified black hole may delay the phase transition to a black string. Finally, the third problem examined here concerns the evolution of perturbations at the end of early universe inflation. General Relativity enters this problem through cosmological perturbation theory. It is shown that the coherent oscillations in the inflaton break down at the comoving post-inflationary horizon size, about 14 e-folds after the end of inflation. This is many e-folds before any known constraints, leading to possible implications for the matching problem of inflation, and the generation of stochastic
A generalization of random matrix theory and its application to statistical physics
NASA Astrophysics Data System (ADS)
Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H.
2017-02-01
To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.
A generalization of random matrix theory and its application to statistical physics.
Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H
2017-02-01
To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.
Generalization of strain-gradient theory to finite elastic deformation for isotropic materials
NASA Astrophysics Data System (ADS)
Beheshti, Alireza
2017-03-01
This paper concerns finite deformation in the strain-gradient continuum. In order to take account of the geometric nonlinearity, the original strain-gradient theory which is based on the infinitesimal strain tensor is rewritten given the Green-Lagrange strain tensor. Following introducing the generalized isotropic Saint Venant-Kirchhoff material model for the strain-gradient elasticity, the boundary value problem is investigated in not only the material configuration but also the spatial configuration building upon the principle of virtual work for a three-dimensional solid. By presenting one example, the convergence of the strain-gradient and classical theories is studied.
General theory of experiment containing reproducible data: The reduction to an ideal experiment
NASA Astrophysics Data System (ADS)
Nigmatullin, Raoul R.; Zhang, Wei; Striccoli, Domenico
2015-10-01
The authors suggest a general theory for consideration of all experiments associated with measurements of reproducible data in one unified scheme. The suggested algorithm does not contain unjustified suppositions and the final function that is extracted from these measurements can be compared with hypothesis that is suggested by the theory adopted for the explanation of the object/phenomenon studied. This true function is free from the influence of the apparatus (instrumental) function and when the "best fit", or the most acceptable hypothesis, is absent, can be presented as a segment of the Fourier series. The discrete set of the decomposition coefficients describes the final function quantitatively and can serve as an intermediate model that coincides with the amplitude-frequency response (AFR) of the object studied. It can be used by theoreticians also for comparison of the suggested theory with experimental observations. Two examples (Raman spectra of the distilled water and exchange by packets between two wireless sensor nodes) confirm the basic elements of this general theory. From this general theory the following important conclusions follow: 1. The Prony's decomposition should be used in detection of the quasi-periodic processes and for quantitative description of reproducible data. 2. The segment of the Fourier series should be used as the fitting function for description of observable data corresponding to an ideal experiment. The transition from the initial Prony's decomposition to the conventional Fourier transform implies also the elimination of the apparatus function that plays an important role in the reproducible data processing. 3. The suggested theory will be helpful for creation of the unified metrological standard (UMS) that should be used in comparison of similar data obtained from the same object studied but in different laboratories with the usage of different equipment. 4. Many cases when the conventional theory confirms the experimental
NASA Astrophysics Data System (ADS)
Nigmatullin, Raoul R.; Maione, Guido; Lino, Paolo; Saponaro, Fabrizio; Zhang, Wei
2017-01-01
In this paper, we suggest a general theory that enables to describe experiments associated with reproducible or quasi-reproducible data reflecting the dynamical and self-similar properties of a wide class of complex systems. Under complex system we understand a system when the model based on microscopic principles and suppositions about the nature of the matter is absent. This microscopic model is usually determined as "the best fit" model. The behavior of the complex system relatively to a control variable (time, frequency, wavelength, etc.) can be described in terms of the so-called intermediate model (IM). One can prove that the fitting parameters of the IM are associated with the amplitude-frequency response of the segment of the Prony series. The segment of the Prony series including the set of the decomposition coefficients and the set of the exponential functions (with k = 1,2,…,K) is limited by the final mode K. The exponential functions of this decomposition depend on time and are found by the original algorithm described in the paper. This approach serves as a logical continuation of the results obtained earlier in paper [Nigmatullin RR, W. Zhang and Striccoli D. General theory of experiment containing reproducible data: The reduction to an ideal experiment. Commun Nonlinear Sci Numer Simul, 27, (2015), pp 175-192] for reproducible experiments and includes the previous results as a partial case. In this paper, we consider a more complex case when the available data can create short samplings or exhibit some instability during the process of measurements. We give some justified evidences and conditions proving the validity of this theory for the description of a wide class of complex systems in terms of the reduced set of the fitting parameters belonging to the segment of the Prony series. The elimination of uncontrollable factors expressed in the form of the apparatus function is discussed. To illustrate how to apply the theory and take advantage of its
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology.
Messner, Steven F
2015-06-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives-Situational Action Theory and Institutional Anomie Theory-that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally.
Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation
NASA Astrophysics Data System (ADS)
Frønsdal, Christian
Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.
NASA Astrophysics Data System (ADS)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Heinson, Graham
2016-12-01
A method using modified attenuation factor function is suggested to determine the parameters of the generalized Zener model approximating the attenuation factor function. This method is applied to constitute the poroviscoelastic model based on the effective Biot theory which considers the attenuative solid frame of reservoir. In the poroviscoelastic model, frequency-dependent bulk modulus and shear modulus of solid frame are represented by generalized Zener models. As an application, the borehole logging dispersion equations from Biot theory are extended to include effects from the intrinsic body attenuation in formation media in full-frequency range. The velocity dispersions of borehole guided waves are calculated to investigate the influence from attenuative bore fluid, attenuative solid frame of the formation and impermeable bore wall.
Gendered Responses to Serious Strain: The Argument for a General Strain Theory of Deviance.
Kaufman, Joanne M
2009-09-01
This paper expands and builds on newer avenues in research on gender and general strain theory (GST). I accomplish this by focusing on serious strains that are relevant for males and females, including externalizing and internalizing forms of negative emotions, and including multiple gendered deviant outcomes. Using the Add Health dataset, I find strong support for the impact of serious strains on both types of negative emotions and different forms of deviance for males and females. However, the experience of serious strain, emotionally and behaviorally, is gendered. Depressive symptoms are particularly important for all types of deviance by females. Including multiple types of deviant outcomes offers a fuller understanding of both similarities and differences by gender. These results support the utility of GST as a theory of deviance in general and support greater connections between GST, feminist theorizing, and the sociology of mental health.
A general theory of intertemporal decision-making and the perception of time.
Namboodiri, Vijay M K; Mihalas, Stefan; Marton, Tanya M; Hussain Shuler, Marshall G
2014-01-01
Animals and humans make decisions based on their expected outcomes. Since relevant outcomes are often delayed, perceiving delays and choosing between earlier vs. later rewards (intertemporal decision-making) is an essential component of animal behavior. The myriad observations made in experiments studying intertemporal decision-making and time perception have not yet been rationalized within a single theory. Here we present a theory-Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)-that explains a wide variety of behavioral observations made in intertemporal decision-making and the perception of time. Our theory postulates that animals make intertemporal choices to optimize expected reward rates over a limited temporal window which includes a past integration interval-over which experienced reward rate is estimated-as well as the expected delay to future reward. Using this theory, we derive mathematical expressions for both the subjective value of a delayed reward and the subjective representation of the delay. A unique contribution of our work is in finding that the past integration interval directly determines the steepness of temporal discounting and the non-linearity of time perception. In so doing, our theory provides a single framework to understand both intertemporal decision-making and time perception.
LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG)
NASA Astrophysics Data System (ADS)
Moffat, J. W.
2016-12-01
The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a = cS / GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M ≲ 10M⊙.
Quantum Bayesianism as the basis of general theory of decision-making.
Khrennikov, Andrei
2016-05-28
We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability-one the basic laws of classical probability theory.
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hawk, J. D.
1975-01-01
A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.
Generalized Kubelka-Munk Theory - A Derivation And Extension From Radiative Transfer
NASA Astrophysics Data System (ADS)
Sandoval, Christopher
Kubelka-Munk (KM) theory is a broadly used simplification to the radiative transfer equation (RTE) that is solvable analytically for a restricted set of very simple problems. Despite this simplicity and popularity, KM theory has never had its theoretical basis formally established. In this work, we derive KM theory systematically from the radiative transfer equation (RTE) by application of the spectrally convergent double spherical harmonics method, of order one, and analysis of the resulting, transformed, system of equations in the positive- and negative-going fluxes. We call these the generalized Kubelka-Munk (gKM) equations, and they are able to account for general boundary sources and nonhomogeneous terms. Having established theoretical footing for KM theory, we extend gKM's four-flux method to higher dimensions, applying it to a Gaussian boundary source and demonstrating the method's range of validity. Finally, we examine the application of the gKM method to the vector radiative transport equation (vRTE), allowing for the modeling of sources with polarized light. These methods offer a low cost approximation to the solutions of the scalar and vector RTE's, which we validate through comparison with benchmark solutions of the transport equation.
The Elliott-Yafet theory of spin relaxation generalized for large spin-orbit coupling
Kiss, Annamária; Szolnoki, Lénard; Simon, Ferenc
2016-01-01
We generalize the Elliott-Yafet (EY) theory of spin relaxation in metals with inversion symmetry for the case of large spin-orbit coupling (SOC). The EY theory treats the SOC to the lowest order but this approach breaks down for metals of heavy elements (such as e.g. caesium or gold), where the SOC energy is comparable to the relevant band-band separation energies. The generalized theory is presented for a four-band model system without band dispersion, where analytic formulae are attainable for arbitrary SOC for the relation between the momentum- and spin-relaxation rates. As an extended description, we also consider an empirical pseudopotential approximation where SOC is deduced from the band potential (apart from an empirical scaling constant) and the spin-relaxation rate can be obtained numerically. Both approaches recover the usual EY theory for weak SOC and give that the spin-relaxation rate approaches the momentum-relaxation rate in the limit of strong SOC. We argue that this limit is realized in gold by analyzing spin relaxation data. A calculation of the g-factor shows that the empirical Elliott-relation, which links the g-factor and spin-relaxation rate, is retained even for strong SOC. PMID:26943483
The Elliott-Yafet theory of spin relaxation generalized for large spin-orbit coupling
NASA Astrophysics Data System (ADS)
Kiss, Annamária; Szolnoki, Lénard; Simon, Ferenc
2016-03-01
We generalize the Elliott-Yafet (EY) theory of spin relaxation in metals with inversion symmetry for the case of large spin-orbit coupling (SOC). The EY theory treats the SOC to the lowest order but this approach breaks down for metals of heavy elements (such as e.g. caesium or gold), where the SOC energy is comparable to the relevant band-band separation energies. The generalized theory is presented for a four-band model system without band dispersion, where analytic formulae are attainable for arbitrary SOC for the relation between the momentum- and spin-relaxation rates. As an extended description, we also consider an empirical pseudopotential approximation where SOC is deduced from the band potential (apart from an empirical scaling constant) and the spin-relaxation rate can be obtained numerically. Both approaches recover the usual EY theory for weak SOC and give that the spin-relaxation rate approaches the momentum-relaxation rate in the limit of strong SOC. We argue that this limit is realized in gold by analyzing spin relaxation data. A calculation of the g-factor shows that the empirical Elliott-relation, which links the g-factor and spin-relaxation rate, is retained even for strong SOC.
Strong-field effects and time asymmetry in general relativity and in bimetric gravitation theory
NASA Astrophysics Data System (ADS)
Damour, Thibault
1984-10-01
The concepts underlying our present theoretical understanding of the radiative two-condensed-body problem in general relativity and in bimetric gravitation theory are critically reviewed. The relevance of the 1935 Einstein-Rosen “bridge” article is emphasized. The possibility (first suggested by N. Rosen, for the linearized approximation) of extending to gravity the Wheeler-Feynman time-symmetric approach is questioned.
Nonlinear Viscoelastic Analysis of Orthotropic Beams Using a General Third-Order Theory
2012-06-20
continuous functions for all the primary variables, thus simplifying the implementation . A two-point recur- rence scheme is developed such that history from...Keywords: Finite element model Spectral/hp approximations General third-order beam theory Viscoelastic behavior von Kármán nonlinearity a b s t r a c t...The fully discretized finite element equations are obtained by approximating the convolution integrals using a trapezoidal rule. A two-point recurrence
NASA Astrophysics Data System (ADS)
Gungordu, Erkut
2000-11-01
Generalized Contributon Theory has been implemented for three dimensional (x-y-z) cartesian geometry. The TORT 3D neutron/photon transport code is used for the calculation of the forward and adjoint directional fluxes and these are used for the generation of the contribution theory parameters. A new 3D contribution code has been developed for the generation of the contributon theory parameters. The new 3D contributon code is also capable of doing 2D calculations by using the data generated by the TORT code with its 2D calculational option. The integral response calculations of the contributon code are verified by the integral response conservation theorem of spatial channel theory using a 3D, eight-group symmetric dipole problem. The slowing down theory calculations of the contributon code are also verified using the slowing down equation with the same 3D problem. The spatial channel theory calculations are illustrated by a 3D, eight-group unsymmetrical dipole problem. This 3D geometry contains an irregular streaming gap and a shield region which is placed in front of the detector. The visualizations of the integral contributon flux show the important spatial regions of the response flow. The streamlines drawn by a quantitative streamline distribution technique reveals the spatial concentrations of the integral response flow. Quantitative streamline visualizations with three different 3D, eight-group unsymmetrical dipole problems very clearly show that the response flows through the least resistant regions of the medium. The volumetric color-contour visualizations of the response flow from different perspectives are also used to illustrate quantitatively the spatial response flow magnitude. The energy dependent processes of the response flow are investigated by contributon slowing down theory. The same 3D, eight-group unsymmetrical dipole problem prepared for the spatial channel theory applications is used for the numerical interpretation of the slowing down theory
Cosmological self-tuning and local solutions in generalized Horndeski theories
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Esposito-Farèse, Gilles
2017-01-01
We study both the cosmological self-tuning and the local predictions (inside the Solar System) of the most general shift-symmetric beyond Horndeski theory. We first show that the cosmological self-tuning is generic in this class of theories: By adjusting a mass parameter entering the action, a large bare cosmological constant can effectively be reduced to a small observed one. Requiring then that the metric should be close enough to the Schwarzschild solution in the Solar System, to pass the experimental tests of general relativity, and taking into account the renormalization of Newton's constant, we select a subclass of models which presents all desired properties: It is able to screen a big vacuum energy density, while predicting an exact Schwarzschild-de Sitter solution around a static and spherically symmetric source. As a by-product of our study, we identify a general subclass of beyond Horndeski theory for which regular self-tuning black hole solutions exist, in the presence of a time-dependent scalar field. We discuss possible future development of the present work.
NASA Astrophysics Data System (ADS)
Colosi, Daniele; Dohse, Max
2017-04-01
We use the General Boundary Formulation (GBF) of Quantum Field Theory to compute the S-matrix for a general interacting scalar field in a wide class of curved spacetimes. As a by-product we obtain the general expression of the Feynman propagator for the scalar field, defined in the following three types of spacetime regions. First, there are the familiar interval regions (e.g. a time interval times all of space). Second, we consider the rod hypercylinder regions (all of time times a solid ball in space). Third, the tube hypercylinders (all of time times a solid shell in space) are related to interval regions, and result from removing a smaller rod from a concentric larger one. Using the Schrödinger representation for the quantum states combined with Feynman's path integral quantization, we obtain the S-matrix as the asymptotic limit of the GBF amplitude associated with finite interval, and rod regions. For interval regions, whose boundary consists of two Cauchy surfaces, the asymptotic GBF-amplitude becomes the standard S-matrix. Our work generalizes previous results (obtained in Minkowski, Rindler, de Sitter, and Anti de Sitter spacetimes) to a wide class of curved spacetimes.
Generalized local frame transformation theory for Rydberg atoms in external fields
NASA Astrophysics Data System (ADS)
Giannakeas, Panagiotis; Robicheaux, Francis; Greene, Chris H.
2016-05-01
In this work a rigorous theoretical framework is developed generalizing the local frame transformation theory (GLFT) and it is applied to the photoionization spectra of Rydberg atoms in an external electric field. The resulting development is compared with previous theoretical treatments, including the first version of local frame transformation theory, developed initially by Fano and Harmin. Our revised version of the theory yields non-trivial corrections because we now take into account the full Hilbert space on the energy shell without adopting truncations utilized by the original Fano-Harmin theory. The semi-analytical calculations from GLFT approach are compared with ab initio numerical simulations yielding errors of few tens of MHz whereas the errors in the original Fano-Harmin theory are one or two orders of magnitude larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet modern experimental standards. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award numbers DE-SC0010545 (for PG and CHG) and DE-SC0012193 (for FR).
Generalized local-frame-transformation theory for excited species in external fields
NASA Astrophysics Data System (ADS)
Giannakeas, P.; Greene, Chris H.; Robicheaux, F.
2016-07-01
A rigorous theoretical framework is developed for a generalized local-frame-transformation theory (GLFT). The GLFT is applicable to the following systems: Rydberg atoms or molecules in an electric field and negative ions in any combination of electric and/or magnetic fields. A first test application to the photoionization spectra of Rydberg atoms in an external electric field demonstrates dramatic improvement over the first version of the local-frame-transformation theory developed initially by U. Fano [Phys. Rev. A 24, 619 (1981), 10.1103/PhysRevA.24.619] and D. A. Harmin [Phys. Rev. A 26, 2656 (1982), 10.1103/PhysRevA.26.2656]. This revised GLFT theory yields nontrivial corrections because it now includes the full on-shell Hilbert space without adopting the truncations in the original theory. Comparisons of the semianalytical GLFT Stark spectra with ab initio numerical simulations yield errors in the range of a few tens of MHz, an improvement over the original Fano-Harmin theory, whose errors are 10-100 times larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet most modern experimental standards.
General variational many-body theory with complete self-consistency for trapped bosonic systems
Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.
2006-06-15
In this work we develop a complete variational many-body theory for a system of N trapped bosons interacting via a general two-body potential. The many-body solution of this system is expanded over orthogonal many-body basis functions (configurations). In this theory both the many-body basis functions and the respective expansion coefficients are treated as variational parameters. The optimal variational parameters are obtained self-consistently by solving a coupled system of noneigenvalue--generally integro-differential--equations to get the one-particle functions and by diagonalizing the secular matrix problem to find the expansion coefficients. We call this theory multiconfigurational Hartree theory for bosons or MCHB(M), where M specifies explicitly the number of one-particle functions used to construct the configurations. General rules for evaluating the matrix elements of one- and two-particle operators are derived and applied to construct the secular Hamiltonian matrix. We discuss properties of the derived equations. We show that in the limiting cases of one configuration the theory boils down to the well-known Gross-Pitaevskii and the recently developed multi-orbital mean fields. The invariance of the complete solution with respect to unitary transformations of the one-particle functions is utilized to find the solution with the minimal number of contributing configurations. In the second part of our work we implement and apply the developed theory. It is demonstrated that for any practical computation where the configurational space is restricted, the description of trapped bosonic systems strongly depends on the choice of the many-body basis set used, i.e., self-consistency is of great relevance. As illustrative examples we consider bosonic systems trapped in one- and two-dimensional symmetric and asymmetric double well potentials. We demonstrate that self-consistency has great impact on the predicted physical properties of the ground and excited states
Expressing Disagreement in ELF Business Negotiations: Theory and Practice
ERIC Educational Resources Information Center
Bjorge, Anne Kari
2012-01-01
English spoken by those who do not share their first language is increasingly referred to as English lingua franca (ELF). For ELF speakers, it can be a challenge to express conflicting opinions, as a common language and/or cultural background cannot be taken for granted. This is recognized by writers of business English textbooks, who provide…
Rakoczy, Hannes; Harder-Kasten, Antje; Sturm, Lioba
2012-02-01
Following up on existing, mixed findings in the literature on social cognition in old age different aspects of theory of mind were investigated in younger and older adults. In line with some previous findings, older participants--though matched with the younger ones on crystallized abilities--performed significantly worse both on tasks requiring the ascription of complex intentional attitudes to story protagonists and on tasks of recognizing subtle emotional expressions from video displays. Control analyses showed, however, that these deficits are partly explained by domain-general declines in processing speed and executive function. The implications of these findings for the nature of social cognition and its fate in old age are discussed.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S; Murphy, Patrick C.
2014-01-01
Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.
A general theory of intertemporal decision-making and the perception of time
Namboodiri, Vijay M. K.; Mihalas, Stefan; Marton, Tanya M.; Hussain Shuler, Marshall G.
