A General Expression for Hall Coefficient Based on Fermi Liquid Theory
NASA Astrophysics Data System (ADS)
Kohno, H.; Yamada, K.
1988-10-01
A general expression for Hall conductivity including the effects ofmany-body interaction is derived on the basis of the Fermi liquidtheory. It is exact as far as the most singular terms with respect tothe quasiparticle damping are concerned. It is applicable for anytypes of interaction as far as the picture of Fermi liquid holds well.
General theory for integrated analysis of growth, gene, and protein expression in biofilms.
Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S
2013-01-01
A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques.
General Theory for Integrated Analysis of Growth, Gene, and Protein Expression in Biofilms
Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S.
2013-01-01
A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques. PMID:24376726
Beyond generalized Proca theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-09-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
Generalized scale invariant theories
NASA Astrophysics Data System (ADS)
Padilla, Antonio; Stefanyszyn, David; Tsoukalas, Minas
2014-03-01
We present the most general actions of a single scalar field and two scalar fields coupled to gravity, consistent with second-order field equations in four dimensions, possessing local scale invariance. We apply two different methods to arrive at our results. One method, Ricci gauging, was known to the literature and we find this to produce the same result for the case of one scalar field as a more efficient method presented here. However, we also find our more efficient method to be much more general when we consider two scalar fields. Locally scale invariant actions are also presented for theories with more than two scalar fields coupled to gravity and we explain how one could construct the most general actions for any number of scalar fields. Our generalized scale invariant actions have obvious applications to early Universe cosmology and include, for example, the Bezrukov-Shaposhnikov action as a subset.
Generalized teleparallel theory
NASA Astrophysics Data System (ADS)
Junior, Ednaldo L. B.; Rodrigues, Manuel E.
2016-07-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.
Villarreal, L P
1991-01-01
The historic arguments for the participation of eukaryotic DNA replication in the control of gene expression are reconsidered along with more recent evidence. An earlier view in which gene commitment was achieved with stable chromatin structures which required DNA replication to reset expression potential (D. D. Brown, Cell 37:359-365, 1984) is further considered. The participation of nonspecific stable repressor of gene activity (histones and other chromatin proteins), as previously proposed, is reexamined. The possible function of positive trans-acting factors is now further developed by considering evidence from DNA virus models. It is proposed that these positive factors act to control the initiation of replicon-specific DNA synthesis in the S phase (early or late replication timing). Stable chromatin assembles during replication into potentially active (early S) or inactive (late S) states with prevailing trans-acting factors (early) or repressing factors (late) and may asymmetrically commit daughter templates. This suggests logical schemes for programming differentiation based on replicons and trans-acting initiators. This proposal requires that DNA replication precede major changes in gene commitment. Prior evidence against a role for DNA replication during terminal differentiation is reexamined along with other results from terminal differentiation of lower eukaryotes. This leads to a proposal that DNA replication may yet underlie terminal gene commitment, but that for it to do so there must exist two distinct modes of replication control. In one mode (mitotic replication) replicon initiation is tightly linked to the cell cycle, whereas the other mode (terminal replication) initiation is not cell cycle restricted, is replicon specific, and can lead to a terminally differentiated state. Aberrant control of mitotic and terminal modes of DNA replication may underlie the transformed state. Implications of a replicon basis for chromatin structure-function and
Generalized theory of gravitation
Moffat, J.W.
1984-12-01
The mathematical formulation of the nonsymmetric gravitation theory (NGT) as a geometrical structure is developed in a higher-dimensional space. The reduction of the geometrical scheme to a dynamical theory of gravitation in four-dimensional space-time is investigated and the basic physical laws of the theory are reviewed in detail.
Dahms, Rainer N
2015-05-01
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. The new model preserves the accuracy of previous temperature
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of
Generalized Brans-Dicke theories
De Felice, Antonio; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp
2010-07-01
In Brans-Dicke theory a non-linear self interaction of a scalar field φ allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those theories from the ΛCDM model.
Generalized SU(2) Proca theory
NASA Astrophysics Data System (ADS)
Allys, Erwan; Peter, Patrick; Rodríguez, Yeinzon
2016-10-01
Following previous works on generalized Abelian Proca theory, also called vector Galileon, we investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which could be dubbed non-Abelian vector Galileon. This particular symmetry group permits fruitful applications in cosmology such as inflation driven by gauge fields. Our approach consists in building, in an exhaustive way, all the Lagrangians containing up to six contracted Lorentz indices. For this purpose, and after identifying by group theoretical considerations all the independent Lagrangians which can be written at these orders, we consider the only linear combinations propagating 3 degrees of freedom and having healthy dynamics for their longitudinal mode, i.e., whose pure Stückelberg contribution turns into the SU(2) multi-Galileon dynamics. Finally, and after having considered the curved space-time expansion of these Lagrangians, we discuss the form of the theory at all subsequent orders.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
A general relaxation theory of simple liquids
NASA Technical Reports Server (NTRS)
Merilo, M.; Morgan, E. J.
1973-01-01
A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.
A general waveguide circuit theory
NASA Astrophysics Data System (ADS)
Marks, Roger B.; Williams, Dylan F.
1992-10-01
This work generalizes and extends the classical circuit theory of electromagnetic waveguides. Unlike the conventional theory, the present formulation applies to all waveguides composed of linear, isotropic material, even those involving lossy conductors and hybrid mode fields, in a fully rigorous way. Special attention is given to distinguishing the traveling waves, constructed with respect to a well-defined characteristic impedance, from a set of pseudo-waves, defined with respect to an arbitrary reference impedance. Matrices characterizing a linear circuit are defined, and relationships among them, some newly discovered, are derived. New ramifications of reciprocity are developed. Measurement of various network parameters is given extensive treatment.
Solitons in generalized Galileon theories
NASA Astrophysics Data System (ADS)
Carrillo González, Mariana; Masoumi, Ali; Solomon, Adam R.; Trodden, Mark
2016-12-01
We consider the existence and stability of solitons in generalized Galileons, scalar-field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single Galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized Galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (anti-)de Sitter Galileons. For the case of Dirac-Born-Infeld and conformal Galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
Gestalt Therapy and General System Theory.
ERIC Educational Resources Information Center
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
Gestalt Therapy and General System Theory.
ERIC Educational Resources Information Center
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
Cosmology in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-06-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.
Towards a general theory of implementation
2013-01-01
Understanding and evaluating the implementation of complex interventions in practice is an important problem for healthcare managers and policy makers, and for patients and others who must operationalize them beyond formal clinical settings. It has been argued that this work should be founded on theory that provides a foundation for understanding, designing, predicting, and evaluating dynamic implementation processes. This paper sets out core constituents of a general theory of implementation, building on Normalization Process Theory and linking it to key constructs from recent work in sociology and psychology. These are informed by ideas about agency and its expression within social systems and fields, social and cognitive mechanisms, and collective action. This approach unites a number of contending perspectives in a way that makes possible a more comprehensive explanation of the implementation and embedding of new ways of thinking, enacting and organizing practice. PMID:23406398
More about wormholes in generalized Galileon theories
NASA Astrophysics Data System (ADS)
Rubakov, V. A.
2016-08-01
We consider a class of generalized Galileon theories within general relativity in space-times with more than two spatial dimensions. We show that these theories do not admit stable, static, spherically symmetric, asymptotically flat Lorentzian wormholes.
Generalized constraint structure for gravitation theory
Komar, A.
1983-05-15
By exploiting the conformal symmetry inherent in the Einstein theory we construct a more general form for the Dirac constraints involving an arbitrary function. This more general form is required if a canonically quantized theory is to accommodate renormalization.
Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M
2014-05-01
A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe's coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer's performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1,ω2) and the individual quality factors (Q1,Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, Iwithinsert/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be
Cosmology in beyond-generalized Proca theories
NASA Astrophysics Data System (ADS)
Nakamura, Shintaro; Kase, Ryotaro; Tsujikawa, Shinji
2017-05-01
The beyond-generalized Proca theories are the extension of second-order massive vector-tensor theories (dubbed generalized Proca theories) with two transverse vector modes and one longitudinal scalar besides two tensor polarizations. Even with this extension, the propagating degrees of freedom remain unchanged on the isotropic cosmological background without an Ostrogradski instability. We study the cosmology in beyond-generalized Proca theories by paying particular attention to the dynamics of late-time cosmic acceleration and resulting observational consequences. We derive conditions for avoiding ghosts and instabilities of tensor, vector, and scalar perturbations and discuss viable parameter spaces in concrete models allowing the dark energy equation of state smaller than -1 . The propagation speeds of those perturbations are subject to modifications beyond the domain of generalized Proca theories. There is a mixing between scalar and matter sound speeds, but such a mixing is suppressed during most of the cosmic expansion history without causing a new instability. On the other hand, we find that derivative interactions arising in beyond-generalized Proca theories give rise to important modifications to the cosmic growth history. The growth rate of matter perturbations can be compatible with the redshift-space distortion data due to the realization of gravitational interaction weaker than that in generalized Proca theories. Thus, it is possible to distinguish the dark energy model in beyond-generalized Proca theories from the counterpart in generalized Proca theories as well as from the Λ CDM model.
A general theory of sexual differentiation.
Arnold, Arthur P
2017-01-02
A general theory of mammalian sexual differentiation is proposed. All biological sex differences are the result of the inequality in effects of the sex chromosomes, which are the only factors that differ in XX vs. XY zygotes. This inequality leads to male-specific effects of the Y chromosome, including expression of the testis-determining gene Sry that causes differentiation of testes. Thus, Sry sets up lifelong sex differences in effects of gonadal hormones. Y genes also act outside of the gonads to cause male-specific effects. Differences in the number of X chromosomes between XX and XY cells cause sex differences in expression (1) of Xist, (2) of X genes that escape inactivation, and (3) of parentally imprinted X genes. Sex differences in phenotype are ultimately the result of multiple, independent sex-biasing factors, hormonal and sex chromosomal. These factors act in parallel and in combination to induce sex differences. They also can offset each other to reduce sex differences. Other mechanisms, operating at the level of populations, cause groups of males to differ on average from groups of females. The theory frames questions for further study, and directs attention to inherent sex-biasing factors that operate in many tissues to cause sex differences, and to cause sex-biased protection from disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
General Systems Theory and Instructional Design.
ERIC Educational Resources Information Center
Salisbury, David F.
The use of general systems theory in the field of instructional systems design (ISD) is explored in this paper. Drawing on work by Young, the writings of 12 representative ISD writers and researchers were surveyed to determine the use of 60 general systems theory concepts by the individual authors. The average number of concepts used by these…
Generalized expression for polarization density
Wang Lu; Hahm, T. S.
2009-06-15
A general polarization density which consists of classical and neoclassical parts is systematically derived via modern gyrokinetics and bounce kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width and finite-Larmor-radius effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. The generalized analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength.
General properties of Nonsignaling Theories
NASA Astrophysics Data System (ADS)
Gisin, Nicolas
2006-03-01
We present a series of properties, usually associated to quantum physics, and show that they are common to all theories that do not allow for superluminal signalling and predict violation of Bell inequalities. These include intrinsic randomness, no cloning, monogamy of correlations, uncertainty relations, privacy of correlations, bounds on the shareability of some states. Finally, we emphasize that correlation data must violate some Bell inequality in order to contain distillable secrecy and introduce a new QKD protocol and prove its security against any individual attack by an adversary only limited by the no-signalling condition.
General properties of nonsignaling theories
NASA Astrophysics Data System (ADS)
Masanes, Ll.; Acin, A.; Gisin, N.
2006-01-01
This article identifies a series of properties common to all theories that do not allow for superluminal signaling and predict the violation of Bell inequalities. Intrinsic randomness, uncertainty due to the incompatibility of two observables, monogamy of correlations, impossibility of perfect cloning, privacy of correlations, bounds in the shareability of some states; all these phenomena are solely a consequence of the no-signaling principle and nonlocality. In particular, it is shown that for any distribution, the properties of (i) nonlocal, (ii) no arbitrarily shareable, and (iii) positive secrecy content are equivalent.
Generalized Expression for Polarization Density
Lu Wang and T.S. Hahm
2009-04-23
A general polarization density which consists of classical and neoclassical parts is system-atically derived via modern gyrokinetics and bounce-kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width (FBW) and finite-Larmor-radius (FLR) effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. Our analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength.
Black holes in the generalized Proca theory
NASA Astrophysics Data System (ADS)
Minamitsuji, Masato
2017-07-01
We investigate static and spherically symmetric black hole solutions in the generalized Proca theory which corresponds to the generalization of the shift-symmetric scalar-tensor Horndeski theory to the vector-tensor theory. Any solution obtained in this paper possesses a constant spacetime norm of the vector field, X:=-1/2g^{μ ν }A_μ A_ν =X_0=constant. The solutions in the theory with generalized quartic coupling G_4(X) generalize the stealth Schwarzschild and the Schwarzschild- (anti-) de Sitter solutions obtained in the theory with the nonminimal coupling to the Einstein tensor G^{μ ν } A_μ A_ν . While in the vector-tensor theory with the coupling G^{μ ν }A_μ A_ν the electric charge does not explicitly affect the spacetime geometry, in more general cases with nonzero G_{4XX}(X_0)≠ 0 this property does not hold in general. The solutions in the theory with generalized cubic coupling G_3(X) are given by the Schwarzschild- (anti-) de Sitter spacetime, where the dependence on G_3(X) does not appear in the metric function.
Inflation in general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Huang, Yongqing; Wang, Anzhong; Wu, Qiang
2012-10-01
In this paper, we study inflation in the framework of the nonrelativistic general covariant theory of the Hořava-Lifshitz gravity with the projectability condition and an arbitrary coupling constant λ. We find that the Friedmann-Robterson-Walker (FRW) universe is necessarily flat in such a setup. We work out explicitly the linear perturbations of the flat FRW universe without specifying to a particular gauge, and find that the perturbations are different from those obtained in general relativity, because of the presence of the high-order spatial derivative terms. Applying the general formulas to a single scalar field, we show that in the sub-horizon regions, the metric and scalar field are tightly coupled and have the same oscillating frequencies. In the super-horizon regions, the perturbations become adiabatic, and the comoving curvature perturbation is constant. We also calculate the power spectra and indices of both the scalar and tensor perturbations, and express them explicitly in terms of the slow roll parameters and the coupling constants of the high-order spatial derivative terms. In particular, we find that the perturbations, of both scalar and tensor, are almost scale-invariant, and, with some reasonable assumptions on the coupling coefficients, the spectrum index of the tensor perturbation is the same as that given in the minimum scenario in general relativity (GR), whereas the index for scalar perturbation in general depends on λ and is different from the standard GR value. The ratio of the scalar and tensor power spectra depends on the high-order spatial derivative terms, and can be different from that of GR significantly.
BRST symmetry in the general gauge theories
NASA Astrophysics Data System (ADS)
Hyuk-Jae, Lee; Jae, Hyung, Yee
1994-01-01
By using the residual gauge symmetry interpretation of BRST invariance we have constructed a new BRST formulation for general gauge theories including those with open algebras. For theories with open gauge algebra the formulation leads to a BRST invariant effective action which does not contain any higher order terms in the ghost fields.
Utilizing general information theories for uncertainty quantification
Booker, J. M.
2002-01-01
Uncertainties enter into a complex problem from many sources: variability, errors, and lack of knowledge. A fundamental question arises in how to characterize the various kinds of uncertainty and then combine within a problem such as the verification and validation of a structural dynamics computer model, reliability of a dynamic system, or a complex decision problem. Because uncertainties are of different types (e.g., random noise, numerical error, vagueness of classification), it is difficult to quantify all of them within the constructs of a single mathematical theory, such as probability theory. Because different kinds of uncertainty occur within a complex modeling problem, linkages between these mathematical theories are necessary. A brief overview of some of these theories and their constituents under the label of Generalized lnforrnation Theory (GIT) is presented, and a brief decision example illustrates the importance of linking at least two such theories.
Tests of General Theory of Relativity
NASA Astrophysics Data System (ADS)
Brynjolfsson, Ari
2002-04-01
Einstein’s theory of general relativity and experiments proving it are all in the domain of classical physics. These include experiments by Pound, Rebka, and Snider of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr’s correspondence principle assures that the quantum mechanical theory of general relativity agrees with Einstein’s classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. Quantum theory invalidates some of the assumption made by Einstein. His argument that equally many crests of waves must arrive on Earth as leave Sun is correct in classical physics, but impermissible in quantum mechanics. We will show that solar redshift experiments contradict the classical theory and support a quantum mechanically modified theory of general relativity. This changes drastically the entire theory, including the equivalence principle.
A general theory of linear cosmological perturbations: bimetric theories
NASA Astrophysics Data System (ADS)
Lagos, Macarena; Ferreira, Pedro G.
2017-01-01
We implement the method developed in [1] to construct the most general parametrised action for linear cosmological perturbations of bimetric theories of gravity. Specifically, we consider perturbations around a homogeneous and isotropic background, and identify the complete form of the action invariant under diffeomorphism transformations, as well as the number of free parameters characterising this cosmological class of theories. We discuss, in detail, the case without derivative interactions, and compare our results with those found in massive bigravity.
Generalized continued fractions and ergodic theory
NASA Astrophysics Data System (ADS)
Pustyl'nikov, L. D.
2003-02-01
In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest.
Splitting fields and general differential Galois theory
Trushin, Dmitry V
2010-11-11
An algebraic technique is presented that does not use results of model theory and makes it possible to construct a general Galois theory of arbitrary nonlinear systems of partial differential equations. The algebraic technique is based on the search for prime differential ideals of special form in tensor products of differential rings. The main results demonstrating the work of the technique obtained are the theorem on the constructedness of the differential closure and the general theorem on the Galois correspondence for normal extensions. Bibliography: 14 titles.
On adiabatic invariant in generalized Galileon theories
Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp
2015-10-01
We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.
General Systems Theory and Instructional Systems Design.
ERIC Educational Resources Information Center
Salisbury, David F.
1990-01-01
Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)
General Relativity theory: tests through time
NASA Astrophysics Data System (ADS)
Yatskiv, Ya. S.; Alexandrov, A. N.; Vavilova, I. B.; Zhdanov, V. I.; Kudrya, Yu. N.; Parnovsky, S. L.; Fedorova, O. V.; Khmil, S. V.
2005-09-01
Theoretical basis of General relativity Theory, its experimental tests as well as GRT applications are briefly summarized taking into account the results of the last decade. The monograph addresses scientists, post-graduated students, and students specialized in the natural sciences as well as everyone who takes a great interest in GRT.
General degeneracy in density functional perturbation theory
NASA Astrophysics Data System (ADS)
Palenik, Mark C.; Dunlap, Brett I.
2017-07-01
Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting methodology, we apply it to the iron atom in the central field approximation, perturbed by an electric quadrupole. This system was chosen because it displays both symmetry required degeneracy, between the five 3 d orbitals, as well as accidental degeneracy, between the 3 d and 4 s orbitals. The quadrupole potential couples the degenerate 3 d and 4 s states, serving as an example of the most general perturbation.
General Potential Theory of Arbitrary Wing Sections
NASA Technical Reports Server (NTRS)
Theodorsen, T.; Garrick, I. E.
1979-01-01
The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.
A Short Introduction to General Gyrokinetic Theory
H. Qin
2005-02-14
Interesting plasmas in the laboratory and space are magnetized. General gyrokinetic theory is about a symmetry, gyro-symmetry, in the Vlasov-Maxwell system for magnetized plasmas. The most general gyrokinetic theory can be geometrically formulated. First, the coordinate-free, geometric Vlasov-Maxwell equations are developed in the 7-D phase space, which is defined as a fiber bundle over the space-time. The Poincar{copyright}-Cartan-Einstein 1-form pullbacked onto the 7-D phase space determines particles' worldlines in the phase space, and realizes the momentum integrals in kinetic theory as fiber integrals. The infinite small generator of the gyro-symmetry is then asymptotically constructed as the base for the gyrophase coordinate of the gyrocenter coordinate system. This is accomplished by applying the Lie coordinate perturbation method to the Poincar{copyright}-Cartan-Einstein 1-form, which also generates the most relaxed condition under which the gyro-symmetry still exists. General gyrokinetic Vlasov-Maxwell equations are then developed as the Vlasov-Maxwell equations in the gyrocenter coordinate system, rather than a set of new equations. Since the general gyrokinetic system-developed is geometrically the same as the Vlasov-Maxwell equations, all the coordinate independent properties of the Vlasov-Maxwell equations, such as energy conservation, momentum conservation, and Liouville volume conservation, are automatically carried over to the general gyrokinetic system. The pullback transformation associated with the coordinate transformation is shown to be an indispensable part of the general gyrokinetic Vlasov-Maxwell equations. Without this vital element, a number of prominent physics features, such as the presence of the compressional Alfven wave and a proper description of the gyrokinetic equilibrium, cannot be readily recovered. Three examples of applications of the general gyrokinetic theory developed in the areas of plasma equilibrium and plasma waves are
Generalized IIB supergravity from exceptional field theory
NASA Astrophysics Data System (ADS)
Baguet, Arnaud; Magro, Marc; Samtleben, Henning
2017-03-01
The background underlying the η-deformed AdS 5 × S 5 sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear dilaton. We show how the generalized IIB supergravity equations can be naturally obtained from exceptional field theory. Within this manifestly duality covariant formulation of maximal supergravity, the generalized IIB supergravity equations emerge upon imposing on the fields a simple Scherk-Schwarz ansatz which respects the section constraint.
Eleven theses of general systems theory (GST)
Waelchli, F.
1992-12-31
This paper chronicles an effort to distill and order (for purposes of discussion and elaboration) frequently mentioned and significant ideas encountered in the literature of General Systems theory (GST). The product is a set of eleven theses, representing the author`s selection and collation of seminal and recurrent GST themes. The author argues that attention to theory could aid the effort to develop practical applications of systems thinking. (Remember that a thesis is a statement or assertion, offered originally without proof, as the basis for an argument, discussion, or empirical test). 10 refs.
A general theory for the Uranian satellites
NASA Technical Reports Server (NTRS)
Laskar, J.
1986-01-01
A general analytical theory of the five main satellites of Uranus, including the secular and short period terms hereafter denoted by GUST, is presented. A comparison is made with an internal numerical integration with nominal masses of Veillet (1983). The precision of the theory goes from about 10 km for Miranda to 100 km for Oberon. The short period terms in the motions of Titania and Oberon are larger than 500 km. They should make possible the determination of the masses of the outer satellites through the optical data of Voyager encounter.
Toward a general evolutionary theory of oncogenesis.
Ewald, Paul W; Swain Ewald, Holly A
2013-01-01
We propose an evolutionary framework, the barrier theory of cancer, which is based on the distinction between barriers to oncogenesis and restraints. Barriers are defined as mechanisms that prevent oncogenesis. Restraints, which are more numerous, inhibit but do not prevent oncogenesis. Processes that compromise barriers are essential causes of cancer; those that interfere with restraints are exacerbating causes. The barrier theory is built upon the three evolutionary processes involved in oncogenesis: natural selection acting on multicellular organisms to mold barriers and restraints, natural selection acting on infectious organisms to abrogate these protective mechanisms, and oncogenic selection which is responsible for the evolution of normal cells into cancerous cells. The barrier theory is presented as a first step toward the development of a general evolutionary theory of cancer. Its attributes and implications for intervention are compared with those of other major conceptual frameworks for understanding cancer: the clonal diversification model, the stem cell theory and the hallmarks of cancer. The barrier theory emphasizes the practical value of distinguishing between essential and exacerbating causes. It also stresses the importance of determining the scope of infectious causation of cancer, because individual pathogens can be responsible for multiple essential causes in infected cells.
Cosmological Theories of Special and General Relativity - I
NASA Astrophysics Data System (ADS)
Moshe, Carmeli
In the standard cosmological theory one uses the Einstein concepts of space and time as were originally introduced for the special theory of relativity and the general relativity theory. According to this approach all physical quantities are described in terms of the continuum spatial coordinates and time. Using general relativity theory a great progress has been made in understanding the evolution of the Universe. Cosmologists usually measure spatial distances and redshitfs of faraway galaxies as expressed by the Hubble expansion. In recent years this fact was undertaken to develop new theories in terms of distances and velocities (redshift). While in Einstein's relativity the propagation of light plays the major role, in the new theory it is the expansion of the Universe that takes that role and appears at the outset. The cosmic time becomes crucial in these recent theories, which in the standard theory is considered to be absolute but here it is relative. In this lecture this new approach to cosmology is presented.
On the general theory of neural circuitry.
Kingham, D J
1994-05-01
A general theory of neural circuitry is proposed wherein neural impulses travel in a continuous circuit from the brain to the extremities and back to the brain. At the extremities the impulse may be modified by the environment there. At the spinal column the return signal is compared with the outgoing signal and the appropriate motoneuronal 'reflex' signal is generated if the difference is sufficiently large. In the thalamus the return signal is again compared with the outgoing signal and the difference between the two generates a sensory impulse which is sent to the cortical regions of the brain for comparison with stored patterns from similar signals of past experience. This theory allows for an explanation of feelings of pain and pleasure, pain remote from an area of trauma, phantom limb pain and the relationship between sensory impulses and motor impulses. New approaches to reducing pain are suggested by this theory.
Generalized Onsager theory of liquid crystals.
Xiao, Xiaobin; Sheng, Ping
2013-12-01
The Onsager theory is known to be inaccurate in its prediction of the critical transition density for small aspect ratio hard rods. In this paper we generalize the Onsager theory in two dimensions by taking into account the short-range order as well as the higher-order virial coefficients, up to the fourth order. By carrying out molecular dynamics (MD) simulations on "molecules" comprising linked hard disks with an aspect ratio ℓ ranging from 5 to 13, we show that the generalized theory is much improved as compared to the traditional theory, with its predictions of the transition density agreeing well with the simulation results. This indicates the importance of short-range order considerations (in conjunction with steric repulsion) for molecules with ℓ≤10, a group which includes the most commonly encountered thermotropic liquid crystals. MD simulations further yield evidence for hexagonal order for molecules with ℓ≤8, indicating an intermediate hexagonal phase before solidifying at higher densities.
Cosmology in general massive gravity theories
Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@aquila.infn.it
2014-05-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w{sub eff} has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w{sub eff} from -1. Taking into account current limits on w{sub eff} and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w{sub eff} form -1 in a weakly coupled massive gravity theory.
Non-signalling Theories and Generalized Probability
NASA Astrophysics Data System (ADS)
Tylec, Tomasz I.; Kuś, Marek; Krajczok, Jacek
2016-09-01
We provide mathematically rigorous justification of using term probability in connection to the so called non-signalling theories, known also as Popescu's and Rohrlich's box worlds. No only do we prove correctness of these models (in the sense that they describe composite system of two independent subsystems) but we obtain new properties of non-signalling boxes and expose new tools for further investigation. Moreover, it allows strightforward generalization to more complicated systems.
Relativistic theory of gravitation and criticism of general relativity
Logunov, A.A.; Loskutov, Yu.M.; Mestvirishvili, M.A.
1988-05-01
Two questions are discussed: (1) the invalidity of the general theory of relativity as a physical theory of gravitation and (2) the construction of a relativistic theory of gravitation possessing all attributes of field theories.
General nonequilibrium theory of colloid dynamics.
Ramírez-González, Pedro; Medina-Noyola, Magdaleno
2010-12-01
A nonequilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time-evolution equations of its mean value n(r,t) and of the covariance [Formula in text] of its fluctuations δn(r,t)=n(r,t)-n(r,t). These two coarse-grained equations involve a local mobility function b(r,t) which, in its turn, is written in terms of the memory function of the two-time correlation function [Formula in text]. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n(0)(r) and σ(0)(r,r') toward its equilibrium state characterized by the equilibrium local concentration profile n(eq)(r) and equilibrium covariance σ(eq)(r,r'). This theory also provides a general theoretical framework to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of spatial heterogeneities.
Possibilistic systems within a general information theory
Joslyn, C.
1999-06-01
The author surveys possibilistic systems theory and place it in the context of Imprecise Probabilities and General Information Theory (GIT). In particular, he argues that possibilistic systems hold a distinct position within a broadly conceived, synthetic GIT. The focus is on systems and applications which are semantically grounded by empirical measurement methods (statistical counting), rather than epistemic or subjective knowledge elicitation or assessment methods. Regarding fuzzy measures as special provisions, and evidence measures (belief and plausibility measures) as special fuzzy measures, thereby he can measure imprecise probabilities directly and empirically from set-valued frequencies (random set measurement). More specifically, measurements of random intervals yield empirical fuzzy intervals. In the random set (Dempster-Shafer) context, probability and possibility measures stand as special plausibility measures in that their distributionality (decomposability) maps directly to an aggregable structure of the focal classes of their random sets. Further, possibility measures share with imprecise probabilities the ability to better handle open world problems where the universe of discourse is not specified in advance. In addition to empirically grounded measurement methods, possibility theory also provides another crucial component of a full systems theory, namely prediction methods in the form of finite (Markov) processes which are also strictly analogous to the probabilistic forms.
On the general theory of thin airfoils for nonuniform motion
NASA Technical Reports Server (NTRS)
Reissner, Eric
1944-01-01
General thin-airfoil theory for a compressible fluid is formulated as boundary problem for the velocity potential, without recourse to the theory of vortex motion. On the basis of this formulation the integral equation of lifting-surface theory for an incompressible fluid is derived with the chordwise component of the fluid velocity at the airfoil as the function to be determined. It is shown how by integration by parts this integral equation can be transformed into the Biot-Savart theorem. A clarification is gained regarding the use of principal value definitions for the integral which occur. The integral equation of lifting-surface theory is used a s the starting point for the establishment of a theory for the nonstationary airfoil which is a generalization of lifting-line theory for the stationary airfoil and which might be called "lifting-strip" theory. Explicit expressions are given for section lift and section moment in terms of the circulation function, which for any given wing deflection is to be determined from an integral equation which is of the type of the equation of lifting-line theory. The results obtained are for airfoils of uniform chord. They can be extended to tapered airfoils. One of the main uses of the results should be that they furnish a practical means for the analysis of the aerodynamic span effect in the problem of wing flutter. The range of applicability of "lifting-strip" theory is the same as that of lifting-line theory so that its results may be applied to airfoils with aspect ratios as low as three.
Toward a holographic theory for general spacetimes
NASA Astrophysics Data System (ADS)
Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.
2017-04-01
We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct-sum and "spacetime-equals-entanglement" structure. The former preserves a naive relationship between linear operators and observable quantities, while the latter respects a more direct connection between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum gravity, in particular how the state of the multiverse may be selected in the landscape.
Generalized Langevin Theory for Inhomogeneous Fluids.
NASA Astrophysics Data System (ADS)
Grant, Martin Garth
This thesis presents a molecular theory of the dynamics of inhomogeneous fluids. Dynamical correlations in a nonuniform system are studied through the generalized Langevin approach. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamic-like quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We apply this formalism to several problems. We study the correlation of currents orthogonal to a diffuse planar, liquid-vapour, interface, introducing new nonlocal elastic moduli and new nonlocal, frequency dependent, viscosities. Novel symmetry breaking contributions are obtained, which are related to the Young-Laplace equation for pressure balance. The normal modes, associated with the symmetry breaking interface in the liquid-vapour system, are analyzed, taking into account the nonlocal nature of the diffuse planar interface. We obtain the classical dispersion relation for capillary waves, observed in light scattering experiments, from an adiabatic (molecular) approach. We consider the 'capillary wave model' (CWM) of the equilibrium liquid-vapour interface. CWM is reformulated to be consistent with capillary waves; corrections to the standard CWM results, due to self-consistent long range coupling, are obtained for finite surface area and nonzero gravitational acceleration. Finally, we obtain the Landau-Lifshitz theory of fluctuating hydrodynamics from the
Covariant generalization of cosmological perturbation theory
Enqvist, Kari; Hoegdahl, Janne; Nurmi, Sami; Vernizzi, Filippo
2007-01-15
We present an approach to cosmological perturbations based on a covariant perturbative expansion between two worldlines in the real inhomogeneous universe. As an application, at an arbitrary order we define an exact scalar quantity which describes the inhomogeneities in the number of e-folds on uniform density hypersurfaces and which is conserved on all scales for a barotropic ideal fluid. We derive a compact form for its conservation equation at all orders and assign it a simple physical interpretation. To make a comparison with the standard perturbation theory, we develop a method to construct gauge-invariant quantities in a coordinate system at arbitrary order, which we apply to derive the form of the nth order perturbation in the number of e-folds on uniform density hypersurfaces and its exact evolution equation. On large scales, this provides the gauge-invariant expression for the curvature perturbation on uniform density hypersurfaces and its evolution equation at any order.