2014-01-01
Animals and humans make decisions based on their expected outcomes. Since relevant outcomes are often delayed, perceiving delays and choosing between earlier vs. later rewards (intertemporal decision-making) is an essential component of animal behavior. The myriad observations made in experiments studying intertemporal decision-making and time perception have not yet been rationalized within a single theory. Here we present a theory—Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)—that explains a wide variety of behavioral observations made in intertemporal decision-making and the perception of time. Our theory postulates that animals make intertemporal choices to optimize expected reward rates over a limited temporal window which includes a past integration interval—over which experienced reward rate is estimated—as well as the expected delay to future reward. Using this theory, we derive mathematical expressions for both the subjective value of a delayed reward and the subjective representation of the delay. A unique contribution of our work is in finding that the past integration interval directly determines the steepness of temporal discounting and the non-linearity of time perception. In so doing, our theory provides a single framework to understand both intertemporal decision-making and time perception. PMID:24616677
Uncertainty Quantification of Composite Laminate Damage with the Generalized Information Theory
J. Lucero; F. Hemez; T. Ross; K.Kline; J.Hundhausen; T. Tippetts
2006-05-01
This work presents a survey of five theories to assess the uncertainty of projectile impact induced damage on multi-layered carbon-epoxy composite plates. Because the types of uncertainty dealt with in this application are multiple (variability, ambiguity, and conflict) and because the data sets collected are sparse, characterizing the amount of delamination damage with probability theory alone is possible but incomplete. This motivates the exploration of methods contained within a broad Generalized Information Theory (GIT) that rely on less restrictive assumptions than probability theory. Probability, fuzzy sets, possibility, and imprecise probability (probability boxes (p-boxes) and Dempster-Shafer) are used to assess the uncertainty in composite plate damage. Furthermore, this work highlights the usefulness of each theory. The purpose of the study is not to compare directly the different GIT methods but to show that they can be deployed on a practical application and to compare the assumptions upon which these theories are based. The data sets consist of experimental measurements and finite element predictions of the amount of delamination and fiber splitting damage as multilayered composite plates are impacted by a projectile at various velocities. The physical experiments consist of using a gas gun to impact suspended plates with a projectile accelerated to prescribed velocities, then, taking ultrasound images of the resulting delamination. The nonlinear, multiple length-scale numerical simulations couple local crack propagation implemented through cohesive zone modeling to global stress-displacement finite element analysis. The assessment of damage uncertainty is performed in three steps by, first, considering the test data only; then, considering the simulation data only; finally, performing an assessment of total uncertainty where test and simulation data sets are combined. This study leads to practical recommendations for reducing the uncertainty and
Bays, Harold
2005-05-01
Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics.
Transverse vibrations of shear-deformable beams using a general higher order theory
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1993-01-01
A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.
The Mössbauer rotor experiment and the general theory of relativity
NASA Astrophysics Data System (ADS)
Corda, Christian
2016-05-01
In the recent paper Yarman et al. (2015), the authors claim that our general relativistic analysis in Corda (2015), with the additional effect due to clock synchronization, cannot explain the extra energy shift in the Mössbauer rotor experiment. In their opinion, the extra energy shift due to the clock synchronization is of order 10-13 and cannot be detected by the detectors of γ-quanta which are completely insensitive to such a very low order of energy shifts. In addition, they claim to have shown that the extra energy shift can be explained in the framework of the so-called YARK gravitational theory. They indeed claim that such a theory should replace the general theory of relativity (GTR) as the correct theory of gravity. In this paper we show that the authors Yarman et al. (2015) had a misunderstanding of our theoretical analysis in Corda (2015). In fact, in that paper we have shown that electromagnetic radiation launched by the central source of the apparatus is redshifted of a quantity 0 . 6 ¯ v2/c2 when arriving to the detector of γ-quanta. This holds independently by the issue that the original photons are detected by the resonant absorber which, in turns, triggers the γ-quanta which arrive to the final detector. In other words, the result in Corda (2015) was a purely theoretical result that is completely independent of the way the experiment is concretely realized. Now, we show that, with some clarification, the results of Corda (2015) hold also when one considers the various steps of the concrete detection. In that case, the resonant absorber detects the energy shift and the separated detector of γ-quanta merely measures the resulting intensity. In addition, we also show that the YARK gravitational theory is in macroscopic contrast with geodesic motion and, in turn, with the weak equivalence principle (WEP). This is in contrast with another claim of the authors of Yarman et al. (2015), i.e. that the YARK gravitational theory arises from the WEP
NASA Astrophysics Data System (ADS)
Zhou, Chenyi; Guo, Hong
2017-01-01
We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.
General results for higher spin Wilson lines and entanglement in Vasiliev theory
Hegde, Ashwin; Kraus, Per; Perlmutter, Eric
2016-01-28
Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includesmore » a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical WN vacuum block, and our results provide an explicit result for this object.« less
Propagation of gravitational waves in the generalized tensor-vector-scalar theory
Sagi, Eva
2010-03-15
Efforts are underway to improve the design and sensitivity of gravitational wave detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet-undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more mixed longitudinal-transverse modes and two trace modes, of which at least one has longitudinal polarization. Additionally, the propagation speeds are different from the speed of light.
Sex-specific demography and generalization of the Trivers-Willard theory
NASA Astrophysics Data System (ADS)
Schindler, Susanne; Gaillard, Jean-Michel; Grüning, André; Neuhaus, Peter; Traill, Lochran W.; Tuljapurkar, Shripad; Coulson, Tim
2015-10-01
The Trivers-Willard theory proposes that the sex ratio of offspring should vary with maternal condition when it has sex-specific influences on offspring fitness. In particular, mothers in good condition in polygynous and dimorphic species are predicted to produce an excess of sons, whereas mothers in poor condition should do the opposite. Despite the elegance of the theory, support for it has been limited. Here we extend and generalize the Trivers-Willard theory to explain the disparity between predictions and observations of offspring sex ratio. In polygynous species, males typically have higher mortality rates, different age-specific reproductive schedules and more risk-prone life history tactics than females; however, these differences are not currently incorporated into the Trivers-Willard theory. Using two-sex models parameterized with data from free-living mammal populations with contrasting levels of sex differences in demography, we demonstrate how sex differences in life history traits over the entire lifespan can lead to a wide range of sex allocation tactics, and show that correlations between maternal condition and offspring sex ratio alone are insufficient to conclude that mothers adaptively adjust offspring sex ratio.
General results for higher spin Wilson lines and entanglement in Vasiliev theory
Hegde, Ashwin; Kraus, Per; Perlmutter, Eric
2016-01-28
Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includes a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical W_{N} vacuum block, and our results provide an explicit result for this object.
A generalized theory for the design of contraction cones and other low speed ducts
NASA Technical Reports Server (NTRS)
Barger, R. L.; Bowen, J. T.
1972-01-01
A generalization of the Tsien method of contraction cone design is described. The design velocity distribution is expressed in such a form that the required high order derivatives can be obtained by recursion rather than by numerical or analytic differentiation. The method is applicable to the design of diffusers and converging-diverging ducts as well as contraction cones. The computer program is described and a FORTRAN listing of the program is provided.
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1989-01-01
The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen
2004-08-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at {Omicron}(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.
Pfalzgraff, William C; Kelly, Aaron; Markland, Thomas E
2015-12-03
The development of methods that can efficiently and accurately treat nonadiabatic dynamics in quantum systems coupled to arbitrary atomistic environments remains a significant challenge in problems ranging from exciton transport in photovoltaic materials to electron and proton transfer in catalysis. Here we show that our recently introduced MF-GQME approach, which combines Ehrenfest mean field theory with the generalized quantum master equation framework, is able to yield quantitative accuracy over a wide range of charge-transfer regimes in fully atomistic environments. This is accompanied by computational speed-ups of up to 3 orders of magnitude over a direct application of Ehrenfest theory. This development offers the opportunity to efficiently investigate the atomistic details of nonadiabatic quantum relaxation processes in regimes where obtaining accurate results has previously been elusive.
General contact mechanics theory for randomly rough surfaces with application to rubber friction.
Scaraggi, M; Persson, B N J
2015-12-14
We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic, or viscoelastic and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interface separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for the classical case of a rubber block sliding on a road surface. We find that with increasing sliding speed, the influence of the roughness on the rubber block decreases to the extent that only the roughness of the stiff counter face needs to be considered.
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology
Messner, Steven F.
2016-01-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives—Situational Action Theory and Institutional Anomie Theory—that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally. PMID:27087864
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
Kao, C.-W.; Pasquini, Barbara; Vanderhaeghen, Marc
2004-12-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering at O(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low-energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the virtual Compton scattering amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double-polarization experiments which allow one to access these spin-flip GPs of the nucleon.
Hydrogen Dissociation in Generalized Hartree-Fock Theory: Breaking the diatomic bond
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Masood, Samina; Tymczak, Cj
Generalized Hartree Fock theory predicts molecular Hydrogen dissociation without correlation. A variational Gaussian-Sinc linear superposition is the basis of 50 calculations with 3-4 significant digits of quality. The spin singlet covalent bond spontaneously breaks into a pair of uncorrelated doublets at atomic separation of 1.22 Angstroms. Quantum spin numbers and energetic comparison with Configuration Interaction theory--correlation--point to a first order phase transition in the molecular Hydrogen bond without correlation. Welch Foundation (Grant J-1675), the ARO (Grant W911Nf-13-1-0162), the Texas Southern University High Performance Computing Center (http:/hpcc.tsu.edu/; Grant PHY-1126251) and NSF-CREST CRCN project (Grant HRD-1137732).
NASA Astrophysics Data System (ADS)
Sarabia, José María; Jordá, Vanesa
2014-12-01
The importance of the Pietra index in socioeconomic systems and econophysics has been highlighted by Eliazar and Sokolov (2010). In this paper, we obtain closed expressions for the Pietra index for the generalized function for the size of income proposed by McDonald (1984). This family is composed of three classes of distributions: the generalized gamma distribution (GG), the generalized beta of the first kind (GB1) and the generalized beta of the second kind (GB2). For the different distributions, we obtain closed and simple expressions of the Pietra index, which can be easily computed. We also obtain the Pietra index for other relevant income models including finite mixtures of distributions and the κ-generalized distribution (Clementi et al., 2008). Finally, two empirical applications with real income data are given.
Information theory, gene expression, and combinatorial regulation: a quantitative analysis.
Jost, Jürgen; Scherrer, Klaus
2014-03-01
According to a functional definition of the term "gene", a protein-coding gene corresponds to a polypeptide and, hence, a coding sequence. It is therefore as such not yet present at the DNA level, but assembled from possibly heterogeneous pieces in the course of RNA processing. Assembly and regulation of genes require, thus, information about when and in which quantity specific polypeptides are to be produced. To assess this, we draw upon precise biochemical data. On the basis of our conceptual framework, we also develop formal models for the coordinated expression of specific sets of genes through the interaction of transcripts and mRNAs and with proteins via a precise putative regulatory code. Thus, the nucleotides in transcripts and mRNA are not only arranged into amino acid-coding triplets, but at the same time may participate in regulatory oligomotifs that provide binding sites for specific proteins. We can then quantify and compare product and regulatory information involved in gene expression and regulation.
Vortex creep and the internal temperature of neutron stars. I - General theory
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.
1984-01-01
The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.
Lin, Wen-Hsu; Cochran, John K; Mieczkowski, Thomas
2011-01-01
Using a national probability sample of adolescents (12–17), this study applies general strain theory to how violent victimization, vicarious violent victimization, and dual violent victimization affect juvenile violent/property crime and drug use. In addition, the mediating effect and moderating effect of depression, low social control, and delinquent peer association on the victimization–delinquency relationship is also examined. Based on SEM analyses and contingency tables, the results indicate that all three types of violent victimization have significant and positive direct effects on violent/property crime and drug use. In addition, the expected mediating effects and moderating effects are also found. Limitations and future directions are discussed.
General N=1 supersymmetric flux vacua of massive type IIA string theory.
Behrndt, Klaus; Cvetic, Mirjam
2005-07-08
We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.
Thermo-mechanical buckling analysis of FGM plate using generalized plate theory
NASA Astrophysics Data System (ADS)
Sharma, Kanishk; Kumar, Dinesh; Gite, Anil
2016-05-01
This paper investigates the thermo-mechanical buckling behavior of simply-supported FGM plate under the framework of generalized plate theory (GPT), which includes classical plate theory (CPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) as special cases. The governing equations for FGM plate under thermal and mechanical loading conditions are derived from the principle of virtual displacements and Navier-type solution is assumed for simply supported boundary condition. The efficiency and applicability of presented methodology is illustrated by considering various examples of thermal and mechanical buckling of FGM plates. The closed form solutions in the form of critical thermal and mechanical buckling loads, predicted by CPT, FSDT and HSDT are compared for different side-to-thickness of FGM plate. Subsequently, the effect of material gradation profile on critical buckling parameters is examined by evaluating the buckling response for a range of power law indexes. The effect of geometrical parameters on mechanical buckling of FGM plate under uni-axial and bi-axial loading conditions are also illustrated by calculating the critical load for various values of slenderness ratios. Furthermore a comparative analysis of critical thermal buckling loads of FGM plate for different temperature profiles is also presented. It is identified that all plate theories predicted approximately same critical buckling loads and critical buckling temperatures for thin FGM plate, however for thick FGM plates, CPT overestimates the critical buckling parameters. Moreover the critical buckling loads and critical buckling temperatures of FGM plate are found to be significantly lower than the corresponding homogenous isotropic ceramic plate (n=0).
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory.
Wu, Jianlan; Gong, Zhihao; Tang, Zhoufei
2015-08-21
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media
NASA Astrophysics Data System (ADS)
André Ambrosio, Leonardo
2016-09-01
In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti-parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam-shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts.
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory
Wu, Jianlan Gong, Zhihao; Tang, Zhoufei
2015-08-21
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
Martland, Jarrad; Chamberlain, Diane; Hutton, Alison; Smigielski, Michael
2015-11-30
Objective Patients commonly show signs and symptoms of deterioration for hours or days before cardiorespiratory arrest. Rapid response teams (RRT) were created to improve recognition and response to patient deterioration in these situations. Activation criteria include vital signs or 'general concern' by a clinician or family member. The general concern criterion for RRT activation accounts for nearly one-third of all RRT activity, and although it is well established that communication deficits between staff can contribute to poorer outcomes for patients, there is little evidence pertaining to communication and its effects on the general concern RRT activation. Thus, the aim of the present study was to develop a substantive grounded theory related to the communication process between clinicians that preceded the activation of an RRT when general concern criterion was used.Methods Qualitative grounded theory involved collection of three types of data details namely personal notes from participants in focus groups with white board notes from discussions and audio recordings of the focus groups sessions. Focus groups were conducted with participants exploring issues associated with clinician communication and how it related to the activation of an RRT using the general concern criterion.Results The three main phases of coding (i.e. open, axial and selective coding) analysis identified 322 separate open codes. The strongest theme contributed to a theory of ineffective communication and decreased psychological safety, namely that 'In the absence of effective communication there is a subsequent increase in anxiety, fear or concern that can be directly attributed to the activation of an RRT using the 'general concern' criterion'. The RRT filled cultural and process deficiencies in the compliance with an escalation protocol. Issues such as 'not for resuscitation documentation' and 'inability to establish communication with and between medical or nursing personnel' rated
A generalized expression for lag-time in the gas-phase permeation of hollow tubes
NASA Technical Reports Server (NTRS)
Shah, K. K.; Nelson, H. G.; Johnson, D. L.; Hamaker, F. M.
1975-01-01
A generalized expression for the nonsteady-state parameter, lag-time, has been obtained from Fick's second law for gas-phase transport through hollow, cylindrical membranes. This generalized expression is simplified for three limiting cases of practical interest: (1) diffusion controlled transport, (2) phase boundary reaction control at the inlet surface, and (3) phase boundary reaction control at the outlet surface. In all three cases the lag-time expressions were found to be inversely proportional only to the diffusion coefficient and functionally dependent on the membrane radii. Finally, the lag-time expressions were applied to experimentally obtained lag-time data for alpha-phase titanium and alpha-phase iron.
A general theory of the sampling process with applications to the "veil line".
Dewdney, A K
1998-12-01
When a community of species is sampled, nonappearing species are not those with abundances that fall shy of some arbitrary mark, the "veil line" proposed by E. F. Preston in 1948 (Ecology 29, 254-283). Instead, they follow a hypergeometric distribution, which has no resemblance to the veil line. There is therefore no justification for the truncation of distributions proposed to describe the abundances of species in natural communities. The mistake of the veil line points to the need for a general theory of sampling. If a community has a distribution g of species abundances and if samples taken of the community tend to follow distribution f, what is the relationship of f to g? The seeds of such a theory are available in the work of E. C. Pielou. Using the Poisson distribution as a close approximation to the hypergeometric, one may immediately write and (in most cases) solve the transformation from g to f. The transformation appears to preserve distribution formulas to within constants and parameters, providing yet another reason to rule out the use of truncation. Well beyond this application, the theory provides a foundation for rethinking the sampling process and its implications for ecology.
Generalized Rate Theory for Void and Bubble Swelling and its Application to Plutonium Metal Alloys
Allen, P. G.; Wolfer, W. G.
2015-10-16
In the classical rate theory for void swelling, vacancies and self-interstitials are produced by radiation in equal numbers, and in addition, thermal vacancies are also generated at the sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to the high formation energy of self-interstitials for normal metals and alloys, their thermal generation is negligible, as pointed out by Bullough and Perrin [1]. However, recent DFT calculations of the formation energy of self-interstitial atoms in bcc metals [2,3] have revealed that the sum of formation and migration energies for self-interstitials atoms (SIA) is of the same order of magnitude as for vacancies. This is illustrated in Fig. 1 that shows the ratio of the activation energies for thermal generation of SIA and vacancies. For fcc metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical predictions of point defect properties in δ-Pu [4], this ratio could possibly be less than one. As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into considerations when modeling the growth of voids and of helium bubbles, and the classical rate theory (CRT) for void and bubble swelling must be extended to a generalized rate theory (GRT).
NASA Technical Reports Server (NTRS)
Markey, Melvin F.
1959-01-01
A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.
Toward a general theory of adaptive radiation: insights from microbial experimental evolution.
Kassen, Rees
2009-06-01
The history of life has been punctuated by unusually spectacular periods of evolutionary diversification called adaptive radiation. Darwin's finches in the Galapagos, cichlid fishes in African Rift and Nicaraguan crater lakes, and the emergence of mammals at the end of the Cretaceous are hallmark examples. Although we have learned much from these and other case studies about the mechanisms thought to drive adaptive radiations, convincing experimental tests of theory are often lacking for the simple reason that it is usually impossible to "rewind the tape of life," as Stephen Jay Gould was fond of saying, and run it again. This situation has changed dramatically in recent years with the increasing emphasis on the use of microbial populations which, because of their small size and rapid generation times, make possible the construction of replicated, manipulative experiments to study evolution in the laboratory. Here I review the contributions that microbial experimental evolution has made to our understanding of the ecological and genetic mechanisms underlying adaptive radiation. I focus on three major gaps in the theory of adaptive radiation--the paucity of direct tests of mechanism, the genetics of diversification, and the limits and constraints on the progress of radiations--with the aim of pointing the way toward the development of a more general theory of adaptive radiation.
Goldstein, H; Mousetis, L
1989-01-01
In this study, we investigated the conditions that contribute to observational learning of generalized language in children with severe mental retardation. Matrix-training strategies were used to teach 6 children with mental retardation to combine known words into two- or three-word utterances consistent with syntactic rules. Subsequently, the children learned two or more unknown words concurrently, inducing word-referent relations consistent with these word order rules. Generalized learning of responses not taught directly was shown to be under experimental control using a multiple baseline design across submatrices. Expressive modeling of only four or five responses was sufficient to promote recombinative generalization in the expressive and receptive modalities. Thus, 95% to 98% of subjects' learning was attributed to generalization processes. This study demonstrates how the efficiency of language training with children with mental retardation might be enhanced by coupling observational learning and matrix-training strategies. PMID:2793632
The application of foraging theory to the information searching behaviour of general practitioners
2011-01-01
Background General Practitioners (GPs) employ strategies to identify and retrieve medical evidence for clinical decision making which take workload and time constraints into account. Optimal Foraging Theory (OFT) initially developed to study animal foraging for food is used to explore the information searching behaviour of General Practitioners. This study is the first to apply foraging theory within this context. Study objectives were: 1. To identify the sequence and steps deployed in identifiying and retrieving evidence for clinical decision making. 2. To utilise Optimal Foraging Theory to assess the effectiveness and efficiency of General Practitioner information searching. Methods GPs from the Wellington region of New Zealand were asked to document in a pre-formatted logbook the steps and outcomes of an information search linked to their clinical decision making, and fill in a questionnaire about their personal, practice and information-searching backgrounds. Results A total of 115/155 eligible GPs returned a background questionnaire, and 71 completed their information search logbook. GPs spent an average of 17.7 minutes addressing their search for clinical information. Their preferred information sources were discussions with colleagues (38% of sources) and books (22%). These were the two most profitable information foraging sources (15.9 min and 9.5 min search time per answer, compared to 34.3 minutes in databases). GPs nearly always accessed another source when unsuccessful (95% after 1st source), and frequently when successful (43% after 2nd source). Use of multiple sources accounted for 41% of searches, and increased search success from 70% to 89%. Conclusions By consulting in foraging terms the most 'profitable' sources of information (colleagues, books), rapidly switching sources when unsuccessful, and frequently double checking, GPs achieve an efficient trade-off between maximizing search success and information reliability, and minimizing searching
Dynamics of controlled release systems based on water-in-water emulsions: a general theory.