Sound damping constant for generalized theories of gravity
Brustein, Ram; Medved, A. J. M.
2009-06-15
The near-horizon metric for a black brane in anti-de Sitter space and the metric near the AdS boundary both exhibit hydrodynamic behavior. We demonstrate the equivalence of this pair of hydrodynamic systems for the sound mode of a conformal theory. This is first established for Einstein's gravity, but we then show how the sound damping constant will be modified from its Einstein form for a generalized theory. The modified damping constant is expressible as the ratio of a pair of gravitational couplings that are indicative of the sound-channel class of gravitons. This ratio of couplings differs from both that of the shear diffusion coefficient and the shear viscosity to entropy ratio. Our analysis is mostly limited to conformal theories, but suggestions are made as to how this restriction might eventually be lifted.
General theory of the plasmoid instability
Comisso, L.; Lingam, M.; Huang, Y. -M.; Bhattacharjee, A.
2016-10-05
In a general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. We derive and show the scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids that depend on the initial perturbation amplitude ($\\hat{w}$_{0}), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to S^{α}τ^{β}[ln f(S,τ,$\\hat{w}$_{0})]^{σ}. Finally, the detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.
General theory of the plasmoid instability
Comisso, L.; Lingam, M.; Huang, Y. -M.; Bhattacharjee, A.
2016-10-05
In a general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. We derive and show the scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids that depend on the initial perturbation amplitude ($\\hat{w}$_{0}), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to S^{α}τ^{β}[ln f(S,τ,$\\hat{w}$_{0})]^{σ}. Finally, the detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.
General theory of the plasmoid instability
Comisso, L.; Lingam, M.; Huang, Y. -M.; ...
2016-10-05
In a general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. We derive and show the scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids that depend on the initial perturbation amplitude (more » $$\\hat{w}$$0), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to Sατβ[ln f(S,τ,$$\\hat{w}$$0)]σ. Finally, the detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.« less
General theory of heat diffusion dynamics
NASA Astrophysics Data System (ADS)
Tröster, A.; Schranz, W.
2002-11-01
A detailed theoretical investigation of the influence of heat diffusion processes on the low-frequency dispersion in macroscopic elastic susceptibilities is presented. In particular, a general solution of the heat diffusion equation is derived for arbitrary boundary conditions and externally imposed periodic and spatially inhomogeneous stress. In contrast to other calculations found in the literature, our results indicate that in elastic experiments on monodomain samples of macroscopic dimensions the isothermal-adiabatic crossover function necessarily reduces to a Debye-like dispersion. Experimentally, this is illustated by measurements of the complex dynamic elastic susceptibilities of KSCN and KMnF3. Our approach also allows to discuss heat diffusion in polydomain crystals and heterogeneous systems, for which one obtains dispersions of a non-Debye type. While explicitly derived in an elastic context, the present theory also applies to heat diffusion in dielectric materials.
Generalized theory of diffusion based on kinetic theory
NASA Astrophysics Data System (ADS)
Schäfer, T.
2016-10-01
We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization of the diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick's law and the diffusion equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless Boltzmann treatment of spin propagation. Spin hydrodynamics avoids unphysical effects that arise when the diffusion equation is used to describe to a strongly interacting gas with a dilute corona. We apply spin hydrodynamics to the problem of spin diffusion in a trapped atomic gas. We find that the observed spin relaxation rate in the high-temperature limit [Sommer et al., Nature (London) 472, 201 (2011), 10.1038/nature09989] is consistent with the diffusion constant predicted by kinetic theory.
Léon Rosenfeld's general theory of constrained Hamiltonian dynamics
NASA Astrophysics Data System (ADS)
Salisbury, Donald; Sundermeyer, Kurt
2017-01-01
This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.
Léon Rosenfeld's general theory of constrained Hamiltonian dynamics
NASA Astrophysics Data System (ADS)
Salisbury, Donald; Sundermeyer, Kurt
2017-04-01
This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.
Generalized interferometry - I: theory for interstation correlations
NASA Astrophysics Data System (ADS)
Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian
2017-02-01
We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on
Generalized Rayleigh scattering. I. Basic theory.
NASA Astrophysics Data System (ADS)
Ivanov, V. V.
1995-11-01
The classsical problem of multiple molecular (in particular, Rayleigh) scattering in plane-parallel atmospheres is considered from a somewhat broader viewpoint than usual. The general approach and ideology are borrowed from non-LTE line formation theory. The main emphasis is on the depth dependence of the corresponding source matrix rather than on the emergent radiation. We study the azimuth-averaged radiation field of polarized radiation in a semi-infinite atmosphere with embedded primary sources. The corresponding 2x2 phase matrix of molecular scattering is P=(1-W) P_I_+W P_R_, where P_I_ and P_R_ are the phase matrices of the scalar isotropic scattering and of the Rayleigh scattering, respectively, and W is the depolarization parameter. Contrary to the usual assumption that W{in}[0,1], we assume W{in} [0,{infinity}) and call this generalized Rayleigh scattering (GRS). Using the factorization of P which is intimately related to its diadic expansion, we reduce the problem to an integral equation for the source matrix S(τ) with a matrix displacement kernel. In operator form this equation is S={LAMBDA}S+S^*^, where {LAMBDA} is the matrix {LAMBDA}-operator and S^*^ is the primary source term. This leads to a new concept, the matrix albedo of single scattering λ =diag(λ_I_,λ_Q_), where λ_I_ is the usual (scalar) single scattering albedo and λ_Q_=0.7Wλ_I_. Its use enables one to formulate matrix equivalents of many of the results of the scalar theory in exactly the same form as in the scalar case. Of crucial importance is the matrix equivalent of the sqrt(ɛ) law of the scalar theory. Another useful new concept is the λ-plane, i.e., the plane with the axes (λ_I_,λ_Q_). Systematic use of the matrix sqrt(ɛ) law and of the λ-plane proved to be a useful instrument in classifying various limiting and particular cases of GRS and in discussing numerical data on the matrix source functions (to be given in Paper II of the series).
Dynamical Correspondence in a Generalized Quantum Theory
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
Physical Particle Representation and Generalized Transformation Theory
Prigogine, I.; George, Cl.; Henin, F.; Mandel, P.; Turner, J. W.
1970-01-01
The investigation of the recently described generalized transformation theory which leads to a non-Hamiltonian description of dynamics is pursued. The concept of generalized unitary transformations of superoperators is introduced and a specific class of transformations studied. For nondissipative systems it is equivalent to the usual unitary transformations that diagonalize the Hamiltonian. The important point is that this class of transformations remains meaningful for dissipative systems, hence a new representation of dynamics that we shall call the „physical particle” representation. It has the following properties: (a) The energy (or an arbitrary function of the energy) is represented by a diagonal matrix. (b) In the (0)II space (see these Proceedings, 65, 789 (1970)) corresponding to the coherent processes, the evolution can be described in terms of the changes in population of the physical particles. (c) At thermodynamic equilibrium, the physical particles are uncorrelated and behave as independent entities; the entropy has a purely combinatorial meaning. A full description of dynamics in this representation will be given in a forth-coming paper. PMID:16578707
Dynamical aspects of generalized Palatini theories of gravity
NASA Astrophysics Data System (ADS)
Olmo, Gonzalo J.; Sanchis-Alepuz, Hèlios; Tripathi, Swapnil
2009-07-01
We study the field equations of modified theories of gravity in which the Lagrangian is a general function of the Ricci scalar and Ricci-squared terms in Palatini formalism. We show that the independent connection can be expressed as the Levi-Cività connection of an auxiliary metric which, in particular cases of interest, is related with the physical metric by means of a disformal transformation. This relation between physical and auxiliary metric boils down to a conformal transformation in the case of f(R) theories. We also show with explicit models that the inclusion of Ricci-squared terms in the action can impose upper bounds on the accessible values of pressure and density, which might have important consequences for the early time cosmology and black hole formation scenarios. Our results indicate that the phenomenology of f(R,RμνRμν) theories is much richer than that of f(R) and f(RμνRμν) theories and that they also share some similarities with Bekenstein’s relativistic theory of MOND.
Incorporation of generalized uncertainty principle into Lifshitz field theories
Faizal, Mir; Majumder, Barun
2015-06-15
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
Incorporation of generalized uncertainty principle into Lifshitz field theories
NASA Astrophysics Data System (ADS)
Faizal, Mir; Majumder, Barun
2015-06-01
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
Ghost properties of generalized theories of gravitation
Mann, R.B.; Moffat, J.W.
1982-10-15
We investigate theories of gravitation, in which spacetime is non-Riemannian and the metric g/sub munu/ is nonsymmetric, for ghosts and tachyons, using a spin-projection operator formalism. Ghosts are removed not by gauge invariance but by a Lagrange multiplier W/sub ..mu../, which occurs due to the breaking of projective invariance in the theory. Unified theories based on a Lagrangian containing a term lambdag/sup munu/g/sub / are proved to contain ghosts or tachyons.
Observational constraints on generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Tsujikawa, Shinji
2017-06-01
In a model of the late-time cosmic acceleration within the framework of generalized Proca theories, there exists a de Sitter attractor preceded by the dark energy equation of state wDE=-1 -s , where s is a positive constant. We run the Markov-chain-Monte Carlo code to confront the model with the observational data of the cosmic microwave background (CMB), baryon acoustic oscillations, supernovae type Ia, and local measurements of the Hubble expansion rate for the background cosmological solutions and obtain the bound s =0.254-0.097+0.118 at 95% confidence level (C.L.). Existence of the additional parameter s to those in the Λ -cold-dark-matter (Λ CDM ) model allows to reduce tensions of the Hubble constant H0 between the CMB and the low-redshift measurements. Including the cosmic growth data of redshift-space distortions in the galaxy power spectrum and taking into account no-ghost and stability conditions of cosmological perturbations, we find that the bound on s is shifted to s =0.1 6-0.08+0.08 (95% C.L.) and hence the model with s >0 is still favored over the Λ CDM model. Apart from the quantities s ,H0 and the today's matter density parameter Ωm 0, the constraints on other model parameters associated with perturbations are less stringent, reflecting the fact that there are different sets of parameters that give rise to a similar cosmic expansion and growth history.
NASA Astrophysics Data System (ADS)
Qin, Hong
2014-10-01
The dynamics of charged particles in general linear focusing lattices is analyzed using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The general focusing lattices are allowed to include quadrupole, skew-quadrupole, solenoidal, and dipole components, as well as variation of beam energy and torsion of the fiducial orbit. The scalar envelope function is generalized into an envelope matrix, and the scalar envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation. The phase advance is generalized into a 4D symplectic rotation, or an U(2) element. Other components of the original CS theory, such as the CS invariant, transfer matrix, and Twiss functions all have their counterparts in the generalized theory with remarkably similar expressions. The gauge group of the generalized theory is analyzed. If the gauge freedom is fixed with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space quantum mechanics and optics has been recently realized. It is shown that the spectral and structural stability properties of a general focusing lattice are uniquely determined by the generalized phase advance. For structural stability, the generalized CS theory developed enables application of the Krein-Moser theory to significantly simplify the theoretical and numerical analysis. The generalized CS theory provides an effective tool to study the coupled dynamics of high-intensity charged particle beams and to discover more optimized lattice designs in the larger parameter space of general focusing lattices. Research supported by the U.S. Department of Energy.
Generalizing Prototype Theory: A Formal Quantum Framework
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
Information processing in generalized probabilistic theories
Barrett, Jonathan
2007-03-15
I introduce a framework in which a variety of probabilistic theories can be defined, including classical and quantum theories, and many others. From two simple assumptions, a tensor product rule for combining separate systems can be derived. Certain features, usually thought of as specifically quantum, turn out to be generic in this framework, meaning that they are present in all except classical theories. These include the nonunique decomposition of a mixed state into pure states, a theorem involving disturbance of a system on measurement (suggesting that the possibility of secure key distribution is generic), and a no-cloning theorem. Two particular theories are then investigated in detail, for the sake of comparison with the classical and quantum cases. One of these includes states that can give rise to arbitrary nonsignaling correlations, including the superquantum correlations that have become known in the literature as nonlocal machines or Popescu-Rohrlich boxes. By investigating these correlations in the context of a theory with well-defined dynamics, I hope to make further progress with a question raised by Popescu and Rohrlich, which is why does quantum theory not allow these strongly nonlocal correlations? The existence of such correlations forces much of the dynamics in this theory to be, in a certain sense, classical, with consequences for teleportation, cryptography, and computation. I also investigate another theory in which all states are local. Finally, I raise the question of what further axiom(s) could be added to the framework in order to identify quantum theory uniquely, and hypothesize that quantum theory is optimal for computation.
Empirical Predictions from a General Theory of Signs
ERIC Educational Resources Information Center
Oller, John W., Jr.; Chen, Liang; Oller, Stephen D.; Pan, Ning
2005-01-01
General sign theory (GST) deals with how distinct sign systems are grounded, developed with increasing abstractness over time, and differentiated in efficacies in experience and discourse. GST has 3 components: The theory of true narrative representations (TNR theory) shows that TNRs are unique in being relatively well determined with respect to…
Empirical Predictions from a General Theory of Signs
ERIC Educational Resources Information Center
Oller, John W., Jr.; Chen, Liang; Oller, Stephen D.; Pan, Ning
2005-01-01
General sign theory (GST) deals with how distinct sign systems are grounded, developed with increasing abstractness over time, and differentiated in efficacies in experience and discourse. GST has 3 components: The theory of true narrative representations (TNR theory) shows that TNRs are unique in being relatively well determined with respect to…
The general theory of convolutional codes
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Stanley, R. P.
1993-01-01
This article presents a self-contained introduction to the algebraic theory of convolutional codes. This introduction is partly a tutorial, but at the same time contains a number of new results which will prove useful for designers of advanced telecommunication systems. Among the new concepts introduced here are the Hilbert series for a convolutional code and the class of compact codes.
Fidelity measure and conservation of information in general probabilistic theories
NASA Astrophysics Data System (ADS)
Zander, C.; Plastino, A. R.
2009-04-01
We investigate the main features of a measure of fidelity between states in a general family of probabilistic theories admitting classical probability theory and standard quantum theory as particular instances. We apply the aforementioned measure to investigate information-theoretical features of these theories related to the conservation of information during the evolution of closed physical systems. In particular, we derive a generalization of a fundamental result in quantum theory relevant for the measurement problem: Zurek's recent extension of the no-cloning theorem.
General autocatalytic theory and simple model of financial markets
NASA Astrophysics Data System (ADS)
Thuy Anh, Chu; Lan, Nguyen Tri; Viet, Nguyen Ai
2015-06-01
The concept of autocatalytic theory has become a powerful tool in understanding evolutionary processes in complex systems. A generalization of autocatalytic theory was assumed by considering that the initial element now is being some distribution instead of a constant value as in traditional theory. This initial condition leads to that the final element might have some distribution too. A simple physics model for financial markets is proposed, using this general autocatalytic theory. Some general behaviours of evolution process and risk moment of a financial market also are investigated in framework of this simple model.
Cosmological perturbation theory in generalized Einstein-Aether models
NASA Astrophysics Data System (ADS)
Battye, Richard A.; Pace, Francesco; Trinh, Damien
2017-09-01
We investigate the evolution of cosmological perturbations in models of dark energy described by a timelike unit normalized vector field specified by a general function F (K ), so-called generalized Einstein-Aether models. First we study the background dynamics of such models via a designer approach in an attempt to model this theory as dark energy. We find that only one specific form of this designer approach matches Λ CDM at background order, and we also obtain a differential equation which F (K ) must satisfy for general w CDM cosmologies, where CDM refers to cold dark matter. We also present the equations of state for perturbations in generalized Einstein-Aether models, which completely parametrize these models at the level of linear perturbations. A generic feature of modified gravity models is that they introduce new degrees of freedom. By fully eliminating these we are able to express the gauge invariant entropy perturbation and the scalar, vector, and tensor anisotropic stresses in terms of the perturbed fluid variables and metric perturbations only. These can then be used to study the evolution of perturbations in the scalar, vector, and tensor sectors, and we use these to evolve the Newtonian gravitational potentials.
Generalized theory of smallest diameter of metallic nanorods
NASA Astrophysics Data System (ADS)
Du, Feng; Elliott, Paul R.; Huang, Hanchen
2017-08-01
This paper reports a generalized theory of the smallest diameter of metallic nanorods from physical vapor deposition. The generalization incorporates the effects of nanorod separation and those of van der Waals interactions on geometrical shadowing. The generalized theory relies on approximations to be in closed form. Numerical solutions of governing equations with no approximations verify the accuracy of the closed-form theory. Further, experiments of physical vapor deposition validate the theory in terms of the diameter as a function of the separation of nanorods. In contrast, the previous theory for idealized geometrical shadowing [X. B. Niu et al., Phys. Rev. Lett. 110, 136102 (2013), 10.1103/PhysRevLett.110.136102] excludes any dependence on nanorod separation and predicts the diameter to be about ½ to ⅓ of what the generalized theory does.
Bozkaya, Uğur
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Bozkaya, Uğur
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
NASA Astrophysics Data System (ADS)
Bozkaya, Uǧur
2014-09-01
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Hypermass generalization of Einstein's gravitation theory
NASA Technical Reports Server (NTRS)
Edmonds, J. D., Jr.
1973-01-01
The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.
Hypermass generalization of Einstein's gravitation theory
NASA Technical Reports Server (NTRS)
Edmonds, J. D., Jr.
1973-01-01
The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.
Theory of a general class of dissipative processes.
NASA Technical Reports Server (NTRS)
Hale, J. K.; Lasalle, J. P.; Slemrod, M.
1972-01-01
Development of a theory of periodic processes that is of sufficient generality for being applied to systems defined by partial differential equations (distributed parameter systems) and functional differential equations of the retarded and neutral type (hereditary systems), as well as to systems arising in the theory of elasticity. In particular, the attempt is made to develop a meaningful general theory of dissipative periodic systems with a wide range of applications.
General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.
Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini
2015-12-01
General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy.
General Open Systems Theory and the Substrata-Factor Theory of Reading.
ERIC Educational Resources Information Center
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a…
General Open Systems Theory and the Substrata-Factor Theory of Reading.
ERIC Educational Resources Information Center
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to establish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to discover through a series of…
General Open Systems Theory and the Substrata-Factor Theory of Reading.
ERIC Educational Resources Information Center
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a…
Instability of static semiclosed worlds in generalized Galileon theories
NASA Astrophysics Data System (ADS)
Evseev, O. A.; Melichev, O. I.
2017-07-01
We consider generalized Galileon theories within general relativity in four-dimensional spacetime. We provide the argument showing that the generalized Galileons described by a wide class of Lagrangians do not admit stable, static, spherically symmetric semiclosed worlds. We also show that in a class of theories with p⊥=-ρ (where p⊥ is transverse pressure and ρ is energy density), semiclosed worlds, if they exist, would be observed as objects of negative mass.
Towards a General Theory of Counterdeception
2015-02-20
reducing the remaining search space by one guess. The complexity is often expressed using the guessing entropy , HG(X) Figure 1: The prisoners...logarithmic scale for consistency with logical key lengths: if a 128-bit key is chosen uniformly, its guessing entropy is 128. In adversarial detection...problems, the guessing entropy no longer characterizes the strength or vulnerability of the security system. Instead of guessing one key, an adversary
Quantum networks: General theory and applications
NASA Astrophysics Data System (ADS)
Bisio, A.; Chiribella, G.; D'Ariano, G. M.; Perinotti, P.
2011-06-01
In this work we present a general mathematical framework to deal with
A generalized differential effective medium theory
NASA Astrophysics Data System (ADS)
Norris, A. N.; Callegari, A. J.; Sheng, P.
A GENERALIZATION of the Differential Effective Medium approximation (DEM) is discussed. The new scheme is applied to the estimation of the effective permittivity of a two phase dielectric composite. Ordinary DEM corresponds to a realizable microgeometry in which the composite is built up incrementally through a process of homogenization, with one phase always in dilute suspension and the other phase associated with the percolating backbone. The generalization of DEM assumes a third phase which acts as a backbone. The other two phases are progressively added to the backbone such that each addition is in an effectively homogeneous medium. A canonical ordinary differential equation is derived which describes the change in material properties as a function of the volume concentration φ of the added phases in the composite. As φ→ 1, the Effective Medium Approximation (EMA) is obtained. For φ < 1, the result depends upon the backbone and the mixture path that is followed. The approach to EMA for φ ≊ 1 is analysed and a generalization of Archie's law for conductor-insulator composites is described. The conductivity mimics EMA above the percolation threshold and DEM as the conducting phase vanishes.
General continuum theory for multiion channel. I. Theory.
Levitt, D G
1991-01-01
It is assumed that the channel is completely characterized by three factors: (a) its geometric shape, (b) the potential energy interaction between an ion and the channel wall, and (c) the potential energy interaction between two ions at arbitrary positions in the channel. The total potential energy of an ion in a multiion channel can be described by a summation over factors b and c. The ion-water interaction is described by a continuum diffusion coefficient which is determined by the channel geometry (c). Given this physical description, a theory is described that predicts the flux of all the ion species that are present, with no additional assumptions about, e.g., the maximum number of ions allowed in the channel, location of binding sites or shape of energy barriers. The solution is based on a combination of the Nernst-Planck and Poisson equation. The Poisson potential is corrected for the ion's self potential. A hard sphere ion-ion interaction is included that prevents ions from piling up on top of each other in regions where the channel wall has a high charge density. An exact analytical solution is derived for the region in the bulk solution, far from the channel mouth and this solution is used as a boundary condition for the numerical solution. The numerical solution is obtained by an interactive procedure that is surprisingly efficient. Application of the theory to the acetylcholine receptor channel is described in the companion paper (Levitt, D. G. 1990. Biophys. J. 59:278-288). PMID:1706949
An alternative topological field theory of generalized complex geometry
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki; Tokunaga, Tatsuya
2007-09-01
We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is A model in the case that the generalized complex structure depends on only a symplectic structure. Our new model is B model in the case that the generalized complex structure depends on only a complex structure.
A Theory of Language Acquisition Based on General Learning Principles.
1981-06-17
AO-AIOS 6" CAMS19-HLLON W4ZV PITTSBURGH PA DEPT OF COMPUTER --ETC P/S 5/10 THEORY OF LANGUAGE ( ACQUISITION BASED ON GENERAL LEARNING PIN--EYC U) ,RM...961 A ~~~~LEVEL/ .... " LEVEL ~r MJ-CS-81 -129 V. A Theory of Language Acquisition Based on General ,00 Learning Principles John R. Anderson Dertment...Approved for public release Distribution Unlimited Carnegie-Mellon University 8 12 16 05o CM-CS-81-129 A Theory of Language Acquisition Based on General
Generalized Einstein-Aether theories and the Solar System
Bonvin, Camille; Durrer, Ruth; Ferreira, Pedro G.; Zlosnik, Tom G.; Starkman, Glenn
2008-01-15
It has been shown that generalized Einstein-Aether theories may lead to significant modifications to the nonrelativistic limit of the Einstein equations. In this paper we study the effect of a general class of such theories on the Solar System. We consider corrections to the gravitational potential in negative and positive powers of distance from the source. Using measurements of the perihelion shift of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We find that a subclass of generalized Einstein-Aether theories is compatible with these constraints.
Towards a general theory of optimal testing
NASA Astrophysics Data System (ADS)
Pericchi, Luis R. G.; Pereira, Carlos A. B.
2012-10-01
In Pericchi and Pereira [1] it is argued against the traditional way on which testing is based on fixed significance level, either using p-values (with fixed levels of evidence, like the 5% rule) or α values. We instead, follow an approach put forward by [2], on which an optimal test is chosen by minimizing type I and type II errors. Morris DeGroot in his authoritative book [2], Probability and Statistics 2nd Edition, stated that it is more reasonable to minimize a weighted sum of Type I and Type II error than to specify a value of type I error and then minimize Type II error. He showed it beyond reasonable doubt, but only in the very restrictive scenario of simple VS simple hypothesis, and it is not clear how to generalize it. We propose here a very natural generalization for composite hypothesis, by using general weight functions in the parameter space. This was also the position taken by [3, 4, 5]. We show, in a parallel manner to DeGroot's proof and Pereira's discussion, that the optimal test statistics are Bayes Factors, when the weighting functions are priors with mass on the whole parameter space. On the other hand when the weight functions are point masses in specific parameter values of practical significance, then a procedure is designed for which the sum of Type I error and Type II error in the specified points of practical significance is minimized. This can be seen as bridge between Bayesian Statistics and a new version of Hypothesis testing, more in line with statistical consistency and scientific insight.
Republication of: On the general relativity theory
NASA Astrophysics Data System (ADS)
Weyl, H.
2009-07-01
This English translation of the paper by H. Weyl, "Zur allgemeinen Relativitätstheorie", Physikalische Zeitschrift 24, 230-232 (1923), in which he formulated the geometrical foundations of a model of an expanding Universe, has been selected by the Editors of General Relativity and Gravitation for publication in the Golden Oldies series of the journal. The paper is accompanied by an editorial note written by Juergen Ehlers and by Weyl's brief biography compiled by Andrzej Krasiński from internet sources, with corrections provided by Weyl's son and grandson.
1. General context view of Express Building, looking northwest with ...
1. General context view of Express Building, looking northwest with railroad tracks in foreground - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR
Gauge theories under incorporation of a generalized uncertainty principle
Kober, Martin
2010-10-15
There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.
A generalized theory of chromatography and multistep liquid extraction
NASA Astrophysics Data System (ADS)
Chizhkov, V. P.; Boitsov, V. N.
2017-03-01
A generalized theory of chromatography and multistep liquid extraction is developed. The principles of highly efficient processes for fine preparative separation of binary mixture components on a fixed sorbent layer are discussed.
Generalized pseudopotential theory of d-band metals
Moriarty, J.A.
1983-01-01
The generalized pseudopotential theory (GPT) of metals is reviewed with emphasis on recent developments. This theory, which attempts to rigorously extend to d-band metals the spirit of conventional simple-metal pseudopotential perturbation theory, has now been optimized and fully integrated with the Kohn-Sham local-density-functional formalism, allowing for systematic first-principles calculations. Recent work on the problems of cohesion, lattice dynamics, structural phase stability, pressure- and temperature-induced phase transitions, and melting is discussed.
General Systems Theory Approaches to Organizations: Some Problems in Application
ERIC Educational Resources Information Center
Peery, Newman S., Jr.
1975-01-01
Considers the limitations of General Systems Theory (GST) as a major paradigm within administrative theory and concludes that most systems formulations overemphasize growth and show little appreciation for intraorganizational conflict, diversity of values, and political action within organizations. Suggests that these limitations are mainly due to…
General Strain Theory, Peer Rejection, and Delinquency/Crime
ERIC Educational Resources Information Center
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
General dynamical density functional theory for classical fluids.
Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim
2012-09-21
We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.
General Strain Theory, Peer Rejection, and Delinquency/Crime
ERIC Educational Resources Information Center
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
Magnetotail acceleration using generalized drift theory - A kinetic merging scenario
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Rosenberg, M.; Brittnacher, M.
1990-01-01
It is possible to describe particle behavior in the magnetotail, including particle energization, by means of generalized drift theory. Generalized drift velocities are obtained by using the generalized first invariant which has been shown to be useful in such current sheet configurations. Particles whose generalized invariant is preserved gain energy entirely in the field-aligned direction. The form of the accelerated particle velocity distribution is obtained and self-consistency conditions are derived.
A generalized theory of preferential linking
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan
2014-12-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.
Density perturbations in general modified gravitational theories
De Felice, Antonio; Tsujikawa, Shinji; Mukohyama, Shinji
2010-07-15
We derive the equations of linear cosmological perturbations for the general Lagrangian density f(R,{phi},X)/2+L{sub c}, where R is a Ricci scalar, {phi} is a scalar field, and X=-{partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}/}2 is a field kinetic energy. We take into account a nonlinear self-interaction term L{sub c}={xi}({phi}) {open_square}{phi}({partial_derivative}{sup {mu}{phi}{partial_derivative}}{sub {mu}{phi}}) recently studied in the context of ''Galileon'' cosmology, which keeps the field equations at second order. Taking into account a scalar-field mass explicitly, the equations of matter density perturbations and gravitational potentials are obtained under a quasistatic approximation on subhorizon scales. We also derive conditions for the avoidance of ghosts and Laplacian instabilities associated with propagation speeds. Our analysis includes most of modified gravity models of dark energy proposed in literature; and thus it is convenient to test the viability of such models from both theoretical and observational points of view.
Generalized probabilistic theories without the no-restriction hypothesis
NASA Astrophysics Data System (ADS)
Janotta, Peter; Lal, Raymond
2013-05-01
The framework of generalized probabilistic theories is a popular approach for studying the physical foundations of quantum theory. The standard framework assumes the no-restriction hypothesis, in which the state space of a physical theory determines the set of measurements. However, this assumption is not physically motivated. We generalize the framework to account for systems that do not obey the no-restriction hypothesis. We then show how our framework can be used to describe certain classes of probabilistic theories, for example, those which include intrinsic noise. Relaxing the restriction hypothesis also allows us to introduce a “self-dualization” procedure, which yields a class of theories that share many features of quantum theory. We then characterize joint states, generalizing the maximal tensor product. We show how this tensor product can be used to describe the convex closure of the Spekkens toy theory, and in doing so we obtain an analysis of why it is local in terms of the geometry of its state space. We show that the unrestricted version of the Spekkens toy theory is the theory known as “boxworld” that allows maximal nonlocal correlations.
Applications of queueing theory to stochastic models of gene expression
NASA Astrophysics Data System (ADS)
Kulkarni, Rahul
2012-02-01
The intrinsic stochasticity of cellular processes implies that analysis of fluctuations (`noise') is often essential for quantitative modeling of gene expression. Recent single-cell experiments have carried out such analysis to characterize moments and entire probability distributions for quantities of interest, e.g. mRNA and protein levels across a population of cells. Correspondingly, there is a need to develop general analytical tools for modeling and interpretation of data obtained from such single-cell experiments. One such approach involves the mapping between models of stochastic gene expression and systems analyzed in queueing theory. The talk will provide an overview of this approach and discuss how theorems from queueing theory (e.g. Little's Law) can be used to derive exact results for general stochastic models of gene expression. In the limit that gene expression occurs in bursts, analytical results can be obtained which provide insight into the effects of different regulatory mechanisms on the noise in protein steady-state distributions. In particular, the approach can be used to analyze the effect of post-transcriptional regulation by non-coding RNAs leading to new insights and experimentally testable predictions.
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
NASA Astrophysics Data System (ADS)
Song, Jaewon
2016-02-01
We study superconformal indices of 4d {N}=2 class S theories with certain irregular punctures called type I k,N . This class of theories include generalized Argyres-Douglas theories of type ( A k-1 , A N -1) and more. We conjecture the superconformal indices in certain simplified limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture I k,N . We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index for odd N. Fromtheindex,wearguethatcertainshort-multipletwhichcanappearintheOPEof the stress-energy tensor is absent in the ( A 1 , A 2 n ) theory. We also discuss the mixed Schur indices for the {N}=1 class {S} theories with irregular punctures.
Logunov, A.A.; Loskutov, Y.M.
1987-05-01
It is shown that whereas the predictions of the relativistic theory of gravitation for gravitational effects are unambiguous and agree with the known experimental data, the corresponding predictions of the general theory of relativity are ambiguous. In some effects, the ambiguity appears in the first order in the gravitational coupling constant; in others, in the second. The absence in the general theory of relativity of conservation laws for energy, momentum, and angular momentum of the matter and gravitational field taken together, and also its inability to give unique predictions for gravitational phenomena, make it necessary to abandon the theory of relativity as a physical theory.
Do People Use Their Implicit Theories of Creativity as General Theories?
ERIC Educational Resources Information Center
Lee, Hong; Kim, Jungsik; Ryu, Yeonjae; Song, Seokjong
2015-01-01
This study examines whether people use the general implicit theories of creativity or not when applying them to themselves and others. On the basis of the actor-observer asymmetry theory, the authors propose that conception of creativity would be differently constructed depending on the targets of attention: general, self, and other. Three studies…
Do People Use Their Implicit Theories of Creativity as General Theories?
ERIC Educational Resources Information Center
Lee, Hong; Kim, Jungsik; Ryu, Yeonjae; Song, Seokjong
2015-01-01
This study examines whether people use the general implicit theories of creativity or not when applying them to themselves and others. On the basis of the actor-observer asymmetry theory, the authors propose that conception of creativity would be differently constructed depending on the targets of attention: general, self, and other. Three studies…
Quantum mechanical generalization of the balistic electron wind theory
NASA Astrophysics Data System (ADS)
Lacina, A.
1980-06-01
The Fiks' quasiclassical theory of the electron wind force is quantum mechanically generalized. Within the framework of this generalization the space dependence of the electron wind force is calculated in the vicinity of an interface between two media. It is found that quantum corrections may be comparable with or even greater than corresponding quasiclassical values.
Contradictory character of general relativity. The relativistic theory of gravitation
Logunov, A.A.; Loskutov, Y.M.
1986-11-01
It is shown that in its general form general relativity is unsatisfactory. In particular, its predictions for the gravitational time delay of a radio signal and the period of revolution of a satellite are ambiguous. At the same time, it is shown that the relativistic theory of gravitation is free of such shortcomings and agrees with all reliably established experimental facts.
A new generalized Wick theorem in conformal field theory
NASA Astrophysics Data System (ADS)
Takagi, T.
2017-08-01
We describe a new generalized Wick theorem for interacting fields in two-dimensional conformal field theory and briefly discuss its relation to the Borcherds identity and its derivation by an analytic method. We give examples of calculating operator product expansions using the generalized Wick theorem including fermionic fields.
Generalized Møller-Plesset Partitioning in Multiconfiguration Perturbation Theory.
Kobayashi, Masato; Szabados, Ágnes; Nakai, Hiromi; Surján, Péter R
2010-07-13
Two perturbation (PT) theories are developed starting from a multiconfiguration (MC) zero-order function. To span the configuration space, the theories employ biorthogonal vector sets introduced in the MCPT framework. At odds with previous formulations, the present construction operates with the full Fockian corresponding to a principal determinant, giving rise to a nondiagonal matrix of the zero-order resolvent. The theories provide a simple, generalized Møller-Plesset (MP) second-order correction to improve any reference function, corresponding either to a complete or incomplete model space. Computational demand of the procedure is determined by the iterative inversion of the Fockian, similarly to the single reference MP theory calculated in a localized basis. Relation of the theory to existing multireference (MR) PT formalisms is discussed. The performance of the present theories is assessed by adopting the antisymmetric product of strongly orthogonal geminal (APSG) wave functions as the reference function.
Generalized p p waves in Poincaré gauge theory
NASA Astrophysics Data System (ADS)
Blagojević, M.; Cvetković, B.
2017-05-01
Starting from the generalized p p waves that are exact vacuum solutions of general relativity with a cosmological constant, we construct a new family of exact vacuum solutions of Poincaré gauge theory, the generalized p p waves with torsion. The ansatz for torsion is chosen in accordance with the wave nature of the solutions. For a subfamily of these solutions, the metric is dynamically determined by the torsion.
A general small-deflection theory for flat sandwich plates
NASA Technical Reports Server (NTRS)
Libove, Charles; Batdorf, S B
1948-01-01
A small-deflection theory is developed for the elastic behavior of orthotropic flat plates in which deflections due to shear are taken into account. In this theory, which covers all types of flat sandwich construction, a plate is characterized by seven physical constants (five stiffnesses and two Poisson ratios) of which six are independent. Both the energy expression and the differential equations are developed. Boundary conditions corresponding to simply supported, clamped, and elastically restrained edges are considered.
General theory of Taylor dispersion phenomena. Part 3. Surface transport
Dill, L.H.; Brenner, H.
1982-01-01
An asymptotic theory of Brownian tracer particle transport phenomena within a bulk fluid, as augmented by surface transport, is presented in the context of generalized Taylor dispersion theory. The analysis expands upon prior work, which was limited to transport wholly within a continuous phase, so as to now include surface adsorption, diffusion, and convection of the tracer along a continuous surface bounding the continuous fluid phase.
Generalized kinetic theory of ensembles with variable charges
NASA Astrophysics Data System (ADS)
Ivlev, A. V.; Zhdanov, S. K.; Klumov, B. A.; Morfill, G. E.
2005-09-01
A generalized kinetic theory of gaseous ensembles of particles with variable charges is proposed. The evolution of the ensembles due to the mutual particle collisions is investigated. The cases of inhomogeneous and randomly fluctuating charges are studied. It is shown that the particle temperature in such ensembles increases with time, and in some cases can grow by orders of magnitude. The theory is compared with the molecular-dynamics simulations, the relevance to typical experimental conditions is analyzed, and astrophysical implications are discussed.
Generalized conservation laws in non-local field theories
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele
2016-04-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
Theory of functional systems and human general pathology.
Khitrov, N K; Saltykov, A B
2003-07-01
We analyze the role of the theory of functional systems for human general pathology and the necessity of integration of this theory with the concepts of pathological and ambivalent systems. Multiple (qualitatively heterogeneous) nature of system-forming factors and principle possibility of the formation of physiological, pathological, and ambivalent systems by the same factors are discussed. These theses broaden the application of the theory of functional systems as the fundamental basis for studies of informational mechanisms of vital activity under normal and pathological conditions.
Charge, magnetic dipole, and lense-thirring effect in the generalized theory of gravitation
Arutyunyan, G.G.; Papoyan, V.V.
1985-05-01
Three physical problems are solved in the framework of the generalized theory of gravitation. The gravitational field of a point charged mass and an expression for the vector potential for a magnetic field of dipole nature are found, and the angular velocity of frame dragging by the rotation of a central body is calculated.
2. General context view of Express Building, looking northeast, with ...
2. General context view of Express Building, looking northeast, with Division Street in foreground, showing relationship to the Bend Depot - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR
The general class of the vacuum spherically symmetric equations of the general relativity theory
Karbanovski, V. V. Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N. Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R.
2012-08-15
The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g{sub 00} and g{sub 22} is obtained. The properties of the found solutions are analyzed.
Gender, General Strain Theory, Negative Emotions, and Disordered Eating
ERIC Educational Resources Information Center
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul
2010-01-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…
An Application of General System Theory (GST) to Group Therapy.
ERIC Educational Resources Information Center
Matthews, Charles O.
1992-01-01
Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)
What Should Instructional Designers Know about General Systems Theory?
ERIC Educational Resources Information Center
Salisbury, David F.
1989-01-01
Describes basic concepts in the field of general systems theory (GST) and explains the relationship between instructional systems design (ISD) and GST. Benefits of integrating GST into the curriculum of ISD graduate programs are discussed, and a short bibliography on GST is included. (LRW)
Generalized rotational diffusion with a finite collision duration: Semiclassical theory
Kalmykov, Yu.P.; Titov, S.V.
1995-12-01
The generalized quantum analog of a J-diffusion model is used for calculation of the complex dielectric susceptibility of an ensemble of noninteracting polar molecules, taking into account the finite duration of molecular collisions. The theory is compared with the experimental data on the far-infrared absorption spectra of the HCl and DCl molecules in a nonpolar solvent. 19 refs., 3 figs.
Gender, General Strain Theory, Negative Emotions, and Disordered Eating
ERIC Educational Resources Information Center
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul
2010-01-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…
Cosmological graviton production in general relativity and related gravity theories
NASA Astrophysics Data System (ADS)
de Garcia Maia, Márcio R.; Barrow, John D.
1994-11-01
A unified description of graviton creation is given for isotropic cosmological models in general relativity, Brans-Dicke theory, and higher-order gravity theories. The Bogolubov coefficents are derived in general and may be specialized to each of the possible gravity theories. The power spectrum and energy density of relic gravitons surviving a variety of early cosmological scenarios are calculated. The possibility of a nonvacuum initial state is allowed for and the problems of imposing an ultraviolet cutoff are analyzed. We distinguish carefully the effects of gravity waves on super- and subhorizon scales. The associated infrared cutoff, or the ``Allen effect,'' is discussed in detail in order to evaluate the dependence of the graviton energy density on the expansion scale factor. It is found that the nonadiabatic evolution of the graviton energy density can occur even during the radiation era when long-wavelength primoridal gravitational waves enter the horizon. Detailed, multistage, cosmological models are set up involving a sequence of changes in the equation of state for general relativity and Brans-Dicke theories. These examples include models with an inflationary phase. The resulting gravitational-wave background is calculated analytically over the whole frequency range in all cases. The limits imposed by nucleosynthesis of helium-4 are found for general relativity. We also investigate the effects of the presence of a thermal sea of gravitons in the initial state prior to gravitational-wave amplification by the expansion and calculate the effects of the small horizon size upon the thermal distributions.
Geometrical interpretation of a generalized theory of gravitation
Kunstatter, G.; Moffat, J.W.; Malzan, J.
1983-04-01
The geometrical structure is developed for a theory of gravitation, based on a nonsymmetric metric in a four-dimensional real manifold. The local fiber bundle gauge group is GL(4,R), which contains the (local) homogeneous Lorentz gauge group SO(3,1) of general relativity.
Computational Complexity of Current GPSG (Generalized Phrase Structure Grammar) Theory,
1986-04-01
universal RP also bears most directly on issues of natural language acquisition. The language learner evidently possesses a mechanism for selecting grammmars... language acquisition, while com- putational considerations demand that the recognition problem be characterized in terms of both input string and...theory to guide the construction of computationally efficient real-world natural language processing systems. At first glance, generalized phrase structure
An Application of General System Theory (GST) to Group Therapy.
ERIC Educational Resources Information Center
Matthews, Charles O.
1992-01-01
Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)
Strong coupling in nonrelativistic general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Lin, Kai; Wang, Anzhong; Wu, Qiang; Zhu, Tao
2011-08-01
We study the strong coupling problem in the Horava-Melby-Thompson setup of the Horava-Lifshitz theory of gravity with an arbitrary coupling constant λ, generalized recently by da Silva, where λ describes the deviation of the theory in the infrared from general relativity that has λGR=1. We find that a scalar field in the Minkowski background becomes strongly coupled for processes with energy higher than Λω[≡(Mpl/c1)3/2Mpl|λ-1|5/4], where generically c1≪Mpl. However, this problem can be cured by introducing a new energy scale M*, so that M*<Λω, where M* denotes the suppression energy of high-order derivative terms of the theory.
Analysis of general power counting rules in effective field theory
NASA Astrophysics Data System (ADS)
Gavela, Belen; Jenkins, Elizabeth E.; Manohar, Aneesh V.; Merlo, Luca
2016-09-01
We derive the general counting rules for a quantum effective field theory (EFT) in {d} dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χ PT). The relation between Λ and f is generalized to {d} dimensions. We show that the naive dimensional analysis 4π counting is related to hbar counting. The EFT counting rules are applied to χ PT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT.
Yang, Li; Miklavcic, Stanley J
2005-09-01
A generally applicable theoretical model describing light propagating through turbid media is proposed. The theory is a generalization of the revised Kubelka-Munk theory, extending its applicability to accommodate a wider range of absorption influences. A general expression for a factor taking into account the effect of scattering on the total photon path traversed in a turbid medium is derived. The extended model is applied to systems of ink-dyed paper sheets-mixtures of wood fibers with dyes-which represent examples of systems that have thus far eluded the original Kubelka-Munk model. The results of simulations of the spectral dependence of Kubelka-Munk coefficients of absorption and scattering show that they compare very well with those derived from experimental results.
Generalized perturbation theory using two-dimensional, discrete ordinates transport theory
Childs, R.L.
1980-06-01
Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions GAMMA and GAMMA*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions.
General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Tomboulis, E. T.
2011-10-01
We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that might be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.
General relativity as the effective theory of GL(4,R) spontaneous symmetry breaking
Tomboulis, E. T.
2011-10-15
We assume a GL(4,R) space-time symmetry which is spontaneously broken to SO(3,1). We carry out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup. We then identify functions of the Goldstone and matter fields that transform linearly also under the broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein formalism of general relativity with general coordinate invariance being automatically realized nonlinearly over GL(4,R). The coset construction makes no assumptions about any underlying theory that might be responsible for the assumed symmetry breaking. We give a brief discussion of the possibility of field theories with GL(4,R) rather than Lorentz space-time symmetry providing the underlying dynamics.
Gravitation experiments at Stanford. [using general relativity theory
NASA Technical Reports Server (NTRS)
Lipa, J. A.
1980-01-01
The experimental situation in post-Newtonian gravitation is briefly reviewed in order to reexamine the extent to which experiment supports or refutes general relativity. A description is given of the equivalence principle project, the gyroscope experiment, and the search for gravity waves. It is noted that even though some doubt has been cast on the value of the perihelion advance and the gravitational redshift as precise tests of general relativity in the past few years, many competing theories have been ruled out; in particular, the results from the Viking mission significantly reduce the credibility of the Brans-Dicke theory (Brans and Dicke, 1961). The dimensionless constant omega in this theory is now forced to exceed 50, while the value originally proposed was 6 (omega being infinity in general relativity). It is noted that the gyro experiment described is capable of putting much tighter limits on this parameter, and together with the other experiments in progress will help place gravitational theory on a firmer experimental footing.
Gravitation experiments at Stanford. [using general relativity theory
NASA Technical Reports Server (NTRS)
Lipa, J. A.
1980-01-01
The experimental situation in post-Newtonian gravitation is briefly reviewed in order to reexamine the extent to which experiment supports or refutes general relativity. A description is given of the equivalence principle project, the gyroscope experiment, and the search for gravity waves. It is noted that even though some doubt has been cast on the value of the perihelion advance and the gravitational redshift as precise tests of general relativity in the past few years, many competing theories have been ruled out; in particular, the results from the Viking mission significantly reduce the credibility of the Brans-Dicke theory (Brans and Dicke, 1961). The dimensionless constant omega in this theory is now forced to exceed 50, while the value originally proposed was 6 (omega being infinity in general relativity). It is noted that the gyro experiment described is capable of putting much tighter limits on this parameter, and together with the other experiments in progress will help place gravitational theory on a firmer experimental footing.
Entropy and information causality in general probabilistic theories
NASA Astrophysics Data System (ADS)
Barnum, Howard; Barrett, Jonathan; Orloff Clark, Lisa; Leifer, Matthew; Spekkens, Robert; Stepanik, Nicholas; Wilce, Alex; Wilke, Robin
2010-03-01
We investigate the concept of entropy in probabilistic theories more general than quantum mechanics, with particular reference to the notion of information causality (IC) recently proposed by Pawlowski et al (2009 arXiv:0905.2292). We consider two entropic quantities, which we term measurement and mixing entropy. In the context of classical and quantum theory, these coincide, being given by the Shannon and von Neumann entropies, respectively; in general, however, they are very different. In particular, while measurement entropy is easily seen to be concave, mixing entropy need not be. In fact, as we show, mixing entropy is not concave whenever the state space is a non-simplicial polytope. Thus, the condition that measurement and mixing entropies coincide is a strong constraint on possible theories. We call theories with this property monoentropic. Measurement entropy is subadditive, but not in general strongly subadditive. Equivalently, if we define the mutual information between two systems A and B by the usual formula I(A: B)=H(A)+H(B)-H(AB), where H denotes the measurement entropy and AB is a non-signaling composite of A and B, then it can happen that I(A:BC)theory in which measurement entropy is strongly subadditive, and also satisfies a version of the Holevo bound, is informationally causal, and on the other hand we observe that Popescu-Rohrlich boxes, which violate IC, also violate strong subadditivity. We also explore the interplay between measurement and mixing entropy and various natural conditions on theories that arise in quantum axiomatics.
NASA Astrophysics Data System (ADS)
Schlickeiser, R.; Yoon, P. H.
2012-02-01
Using the system of the Klimontovich and Maxwell equations, general expressions for the electromagnetic fluctuation spectra (electric and magnetic field, charge and current densities) from uncorrelated plasma particles are derived, which are covariantly correct within the theory of special relativity. The general expressions hold for arbitrary momentum dependences of the plasma particle distribution functions and for collective and non-collective fluctuations. In this first paper of a series, the results are illustrated for the important special case of nonrelativistic isotropic Maxwellian particle distribution functions providing in particular the thermal fluctuations of weakly amplified modes and aperiodic modes.
Generalized absorber theory and the Einstein-Podolsky-Rosen paradox
NASA Astrophysics Data System (ADS)
Cramer, John G.
1980-07-01
A generalized form of Wheeler-Feynman absorber theory is used to explain the quantum-mechanical paradox proposed by Einstein, Podolsky, and Rosen (EPR). The advanced solutions of the electromagnetic wave equation and of relativistic quantum-mechanical wave equations are shown to play the role of "verifier" in quantum-mechanical "transactions," providing microscopic communication paths between detectors across spacelike intervals in violation of the EPR locality postulate. The principle of causality is discussed in the context of this approach, and possibilities for experimental tests of the theory are examined.
General Relativity as AN ÆTHER Theory
NASA Astrophysics Data System (ADS)
Dupré, Maurice J.; Tipler, Frank J.
Most early twentieth century relativists — Lorentz, Einstein, Eddington, for examples — claimed that general relativity was merely a theory of the æther. We shall confirm this claim by deriving the Einstein equations using æther theory. We shall use a combination of Lorentz's and Kelvin's conception of the æther. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the æther, a tensor based on Kelvin's æther theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann. In essence, we shall show that the Einstein equations are a special case of Newtonian gravity coupled to a particular type of luminiferous æther. Our derivation of general relativity is simple, and it emphasizes how inevitable general relativity is, given the truth of Newtonian gravity and the Maxwell equations.
Recent advances with generalized entropy theory of glass-formation in polymers
NASA Astrophysics Data System (ADS)
Freed, Karl
The generalized entropy theory (GET) of glass-formation in polymers is a combination of the lattice cluster theory (LCT) for the configurational entropy density with the Adam-Gibbs (AG) theory for the structural relaxation time. A greatly simplified form of the GET (whose expression for the free energy is roughly double that of Flory-Huggins theory) accurately reproduces the four characteristic temperatures of glass-formation (the onset, crossover, glass transition, and Kauzmann temperatures) of the full GET to within 4K for a series of models of polymers composed of semi-flexible chains having the structure of poly(n-alpha olefins). The theory is now simple enough to be used in courses in polymer physics. Although the successes of the GET provide a strong validation of the final form of the AG theory provided the configurational entropy is used, the physical basis of the AG theory has remained an enigma. Hence, we have developed a new, more general, statistical mechanical derivation of AG theory that explains the previously perplexing observations that the string-like elementary excitations have the mass and temperature dependence of systems undergoing equilibrium self-assembly. This work is supported by the (U.S.) Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE- SC0008631.
General theory for the mechanics of confined microtubule asters
NASA Astrophysics Data System (ADS)
Ma, Rui; Laan, Liedewij; Dogterom, Marileen; Pavin, Nenad; Jülicher, Frank
2014-01-01
In cells, dynamic microtubules organize into asters or spindles to assist positioning of organelles. Two types of forces are suggested to contribute to the positioning process: (i) microtubule-growth based pushing forces; and (ii) motor protein mediated pulling forces. In this paper, we present a general theory to account for aster positioning in a confinement of arbitrary shape. The theory takes account of microtubule nucleation, growth, catastrophe, slipping, as well as interaction with cortical force generators. We calculate microtubule distributions and forces acting on microtubule organizing centers in a sphere and in an ellipsoid. Positioning mechanisms based on both pushing forces and pulling forces can be distinguished in our theory for different parameter regimes or in different geometries. In addition, we investigate positioning of microtubule asters in the case of asymmetric distribution of motors. This analysis enables us to characterize situations relevant for Caenorrhabditis elegans embryos.
Testing general metric theories of gravity with bursting neutron stars
Psaltis, Dimitrios
2008-03-15
I show that several observable properties of bursting neutron stars in metric theories of gravity can be calculated using only conservation laws, Killing symmetries, and the Einstein equivalence principle, without requiring the validity of the general relativistic field equations. I calculate, in particular, the gravitational redshift of a surface atomic line, the touchdown luminosity of a radius-expansion burst, which is believed to be equal to the Eddington critical luminosity, and the apparent surface area of a neutron star as measured during the cooling tails of bursts. I show that, for a general metric theory of gravity, the apparent surface area of a neutron star depends on the coordinate radius of the stellar surface and on its gravitational redshift in the exact same way as in general relativity. On the other hand, the Eddington critical luminosity depends also on an additional parameter that measures the degree to which the general relativistic field equations are satisfied. These results can be used in conjunction with current and future high-energy observations of bursting neutron stars to test general relativity in the strong-field regime.
Stringy horizons and generalized FZZ duality in perturbation theory
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2017-02-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Generalized approach to global renormalization-group theory for fluids
NASA Astrophysics Data System (ADS)
Ramana, A. Sai Venkata; Menon, S. V. G.
2012-04-01
The global renormalization-group theory (GRGT) for fluids is derived starting with the square-gradient approximation for the Helmholtz free energy functional such that any mean-field free energy density and direct correlation function can be employed. The new derivation uses Wilson's functions for representing density fluctuations, thereby relaxing the assumption of cosine variation of density fluctuations used in earlier approaches. The generality of the present approach is shown by deriving the relationships to the earlier developments. A qualitative way to infer the free parameters in the present form of GRGT is also suggested. The new theory is applied to square-well fluids of ranges 1.5 and 3.0 (in units of hard-sphere diameter) and Lennard-Jones fluids. It is shown that the present theory produces a flat isotherm in the two-phase region. Thus the theory accounts for fluctuations at all length scales and avoids the use of Maxwell's construction. An analysis of the liquid-vapor phase diagrams and the critical constants obtained for different potentials shows that, with a mean-field free energy density that is accurate away from the critical region and an appropriate coarse graining length for the mean-field theory, GRGT can provide results in good agreement with the simulation and experimental results.
NASA Technical Reports Server (NTRS)
Smalley, L. L.
1983-01-01
The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.
NASA Technical Reports Server (NTRS)
Smalley, L. L.
1983-01-01
The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.
Blair, Karina; Shaywitz, Jonathan; Smith, Bruce W.; Rhodes, Rebecca; Geraci, Marilla; Jones, Matthew; McCaffrey, Daniel; Vythilingam, Meena; Finger, Elizabeth; Mondillo, Krystal; Jacobs, Madeline; Charney, Dennis S.; Blair, R.J.R.; Drevets, Wayne C.; Pine, Daniel S.
2010-01-01
Objective Generalized social phobia involves fear/avoidance, specifically of social situations, whereas generalized anxiety disorder involves intrusive worry about diverse circumstances. It remains unclear the degree to which these two, often comorbid, conditions represent distinct disorders or alternative presentations of a single, core underlying pathology. Functional magnetic resonance imaging assessed the neural response to facial expressions in generalized social phobia and generalized anxiety disorder. Method Individuals matched on age, IQ, and gender with generalized social phobia without generalized anxiety disorder (N=17), generalized anxiety disorder (N= 17), or no psychopathology (N=17) viewed neutral, fearful, and angry expressions while ostensibly making a simple gender judgment. Results The patients with generalized social phobia without generalized anxiety disorder showed increased activation to fearful relative to neutral expressions in several regions, including the amygdala, compared to healthy individuals. This increased amygdala response related to self-reported anxiety in patients with generalized social phobia without generalized anxiety disorder. In contrast, patients with generalized anxiety disorder showed significantly less activation to fearful relative to neutral faces compared to the healthy individuals. They did show significantly increased response to angry expressions relative to healthy individuals in a lateral region of the middle frontal gyrus. This increased lateral frontal response related to self-reported anxiety in patients with generalized anxiety disorder. Conclusions These results suggest that neural circuitry dysfunctions differ in generalized social phobia and generalized anxiety disorder. PMID:18483136
Blair, Karina; Shaywitz, Jonathan; Smith, Bruce W; Rhodes, Rebecca; Geraci, Marilla; Jones, Matthew; McCaffrey, Daniel; Vythilingam, Meena; Finger, Elizabeth; Mondillo, Krystal; Jacobs, Madeline; Charney, Dennis S; Blair, R J R; Drevets, Wayne C; Pine, Daniel S
2008-09-01
Generalized social phobia involves fear/avoidance, specifically of social situations, whereas generalized anxiety disorder involves intrusive worry about diverse circumstances. It remains unclear the degree to which these two, often comorbid, conditions represent distinct disorders or alternative presentations of a single, core underlying pathology. Functional magnetic resonance imaging assessed the neural response to facial expressions in generalized social phobia and generalized anxiety disorder. Individuals matched on age, IQ, and gender with generalized social phobia without generalized anxiety disorder (N=17), generalized anxiety disorder (N=17), or no psychopathology (N=17) viewed neutral, fearful, and angry expressions while ostensibly making a simple gender judgment. The patients with generalized social phobia without generalized anxiety disorder showed increased activation to fearful relative to neutral expressions in several regions, including the amygdala, compared to healthy individuals. This increased amygdala response related to self-reported anxiety in patients with generalized social phobia without generalized anxiety disorder. In contrast, patients with generalized anxiety disorder showed significantly less activation to fearful relative to neutral faces compared to the healthy individuals. They did show significantly increased response to angry expressions relative to healthy individuals in a lateral region of the middle frontal gyrus. This increased lateral frontal response related to self-reported anxiety in patients with generalized anxiety disorder. These results suggest that neural circuitry dysfunctions differ in generalized social phobia and generalized anxiety disorder.
The Equivariant Cohomology Theory of Twisted Generalized Complex Manifolds
NASA Astrophysics Data System (ADS)
Lin, Yi
2008-07-01
It has been shown recently by Kapustin and Tomasiello that the mathematical notion of Hamiltonian actions on twisted generalized Kähler manifolds is in perfect agreement with the physical notion of general (2, 2) gauged sigma models with three-form fluxes. In this article, we study the twisted equivariant cohomology theory of Hamiltonian actions on H-twisted generalized complex manifolds. If the manifold satisfies the {overline{partial} partial}-lemma, we establish the equivariant formality theorem. If in addition, the manifold satisfies the generalized Kähler condition, we prove the Kirwan injectivity in this setting. We then consider the Hamiltonian action of a torus on an H-twisted generalized Calabi-Yau manifold and extend to this case the Duistermaat-Heckman theorem for the push-forward measure. As a side result, we show in this paper that the generalized Kähler quotient of a generalized Kähler vector space can never have a (cohomologically) non-trivial twisting. This gives a negative answer to a question asked by physicists whether one can construct (2, 2) gauged linear sigma models with non-trivial fluxes.
General Relativity Theory - Well Proven and Also Incomplete: Further Arguments
NASA Astrophysics Data System (ADS)
Brandes, Jürgen
In the former article "General Relativity Theory - well proven and also incomplete?" with a few arguments it was proven that general relativity (GRT) makes contradictory predictions about the total energy of a particle resting in the gravitational field. With a few further arguments it was proven that this contradiction is resolved by expanding general relativity. General relativity is contradictious in energy questions since on one side the total energy of a particle resting in the gravitational field is lower than its rest mass (there is energy needed to pull out the particle from the gravitational field) while on the other side it is equal to its rest mass (this is a consequence of the equivalence principle). In the following article these considerations are generalized to a moving particle. A particle moving in the gravitational field has a total energy less than its rest mass times the relativistic γ-factor since there is energy needed to pull the particle out without changing its velocity. On the other side total energy of a moving particle is equal to its rest mass times the relativistic γ-factor (this is a consequence of the equivalence principle, too). This contradiction is resolved by expanding general relativity in the same manner as above. The other fact: Though it is not the aim of the author to reject general relativity but to expand it, he is treated as some uncritical anti-relativist - since the start of his considerations and meanwhile for more than 20 years.
ERIC Educational Resources Information Center
Moon, Byongook; Hwang, Hye-Won; McCluskey, John D.
2011-01-01
A growing number of studies indicate the ubiquity of school bullying: It is a global concern, regardless of cultural differences. Little previous research has examined whether leading criminological theories can explain bullying, despite the commonality between bullying and delinquency. The current investigation uses longitudinal data on 655…
ERIC Educational Resources Information Center
Moon, Byongook; Hwang, Hye-Won; McCluskey, John D.
2011-01-01
A growing number of studies indicate the ubiquity of school bullying: It is a global concern, regardless of cultural differences. Little previous research has examined whether leading criminological theories can explain bullying, despite the commonality between bullying and delinquency. The current investigation uses longitudinal data on 655…
Generality with Specificity: The Dynamic Field Theory Generalizes across Tasks and Time Scales
ERIC Educational Resources Information Center
Simmering, Vanessa R.; Spencer, John P.
2008-01-01
A central goal in cognitive and developmental science is to develop models of behavior that can generalize across both tasks and development while maintaining a commitment to detailed behavioral prediction. This paper presents tests of one such model, the Dynamic Field Theory (DFT). The DFT was originally proposed to capture delay-dependent biases…
General Theory of Aerodynamic Instability and the Mechanism of Flutter
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1949-01-01
The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived at. The solution is of a simple form and is expressed by means of an auxiliary parameter K.
General Theory of Aerodynamic Instability and the Mechanism of Flutter
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1979-01-01
The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom were determined. The problem resolves itself into the solution of certain definite integrals, which were identified as Bessel functions of the first and second kind, and of zero and first order. The theory, based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability was analyzed. An exact solution, involving potential flow and the adoption of the Kutta condition, was derived. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The flutter velocity, treated as the unknown quantity, was determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any magnitudes and combinations of the airfoil-aileron parameters.
Kanazawa, Takuya
2009-08-15
We extend the inequality of Tomboulis and Yaffe in SU(2) lattice gauge theory (LGT) to SU(N) LGT and to general classical spin systems, by use of reflection positivity. Basically the inequalities guarantee that a system in a box that is sufficiently insensitive to boundary conditions has a non-zero mass gap. We explicitly illustrate the theorem in some solvable models. Strong-coupling expansion is then utilized to discuss some aspects of the theorem. Finally, a conjecture for exact expression to the off-axis mass gap of the triangular Ising model is presented. The validity of the conjecture is tested in multiple ways.
ERIC Educational Resources Information Center
Cook, Desmond L.
This document, one of a series of reports examining the possible contribution of other disciplines to evaluation methodology, describes the major elements of general systems theory (GST), cybernetics theory (CT) and management control theory (MCT). The author suggests that MCT encapsulates major concerns of evaluation since it reveals that…
Generalization of Equivalent Crystal Theory to Include Angular Dependence
NASA Technical Reports Server (NTRS)
Ferrante, John; Zypman, Fredy R.
2004-01-01
In the original Equivalent Crystal Theory, each atomic site in the real crystal is assigned an equivalent lattice constant, in general different from the ground state one. This parameter corresponds to a local compression or expansion of the lattice. The basic method considers these volumetric transformations and, in addition, introduces the possibility that the reference lattice is anisotropically distorted. These distortions however, were introduced ad-hoc. In this work, we generalize the original Equivalent Crystal Theory by systematically introducing site-dependent directional distortions of the lattice, whose corresponding distortions account for the dependence of the energy on anisotropic local density variations. This is done in the spirit of the original framework, but including a gradient term in the density. This approach is introduced to correct a deficiency in the original Equivalent Crystal Theory and other semiempirical methods in quantitatively obtaining the correct ratios of the surface energies of low index planes of cubic metals (100), (110), and (111). We develop here the basic framework, and apply it to the calculation of Fe (110) and Fe (111) surface energy formation. The results, compared with first principles calculations, show an improvement over previous semiempirical approaches.