Sagis, Leonard M C
2008-10-06
Phase-separated biopolymer solutions, and aqueous dispersions of hydrogel beads, liposomes, polymersomes, aqueous polymer microcapsules, and colloidosomes are all examples of water-in-water emulsions. These systems can be used for encapsulation and controlled release purposes, in for example food or pharmaceutical applications. The stress-deformation behavior of the droplets in these systems is very complex, and affected by mass transfer across the interface. The relaxation time of a deformation of a droplet may depend on interfacial properties such as surface tension, bending rigidity, spontaneous curvature, permeability, and interfacial viscoelasticity. It also depends on bulk viscoelasticity and composition. A non-equilibrium thermodynamic model is developed for the dynamic behavior of these systems, which incorporates all these parameters, and is based on the interfacial transport phenomena (ITP) formalism. The ITP formalism allows us to describe all water-in-water emulsions with one general theory. Phase-separated biopolymer solutions, and dispersions of hydrogel beads, liposomes, polymersomes, polymer microcapsules, and colloidosomes are basically limiting cases of this general theory with respect to bulk and interfacial rheological behavior.
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Steven S.
1996-01-01
This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.
Cosmological reconsiderations: The ontological status of Λ in the general theory of relativity
NASA Astrophysics Data System (ADS)
Dillingham, Stephen G.
In 1917, cosmological considerations---the apparent fact that the universe was static---led Einstein to modify the fundamental equation of the general theory of relativity by adding the so-called cosmological term. Einstein later renounced this modification in light of Hubble's observations, which provided evidence that the universe is expanding. Consequently, the cosmological term and the cosmological constant have been largely ignored in foundational work on the general theory of relativity. Recently, however, astronomical evidence has suggested that the cosmological constant is actually nonzero. In light of this, a re-examination of pertinent philosophical work is called for. In this dissertation, I examine the relationship between the cosmological constant and Hans Reichenbach's notion of universal forces and J. L. Anderson's and Michael Friedman's concept of absolute objects. I conclude that although it appears to be at first, the cosmological constant is not a universal force in Reichenbach's sense. It is, however, an absolute object in the sense of Anderson and Friedman. This conclusion does not require us to reject their view that relativity principles are symmetry principles, but it removes an important motivation for the view.
Hoare, Karen J; Mills, Jane; Francis, Karen
2013-07-01
Practice nursing in New Zealand is not well described in the literature. One survey illustrated that most of the New Zealand practice nurses sampled did not know of the country's two premier evidence-based health websites. A recent review compared general practice in the UK, New Zealand and Australia and found that whereas there had been significant developments in empowering the practice nurse workforce to run nurse-led clinics in the UK, New Zealand and Australia lagged behind. The aim of this reported constructivist grounded theory study was to investigate practice nurses' use of information. Conducted in Auckland, New Zealand, data were collected through ethnographic techniques in one general practice between September 2009 and January 2010 to enhance theoretical sensitivity to the area of information use. Subsequently, six experienced practice nurses (one twice after moving jobs) and five new graduate nurses from five different general practices were interviewed, using open-ended questions, between January 2010 and August 2011. Concurrent data collection and analysis occurred throughout the study period. The use of memos, the constant comparative method, data categorisation and finally, data abstraction resulted in the final theory of reciprocal role modelling. Experienced practice nurses role modelled clinical skills to new graduate nurses. Unexpectedly, new graduate nurses were unconscious experts at sourcing information and role modelled this skill to experienced practice nurses. Once this attribute was acknowledged by the experienced practice nurse, mutual learning occurred that enabled both groups of nurses to become better practitioners. Graduate nurses of the millennial generation were identified as a resource for experienced practice nurses who belong to the baby boomer generation and generation X.
ERIC Educational Resources Information Center
Cheng, Zi-Juan; Hau, Kit-Tai; Wen, Jian-Bing; Kong, Chit-Kwong
Using structural equation modeling (SEM), researchers examined whether there was a general dominating factor that governed students' implicit theories of intelligence, morality, personality, creativity, and social intelligence. The possible age-related changes of students' implicit theories were also studied. In all, 1,650 elementary and junior…
NASA Astrophysics Data System (ADS)
Zhdanov, V. M.; Stepanenko, A. A.
2016-03-01
In this paper we derive the set of general transport equations for multicomponent partially ionized reactive plasma in the presence of electric and magnetic fields taking into account the internal degrees of freedom and electronic excitation of plasma particles. Our starting point is a generalized Boltzmann equation with the collision integral in the Wang-Chang and Uhlenbeck form and a reactive collision integral. We obtain a set of conservation equations for such plasma and employ a linearized variant of Grad's moment method to derive the system of moment (or transport) equations for the plasma species nonequilibrium parameters. Full and reduced transport equations, resulting from the linearized system of moment equations, are presented, which can be used to obtain transport relations and expressions for transport coefficients of electrons and heavy plasma particles (molecules, atoms and ions) in partially ionized reactive plasma.
Introduction to string theory and conformal field theory
Belavin, A. A. Tarnopolsky, G. M.
2010-05-15
A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.
Garczynski, Stephen F; Coates, Brad S; Unruh, Thomas R; Schaeffer, Scott; Jiwan, Derick; Koepke, Tyson; Dhingra, Amit
2013-10-01
The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8 341 expressed sequence tags was generated from Roche 454 GS-FLX sequencing of eight tissue-specific cDNA libraries. Putative chemosensory proteins (12) and odorant binding proteins (OBPs) (18) were annotated, which included three putative general OBP (GOBP), one more than typically reported for other Lepidoptera. To further characterize CpomGOBPs, we cloned cDNA copies of their transcripts and determined their expression patterns in various tissues. Cloning and sequencing of the 698 nt transcript for CpomGOBP1 resulted in the prediction of a 163 amino acid coding region, and subsequent RT-PCR indicated that the transcripts were mainly expressed in antennae and mouthparts. The 1 289 nt (160 amino acid) CpomGOBP2 and the novel 702 nt (169 amino acid) CpomGOBP3 transcripts are mainly expressed in antennae, mouthparts, and female abdomen tips. These results indicate that next generation sequencing is useful for the identification of novel transcripts of interest, and that codling moth expresses a transcript encoding for a new member of the GOBP subfamily.
Assessing Expressive Movement: Measuring Student Learning Outcomes in the General Music Classroom
ERIC Educational Resources Information Center
Butke, Marla A.
2014-01-01
Expressive movement, created by students to demonstrate musical elements and artistry, provides a valid assessment opportunity for general music teachers. This purposeful movement, "plastique animée", was developed by Swiss composer, Émile Jaques-Dalcroze, in the early 20th century. "Plastique animée" can serve as a useful…
Gámez, Francisco
2014-06-21
An extensive generalisation of the discrete perturbation theory for molecular multipolar non-spherical fluids is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape and multipolar dependence. By varying the intermolecular parameters through their geometrical and multipolar dependence, a set of molecular fluids are considered and their vapor-liquid phase diagrams are tested against available simulation data. Concretely, multipolar and non-polar Kihara and chainlike fluids are tested and it is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected molecular potentials, except near the critical region.
Thermodynamic of fluids from a general equation of state: The molecular discrete perturbation theory
Gámez, Francisco
2014-06-21
An extensive generalisation of the discrete perturbation theory for molecular multipolar non-spherical fluids is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape and multipolar dependence. By varying the intermolecular parameters through their geometrical and multipolar dependence, a set of molecular fluids are considered and their vapor–liquid phase diagrams are tested against available simulation data. Concretely, multipolar and non-polar Kihara and chainlike fluids are tested and it is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected molecular potentials, except near the critical region.
Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis.
Walker, Josephine G; Hurford, Amy; Cable, Jo; Ellison, Amy R; Price, Stephen J; Cressler, Clayton E
2017-05-05
Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists-infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish-macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Generalized gaugino condensation in super Yang-Mills theories: Discrete R symmetries and vacua
NASA Astrophysics Data System (ADS)
Kehayias, John
2010-12-01
One can define generalized models of gaugino condensation as theories that dynamically break a discrete R symmetry but do not break supersymmetry. We consider general examples consisting of gauge and matter fields and the minimal number of gauge-singlet fields to avoid flat directions in the potential. We explore which R symmetries can arise and their spontaneous breaking. In general, we find that the discrete symmetry is Z2b0R, and the number of supersymmetric vacua is b0, where b0 is the coefficient of the one-loop beta function. Results are presented for various groups, including SU(Nc), SO(Nc), Sp(2Nc), and G2, for various numbers of flavors, Nf, by several methods. This analysis can also apply to the other exceptional groups and, thus, all simple Lie groups. We also comment on model-building applications where a discrete R symmetry, broken by the singlet vacuum expectation values, can account for μ-type terms and allow a realistic Higgs spectrum naturally.
Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis
Hurford, Amy; Ellison, Amy R.
2017-01-01
Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists—infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish–macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289257
Development of Generalized Perturbation Theory Capability within the SCALE Code Package
Jessee, Matthew Anderson; Williams, Mark L; DeHart, Mark D
2009-01-01
Computational capability has been developed to calculate sensitivity coefficients of generalized responses with respect to cross-section data in the SCALE code system. The focus of this paper is the implementation of generalized perturbation theory (GPT) for one-dimensional and two-dimensional deterministic neutron transport calculations. GPT is briefly summarized for computing sensitivity coefficients for reaction rate ratio responses within the existing framework of the TSUNAMI sensitivity and uncertainty (S/U) analysis code package in SCALE. GPT provides the capability to analyze generalized responses related to reactor analysis, such as homogenized cross-sections, relative powers, and conversion ratios, as well as measured experimental parameters such as 28 (epithermal/thermal 238U capture rates) in thermal benchmarks and fission ratios such as 239Pu(n,f)/235U(n,f) in fast benchmarks. The S/U analysis of these experimental integral responses can be used to augment the existing TSUNAMI S/U analysis capabilities for system similarity assessment and data adjustment. S/U analysis is provided for boiling water reactor pin cell as part of the Organization for Economic Cooperation and Development Uncertainty Analysis in Modeling benchmark.
The general expression of Binet equation about celestial bodies motion orbits
NASA Astrophysics Data System (ADS)
Yan, Kun
By discussing the existent equations of mass-velocity relation, the equivalent polar coordinate equation and its Binet equation of the mass-velocity relation are given, and the expressions of the mass-velocity relation and mass-energy relation are given too, which include the forms of superluminal motion. Subsequently, using the mass-energy relation, the general expression of the solution of the energy-curvature equation on the medium shell curve method is discussed, and the general expression of Binet equation about orbit of the celestial bodies motion is given. Further more, the analysis solutions of the advance of the perihelion of planets and bending of light for the gravitational force are given.
A generalized number theory problem applied to ideal liquids and to terminological lexis
NASA Astrophysics Data System (ADS)
Maslov, V. P.; Maslova, T. V.
2017-01-01
We consider the notion of number of degrees of freedom in number theory and thermodynamics. This notion is applied to notions of terminology such as terms, slogans, themes, rules, and regulations. Prohibitions are interpreted as restrictions on the number of degrees of freedom. We present a theorem on the small number of degrees of freedom as a consequence of the generalized partitio numerorum problem. We analyze the relationship between thermodynamically ideal liquids with the lexical background that a term acquires in the process of communication. Examples showing how this background may be enhanced are considered. We discuss the question of the coagulation of drops in connection with the forecast of analogs of the gas-ideal liquid phase transition in social-political processes.
Infinite dimensional Morse theory and Fermat's principle in general relativity. I
NASA Astrophysics Data System (ADS)
Perlick, Volker
1995-12-01
The following theorem may be viewed as the general relativistic version of Fermat's principle. Among all lightlike curves connecting a given point p to a given timelike curve γ in a Lorentzian manifold, the geodesics are characterized by stationary arrival time. Here ``arrival time'' refers to a smooth parametrization of γ. In this article the first steps are taken to make infinite dimensional Morse theory applicable to this variational problem. The space of trial curves is made into a Hilbert manifold by imposing an H2 Sobolev condition and Fermat's principle is reformulated in this infinite dimensional setting. Moreover, a Morse index theorem is presented. The mathematical formalism developed here aims at applications to the gravitational lens effect.
NASA Technical Reports Server (NTRS)
Hoots, F. R.; Fitzpatrick, P. M.
1979-01-01
The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.
Bui, Linh; Mullan, Barbara; McCaffery, Kirsten
2013-01-01
An appropriate theoretical framework may be useful for guiding the development of physical activity interventions. This review investigates the effectiveness of the protection motivation theory (PMT), a model based on the cognitive mediation processes of behavioral change, in the prediction and promotion of physical activity participation. A literature search was conducted using the databases MEDLINE, PsycINFO, PubMed, and Web of Science, and a manual search was conducted on relevant reference lists. Studies were included if they tested or applied the PMT, measured physical activity, and sampled from healthy populations. A total of 20 studies were reviewed, grouped into four design categories: prediction, stage discrimination, experimental manipulation, and intervention. The results indicated that the PMT's coping appraisal construct of self-efficacy generally appears to be the most effective in predicting and promoting physical activity participation. In conclusion, the PMT shows some promise, however, there are still substantial gaps in the evidence.
General Strain Theory and Delinquency: Extending a Popular Explanation to American Indian Youth*
Eitle, David; Eitle, Tamela McNulty
2014-01-01
Despite evidence that American Indian adolescents are disproportionately involved in crime and delinquent behavior, there exists scant research exploring the correlates of crime among this group. We posit that Agnew’s (1992) General Strain Theory (GST) is well suited to explain American Indian delinquent activity. Using the National Longitudinal Study of Adolescent Health, we examined a subsample of American Indian students—a study that represents, to the best of our knowledge, the initial published test of GST principles used to explain AI delinquent behavior. Overall, we find mixed support for the core principles of GST applying to AI delinquent behavior. We also found evidence that some of the personal and social resources identified by Agnew condition the strain-delinquent behavior relationship, albeit, sometimes in ways that are not entirely consistent with GST. PMID:27217594
Canfora, Fabrizio; Willison, Steven; Giacomini, Alex; Troncoso, Ricardo
2009-08-15
It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effect opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.
Study on general theory of kinematics and dynamics of wheeled mobile robots
NASA Astrophysics Data System (ADS)
Tsukishima, Takahiro; Sasaki, Ken; Takano, Masaharu; Inoue, Kenji
1992-03-01
This paper proposes a general theory of kinematics and dynamics of wheeled mobile robots (WMRs). Unlike robotic manipulators which are modeled as 3-dimensional serial link mechanism, WMRs will be modeled as planar linkage mechanism with multiple links branching out from the base and/or another link. Since this model resembles a tree with branches, it will be called 'tree-structured-link'. The end of each link corresponds to the wheel which is in contact with the floor. In dynamics of WMR, equation of motion of a WMR is derived from joint input torques incorporating wheel dynamics. The wheel dynamics determines forces and moments acting on wheels as a function of slip velocity. This slippage of wheels is essential in dynamics of WMR. It will also be shown that the dynamics of WMR reduces to kinematics when slippage of wheels is neglected. Furthermore, the equation of dynamics is rewritten in velocity input form, since most of industrial motors are velocity controlled.
General quantum-mechanical setting for field-antifield formalism as a hyper-gauge theory
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-09-01
A general quantum-mechanical setting is proposed for the field-antifield formalism as a unique hyper-gauge theory in the field-antifield space. We formulate a Schr\\"odinger-type equation to describe the quantum evolution in a "current time" purely formal in its nature. The corresponding Hamiltonian is defined in the form of a supercommutator of the delta-operator with a hyper-gauge Fermion. The initial wave function is restricted to be annihilated with the delta-operator. The Schr\\"odinger's equation is resolved in a closed form of the path integral, whose action contains the symmetric Weyl's symbol of the Hamiltonian. We take the path integral explicitly in the case of being a hyper-gauge Fermion an arbitrary function rather than an operator.
Shaped beam scattering by an aggregate of particles using generalized Lorenz-Mie theory
NASA Astrophysics Data System (ADS)
Briard, Paul; Wang, Jia jie; Han, Yi Ping
2016-04-01
In this paper, the light scattering by an aggregate of particles illuminated by an arbitrary shaped beam is analyzed within the framework of generalized Lorenz-Mie theory (GLMT). The theoretical derivations of aggregated particles illuminated by an arbitrary shaped beam are revisited, with special attention paid to the computation of beam shape coefficients of a shaped beam for aggregated particles. The theoretical treatments as well as a home-made code are then verified by making comparisons between our numerical results and those calculated using a public available T-Matrix code MSTM. Good agreements are achieved which partially indicate the correctness of both codes. Additionally, more numerical results are presented to study the scattered fields of aggregated particles illuminated by a focused Gaussian beam. Several large enhancements in the scattered intensity distributions are found which are believed to be due to the Bragg's scattering by a linear chain of spheres.
Double-hybrid density-functional theory with meta-generalized-gradient approximations
Souvi, Sidi M. O. Sharkas, Kamal; Toulouse, Julien
2014-02-28
We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.
Generalized mean-field theory for Ising spins in small world networks.
Meilikhov, E Z; Farzetdinova, R M
2005-04-01
A generalization of mean-field theory for random systems is described. The results of that analytic model could be reconciled with the results of numerical calculations of the Curie temperature for a system of Ising spins in small world (SW) networks by introducing the effective interaction energy associated with long-range links which exceeds the real energy of spin interaction. Such a model describes qualitatively well the increasing Curie temperature T(C) with the growth of the long-range links fraction p in the two-dimensional SW system with fixed coordination number. On the basis of simple physical considerations, concentration dependences T(C)(p) are found for SW systems of different dimensions.
Childhood abuse and criminal behavior: testing a general strain theory model.
Watts, Stephen J; McNulty, Thomas L
2013-10-01
This article draws on general strain theory (GST) to develop and test a model of the childhood abuse-crime relationship. Using data from the National Longitudinal Study of Adolescent Health (Add Health),(1) we find that early childhood physical and sexual abuse are robust predictors of offending in adolescence, for the full sample and in equations disaggregated by gender. GST is partially supported in that the effects of childhood physical abuse on offending for both females and males are mediated by an index of depression symptoms, whereas the effect of sexual abuse among females appears to be mediated largely by closeness to mother. The effect of childhood sexual abuse among males, however, is more robust than among females and it persists despite controls for low self-control, ties to delinquent peers, school attachment, and closeness to mother. Theoretical implications of the findings are discussed.
A general theory of evolution based on energy efficiency: its implications for diseases.
Yun, Anthony J; Lee, Patrick Y; Doux, John D; Conley, Buford R
2006-01-01
We propose a general theory of evolution based on energy efficiency. Life represents an emergent property of energy. The earth receives energy from cosmic sources such as the sun. Biologic life can be characterized by the conversion of available energy into complex systems. Direct energy converters such as photosynthetic microorganisms and plants transform light energy into high-energy phosphate bonds that fuel biochemical work. Indirect converters such as herbivores and carnivores predominantly feed off the food chain supplied by these direct converters. Improving energy efficiency confers competitive advantage in the contest among organisms for energy. We introduce a term, return on energy (ROE), as a measure of energy efficiency. We define ROE as a ratio of the amount of energy acquired by a system to the amount of energy consumed to generate that gain. Life-death cycling represents a tactic to sample the environment for innovations that allow increases in ROE to develop over generations rather than an individual lifespan. However, the variation-selection strategem of Darwinian evolution may define a particular tactic rather than an overarching biological paradigm. A theory of evolution based on competition for energy and driven by improvements in ROE both encompasses prior notions of evolution and portends post-Darwinian mechanisms. Such processes may involve the exchange of non-genetic traits that improve ROE, as exemplified by cognitive adaptations or memes. Under these circumstances, indefinite persistence may become favored over life-death cycling, as increases in ROE may then occur more efficiently within a single lifespan rather than over multiple generations. The key to this transition may involve novel methods to address the promotion of health and cognitive plasticity. We describe the implications of this theory for human diseases.
Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O
2014-11-01
A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.
Coverage theories for metagenomic DNA sequencing based on a generalization of Stevens' theorem.
Wendl, Michael C; Kota, Karthik; Weinstock, George M; Mitreva, Makedonka
2013-11-01
Metagenomic project design has relied variously upon speculation, semi-empirical and ad hoc heuristic models, and elementary extensions of single-sample Lander-Waterman expectation theory, all of which are demonstrably inadequate. Here, we propose an approach based upon a generalization of Stevens' Theorem for randomly covering a domain. We extend this result to account for the presence of multiple species, from which are derived useful probabilities for fully recovering a particular target microbe of interest and for average contig length. These show improved specificities compared to older measures and recommend deeper data generation than the levels chosen by some early studies, supporting the view that poor assemblies were due at least somewhat to insufficient data. We assess predictions empirically by generating roughly 4.5 Gb of sequence from a twelve member bacterial community, comparing coverage for two particular members, Selenomonas artemidis and Enterococcus faecium, which are the least ([Formula: see text]3 %) and most ([Formula: see text]12 %) abundant species, respectively. Agreement is reasonable, with differences likely attributable to coverage biases. We show that, in some cases, bias is simple in the sense that a small reduction in read length to simulate less efficient covering brings data and theory into essentially complete accord. Finally, we describe two applications of the theory. One plots coverage probability over the relevant parameter space, constructing essentially a "metagenomic design map" to enable straightforward analysis and design of future projects. The other gives an overview of the data requirements for various types of sequencing milestones, including a desired number of contact reads and contig length, for detection of a rare viral species.
Connections between the Sznajd model with general confidence rules and graph theory.
Timpanaro, André M; Prado, Carmen P C
2012-10-01
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
NASA Technical Reports Server (NTRS)
Wu, Chung-Hua
1993-01-01
This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.
General Formalism of Decision Making Based on Theory of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Asano, M.; Ohya, M.; Basieva, I.; Khrennikov, A.
2013-01-01
We present the general formalism of decision making which is based on the theory of open quantum systems. A person (decision maker), say Alice, is considered as a quantum-like system, i.e., a system which information processing follows the laws of quantum information theory. To make decision, Alice interacts with a huge mental bath. Depending on context of decision making this bath can include her social environment, mass media (TV, newspapers, INTERNET), and memory. Dynamics of an ensemble of such Alices is described by Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. We speculate that in the processes of evolution biosystems (especially human beings) designed such "mental Hamiltonians" and GKSL-operators that any solution of the corresponding GKSL-equation stabilizes to a diagonal density operator (In the basis of decision making.) This limiting density operator describes population in which all superpositions of possible decisions has already been resolved. In principle, this approach can be used for the prediction of the distribution of possible decisions in human populations.
Connections between the Sznajd model with general confidence rules and graph theory
NASA Astrophysics Data System (ADS)
Timpanaro, André M.; Prado, Carmen P. C.
2012-10-01
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
ERIC Educational Resources Information Center
Keller-Margulis, Milena A.; Mercer, Sterett H.; Thomas, Erin L.
2016-01-01
The purpose of this study was to examine the reliability of written expression curriculum-based measurement (WE-CBM) in the context of universal screening from a generalizability theory framework. Students in second through fifth grade (n = 145) participated in the study. The sample included 54% female students, 49% White students, 23% African…
ERIC Educational Resources Information Center
Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.
2012-01-01
In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…
PyR@TE. Renormalization group equations for general gauge theories
NASA Astrophysics Data System (ADS)
Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.
2014-03-01
Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer
NASA Astrophysics Data System (ADS)
Lazar, Markus; Agiasofitou, Eleni
2014-12-01
The present work provides fundamental quantities in generalized elasticity and dislocation theory of quasicrystals. In a clear and straightforward manner, the three-dimensional Green tensor of generalized elasticity theory and the extended displacement vector for an arbitrary extended force are derived. Next, in the framework of dislocation theory of quasicrystals, the solutions of the field equations for the extended displacement vector and the extended elastic distortion tensor are given; that is, the generalized Burgers equation for arbitrary sources and the generalized Mura-Willis formula, respectively. Moreover, important quantities of the theory of dislocations as the Eshelby stress tensor, Peach-Koehler force, stress function tensor and the interaction energy are derived for general dislocations. The application to dislocation loops gives rise to the generalized Burgers equation, where the displacement vector can be written as a sum of a line integral plus a purely geometric part. Finally, using the Green tensor, all other dislocation key-formulas for loops, known from the theory of anisotropic elasticity, like the Peach-Koehler stress formula, Mura-Willis equation, Volterra equation, stress function tensor and the interaction energy are derived for quasicrystals.
A coarse-grained generalized second law for holographic conformal field theories
NASA Astrophysics Data System (ADS)
Bunting, William; Fu, Zicao; Marolf, Donald
2016-03-01
We consider the universal sector of a d\\gt 2 dimensional large-N strongly interacting holographic CFT on a black hole spacetime background B. When our CFT d is coupled to dynamical Einstein-Hilbert gravity with Newton constant G d , the combined system can be shown to satisfy a version of the thermodynamic generalized second law (GSL) at leading order in G d . The quantity {S}{CFT}+\\frac{A({H}B,{perturbed})}{4{G}d} is non-decreasing, where A({H}B,{perturbed}) is the (time-dependent) area of the new event horizon in the coupled theory. Our S CFT is the notion of (coarse-grained) CFT entropy outside the black hole given by causal holographic information—a quantity in turn defined in the AdS{}d+1 dual by the renormalized area {A}{ren}({H}{{bulk}}) of a corresponding bulk causal horizon. A corollary is that the fine-grained GSL must hold for finite processes taken as a whole, though local decreases of the fine-grained generalized entropy are not obviously forbidden. Another corollary, given by setting {G}d=0, states that no finite process taken as a whole can increase the renormalized free energy F={E}{out}-{{TS}}{CFT}-{{Ω }}J, with T,{{Ω }} constants set by {H}B. This latter corollary constitutes a 2nd law for appropriate non-compact AdS event horizons.
Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization
Sagi, Eva
2009-08-15
The tensor-vector-scalar theory of gravity, which was designed as a relativistic implementation to the modified dynamics paradigm, has fared quite well as an alternative to dark matter, on both galactic and cosmological scales. However, its performance in the Solar System, as embodied in the post-Newtonian formalism, has not yet been fully investigated. We calculate the post-Newtonian parameters for TeVeS with the cosmological value of the scalar field taken into account, and show that in this situation the cosmological value of the scalar field is tightly linked to the vector field coupling constant K, preventing the former from evolving as predicted by its equation of motion. We show that generalizing TeVeS to have an Aether-type vector action, as suggested by Skordis, removes the aforesaid link, and this generalized version of TeVes has its {beta}, {gamma}, and {xi} parameterized post-Newtonian parameters identical to those in GR, while solar system constraints on the preferred frame parameters {alpha}{sub 1} and {alpha}{sub 2} can be satisfied within a modest range of small values of the scalar and vector fields coupling parameters, and for cosmological values of the scalar field consistent with evolution within the framework of existing cosmological models.
General resistance crossover expressions for three-dimensional variable-range hopping
NASA Astrophysics Data System (ADS)
Van Lien, Nguyen; Rosenbaum, Ralph
1998-07-01
We observe a crossover in the temperature dependence of the variable-range-hopping resistivity in a three-dimensional nickel-silicon film from the Mott 0953-8984/10/27/009/img5-behaviour to the soft-gap 0953-8984/10/27/009/img6-behaviour with 0953-8984/10/27/009/img7. We propose general expressions for describing such crossovers from 0953-8984/10/27/009/img5-behaviour to 0953-8984/10/27/009/img6-behaviour for any 0953-8984/10/27/009/img10 from 1/4 to 1. The theoretical expressions fit the experimental data well.
Equivalent theories redefine Hamiltonian observables to exhibit change in general relativity
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2017-03-01
Change and local spatial variation are missing in canonical General Relativity’s observables as usually defined, an aspect of the problem of time. Definitions can be tested using equivalent formulations of a theory, non-gauge and gauge, because they must have equivalent observables and everything is observable in the non-gauge formulation. Taking an observable from the non-gauge formulation and finding the equivalent in the gauge formulation, one requires that the equivalent be an observable, thus constraining definitions. For massive photons, the de Broglie–Proca non-gauge formulation observable {{A}μ} is equivalent to the Stueckelberg–Utiyama gauge formulation quantity {{A}μ}+{{\\partial}μ}φ, which must therefore be an observable. To achieve that result, observables must have 0 Poisson bracket not with each first-class constraint, but with the Rosenfeld–Anderson–Bergmann–Castellani gauge generator G, a tuned sum of first-class constraints, in accord with the Pons–Salisbury–Sundermeyer definition of observables. The definition for external gauge symmetries can be tested using massive gravity, where one can install gauge freedom by parametrization with clock fields X A . The non-gauge observable {{g}μ ν} has the gauge equivalent {{X}A}{{,}μ}{{g}μ ν}{{X}B}{{,}ν}. The Poisson bracket of {{X}A}{{,}μ}{{g}μ ν}{{X}B}{{,}ν} with G turns out to be not 0 but a Lie derivative. This non-zero Poisson bracket refines and systematizes Kuchař’s proposal to relax the 0 Poisson bracket condition with the Hamiltonian constraint. Thus observables need covariance, not invariance, in relation to external gauge symmetries. The Lagrangian and Hamiltonian for massive gravity are those of General Relativity + Λ + 4 scalars, so the same definition of observables applies to General Relativity. Local fields such as {{g}μ ν} are observables. Thus observables change. Requiring equivalent observables for equivalent theories also recovers
Calculation of positron binding energies using the generalized any particle propagator theory.
Romero, Jonathan; Charry, Jorge A; Flores-Moreno, Roberto; Varella, Márcio T do N; Reyes, Andrés
2014-09-21
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ~0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Calculation of positron binding energies using the generalized any particle propagator theory
NASA Astrophysics Data System (ADS)
Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés
2014-09-01
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ˜0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Zhou, Shiqi
2010-09-09
Local self-consistent Ornstein-Zernike (OZ) integral equation theory (IET) provides a rapid and easy route for obtaining independently thermodynamic and structural information for a single state point. Because of neglect of information of neighboring state points in determining a self-consistent adjustable parameter performance of the local self-consistent OZ IET is somewhat vulnerable and worthy of intensive investigation. For this reason, we have performed Monte Carlo simulations to obtain thermodynamic and structural properties of fluid with a generalized Lennard-Jones potential, and the present simulation results are employed to verify the quality of a local version of a recently developed global self-consistent OZ IET and a local expression for computation of excess chemical potential directly from the structural functions of the state point of interest. Comprehensive comparison and analysis demonstrate the following (i) the present local self-consistent OZ IET performs quite well for calculation of pressure and excess internal energy; (ii) using the same structural functions from the present local self-consistent OZ IET, the previously derived local expression by the present author has by and large the same accuracy in calculating the excess chemical potential as an exact virial formula for the pressure; (iii) although the excellent performance exhibited for the above thermodynamic quantities persists to very low temperature and very short-ranged potential and remains even in the liquid-solid coexistence region, the excess Helmholtz free energy calculated from the pressure and excess chemical potential shows evident inaccuracy for a density-temperature combination deep in the liquid-solid coexistence region, and this makes it necessary to derive a local formulation for the excess free energy.
BOOK REVIEW: Einstein's General Theory of Relativity—with Modern Applications in Cosmology
NASA Astrophysics Data System (ADS)
Barrabès, C.
2008-09-01
The increasing prominence of general relativity in astrophysics and cosmology is reflected in the growing number of texts, particularly at the undergraduate level. A natural attitude before opening a new one is to ask i) what makes this different from those already published? And ii) does it follow the 'physics-first approach' as for instance the book by Hartle where the basic physical concepts are introduced first with as little formalism as possible, or does it follow the more traditional 'math-first approach' for which the mathematical formalism comes first and is then applied to phyics? As announced in the title, a distinctive feature of the book by Gron and Hervik is the space (almost half the book) devoted to cosmology and in particular to some of the most recent developments in this rapidly evolving field. It is also apparent that the authors have chosen, like the majority of current books on general relativity, the 'math-first approach'. The book is divided into six parts, each of them subdivided into chapters with part VI containing a few short technical appendices. The first part of the book briefly presents in chapter I the principles of relativity, Newtonian mechanics and the Newtonian theory of gravity. In chapter II, a short introduction to special relativity is given. It seems at first surprising that the four-dimensional structure of space-time is not more fully exploited so that the reader would gain familiarity early on with notions like 4-velocity, 4-momentum and the stress energy tensor. This is in fact postponed to part II as an illustration of the mathematical formalism. The second part is devoted to those elements of differential geometry needed in this kind of course. The authors' presentation is somewhat similar to that of the books by Misner, Thorne and Wheeler and by Straumann (2nd edition). Vectors and forms are treated separately and the formalism of differential forms is introduced in detail. The various kinds of differentiation on
Generalized entropy theory of glass-formation in fully flexible polymer melts
NASA Astrophysics Data System (ADS)
Xu, Wen-Sheng; Douglas, Jack F.; Freed, Karl F.
2016-12-01
The generalized entropy theory (GET) offers many insights into how molecular parameters influence polymer glass-formation. Given the fact that chain rigidity often plays a critical role in understanding the glass-formation of polymer materials, the GET was originally developed based on models of semiflexible chains. Consequently, all previous calculations within the GET considered polymers with some degree of chain rigidity. Motivated by unexpected results from computer simulations of fully flexible polymer melts concerning the dependence of thermodynamic and dynamic properties on the cohesive interaction strength (ɛ), the present paper employs the GET to explore the influence of ɛ on glass-formation in models of polymer melts with a vanishing bending rigidity, i.e., fully flexible polymer melts. In accord with simulations, the GET for fully flexible polymer melts predicts that basic dimensionless thermodynamic properties (such as the reduced thermal expansion coefficient and isothermal compressibility) are universal functions of the temperature scaled by ɛ in the regime of low pressures. Similar scaling behavior is also found for the configurational entropy density in the GET for fully flexible polymer melts. Moreover, we find that the characteristic temperatures of glass-formation increase linearly with ɛ and that the fragility is independent of ɛ in fully flexible polymer melts, predictions that are again consistent with simulations of glass-forming polymer melts composed of fully flexible chains. Beyond an explanation of these general trends observed in simulations, the GET for fully flexible polymer melts predicts the presence of a positive residual configurational entropy at low temperatures, indicating a return to Arrhenius relaxation in the low temperature glassy state.
Chung, Yi-Shih; Wong, Jinn-Tsai
2012-11-01
While many studies examine the mean score differences of psychological determinants between heterogeneous driver groups, this study reveals a structural discrepancy in a causal behavioral framework. Using young motorcyclists (ages 18-28) as subjects, this study investigates the various roles of key influential factors in determining risky driving behavior. Multi-group analysis of structural equation modeling shows that age and gender are two factors that can effectively distinguish heterogeneous driver groups exhibiting different decision-making mechanisms in shaping their risky driving behaviors. When encountering undesirable traffic conditions, road rage can immediately increase male motorcyclists' intentions to engage in risky driving behaviors; on the other hand, young female motorcyclists further calculate their perceived risk to determine whether to engage in risky driving behaviors. This result shows that there is a significant link between risk perception and traffic condition awareness for experienced drivers (ages 25-28), but not for younger drivers (ages 18-24). This finding shows that while well-developed theories such as planned behavior and risk homeostasis provide general frameworks to explain risky driving behavior, heterogeneous driver groups may exhibit structural discrepancies that reflect their various decision-making mechanisms. This suggests that, in addition to mean differences, understanding structural discrepancies among heterogeneous groups could help researchers identify effective intervention strategies.
NASA Astrophysics Data System (ADS)
Zhang, Weiyi; Chui, S. T.
2009-06-01
We generalize Kirchoff's law for multiply connected wire networks to finite frequencies. We focus on the boundary conditions not present in the conventional Kirchoff's law at joints when more than three wires come together, which is absent in our previous "circuit theory" for the finite frequency properties of metallic wire networks for singly connected structures. These boundary conditions at the joints involve introducing localized boundary electric fields, in addition to the electric fields of inductive and capacitive origins. The boundary fields act as natural "Lagrange multipliers" for imposing the boundary conditions on the circuit currents. In this way the number of equations is the same as the number of unknowns. The eigenmodes determine not only the circuit current and charge profiles, but also the boundary electric fields which supplement such profiles. The application to T- and H-shape metallic wire networks suggests that the basic types of resonances are mainly controlled by the symmetry and the wire dimensions of the networks. The low frequency modes form along the longest connected paths of the wire network while the high frequency modes can be generated via succeedingly adding more nodes along these various wire paths. The characteristic behavior of the electric and magnetic responses can be inferred from the circuit current profile of a given mode, which offers a simple physical picture on circuit design with particular electromagnetic parameters.
Thermally-assisted-occupation density functional theory with generalized-gradient approximations
Chai, Jeng-Da
2014-05-14
We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.
Training for generalization in Theory of Mind: a study with older adults
Cavallini, Elena; Bianco, Federica; Bottiroli, Sara; Rosi, Alessia; Vecchi, Tomaso; Lecce, Serena
2015-01-01
Theory of Mind (ToM) refers to the ability to attribute independent mental states to self and others in order to explain and predict social behavior. Recent research in this area has shown a decline in ToM abilities associated with normal aging that is of a moderate magnitude or greater. Very few studies have investigated whether it is possible to improve older adults’ ToM abilities. The present study was designed to address this gap in the literature by evaluating the impact of a ToM training on practiced and transfer tasks. We provided older adults with a variety of activities designed to facilitate the generalization of benefits to other ToM-demanding tasks. Participants were 63 healthy older adults, native Italian speakers (Mage = 71.44, SD = 5.24, age range: 63–81 years). Participants were randomly assigned to one of two groups: the ToM training (age range: 63–81 years) and the physical-conversation training (age range: 64–81 years). Training effects were measured using the strange stories (practiced task) and the animation task (transfer task). Results revealed the efficacy of the training in producing improvements on practiced but also on transfer tasks. PMID:26300818
A review of linear response theory for general differentiable dynamical systems
NASA Astrophysics Data System (ADS)
Ruelle, David
2009-04-01
The classical theory of linear response applies to statistical mechanics close to equilibrium. Away from equilibrium, one may describe the microscopic time evolution by a general differentiable dynamical system, identify nonequilibrium steady states (NESS) and study how these vary under perturbations of the dynamics. Remarkably, it turns out that for uniformly hyperbolic dynamical systems (those satisfying the 'chaotic hypothesis'), the linear response away from equilibrium is very similar to the linear response close to equilibrium: the Kramers-Kronig dispersion relations hold, and the fluctuation-dispersion theorem survives in a modified form (which takes into account the oscillations around the 'attractor' corresponding to the NESS). If the chaotic hypothesis does not hold, two new phenomena may arise. The first is a violation of linear response in the sense that the NESS does not depend differentiably on parameters (but this nondifferentiability may be hard to see experimentally). The second phenomenon is a violation of the dispersion relations: the susceptibility has singularities in the upper half complex plane. These 'acausal' singularities are actually due to 'energy nonconservation': for a small periodic perturbation of the system, the amplitude of the linear response is arbitrarily large. This means that the NESS of the dynamical system under study is not 'inert' but can give energy to the outside world. An 'active' NESS of this sort is very different from an equilibrium state, and it would be interesting to see what happens for active states to the Gallavotti-Cohen fluctuation theorem.
A Generalized Iterative Perturbation Theory for Multi-Orbital Lattice Model
NASA Astrophysics Data System (ADS)
Dasari, Nagamalleswararao; Vidhyadhiraja, N. S.; Chen, Kuang-Shing; Feng, Sheng; Moreno, Juana; Jarrell, Mark
2013-03-01
An efficient and accurate quantum impurity solver is needed for solving multi-orbital models by the dynamical mean field approximation. Impurity solvers such as quantum Monte Carlo(QMC) and exact diagonalization(ED) suffer from some limitations even though they are numerically exact, while the approximate method iterative perturbation theory(IPT) is free from these limitations. An IPT algorithm for non-degenerate multi-orbital lattice models is not available. Here we developed a generalized IPT for multi-orbital lattice model, we denote it as M-IPT. It can be applied for degenerate multi- orbital and single-orbital lattice models. As a first test we benchmarked the M-IPT results in the single-band Hubbard model case with the weak-coupling continuous-time Monte Carlo(W-CTQMC) results. We got good agreement between two methods. We are currently benchmarking the M-IPT results for the non-degenerate multi-orbital Hubbard model with the W-CTQMC results.