General theory of electron detachment in negative ion collisions
Wang, T.S.
1983-01-01
In this thesis a general theory of electron detachment in slow collisions of negative ions with atoms is presented. The theory is based upon a semiclassical close-coupling framework, following the work of Taylor and Delos. The Schrodinger equation is reduced, under certain assumptions, to a non-denumerably infinite set of coupled equations. A new method for solving these equations is developed that is more general than the methods used by Taylor and Delos. A zero-order approximation of the solution is applied to the case of H-(D-) on Ne collisions, the results are compared with the experimental data, and good agreement between theory and experiment, particularly with regard to the isotope effect, is found. A first-order approximation of the solution is proved to be very close to the exact solution, and it is applied to the case of H-(D-) on He collisions. Quadratic and quartic approximations are used for the energy gap ..delta..(t) to calculate, among other things, the survival probability and electron energy spectrum. There are some interesting results of the electron energy spectrum which have not yet been observed in experiments.
Generating functional and large N limit of nonlocal 2D generalized Yang-Mills theories (nlgYM 2's)
NASA Astrophysics Data System (ADS)
Saaidi, K.; Sajadi, H. M.
2001-01-01
Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) on nonlocal generalized 2D Yang Mills theories (nlgYM_2's), which are nonlocal in the auxiliary field. This has been considered before by Saaidi and Khorrami. Our calculations are done for general surfaces. We find a general expression for the free energy of W(φ) =φ^{2k} in nlgYM_2 theories at the strong coupling phase (SCP) regime (A > A_c) for large groups. In the specific φ^4 model, we show that the theory has a third order phase transition.
Dynamics of the solvent around a solute: generalized Langevin theory.
Ishizuka, R; Hirata, F
2010-01-01
The generalized Langevin theory for a solution has been derived as the infinite dilution limit of the theory for a two component mixture. Following a similar formalism, the mode coupling approximations of the memory kernel have been also obtained. We have applied this method for one component bulk liquid of Lennard-Jones spheres and proved this approximation theoretically. The analysis of the space and time pair correlation proposed by Van Hove has been carried out as a function of solute particle sizes. It is found that the size of the solute particle is deeply related to the relaxation process of the solvation structure characterized around a solute particle at equilibrium. We have also investigated the relation between the different thermodynamic environments and relaxation process. From these studies, we have obtained the useful information about the rapidity of the relaxation of the solvation structure around a solute at equilibrium.
Generalization of the Kirchhoff theory to elastic wave diffraction problems
NASA Astrophysics Data System (ADS)
Israilov, M. Sh.; Nosov, S. E.
2017-01-01
The Kirchhoff approximation in the theory of diffraction of acoustic and electromagnetic waves by plane screens assumes that the field and its normal derivative on the part of the plane outside the screen coincides with the incident wave field and its normal derivative, respectively. This assumption reduces the problem of wave diffraction by a plane screen to the Dirichlet or Neumann problems for the half-space (or the half-plane in the two-dimensional case) and permits immediately writing out an approximate analytical solution. The present paper is the first to generalize this approach to elastic wave diffraction. We use the problem of diffraction of a shear SH-wave by a half-plane to show that the Kirchhoff theory gives a good approximation to the exact solution. The discrepancies mainly arise near the screen, i.e., in the region where the influence of the boundary conditions is maximal.
Generalized Effective Medium Theory for Particulate Nanocomposite Materials
Siddiqui, Muhammad Usama; Arif, Abul Fazal M.
2016-01-01
The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites. PMID:28773817
Subsonic potential aerodynamics for complex configurations - A general theory
NASA Technical Reports Server (NTRS)
Morino, L.; Kuo, C.-C.
1974-01-01
A general theory of subsonic potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the velocity potential is obtained for both supersonic and subsonic flow. Under the small perturbation assumption, the potential at any point in the field depends only upon the values of the potential and its normal derivative on the surface of the body. On the surface of the body, this representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface. The theory is applied to finite-thickness wings in subsonic steady and oscillatory flows.
Generalized cable theory for neurons in complex and heterogeneous media.
Bédard, Claude; Destexhe, Alain
2013-08-01
Cable theory has been developed over the last decade, usually assuming that the extracellular space around membranes is a perfect resistor. However, extracellular media may display more complex electrical properties due to various phenomena, such as polarization, ionic diffusion, or capacitive effects, but their impact on cable properties is not known. In this paper, we generalize cable theory for membranes embedded in arbitrarily complex extracellular media. We outline the generalized cable equations, then consider specific cases. The simplest case is a resistive medium, in which case the equations recover the traditional cable equations. We show that for more complex media, for example, in the presence of ionic diffusion, the impact on cable properties such as voltage attenuation can be significant. We illustrate this numerically, always by comparing the generalized cable to the traditional cable. We conclude that the nature of intracellular and extracellular media may have a strong influence on cable filtering as well as on the passive integrative properties of neurons.
General Strain Theory and Substance Use among American Indian Adolescents
Eitle, Tamela McNulty; Eitle, David; Johnson-Jennings, Michelle
2013-01-01
Despite the well-established finding that American Indian adolescents are at a greater risk of illicit substance use and abuse than the general population, few generalist explanations of deviance have been extended to American Indian substance use. Using a popular generalist explanation of deviance, General Strain Theory, we explore the predictive utility of this model with a subsample of American Indian adolescents from waves one and two of the National Longitudinal Study of Adolescent Health (Add-Health). Overall, we find mixed support for the utility of General Strain Theory to account for American Indian adolescent substance use. While exposure to recent life events, a common measure of stress exposure, was found to be a robust indicator of substance use, we found mixed support for the thesis that negative affect plays a key role in mediating the link between strain and substance use. However, we did find evidence that personal and social resources serve to condition the link between stress exposure and substance use, with parental control, self-restraint, religiosity, and exposure to substance using peers each serving to moderate the association between strain and substance use, albeit in more complex ways than expected. PMID:23826511
Potential Performance Theory (PPT): A General Theory of Task Performance Applied to Morality
ERIC Educational Resources Information Center
Trafimow, David; Rice, Stephen
2008-01-01
People can use a variety of different strategies to perform tasks and these strategies all have two characteristics in common. First, they can be evaluated in comparison with either an absolute or a relative standard. Second, they can be used at varying levels of consistency. In the present article, the authors develop a general theory of task…
The general theory of relativity - Why 'It is probably the most beautiful of all existing theories'
NASA Astrophysics Data System (ADS)
Chandrasekhar, S.
1984-03-01
An attempt is made to objectively evaluate the frequent judgment of Einstein's general theory of relativity, by such distinguished physicists as Pauli (1921), Dirac, Born, and Rutherford, as 'beautiful' and 'a work of art'. The criteria applied are that of Francis Bacon ('There is no excellent beauty that hath not some strangeness in the proportions') and that of Heisenberg ('Beauty is the proper conformity of the parts to one another and to the whole'). The strangeness in the proportions of the theory of general relativity consists in its relating, through juxtaposition, the concepts of space and time and those of matter and motion; these had previously been considered entirely independent. The criterion of 'conformity' is illustrated through the directness with which the theory allows the description of black holes.
A general geometric theory of attitude determination from directional sensing
NASA Technical Reports Server (NTRS)
Fang, B. T.
1976-01-01
A general geometric theory of spacecraft attitude determination from external reference direction sensors was presented. Outputs of different sensors are reduced to two kinds of basic directional measurements. Errors in these measurement equations are studied in detail. The partial derivatives of measurements with respect to the spacecraft orbit, the spacecraft attitude, and the error parameters form the basis for all orbit and attitude determination schemes and error analysis programs and are presented in a series of tables. The question of attitude observability is studied with the introduction of a graphical construction which provides a great deal of physical insight. The result is applied to the attitude observability of the IMP-8 spacecraft.
The arrow of electromagnetic time and the generalized absorber theory
NASA Astrophysics Data System (ADS)
Cramer, John G.
1983-09-01
The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler-Feynman absorber theory in an open expanding universe with a singularity at T=0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
Song, Jaewon
2016-02-05
We present superconformal indices of 4d N = 2 class S theories with certain irregular punctures called type I_{k,N}. This class of theories include generalized Argyres-Douglas theories of type (A_{k-1}, A_{N-1}) and more. We conjecture the superconformal indices in certain simplifi ed limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture I_{k,N}. We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index for odd N. From the index, we argue that certain short-multiplet which can appear in the OPE of the stress-energy tensor is absent in the (A_{1},A_{2n}) theory. In addition, we discuss the mixed Schur indices for the N = 1 class S theories with irregular punctures.
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
Song, Jaewon
2016-02-05
We present superconformal indices of 4d N = 2 class S theories with certain irregular punctures called type Ik,N. This class of theories include generalized Argyres-Douglas theories of type (Ak-1, AN-1) and more. We conjecture the superconformal indices in certain simplifi ed limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture Ik,N. We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index formore » odd N. From the index, we argue that certain short-multiplet which can appear in the OPE of the stress-energy tensor is absent in the (A1,A2n) theory. In addition, we discuss the mixed Schur indices for the N = 1 class S theories with irregular punctures.« less
General theory of spherically symmetric boundary-value problems of the linear transport theory.
NASA Technical Reports Server (NTRS)
Kanal, M.
1972-01-01
A general theory of spherically symmetric boundary-value problems of the one-speed neutron transport theory is presented. The formulation is also applicable to the 'gray' problems of radiative transfer. The Green's function for the purely absorbing medium is utilized in obtaining the normal mode expansion of the angular densities for both interior and exterior problems. As the integral equations for unknown coefficients are regular, a general class of reduction operators is introduced to reduce such regular integral equations to singular ones with a Cauchy-type kernel. Such operators then permit one to solve the singular integral equations by the standard techniques due to Muskhelishvili. We discuss several spherically symmetric problems. However, the treatment is kept sufficiently general to deal with problems lacking azimuthal symmetry. In particular the procedure seems to work for regions whose boundary coincides with one of the coordinate surfaces for which the Helmholtz equation is separable.
General theory of spherically symmetric boundary-value problems of the linear transport theory.
NASA Technical Reports Server (NTRS)
Kanal, M.
1972-01-01
A general theory of spherically symmetric boundary-value problems of the one-speed neutron transport theory is presented. The formulation is also applicable to the 'gray' problems of radiative transfer. The Green's function for the purely absorbing medium is utilized in obtaining the normal mode expansion of the angular densities for both interior and exterior problems. As the integral equations for unknown coefficients are regular, a general class of reduction operators is introduced to reduce such regular integral equations to singular ones with a Cauchy-type kernel. Such operators then permit one to solve the singular integral equations by the standard techniques due to Muskhelishvili. We discuss several spherically symmetric problems. However, the treatment is kept sufficiently general to deal with problems lacking azimuthal symmetry. In particular the procedure seems to work for regions whose boundary coincides with one of the coordinate surfaces for which the Helmholtz equation is separable.
Young infants' generalization of emotional expressions: effects of familiarity.
Walker-Andrews, Arlene S; Krogh-Jespersen, Sheila; Mayhew, Estelle M Y; Coffield, Caroline N
2011-08-01
From birth, infants are exposed to a wealth of emotional information in their interactions. Much research has been done to investigate the development of emotion perception, and factors influencing that development. The current study investigates the role of familiarity on 3.5-month-old infants' generalization of emotional expressions. Infants were assigned to one of two habituation sequences: in one sequence, infants were visually habituated to parental expressions of happy or sad. At test, infants viewed either a continuation of the habituation sequence, their mother depicting a novel expression, an unfamiliar female depicting the habituated expression, or an unfamiliar female depicting a novel expression. In the second sequence, a new sample of infants was matched to the infants in the first sequence. These infants viewed the same habituation and test sequences, but the actors were unfamiliar to them. Only those infants who viewed their own mothers and fathers during the habituation sequence increased looking. They dishabituated looking to maternal novel expressions, the unfamiliar female's novel expression, and the unfamiliar female depicting the habituated expression, especially when sad parental expressions were followed by an expression change to happy or to a change in person. Infants are guided in their recognition of emotional expressions by the familiarity of their parents, before generalizing to others.
Entanglement witnesses for graph states: General theory and examples
Jungnitsch, Bastian; Moroder, Tobias; Guehne, Otfried
2011-09-15
We present a general theory for the construction of witnesses that detect genuine multipartite entanglement in graph states. First, we present explicit witnesses for all graph states of up to six qubits which are better than all criteria so far. Therefore, lower fidelities are required in experiments that aim at the preparation of graph states. Building on these results, we develop analytical methods to construct two different types of entanglement witnesses for general graph states. For many classes of states, these operators exhibit white noise tolerances that converge to 1 when increasing the number of particles. We illustrate our approach for states such as the linear and the 2D cluster state. Finally, we study an entanglement monotone motivated by our approach for graph states.
Tensor perturbations in a general class of Palatini theories
Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J. E-mail: laviniah@kth.se
2015-06-01
We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
General Theory of Relativity: Will It Survive the Next Decade?
NASA Technical Reports Server (NTRS)
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
Polarization of holographic grating diffraction. I. General theory
NASA Astrophysics Data System (ADS)
Nee, Tsu-Wei; Nee, Soe-Mie F.
2004-04-01
The full polarization property of volume holographic grating diffraction is investigated theoretically. With a simple volume grating model, the diffracted fields and Mueller matrices are first derived from Maxwell's equations by using the Green's function algorithms. The formalism is derived for the general case that the diffraction beam and the grating wave vector are not in the plane of incidence, where s waves and p waves are not decoupled. The derived photon-momentum relations determine the Bragg angle selectivity. The parameters of diffraction strength related to the hologram-writing process and material are defined and are not necessarily small in general. The diffracted-beam profiles are analytically calculated by using the known grating shape function. This theory has provided a fundamental understanding of the polarization phenomena of a real holographic diffraction grating device. The derived algorithm would provide a simulation-analysis tool for the engineering design of real holographic beam combiner/splitter devices.
General Theory of Relativity: Will It Survive the Next Decade?
NASA Technical Reports Server (NTRS)
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
Cosmic ray scintillations. II - General theory of interplanetary scintillations
NASA Technical Reports Server (NTRS)
Owens, A. J.
1974-01-01
The motion of charged particles in a stochastic magnetic field with nonzero mean is considered via a generalized quasi-linear expansion of Liouville's equation. The general result is an equation relating cosmic ray scintillations to magnetic fluctuations and to cosmic ray gradients. The resonant interaction between particles and the random magnetic field is considered in detail, and the effect of nonlinear terms in the equations is considered. The nonlinear terms are important in damping out initial conditions and in determining conditions near cyclotron resonances. The application of the theory to the propagation of cosmic rays during quiet times in interplanetary space is considered. It is concluded that cosmic ray scintillations in interplanetary space may provide useful information about interplanetary particles and fields and also about nonlinear plasma interactions.
The trouble with psychopathy as a general theory of crime.
Walters, Glenn D
2004-04-01
The concept of psychopathy, as defined by Robert Hare, is reviewed with respect to its status as a general theory of crime. A hybrid of the medical pathology model and personality trait approach, the psychopathy concept proposes that a significant portion of serious crime is committed by psychopathic individuals. Hare's version of psychopathy, besides demonstrating weak applicability and a propensity for tautology, is subject to labeling effects, oversimplicity, reductionism, the fundamental attributional error, inattention to context, and disregard for the dynamic nature of human behavior. It is concluded that the psychopathy concept is substantially limited with respect to its ability to describe and clarify general criminal behavior but that it may still have value as a partial explanation for certain types of non-criminal predatory behavior.
NASA Astrophysics Data System (ADS)
Manchon, A.; Slonczewski, J. C.
2006-05-01
Extensions of an existing circuit theory for current perpendicular to plane magnetoresistance and current-driven torque in noncollinear magnetic-multilayer pillar devices are presented. Our expressions for monodomain critical-current threshold Jc and giant magnetoresistance ΔR are firstly derived in terms of assumed spin-channel resistances for each of the two ferromagnets. Spinflips are thus neglected. We find a class of closed linear relationships connecting Jc-1 and ΔR . We then derive more general expressions for these quantities which take into account spin-flip relaxation. In this case, we assume analytically calculable linear 2×2 current-voltage matrices for the separate two-channel ferromagnets. These expressions again lead to a class of closed linear relationships connecting Jc-1 and ΔR . The latter generalization gives a simple theoretical framework to take into account bulk and interfacial spin flip and more complicated multilayer structures often used in experiments.
Generalization of the Schrödinger theory of electrons.
Sahni, Viraht
2017-08-01
The Schrödinger theory for a system of electrons in the presence of both a static and time-dependent electromagnetic field is generalized so as to exhibit the intrinsic self-consistent nature of the corresponding Schrödinger equations. This is accomplished by proving that the Hamiltonian in the stationary-state and time-dependent cases {Ĥ;Ĥ(t)} are exactly known functionals of the corresponding wave functions {Ψ;Ψ(t)}, that is, Ĥ=Ĥ[Ψ] and Ĥ(t)=Ĥ[Ψ(t)]. Thus, the Schrödinger equations may be written as Ĥ[Ψ]Ψ=E[Ψ]Ψ and Ĥ[Ψ(t)]Ψ(t)=i∂Ψ(t)/∂t. As a consequence the eiegenfunctions and energy eigenvalues {Ψ,E} of the stationary-state equation, and the wave function Ψ(t) of the temporal equation, can be determined self-consistently. The proofs are based on the "Quantal Newtonian" first and second laws which are the equations of motion for the individual electron amongst the sea of electrons in the external fields. The generalization of the Schrödinger equation in this manner leads to additional new physics. The traditional description of the Schrödinger theory of electrons with the Hamiltonians {Ĥ;Ĥ(t)} known constitutes a special case. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
No-go theorems for generalized chameleon field theories.
Wang, Junpu; Hui, Lam; Khoury, Justin
2012-12-14
The chameleon, or generalizations thereof, is a light scalar that couples to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact: (i) the Compton wavelength of such a scalar can be at most ~/= 1 MPc at the present cosmic density, which restricts its impact to nonlinear scales; and (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-acceleration. These results imply that chameleonlike scalar fields have a negligible effect on the linear-scale growth history; theories that invoke a chameleonlike scalar to explain cosmic acceleration rely on a form of dark energy rather than a genuine modified gravity effect. Our analysis applies to a broad class of chameleon, symmetron, and dilaton theories.
Efficient molecular density functional theory using generalized spherical harmonics expansions
NASA Astrophysics Data System (ADS)
Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc
2017-09-01
We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ (r, Ω) around the solute is a function of the position r ≡(x ,y ,z ) and of the three Euler angles Ω≡(θ ,ϕ ,ψ ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ (r, Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.
NASA Astrophysics Data System (ADS)
Lompay, Robert R.; Petrov, Alexander N.
2013-10-01
The present paper continues the work of Lompay and Petrov [J. Math. Phys. 54, 062504 (2013)] where manifestly covariant differential identities and conserved quantities in generally covariant metric-torsion theories of gravity of the most general type have been constructed. Here, we study these theories presented more concretely, setting that their Lagrangians {L} are manifestly generally covariant scalars: algebraic functions of contractions of tensor functions and their covariant derivatives. It is assumed that Lagrangians depend on metric tensor g, curvature tensor R, torsion tensor T and its first {{nabla }}{T} and second {{nabla }}{{nabla }}{T} covariant derivatives, besides, on an arbitrary set of other tensor (matter) fields {\\varphi } and their first {{nabla }}{\\varphi } and second {{nabla }}{{nabla }}{\\varphi } covariant derivatives: {L}= {L}({g},{R}; {T},{{nabla }}{T},{{nabla }}{{nabla }}{T}; {\\varphi },{{nabla }}{\\varphi },{{nabla }}{{nabla }}{\\varphi }). Thus, both the standard minimal coupling with the Riemann-Cartan geometry and non-minimal coupling with the curvature and torsion tensors are considered. The studies and results are as follow: (a) A physical interpretation of the Noether and Klein identities is examined. It was found that they are the basis for constructing equations of balance of energy-momentum tensors of various types (canonical, metrical, and Belinfante symmetrized). The equations of balance are presented. (b) Using the generalized equations of balance, new (generalized) manifestly generally covariant expressions for canonical energy-momentum and spin tensors of the matter fields are constructed. In the cases, when the matter Lagrangian contains both the higher derivatives and non-minimal coupling with curvature and torsion, such generalizations are non-trivial. (c) The Belinfante procedure is generalized for an arbitrary Riemann-Cartan space. (d) A more convenient in applications generalized expression for the canonical
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
Mass bounds for compact spherically symmetric objects in generalized gravity theories
NASA Astrophysics Data System (ADS)
Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2016-09-01
We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-á-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density, and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respectively. For Higgs-type models, we find that these bounds can be expressed in terms of the value of the potential at the surface of the compact object. Minimizing the energy with respect to the radius, we obtain explicit upper and lower bounds on the mass, which admits a Chandrasekhar-type representation. For charged compact objects, we consider the effects of the Poincaré stresses on the equilibrium structure and obtain bounds on the radial and tangential stresses. As a possible astrophysical test of our results, we obtain the general bound on the gravitational redshift for compact objects in extended gravity theories and explicitly compute the redshift restrictions for objects with nonzero effective surface pressure. General implications of minimum mass bounds for the gravitational stability of fundamental particles and for the existence of holographic duality between bulk and boundary degrees of freedom are also considered.
Aerodynamic coefficients in generalized unsteady thin airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1980-01-01
Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
Double metric, generalized metric, and α' -deformed double field theory
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2016-03-01
We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.
Riemannian geometry of Hamiltonian chaos: Hints for a general theory
NASA Astrophysics Data System (ADS)
Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco
2008-10-01
We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam β model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.
On truncated generalized Gibbs ensembles in the Ising field theory
NASA Astrophysics Data System (ADS)
Essler, F. H. L.; Mussardo, G.; Panfil, M.
2017-01-01
We discuss the implementation of two different truncated Generalized Gibbs Ensembles (GGE) describing the stationary state after a mass quench process in the Ising Field Theory. One truncated GGE is based on the semi-local charges of the model, the other on regularized versions of its ultra-local charges. We test the efficiency of the two different ensembles by comparing their predictions for the stationary state values of the single-particle Green’s function G(x)=< {{\\psi}\\dagger}(x)\\psi (0)> of the complex fermion field \\psi (x) . We find that both truncated GGEs are able to recover G(x), but for a given number of charges the semi-local version performs better.
The Unruh Effect in General Boundary Quantum Field Theory
NASA Astrophysics Data System (ADS)
Colosi, Daniele; Rätzel, Dennis
2013-03-01
In the framework of the general boundary formulation (GBF) of scalar quantum field theory we obtain a coincidence of expectation values of local observables in the Minkowski vacuum and in a particular state in Rindler space. This coincidence could be seen as a consequence of the identification of the Minkowski vacuum as a thermal state in Rindler space usually associated with the Unruh effect. However, we underline the difficulty in making this identification in the GBF. Beside the Feynman quantization prescription for observables that we use to derive the coincidence of expectation values, we investigate an alternative quantization prescription called Berezin-Toeplitz quantization prescription, and we find that the coincidence of expectation values does not exist for the latter.
Riemannian geometry of Hamiltonian chaos: hints for a general theory.
Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco
2008-10-01
We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.
Gender, General Strain Theory, negative emotions, and disordered eating.
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R; Capowich, George; Mazerolle, Paul
2010-04-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal-especially violent-activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally female-specific self-directed outcome. Using a sample of 338 young adults (54% female, 95% white), this article applies GST to disordered eating by examining how strain and negative emotions relate to this particular outcome across gender. Findings indicate that two types of strain measures predict depressive symptoms among males and females, that inequitable strainful experiences relate to disordered eating among females but not males, that depressive symptoms but not anger increase disordered eating for both males and females, and that membership in Greek organizations (sororities or fraternities) is associated with disordered eating but only for males. Implications for theory and directions for future research are highlighted.
Cosmology in nonrelativistic general covariant theory of gravity
NASA Astrophysics Data System (ADS)
Wang, Anzhong; Wu, Yumei
2011-02-01
Horava and Melby-Thompson recently proposed a new version of the Horava-Lifshitz theory of gravity, in which the spin-0 graviton is eliminated by introducing a Newtonian prepotential φ and a local U(1) gauge field A. In this paper, we first derive the corresponding Hamiltonian, supermomentum constraints, the dynamical equations, and the equations for φ and A, in the presence of matter fields. Then, we apply the theory to cosmology and obtain the modified Friedmann equation and the conservation law of energy, in addition to the equations for φ and A. When the spatial curvature is different from zero, terms behaving like dark radiation and stiff-fluid exist, from which, among other possibilities, a bouncing universe can be constructed. We also study linear perturbations of the Friedmann-Robertson-Walker universe with any given spatial curvature k, and we derive the most general formulas for scalar perturbations. The vector and tensor perturbations are the same as those recently given by one of the present authors [A. Wang, Phys. Rev. DPRVDAQ1550-7998 82, 124063 (2010).] in the setup of Sotiriou, Visser, and Weinfurtner. Applying these formulas to the Minkowski background, we have shown explicitly that the scalar and vector perturbations of the metric indeed vanish, and the only remaining modes are the massless spin-2 gravitons.
A General Theory of Unsteady Compressible Potential Aerodynamics
NASA Technical Reports Server (NTRS)
Morino, L.
1974-01-01
The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-08-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.
Vertex topological indices and tree expressions, generalizations of continued fractions
2010-01-01
We expand on the work of Hosoya to describe a generalization of continued fractions called “tree expressions.” Each rooted tree will be shown to correspond to a unique tree expression which can be evaluated as a rational number (not necessarily in lowest terms) whose numerator is equal to the Hosoya index of the entire tree and whose denominator is equal to the tree with the root deleted. In the development, we use Z(G) to define a natural candidate ζ(G, v) for a “vertex topological index” which is a value applied to each vertex of a graph, rather than a value assigned to the graph overall. Finally, we generalize the notion of tree expression to “labeled tree expressions” that correspond to labeled trees and show that such expressions can be evaluated as quotients of determinants of matrices that resemble adjacency matrices. PMID:20490285
One month in the history of the discovery of general relativity theory
NASA Astrophysics Data System (ADS)
Mehra, Jagdish
1998-02-01
Albert Einstein had initiated his work on the formulation of a general theory of relativity soon after completing the special theory. From 1907 to summer 1915 he worked hard on the problem of ‘generalizing’ the relativity theory. His efforts bore fruit during November 1915, and he presented the new theory in four communications to the Prussian Academy of Sciences in Berlin in that month; he obtained the correct expression and value for the advance of the perihelion motion of Mercury and motivated the existence of the final form of the field equations of gravitation. After his second communication to the Academy on 11 November, he had the expression and value for the advance of the perihelion of Mercury by 18 November, and the final form of the field equations by 25 November. He noted down both of these major results in an autograph manuscript, the English translation of which is presented here for the first time since Einstein wrote it, and the background of this fundamental work is discussed.
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
16 CFR 700.5 - Expressions of general policy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Expressions of general policy. 700.5 Section 700.5 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE MAGNUSON-MOSS WARRANTY ACT INTERPRETATIONS OF MAGNUSON-MOSS WARRANTY ACT § 700.5...
Potential performance theory (PPT): a general theory of task performance applied to morality.
Trafimow, David; Rice, Stephen
2008-04-01
People can use a variety of different strategies to perform tasks and these strategies all have two characteristics in common. First, they can be evaluated in comparison with either an absolute or a relative standard. Second, they can be used at varying levels of consistency. In the present article, the authors develop a general theory of task performance called potential performance theory (PPT) that distinguishes between observed scores and true scores that are corrected for inconsistency (i.e., potential scores). In addition, they argue that any kind of improvement to task performance, whatever it may be, works by influencing either task strategies, which comprise all nonrandom components that are relevant to the task, or the consistency with which strategies are used. In the current study, PPT is used to demonstrate how task strategies and the consistencies with which they are used impact actual performance in the domain of morality. These conclusions are extended to other domains of task performance.
Candidate General Ontologies for Situating Quantum Field Theory
NASA Astrophysics Data System (ADS)
Simons, Peter
Ontology is traditionally an a priori discipline purveying its categories and principles independently of mere facts, but this arrogance of philosophers has led them into latent or patent incompatibility with good science and has landed them with philosophical aporiai such as the mind-body problem and the universals dispute. So while maintaining the abstractness and systematic universality of ontology it pays to craft one's categories with an eye to the best empirical science, while not necessarily trying to read the ontology off that science. I present desiderata for a systematic ontology and give several reasons why one cannot use physical theory alone as the source of one's a posteriori ontology. With this in mind I survey six ontological theories as possible frameworks for QFT, four briefly, two at greater length. The first is the traditional substanceattribute metaphysic, which is clearly obsolete, and on which I expend little time. The second is its modern logico-linguistic replacement, the ontology of individuals and sets touted as semantic values in logical semantics. This too falls by the wayside for several reasons. A third is the closely related ontology or ontologies of facts, against which I argue on general grounds. A fourth is Whiteheadian process ontology, which is an improvement over the previous three but still leaves several questions unsatisfactorily answered. The most flexible and promising to date is the ontology of tropes and trope bundles, which I have discussed in several places. After expounding this I reject it not because it is false but because it is neither broad nor deep enough. As a final, sixth alternative, I present an ontology of invariant factors inspired in part by Whitehead and in part by remarks of Max Planck, and offer it as a promising future abstract framework within which to situate the physics of QFT.
Generalized fluid theory including non-Maxwellian kinetic effects
Izacard, Olivier
2017-03-29
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closuresmore » from the nonlinear Landau Fokker–Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function. One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. Here, the results shown here could provide the insights to break some of the unsolved puzzles of turbulence.« less
Generalized fluid theory including non-Maxwellian kinetic effects
NASA Astrophysics Data System (ADS)
Izacard, Olivier
2017-04-01
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closures from the nonlinear Landau Fokker-Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function (e.g. the INMDF (Izacard, O. 2016b Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas. Phys. Plasmas 23, 082504) that stands for interpreted non-Maxwellian distribution function). One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. The results
A general theory of multimetric indices and their properties
Schoolmaster, Donald R.; Grace, James B.; Schweiger, E. William
2012-01-01
1. Stewardship of biological and ecological resources requires the ability to make integrative assessments of ecological integrity. One of the emerging methods for making such integrative assessments is multimetric indices (MMIs). These indices synthesize data, often from multiple levels of biological organization, with the goal of deriving a single index that reflects the overall effects of human disturbance. Despite the widespread use of MMIs, there is uncertainty about why this approach can be effective. An understanding of MMIs requires a quantitative theory that illustrates how the properties of candidate metrics relates to MMIs generated from those metrics. 2. We present the initial basis for such a theory by deriving the general mathematical characteristics of MMIs assembled from metrics. We then use the theory to derive quantitative answers to the following questions: Is there an optimal number of metrics to comprise an index? How does covariance among metrics affect the performance of the index derived from those metrics? And what are the criteria to decide whether a given metric will improve the performance of an index? 3. We find that the optimal number of metrics to be included in an index depends on the theoretical distribution of signal of the disturbance gradient contained in each metric. For example, if the rank-ordered parameters of a metric-disturbance regression can be described by a monotonically decreasing function, then an optimum number of metrics exists and can often be derived analytically. We derive the conditions by which adding a given metric can be expected to improve an index. 4. We find that the criterion defining such conditions depends nonlinearly of the signal of the disturbance gradient, the noise (error) of the metric and the correlation of the metric errors. Importantly, we find that correlation among metric errors increases the signal required for the metric to improve the index. 5. The theoretical framework presented in this
On the general theory of the origins of retroviruses
2010-01-01
Background The order retroviridae comprises viruses based on ribonucleic acids (RNA). Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm) and host adaptability (Ha)); along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operadi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. Methods and results On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv) from a non-primate species Xy to Homo sapiens (Hs), initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO), sfv shedding is (1) enhanced by two transmitting tensors (Tt), (i) virus-specific immunity (VSI) and (ii) evolutionary defenses such as APOBEC, RNA interference pathways, and (when present) expedited therapeutics (denoted e2D); and (2) opposed by the five accepting scalars (At): (a) genomic integration hot spots, gIHS, (b) nuclear envelope transit (NMt) vectors, (c) virus-specific cellular biochemistry, VSCB, (d) virus-specific cellular receptor repertoire, VSCR, and (e) pH-mediated cell membrane transit, (↓pH CMat). Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt). Overall, If sfv encounters no unforeseen effects on transit
On the general theory of the origins of retroviruses.