Gao, Yunjiao; Wong, Dennis S W; Yu, Yanping
2016-01-01
Using a sample of 1,163 adolescents from four middle schools in China, this study explores the intervening process of how adolescent maltreatment is related to delinquency within the framework of general strain theory (GST) by comparing two models. The first model is Agnew's integrated model of GST, which examines the mediating effects of social control, delinquent peer affiliation, state anger, and depression on the relationship between maltreatment and delinquency. Based on this model, with the intent to further explore the mediating effects of state anger and depression and to investigate whether their effects on delinquency can be demonstrated more through delinquent peer affiliation and social control, an extended model (Model 2) is proposed by the authors. The second model relates state anger to delinquent peer affiliation and state depression to social control. By comparing the fit indices and the significance of the hypothesized paths of the two models, the study found that the extended model can better reflect the mechanism of how maltreatment contributes to delinquency, whereas the original integrated GST model only receives partial support because of its failure to find the mediating effects of state negative emotions.
Nukala, Madhuri; Mendrok, Jana
2014-12-10
Lateral light scattering simulations of printed dots are analyzed using general radiative transfer theory. We investigated the appearance of a printed paper in relation to the medium parameters like thickness of the paper sample, its optical properties, and the asymmetry factor. It was found that the appearance of a print greatly depends on these factors making it either brighter or darker. A thicker substrate with higher single scattering albedo backed with an absorbing surface makes the dots brighter due to increased number of scattering events. Additionally, it is shown that the optical effects of print also depend on illuminating and viewing angles along with the depth of ink penetration. A larger single scattering angle implies less intensity and the dots appear much blurred due to the shadowing effect prominent when viewed from sides. A fully penetrated dot of the same extinction coefficient as a partial penetrated one is darker due to increased absorption. These results can be used in applications dealing with lateral light scattering.
Wingo, Aliza P.; Gibson, Greg
2014-01-01
Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD. PMID:25300922
Wingo, Aliza P; Gibson, Greg
2015-01-01
Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD.
NASA Astrophysics Data System (ADS)
Möller, Thomas
2016-12-01
General expressions for the matrix elements of the tight-binding operator are presented using the Racah-Wigner algebra, where the wave functions are expressed as coupled multiplet wave functions within a given angular momentum coupling scheme. The knowledge of all possible Slater determinants is not necessary and the matrix elements can be written as compact expressions computable with arbitrary accuracy.
Age- and Parkinson's disease-related evaluation of gait by General Tau Theory.
Zhang, Shutao; Qian, Jinwu; Zhang, Zhen; Shen, Linyong; Wu, Xi; Hu, Xiaowu
2016-10-01
The degeneration of postural control in the elderly and patients with Parkinson's disease (PD) can be debilitating and may lead to increased fall risk. This study evaluated the changes in postural control during gait affected by PD and aging using a new method based on the General Tau Theory. Fifteen patients with PD, 11 healthy old adults (HOs), and 15 healthy young adults (HYs) were recruited. Foot trajectories of each participant were monitored during walking by a three-camera Optotrak Certus(®) motion capture system. The anteroposterior direction of foot movement during stepping was analyzed by tau-G and tau-J guidance strategies. Two linear regression analyses suggested that the tau of the step-gap was strongly coupled onto the tau-J guidance during walking. The regression slope K could estimate the coupling ratio in the tau-coupling equation which reflects the performance of postural control during gait. The mean K value for the PD group, which was highest among the three groups, was approximately 0.5. Therefore, participants in the PD group walked with the poorest postural control and exhibited a relatively hard contact with the endpoint during stepping when compared with those in the HO and HY groups. The HY and HO groups obtained mean K values significantly lower than 0.5, which indicated that the gait was well controlled and ended at low speed with low deceleration. However, the HO group showed a decreased tendency for postural control, in which the mean K value was significantly higher than that of the HY group. The K value was moderately positively correlated with the double support time and negatively correlated with the stride length and walking speed. The tau-J coupling ratio can provide additional insight into gait disturbances and may serve as a reliable, objective, and quantitative tool to evaluate dynamic postural control during walking.
Making sense of medically unexplained symptoms in general practice: a grounded theory study.
Stone, Louise
2013-06-01
Background General practitioners often encounter patients with medically unexplained symptoms. These patients share many common features, but there is little agreement about the best diagnostic framework for describing them. Aims This study aimed to explore how GPs make sense of medically unexplained symptoms. Design Semi-structured interviews were conducted with 24 GPs. Each participant was asked to describe a patient with medically unexplained symptoms and discuss their assessment and management. Setting The study was conducted among GPs from teaching practices across Australia. Methods Participants were selected by purposive sampling and all interviews were transcribed. Iterative analysis was undertaken using constructivist grounded theory methodology. Results GPs used a variety of frameworks to understand and manage patients with medically unexplained symptoms. They used different frameworks to reason, to help patients make sense of their suffering, and to communicate with other health professionals. GPs tried to avoid using stigmatising labels such as 'borderline personality disorder', which were seen to apply a 'layer of dismissal' to patients. They worried about missing serious physical disease, but managed the risk by deliberately attending to physical cues during some consultations, and focusing on coping with medically unexplained symptoms in others. They also used referrals to exclude serious disease, but were wary of triggering a harmful cycle of uncoordinated care. Conclusion GPs were aware of the ethical relevance of psychiatric diagnoses, and attempted to protect their patients from stigma. They crafted helpful explanatory narratives for patients that shaped their experience of suffering. Disease surveillance remained an important role for GPs who were managing medically unexplained symptoms.
[Juvenile criminality: general strain theory and the reactive-proactive aggression trait].
Greco, Romy; Curci, Antonietta; Grattagliano, Ignazio
2009-01-01
The aims of the present study are to test General Strain Theory's (GST) assumptions, and to integrate the model including the proactive-reactive aggression trait. GST hypothesizes crime to be enacted in response to extra-personal stimuli (strain) and their subsequent negative emotions, especially anger. However, there exist also internally-driven manifestations of crime (instrumental or proactive), motivated by stimuli that are of an intrapersonal origin. Further, individuals differ to each other in the tendency to commit reactive or proactive or both manifestations of crime. With the goal to gain a more comprehensive model, GST variables and the reactive-proactive aggression trait are together tested as to their ability to predict criminal behaviour. Participants in the present research are 68 adolescent males with age ranging from 14 to 19 (M = 16.94, SD = 0.95). Half of the participants were jailed adolescents at the Fornelli Juvenile Detention Centre in Bari, while the remaining were adolescents with no criminal record, matched for age and level of education with the former group. An interview was administered to assess the experienced strain events, anger, and crime committed by the participants in the three months preceding the interview and also before. The reactive-proactive aggression trait was additionally measured. Results of the present study supported GST's assumptions, and confirmed the utility of integrating the model to include the proactive-reactive aggression trait. Strain events experienced in three-month time were found to influence property and violent offences committed by participants in the same time-interval as well as over this time. Furthermore,jailed participants were more likely to react with anger, and violence to strain events than non-jailed individuals, although the number of events experienced by both groups in the preceding months is similar. Finally, the results of the present study showed that proactive aggression is a strong
ERIC Educational Resources Information Center
Garg, Deepti; Garg, Ajay K.
2007-01-01
This study applied the Theory of Reasoned Action and the Technology Acceptance Model to measure outcomes of general education courses (GECs) under the University of Botswana Computer and Information Skills (CIS) program. An exploratory model was validated for responses from 298 students. The results suggest that resources currently committed to…
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry; McCluskey, Cynthia Perez; Hwang, Hye-Won
2009-01-01
Using longitudinal data on South Korean youth, the authors addressed limitations of previous tests of general strain theory (GST), focusing on the relationships among key strains, situational- and trait-based negative emotions, conditioning factors, and delinquency. Eight types of strain previously shown most likely to result in delinquency,…
ERIC Educational Resources Information Center
Soleimani, Habib; Moinnzadeh, Ahmad; Kassaian, Zohreh; Ketabi, Saeed
2012-01-01
The purpose of the present study is investigating the effect of instruction based on Multiple intelligence (MI) theory on attitude and learning of General English course among students of Islamic Azad University, Kermanshah Branch in the second semester of educational year of 2010-2011. 61 male and female students in two different classes…
ERIC Educational Resources Information Center
Nyachwaya, James M.; Gillaspie, Merry
2016-01-01
The goals of this study were (1) determine the prevalence of various features of representations in five general chemistry textbooks used in the United States, and (2) use cognitive load theory to draw implications of the various features of analyzed representations. We adapted the Graphical Analysis Protocol (GAP) (Slough et al., 2010) to look at…
ERIC Educational Resources Information Center
Hachtmann, Frauke
2010-01-01
The purpose of this study was to develop a theory for institutional change that explains the process and implementation of "Achievement-Centered Education" (ACE) from the faculty perspective. ACE is a new general education program at the University of Nebraska-Lincoln, a public, doctoral/research-extensive institution. A constant…
ERIC Educational Resources Information Center
Bao, Wan-Ning; Haas, Ain; Chen, Xiaojin; Pi, Yijun
2014-01-01
In Agnew's general strain theory, repeated strains can generate crime and delinquency by reducing social control and fostering social learning of crime. Using a sample of 615 middle-and high-school students in China, this study examines how social control and social learning variables mediate the effect of repeated strains in school and at home on…
Peng, Fang Zheng; Lai, Jih-Sheng
1996-10-01
A generalized theory of instantaneous reactive power for three-phase power systems is proposed in this paper. This theory gives a generalized definition of instantaneous reactive power, which is valid for sinusoidal or nonsinusoidal, balanced or unbalanced, three- phase power systems with or without zero-sequence currents and/or voltages. The properties and physical meanings of the newly defined instantaneous reactive power are discussed in detail. With this new reactive power theory, it is very easy to calculate and decompose all components, such as fundamental active/reactive power and current, harmonic current, etc. Reactive power and/or harmonic compensation systems for a three-phase distorted power system with and without zero-sequence components in the source voltage and/or load current are then used as examples to demonstrate the measurement, decomposition, and compensation of reactive power and harmonics.
NASA Astrophysics Data System (ADS)
Santos, Jander P.
2017-01-01
A generalization of mean field theory in a cluster with many sites was obtained for the spin-1/2 Ising model from the Gibbs-Bogoliubov inequality. The expressions for the free energy and the magnetization were obtained. The generalization was applied in a structure of the nanowire and nanotube hexagonal lattices, for clusters of seven sites and six sites, respectively. The results for the magnetization, the free energy, the internal energy, the entropy, the specific heat, and the critical frontiers were obtained. The critical temperature and the compensation temperature in a cylindrical Ising nanowire are investigated, in order to clarify the distinction between the ferromagnetic and ferrimagnetic behaviors when the core-shell exchange coupling takes a different sign. The results were compared with other works.
NASA Astrophysics Data System (ADS)
Santos, Jander P.
2017-04-01
A generalization of mean field theory in a cluster with many sites was obtained for the spin-1/2 Ising model from the Gibbs-Bogoliubov inequality. The expressions for the free energy and the magnetization were obtained. The generalization was applied in a structure of the nanowire and nanotube hexagonal lattices, for clusters of seven sites and six sites, respectively. The results for the magnetization, the free energy, the internal energy, the entropy, the specific heat, and the critical frontiers were obtained. The critical temperature and the compensation temperature in a cylindrical Ising nanowire are investigated, in order to clarify the distinction between the ferromagnetic and ferrimagnetic behaviors when the core-shell exchange coupling takes a different sign. The results were compared with other works.
Smeijers, Danique; Rinck, Mike; Bulten, Erik; van den Heuvel, Thom; Verkes, Robbert-Jan
2017-02-12
Individuals with aggression regulation disorders tend to attribute hostility to others in socially ambiguous situations. Previous research suggests that this "hostile attribution bias" is a powerful cause of aggression. Facial expressions form important cues in the appreciation of others' intentions. Furthermore, accurate processing of facial expressions is fundamental to normal socialization. However, research on interpretation biases in facial affect is limited. It is asserted that a hostile interpretation bias (HIB) is likely to be displayed by individuals with an antisocial (ASPD) and borderline personality disorder (BPD) and probably also with an intermittent explosive disorder (IED). However, there is little knowledge to what extent this bias is displayed by each of these patient groups. The present study investigated whether a HIB regarding emotional facial expressions was displayed by forensic psychiatric outpatients (FPOs) and whether it was associated with ASPD and BPD in general or, more specifically, with a disposition to react with pathological aggression. Participants of five different groups were recruited: FPOs with ASPD, BPD, or IED, non-forensic patients with BPD (nFPOs-BPD), and healthy, non-aggressive controls (HCs). Results suggest that solely FPOs with ASPD, BPD, or IED exhibit a HIB regarding emotional facial expressions. Moreover, this bias was associated with type and severity of aggression, trait aggression, and cognitive distortions. The results suggest that a HIB regarding facial expressions is an important characteristic of pathological aggressive behavior. Interventions that modify the HIB might help to reduce the recurrence of aggression. Aggr. Behav. 9999:1-12, 2017. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ezquiaga, Jose María; García-Bellido, Juan; Zumalacárregui, Miguel
2016-07-01
We use a description based on differential forms to systematically explore the space of scalar-tensor theories of gravity. Within this formalism, we propose a basis for the scalar sector at the lowest order in derivatives of the field and in any number of dimensions. This minimal basis is used to construct a finite and closed set of Lagrangians describing general scalar-tensor theories invariant under local Lorentz transformations in a pseudo-Riemannian manifold, which contains ten physically distinct elements in four spacetime dimensions. Subsequently, we compute their corresponding equations of motion and find which combinations are at most second order in derivatives in four as well as an arbitrary number of dimensions. By studying the possible exact forms (total derivatives) and algebraic relations between the basis components, we discover that there are only four Lagrangian combinations producing second-order equations, which can be associated with Horndeski's theory. In this process, we identify a new second-order Lagrangian, named kinetic Gauss-Bonnet, that was not previously considered in the literature. However, we show that its dynamics is already contained in Horndeski's theory. Finally, we provide a full classification of the relations between different second-order theories. This allows us to clarify, for instance, the connection between different covariantizations of Galileons theory. In conclusion, our formulation affords great computational simplicity with a systematic structure. As a first step, we focus on theories with second-order equations of motion. However, this new formalism aims to facilitate advances towards unveiling the most general scalar-tensor theories.
Bounds on the power of proofs and advice in general physical theories
Lee, Ciarán M.
2016-01-01
Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that QMA is contained in PP, which does not make use of any uniquely quantum structure—such as the fact that observables correspond to self-adjoint operators—and thus may be of independent interest. PMID:27436976
Lo, C.Y.
1981-01-15
In this paper, we study the apparent discrepancy between Feynman diagrams and the eikonal formulas, and the apparent paradox between the eikonal formulas and the s-u crossing symmetry. We analyze the generalized leading-term approximation (GLA), which generates the terms of the eikonal formulas from Feynman diagrams. This analysis is done through using the techniques of decomposing diagrammatically the isospin factors (or group-theoretical weights in general) of Feynman diagrams. As a result, we modify the GLA into a generalized complex leading-term approximation. We calculate, with this new formalism, the high-energy limit (s..-->..infinity with t fixed) of the vector-meson--vector-meson elastic amplitude of a Yang-Mills theory with SU(2) symmetry through tenth perturbative order. With this new method, we resolve the apparent discrepancy and paradox mentioned above. This method is generalizable to other non-Abelian gauge theories.
General theory of frequency modulated selective reflection. Influence of atom surface interactions
NASA Astrophysics Data System (ADS)
Ducloy, M.; Fichet, M.
1991-12-01
We calculate the modulation of the reflection coefficient for a frequency-modulated (FM) light beam incident on the interface between a dielectric and an atomic vapor. The vapor is described as a gas of resonant, Doppler-broadened, two-level systems, with transition frequency and linewidth arbitrarily depending on the atom-dielectric distance. The atoms are supposed to get deexcited at collisions with the surface. The transient atomic response is calculated to first order in the incident field, for both incoming and desorbed atoms. The reflection coefficient, evaluated to first order in the vapor dipole polarization, leads to a formal expression of the reflectivity modulation, valid for arbitrary atom-surface interaction potentials. One first discusses the reflection signal in absence of wall interactions, for arbitrary modulation frequencies. At large frequencies, it allows one to monitor both vapor absorption and dispersion. Second, the formal theory is applied to the case of a Van der Waals-London surface attraction exerted on the atomic vapor. Both normal and oblique beam incidences are considered. One shows how the vapor dispersion signal is red-shifted and strongly distorted by the appearance of vapor-surface long-range interactions, and how it can be used to monitor these interactions. At non-normal incidences, the lineshapes get Doppler-broadened. On calcule le coefficient de réflexion d'un faisceau lumineux, modulé en fréquence, incident sur une interface entre un milieu diélectrique et une vapeur atomique. Cette vapeur est décrite comme un ensemble de systèmes à deux niveaux, présentant un élargissement Doppler, et dont la fréquence de transition et la largeur de raie sont supposées dépendre de la distance au milieu diélectrique. On suppose par ailleurs que les atomes sont déexcités sur la paroi. La réponse transitoire des atomes est analysée au premier ordre en fonction du champ électromagnétique incident. Du coefficient de r
A Generalized Theory of Electrical Characteristics of Schottky Barriers for Amorphous Materials
NASA Astrophysics Data System (ADS)
Gupta, H. M.
1997-12-01
In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers. Dans cet article nous proposons une théorie géneralisée pour les charactéristiques éléctriques de barrière Schottky en semiconducteurs amorphes (ou isolants), tout en considérant: (i) des états de surface, (ii) des états d'impuretés dopées dans un seul niveau d'énergie, (iii) des états d'impuretés massives distribuées en énergie. Nous considérons aussi une fine couche d'oxide (10 Å) entre le métal et le semiconducteur. Nous développons les charactéristiques du courrant versus potentiel appliquée tout en considérant des variations du niveau de Fermi très proche du contact à l'intérieur du semiconducteur et une décroissance de l'hauteur de la barrière dûe aux effects de la force d'image ainsi qu'au chute de potentiel dans la couche d'oxide. Finalement nous discutons l'importance de chaque paramètre, i.e. états de surface, états d'impuretés distribuées, états d'impuretés dopées, épaisseur de la couche d'oxide, etc. sur les charact
Mogg, K; Millar, N; Bradley, B P
2000-11-01
The study investigated biases in selective attention to emotional face stimuli in generalized anxiety disorder (GAD) and depressive disorder, using a modified probe detection task. There were 4 face types: threatening, sad, happy, and neutral. Measures of attentional bias included (a) the direction and latency of the initial eye movement in response to the faces and (b) manual reaction time (RT) to probes replacing the face stimuli 1,000 ms after their onset. Results showed that individuals with GAD (without depressive disorder) were more likely to look first toward threat faces rather than neutral faces compared with normal controls and those with depressive disorder. They also shifted their gaze more quickly toward threat faces, rather than away from them, relative to the other two groups. There were no significant findings from the manual RT data. Implications of the results for recent theories of clinical anxiety and depression are discussed.
Exact relativistic expressions for wave refraction in a generally moving fluid.
Cavalleri, G; Tonni, E; Barbero, F
2013-04-01
The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.
Pseudorandomness of gene expression: a new evo-devo theory of ageing.
Fontana, Alessandro; Wrobel, Borys
2014-01-01
In contrast to the first part of life (development), ageing appears to be under less strict genetic control. The precise timing of events so characteristic of development seems to loosen its grasp, while stochastic and environmental factors seem to become the dominant force. Evolutionary theories put forward a decreasing evolutionary pressure over the course of life as the reason behind this pattern, yet dissenting views on ageing as a genetically programmed process linger. In this paper we address this dissent by presenting insights from an artificial evolutionary-developmental system, ET, and propose a new evo-devo theory of ageing-a theory that sees ageing as a continuation of development in the postreproductive period. In this theory both development and ageing are under genetic control. Nonetheless, while gene expression patterns that drive development are optimised by evolution, patterns that drive ageing are not optimised, because evolutionary pressure decreases with age. For these reasons, during ageing the changes orchestrated by genes are "pseudorandom"- deterministic but erratic-and their effects on an individual's health are more likely to be detrimental than beneficial. As such, they contribute to the continuous deterioration of bodily functions that characterise ageing.
NASA Technical Reports Server (NTRS)
Nakai, Junko; VanDerWijngaart, Rob F.