Wayengera, Misaki
2010-02-16
The order retroviridae comprises viruses based on ribonucleic acids (RNA). Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm) and host adaptability (Ha)); along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operandi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv) from a non-primate species Xy to Homo sapiens (Hs), initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO), sfv shedding is (1) enhanced by two transmitting tensors (Tt), (i) virus-specific immunity (VSI) and (ii) evolutionary defenses such as APOBEC, RNA interference pathways, and (when present) expedited therapeutics (denoted e2D); and (2) opposed by the five accepting scalars (At): (a) genomic integration hot spots, gIHS, (b) nuclear envelope transit (NMt) vectors, (c) virus-specific cellular biochemistry, VSCB, (d) virus-specific cellular receptor repertoire, VSCR, and (e) pH-mediated cell membrane transit, (downward arrow pH CMat). Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt). Overall, If sfv encounters no unforeseen effects on transit between Xy and Hs
Temperature of critical clusters in nucleation theory: generalized Gibbs' approach.
Schmelzer, Jürn W P; Boltachev, Grey Sh; Abyzov, Alexander S
2013-07-21
According to the classical Gibbs' approach to the description of thermodynamically heterogeneous systems, the temperature of the critical clusters in nucleation is the same as the temperature of the ambient phase, i.e., with respect to temperature the conventional macroscopic equilibrium conditions are assumed to be fulfilled. In contrast, the generalized Gibbs' approach [J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 119, 6166 (2003); and ibid. 124, 194503 (2006)] predicts that critical clusters (having commonly spatial dimensions in the nanometer range) have, as a rule, a different temperature as compared with the ambient phase. The existence of a curved interface may lead, consequently, to an equilibrium coexistence of different phases with different temperatures similar to differences in pressure as expressed by the well-known Laplace equation. Employing the generalized Gibbs' approach, it is demonstrated that, for the case of formation of droplets in a one-component vapor, the temperature of the critical droplets can be shown to be higher as compared to the vapor. In this way, temperature differences between critically sized droplets and ambient vapor phase, observed in recent molecular dynamics simulations of argon condensation by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)], can be given a straightforward theoretical interpretation. It is shown as well that - employing the same model assumptions concerning bulk and interfacial properties of the system under consideration - the temperature of critical bubbles in boiling is lower as compared to the bulk liquid.
NASA Technical Reports Server (NTRS)
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
NASA Technical Reports Server (NTRS)
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Vlasov, A.A.; Logunov, A.A.
1987-12-01
The fundamental difference between the predictions of the relativistic theory of gravitation and the general theory of relativity is demonstrated for the example of gravitational collapse. In accordance with the relativistic theory of gravitation, neither static nor nonstatic spherically symmetric bodies with radius less than or equal to mG can exist in nature.
Facial Expressions in Context: Contributions to Infant Emotion Theory.
ERIC Educational Resources Information Center
Camras, Linda A.
To make the point that infant emotions are more dynamic than suggested by Differential Emotions Theory, which maintains that infants show the same prototypical facial expressions for emotions as adults do, this paper explores two questions: (1) when infants experience an emotion, do they always show the corresponding prototypical facial…
Information theory as a general language for functional systems
NASA Astrophysics Data System (ADS)
Collier, John
2000-05-01
Function refers to a broad family of concepts of varying abstractness and range of application, from a many-one mathematical relation of great generality to, for example, highly specialized roles of designed elements in complex machines such as degaussing in a television set, or contributory processes to control mechanisms in complex metabolic pathways, such as the inhibitory function of the appropriate part of the lac-operon on the production of lactase through its action on the genome in the absence of lactose. We would like a language broad enough, neutral enough, but yet powerful enough to cover all such cases, and at the same time to give a framework form explanation both of the family resemblances and differences. General logic and mathematics are too abstract, but more importantly, too broad, whereas other discourses of function, such as the biological and teleological contexts, are too narrow. Information is especially suited since it is mathematically grounded, but also has a well-known physical interpretation through the Schrodinger/Brillouin Negentropy. Principle of Information, and an engineering or design interpretation through Shannon's communication theory. My main focus will be on the functions of autonomous anticipatory systems, but I will try to demonstrate both the connections between this notion of function and the others, especially to dynamical systems with a physical interpretation on the one side and intentional systems on the other. The former are based in concepts like force, energy and work, while the latter involve notions like representation, control and purpose, traditionally, at least in Modern times, on opposite sides of the Cartesian divide. In principle, information can be reduced to energy, but it has the advantage of being more flexible, and easier to apply to higher level phenomena.
Density functional theory based generalized effective fragment potential method
Nguyen, Kiet A. E-mail: ruth.pachter@wpafb.af.mil; Pachter, Ruth E-mail: ruth.pachter@wpafb.af.mil; Day, Paul N.
2014-06-28
We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.
Teaching Discourse Study To Resist General Discourse Theories.
ERIC Educational Resources Information Center
Yarbrough, Stephen R.
If an instructor teaches in a rhetoric and composition program, one of the most important ways to teach discourse study as a resistance to discourse theory is by tracing the fundamental founding dichotomies of discourse theory through the history of rhetorical theory, examining how assumptions of the legitimacy of such founding dichotomies has…
[The issue of feasibility of a general theory of aging I. Generalized Gompertz-Makeham Law].
Golubev, A G
2009-01-01
Aging and longevity are interrelated so intimately that they should be treated with a unified theory. The longevity of every single cohort of living beings is determined by the rate of their dying-out. In most cases, mortality rates increase in accelerated fashions to reach values making the bulk of each finite cohort completely exhausted within a relatively narrow time interval shifted to the end of its resulting lifespan. Among simple functions with biologically interpretable parameters, the best fit to this pattern is demonstrated by the Gompertz-Makeham Law (GML): mu = C + lambda x e(gamma x t). A generalized form of GML mu = C(t) + lambda x e(-E(t)) is suggested and interpreted as a law of the dependency of mortality upon vitality rather than on age. It is reduced to the conventional GML when E depends linearly on t, that the age is an observable correlate of unobservable vitality. C(t) captures the inherently irresistible causes of death. The generalized GML can accommodate any mode of age-dependent functional decline, which should be placed into the exponent index to be translated into changes in mortality rate, and is compatible with any sort of cohort heterogeneity, which may be captured by substituting of GML parameters with relevant distributions or by combining of several generalized GML models. The generalized GML is suggested to result from the origin of life from the chemical world, which was associated with the transition of the role of the main variable in the Arrhenius equation k = A x exp[-Ea/(R x T)] for the dependency of chemical disintegration on temperature from T to Ea upon the transition from molecular to multimolecular prebiotic entities. Thus, the generalized GML is not a result of biological evolution but is a sort of chemical legacy of biology, which makes an important condition for life to evolve.
GENERAL STRAIN THEORY, PERSISTENCE, AND DESISTANCE AMONG YOUNG ADULT MALES
Eitle, David
2010-01-01
Purpose Despite the surge in scholarly activity investigating the criminal career, relatively less attention has been devoted to the issue of criminal desistance versus persistence (until recently). The present study contributed to our understanding of this process by exploring the suitability of General Strain Theory (GST) for predicting changes in criminal activity across time. Methods Data from a longitudinal study of males in South Florida are examined using robust regression analyses. Results The core GST relationship, that changes in strain should predict changes in criminal activity, was supported, even after controlling for important adult social roles such as marriage, labor force participation, and education. While no support for the proposition that changes in self-esteem and social support moderate the strain-criminal desistance association was evinced, evidence was found that angry disposition, a measure of negative emotionality, moderated the association between change in chronic stressors and change in criminal activity. Conclusions While exploratory in nature, these findings demonstrate the utility of employing GST principles in studies of criminal desistance. PMID:21499526
Generalized Pauli constraints in reduced density matrix functional theory
Theophilou, Iris; Helbig, Nicole; Lathiotakis, Nektarios N.; Marques, Miguel A. L.
2015-04-21
Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone.
A generalization to the Rastall theory and cosmic eras
NASA Astrophysics Data System (ADS)
Moradpour, H.; Heydarzade, Y.; Darabi, F.; Salako, Ines G.
2017-04-01
A generalized version for the Rastall theory is proposed showing the agreement with the cosmic accelerating expansion. In this regard, a coupling between geometry and the pressureless matter fields is derived which may play the role of dark energy, responsible for the current accelerating expansion phase. Moreover, our study also shows that the radiation field may not be coupled to the geometry in a non-minimal way which represents that the ordinary energy-momentum conservation law is respected by the radiation source. It is also shown that the primary inflationary era may be justified by the ability of the geometry to couple to the energy-momentum source in an empty flat FRW universe. In fact, this ability is independent of the existence of the energy-momentum source and may compel the empty flat FRW universe to expand exponentially. Finally, we consider a flat FRW universe field by a spatially homogeneous scalar field evolving in potential V(φ ), and study the results of applying the slow-roll approximation to the system which may lead to an inflationary phase for the universe expansion.
On the role of general system theory for functional neuroimaging
Stephan, Klaas Enno
2004-01-01
One of the most important goals of neuroscience is to establish precise structure–function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure–function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure–function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples. PMID:15610393
Does the General Strain Theory Explain Gambling and Substance Use?
Greco, Romy; Curci, Antonietta
2016-11-22
General Strain Theory (GST: Agnew Criminology 30:47-87, 1992) posits that deviant behaviour results from adaptation to strain and the consequent negative emotions. Empirical research on GST has mainly focused on aggressive behaviours, while only few research studies have considered alternative manifestations of deviance, like substance use and gambling. The aim of the present study is to test the ability of GST to explain gambling behaviours and substance use. Also, the role of family in promoting the adoption of gambling and substance use as coping strategies was verified. Data from 266 families with in mean 8 observations for each group were collected. The multilevel nature of the data was verified before appropriate model construction. The clustered nature of gambling data was analysed by a two-level Hierarchical Linear Model while substance use was analysed by Multivariate Linear Model. Results confirmed the effect of strain on gambling and substance use while the positive effect of depressive emotions on these behaviours was not supported. Also, the impact of family on the individual tendency to engage in addictive behaviours was confirmed only for gambling.
Cognitive performance modeling based on general systems performance theory.
Kondraske, George V
2010-01-01
General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).
A very general rate expression for charge hopping in semiconducting polymers
Fornari, Rocco P.; Aragó, Juan; Troisi, Alessandro
2015-05-14
We propose an expression of the hopping rate between localized states in semiconducting disordered polymers that contain the most used rates in the literature as special cases. We stress that these rates cannot be obtained directly from electron transfer rate theories as it is not possible to define diabatic localized states if the localization is caused by disorder, as in most polymers, rather than nuclear polarization effects. After defining the separate classes of accepting and inducing nuclear modes in the system, we obtain a general expression of the hopping rate. We show that, under the appropriate limits, this expression reduces to (i) a single-phonon rate expression or (ii) the Miller-Abrahams rate or (iii) a multi-phonon expression. The description of these limits from a more general expression is useful to interpolate between them, to validate the assumptions of each limiting case, and to define the simplest rate expression that still captures the main features of the charge transport. When the rate expression is fed with a range of realistic parameters the deviation from the Miller-Abrahams rate is large or extremely large, especially for hopping toward lower energy states, due to the energy gap law.
A general theory for bandgap estimation in locally resonant metastructures
NASA Astrophysics Data System (ADS)
Sugino, C.; Xia, Y.; Leadenham, S.; Ruzzene, M.; Erturk, A.
2017-10-01
Locally resonant metamaterials are characterized by bandgaps at wavelengths that are much larger than the lattice size, enabling low-frequency vibration attenuation. Typically, bandgap analyses and predictions rely on the assumption of traveling waves in an infinite medium, and do not take advantage of modal representations typically used for the analysis of the dynamic behavior of finite structures. Recently, we developed a method for understanding the locally resonant bandgap in uniform finite metamaterial beams using modal analysis. Here we extend that framework to general locally resonant 1D and 2D metastructures (i.e. locally resonant metamaterial-based finite structures) with specified boundary conditions using a general operator formulation. Using this approach, along with the assumption of an infinite number of resonators tuned to the same frequency, the frequency range of the locally resonant bandgap is easily derived in closed form. Furthermore, the bandgap expression is shown to be the same regardless of the type of vibration problem under consideration, depending only on the added mass ratio and target frequency. For practical designs with a finite number of resonators, it is shown that the number of resonators required for the bandgap to appear increases with increased target frequency, i.e. more resonators are required for higher vibration modes. Additionally, it is observed that there is an optimal, finite number of resonators which gives a bandgap that is wider than the infinite-resonator bandgap, and that the optimal number of resonators increases with target frequency and added mass ratio. As the number of resonators becomes sufficiently large, the bandgap converges to the derived infinite-resonator bandgap. Furthermore, the derived bandgap edge frequencies are shown to agree with results from dispersion analysis using the plane wave expansion method. The model is validated experimentally for a locally resonant cantilever beam under base
Temperature of critical clusters in nucleation theory: Generalized Gibbs' approach
NASA Astrophysics Data System (ADS)
Schmelzer, Jürn W. P.; Boltachev, Grey Sh.; Abyzov, Alexander S.
2013-07-01
According to the classical Gibbs' approach to the description of thermodynamically heterogeneous systems, the temperature of the critical clusters in nucleation is the same as the temperature of the ambient phase, i.e., with respect to temperature the conventional macroscopic equilibrium conditions are assumed to be fulfilled. In contrast, the generalized Gibbs' approach [J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 119, 6166 (2003), 10.1063/1.1602066; J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys. 124, 194503 (2006)], 10.1063/1.2196412 predicts that critical clusters (having commonly spatial dimensions in the nanometer range) have, as a rule, a different temperature as compared with the ambient phase. The existence of a curved interface may lead, consequently, to an equilibrium coexistence of different phases with different temperatures similar to differences in pressure as expressed by the well-known Laplace equation. Employing the generalized Gibbs' approach, it is demonstrated that, for the case of formation of droplets in a one-component vapor, the temperature of the critical droplets can be shown to be higher as compared to the vapor. In this way, temperature differences between critically sized droplets and ambient vapor phase, observed in recent molecular dynamics simulations of argon condensation by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)], 10.1063/1.2752154, can be given a straightforward theoretical interpretation. It is shown as well that - employing the same model assumptions concerning bulk and interfacial properties of the system under consideration - the temperature of critical bubbles in boiling is lower as compared to the bulk liquid.
A general theory of interference fringes in x-ray phase grating imaging
Yan, Aimin; Wu, Xizeng E-mail: liu@ou.edu; Liu, Hong E-mail: liu@ou.edu
2015-06-15
Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.
A general theory of interference fringes in x-ray phase grating imaging
Yan, Aimin; Wu, Xizeng; Liu, Hong
2015-01-01
Purpose: The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. Methods: In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. Results: The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. Conclusions: In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers. PMID:26127056
Toward a General Research Process for Using Dubin's Theory Building Model
ERIC Educational Resources Information Center
Holton, Elwood F.; Lowe, Janis S.
2007-01-01
Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…
Toward a General Research Process for Using Dubin's Theory Building Model
ERIC Educational Resources Information Center
Holton, Elwood F.; Lowe, Janis S.
2007-01-01
Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…
General theory of peak compression in liquid chromatography.
Gritti, Fabrice
2016-02-12
A new and general expression of the peak compression factor in liquid chromatography is derived. It applies to any type of gradients induced by non-uniform columns (stationary) or by temporal variations (dynamic) of the elution strength related to changes in solvent composition, temperature, or in any external field. The new equation is validated in two ideal cases for which the exact solutions are already known. From a practical viewpoint, it is used to predict the achievable degree of peak compression for curved retention models, retained solvent gradients, and for temperature-programmed liquid chromatography. The results reveal that: (1) curved retention models affect little the compression factor with respect to the best linear strength retention models, (2) gradient peaks can be indefinitely compressed with respect to isocratic peaks if the propagation speed of the gradient (solvent or temperature) becomes smaller than the chromatographic velocity, (3) limitations are inherent to the maximum intensity of the experimental intrinsic gradient steepness, and (4) dynamic temperature gradients can be advantageously combined to solvent gradients in order to improve peak capacities of microfluidic separation devices. Copyright © 2016 Elsevier B.V. All rights reserved.
Stationary waves on nonlinear quantum graphs: General framework and canonical perturbation theory.
Gnutzmann, Sven; Waltner, Daniel
2016-03-01
In this paper we present a general framework for solving the stationary nonlinear Schrödinger equation (NLSE) on a network of one-dimensional wires modeled by a metric graph with suitable matching conditions at the vertices. A formal solution is given that expresses the wave function and its derivative at one end of an edge (wire) nonlinearly in terms of the values at the other end. For the cubic NLSE this nonlinear transfer operation can be expressed explicitly in terms of Jacobi elliptic functions. Its application reduces the problem of solving the corresponding set of coupled ordinary nonlinear differential equations to a finite set of nonlinear algebraic equations. For sufficiently small amplitudes we use canonical perturbation theory, which makes it possible to extract the leading nonlinear corrections over large distances.
Quantum corrections to the generalized Proca theory via a matter field
NASA Astrophysics Data System (ADS)
Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab
2017-09-01
We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.
The expression of aversion to medicines in general practice consultations.
Britten, Nicky; Stevenson, Fiona; Gafaranga, Joseph; Barry, Christine; Bradley, Colin
2004-10-01
Although the relevance of patients' views about medicines for their medicine taking behaviour is now well established, little is known about the ways in which these views are discussed in primary care consultations. In particular, many studies have demonstrated patients' aversion to medicines. This paper examines the form that aversion talk takes in the consultation and how doctors respond to patients' expression of aversion to medicines. It is based on a dataset of 35 case studies of general practice consultations in England. In interviews with researchers, aversion to medicines was expressed in 34 of the 35 cases. In consultations with doctors, aversion was expressed in 10 cases. The interactional dimension of aversion talk in consultations was analysed using Conversation Analysis, and two general patterns were identified. Aversion could be used as an interactional resource, or it could be a topic in its own right. If used as an interactional resource, no real discussion of patients' views of medicines took place. When aversion was a conversational topic in its own right, two situations were observed. Firstly, the doctor elicited patients' views directly. Secondly, patients initiated aversive talk using a range of indirect strategies to do so. Even when patients managed to express their aversion to medicines, doctors did not engage them in any real discussion of their views. A scheme of interpretation is suggested to explain these findings. In this scheme patients perceive medicines to be an extension of the doctor and to be beneficial. In this view it is right for doctors to prescribe medicines and for patients to take medicines. The results of this paper suggest that using aversion as an interactional resource might be the only safe way for patients to express their aversion without seeming to breach the social contract.
Superanalysis: theory of generalized functions and pseudodifferential operators
Khrennikov, A.Yu.
1988-06-01
A theory of distributions on an infinite-dimensional superspace is constructed. Feynman and Gaussian supermeasures are defined on the basis of this theory and superpseudodifferential operators are introduced. We obtain the basic formulas in the theory of superpseudodifferential operators and the Feynman-Kac formula for the symbol of the evolution operator (here, in contrast to the algebraic approach, the functional integral is an integral over a space of actual trajectories in the phase superspace). The differential calculus in graded /Lambda/ modules proposed in this paper is needed for the introduction of infinite-dimensional superpseudodifferential operators and also for nonsequential definition of the Feynman integral.
Chemical Principles Revisited: Updating the Atomic Theory in General Chemistry.
ERIC Educational Resources Information Center
Whitman, Mark
1984-01-01
Presents a descriptive overview of recent achievements in atomic structure to provide instructors with the background necessary to enhance their classroom presentations. Topics considered include hadrons, quarks, leptons, forces, and the unified fields theory. (JN)
Chemical Principles Revisited: Updating the Atomic Theory in General Chemistry.
ERIC Educational Resources Information Center
Whitman, Mark
1984-01-01
Presents a descriptive overview of recent achievements in atomic structure to provide instructors with the background necessary to enhance their classroom presentations. Topics considered include hadrons, quarks, leptons, forces, and the unified fields theory. (JN)
Weber electrodynamics, part I. general theory, steady current effects
NASA Astrophysics Data System (ADS)
Wesley, J. P.
1990-10-01
The original Weber action at a distance theory, valid for slowly varying effects, is extended to time-retarded fields, valid for rapidly varying effects including radiation. A new law for the force on a charge moving in this field is derived (replacing the Lorentz force which violates Newton's third law). The limitations of the Maxwell theory are discussed. The Weber theory, in addition to predicting all of the usual electrodynamic results, predicts the following crucial results for slowly varying effects (where Maxwell theory fails): 1) the force on Ampere's bridge in agreement with the measurements of Moyssides and Pappas, 2) the tension required to rupture current carrying wires as observed by Graneau, 3) the force to drive the Graneau-Hering submarine, 4) the force to drive the mercury in Hering's pump, and 5) the force to drive the oscillations in a current carrying mercury wedge as observed by Phipps.
Generalized Random Matrix Theory:. a Mathematical Probe for Complexity
NASA Astrophysics Data System (ADS)
Shukla, Pragya
2012-07-01
The ubiquitous presence of complexity in nature makes it necessary to seek new mathematical tools which can probe physical systems beyond linear or perturbative approximations. The random matrix theory is one such tool in which the statistical behavior of a system is modeled by an ensemble of its replicas. This paper is an attempt to review the basic aspects of the theory in a simplified language, aimed at students from diverse areas of physics.
Generalized uncertainty principle as a consequence of the effective field theory
NASA Astrophysics Data System (ADS)
Faizal, Mir; Ali, Ahmed Farag; Nassar, Ali
2017-02-01
We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.
XiuJun, Zhang; Chang, Liu
2014-01-01
In order to overcome the limitation of traditional nonnegative factorization algorithms, the paper presents a generalized discriminant orthogonal non-negative tensor factorization algorithm. At first, the algorithm takes the orthogonal constraint into account to ensure the nonnegativity of the low-dimensional features. Furthermore, the discriminant constraint is imposed on low-dimensional weights to strengthen the discriminant capability of the low-dimensional features. The experiments on facial expression recognition have demonstrated that the algorithm is superior to other non-negative factorization algorithms. PMID:24982970
Gauge theory generalization of the fermion doubling theorem.
Kravec, S M; McGreevy, John
2013-10-18
It is possible to characterize certain states of matter by properties of their edge states. This implies a notion of "surface-only models": models which can only be regularized at the edge of a higher-dimensional system. After incorporating the fermion-doubling results of Nielsen and Ninomiya into this framework, we employ this idea to identify new obstructions to symmetry-preserving regulators of quantum field theory. We focus on an example which forbids regulated models of Maxwell theory with manifest electromagnetic duality symmetry.
Bf and Anti-Bf Theories in the Generalized Connection Formalism
NASA Astrophysics Data System (ADS)
Aidaoui, A.; Doebner, H.-D.; Tahiri, M.
We present a generalized connection formalism to explicitly determine an off-shell BRST-anti-BRST algebra for BF theories. This results in the construction of anti-BF theories based on an anti-BRST exact quantum action. These are not fundamentally different from BF theories, since they are in complete duality with respect to a mirror symmetry of the ghost numbers.
Linking Theory of Mind and Central Coherence Bias in Autism and in the General Population.
ERIC Educational Resources Information Center
Jarrold, Christopher; Butler, David W.; Cottington, Emily M.; Jimenez, Flora
2000-01-01
Three experiments investigated whether theory-of-mind deficits and weak central coherence might be functionally related. Found that theory-of-mind performance was inversely related to a measure of central coherence bias in the general population. Poor theory-of-mind performance was linked to weak central coherence among children with typical…
Dynamical analysis of generalized f (R ,L ) theories
NASA Astrophysics Data System (ADS)
Azevedo, R. P. L.; Páramos, J.
2016-09-01
In this work, we use a dynamical system approach to analyze the viability of f (R ,L ) candidates for dark energy. We compare these with nonminimal coupled f (R ) theories and study the solutions for exponential and power-law forms in order to constrain the allowed range of model parameters.
IFLA General Conference, 1990. Section on Research and Theory.
ERIC Educational Resources Information Center
International Federation of Library Associations, The Hague (Netherlands).
The three papers in this collection were presented during the meeting of the Section on Research and Theory. In the first paper, "BIEF: A North-South Knowledge Transfer Tool," Suzanne Richer examines the vital importance of scientific and technical information (STI) for developing countries, and notes that BIEF (Banque internationale…
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
A general theory to analyse and design wireless power transfer based on impedance matching
NASA Astrophysics Data System (ADS)
Liu, Shuo; Chen, Linhui; Zhou, Yongchun; Cui, Tie Jun
2014-10-01
We propose a general theory to analyse and design the wireless power transfer (WPT) systems based on impedance matching. We take two commonly used structures as examples, the transformer-coupling-based WPT and the series/parallel capacitor-based WPT, to show how to design the impedance matching network (IMN) to obtain the maximum transfer efficiency and the maximum output power. Using the impedance matching theory (IMT), we derive a simple expression of the overall transfer efficiency by the coils' quality factors and the coupling coefficient, which has perfect accuracy compared to full-circuit simulations. Full-wave electromagnetic software, CST Microwave Studio, has been used to extract the parameters of coils, thus providing us a comprehensive way to simulate WPT systems directly from the coils' physical model. We have also discussed the relationship between the output power and the transfer efficiency, and found that the maximum output power and the maximum transfer efficiency may occur at different frequencies. Hence, both power and efficiency should be considered in real WPT applications. To validate the proposed theory, two types of WPT experiments have been conducted using 30 cm-diameter coils for lighting a 20 W light bulb with 60% efficiency over a distance of 50 cm. The experimental results have very good agreements to the theoretical predictions.
Marcel Grossmann and his Contribution to the General Theory of Relativity
NASA Astrophysics Data System (ADS)
Sauer, Tilman
2015-01-01
This article reviews the biography of the Swiss mathematician Marcel Grossmann (1878-1936) and his contributions to the emergence of the general theory of relativity. The first part is his biography, while the second part reviews his collaboration with Einstein in Zurich which resulted in the Einstein-Grossmann theory of 1913. This theory is a precursor version of the final theory of general relativity with all the ingredients of that theory except for the correct gravitational field equations. Their collaboration is analyzed in some detail with a focus on the question of exactly what role Grossmann played in it.
Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism
NASA Astrophysics Data System (ADS)
Ren, Gang; Duan, Yi-Shi
2017-10-01
General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement. Here, we showed the early reported extended HM theory that included the general relativity can also be used to recover the classic chaos equations and even the Schrodinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory of physics.
The Nature of Living Systems: An Exposition of the Basic Concepts in General Systems Theory.
ERIC Educational Resources Information Center
Miller, James G.
General systems theory is a set of related definitions, assumptions, and propositions which deal with reality as an integrated hierarchy of organizations of matter and energy. In this paper, the author defines the concepts of space, time, matter, energy, and information in terms of their meaning in general systems theory. He defines a system as a…
Avoiding the Goldstone Boson Catastrophe in general renormalisable field theories at two loops
NASA Astrophysics Data System (ADS)
Braathen, Johannes; Goodsell, Mark D.
2016-12-01
We show how the infra-red divergences associated to Goldstone bosons in the minimum condition of the two-loop Landau-gauge effective potential can be avoided in general field theories. This extends the resummation formalism recently developed for the Standard Model and the MSSM, and we give compact, infra-red finite expressions in closed form for the tadpole equations. We also show that the results at this loop order are equivalent to (and are most easily obtained by) imposing an "on-shell" condition for the Goldstone bosons. Moreover, we extend the approach to show how the infra-red divergences in the calculation of the masses of neutral scalars (such as the Higgs boson) can be eliminated. For the mass computation, we specialise to the gaugeless limit and extend the effective potential computation to allow the masses to be determined without needing to solve differential equations for the loop functions — opening the door to fast, infra-red safe determinations of the Higgs mass in general theories.
Mass of Newtonian stars in the relativistic theory of gravitation and in general relativity
Vlasov, A.A.
1988-04-01
We consider the problem of determining the mass of a Newtonian star in the relativistic theory of gravitation and in general relativity and we note the difference between these theories. In contrast to the relativistic theory of gravitation, the mass of a Newtonian star is not determined unambiguously by the equations of general relativity and depends on the arbitrariness in the choice of the coordinate conditions.
Generalized Bezout's Theorem and its applications in coding theory
NASA Technical Reports Server (NTRS)
Berg, Gene A.; Feng, Gui-Liang; Rao, T. R. N.
1996-01-01
This paper presents a generalized Bezout theorem which can be used to determine a tighter lower bound of the number of distinct points of intersection of two or more curves for a large class of plane curves. A new approach to determine a lower bound on the minimum distance (and also the generalized Hamming weights) for algebraic-geometric codes defined from a class of plane curves is introduced, based on the generalized Bezout theorem. Examples of more efficient linear codes are constructed using the generalized Bezout theorem and the new approach. For d = 4, the linear codes constructed by the new construction are better than or equal to the known linear codes. For d greater than 5, these new codes are better than the known codes. The Klein code over GF(2(sup 3)) is also constructed.
Generalized second law of thermodynamic in modified teleparallel theory
NASA Astrophysics Data System (ADS)
Zubair, M.; Bahamonde, Sebastian; Jamil, Mubasher
2017-07-01
This study is conducted to examine the validity of the generalized second law of thermodynamics (GSLT) in flat FRW for modified teleparallel gravity involving coupling between a scalar field with the torsion scalar T and the boundary term B=2\
Generalized topological spaces in evolutionary theory and combinatorial chemistry.
Stadler, Bärbel M R; Stadler, Peter F
2002-01-01
The search spaces in combinatorial chemistry as well as the sequence spaces underlying (molecular) evolution are conventionally thought of as graphs. Recombination, however, implies a nongraphical structure of the combinatorial search spaces. These structures, and their implications for search process itself, are heretofore not well understood in general. In this contribution we review a very general formalism from point set topology and discuss its application to combinatorial search spaces, fitness landscapes, evolutionary trajectories, and artificial chemistries.
Cosmological Theories of Special and General Relativity - II
NASA Astrophysics Data System (ADS)
Carmeli, Moshe
Astronomers measure distances to faraway galaxies and their velocities. They do that in order to determine the expansion rate of the Universe. In Part I of these lectures the foundations of the theory of the expansion of the Universe was given. In this part we present the theory. A formula for the distance of the galaxy in terms of its velocity is given. It is very simple: r(v) = cτ/β sinh βv/c, where τ is the Big Bang time, β = √1 - Ω m , and Ω m is the mass density of the Universe. For Ω m < 1 this formula clearly indicates that the Universe is expanding with acceleration, as experiments clearly show.
Generally covariant vs. gauge structure for conformal field theories
Campigotto, M.; Fatibene, L.
2015-11-15
We introduce the natural lift of spacetime diffeomorphisms for conformal gravity and discuss the physical equivalence between the natural and gauge natural structure of the theory. Accordingly, we argue that conformal transformations must be introduced as gauge transformations (affecting fields but not spacetime point) and then discuss special structures implied by the splitting of the conformal group. -- Highlights: •Both a natural and a gauge natural structure for conformal gravity are defined. •Global properties and natural lift of spacetime transformations are described. •The possible definitions of physical state are considered and discussed. •The gauge natural theory has less physical states than the corresponding natural one. •The dynamics forces to prefer the gauge natural structure over the natural one.
Bagger-Lambert theory for general Lie algebras
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Milanesi, Giuseppe; Russo, Jorge G.