2003-01-01
Markets are often considered superior to other global scheduling mechanisms for distributed computing systems. This claim is supported by: a casual observation from our every-day life that markets successfully equilibrate supply and demand, and the features of markets which originate in the general equilibrium theory, e.g., efficiency and the lack of necessity of 2 central controller. This paper describes why such beliefs in markets are not warranted. It does so by examining the general equilibrium theory, in terms of scope, abstraction, and interpretation. Not only does the general equilibrium theory fail to provide a satisfactory explanation of actual economies, including a computing-resource economy, it also falls short of supplying theoretical foundations for commonly held views of market desirability. This paper also points out that the argument for the desirability of markets involves circular reasoning and that the desirability can be established only vis-a-vis a scheduling goal. Finally, recasting the conclusion of Arrow's Impossibility Theorem as that for global scheduling, we conclude that there exists no market-based scheduler that is rational (in the sense defined in microeconomic theory), takes into account utility of more than one user, and yet yields a Pareto-optimal outcome for arbitrary user utility functions.
Ultrasound transducer modeling--general theory and applications to ultrasound reciprocal systems.
Willatzen, M
2001-01-01
A tutorial presentation on the theory of reciprocal ultrasound systems is given, and a complete set of modeling equations for one-dimensional multi-layer ultrasound transducers is derived from first principles. The model includes dielectric losses and mechanical losses in the transducer material layers as well as sound absorption in the transmission medium. First, the so-called constitutive relations of a piezoelectric body are derived based on general thermodynamic considerations, assuming that transducer operation takes place under almost isentropic conditions. Second, full attention is given to transducers oscillating in the thickness mode, discarding all other vibration modes. Dynamic transducer equations are determined using Newton's Second Law, Poisson's equation, and the definition of strain applied to a piezoelectric transducer with one or more non-piezoelectric layers on the front surface (multilayer transducer). Boundary conditions include continuity of normal velocity and stress across material interfaces as well as a subsidiary electrical condition over the piezoceramic electrodes. Sound transmission is assumed to take place in a water bath such that the Rayleigh equation can be used to obtain the incoming pressure at the receiver aperture from the acceleration of the opposing transmitter. This allows, e.g., a detailed treatment of receiver signal variations as the receiver moves from the near-field zone to the far-field zone of the transmitter. In the remaining part of the paper, receiver voltage and current signals are obtained by solving the full set of dynamic equations numerically. Special attention is given to transducers consisting of a) a pure piezoceramic layer only, b) a piezoceramic layer and a quarter-wavelength matching layer of polyphenylensulphide (PPS), c) a piezoceramic layer and a half-wavelength matching layer of stainless steel, and d) a piezoceramic layer and a half-wavelength matching layer of stainless steel tuned to resonance by
NASA Astrophysics Data System (ADS)
Ögetbil, O.
2007-03-01
After reviewing the existing results we give an extensive analysis of the critical points of the potentials of the gauged N=2 Yang-Mills/Einstein supergravity theories coupled to tensor multiplets and hypermultiplets. Our analysis includes all the possible gaugings of all N=2 Maxwell-Einstein supergravity theories whose scalar manifolds are symmetric spaces. In general, the scalar potential gets contributions from R-symmetry gauging, tensor couplings, and hypercouplings. We show that the coupling of a hypermultiplet into a theory whose potential has a nonzero value at its critical point, and gauging a compact subgroup of the hyperscalar isometry group will only rescale the value of the potential at the critical point by a positive factor, and therefore will not change the nature of an existing critical point. However this is not the case for noncompact SO(1,1) gaugings. An SO(1,1) gauging of the hyperisometry will generally lead to de Sitter vacua, which is analogous to the ground states found by simultaneously gauging SO(1,1) symmetry of the real scalar manifold with U(1)R in earlier literature. SO(m,1) gaugings with m>1, which give contributions to the scalar potential only in the magical Jordan family theories, on the other hand, do not lead to de Sitter vacua. Anti-de Sitter vacua are generically obtained when the U(1)R symmetry is gauged. We also show that it is possible to embed certain generic Jordan family theories into the magical Jordan family preserving the nature of the ground states. However the magical Jordan family theories have additional ground states which are not found in the generic Jordan family theories.
General Deformation (Elastic and Inelastic) and Stress Distribution Theory in Soils.
1977-09-01
pavement structure can be completely simulated in laboratory tests based on the theory. Continuation of this research is being sponsored by the Department of Transportation, Transportation Systems Center . (Author)
Getino, J.; Miguel, D.; Escapa, A.
2010-05-15
This paper is the first part of an investigation where we will present an analytical general theory of the rotation of the non-rigid Earth at the second order, which considers the effects of the interaction of the rotation of the Earth with itself, also named as the spin-spin coupling. Here, and as a necessary step in the development of that theory, we derive complete, explicit, analytical formulae of the rigid Earth rotation that account for the second-order rotation-rotation interaction. These expressions are not provided in this form by any current rigid Earth model. Working within the Hamiltonian framework established by Kinoshita, we study the second-order effects arising from the interaction of the main term in the Earth geopotential expansion with itself, and with the complementary term arising when referring the rotational motion to the moving ecliptic. To this aim, we apply a canonical perturbation method to solve analytically the canonical equations at the second order, determining the expressions that provide the nutation-precession, the polar motion, and the length of day. In the case of the motion of the equatorial plane, nutation-precession, we compare our general approach with the particular study for this motion developed by Souchay et al., showing the existence of new terms whose numerical values are within the truncation level of 0.1 {mu}as adopted by those authors. These terms emerge as a consequence of not assuming in this work the same restrictive simplifications taken by Souchay et al. The importance of these additional contributions is that, as the analytical formulae show, they depend on the Earth model considered, in such a way that the fluid core resonance could amplify them significatively when extending this theory to the non-rigid Earth models.
Gibson, Scott M; Ficklin, Stephen P; Isaacson, Sven; Luo, Feng; Feltus, Frank A; Smith, Melissa C
2013-01-01
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.
Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.
2013-01-01
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1992-01-01
The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.
Song, Mingzhou; Lewis, Chris K.; Lance, Eric; Chesler, Elissa J; Kirova, Roumyana; Langston, Michael A; Bergeson, Susan
2009-01-01
The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.
2016-01-19
the Adaptive SLRT for testing multiple composite hypotheses and very general non-iid stochastic models as the probabilities of errors become small... Adaptive SLRT REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING ORGANIZATION...optimality of the Generalized SLRT and the Adaptive SLRT for testing multiple composite hypotheses and very general non-iid stochastic models as the
NASA Astrophysics Data System (ADS)
Lucarini, Valerio
2008-05-01
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external
An assessment of four-noded plate finite elements based on a generalized third-order theory
NASA Astrophysics Data System (ADS)
Averill, R. C.; Reddy, J. N.
1992-06-01
Plate finite elements based on the generalized third-order theory of Reddy and the first-order shear deformation theory are analyzed and compared on the basis of thick and thin plate modeling behavior, distortion sensitivity, overall accuracy, reliability, and efficiency. In particular, several four-noded Reddy-type elements and the nine-noded Lagrangian and heterosis (Mindlin-type) plate elements are analyzed to assess their behavior in bending, vibration, and stability of isotropic and laminated composite plates. A four-noded Reddy-type element is identified which is free of all spurious stiffness and zero energy modes, computationally efficient, and suitable for use in any general-purpose finite element program.
An assessment of four-noded plate finite elements based on a generalized third-order theory
NASA Technical Reports Server (NTRS)
Averill, R. C.; Reddy, J. N.
1992-01-01
Plate finite elements based on the generalized third-order theory of Reddy and the first-order shear deformation theory are analyzed and compared on the basis of thick and thin plate modeling behavior, distortion sensitivity, overall accuracy, reliability, and efficiency. In particular, several four-noded Reddy-type elements and the nine-noded Lagrangian and heterosis (Mindlin-type) plate elements are analyzed to assess their behavior in bending, vibration, and stability of isotropic and laminated composite plates. A four-noded Reddy-type element is identified which is free of all spurious stiffness and zero energy modes, computationally efficient, and suitable for use in any general-purpose finite element program.
A general test of self-control theory: has its importance been exaggerated?
Cretacci, Michael A
2008-10-01
Self-control theory has been tested for 2 decades. However, mixed results and measurement problems have made it difficult to ascertain its true utility. This study addresses recent concerns and includes variables such as risk, consequences, criminal opportunity, an interaction term, and bond controls in one complete test. It also addresses self-control's ability to explain different forms of crime and whether the support that it has garnered has been exaggerated. Results of both cross-sectional and semilongitudinal tests indicate that self-control significantly predicts a higher probability of involvement in property and drug crime but is virtually silent in its ability to explain violence. Furthermore, it can be tentatively stated that support for the theory wanes over time. Finally, neglected concepts such as opportunity, risk, consequences, and bond controls may be important to the theory's ability to explain crime, and further negligence of these concepts may hamper a true understanding of its impact.
Implications of extreme flatness in a general f(R) theory
NASA Astrophysics Data System (ADS)
Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek
2016-09-01
We discuss a modified gravity theory defined by f (R) = ∑nl αnM 2 (1 - n)Rn. We consider both finite and infinite number of terms in the series while requiring that the Einstein frame potential of the theory has a flat area around any of its stationary points. We show that the requirement of maximally flat stationary point leads to the existence of the saddle point (local maximum) for even (odd) l. In both cases for l → ∞ one obtains the Starobinsky model with small, exponentially suppressed corrections. Besides the GR minimum the Einstein frame potential has an anti de Sitter vacuum. However we argue that the GR vacuum is absolutely stable and AdS can be reached neither via classical evolution nor via quantum tunnelling. Our results show that a Starobinsky-like model is the only possible realisation of f (R) theory with an extremely flat area in the Einstein frame potential.
Three-dimensional spin-3 theories based on general kinematical algebras
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Grumiller, Daniel; Prohazka, Stefan; Rosseel, Jan
2017-01-01
We initiate the study of non- and ultra-relativistic higher spin theories. For sake of simplicity we focus on the spin-3 case in three dimensions. We classify all kinematical algebras that can be obtained by all possible Inönü-Wigner contraction procedures of the kinematical algebra of spin-3 theory in three dimensional (anti-) de Sitter space-time. We demonstrate how to construct associated actions of Chern-Simons type, directly in the ultra-relativistic case and by suitable algebraic extensions in the non-relativistic case. We show how to give these kinematical algebras an infinite-dimensional lift by imposing suitable boundary conditions in a theory we call "Carroll Gravity", whose asymptotic symmetry algebra turns out to be an infinite-dimensional extension of the Carroll algebra.
Generalized Lorentz-Dirac equation for a strongly coupled gauge theory.
Chernicoff, Mariano; García, J Antonio; Güijosa, Alberto
2009-06-19
We derive a semiclassical equation of motion for a "composite" quark in strongly coupled large-N_{c} N = 4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.
NASA Astrophysics Data System (ADS)
Giannetto, Enrico R. A.
2009-06-01
The revolution in XX century physics, induced by relativity theories, had its roots within the electromagnetic conception of Nature. It was developed through a tradition related to Brunian and Leibnizian physics, to the German Naturphilosophie and English XIXth physics. The electromagnetic conception of Nature was in some way realized by the relativistic dynamics of Poincaré of 1905. Einstein, on the contrary, after some years, linked relativistic dynamics to a semi-mechanist conception of Nature. He developed general relativity theory on the same ground, but Hilbert formulated it starting from the electromagnetic conception of Nature. Here, a comparison between these two conceptions is proposed in order to understand the conceptual foundations of special relativity within the context of the changing world views. The whole history of physics as well as history of science can be considered as a conflict among different worldviews. Every theory, as well as every different formulation of a theory implies a different worldview: a particular image of Nature implies a particular image of God (atheism too has a particular image of God) as well as of mankind and of their relationship. Thus, it is very relevant for scientific education to point out which image of Nature belongs to a particular formulation of a theory, which image comes to dominate and for which ideological reason.
Hinrichs, Timo; Brach, Michael
2012-02-01
Positive influences of physical activity both on many chronic diseases and on preservation of mobility are well documented. But chronically ill or mobility restricted elderly living in their own homes are difficult to reach for interventions. The general practitioner's (GP) surgery offers one of the few opportunities to give advice for physical activity to those people. We used program theory to sound out knowledge on GP-centered physical activity counseling. The "conceptual theory" (evidence for training effects in old age) and the "implementation theory" (unique position of the GP) were reviewed narratively. The "action theory" (effects of GP counseling) was reviewed systematically. According to program theory, appropriate MeSH (Medical subject headings) concepts were Aged OR Aged, 80 and over (Target group), Physicians, Family OR Primary Health Care (Implementation/Setting), Counseling OR Patient Education as Topic OR Disease Management OR Health promotion (Intervention), Exercise OR Motor Activity OR Physical Fitness OR Sports (Determinants). The resulting six review papers (Pubmed, 2000-2009) were presented using the STARLITE mnemonic. Authors agree, that the GP plays a central role in the promotion of physical activity to elderly people, but there is conflicting evidence concerning counseling effectiveness. Utilizing behavioral change strategies and the collaboration between GPs and specialised professions are recommended and currently under research.
Play as Self-Realization: Toward a General Theory of Play
ERIC Educational Resources Information Center
Henricks, Thomas S.
2014-01-01
In a wide-ranging essay that reviews the major theories of plays and relates them to significant notions of the self, the author addresses the question of why we play. He does so to argue that play is a biologically driven project of self-understanding and self-realization, one that humans--although they also share the experience with other…
A Rhetorical Systems Approach Based on a General Systems Theory Analog.
ERIC Educational Resources Information Center
Collins, Stephen
Douglas Ehninger's conceptualization of rhetorical theories as "systems" has been criticized for its vagueness in terminology, its potentially skewed perspective, and its inability to apply a stasis to a kinetic phenomenon--namely, rhetoric. The seven recommendations offered in this paper attempt to expand upon the approach and correct…
General Strain Theory and School Bullying: An Empirical Test in South Korea
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry; McCluskey, John D.
2012-01-01
Despite recognition of bullying as a serious school and social problem with negative effects on students' well-being and safety, and the overlap between aggressive bullying acts and delinquent behavior, few empirical studies test the applicability of criminological theories to explaining bullying. This limitation in research is especially evident…
ERIC Educational Resources Information Center
Huckaby, Sarah Ann Scott
1972-01-01
The adaptability of the theory of integrative levels to a generalised classification scheme is questioned in that its hypotheses have not been adequately developed and confirmed. It is suggested that not enough cognisance has been taken of twentieth century relativistic thinking in which space-time is treated as a continuum. (14 references)…
General theory of airfoil sections having arbitrary shape or pressure distribution
NASA Technical Reports Server (NTRS)
Allen, H Julian
1945-01-01
In this report a theory of thin airfoils of small camber is developed which permits either the velocity distribution corresponding to a given airfoil shape, or the airfoil shape corresponding to a given velocity distribution to be calculated. The procedures to be employed in these calculations are outlined and illustrated with suitable examples.
Domain-General Contributions to Social Reasoning: Theory of Mind and Deontic Reasoning Re-Explored
ERIC Educational Resources Information Center
McKinnon, Margaret C.; Moscovitch, Morris
2007-01-01
Using older adults and dual-task interference, we examined performance on two social reasoning tasks: theory of mind (ToM) tasks and versions of the deontic selection task involving social contracts and hazardous conditions. In line with performance accounts of social reasoning (Leslie, Friedman, & German, 2004), evidence from both aging and the…
Lubrication of textured surfaces: a general theory for flow and shear stress factors.
Scaraggi, Michele
2012-08-01
We report on a mean field theory of textured surface lubrication. We study the fluid flow dynamics occurring at the interface as a function of the texture characteristics, e.g. texture area density, shape and distribution of microstructures, and local slip lengths. The present results may be very important for the investigation of tailored microtextured surfaces for low-friction hydrodynamic applications.
ERIC Educational Resources Information Center
Möller, Jens; Müller-Kalthoff, Hanno; Helm, Friederike; Nagy, Nicole; Marsh, Herb W.
2016-01-01
The dimensional comparison theory (DCT) focuses on the effects of internal, dimensional comparisons (e.g., "How good am I in math compared to English?") on academic self-concepts with widespread consequences for students' self-evaluation, motivation, and behavioral choices. DCT is based on the internal/external frame of reference model…
Bullying Victimization and Adolescent Self-Harm: Testing Hypotheses from General Strain Theory
ERIC Educational Resources Information Center
Hay, Carter; Meldrum, Ryan
2010-01-01
Self-harm is widely recognized as a significant adolescent social problem, and recent research has begun to explore its etiology. Drawing from Agnew's (1992) social psychological strain theory of deviance, this study considers this issue by testing three hypotheses about the effects of traditional and cyber bullying victimization on deliberate…
Sayyed-Ahmad, Abdallah; Tuncay, Kagan; Ortoleva, Peter J
2007-01-01
Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs) is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF) thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the construction of the network of
1980-09-29
FOUNDATIONS OF EIGENVALUE DISTRIBUTION THEORY FOR GENERAL A NON--ETC(U) SEP 80 M MARCUS, M GOLDBERG, M NEWMAN AFOSR-79-0127 UNCLASSIFIED AFOSR-TR-80...September 1980 Title of Research: Foundations of Eigenvalue Distribution Theory for General & Nonnegative Matrices, Stability Criteria for Hyperbolic
General Theories of Chemical Disinfection and Sterilization of Sludge--Part 3.
ERIC Educational Resources Information Center
Wang, Mu Hao; And Others
1978-01-01
A general discussion of sewage sterilization methods, including techniques using pH, Chlorine, Chlorine Dioxide, Ozone, Iodine and Bromine, metal ions, and cationic surface active agents is presented. (MDR)
Small-slope scattering from rough elastic ocean floors: general theory and computational algorithm.
Gragg, R F; Wurmser, D; Gauss, R C
2001-12-01
In this article acoustic scattering by a random rough interface that separates a fluid incident medium from an underlying uniform scattering medium, either fluid or elastic solid, in cases for which the Bragg scale lies within the power-law tail of the roughness spectrum is dealt with. The physical foundation is an inherently reciprocity-preserving, local small-slope theory. A fully bistatic formulation is developed for the scattering strength, together with a robust numerical implementation that allows a wide range of spectral exponent values. The practical result for ocean acoustics is a significantly improved description of the interface component of sea floor scattering. Calculations are presented to demonstrate the advantage of this approach over perturbation theory, and to illustrate its dependence on frequency and environmental parameters as well as its operation in bistatic geometries.
Generalized photoclinometry for Mariner 9. [theory for planetary surface topographic determination
NASA Technical Reports Server (NTRS)
Wildey, R. L.
1975-01-01
A theory is developed for the photoclinometric determination of topography when the photometric function of a planetary surface is not restricted beyond the expectation that it is a function of phase angle, angle of incidence, and angle of emergence. Several versions of such an operational theory are presented together with several approaches to the numerical analysis. Reasons for the differences in numerical techniques are discussed. A preliminary result is considered which has been produced for an early Mariner 9 frame wherein the dust-laden atmosphere seems to exhibit standing-wave patterns. It is shown that if the assumption of homologous departures from plane-parallel atmospheric configuration is valid, the photoclinometry implies that laminar flow lines in the optically observable dust layer undergo a near-sinusoidal rise and fall of about 40 to 50 meters.
A generalized vortex theory of the screw propeller and its application
NASA Technical Reports Server (NTRS)
Reissner, Hans
1940-01-01
The vortex theory as presented by the author in earlier papers has been extended to permit the solution of the following problems: (1) the investigation of the relation between thrusts and torque distribution and energy loss as given by the induction of helical vortex sheets and by the parasite drag; (2) the checking of the theorem of Betz of the rigidly behaving helical vortex sheet of minimum induced energy loss; (3) the extension of the theory of the screw propeller of minimum energy loss for the inclusion of parasite-drag distribution along the blades. A simple system of diagrams has been developed to systematize the design of airplane propellers for a wide range of parasite-drag distribution along the blades.
Illicit Drug Use Among South Korean Offenders: Assessing the Generality of Social Learning Theory.
Yun, Minwoo; Kim, Eunyoung
2015-10-01
Since the mid-1990s, illicit drug use has become a problem in Korean society. This trend is likely due to the rapid globalization and expansion that occurred with the Internet revolution, which led to greater numbers of people socially learning about drug culture. The current study attempts to uncover criminogenic causality of such social learning about drug use by studying adult felony drug offenders in South Korea. The data used for the study were obtained from self-reported surveys, originally collected by the Korean Institution of Criminology (KIC). The final sample comprised 1,452 felony offenders convicted of illicit drug use, and their responses were analyzed with a set of multiple logistic regression tests. The current study found supportive evidence for the generalizability of social learning theory from the sample of the South Korean adult drug offenders. We argue that the current study provides additional empirical evidence that supports the generalizability of social learning theory.