2008-06-01
We construct the totally antisymmetric structure constants fABCD of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants fABCD can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the ``center-of-mass" mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which underlies the gauge symmetry of the theory. We comment on the issue of unitarity of the quantum theory, which is problematic, despite the fact that the specific form of the interactions prevent the ghost fields from running in the internal lines of any Feynman diagram. Giving an expectation value to one of the scalar fields leads to the maximally supersymmetric 3d Yang-Mills Lagrangian with the addition of two U(1) multiplets, one of them ghost-like, which is decoupled at large gYM.
General topology meets model theory, on p and t.
Malliaris, Maryanthe; Shelah, Saharon
2013-08-13
Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258-262] that the continuum is uncountable, and Hilbert's first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220-224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143-1148], Hilbert's first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen's introduction of forcing. The oldest and perhaps most famous of these is whether " p = t," which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29-46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241-255]. In this paper we explain how our work on the structure of Keisler's order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory.
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
NASA Technical Reports Server (NTRS)
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
On ray theory calculations of absorption using the generalized magneto-ionic formulae
NASA Astrophysics Data System (ADS)
Dyson, P. L.; Newbery, S. M.
1982-04-01
It is shown that when the generalized magneto-ionic formulae (Sen and Wyller, 1960) are used, Bennett and Dyson's (1978) expression for the absorption of a radio wave reduces to that obtained using the Appleton-Lassen formulae, provided the Appleton-Lassen magneto-ionic parameter Z(AL) is replaced by 5/2 x Z(m), where Z(m) is the mean parameter. The result is not restricted to vertical incidence propagation and, since it is based on the ray path obtained when there are no collisions, it may be readily applied to oblique propagation in inhomogeneous media where it is difficult to apply full wave theory. Some cases of transverse and longitudinal propagation in a linear layer with constant gyro and collision frequencies have been considered and the absorption calculated both analytically and using the above approximation.
Zhang, Zhen-Lu; Huang, Yong-Chang
2014-03-15
Quantization theory gives rise to transverse phonons for the traditional Coulomb gauge condition and to scalar and longitudinal photons for the Lorentz gauge condition. We describe a new approach to quantize the general singular QED system by decomposing a general gauge potential into two orthogonal components in general field theory, which preserves scalar and longitudinal photons. Using these two orthogonal components, we obtain an expansion of the gauge-invariant Lagrangian density, from which we deduce the two orthogonal canonical momenta conjugate to the two components of the gauge potential. We then obtain the canonical Hamiltonian in the phase space and deduce the inherent constraints. In terms of the naturally deduced gauge condition, the quantization results are exactly consistent with those in the traditional Coulomb gauge condition and superior to those in the Lorentz gauge condition. Moreover, we find that all the nonvanishing quantum commutators are permanently gauge-invariant. A system can only be measured in physical experiments when it is gauge-invariant. The vanishing longitudinal vector potential means that the gauge invariance of the general QED system cannot be retained. This is similar to the nucleon spin crisis dilemma, which is an example of a physical quantity that cannot be exactly measured experimentally. However, the theory here solves this dilemma by keeping the gauge invariance of the general QED system. -- Highlights: •We decompose the general gauge potential into two orthogonal parts according to general field theory. •We identify a new approach for quantizing the general singular QED system. •The results obtained are superior to those for the Lorentz gauge condition. •The theory presented solves dilemmas such as the nucleon spin crisis.
General Relativity Theory -- Well Proven and Also Incomplete?
NASA Astrophysics Data System (ADS)
Brandes, Jürgen
2013-09-01
With a few arguments (half a page) it is proven that general relativity (GRT) makes contradictory predictions about the total energy of a particle resting in the gravitational field. With a few further arguments (one page) it is proven that these contradictions are resolved by expanding general relativity. The other situation: Though it is not the aim of the author to reject general relativity but to expand it, he is treated as some uncritical anti-relativist - since the start of his considerations and meanwhile for more than 20 years. My public question: Are relativists - on account of their many famous results - unable to admit imperfections of general relativity? General relativity is contradictious in energy questions since on one side the total energy of a particle resting in the gravitational field is lower than its rest mass (there is energy needed to pull out the particle from the gravitational field) while on the other side it is equal to its rest mass (this is a consequence of the equivalence principle).
Generalized Langevin theory for inhomogeneous fluids: The equations of motion
NASA Astrophysics Data System (ADS)
Grant, Martin; Desai, Rashmi C.
1982-05-01
We use the generalized Langevin approach to study the dynamical correlations in an inhomogeneous system. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor, and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamiclike quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low-density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We also indicate how the resulting general set of equations would simplify for systems in which the inhomogeneity is unidirectional, e.g., a liquid-vapor interface.
Generalized invariance principles and the theory of stability.
NASA Technical Reports Server (NTRS)
Lasalle, J. P.
1971-01-01
Description of some recent extensions of the invariance principle to more generalized dynamical systems where the state space is not locally compact and the flow is unique only in the forward direction of time. A sufficient condition for asymptotic stability of an invariant set is obtained which does not require that the Liapunov function be positive-definite. A recently developed generalized invariance principle is described which is applicable to functional differential equations, partial differential equations, and, in particular, to certain stability problems arising in thermoelasticity, viscoelasticity, and distributed nonlinear networks.
Bose-Einstein condensation of light: general theory.
Sob'yanin, Denis Nikolaevich
2013-08-01
A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.
Nonequilibrium optical conductivity: General theory and application to transient phases
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.
2017-08-01
A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.
General theory for Rydberg states of atoms: The nonrelativistic case
NASA Astrophysics Data System (ADS)
Wang, Xiao-Feng; Yan, Zong-Chao
2017-02-01
We carry out a complete derivation on nonrelativistic energies of atomic Rydberg states, including finite nuclear mass corrections. Several missing terms are found and a discrepancy is confirmed in the works of Drachman [in Long Range Casimir Forces: Theory and Recent Experiments on Atomic Systems, edited by F. S. Levin and D. A. Micha (Plenum, New York, 1993)] and Drake [Adv. At., Mol., Opt. Phys. 31, 1 (1993)]., 10.1016/S1049-250X(08)60087-7 As a benchmark, we present a detailed tabulation of different energy levels.
On the generalization of attitude accessibility after repeated attitude expression
Spruyt, Adriaan; Fazio, Russell H.; Hermans, Dirk
2016-01-01
Abstract The more accessible an attitude is, the stronger is its influence on information processing and behavior. Accessibility can be increased through attitude rehearsal, but it remains unknown whether attitude rehearsal also affects the accessibility of related attitudes. To investigate this hypothesis, participants in an experimental condition repeatedly expressed their attitudes towards exemplars of several semantic categories during an evaluative categorization task. Participants in a control condition performed a non‐evaluative task with the same exemplars and evaluated unrelated attitude objects. After a 30‐minute interval, participants in the experimental condition were faster than controls to evaluate not only the original exemplars but also novel exemplars of the same categories. This finding suggests that the effect of attitude rehearsal on accessibility generalizes to attitudes towards untrained but semantically related attitude objects. © 2016 The Authors. European Journal of Social Psychology published by John Wiley & Sons, Ltd. PMID:28701803
NASA Astrophysics Data System (ADS)
Webb, S.; McQuaid, D.
2009-07-01
In this paper it is formally shown that the dynamic multileaf collimator (MLC) IMRT delivery technique remains valid if the MLC is supported on a 1D moving platform. It is also shown that, in such circumstances, it is always time preferable to deliver overlapping modulating fields as a single swept field rather than as separate fields. The most general formulism is presented and then related to simpler equations in limiting cases. The paper explains in detail how a 'small-arc approximation' can be invoked to relate the 1D linear theory to the MLC-on-moving-platform-(gantry) delivery technique involving rotation therapy and known as volume-modulated arc therapy (VMAT). It is explained how volume-modulated arc therapy delivered with open unmodulated fields and which can deliver conformal dose distributions can be interpreted as an IMRT delivery. The (Elekta adopted) term VMAT will be used in a generic sense to include a similar (Varian) method known as RapidArc. Approximate expressions are derived for the 'amount of modulation' possible in a VMAT delivery. This paper does not discuss the actual VMAT planning but gives an insight at a deep level into VMAT delivery. No universal theory of VMAT is known in the sense that there is no theory that can predict precisely the performance of a VMAT delivery in terms of the free parameters available (variable gantry speed, variable fluence-delivery rate, set of MLC shapes, MLC orientation, number of arcs, coplanarity versus non-coplanarity, etc). This is in stark contrast to the situation with several other IMRT delivery techniques where such theoretical analyses are known. In this paper we do not provide such a theory; the material presented is a stepping stone on the path towards this.
Theory of Alfven wave heating in general toroidal geometry
Tataronis, J.A.; Salat, A.
1981-09-01
A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.
Mathematical developments regarding the general theory of the Earth magnetism
NASA Technical Reports Server (NTRS)
Schmidt, A.
1983-01-01
A literature survey on the Earth's magnetic field, citing the works of Gauss, Erman-Petersen, Quintus Icilius and Neumayer is presented. The general formulas for the representation of the potential and components of the Earth's magnetic force are presented. An analytical representation of magnetic condition of the Earth based on observations is also made.
Generalizations of Karp's theorem to elastic scattering theory
NASA Astrophysics Data System (ADS)
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
Einstein-aether theory with a Maxwell field: General formalism
Balakin, Alexander B.; Lemos, José P.S.
2014-11-15
We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.
Generalized theory for current-source-density analysis in brain tissue
NASA Astrophysics Data System (ADS)
Bédard, Claude; Destexhe, Alain
2011-10-01
The current-source density (CSD) analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that the surrounding extracellular medium is resistive and uniform, and in some versions of the theory, that the current sources are exclusively made by dipoles. Because of these assumptions, this standard model does not correctly describe the contributions of monopolar sources or of nonresistive aspects of the extracellular medium. We propose here a general framework to model electric fields and potentials resulting from current source densities, without relying on the above assumptions. We develop a mean-field formalism that is a generalization of the standard model and that can directly incorporate nonresistive (nonohmic) properties of the extracellular medium, such as ionic diffusion effects. This formalism recovers the classic results of the standard model such as the CSD analysis, but in addition, we provide expressions to generalize the CSD approach to situations with nonresistive media and arbitrarily complex multipolar configurations of current sources. We found that the power spectrum of the signal contains the signature of the nature of current sources and extracellular medium, which provides a direct way to estimate those properties from experimental data and, in particular, estimate the possible contribution of electric monopoles.
A general polynomial solution to convection-dispersion equation using boundary layer theory
NASA Astrophysics Data System (ADS)
Wang, Jiao; Shao, Ming'an; Huang, Laiming; Jia, Xiaoxu
2017-04-01
A number of models have been established to simulate the behaviour of solute transport due to chemical pollution, both in croplands and groundwater systems. An approximate polynomial solution to convection-dispersion equation (CDE) based on boundary layer theory has been verified for the use to describe solute transport in semi-infinite systems such as soil column. However, previous studies have only proposed low order polynomial solutions such as parabolic and cubic polynomials. This paper presents a general polynomial boundary layer solution to CDE. Comparison with exact solution suggests the prediction accuracy of the boundary layer solution varies with the order of polynomial expression and soil transport parameters. The results show that prediction accuracy increases with increasing order up to parabolic or cubic polynomial function and with no distinct relationship between accuracy and order for higher order polynomials (n≥slant 3). Comparison of two critical solute transport parameters (i.e., dispersion coefficient and retardation factor), estimated by the boundary layer solution and obtained by CXTFIT curve-fitting, shows a good agreement. The study shows that the general solution can determine the appropriate orders of polynomials for approximate CDE solutions that best describe solute concentration profiles and optimal solute transport parameters. Furthermore, the general polynomial solution to CDE provides a simple approach to solute transport problems, a criterion for choosing the right orders of polynomials for soils with different transport parameters. It is also a potential approach for estimating solute transport parameters of soils in the field.
Transcriptional Bursting in Gene Expression: Analytical Results for General Stochastic Models
Kumar, Niraj; Singh, Abhyudai; Kulkarni, Rahul V.
2015-01-01
Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Such bursting has important consequences for cell-fate decisions in diverse processes ranging from HIV-1 viral infections to stem-cell differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for complex burst arrival processes, highlighting the need for analysis of more general stochastic models. To address this issue, we invoke a mapping between general stochastic models of gene expression and systems studied in queueing theory to derive exact analytical expressions for the moments associated with mRNA/protein steady-state distributions. These results are then used to derive noise signatures, i.e. explicit conditions based entirely on experimentally measurable quantities, that determine if the burst distributions deviate from the geometric distribution or if burst arrival deviates from a Poisson process. For non-Poisson arrivals, we develop approaches for accurate estimation of burst parameters. The proposed approaches can lead to new insights into transcriptional bursting based on measurements of steady-state mRNA/protein distributions. PMID:26474290
The origin of continental crust: Outlines of a general theory
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1985-01-01
The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).
Generalized mixing angles in gauge theories with natural flavor conservation
Rothman, Arthur C.; Kang, Kyungsik
1981-01-01
A number of theorems, relating Natural Flavor Conservation and Calculability are proven for general gauge models of the weak and electromagnetic interactions with an unbroken U(1) symmetry. The concept of nontriviality - a necessary condition that all naturally flavor conserving gauge models must obey in order to have nontrivial mixing angles - is introduced. It is found that naturality groups guaranteeing Natural Flavor Conservation cannot generate meaningful mixing angles in any gauge model.
A General Sparse Tensor Framework for Electronic Structure Theory
Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I.; ...
2017-01-24
Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. But, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We then avoid cumbersome machine-generatedmore » code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.« less
Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.
2015-11-21
The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.
NASA Astrophysics Data System (ADS)
Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.
2015-11-01
The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κE and/or magnetic κM components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.
A general coverage theory for shotgun DNA sequencing.
Wendl, Michael C
2006-01-01
The classical theory of shotgun DNA sequencing accounts for neither the placement dependencies that are a fundamental consequence of the forward-reverse sequencing strategy, nor the edge effect that arises for small to moderate-sized genomic targets. These phenomena are relevant to a number of sequencing scenarios, including large-insert BAC and fosmid clones, filtered genomic libraries, and macro-nuclear chromosomes. Here, we report a model that considers these two effects and provides both the expected value of coverage and its variance. Comparison to methyl-filtered maize data shows significant improvement over classical theory. The model is used to analyze coverage performance over a range of small to moderately-sized genomic targets. We find that the read pairing effect and the edge effect interact in a non-trivial fashion. Shorter reads give superior coverage per unit sequence depth relative to longer ones. In principle, end-sequences can be optimized with respect to template insert length; however, optimal performance is unlikely to be realized in most cases because of inherent size variation in any set of targets. Conversely, single-stranded reads exhibit roughly the same coverage attributes as optimized end-reads. Although linking information is lost, single-stranded data should not pose a significant assembly liability if the target represents predominantly low-copy sequence. We also find that random sequencing should be halted at substantially lower redundancies than those now associated with larger projects. Given the enormous amount of data generated per cycle on pyro-sequencing instruments, this observation suggests devising schemes to split each run cycle between twoor more projects. This would prevent over-sequencing and would further leverage the pyrosequencing method.
2010-12-02
of successful operational command. Complexity theory is compared with how Ridgway understood, perceived, and approached the complexity of his...is chosen for the historical case study, as an exemplar of successful operational command. Complexity theory is compared with how Ridgway understood...prepared for the challenges they will face in an uncertain future. 4 Table of Contents Introduction 5 The Korean War and General Ridgway
Modeling the Pineapple Express phenomenon via Multivariate Extreme Value Theory
NASA Astrophysics Data System (ADS)
Weller, G.; Cooley, D. S.
2011-12-01
The pineapple express (PE) phenomenon is responsible for producing extreme winter precipitation events in the coastal and mountainous regions of the western United States. Because the PE phenomenon is also associated with warm temperatures, the heavy precipitation and associated snowmelt can cause destructive flooding. In order to study impacts, it is important that regional climate models from NARCCAP are able to reproduce extreme precipitation events produced by PE. We define a daily precipitation quantity which captures the spatial extent and intensity of precipitation events produced by the PE phenomenon. We then use statistical extreme value theory to model the tail dependence of this quantity as seen in an observational data set and each of the six NARCCAP regional models driven by NCEP reanalysis. We find that most NCEP-driven NARCCAP models do exhibit tail dependence between daily model output and observations. Furthermore, we find that not all extreme precipitation events are pineapple express events, as identified by Dettinger et al. (2011). The synoptic-scale atmospheric processes that drive extreme precipitation events produced by PE have only recently begun to be examined. Much of the current work has focused on pattern recognition, rather than quantitative analysis. We use daily mean sea-level pressure (MSLP) fields from NCEP to develop a "pineapple express index" for extreme precipitation, which exhibits tail dependence with our observed precipitation quantity for pineapple express events. We build a statistical model that connects daily precipitation output from the WRFG model, daily MSLP fields from NCEP, and daily observed precipitation in the western US. Finally, we use this model to simulate future observed precipitation based on WRFG output driven by the CCSM model, and our pineapple express index derived from future CCSM output. Our aim is to use this model to develop a better understanding of the frequency and intensity of extreme
A General Learning Theory and Its Application to the Acquisition of Proof Skills in Geometry.
1980-06-20
AD-A087 189 CARN4EGIE-MELLON U IV PITTSBURGH PA DEPT OF PSYCHOLOGY F/6 5/10 GENERAL LEARNING THEORY AND ITS APPLICATION TO THE ACQUISITIO-ETC(U) JUN... psychology could provide an explanation of how cognitive skills are acquired. We have been working on a general theory of learning called ACT. We have...J.R., Kline, P.J., and Beasley, C.M. A general learning theory and its application to schema abstraction. In G.H. Bower (Ed.), The Psychology of
Analysis of expression profile using fuzzy adaptive resonance theory.
Tomida, Shuta; Hanai, Taizo; Honda, Hiroyuki; Kobayashi, Takeshi
2002-08-01
It is well understood that the successful clustering of expression profiles give beneficial ideas to understand the functions of uncharacterized genes. In order to realize such a successful clustering, we investigate a clustering method based on adaptive resonance theory (ART) in this report. We apply Fuzzy ART as a clustering method for analyzing the time series expression data during sporulation of Saccharomyces cerevisiae. The clustering result by Fuzzy ART was compared with those by other clustering methods such as hierarchical clustering, k-means algorithm and self-organizing maps (SOMs). In terms of the mathematical validations, Fuzzy ART achieved the most reasonable clustering. We also verified the robustness of Fuzzy ART using noised data. Furthermore, we defined the correctness ratio of clustering, which is based on genes whose temporal expressions are characterized biologically. Using this definition, it was proved that the clustering ability of Fuzzy ART was superior to other clustering methods such as hierarchical clustering, k-means algorithm and SOMs. Finally, we validate the clustering results by Fuzzy ART in terms of biological functions and evidence. The software is available at http//www.nubio.nagoya-u.ac.jp/proc/index.html
Absence of solid angle deficit singularities in beyond-generalized proca theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-12-01
In Gleyzes-Langlois-Piazza-Vernizzi (GLPV) scalar-tensor theories, which are outside the domain of second-order Horndeski theories, it is known that there exists a solid angle deficit singularity in the case where the parameter αH characterizing the deviation from Horndeski theories approaches a nonvanishing constant at the center of a spherically symmetric body. Meanwhile, it was recently shown that second-order generalized Proca theories with a massive vector field Aμ can be consistently extended to beyond-generalized Proca theories, which recover shift-symmetric GLPV theories in the scalar limit Aμ→∇μχ . In beyond-generalized Proca theories up to quartic-order Lagrangians, we show that solid angle deficit singularities are generally absent due to the existence of a temporal vector component. We also derive the vector-field profiles around a compact object and show that the success of the Vainshtein mechanism operated by vector Galileons is not prevented by new interactions in beyond generalized Proca theories.
A General Theory for the Fusion of Data
1991-06-11
PROPOSfD ALDP )c y to basic syntax, wit’hout-further-or refined-con- ’IN THE FIRST THREF ALRP’S, -IMPLICATjNlA IS INTrRPRETED straints on structures...data, only general- qualita.- pair-( ALDP ). tive-descriptions- have been given for the processes Three -common- choices for ALOP are: involved. -However...past, often-only nd-nqeto intrsj th-C 3 sytma(red ALDP 1l or ALOP 3-w!ere-chosen, in effect, to-the ex- ly or hostile) and n6de number i-, while k
A superconducting gyroscope to test Einstein's general theory of relativity
NASA Technical Reports Server (NTRS)
Everitt, C. W. F.
1978-01-01
Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.
Density Functional Theory for General Hard-Core Lattice Gases
NASA Astrophysics Data System (ADS)
Lafuente, Luis; Cuesta, José A.
2004-09-01
We put forward a general procedure to obtain an approximate free-energy density functional for any hard-core lattice gas, regardless of the shape of the particles, the underlying lattice, or the dimension of the system. The procedure is conceptually very simple and recovers effortlessly previous results for some particular systems. Also, the obtained density functionals belong to the class of fundamental measure functionals and, therefore, are always consistent through dimensional reduction. We discuss possible extensions of this method to account for attractive lattice models.
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias
2014-02-01
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Quasilinear theory of general electromagnetic fluctuations in unmagnetized plasmas
Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu
2014-09-15
The general quasilinear Fokker-Planck kinetic equation for the plasma particle distribution functions in unmagnetized plasmas is derived, making no restrictions on the frequency of the electromagnetic fluctuations. The derived kinetic particle equation complements our earlier study of the general fluctuation's kinetic equation. For collective plasma eigenmodes and gyrotropic particle distribution functions, the two coupled kinetic equations describe the self-consistent dynamical evolution of the plasma. The limit of weakly damped collective modes correctly reproduces the well-known textbook kinetic particle equation with longitudinal Langmuir and ion-acoustic fluctuations, demonstrating, in particular, the resonant nature of parallel momentum diffusion of particles. In the limit of aperiodic modes, the Fokker-Planck equation contains the nonresonant diffusion of particles in momentum and the parallel and perpendicular momentum drag coefficients. As an application these drag and diffusion coefficients are calculated for extragalactic cosmic ray particles propagating in the unmagnetized intergalactic medium. Whereas for all cosmic rays, the perpendicular momentum diffusion in intergalactic aperiodic fluctuations is negligibly small; cosmic ray protons with energies below 10{sup 5 }GeV are affected by the plasma drag.
The general theory of secondary weak gravitational lensing
Clarkson, Chris
2015-09-01
Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a 'Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.
Generalized Sagdeev potential theory for shock waves modeling
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2017-05-01
In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.
Brustein, Ram; Hadad, Merav
2009-09-04
We show that the equations of motion of generalized theories of gravity are equivalent to the thermodynamic relation deltaQ=TdeltaS. Our proof relies on extending previous arguments by using a more general definition of the Noether charge entropy. We have thus completed the implementation of Jacobson's proposal to express Einstein's equations as a thermodynamic equation of state. Additionally, we find that the Noether charge entropy obeys the second law of thermodynamics if the energy-momentum tensor obeys the null energy condition. Our results support the idea that gravitation on a macroscopic scale is a manifestation of the thermodynamics of the vacuum.
General theory of frictional heating with application to rubber friction
NASA Astrophysics Data System (ADS)
Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.
2015-05-01
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.
Toward a general theory of momentum-like effects.
Hubbard, Timothy L
2017-02-28
The future actions, behaviors, and outcomes of objects, individuals, and processes can often be anticipated, and some of these anticipations have been hypothesized to result from momentum-like effects. Five types of momentum-like effects (representational momentum, operational momentum, attentional momentum, behavioral momentum, psychological momentum) are briefly described. Potential similarities involving properties of momentum-like effects (continuation, coherence, role of chance or guessing, role of sensory processing, imperviousness to practice or error feedback, shifts in memory for position, effects of changes in velocity, rapid occurrence, effects of retention interval, attachment to an object rather than an abstract frame of reference, nonrigid transformation) are described, and potential constraints on a future theory of momentum-like effects (dynamic representation, nature of extrapolation, sensitivity to environmental contingencies, bridging gaps between stimulus and response, increasing adaptiveness to the environment, serving as a heuristic for perception and action, insensitivity to stimulus format, importance of subjective consequences, role of knowledge and belief, automaticity of occurrence, properties of functional architecture) are discussed. The similarity and ubiquity of momentum-like effects suggests such effects might result from a single or small number of mechanisms that operate over different dimensions, modalities, and time-scales and provide a fundamental adaptation for perception and action.
A general theory of acute and chronic heart failure.
MacIver, David H; Dayer, Mark J; Harrison, Andrew J I
2013-04-30
Current concepts of heart failure propose multiple heterogeneous pathophysiological mechanisms. Recently a theoretical framework for understanding chronic heart failure was suggested. This paper develops this framework to include acute heart failure syndromes. We propose that all acute heart failure syndromes may be understood in terms of a relative fall in left ventricular stroke volume. The initial compensatory mechanism is frequently a tachycardia often resulting in a near normal cardiac output. In more severe forms a fall in cardiac output causes hypotension or cardiogenic shock. In chronic heart failure the stroke volume and cardiac output is returned to normal predominantly through ventricular remodeling or dilatation. Ejection fraction is simply the ratio of stroke volume and end-diastolic volume. The resting stroke volume is predetermined by the tissue's needs; therefore, if the ejection fraction changes, the end-diastolic volume must change in a reciprocal manner. The potential role of the right heart in influencing the presentation of left heart disease is examined. We propose that acute pulmonary edema occurs when the right ventricular stroke volume exceeds left ventricular stroke volume leading to fluid accumulation in the alveoli. The possible role of the right heart in determining pulmonary hypertension and raised filling pressures in left-sided heart disease are discussed. Different clinical scenarios are presented to help clarify these proposed mechanisms and the clinical implications of these theories are discussed. Finally an alternative definition of heart failure is proposed.
Cosmological Relativity: A General-Relativistic Theory for the Accelerating Expanding Universe
NASA Astrophysics Data System (ADS)
Carmeli, M.; Behar, S.
Recent observations of distant supernovae imply, in defiance of expectations, that the universe growth is accelerating, contrary to what has always been assumed that the expansion is slowing down due to gravity. In this paper a general-relativistic cosmological theory that gives a direct relationship between distances and redshifts in an expanding universe is presented. The theory is actually a generalization of Hubble's law taking gravity into account by means of Einstein's theory of general relativity. The theory predicts that the universe can have three phases of expansion, decelerating, constant and accelerating, but it is shown that at present the first two cases are excluded, although in the past it had experienced them. Our theory shows that the universe now is definitely in the stage of accelerating expansion, confirming the recent experimental results.
Are Singularities Integral to General Theory of Relativity?
NASA Astrophysics Data System (ADS)
Krori, K.; Dutta, S.
2011-11-01
Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.
Asymptotic boundary conditions for dissipative waves: General theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
The spectral theory of the Schrodinger operator on general graphs
NASA Astrophysics Data System (ADS)
Zheng, Lukun
The goal of this dissertation is to give the sufficient conditions for the absence of a.c.spectrum or existence of the pure point (p.p.) spectrum for the deterministic or random Schrodinger operators on the general graphs. For the particular situations of "non-percolating" graphs like Sierpinski lattice and Quasi-1 dimensional tree, we'll prove the Simon-Spencer type results and the localization theorem for Anderson Hamiltonians. Technical tools here are the extensions of the real-analytic methods presented for the 1D lattice Z1 and corresponding Schrodinger operators. The central moment is the cluster expansion of the resolvent with respect to appropriate partition of the graph.
Generalized On-Shell Ward Identities in String Theory
NASA Astrophysics Data System (ADS)
Lee, J.
1994-02-01
It is demonstrated that an infinite set of string-tree level on shell Ward identities, which are valid to all σ-model loop orders, can be systematically constructed without referring to the string field thoery. As examples, bosonic massive scattering amplitudes are calculated explicitly up to the second massive excited states. Ward identities satisfied by these amplitudes are derived by using zero-norm states in the spectrum. In particulalr the inter-particle Ward identity generated by the D2 otimes D2' zero-norm state at the second massive level is demonstrated. The four physical propagating states of this mass level are then shown to form a large gauge multiplet. This result justifies our previous consideration on higher inter-spin symmetry from the generalized worldsheet σ-model point of view.
Asymptotic boundary conditions for dissipative waves - General theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1991-01-01
An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Cloning, Broadcasting and the de Finetti theorem in Generalized Probablistic Theories
NASA Astrophysics Data System (ADS)
Leifer, Matthew; Barnum, Howard; Barrett, Jonathan; Wilce, Alexander
2007-03-01
We give a lightning overview of a framework for generalized probablistic theories, proposed by Barrett, that includes classical probability and quantum theory as special cases. The framework also includes theories that support ``superquantum'' correlations, which violate Bell inequalities to a larger extent than quantum theory whilst still not allowing signalling. In recent years, many similarities between quantum entanglement/nonlocality and ``superquantum'' correlations have been found by researchers studying quantum information and foundations. These can be seen to emerge from the common structure of all theories in Barrett's framework. In particular, some results from quantum information that can be generalized to all theories in the framework are described, including versions of the no-cloning theorem, the no-broadcasting theorem and the de Finetti theorem.
General split helicity gluon tree amplitudes in open twistor string theory
NASA Astrophysics Data System (ADS)
Dolan, Louise; Goddard, Peter
2010-05-01
We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].
The classical point electron in Colombeau's theory of nonlinear generalized functions
Gsponer, Andre
2008-10-15
The electric and magnetic fields of a pole-dipole singularity attributed to a point-electron singularity in the Maxwell field are expressed in a Colombeau algebra of generalized functions. This enables one to calculate dynamical quantities quadratic in the fields which are otherwise mathematically ill-defined: the self-energy (i.e., 'mass'), the self-angular momentum (i.e., 'spin'), the self-momentum (i.e., 'hidden momentum'), and the self-force. While the total self-force and self-momentum are zero, therefore ensuring that the electron singularity is stable, the mass and spin are diverging integrals of {delta}{sup 2}-functions. Yet, after renormalization according to standard prescriptions, the expressions for mass and spin are consistent with quantum theory, including the requirement of a gyromagnetic ratio greater than 1. The most striking result, however, is that the electric and magnetic fields differ from the classical monopolar and dipolar fields by {delta}-function terms which are usually considered as insignificant, while in a Colombeau algebra these terms are precisely the sources of the mechanical mass and spin of the electron singularity.
The classical point electron in Colombeau's theory of nonlinear generalized functions
NASA Astrophysics Data System (ADS)
Gsponer, Andre
2008-10-01
The electric and magnetic fields of a pole-dipole singularity attributed to a point-electron singularity in the Maxwell field are expressed in a Colombeau algebra of generalized functions. This enables one to calculate dynamical quantities quadratic in the fields which are otherwise mathematically ill-defined: the self-energy (i.e., "mass"), the self-angular momentum (i.e., "spin"), the self-momentum (i.e., "hidden momentum"), and the self-force. While the total self-force and self-momentum are zero, therefore ensuring that the electron singularity is stable, the mass and spin are diverging integrals of δ2-functions. Yet, after renormalization according to standard prescriptions, the expressions for mass and spin are consistent with quantum theory, including the requirement of a gyromagnetic ratio greater than 1. The most striking result, however, is that the electric and magnetic fields differ from the classical monopolar and dipolar fields by δ-function terms which are usually considered as insignificant, while in a Colombeau algebra these terms are precisely the sources of the mechanical mass and spin of the electron singularity.
General covariant conservation laws in Einstein-Cartan theory of gravitation
Duan Yi-Shi; Liu Ji-Cheng; Dong Xue-Geng
1988-01-01
Using Noether's theorem, the conservation laws for the general Lagrangian in Einstein-Cartan theory are derived. The general covariant energy-momentum conservation law for the general Lagrangian including torsion is obtained from the general displacement transformation x/sup '//sup ..mu../ = x/sup ..mu../+e/sup ..mu..//sub a/b/sup a/. It is shown that in such a case, the superpotential V/sup ..mu..//sup ..nu..//sub a/ must exist. This result is a natural extension of the theory in Refs. 1 and 2
A Partial Test of Agnew's General Theory of Crime and Delinquency
ERIC Educational Resources Information Center
Zhang, Yan; Day, George; Cao, Liqun
2012-01-01
In 2005, Agnew introduced a new integrated theory, which he labels a general theory of crime and delinquency. He proposes that delinquency is more likely to occur when constraints against delinquency are low and motivations for delinquency are high. In addition, he argues that constraints and motivations are influenced by variables in five life…
A Partial Test of Agnew's General Theory of Crime and Delinquency
ERIC Educational Resources Information Center
Zhang, Yan; Day, George; Cao, Liqun
2012-01-01
In 2005, Agnew introduced a new integrated theory, which he labels a general theory of crime and delinquency. He proposes that delinquency is more likely to occur when constraints against delinquency are low and motivations for delinquency are high. In addition, he argues that constraints and motivations are influenced by variables in five life…
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory.
Burgess, Cliff P
2004-01-01
This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.
A class of Hermitian generalized Jordan triple systems and Chern-Simons gauge theory
NASA Astrophysics Data System (ADS)
Kamiya, Noriaki; Sato, Matsuo
2014-09-01
We find a class of Hermitian generalized Jordan triple systems (HGJTSs) and Hermitian (ɛ, δ)-Freudenthal-Kantor triple systems (HFKTSs). We apply one of the most simple HGJTSs which we find to a field theory and obtain a typical u(N) Chern-Simons gauge theory with a fundamental matter.
Fan, Hong-Yi; Lu, Hai-Liang
2006-02-01
The admissibility condition of a mother wavelet is explored in the context of quantum optics theory. By virtue of Dirac's representation theory and the coherent state property we derive a general formula for finding qualified mother wavelets. A comparison between a wavelet transform computed with the newly found mother wavelet and one computed with a Mexican hat wavelet is presented.
Toward a general theory of estuarine salinity structure
NASA Astrophysics Data System (ADS)
Maccready, P.
2003-04-01
Equations are developed for the tidally-averaged circulation and salinity structure of an estuary. Averaging over top and bottom layers for the steady case leads to a single governing equation. This is a first-order, nonlinear ODE for the section-averaged salinity as a function of along-channel distance. Among the many parameters affecting solutions to this equation, the section-averaged, along-channel salt flux due to tidal stirring (the "diffusive" flux, as distinct from the "advective" flux due to the gravitational circulation) has been assumed in the literature to have widely different values and along-channel distributions. The equation presented here provides a unified framework under which the effects of different assumptions about the along-channel diffusivity may be evaluated. In particular we may recover both the Hansen and Rattray solution, which is shown to be fundamentally diffusive, and the Chatwin solution, which is wholly advective. Under more general conditions a simple numerical solution may be found. These solutions are useful for rapid exploration of the nonlinear estuarine response to different tidal mixing conditions.
ERIC Educational Resources Information Center
Gelso, Charles J.; Carter, Jean A.
1994-01-01
Responds to comments by Greenberg and by Patton (both this issue) addressing ambiguities in Gelso and Carter's article (this issue) on components of psychotherapy relationship. In reply, discusses issue of how general theory ought to be to have maximal impact on research and practice. Questions number of Greenberg's assertions about Gelso and…
General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.
1990-01-01
The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.
NASA Astrophysics Data System (ADS)
Othman, Mohamed I. A.; Elmaklizi, Yassmin D.; Said, Samia M.
2013-03-01
The problem of the generalized thermoelastic medium for three different theories under the effect of a gravity field is investigated. The Lord-Shulman (L-S), Green-Lindsay (G-L), and classical-coupled (CD) theories are discussed. The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions for the displacement components, temperature, and stress components are obtained by using normal mode analysis. Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of gravity. A comparison also is made between the three theories for the results with and without a temperature dependence.
Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong
2007-01-01
Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the
Slob, Wout
2017-04-01
A general theory on effect size for continuous data predicts a relationship between maximum response and within-group variation of biological parameters, which is empirically confirmed by results from dose-response analyses of 27 different biological parameters. The theory shows how effect sizes observed in distinct biological parameters can be compared and provides a basis for a generic definition of small, intermediate and large effects. While the theory is useful for experimental science in general, it has specific consequences for risk assessment: it solves the current debate on the appropriate metric for the Benchmark response in continuous data. The theory shows that scaling the BMR expressed as a percent change in means to the maximum response (in the way specified) automatically takes "natural variability" into account. Thus, the theory supports the underlying rationale of the BMR 1 SD. For various reasons, it is, however, recommended to use a BMR in terms of a percent change that is scaled to maximum response and/or within group variation (averaged over studies), as a single harmonized approach.
Relativistic many-body perturbation theory for general open-shell multiplet states of atoms
NASA Astrophysics Data System (ADS)
Ishikawa, Yasuyuki; Koc, Konrad
1996-06-01
A relativistic many-body perturbation theory, which accounts for relativistic and electron-correlation effects for general open-shell multiplet states of atoms and molecules, is developed and implemented with analytic basis sets of Gaussian spinors. The theory retains the essential aspects of Mo/ller-Plesset perturbation theory by employing the relativistic single-Fock-operator method of Koc and Ishikawa [Phys. Rev. A 49, 794 (1994)] for general open-shell systems. Open-shell Dirac-Fock and relativistic many-body perturbation calculations are reported for the ground and low-lying excited states of Li, B2+, Ne7+, and Ca11+.
Symmetric Set Theory, a General Theory of Isomorphism, Abstraction, and Representation.
1983-08-01
natural notion of what it means for two Turing machines, or context free grammars, or topological spaces to be isomorphic. ZF set theory provides no...context free grammars, Thuring machines, and topological spaces all have a natural associated notion of isomorphism. All of these notions of
A New Point of View on General Kaluza-Klein Theories
NASA Astrophysics Data System (ADS)
Bejancu, A.
2012-09-01
The general Kaluza-Klein theories are physical theories in which both the ``cylinder condition" and the ``compactification condition" from the classical Kaluza-Klein theory are not necessarily satisfied. Our study is developed on a general Kaluza-Klein space (overline{M} = M × K,bar{g})}, whose tangent bundle T overline{M} splits into horizontal and vertical distributions H overline{M} and V overline{M}, respectively. The main tool in our new point of view is what we call the Riemannian horizontal connection nabla on H overline{M}, which plays in a general Kaluza-Klein theory, the same role as the Levi-Civita connection on the spacetime M in the classical Kaluza-Klein theory. This connection enables us to classify the geodesics of (overline{M},bar{g}), to define the horizontal Einstein gravitational tensor field, and to write down in a covariant form, the field equations on (overline{M},bar{g}) In particular, we apply the study to both the theory of Einstein-Bergmann spaces and the theory of general Kaluza-Klein spaces with bundle-like metric.
On the spatial behavior in two-temperature generalized thermoelastic theories
NASA Astrophysics Data System (ADS)
Miranville, Alain; Quintanilla, Ramon
2017-10-01
This paper investigates the spatial behavior of the solutions of two generalized thermoelastic theories with two temperatures. To be more precise, we focus on the Green-Lindsay theory with two temperatures and the Lord-Shulman theory with two temperatures. We prove that a Phragmén-Lindelöf alternative of exponential type can be obtained in both cases. We also describe how to obtain a bound on the amplitude term by means of the boundary conditions for the Green-Lindsay theory with two temperatures.
General theory of sub-quarterwave multilayers with highly absorbing materials.
Larruquert, J I
2001-10-01
A general theory of multilayers with enhanced reflectance has been developed based on the superposition of sub-quarterwave layers of various highly radiation-absorbing materials. The theory has been developed by second-order expansion of the multilayer reflectance with respect to the optical-constant differences between the materials in the multilayer. The current paper completes and improves the theory that was developed in a previous paper [J. Opt. Soc. Am. A 18, 1406 (2001)] by including the case of nonnormal incidence and general radiation polarization and by providing more-accurate film thickness values of the optimized multilayer than with the previous theory. The theory provides an accurate approach to the design of a new concept of multilayer coatings with more than two materials. The new multilayers are adequate to enhance the reflectance of the materials particularly in the far and the extreme ultraviolet.
Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices
NASA Astrophysics Data System (ADS)
Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco
2016-10-01
We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.
IR dualities in general 3d supersymmetric SU( N) QCD theories
NASA Astrophysics Data System (ADS)
Aharony, Ofer; Fleischer, Daniel
2015-02-01
In the last twenty years, low-energy (IR) dualities have been found for many pairs of supersymmetric gauge theories with four supercharges, both in four space-time dimensions and in three space-time dimensions. In particular, duals have been found for 3d = 2 supersymmetric QCD theories with gauge group U( N), with chiral multiplets in the fundamental representation, with F chiral multiplets in the anti-fundamental representation, and with Chern-Simons level k, for all values of N, F, and k for which the theory preserves supersymmetry. For SU( N) theories the duals have been found in some cases, such as F = and =0, but not in the general case. In this note we find the IR dual for SU( N) SQCD theories with general values of N, F, and k ≠ 0 which preserve supersymmetry.
ERIC Educational Resources Information Center
Cheung, Nicole W. T.; Cheung, Yuet W.
2008-01-01
The objectives of this study were to test the predictive power of self-control theory for delinquency in a Chinese context, and to explore if social factors as predicted in social bonding theory, differential association theory, general strain theory, and labeling theory have effects on delinquency in the presence of self-control. Self-report data…
ERIC Educational Resources Information Center
Cheung, Nicole W. T.; Cheung, Yuet W.
2008-01-01
The objectives of this study were to test the predictive power of self-control theory for delinquency in a Chinese context, and to explore if social factors as predicted in social bonding theory, differential association theory, general strain theory, and labeling theory have effects on delinquency in the presence of self-control. Self-report data…
Organisational change theory and the use of indicators in general practice.
Rhydderch, M; Elwyn, G; Marshall, M; Grol, R
2004-06-01
General practices are making greater use of indicators to help shape and develop organisational arrangements supporting the delivery of health care. Debate continues concerning what exactly such indicators should measure and how they should be used to achieve improvement. Organisational theories can provide an analytical backdrop to inform the design of indicators, critique their construction, and evaluate their use. Systems theory, organisational development, social worlds theory, and complexity theory each has a practical contribution to make to our understanding of how indicators work in prompting quality improvements and why they sometimes don't. This paper argues that systems theory exerts the most influence over the use of indicators. It concludes that a strategic framework for quality improvement should take account of all four theories, recognising the multiple realities that any one approach will fail to reflect.
Denisov, V.I.; Eliseev, V.A.
1986-05-01
This paper studies the interaction of a weak gravitational wave and the electromagnetic field of a neutron star from the point of view of two theories: the linear variant of the field theory of gravitation and the general theory of relativity. The obtained solutions are used to analyze the possibilities of establishing experimentally which of the two theories describes reality adequately.
The parasite-stress theory may be a general theory of culture and sociality.
Fincher, Corey L; Thornhill, Randy
2012-04-01
In the target article, we presented the hypothesis that parasite-stress variation was a causal factor in the variation of in-group assortative sociality, cross-nationally and across the United States, which we indexed with variables that measured different aspects of the strength of family ties and religiosity. We presented evidence supportive of our hypothesis in the form of analyses that controlled for variation in freedom, wealth resources, and wealth inequality across nations and the states of the USA. Here, we respond to criticisms from commentators and attempt to clarify and expand the parasite-stress theory of sociality used to fuel our research presented in the target article.
Generalization of Spatial Channel Theory to Three-Dimensional x-y-z Transport Computations
I. K. Abu-Shumays; M. A. Hunter; R. L. Martz; J. M. Risner
2002-03-12
Spatial channel theory, initially introduced in 1977 by M. L. Williams and colleagues at ORNL, is a powerful tool for shield design optimization. It focuses on so called ''contributon'' flux and current of particles (a fraction of the total of neutrons, photons, etc.) which contribute directly or through their progeny to a pre-specified response, such as a detector reading, dose rate, reaction rate, etc., at certain locations of interest. Particles that do not contribute directly or indirectly to the pre-specified response, such as particles that are absorbed or leak out, are ignored. Contributon fluxes and currents are computed based on combined forward and adjoint transport solutions. The initial concepts were considerably improved by Abu-Shumays, Selva, and Shure by introducing steam functions and response flow functions. Plots of such functions provide both qualitative and quantitative information on dominant particle flow paths and identify locations within a shield configuration that are important in contributing to the response of interest. Previous work was restricted to two dimensional (2-D) x-y rectangular and r-z cylindrical geometries. This paper generalizes previous work to three-dimensional x-y-z geometry, since it is now practical to solve realistic 3-D problems with multidimensional transport programs. As in previous work, new analytic expressions are provided for folding spherical harmonics representations of forward and adjoint transport flux solutions. As a result, the main integrals involve in spatial channel theory are computed exactly and more efficiently than by numerical quadrature. The analogy with incompressible fluid flow is also applied to obtain visual qualitative and quantitative measures of important streaming paths that could prove vital for shield design optimization. Illustrative examples are provided. The connection between the current paper and the excellent work completed by M. L. Williams in 1991 is also discussed.
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
Kakeda, M; Schlapbach, Christoph; Danelon, G; Tang, M M; Cecchinato, V; Yawalkar, N; Uguccioni, M
2014-12-01
Acute generalized exanthematous pustulosis (AGEP) and generalized pustular psoriasis (GPP) are rare pustular skin disorders with systemic involvement. IL-17A/F is a proinflammatory cytokine involved in various neutrophilic inflammatory disorders. Here we show that IL-17A/F is highly expressed by innate immune cells such as neutrophils and mast cells in both AGEP and GPP.
Jang, Seogjoo
2007-11-07
The Forster resonance energy transfer theory is generalized for inelastic situations with quantum mechanical modulation of the donor-acceptor coupling. Under the assumption that the modulations are independent of the electronic excitation of the donor and the acceptor, a general rate expression is derived, which involves two dimensional frequency-domain convolution of the donor emission line shape, the acceptor absorption line shape, and the spectral density of the modulation of the donor-acceptor coupling. For two models of modulation, detailed rate expressions are derived. The first model is the fluctuation of the donor-acceptor distance, approximated as a quantum harmonic oscillator coupled to a bath of other quantum harmonic oscillators. The distance fluctuation results in additional terms in the rate, which in the small fluctuation limit depend on the inverse eighth power of the donor-acceptor distance. The second model is the fluctuation of the torsional angle between the two transition dipoles, which is modeled as a quantum harmonic oscillator coupled to a bath of quantum harmonic oscillators and causes sinusoidal modulation of the donor-acceptor coupling. The rate expression has new elastic and inelastic terms, depending sensitively on the value of the minimum energy torsional angle. Experimental implications of the present theory and some of the open theoretical issues are discussed.
Pons, J.M.; Salisbury, D.C.
2005-06-15
Diffeomorphism-induced symmetry transformations and time evolution are distinct operations in generally covariant theories formulated in phase space. Time is not frozen. Diffeomorphism invariants are consequently not necessarily constants of the motion. Time-dependent invariants arise through the choice of an intrinsic time, or equivalently through the imposition of time-dependent gauge fixation conditions. One example of such a time-dependent gauge fixing is the Komar-Bergmann use of Weyl curvature scalars in general relativity. An analogous gauge fixing is also imposed for the relativistic free particle and the resulting complete set time-dependent invariants for this exactly solvable model are displayed. In contrast with the free particle case, we show that gauge invariants that are simultaneously constants of motion cannot exist in general relativity. They vary with intrinsic time.
NASA Astrophysics Data System (ADS)
Barnum, Howard; Ortiz, Gerardo; Somma, Rolando; Viola, Lorenza
2005-12-01
We define what it means for a state in a convex cone of states on a space of observables to be generalized-entangled relative to a subspace of the observables, in a general ordered linear spaces framework for operational theories. This extends the notion of ordinary entanglement in quantum information theory to a much more general framework. Some important special cases are described, in which the distinguished observables are subspaces of the observables of a quantum system, leading to results like the identification of generalized unentangled states with Lie-group-theoretic coherent states when the special observables form an irreducibly represented Lie algebra. Some open problems, including that of generalizing the semigroup of local operations with classical communication to the convex cones setting, are discussed.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
Renormalization group equations and matching in a general quantum field theory with kinetic mixing
NASA Astrophysics Data System (ADS)
Fonseca, Renato M.; Malinský, Michal; Staub, Florian
2013-11-01
We work out a set of simple rules for adopting the two-loop renormalization group equations of a generic gauge field theory given in the seminal works of Machacek and Vaughn to the most general case with an arbitrary number of Abelian gauge factors and comment on the extra subtleties possibly encountered upon matching a set of effective gauge theories in such a framework.
Generalized Dirac duality and CP violation in a two-photon theory
NASA Astrophysics Data System (ADS)
Arias, Paola; Das, Ashok K.; Gamboa, Jorge; Méndez, Fernando
2017-02-01
A kinetic mixing term, which generalizes the duality symmetry of Dirac, is studied in a theory with two photons (visible and hidden). This theory can be either CP conserving or CP violating depending on the transformation of fields in the hidden sector. However, if CP is violated, it necessarily occurs in the hidden sector. This opens up an interesting possibility of new sources of CP violation.
General Relativity: The most beautiful of theories. Applications and trends after 100 years
NASA Astrophysics Data System (ADS)
Rovelli, Carlo
2015-02-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. While applications in the beginning were restricted to isolated effects such as a proper understanding of Mercury's orbit, the second half of the twentieth century saw a massive development of applications. These include cosmology, gravitational waves, and even very practical results for satellite based positioning systems as well as different approaches to unite general relativity with another very successful branch of physics - quantum theory. On the occassion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as "the most beautiful of the existing physical theories".
Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory
Kerner, Boris S.
2015-03-10
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2013-11-01
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliably used for control and optimization in traffic networks. It is shown that the generally accepted fundamentals and methodologies of the traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of the traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular (fixed or stochastic) value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of the traffic and transportation theory, we discuss the three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
NASA Astrophysics Data System (ADS)
Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.
2008-04-01
The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the
Siegert pseudostate formulation of scattering theory: General three-dimensional case
NASA Astrophysics Data System (ADS)
Krainov, Lev O.; Batishchev, Pavel A.; Tolstikhin, Oleg I.
2016-04-01
This paper generalizes the Siegert pseudostate (SPS) formulation of scattering theory to arbitrary finite-range potentials without any symmetry in the three-dimensional (3D) case. The orthogonality and completeness properties of 3D SPSs are established. The SPS expansions for scattering states, outgoing-wave Green's function, scattering matrix, and scattering amplitude, that is, all major objects of scattering theory, are derived. The theory is illustrated by calculations for several model potentials. The results enable one to apply 3D SPSs as a purely discrete basis capable of representing both discrete and continuous spectra in solving various stationary and time-dependent quantum-mechanical problems.
Numerical validation of the generalized Harvey-Shack surface scatter theory
NASA Astrophysics Data System (ADS)
Choi, Narak; Harvey, James E.
2013-11-01
The generalized Harvey-Shack (GHS) surface scatter theory is numerically compared to the classical small perturbation method, the Kirchhoff approximation method, and the rigorous method of moments for one-dimensional ideally conducting surfaces whose surface power spectral density function is Gaussian or exhibits an inverse power law (fractal) behavior. In spite of its simple analytic form, our numerical comparison shows that the new GHS theory is valid (with reasonable accuracy) over a broader range of surface parameter space than either of the two classical surface scatter theories.
General medical practitioners need to be aware of the theories on which our work depend.
Thomas, Paul
2006-01-01
When general practitioners and family physicians listen, reflect, and diagnose, we use 3 different theories of knowledge. This essay explores these theories to highlight an approach to clinical practice, inquiry, and learning that can do justice to the complex and uncertain world we experience. The following points are made: (1) A variety of approaches to research and audit are needed to illuminate the richness of experience witnessed by general medical practitioners. (2) Evidence about the past cannot predict the future except in simple, short-term, or slowly changing situations. (3) We consciously or unconsciously weave together evidence generated through 3 fundamental theories of knowledge, termed postpositivism, critical theory, and constructivism, to make sense of everyday experience. We call it listening, reflecting, and diagnosing. (4) These 3 fundamental theories of knowledge highlight different aspects within a world that is more complex, integrated, and changing than any single theory can reveal on its own; they frame what we see and how we act in everyday situations. (5) Moving appropriately between these different theories helps us to see a fuller picture and provides a framework for improving our skills as clinicians, researchers, and learners. (6) Narrative unity offers a way to bring together different kinds of evidence to understand the overall health of patients and of communities; evidence of all kinds provides discrete snapshots of more complex stories in evolution. (7) We need to understand these issues so we can create an agenda for clinical practice, inquiry, and learning appropriate to our discipline.
General Medical Practitioners Need to Be Aware of the Theories on Which Our Work Depend
Thomas, Paul
2006-01-01
When general practitioners and family physicians listen, reflect, and diagnose, we use 3 different theories of knowledge. This essay explores these theories to highlight an approach to clinical practice, inquiry, and learning that can do justice to the complex and uncertain world we experience. The following points are made: (1) A variety of approaches to research and audit are needed to illuminate the richness of experience witnessed by general medical practitioners. (2) Evidence about the past cannot predict the future except in simple, short-term, or slowly changing situations. (3) We consciously or unconsciously weave together evidence generated through 3 fundamental theories of knowledge, termed postpositivism, critical theory, and constructivism, to make sense of everyday experience. We call it listening, reflecting, and diagnosing. (4) These 3 fundamental theories of knowledge highlight different aspects within a world that is more complex, integrated, and changing than any single theory can reveal on its own; they frame what we see and how we act in everyday situations. (5) Moving appropriately between these different theories helps us to see a fuller picture and provides a framework for improving our skills as clinicians, researchers, and learners. (6) Narrative unity offers a way to bring together different kinds of evidence to understand the overall health of patients and of communities; evidence of all kinds provides discrete snapshots of more complex stories in evolution. (7) We need to understand these issues so we can create an agenda for clinical practice, inquiry, and learning appropriate to our discipline. PMID:17003147
About the origins of the general theory of relativity: Einstein's search for the truth
NASA Astrophysics Data System (ADS)
Trainer, Matthew
2005-11-01
On the 20th June 1933 Professor Einstein addressed a large and enthusiastic audience in the Victorian Gothic Bute Hall of the University of Glasgow. Einstein spoke 'About the Origins of the General Theory of Relativity'. In 1905 Einstein had changed the face of physics forever with the publication of his radical new ideas on special relativity. His general theory of relativity was introduced to the world in 1915. However in 1933, Einstein faced another challenge—survival in a world of change. This paper explores Einstein's fascinating address to the Glasgow audience in that year.
Frequently asked questions about express authorization with answers organized into five categories: attorney general's statement, statutory checklist, rule checklists, program description, and state initiated regulatory changes.
The most general second-order field equations of bi-scalar-tensor theory in four dimensions
NASA Astrophysics Data System (ADS)
Ohashi, Seiju; Tanahashi, Norihiro; Kobayashi, Tsutomu; Yamaguchi, Masahide
2015-07-01
The Horndeski theory is known as the most general scalar-tensor theory with second-order field equations. In this paper, we explore the bi-scalar extension of the Horndeski theory. Following Horndeski's approach, we determine all the possible terms appearing in the second-order field equations of the bi-scalar-tensor theory. We compare the field equations with those of the generalized multi-Galileons, and confirm that our theory contains new terms that are not included in the latter theory. We also discuss the construction of the Lagrangian leading to our most general field equations.
Quantized Brans-Dicke theory: Phase transition, strong coupling limit, and general relativity
NASA Astrophysics Data System (ADS)
Pal, Sridip
2016-10-01
We show that Friedmann-Robertson-Walker geometry with a flat spatial section in quantized (Wheeler deWitt quantization) Brans-Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor a ↦λ a for some constant λ . In the weak coupling (ω ) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of a phase boundary is an obstruction to another classical symmetry [see V. Faraoni, Phys. Rev. D 59, 084021 (1999).] (which relates two BD theories with different couplings) admitted by BD theory with scale invariant matter content, i.e., Tμμ=0 . Classically, this prohibits the BD theory from reducing to general relativity (GR) for scale invariant matter content. We show that a strong coupling limit of both BD and GR preserves the symmetry involving the scale factor. We also show that with scale invariant matter content (radiation, i.e., P =1/3 ρ ), the quantized BD theory does reduce to GR as ω →∞ , which is in sharp contrast to classical behavior. This is a first known illustration of a scenario where quantized BD theory provides an example of anomalous symmetry breaking and resulting binary phase structure. We make a conjecture regarding the strong coupling limit of the BD theory in a generic scenario.
Greenwald, Jared; Satheeshkumar, V.H.; Wang, Anzhong E-mail: VHSatheeshkumar@baylor.edu
2010-12-01
We study spherically symmetric static spacetimes generally filled with an anisotropic fluid in the nonrelativistic general covariant theory of gravity. In particular, we find that the vacuum solutions are not unique, and can be expressed in terms of the U(1) gauge field A. When solar system tests are considered, severe constraints on A are obtained, which seemingly pick up the Schwarzschild solution uniquely. In contrast to other versions of the Horava-Lifshitz theory, non-singular static stars made of a perfect fluid without heat flow can be constructed, due to the coupling of the fluid with the gauge field. These include the solutions with a constant pressure. We also study the general junction conditions across the surface of a star. In general, the conditions allow the existence of a thin matter shell on the surface. When applying these conditions to the perfect fluid solutions with the vacuum ones as describing their external spacetimes, we find explicitly the matching conditions in terms of the parameters appearing in the solutions. Such matching is possible even without the presence of a thin matter shell.
Generalized plane waves in Poincaré gauge theory of gravity
NASA Astrophysics Data System (ADS)
Blagojević, Milutin; Cvetković, Branislav; Obukhov, Yuri N.
2017-09-01
A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in the gauge field strength. The structure of the solution shows that the wave metric significantly depends on the spacetime torsion.
Robson, Barry
2005-01-01
A new approach, a Zeta Theory of observations, data, and data mining, is being forged from a theory of expected information into an even more cohesive and comprehensive form by the challenge of general genomic, pharmacogenomic, and proteomic data. In this paper, the focus is not on studies using the specific tool FANO (CliniMiner) but on extensions to a new broader theoretical approach, aspects of which can easily be implemented into, or otherwise support, excellent existing methods, such as forms of multivariate analysis and IBM's product Intelligent Miner. The theory should perhaps be distinguished from an existing purely number-theoretic area sometimes also known as Zeta Theory, which focuses on the Riemann Zeta Function and the ways in which it governs the distribution of prime numbers. However, Zeta Theory as used here overlaps heavily with it and actually makes use of these same matters. The distinction is that it enters from a Bayesian information theory and data representation perspective. It could thus be considered an application of the 'mathematician's version'. The application is by no means confined to areas of modern biomedicine, and indeed its generality, even merging into quantum mechanics, is a key feature. Other areas with some similar challenges as modern biology, and which have inspired data mining methods such as IBM's Intelligent Miner, include commerce. But for several reasons discussed, modern molecular biology and medicine seem particularly challenging, and this relates to the often irreducible high dimensionality of the data. This thus remains our main target.
Beyond heat baths: Generalized resource theories for small-scale thermodynamics.
Yunger Halpern, Nicole; Renes, Joseph M
2016-02-01
Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from-and we bound the work cost of creating-a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.
ERIC Educational Resources Information Center
Vos, Hans J.
1994-01-01
Describes the construction of a model of computer-assisted instruction using a qualitative block diagram based on general systems theory (GST) as a framework. Subject matter representation is discussed, and appendices include system variables and system equations of the GST model, as well as an example of developing flexible courseware. (Contains…
ERIC Educational Resources Information Center
Gulyaev, Sergei A.; Stonyer, Heather R.
2002-01-01
Develops an integrated approach based on the use of general systems theory (GST) and the concept of 'mapping' scientific knowledge to provide students with tools for a more holistic understanding of science. Uses GST as the core methodology for understanding science and its complexity. Discusses the role of scientific community in producing…
Chaos and Crisis: Propositions for a General Theory of Crisis Communication.
ERIC Educational Resources Information Center
Seeger, Matthew W.
2002-01-01
Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004
PROJECT STAFF
2004-12-01
The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).
General Strain Theory and Delinquency: Extending a Popular Explanation to American Indian Youth
ERIC Educational Resources Information Center
Eitle, David; Eitle, Tamela McNulty
2016-01-01
Despite evidence that American Indian (AI) adolescents are disproportionately involved in crime and delinquent behavior, there exists scant research exploring the correlates of crime among this group. We posit that Agnew's General Strain Theory (GST) is well suited to explain AI delinquent activity. Using the National Longitudinal Study of…
2014-10-06
to order r uniformly in θ ∈ Θ in the classes of tests C(||αij||) and C(β). This theorem generalizes previous results of Pavlov [4] and Dragalin and...Manuscript, 1977. [4] I. V. Pavlov . Sequential procedure of testing composite hypotheses with applications to the Kiefer-Weiss problem. Theory of
A Test of Gottfredson and Hirschi's General Theory of Crime in African American Adolescents
ERIC Educational Resources Information Center
Vazsonyi, Alexander T.; Crosswhite, Jennifer M.
2004-01-01
Considerable empirical support exists for "The General Theory of Crime". However, little work has been completed on members of minority populations in the United States. The current investigation examined whether low self-control predicted deviance in a sample of African American adolescents (n = 661; 55.1 percent female; mean age = 15.7 years).…
Chaos and Crisis: Propositions for a General Theory of Crisis Communication.
ERIC Educational Resources Information Center
Seeger, Matthew W.
2002-01-01
Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…
General Strain Theory and Delinquency: Extending a Popular Explanation to American Indian Youth
ERIC Educational Resources Information Center
Eitle, David; Eitle, Tamela McNulty
2016-01-01
Despite evidence that American Indian (AI) adolescents are disproportionately involved in crime and delinquent behavior, there exists scant research exploring the correlates of crime among this group. We posit that Agnew's General Strain Theory (GST) is well suited to explain AI delinquent activity. Using the National Longitudinal Study of…
Strong-field effects and time asymmetry in general relativity and in bimetric gravitation theory
Damour, T.
1984-10-01
The concepts underlying our present theoretical understanding of the radiative two-condensed-body problem in general relatively and in bimetric gravitation theory are critically reviewed. The relevance of the 1935 Einstein-Rosen ''bridge'' article is emphasized. The possibility (first suggested by N. Rosen, for the linearized approximation) of extending to gravity the Wheeler-Reynman time-symmetric approach is questioned.
Quaternion based generalization of Chern-Simons theories in arbitrary dimensions
NASA Astrophysics Data System (ADS)
D'Adda, Alessandro; Kawamoto, Noboru; Shimode, Naoki; Tsukioka, Takuya
2017-08-01
A generalization of Chern-Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z2-gradings structure, thus clarifying the quaternion role in the previous formulation.
Superfield generalization of the classical action-at-a-distance theory
NASA Astrophysics Data System (ADS)
Tugai, V. V.; Zheltukhin, A. A.
1995-04-01
A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.
A superfield generalization of the classical action-at-a-distance theory
NASA Astrophysics Data System (ADS)
Tugai, V. V.; Zheltukhin, A. A.
1994-07-01
A generalization of the Fokker-Schwarzschild- Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.
General Strain Theory as a Basis for the Design of School Interventions
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry
2013-01-01
The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…
Communication: The simplified generalized entropy theory of glass-formation in polymer melts
Freed, Karl F.
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Hyland, Michael E
2003-12-01
Extended Network Generalized Entanglement Theory (Entanglement Theory for short) combines two earlier theories based on complexity theory and quantum mechanics. The theory's assumptions are: the body is a complex, self-organizing system (the extended network) that self-organizes so as to achieve genetically defined patterns (where patterns include morphologic as well as lifestyle patterns). These pattern-specifying genes require feedback that is provided by generalized quantum entanglement. Additionally, generalized entanglement has evolved as a form of communication between people (and animals) and can be used in healing. Entanglement Theory suggests that several processes are involved in complementary and alternative medicine (CAM). Direct subtle therapy creates network change either through lifestyle management, some manual therapies, and psychologically mediated effects of therapy. Indirect subtle therapy is a process of entanglement with other people or physical entities (e.g., remedies, healing sites). Both types of subtle therapy create two kinds of information within the network--either that the network is more disregulated than it is and the network then compensates for this error, or as a guide for network change leading to healing. Most CAM therapies involve a combination of indirect and direct therapies, making empirical evaluation complex. Empirical predictions from this theory are contrasted with those from two other possible mechanisms of healing: (1) psychologic processes and (2) mechanisms involving electromagnetic influence between people (biofield/energy medicine). Topics for empirical study include a hyperfast communication system, the phenomenology of entanglement, predictors of outcome in naturally occurring clinical settings, and the importance of therapist and patient characteristics to outcome.