NASA Astrophysics Data System (ADS)
Donier, J.; Bouchaud, J.-P.
2016-12-01
In standard Walrasian auctions, the price of a good is defined as the point where the supply and demand curves intersect. Since both curves are generically regular, the response to small perturbations is linearly small. However, a crucial ingredient is absent of the theory, namely transactions themselves. What happens after they occur? To answer the question, we develop a dynamic theory for supply and demand based on agents with heterogeneous beliefs. When the inter-auction time is infinitely long, the Walrasian mechanism is recovered. When transactions are allowed to happen in continuous time, a peculiar property emerges: close to the price, supply and demand vanish quadratically, which we empirically confirm on the Bitcoin. This explains why price impact in financial markets is universally observed to behave as the square root of the excess volume. The consequences are important, as they imply that the very fact of clearing the market makes prices hypersensitive to small fluctuations.
Distorting general relativity: gravity's rainbow and f(R) theories at work
Garattini, Remo
2013-06-01
We compute the Zero Point Energy in a spherically symmetric background combining the high energy distortion of Gravity's Rainbow with the modification induced by a f(R) theory. Here f(R) is a generic analytic function of the Ricci curvature scalar R in 4D and in 3D. The explicit calculation is performed for a Schwarzschild metric. Due to the spherically symmetric property of the Schwarzschild metric we can compare the effects of the modification induced by a f(R) theory in 4D and in 3D. We find that the final effect of the combined theory is to have finite quantities that shift the Zero Point Energy. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation which is analyzed by means of a variational approach based on gaussian trial functionals. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. A final discussion on the connection of our result with the observed cosmological constant is also reported.
Time-sliced perturbation theory for large scale structure I: general formalism
NASA Astrophysics Data System (ADS)
Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-07-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.
Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo
2015-01-01
Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods. © 2015 Wiley Periodicals, Inc. PMID:26345131
Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo
2015-08-05
Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods.
Decoherence effects in Bose-Einstein condensate interferometry I. General theory
Dalton, B.J.
2011-03-15
Research Highlights: > Theory of dephasing, decoherence effects for Bose-Einstein condensate interferometry. > Applies to single component, two mode condensate in double potential well. > Phase space theory using Wigner, positive P representations for condensate, non-condensate fields. > Stochastic condensate, non-condensate field equations and properties of noise fields derived. > Based on mean field theory with condensate modes given by generalised Gross-Pitaevskii equations. - Abstract: The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd
NASA Astrophysics Data System (ADS)
Chang, Zhiwei; Halle, Bertil
2016-02-01
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.
Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory
NASA Astrophysics Data System (ADS)
Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.
2015-12-01
In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.
General theory of multistage geminate reactions of isolated pairs of reactants. I. Kinetic equations
NASA Astrophysics Data System (ADS)
Doktorov, Alexander B.; Kipriyanov, Alexey A.
2014-05-01
General matrix approach to the consideration of multistage geminate reactions of isolated pairs of reactants depending on reactant mobility is formulated on the basis of the concept of "effective" particles. Various elementary reactions (stages of multistage reaction including physicochemical processes of internal quantum state changes) proceeding with the participation of isolated pairs of reactants (or isolated reactants) are taken into account. Investigation has been made in terms of kinetic approach implying the derivation of general (matrix) kinetic equations for local and mean probabilities of finding any of the reaction species in the sample under study (or for local and mean concentrations). The recipes for the calculation of kinetic coefficients of the equations for mean quantities in terms of relative coordinates of reactants have been formulated in the general case of inhomogeneous reacting systems. Important specific case of homogeneous reacting systems is considered.
Limits of Generalization between Categories and Implications for Theories of Category Specificity
Bukach, Cindy M.; Phillips, W. Stewart; Gauthier, Isabel
2010-01-01
Both domain-specific and expertise accounts of category specialization assume that generalization occurs within a domain but not between domains. Yet it is often difficult to define the boundaries and critical features of object domains. Differences in how categories are defined make it difficult to adjudicate between accounts of category specificity and may lead to contradictory results. For example, evidence for whether car experts recruit the fusiform face area is mixed and this inconsistency may be due to the inclusion of antique cars in one of the studies. The current study tested the generalization of expertise from modern to antique cars and found that modern car experts showed expert discrimination and holistic processing of modern cars, but not antique cars. These findings suggest that the neural specialization underlying perceptual expertise is highly specific and may not generalize to distinct subclasses, even when they share some degree of perceptual and conceptual features. PMID:20952784
General theory of multistage geminate reactions of isolated pairs of reactants. I. Kinetic equations
Doktorov, Alexander B.; Kipriyanov, Alexey A.
2014-05-14
General matrix approach to the consideration of multistage geminate reactions of isolated pairs of reactants depending on reactant mobility is formulated on the basis of the concept of “effective” particles. Various elementary reactions (stages of multistage reaction including physicochemical processes of internal quantum state changes) proceeding with the participation of isolated pairs of reactants (or isolated reactants) are taken into account. Investigation has been made in terms of kinetic approach implying the derivation of general (matrix) kinetic equations for local and mean probabilities of finding any of the reaction species in the sample under study (or for local and mean concentrations). The recipes for the calculation of kinetic coefficients of the equations for mean quantities in terms of relative coordinates of reactants have been formulated in the general case of inhomogeneous reacting systems. Important specific case of homogeneous reacting systems is considered.
Small, David W.; Sundstrom, Eric J.; Head-Gordon, Martin
2015-03-07
We introduce a necessary and sufficient condition for an arbitrary wavefunction to be collinear, i.e., its spin is quantized along some axis. It may be used to obtain a cheap and simple computational procedure to test for collinearity in electronic structure theory calculations. We adapt the procedure for Generalized Hartree Fock (GHF), and use it to study two dissociation pathways in CO{sub 2}. For these dissociation processes, the GHF wave functions transform from low-spin Unrestricted Hartree Fock (UHF) type states to noncollinear GHF states and on to high-spin UHF type states, phenomena that are succinctly illustrated by the constituents of the collinearity test. This complements earlier GHF work on this molecule.
Liu, Chang; Dodin, Ilya Y.
2015-08-15
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
NASA Astrophysics Data System (ADS)
Glassmeier, K.-H.; Tsurutani, B. T.
2014-02-01
This is a translation of the Allgemeine Theorie des Erdmagnetismus published by Carl Friedrich Gauss in 1839 in the Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838. The current translation is based on an earlier translation by Elizabeth Juliana Sabine published in 1841. This earlier translation has been revised, corrected, and extended. Numerous biographical comments on the scientists named in the original text have been added as well as further information on the observational material used by Carl Friedrich Gauss. An attempt is made to provide a readable text to a wider scientific community, a text laying the foundation of today's understanding of planetary magnetic fields.
The General Strategies Hypothesis as Applied to Cognitive Theory in Mental Retardation.
ERIC Educational Resources Information Center
Belmont, John M.; Mitchell, D. Wayne
1987-01-01
The General Strategies Hypothesis and the Strategy-deficiency Hypothesis are discussed in relation to conclusions made by Symposium participants. A contrast emerges between Borkowski, et. al.'s embrace of the Strategy-deficiency Hypothesis and Turnure's dissatisfaction with it. (LMO)
The General Necessary Condition for the Validity of Dirac's Transition Perturbation Theory
NASA Technical Reports Server (NTRS)
Quang, Nguyen Vinh
1996-01-01
For the first time, from the natural requirements for the successive approximation the general necessary condition of validity of the Dirac's method is explicitly established. It is proved that the conception of 'the transition probability per unit time' is not valid. The 'super-platinium rules' for calculating the transition probability are derived for the arbitrarily strong time-independent perturbation case.
NASA Astrophysics Data System (ADS)
Damgov, Vladimir
A generalized model of an oscillator, subjected to the influence of external waves is considered. It is shown that the systems of diverse physical background which this model encompasses by their nature should belong to the broader class of "kickexcited self-adaptive dynamical systems".
Testing domain-general theories of perceptual awareness with auditory brain responses.
Snyder, Joel S; Yerkes, Breanne D; Pitts, Michael A
2015-06-01
Past research has identified several candidate neural correlates of consciousness (NCCs) during visual perception. Recent research on auditory perception shows promise for establishing the generality of various NCCs across sensory modalities, as well as for revealing differences in how conscious processing unfolds in different sensory systems.
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
The relation between the generalized matching law and signal-detection theory
Davison, M. C.; Tustin, R. D.
1978-01-01
The generalized matching law can be applied to a signal-detection matrix to give two equations. The first relates responding in the presence of the stimulus to the reinforcements for the responses, and the second relates responding in the absence of the stimulus to the reinforcements for the responses. Evidence for stimulus discrimination is given by biases that are opposite in sign in the two equations. As the logarithmic ratio and z proportion transformations are similar, the combination of the absolute values of the two logarithmic biases gives a measure equivalent to the signal-detection measures d′ and η. The two equations can also be combined to eliminate the biases caused by the signalling stimuli and to produce a generalized matching-law statement relating overall performance to the obtained reinforcements. PMID:16812059
NASA Astrophysics Data System (ADS)
Matsushita, Mitsugu; Family, Fereydoon; Honda, Katsuya
1987-10-01
A scaling description of the crossover from isotropic to anisotropic cluster growth for ordinary diffusion-limited aggregation (DLA) in two dimensions developed recently by Family and Hentschel is extended to the generalized DLA or η model. The dependence of various exponents necessary to characterize the anisotropic growth of the local-growth probability exponent η of the generalized DLA is obtained explicitly. The η dependence of the exponent β describing the variation of the crossover mass Nc on the degree of symmetry m,Nc~mβ, is derived. The results indicate that the anisotropic star-shaped clusters can be easily observed for η>1, while their appearance is much more difficult for η<1. All our results are consistent with those of computer simulations reported so far.
Limits of generalization between categories and implications for theories of category specificity.
Bukach, Cindy M; Phillips, W Stewart; Gauthier, Isabel
2010-10-01
Both domain-specific and expertise accounts of category specialization assume that generalization occurs within a domain but not between domains. Yet it is often difficult to define the boundaries and critical features of object domains. Differences in how categories are defined make it difficult to adjudicate between accounts of category specificity and may lead to contradictory results. For example, evidence for whether car experts recruit the fusiform face area is mixed, and this inconsistency may be due to the inclusion of antique cars in one of those previous studies (e.g., Grill-Spector, Knouf, & Kanwisher, 2004). The present study tested the generalization of expertise from modern to antique cars and found that modern-car experts showed expert discrimination and holistic processing of modern cars but not of antique cars. These findings suggest that the neural specialization underlying perceptual expertise is highly specific and may not generalize to distinct subclasses, even when they share some degree of perceptual and conceptual features.
Generalizing a nonlinear geophysical flood theory to medium-sized river networks
NASA Astrophysics Data System (ADS)
Gupta, Vijay K.; Mantilla, Ricardo; Troutman, Brent M.; Dawdy, David; Krajewski, Witold F.
2010-06-01
The central hypothesis of a nonlinear geophysical flood theory postulates that, given space-time rainfall intensity for a rainfall-runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self-similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400-km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall-runoff events. Scaling in peak discharges would hold in a non-stationary climate due to global warming but its slope and intercept would change.
Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids
Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.; Christon, Mark A.
2012-07-19
A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.
Effective field theory and non-Gaussianity from general inflationary states
NASA Astrophysics Data System (ADS)
Agarwal, Nishant; Holman, R.; Tolley, Andrew J.; Lin, Jennifer
2013-05-01
We study the effects of non-trivial initial quantum states for inflationary fluctuations within the context of the effective field theory for inflation constructed by Cheung et al. which allows us to discriminate between different initial states in a model-independent way. We develop a Green's function/path integral based formulation that incorporates initial state effects and use it to address questions such as how state-dependent is the consistency relation for the bispectrum, how many e-folds beyond the minimum required to solve the cosmological fine tunings of the big bang are we allowed so that some information from the initial state survives until late times, among others. We find that the so-called consistency condition relating the local limit of the bispectrum and the slow-roll parameter is a state-dependent statement that can be avoided for physically consistent initial states either with or without initial non-Gaussianities.
1983-09-01
circu- ’ lar hole stretched uniaxially while the surface moisture is changed suddenly at a constant surface temperature. The stresses near the hole...S + AP 3C (8) -at at where AP = P-Po Application of the Onsager principle [2,3] leads to the follow- ing expressions for the moisture and heat flux...vectors f = Ll l x f + L12 x q (9) " = L21xf + L22Xq -5- with Lij (ij - 1,2) being the Onsager coefficients such that L 0, L22 > 0, L12 L < (10) The
NASA Astrophysics Data System (ADS)
Pressler, David E.
2012-03-01
A great discrepancy exists - the speed of light and the neutrino speed must be identical; as indicated by supernova1987A; yet, OPERA predicts faster-than-light neutrinos. Einstein's theories are based on the invariance of the speed of light, and no privileged Galilean frame of reference exists. Both of these hypotheses are in error and must be reconciled in order to solve the dilemma. The Michelson-Morley Experiment was misinterpreted - my Neoclassical Theory postulates that BOTH mirrors of the interferometer physically and absolutely move towards its center. The result is a three-directional-Contraction, (x, y, z axis), an actual distortion of space itself; a C-Space condition. ``PRESSLER'S LAW OF C-SPACE: The speed of light, c, will always be measured the same speed in all three directions (˜300,000 km/sec), in ones own inertial reference system, and will always be measured as having a different speed in all other inertial frames which are at a different kinetic energy level or at a location with a different strength gravity field'' Thus, the faster you go, motion, or the stronger the gravity field the smaller you get in all three directions. OPERA results are explained; at the surface of Earth, the strength of gravity field is at maximum -- below the earth's surface, time and space is less distorted; therefore, time is absolutely faster accordingly. Reference OPERA's preprint: Neutrino's faster time-effect due to altitude difference; (10-13ns) x c (299792458m) = 2.9 x 10-5 m/ns x distance (730085m) + 21.8m.) This is consistent with the OPERA result.
Two Generalized Higher Order Theories in Free Vibration Studies of Multilayered Plates
NASA Astrophysics Data System (ADS)
MESSINA, A.
2001-04-01
This paper presents an extension of two-dimensional models for the analysis of freely vibrating laminated plates. The extension concerns the enlargement of higher order theories, recently introduced by different authors in several forms, to encompass higher order terms over the cubic one usually taken into consideration. Higher order effects such as rotatory inertia and transverse shear stress are naturally included without any shear correction factors. Namely, two different models are introduced by expanding, on different functional bases, displacements (D2D) and transverse shear stresses in conjunction with displacements (M2D). The expansion is considered to be consistent with the traction-type boundary condition on the external surfaces of the plate. The governing equations and associated boundary conditions are consistently obtained by the classical Hamilton's variational principle and Reissner's mixed variational theorem. Both models are equivalent single layer type and, therefore, differ according to the layer-wise descriptions, preserve the independence of the number of unknown variables on the number of layers. However, this feature is presented together with intrinsic physical violations for both models. Model D2D violates the interlaminar stress continuity requirement and model M2D violates in a weaker from the same requirement (derivatives are not piecewise continuous), besides neglecting the transverse normal stress. The importance of completely fulfilling the mentioned continuity is then discussed once the relevant governing equations are tailored for the cylindrical bending condition. The effectiveness of the models is indicated by making numerical comparisons with the exact three-dimensional theory of the elasticity for several lamination schemes, angle/cross-ply lay-ups, and characteristic geometric ratios for low and higher frequencies.
General theory of the transverse dielectric constant of III-V semiconducting compounds
NASA Technical Reports Server (NTRS)
Kahen, K. B.; Leburton, J. P.
1985-01-01
A general model of the transverse dielectric constant of III-V compounds is developed using a hybrid method which combines the kp method with a nonlocal pseudopotential calculation. In this method the Brillouin zone is partitioned into three regions by expanding the energy bands and matrix elements about the F, X, and L symmetry points. The real and imaginary parts of the dielectric constant are calculated as a sum of the individual contributions of each region. By using this partition method, it is possible to get good insight into the dependence of the dielectric constant on the shape of the band structure.
Nakano, Hiroshi
2010-01-01
Minamata disease occurred because inhabitants consumed the polluted seafood. The official confirmation of Minamata disease was in 1956. However, the material cause of that disease was uncertain at that time. The Minamata Food Poisoning Sub-committee, under authority of the Food Hygiene Investigation Committee of the Ministry of Health and Welfare, determined the material cause of Minamata disease to be a certain kind of organic mercury in 1959. The sub-committee was dissolved after their report. The discussion about the investigation of the cause was performed in a conference initiated by the Economic Planning Agency, which was titled "Minamata Disease General Investigation and Research Liaison Council". The Participants were eight scientists; four fishery scientists, two chemists, and only two medical scientists, which implied that only examination of the organic mercury was to be discussion. The conference was held four times from 1960 to 1961. In the first and second conferences, the organic mercury research from a medical perspective progressed in cooperation with fishery sciences. In the third conference, it was reported that UCHIDA Makio, professor of Kumamoto University, had found organic mercury crystal in the shellfish found in Minamata-bay. Authorities of biochemistry and medicine in the third conference criticized UCHIDA's research. At the fourth conference, reports contradicting his research were presented. Although those anti-UCHIDA reports were not verified, AKAHORI Shiro, the highest authority of biochemistry, not only accepted them, but also expressed doubt in the organic mercury causal theory. Therefore, this theory was recognized as uncertain.
Ali, Nora A; Mourad, Hebat-Allah M; ElSayed, Hany M; El-Soudani, Magdy; Amer, Hassanein H; Daoud, Ramez M
2016-11-01
The interference is the most important problem in LTE or LTE-Advanced networks. In this paper, the interference was investigated in terms of the downlink signal to interference and noise ratio (SINR). In order to compare the different frequency reuse methods that were developed to enhance the SINR, it would be helpful to have a generalized expression to study the performance of the different methods. Therefore, this paper introduces general expressions for the SINR in homogeneous and in heterogeneous networks. In homogeneous networks, the expression was applied for the most common types of frequency reuse techniques: soft frequency reuse (SFR) and fractional frequency reuse (FFR). The expression was examined by comparing it with previously developed ones in the literature and the comparison showed that the expression is valid for any type of frequency reuse scheme and any network topology. Furthermore, the expression was extended to include the heterogeneous network; the expression includes the problem of co-tier and cross-tier interference in heterogeneous networks (HetNet) and it was examined by the same method of the homogeneous one.
Decoherence effects in Bose-Einstein condensate interferometry I. General theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.
2011-03-01
The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd numbers of noise fields are zero and those for even numbers of noise field terms are the sums of products of stochastic averages associated with pairs of noise fields. However each pair is represented by an element of the diffusion matrix rather than products of the noise fields themselves, as in the case of Gaussian-Markov processes. The treatment starts from a generalised mean field theory for two condensate modes, where generalised coupled Gross-Pitaevskii equations are obtained for the modes
Aidun, J.B.; Addessio, F.L.
1995-11-01
The theoretical basis of the homogenization technique developed by Aboudi is presented and assessed. Given the constitutive relations of the constituents, this technique provides an equivalent, homogeneous, constitutive model of unidirectional, continuous-fiber-reinforced composites. The expressions that comprise the first-order version of the technique are given special attention as this treatment has considerable practical value. Nonlinear elasticity effects are added to it. This extension increases the accuracy of numerical simulations of high strain-rate loadings. It is particularly important for any dynamic loading in which shock waves might be produced, including crash safety, armor, and munitions applications. Examples illustrate that elastic nonlinearity can make substantial contributions at strains of only a few per cent. These contributions are greatest during post-yield inelastic deformation. The micromechanics-based homogenization technique is shown to facilitate use of an efficient approximate treatment of elastic nonlinearity in composites with isotropic matrix materials.
DATE analysis: A general theory of biological change applied to microarray data.
Rasnick, David
2009-01-01
In contrast to conventional data mining, which searches for specific subsets of genes (extensive variables) to correlate with specific phenotypes, DATE analysis correlates intensive state variables calculated from the same datasets. At the heart of DATE analysis are two biological equations of state not dependent on genetic pathways. This result distinguishes DATE analysis from other bioinformatics approaches. The dimensionless state variable F quantifies the relative overall cellular activity of test cells compared to well-chosen reference cells. The variable pi(i) is the fold-change in the expression of the ith gene of test cells relative to reference. It is the fraction phi of the genome undergoing differential expression-not the magnitude pi-that controls biological change. The state variable phi is equivalent to the control strength of metabolic control analysis. For tractability, DATE analysis assumes a linear system of enzyme-connected networks and exploits the small average contribution of each cellular component. This approach was validated by reproducible values of the state variables F, RNA index, and phi calculated from random subsets of transcript microarray data. Using published microarray data, F, RNA index, and phi were correlated with: (1) the blood-feeding cycle of the malaria parasite, (2) embryonic development of the fruit fly, (3) temperature adaptation of Killifish, (4) exponential growth of cultured S. pneumoniae, and (5) human cancers. DATE analysis was applied to aCGH data from the great apes. A good example of the power of DATE analysis is its application to genomically unstable cancers, which have been refractory to data mining strategies.
Mirigian, Stephen; Schweizer, Kenneth S
2014-05-21
We generalize the force-level nonlinear Langevin equation theory of single particle hopping to include collective effects associated with long range elastic distortion of the liquid. The activated alpha relaxation event is of a mixed spatial character, involving two distinct, but inter-related, local and collective barriers. There are no divergences at volume fractions below jamming or temperatures above zero Kelvin. The ideas are first developed and implemented analytically and numerically in the context of hard sphere fluids. In an intermediate volume fraction crossover regime, the local cage process is dominant in a manner consistent with an apparent Arrhenius behavior. The super-Arrhenius collective barrier is more strongly dependent on volume fraction, dominates the highly viscous regime, and is well described by a nonsingular law below jamming. The increase of the collective barrier is determined by the amplitude of thermal density fluctuations, dynamic shear modulus or transient localization length, and a growing microscopic jump length. Alpha relaxation time calculations are in good agreement with recent experiments and simulations on dense fluids and suspensions of hard spheres. Comparisons of the theory with elastic models and entropy crisis ideas are explored. The present work provides a foundation for constructing a quasi-universal, fit-parameter-free theory for relaxation in thermal molecular liquids over 14 orders of magnitude in time.
NASA Astrophysics Data System (ADS)
West, Eva; Wallin, Anita
2013-04-01
Learning abstract concepts such as sound often involves an ontological shift because to conceptualize sound transmission as a process of motion demands abandoning sound transmission as a transfer of matter. Thus, for students to be able to grasp and use a generalized model of sound transmission poses great challenges for them. This study involved 199 students aged 10-14. Their views about sound transmission were investigated before and after teaching by comparing their written answers about sound transfer in different media. The teaching was built on a research-based teaching-learning sequence (TLS), which was developed within a framework of design research. The analysis involved interpreting students' underlying theories of sound transmission, including the different conceptual categories that were found in their answers. The results indicated a shift in students' understandings from the use of a theory of matter before the intervention to embracing a theory of process afterwards. The described pattern was found in all groups of students irrespective of age. Thus, teaching about sound and sound transmission is fruitful already at the ages of 10-11. However, the older the students, the more advanced is their understanding of the process of motion. In conclusion, the use of a TLS about sound, hearing and auditory health promotes students' conceptualization of sound transmission as a process in all grades. The results also imply some crucial points in teaching and learning about the scientific content of sound.
Joyce, Paul; Rokyta, Darin R; Beisel, Craig J; Orr, H Allen
2008-11-01
Recent theoretical studies of the adaptation of DNA sequences assume that the distribution of fitness effects among new beneficial mutations is exponential. This has been justified by using extreme value theory and, in particular, by assuming that the distribution of fitnesses belongs to the Gumbel domain of attraction. However, extreme value theory shows that two other domains of attraction are also possible: the Fréchet and Weibull domains. Distributions in the Fréchet domain have right tails that are heavier than exponential, while distributions in the Weibull domain have right tails that are truncated. To explore the consequences of relaxing the Gumbel assumption, we generalize previous adaptation theory to allow all three domains. We find that many of the previously derived Gumbel-based predictions about the first step of adaptation are fairly robust for some moderate forms of right tails in the Weibull and Fréchet domains, but significant departures are possible, especially for predictions concerning multiple steps in adaptation.
NASA Astrophysics Data System (ADS)
Bondarescu, Ruxandra; Schärer, Andreas; Jetzer, Philippe; Angélil, Raymond; Saha, Prasenjit; Lundgren, Andrew
2015-05-01
The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft's reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth's gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ˜ 10-16 in an elliptic orbit around the Earth would constrain the PPN parameters |β - 1|, |γ - 1| ≲ 10-6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.
GENERAL: Mean-field Theory for Some Bus Transport Networks with Random Overlapping Clique Structure
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Sun, Bao; Wang, Bo; Sun, You-Xian
2010-04-01
Transport networks, such as railway networks and airport networks, are a kind of random network with complex topology. Recently, more and more scholars paid attention to various kinds of transport networks and try to explore their inherent characteristics. Here we study the exponential properties of a recently introduced Bus Transport Networks (BTNs) evolution model with random overlapping clique structure, which gives a possible explanation for the observed exponential distribution of the connectivities of some BTNs of three major cities in China. Applying mean-field theory, we analyze the BTNs model and prove that this model has the character of exponential distribution of the connectivities, and develop a method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the exponents. By comparing mean-field based theoretic results with the statistical data of real BTNs, we observe that, as a whole, both of their data show similar character of exponential distribution of the connectivities, and their exponents have same order of magnitude, which show the availability of the analytical result of this paper.
NASA Astrophysics Data System (ADS)
Bagayoko, Diola
In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127104 (2014)]. This understanding included necessary steps ab initio electronic structure calculations have to take if their results are to possess the full physical content of DFT. These steps guarantee the fulfillment of conditions of validity of DFT; not surprisingly, they have led to accurate descriptions of several dozens of semiconductors, from first principle, without invoking derivative discontinuity or self-interaction correction. This presentation shows the mathematically and physically rigorous understanding of the relativistic extension of DFT by Rajagopal and Callaway {Phys. Rev. B 7, 1912 (1973)]. As in the non-relativistic case, the attainment of the absolute minima of the occupied energies is a necessary condition for the corresponding current density to be that of the ground state of the system and for computational results to agree with corresponding, experimental ones. Acknowledgments:This work was funded in part by the US National Science Foundation [NSF, Award Nos. EPS-1003897, NSF (2010-2015)-RII-SUBR, and HRD-1002541], the US Department of Energy, National Nuclear Security Administration (NNSA, Award No. DE-NA0002630), LaSPACE, and LONI-SUBR.
NASA Astrophysics Data System (ADS)
Nilsson, T.; Kowalewski, J.
2000-10-01
The slow-motion theory of nuclear spin relaxation in paramagnetic low-symmetry complexes is generalized to comprise arbitrary values of S. We describe the effects of rhombic symmetry in the static zero-field splitting (ZFS) and allow the principal axis system of the static ZFS tensor to deviate from the molecule-fixed frame of the nuclear-electron dipole-dipole tensor. We show nuclear magnetic relaxation dispersion (NMRD) profiles for different illustrative cases, ranging from within the Redfield limit into the slow-motion regime with respect to the electron spin dynamics. We focus on S = 3/2 and compare the effects of symmetry-breaking properties on the paramagnetic relaxation enhancement (PRE) in this case with that of S = 1, which we have treated in a previous paper. We also discuss cases of S = 2, 5/2, 3, and 7/2. One of the main objectives of this investigation, together with the previous papers, is to provide a set of standard calculations using the general slow-motion theory, against which simplified models may be tested.
NASA Astrophysics Data System (ADS)
Prodan, Emil; Schulz-Baldes, Hermann
2016-11-01
We use constructive bounded Kasparov K-theory to investigate the numerical invariants stemming from the internal Kasparov products Ki(𝒜) × KKi(𝒜,ℬ) → K 0(ℬ) → ℝ, i = 0, 1, where the last morphism is provided by a tracial state. For the class of properly defined finitely-summable Kasparov (𝒜,ℬ)-cycles, the invariants are given by the pairing of K-theory of ℬ with an element of the periodic cyclic cohomology of ℬ, which we call the generalized Connes-Chern character. When 𝒜 is a twisted crossed product of ℬ by ℤk, 𝒜 = ℬ ⋊ξθℤk, we derive a local formula for the character corresponding to the fundamental class of a properly defined Dirac cycle. Furthermore, when ℬ = C(Ω) ⋊ξ‧ϕℤj, with C(Ω) the algebra of continuous functions over a disorder configuration space, we show that the numerical invariants are connected to the weak topological invariants of the complex classes of topological insulators, defined in the physics literature. The end products are generalized index theorems for these weak invariants, which enable us to predict the range of the invariants and to identify regimes of strong disorder in which the invariants remain stable. The latter will be reported in a subsequent publication.
Cochran, John K
2015-11-27
Recently, Robert Agnew introduced a new general theory of crime and delinquency in which he attempted to corral the vast array of theoretical "causes" of criminal conduct into a more parsimonious statement organized into one of five life domains: self, family, peers, school, and work as well as constraints against crime and motivation for it. These domains are depicted as the source of constraints and motivations and whose effects are, in part, mediated by these constraints and motivations. Based on self-report data on academic dishonesty from a sample of college students, the present study attempts to test this general theory. While several of the life domain variables had significant effects of cheating in the baseline model, all of these effects were fully mediated by constraints and motivations. In the final model, academic dishonesty was observed to be most significantly affected by the perceived severity of formal sanction threats, the number of credit hours enrolled, the frequency of skipping classes, and pressure from friends.
Xu, Guang-Kui; Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R
2015-12-28
Adhesion processes of biological membranes that enclose cells and cellular organelles are essential for immune responses, tissue formation, and signaling. These processes depend sensitively on the binding constant K2D of the membrane-anchored receptor and ligand proteins that mediate adhesion, which is difficult to measure in the "two-dimensional" (2D) membrane environment of the proteins. An important problem therefore is to relate K2D to the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in three dimensions (3D). In this article, we present a general theory for the binding constants K2D and K3D of rather stiff proteins whose main degrees of freedom are translation and rotation, along membranes and around anchor points "in 2D," or unconstrained "in 3D." The theory generalizes previous results by describing how K2D depends both on the average separation and thermal nanoscale roughness of the apposing membranes, and on the length and anchoring flexibility of the receptors and ligands. Our theoretical results for the ratio K2D/K3D of the binding constants agree with detailed results from Monte Carlo simulations without any data fitting, which indicates that the theory captures the essential features of the "dimensionality reduction" due to membrane anchoring. In our Monte Carlo simulations, we consider a novel coarse-grained model of biomembrane adhesion in which the membranes are represented as discretized elastic surfaces, and the receptors and ligands as anchored molecules that diffuse continuously along the membranes and rotate at their anchor points.
A unified theory of tokamak transport via the generalized Balescu--Lenard collision operator
Mynick, H.E.; Duvall, R.E.
1988-06-01
A unified basis from which to study the transport of tokamaks at low collisionality is provided by specializing the ''generalized Balescu--Lenard'' collision operator to toridal geometry. Explicitly evaluating this operator, ripple, turbulent, and neoclassical transport coefficients are obtained, simply by further specializing the single operator to different particular classes of fluctuation wavelength and mode structure. For each class of fluctuations, the operator possesses a diffusive, test-particle contribution D, and in addition a dynamic drag term F, which makes the operator self-consistent, and whose presence is accordingly essential for the resultant fluxes to possess the appropriate conservation laws and symmetrics. These properties, well-known for axisymmetric transport, are demonstrated for one type of turbulent transport, chosen for definiteness, by explicit evaluation of both ''anomalous diffusion'' term arising from D, as well as the closely related test particle calculations, but is shown to have an important impact on the predicted fluxes. 16 refs., 1 fig.
General theory of measurement with two copies of a quantum state.
Bendersky, Ariel; Paz, Juan Pablo; Cunha, Marcelo Terra
2009-07-24
We analyze the results of the most general measurement on two copies of a quantum state. We show that by using two copies of a quantum state it is possible to achieve an exponential improvement with respect to known methods for quantum state tomography. We demonstrate that mu can label a set of outcomes of a measurement on two copies if and only if there is a family of maps C_{micro} such that the probability Prob(micro) is the fidelity of each map, i.e., Prob(micro) = Tr[rhoC_{micro}(rho)]. Here, the map C_{micro} must be completely positive after being composed with the transposition (these are called completely copositive, or CCP, maps) and must add up to the fully depolarizing map. This implies that a positive operator valued measure on two copies induces a measure on the set of CCP maps (i.e., a CCP map valued measure).
The Structure of SectorsAssociated with Longo-Rehren InclusionsI. General Theory
NASA Astrophysics Data System (ADS)
Izumi, Masaki
We investigate the structure of the Longo-Rehren inclusion for a finite closed system of endomorphisms of factors, whose categorical structure is known to be the same as the asymptotic inclusion of A. Ocneanu. In particular, we obtain a precise description of the sectors associated with the Longo-Rehren inclusions in terms of half braidings, which do not necessarily satisfy the usual condition of braidings. In doing so, we give new proofs to most of the known statements concerning asymptotic inclusions. We construct a complete system of matrix units of the tube algebra using the half braidings, which will be used in the second part to describe concrete examples of the Longo-Rehren inclusions arising from the Cuntz algebra endomorphisms. We also discuss the case where the original system has a braiding, and generalize Ocneanu and Evans-Kawahigashi's method for the analysis of the asymptotic inclusions of the Hecke algebra subfactors.
The Quasi-Maxwellian Equations of General Relativity: Applications to Perturbation Theory
NASA Astrophysics Data System (ADS)
Novello, M.; Bittencourt, E.; Salim, J. M.
2014-12-01
A comprehensive review of the equations of general relativity in the quasi-Maxwellian (QM) formalism introduced by Jordan, Ehlers and Kundt is presented. Our main interest concerns its applications to the analysis of the perturbation of standard cosmology in the Friedman-Lemaître-Robertson-Walker framework. The major achievement of the QM scheme is its use of completely gauge-independent quantities. We shall see that in the QM-scheme, we deal directly with observable quantities. This reveals its advantage over the old method introduced by Lifshitz that deals with perturbation in the standard framework. For completeness, we compare the QM-scheme to the gauge-independent method of Bardeen, a procedure consisting of particular choices of the perturbed variables as a combination of gauge-dependent quantities.
Republication of: Exact solutions of the field equations of the general theory of relativity
NASA Astrophysics Data System (ADS)
Jordan, Pascual; Ehlers, Jürgen; Kundt, Wolfgang
2009-09-01
This is an English translation of a paper by Pascual Jordan, Jürgen Ehlers and Wolfgang Kundt, first published in 1960. The original paper was part 1 of a five-part series of articles containing the first summary of knowledge about exact solutions of Einstein’s equations found until then. (The other parts of the series will be printed as Golden Oldies in the future.) The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. It is accompanied by an editorial note written by G. F. R. Ellis, and by the biographies of the authors: P. Jordan (written by A. Krasiński) and W. Kundt (written by himself). The biography of J. Ehlers is contained elsewhere in the same issue of GRG, which is devoted to his memory.
Marn, Nina; Kooijman, S A L M; Jusup, Marko; Legović, Tarzan; Klanjšček, Tin
2017-02-03
Loggerhead turtle is an endangered sea turtle species with a migratory lifestyle and worldwide distribution, experiencing markedly different habitats throughout its lifetime. Environmental conditions, especially food availability and temperature, constrain the acquisition and the use of available energy, thus affecting physiological processes such as growth, maturation, and reproduction. These physiological processes at the population level determine survival, fecundity, and ultimately the population growth rate-a key indicator of the success of conservation efforts. As a first step towards the comprehensive understanding of how environment shapes the physiology and the life cycle of a loggerhead turtle, we constructed a full life cycle model based on the principles of energy acquisition and utilization embedded in the Dynamic Energy Budget (DEB) theory. We adapted the standard DEB model using data from published and unpublished sources to obtain parameter estimates and model predictions that could be compared with data. The outcome was a successful mathematical description of ontogeny and life history traits of the loggerhead turtle. Some deviations between the model and the data existed (such as an earlier age at sexual maturity and faster growth of the post-hatchlings), yet probable causes for these deviations were found informative and discussed in great detail. Physiological traits such as the capacity to withstand starvation, trade-offs between reproduction and growth, and changes in the energy budget throughout the ontogeny were inferred from the model. The results offer new insights into physiology and ecology of loggerhead turtle with the potential to lead to novel approaches in conservation of this endangered species.
General model of phospholipid bilayers in fluid phase within the single chain mean field theory.
Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A
2014-05-07
Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.
ERIC Educational Resources Information Center
Kelly-McHale, Jacqueline
2013-01-01
The purpose of this qualitative collective case study was to examine the ways an elementary general music teacher's curricular beliefs and practices influence the expression of "music in identity" and "identity in music" for second-generation students. In addition to the music teacher, participants were 4 students whose…
ERIC Educational Resources Information Center
Hines, Claudia L.; Brown, Nina W.; Myran, Steve
2016-01-01
Ninety-three (n = 93) students in grades 9-12 who failed the Virginia Standards of Learning mathematics test were placed into experimental and control groups. Pre and posttest measures for general and mathematics anxiety, and physical symptoms of stress were administered. The Expressive Writing intervention was used with both groups where the…
ERIC Educational Resources Information Center
Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.
2012-01-01
This is the third of five papers detailing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we use item response theory to analyze students' responses to three out of the four conceptual cosmology surveys we developed. The specific item response theory model we use is…
Zhang, Jiayi; Yao, Zheng; Lu, Mingquan
2016-07-20
In order to provide better navigation service for a wide range of applications, modernized global navigation satellite systems (GNSS) employs increasingly advanced and complicated techniques in modulation and multiplexing of signals. This trend correspondingly increases the complexity of signal despreading at the receiver when matched receiving is used. Considering the numerous low-end receiver who can hardly afford such receiving complexity, it is feasible to apply some receiving strategies, which uses simplified forms of local despreading signals, which is termed unmatched despreading. However, the mismatch between local signal and received signal causes performance loss in code tracking, which is necessary to be considered in the theoretical evaluation methods of signals. In this context, we generalize the theoretical signal evaluation model for unmatched receiving. Then, a series of evaluation criteria are proposed, which are decoupled from unrelated influencing factors and concentrates on the key factors related to the signal and its receiving, thus better revealing the inherent performance of signals. The proposed evaluation criteria are used to study two GNSS signals, from which constructive guidance are derived for receivers and signal designer.
A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: Theory
NASA Astrophysics Data System (ADS)
Vichi, M.; Pinardi, N.; Masina, S.
2007-01-01
The set of equations for global ocean biogeochemistry deterministic models have been formulated in a comprehensive and unified form in order to use them in numerical simulations of the marine ecosystem for climate change studies (PELAGOS, PELAgic biogeochemistry for Global Ocean Simulations). The fundamental approach stems from the representation of marine trophic interactions and major biogeochemical cycles introduced in the European Regional Seas Ecosystem Model (ERSEM). Our theoretical formulation revisits and generalizes the stoichiometric approach of ERSEM by defining the state variables as Chemical Functional Families (CFF). CFFs are further subdivided into living, non-living and inorganic components. Living CFFs are the basis for the definition of Living Functional Groups, the biomass-based functional prototype of the real organisms. Both CFFs and LFGs are theoretical constructs which allow us to relate measurable properties of marine biogeochemistry to the state variables used in deterministic models. This approach is sufficiently generic that may be used to describe other existing biomass-based ecosystem model.
Generalization of the theory of coherent control of photocurrent generation in semiconductors
NASA Astrophysics Data System (ADS)
L. P. Hughes, James; Sipe, J. E.; Shkrebtii, A. I.
1998-03-01
The theoretical prediction of the coherent control of photocurrent generation in bulk semiconductors [1] has recently been experimentally confirmed for GaAs [2]. When two monochromatic beams of frequency ω and 2ω are incident on an intrinsic semiconductor, a photocurrent is generated whose direction and magnitude can be controlled by simply adjusting the relative phase between the two pulses. Such a process is very interesting from a technological and scientific point of view. The aims of this presentation are twofold. First, the theoretical approach of [1] is generalized for nondegenerate frequencies, and second, we examine the physics behind the coherent control effect in more detail as a means of gaining more insight into the process. We analyze the origin of the coherent photocurrent in terms of contributing regions in separate parts of the Brillouin zone, fine details of the electronic band structure, the dependence on contributions from various real and virtual bands, and the velocity distribution of electrons and holes for various energies and relative phases. The possibility of observing coherently controlled photocurrent for a wider class of semiconductors will be discussed, and in this regard, we present results for this current in Germanium. [1] R. Atanasov, et. al, Phys. Rev. Lett. 76 1703 (1996). [2] A. Hache, et. al, Phys. Rev. Lett. 78 306 (1997).