Communication: The simplified generalized entropy theory of glass-formation in polymer melts.
Freed, Karl F
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Da Fonseca, D; Cury, F; Fakra, E; Rufo, M; Poinso, F; Bounoua, L; Huguet, P
2008-04-01
During the past decade, several studies have reported positive effects of cognitive-behavioral therapy (CBT) in the treatment of children and adolescents with mental disorders. One of the most important CBT interventions is to teach children and adolescents to challenge negative thoughts that lead to maladjusted behaviors. Based on the implicit theories of intelligence framework, the main purpose of this study was to test whether an incremental theory manipulation could be used to affect IQ test performance in adolescents with Generalized Anxiety Disorder (GAD). Results showed that patients demonstrated enhanced IQ performance and experienced less state anxiety when they were exposed to an incremental theory of intelligence manipulation. Our findings suggest that incremental theory manipulation provides a useful cognitive strategy for addressing school-related anxiety in adolescents with mental disorders such as GAD.
Extensions and evaluations of a general quantitative theory of forest structure and dynamics
Enquist, Brian J.; West, Geoffrey B.; Brown, James H.
2009-01-01
Here, we present the second part of a quantitative theory for the structure and dynamics of forests under demographic and resource steady state. The theory is based on individual-level allometric scaling relations for how trees use resources, fill space, and grow. These scale up to determine emergent properties of diverse forests, including size–frequency distributions, spacing relations, canopy configurations, mortality rates, population dynamics, successional dynamics, and resource flux rates. The theory uniquely makes quantitative predictions for both stand-level scaling exponents and normalizations. We evaluate these predictions by compiling and analyzing macroecological datasets from several tropical forests. The close match between theoretical predictions and data suggests that forests are organized by a set of very general scaling rules. Our mechanistic theory is based on allometric scaling relations, is complementary to “demographic theory,” but is fundamentally different in approach. It provides a quantitative baseline for understanding deviations from predictions due to other factors, including disturbance, variation in branching architecture, asymmetric competition, resource limitation, and other sources of mortality, which are not included in the deliberately simplified theory. The theory should apply to a wide range of forests despite large differences in abiotic environment, species diversity, and taxonomic and functional composition. PMID:19363161
Gender, general theory of crime and computer crime: an empirical test.
Moon, Byongook; McCluskey, John D; McCluskey, Cynthia P; Lee, Sangwon
2013-04-01
Regarding the gender gap in computer crime, studies consistently indicate that boys are more likely than girls to engage in various types of computer crime; however, few studies have examined the extent to which traditional criminology theories account for gender differences in computer crime and the applicability of these theories in explaining computer crime across gender. Using a panel of 2,751 Korean youths, the current study tests the applicability of the general theory of crime in explaining the gender gap in computer crime and assesses the theory's utility in explaining computer crime across gender. Analyses show that self-control theory performs well in predicting illegal use of others' resident registration number (RRN) online for both boys and girls, as predicted by the theory. However, low self-control, a dominant criminogenic factor in the theory, fails to mediate the relationship between gender and computer crime and is inadequate in explaining illegal downloading of software in both boy and girl models. Theoretical implication of the findings and the directions for future research are discussed.
Tensor Models as Theory of Dynamical Fuzzy Spaces and General Relativity
Sasakura, Naoki
2010-06-17
The tensor model is discussed as theory of dynamical fuzzy spaces in order to formulate gravity on fuzzy spaces. The numerical analyses of the tensor models possessing Gaussian background solutions have shown that the low-lying long-wavelength fluctuations around the backgrounds are in remarkable agreement with the geometric fluctuations on flat spaces in the general relativity. It has also been shown that part of the orthogonal symmetry of the tensor model spontaneously broken by the backgrounds agrees with the local translation symmetry of the general relativity. Thus the tensor model provides an interesting model of simultaneous emergence of space, the general relativity, and its local translation symmetry.
Schmelzer, Jürn W P; Boltachev, Grey Sh; Baidakov, Vladimir G
2006-05-21
In the theoretical interpretation of the kinetics of first-order phase transitions, thermodynamic concepts developed long ago by Gibbs are widely employed giving some basic qualitative insights into these processes. However, from a quantitative point of view, the results of such analysis, based on the classical Gibbs approach and involving in addition the capillarity approximation, are often not satisfactory. Some progress can be reached here by the van der Waals and more advanced density functional methods of description of thermodynamically heterogeneous systems having, however, its limitations in application to the interpretation of experimental data as well. Moreover, both mentioned theories--Gibbs' and density functional approaches--lead to partly contradicting each other's results. As shown in preceding papers, by generalizing Gibbs' approach, existing deficiencies and internal contradictions of these two well-established theories can be removed and a new generally applicable tool for the interpretation of phase formation processes can be developed. In the present analysis, a comparative analysis of the basic assumptions and predictions of the classical and the generalized Gibbs approaches is given. It is shown, in particular, that--interpreted in terms of the generalized Gibbs approach--the critical cluster as determined via the classical Gibbs approach corresponds not to a saddle but to a ridge point of the appropriate thermodynamic potential hypersurface. By this reason, the classical Gibbs approach (involving the classical capillarity approximation) overestimates as a rule the work of critical cluster formation in nucleation theory and, in general, considerably.
Generalizing J 2 flow theory: Fundamental issues in strain gradient plasticity
NASA Astrophysics Data System (ADS)
Hutchinson, John W.
2012-08-01
It has not been a simple matter to obtain a sound extension of the classical J 2 flow theory of plasticity that incorporates a dependence on plastic strain gradients and that is capable of capturing size-dependent behaviour of metals at the micron scale. Two classes of basic extensions of classical J 2 theory have been proposed: one with increments in higher order stresses related to increments of strain gradients and the other characterized by the higher order stresses themselves expressed in terms of increments of strain gradients. The theories proposed by Muhlhaus and Aifantis in 1991 and Fleck and Hutchinson in 2001 are in the first class, and, as formulated, these do not always satisfy thermodynamic requirements on plastic dissipation. On the other hand, theories of the second class proposed by Gudmundson in 2004 and Gurtin and Anand in 2009 have the physical deficiency that the higher order stress quantities can change discontinuously for bodies subject to arbitrarily small load changes. The present paper lays out this background to the quest for a sound phenomenological extension of the rateindependent J 2 flow theory of plasticity to include a dependence on gradients of plastic strain. A modification of the Fleck-Hutchinson formulation that ensures its thermodynamic integrity is presented and contrasted with a comparable formulation of the second class where in the higher order stresses are expressed in terms of the plastic strain rate. Both versions are constructed to reduce to the classical J 2 flow theory of plasticity when the gradients can be neglected and to coincide with the simpler and more readily formulated J 2 deformation theory of gradient plasticity for deformation histories characterized by proportional straining.
A general rough-surface inversion algorithm: Theory and application to SAR data
NASA Technical Reports Server (NTRS)
Moghaddam, M.
1993-01-01
Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.
Three-Dimensional Topological Field Theory Induced from Generalized Complex Structure
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki
We construct a three-dimensional topological sigma model which is induced from a generalized complex structure on a target generalized complex manifold. This model is constructed from maps from a three-dimensional manifold X to an arbitrary generalized complex manifold M. The theory is invariant under the diffeomorphism on the worldvolume and the b-transformation on the generalized complex structure. Moreover the model is manifestly invariant under the mirror symmetry. We derive from this model the Zucchini's two-dimensional topological sigma model with a generalized complex structure as a boundary action on ∂X. As a special case, we obtain three-dimensional realization of a WZ-Poisson manifold.
Applications of a general random-walk theory for confined diffusion
NASA Astrophysics Data System (ADS)
Calvo-Muñoz, Elisa M.; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J.; Nicholson, Donald M.; Egami, Takeshi
2011-01-01
A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.
Applications of a general random-walk theory for confined diffusion.
Calvo-Muñoz, Elisa M; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J; Nicholson, Donald M; Egami, Takeshi
2011-01-01
A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.
NASA Astrophysics Data System (ADS)
Ervens, Barbara; Feingold, Graham
2013-06-01
Ice particle number concentrations are often described deterministically, i.e., ice nucleation is singular and occurs on active sites unambiguously at a given temperature. Other approaches are based on classical nucleation theory (CNT) that describes ice nucleation stochastically as a function of time and nucleation rate. Sensitivity studies of CNT for immersion freezing performed here show that ice nucleation has by far the lowest sensitivity to time as compared to temperature, ice nucleus (IN) diameter, and contact angle. Sensitivities generally decrease with decreasing temperature. Our study helps to reconcile the apparent differences in stochastic and singular freezing behavior, and suggests that over a wide range of temperatures and IN parameters, time-independent CNT-based expressions for immersion freezing may be derived for use in large-scale models.
Chapter 10 Quantum Mechanics and the Special and General Theory of Relativity
NASA Astrophysics Data System (ADS)
Brändas, Erkki J.
The old dilemma of quantum mechanics versus the theory of relativity is reconsidered. A first principles relativistically invariant theory will be provided through a model, which is basically quantum mechanical. Moreover, by analytically extending quantum mechanics into the complex plane, it is possible to include dynamical features such as time-, length-, and temperature-scales into the theory. The flexibility of including complex symmetric interactions will in the same way support a transition from firmly quantum mechanical non-local behaviour to a decidedly classical-local appearance. Furthermore, the extended formulation gives rise to so-called Jordan blocks. They will be shown to appear logically in the present generalized dynamical picture and a compelling interpretation is microscopic self-organization (MSO). Not only have the manifestation of quantum-thermal correlations, and the emergence of generic time scales been established, but the present viewpoint also appears to throw new light on the age-old problem of quantum mechanics versus relativity. To bring all these ideas together, we will demonstrate that our model (i) displays the simple occurrence of such a degenerate unit, (ii) demonstrates the link with the Klein-Gordon-Dirac relativistic theory and (iii) provides dynamical features of both special and general relativity theory.
NASA Astrophysics Data System (ADS)
Lázaro-Lázaro, Edilio; Mendoza-Méndez, Patricia; Elizondo-Aguilera, Luis Fernando; Perera-Burgos, Jorge Adrián; Ramírez-González, Pedro Ezequiel; Pérez-Ángel, Gabriel; Castañeda-Priego, Ramón; Medina-Noyola, Magdaleno
2017-05-01
A fundamental challenge of the theory of liquids is to understand the similarities and differences in the macroscopic dynamics of both colloidal and atomic liquids, which originate in the (Newtonian or Brownian) nature of the microscopic motion of their constituents. Starting from the recently discovered long-time dynamic equivalence between a colloidal and an atomic liquid that share the same interparticle pair potential, in this work we develop a self-consistent generalized Langevin equation theory for the dynamics of equilibrium multicomponent atomic liquids, applicable as an approximate but quantitative theory describing the long-time diffusive dynamical properties of simple equilibrium atomic liquids. When complemented with a Gaussian-like approximation, this theory is also able to provide a reasonable representation of the passage from a ballistic to diffusive behavior. We illustrate the applicability of the resulting theory with three particular examples, namely, a monodisperse and a polydisperse monocomponent hard-sphere liquid and a highly size-asymmetric binary hard-sphere mixture. To assess the quantitative accuracy of our results, we perform event-driven molecular dynamics simulations, which corroborate the general features of the theoretical predictions.
On multifield Born and Born-Infeld theories and their non-Abelian generalizations
NASA Astrophysics Data System (ADS)
Cerchiai, Bianca L.; Trigiante, Mario
2016-10-01
Starting from a recently proposed linear formulation in terms of auxiliary fields, we study n-field generalizations of Born and Born-Infeld theories. In this description the Lagrangian is quadratic in the vector field strengths and the symmetry properties (including the characteristic self-duality) of the corresponding non-linear theory are manifest as on-shell duality symmetries and depend on the choice of the (homogeneous) manifold spanned by the auxiliary scalar fields and the symplectic frame. By suitably choosing these defining properties of the quadratic Lagrangian, we are able to reproduce some known multi-field Born-Infeld theories and to derive new non-linear models, such as the n-field Born theory. We also discuss non-Abelian generalizations of these theories obtained by choosing the vector fields in the adjoint representation of an off-shell compact global symmetry group K and replacing them by non-Abelian, K-covariant field strengths, thus promoting K to a gauge group.
Barbero, E.J.
1989-01-01
In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminated cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.
Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories
Tsujikawa, Shinji
2015-04-01
It is known that Horndeski theories can be transformed to a sub-class of Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories under the disformal transformation of the metric g{sub μ ν} → Ω{sup 2}(φ)g{sub μ ν}+Γ (φ,X) ∇{sub μ} φ ∇{sub ν} φ, where Ω is a function of a scalar field φ and Γ is another function depending on both φ and X=g{sup μ ν}∇{sub μ} φ ∇{sub ν} φ. We show that, with the choice of unitary gauge, both curvature and tensor perturbations on the flat isotropic cosmological background are generally invariant under the disformal transformation. By means of the effective field theories encompassing Horndeski and GLPV theories, we obtain the second-order actions of scalar/tensor perturbations and present the relations for physical quantities between the two frames. The invariance of the inflationary power spectra under the disformal transformation is explicitly proved up to next-to-leading order in slow-roll. In particular, we identify the existence of the Einstein frame in which the tensor power spectrum is of the same form as that in General Relativity and derive the condition under which the spectrum of gravitational waves in GLPV theories is red-tilted.
Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories
Tsujikawa, Shinji
2015-04-27
It is known that Horndeski theories can be transformed to a sub-class of Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories under the disformal transformation of the metric g{sub μν}→Ω{sup 2}(ϕ)g{sub μν}+Γ(ϕ,X)∇{sub μ}ϕ∇{sub ν}ϕ, where Ω is a function of a scalar field ϕ and Γ is another function depending on both ϕ and X=g{sup μν}∇{sub μ}ϕ∇{sub ν}ϕ. We show that, with the choice of unitary gauge, both curvature and tensor perturbations on the flat isotropic cosmological background are generally invariant under the disformal transformation. By means of the effective field theories encompassing Horndeski and GLPV theories, we obtain the second-order actions of scalar/tensor perturbations and present the relations for physical quantities between the two frames. The invariance of the inflationary power spectra under the disformal transformation is explicitly proved up to next-to-leading order in slow-roll. In particular, we identify the existence of the Einstein frame in which the tensor power spectrum is of the same form as that in General Relativity and derive the condition under which the spectrum of gravitational waves in GLPV theories is red-tilted.
NASA Astrophysics Data System (ADS)
Gilmore, James Brian
2010-12-01
General Relativity is the standard framework by which all gravitational systems are analyzed in modern research, and it provides the theme for all the investigations in this thesis. Beyond this common platform, very different gravitating problems are examined here, and several analytical approaches are used to investigate these systems. Effective field theory, a methodological approach prominent in quantum field theory, plays an important role in the analysis of two of the problems in this thesis. In the first instance, an effective field theory for bound gravitational states is used to compute the interaction Lagrangian of a binary system at the second post-Newtonian order. A metric parametrization based on a temporal Kaluza-Klein decomposition is also used. In this effective field theory calculation, the post-Newtonian results for the equations of motion are elegantly reproduced. In the next problem considered, effective field theory is used to investigate the thermodynamics of compactified charged black holes. The relevant thermodynamic quantities are all computed to second order in the perturbation parameter and finite size effects are incorporated through higher order worldline operators. Complete agreement is found with an exact extremal black hole solution constructed with traditional General Relativistic methods. The results indicate that the addition of charge to a compactified black hole may delay the phase transition to a black string. Finally, the third problem examined here concerns the evolution of perturbations at the end of early universe inflation. General Relativity enters this problem through cosmological perturbation theory. It is shown that the coherent oscillations in the inflaton break down at the comoving post-inflationary horizon size, about 14 e-folds after the end of inflation. This is many e-folds before any known constraints, leading to possible implications for the matching problem of inflation, and the generation of stochastic
Generalization of strain-gradient theory to finite elastic deformation for isotropic materials
NASA Astrophysics Data System (ADS)
Beheshti, Alireza
2017-03-01
This paper concerns finite deformation in the strain-gradient continuum. In order to take account of the geometric nonlinearity, the original strain-gradient theory which is based on the infinitesimal strain tensor is rewritten given the Green-Lagrange strain tensor. Following introducing the generalized isotropic Saint Venant-Kirchhoff material model for the strain-gradient elasticity, the boundary value problem is investigated in not only the material configuration but also the spatial configuration building upon the principle of virtual work for a three-dimensional solid. By presenting one example, the convergence of the strain-gradient and classical theories is studied.
Robust root clustering for linear uncertain systems using generalized Lyapunov theory
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1993-01-01
Consideration is given to the problem of matrix root clustering in subregions of a complex plane for linear state space models with real parameter uncertainty. The nominal matrix root clustering theory of Gutman & Jury (1981) using the generalized Liapunov equation is extended to the perturbed matrix case, and bounds are derived on the perturbation to maintain root clustering inside a given region. The theory makes it possible to obtain an explicit relationship between the parameters of the root clustering region and the uncertainty range of the parameter space.
Robust root clustering for linear uncertain systems using generalized Lyapunov theory
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1993-01-01
Consideration is given to the problem of matrix root clustering in subregions of a complex plane for linear state space models with real parameter uncertainty. The nominal matrix root clustering theory of Gutman & Jury (1981) using the generalized Liapunov equation is extended to the perturbed matrix case, and bounds are derived on the perturbation to maintain root clustering inside a given region. The theory makes it possible to obtain an explicit relationship between the parameters of the root clustering region and the uncertainty range of the parameter space.
A generalization of random matrix theory and its application to statistical physics
NASA Astrophysics Data System (ADS)
Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H.
2017-02-01
To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.
A generalization of random matrix theory and its application to statistical physics.
Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H
2017-02-01
To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.
ERIC Educational Resources Information Center
Bloom, Elana; Heath, Nancy
2010-01-01
Children with nonverbal learning disabilities (NVLD) have been found to be worse at recognizing facial expressions than children with verbal learning disabilities (LD) and without LD. However, little research has been done with adolescents. In addition, expressing and understanding facial expressions is yet to be studied among adolescents with LD…
General theory of experiment containing reproducible data: The reduction to an ideal experiment
NASA Astrophysics Data System (ADS)
Nigmatullin, Raoul R.; Zhang, Wei; Striccoli, Domenico
2015-10-01
The authors suggest a general theory for consideration of all experiments associated with measurements of reproducible data in one unified scheme. The suggested algorithm does not contain unjustified suppositions and the final function that is extracted from these measurements can be compared with hypothesis that is suggested by the theory adopted for the explanation of the object/phenomenon studied. This true function is free from the influence of the apparatus (instrumental) function and when the "best fit", or the most acceptable hypothesis, is absent, can be presented as a segment of the Fourier series. The discrete set of the decomposition coefficients describes the final function quantitatively and can serve as an intermediate model that coincides with the amplitude-frequency response (AFR) of the object studied. It can be used by theoreticians also for comparison of the suggested theory with experimental observations. Two examples (Raman spectra of the distilled water and exchange by packets between two wireless sensor nodes) confirm the basic elements of this general theory. From this general theory the following important conclusions follow: 1. The Prony's decomposition should be used in detection of the quasi-periodic processes and for quantitative description of reproducible data. 2. The segment of the Fourier series should be used as the fitting function for description of observable data corresponding to an ideal experiment. The transition from the initial Prony's decomposition to the conventional Fourier transform implies also the elimination of the apparatus function that plays an important role in the reproducible data processing. 3. The suggested theory will be helpful for creation of the unified metrological standard (UMS) that should be used in comparison of similar data obtained from the same object studied but in different laboratories with the usage of different equipment. 4. Many cases when the conventional theory confirms the experimental
The process of patient enablement in general practice nurse consultations: a grounded theory study.
Desborough, Jane; Banfield, Michelle; Phillips, Christine; Mills, Jane
2017-05-01
The aim of this study was to gain insight into the process of patient enablement in general practice nursing consultations. Enhanced roles for general practice nurses may benefit patients through a range of mechanisms, one of which may be increasing patient enablement. In studies with general practitioners enhanced patient enablement has been associated with increases in self-efficacy and skill development. This study used a constructivist grounded theory design. In-depth interviews were conducted with 16 general practice nurses and 23 patients from 21 general practices between September 2013 - March 2014. Data generation and analysis were conducted concurrently using constant comparative analysis and theoretical sampling focussing on the process and outcomes of patient enablement. Use of the storyline technique supported theoretical coding and integration of the data into a theoretical model. A clearly defined social process that fostered and optimised patient enablement was constructed. The theory of 'developing enabling healthcare partnerships between nurses and patients in general practice' incorporates three stages: triggering enabling healthcare partnerships, tailoring care and the manifestation of patient enablement. Patient enablement was evidenced through: 1. Patients' understanding of their unique healthcare requirements informing their health seeking behaviours and choices; 2. Patients taking an increased lead in their partnership with a nurse and seeking choices in their care and 3. Patients getting health care that reflected their needs, preferences and goals. This theoretical model is in line with a patient-centred model of health care and is particularly suited to patients with chronic disease. © 2016 John Wiley & Sons Ltd.
Theory and interpretation in qualitative studies from general practice: Why and how?
Malterud, Kirsti
2016-03-01
In this article, I want to promote theoretical awareness and commitment among qualitative researchers in general practice and suggest adequate and feasible theoretical approaches. I discuss different theoretical aspects of qualitative research and present the basic foundations of the interpretative paradigm. Associations between paradigms, philosophies, methodologies and methods are examined and different strategies for theoretical commitment presented. Finally, I discuss the impact of theory for interpretation and the development of general practice knowledge. A scientific theory is a consistent and soundly based set of assumptions about a specific aspect of the world, predicting or explaining a phenomenon. Qualitative research is situated in an interpretative paradigm where notions about particular human experiences in context are recognized from different subject positions. Basic theoretical features from the philosophy of science explain why and how this is different from positivism. Reflexivity, including theoretical awareness and consistency, demonstrates interpretative assumptions, accounting for situated knowledge. Different types of theoretical commitment in qualitative analysis are presented, emphasizing substantive theories to sharpen the interpretative focus. Such approaches are clearly within reach for a general practice researcher contributing to clinical practice by doing more than summarizing what the participants talked about, without trying to become a philosopher. Qualitative studies from general practice deserve stronger theoretical awareness and commitment than what is currently established. Persistent attention to and respect for the distinctive domain of knowledge and practice where the research deliveries are targeted is necessary to choose adequate theoretical endeavours. © 2015 the Nordic Societies of Public Health.
NASA Astrophysics Data System (ADS)
Nigmatullin, Raoul R.; Maione, Guido; Lino, Paolo; Saponaro, Fabrizio; Zhang, Wei
2017-01-01
In this paper, we suggest a general theory that enables to describe experiments associated with reproducible or quasi-reproducible data reflecting the dynamical and self-similar properties of a wide class of complex systems. Under complex system we understand a system when the model based on microscopic principles and suppositions about the nature of the matter is absent. This microscopic model is usually determined as ;the best fit" model. The behavior of the complex system relatively to a control variable (time, frequency, wavelength, etc.) can be described in terms of the so-called intermediate model (IM). One can prove that the fitting parameters of the IM are associated with the amplitude-frequency response of the segment of the Prony series. The segment of the Prony series including the set of the decomposition coefficients and the set of the exponential functions (with k = 1,2,…,K) is limited by the final mode K. The exponential functions of this decomposition depend on time and are found by the original algorithm described in the paper. This approach serves as a logical continuation of the results obtained earlier in paper [Nigmatullin RR, W. Zhang and Striccoli D. General theory of experiment containing reproducible data: The reduction to an ideal experiment. Commun Nonlinear Sci Numer Simul, 27, (2015), pp 175-192] for reproducible experiments and includes the previous results as a partial case. In this paper, we consider a more complex case when the available data can create short samplings or exhibit some instability during the process of measurements. We give some justified evidences and conditions proving the validity of this theory for the description of a wide class of complex systems in terms of the reduced set of the fitting parameters belonging to the segment of the Prony series. The elimination of uncontrollable factors expressed in the form of the apparatus function is discussed. To illustrate how to apply the theory and take advantage of its
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology.
Messner, Steven F
2015-06-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives-Situational Action Theory and Institutional Anomie Theory-that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally.
Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation
NASA Astrophysics Data System (ADS)
Frønsdal, Christian
Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.
NASA Astrophysics Data System (ADS)
Krommes, John A.; Hu, Genze
1993-11-01
The theory of Onsager symmetry is reconsidered from the point of view of its application to nonequilibrium, possibly turbulent steady states. A dynamical formalism based on correlation and response functions is used; understanding of its relationship to more conventional approaches based on entropy production enables one to resolve various confusions about the proper use of the theory, even near thermal equilibrium. Previous claims that ``kinematic'' flows must be excluded from considerations of Onsager symmetry are refuted by showing that suitably defined reversible and irreversible parts of the Onsager matrix separately obey the appropriate symmetry; fluctuating hydrodynamics serves as an example. It is shown that Onsager symmetries are preserved under arbitrary covariant changes of variables; the Weinhold metric is used as a fundamental tensor. Covariance is used to render moot the controversy over the proper choice of fluxes and forces in neoclassical plasma transport theory. The fundamental distinction between the fully contravariant Onsager matrix Lij and its mixed representation Lij is emphasized and used to explain why some previous workers have failed to find Onsager symmetry around turbulent steady states. The generalized Onsager theorem of Dufty and Rubí [Phys. Rev. A 36, 222 (1987)] is reviewed. An explicitly soluble Langevin problem is shown to violate Onsager's original symmetry but to obey the generalized theorem. The physical content of the generalized Onsager symmetry is discussed from the point of view of Nosé-Hoover dynamics. A set of extended Graham-Haken potential conditions are derived for Fokker-Planck models and shown to be consistent with the generalized Onsager relations. Finally, for quite general, possibly turbulent steady states it is argued that realizable Markovian statistical closures with underlying Langevin representations must also obey the generalized theorem. In the special case in which all state variables have even parity
A general theory of intertemporal decision-making and the perception of time.
Namboodiri, Vijay M K; Mihalas, Stefan; Marton, Tanya M; Hussain Shuler, Marshall G
2014-01-01
Animals and humans make decisions based on their expected outcomes. Since relevant outcomes are often delayed, perceiving delays and choosing between earlier vs. later rewards (intertemporal decision-making) is an essential component of animal behavior. The myriad observations made in experiments studying intertemporal decision-making and time perception have not yet been rationalized within a single theory. Here we present a theory-Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)-that explains a wide variety of behavioral observations made in intertemporal decision-making and the perception of time. Our theory postulates that animals make intertemporal choices to optimize expected reward rates over a limited temporal window which includes a past integration interval-over which experienced reward rate is estimated-as well as the expected delay to future reward. Using this theory, we derive mathematical expressions for both the subjective value of a delayed reward and the subjective representation of the delay. A unique contribution of our work is in finding that the past integration interval directly determines the steepness of temporal discounting and the non-linearity of time perception. In so doing, our theory provides a single framework to understand both intertemporal decision-making and time perception.
Gendered Responses to Serious Strain: The Argument for a General Strain Theory of Deviance.
Kaufman, Joanne M
2009-09-01
This paper expands and builds on newer avenues in research on gender and general strain theory (GST). I accomplish this by focusing on serious strains that are relevant for males and females, including externalizing and internalizing forms of negative emotions, and including multiple gendered deviant outcomes. Using the Add Health dataset, I find strong support for the impact of serious strains on both types of negative emotions and different forms of deviance for males and females. However, the experience of serious strain, emotionally and behaviorally, is gendered. Depressive symptoms are particularly important for all types of deviance by females. Including multiple types of deviant outcomes offers a fuller understanding of both similarities and differences by gender. These results support the utility of GST as a theory of deviance in general and support greater connections between GST, feminist theorizing, and the sociology of mental health.
NASA Astrophysics Data System (ADS)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Heinson, Graham
2016-12-01
A method using modified attenuation factor function is suggested to determine the parameters of the generalized Zener model approximating the attenuation factor function. This method is applied to constitute the poroviscoelastic model based on the effective Biot theory which considers the attenuative solid frame of reservoir. In the poroviscoelastic model, frequency-dependent bulk modulus and shear modulus of solid frame are represented by generalized Zener models. As an application, the borehole logging dispersion equations from Biot theory are extended to include effects from the intrinsic body attenuation in formation media in full-frequency range. The velocity dispersions of borehole guided waves are calculated to investigate the influence from attenuative bore fluid, attenuative solid frame of the formation and impermeable bore wall.
LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG)
NASA Astrophysics Data System (ADS)
Moffat, J. W.
2016-12-01
The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a = cS / GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M ≲ 10M⊙.
NASA Astrophysics Data System (ADS)
Carter, Brandon
2010-03-01
This is a reprinting of Part 2 of Brandon Carter’s lectures given at the 1972 Les Houches school on black holes, first published in a book of proceedings of that school in 1973, in which the author presents a general theory of stationary black holes. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. Several errors of the original text were corrected for this reprinting by the author. The reprinted article is accompanied by an editorial note written by Marek Abramowicz.
Quantum Bayesianism as the basis of general theory of decision-making.
Khrennikov, Andrei
2016-05-28
We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability-one the basic laws of classical probability theory. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hawk, J. D.
1975-01-01
A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hawk, J. D.
1975-01-01
A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.
Quantum Bayesianism as the basis of general theory of decision-making
2016-01-01
We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability—one the basic laws of classical probability theory. PMID:27091160
General theory of conical flows and its application to supersonic aerodynamics
NASA Technical Reports Server (NTRS)
Germain, Paul
1955-01-01
Points treated in this report are: homogeneous flows, the general study of conical flows with infinitesimal cone angles, the numerical or analogous methods for the study of flows flattened in one direction, and a certain number of results. A thorough consideration of the applications on conical flows and demonstration of how one may solve within the scope of linear theory, by combinations of conical flows, the general problems of the supersonic wing, taking into account dihedral and sweepback, and also fuselage and control surface effects.
Generalized Kubelka-Munk Theory - A Derivation And Extension From Radiative Transfer
NASA Astrophysics Data System (ADS)
Sandoval, Christopher
Kubelka-Munk (KM) theory is a broadly used simplification to the radiative transfer equation (RTE) that is solvable analytically for a restricted set of very simple problems. Despite this simplicity and popularity, KM theory has never had its theoretical basis formally established. In this work, we derive KM theory systematically from the radiative transfer equation (RTE) by application of the spectrally convergent double spherical harmonics method, of order one, and analysis of the resulting, transformed, system of equations in the positive- and negative-going fluxes. We call these the generalized Kubelka-Munk (gKM) equations, and they are able to account for general boundary sources and nonhomogeneous terms. Having established theoretical footing for KM theory, we extend gKM's four-flux method to higher dimensions, applying it to a Gaussian boundary source and demonstrating the method's range of validity. Finally, we examine the application of the gKM method to the vector radiative transport equation (vRTE), allowing for the modeling of sources with polarized light. These methods offer a low cost approximation to the solutions of the scalar and vector RTE's, which we validate through comparison with benchmark solutions of the transport equation.
The Elliott-Yafet theory of spin relaxation generalized for large spin-orbit coupling
Kiss, Annamária; Szolnoki, Lénard; Simon, Ferenc
2016-01-01
We generalize the Elliott-Yafet (EY) theory of spin relaxation in metals with inversion symmetry for the case of large spin-orbit coupling (SOC). The EY theory treats the SOC to the lowest order but this approach breaks down for metals of heavy elements (such as e.g. caesium or gold), where the SOC energy is comparable to the relevant band-band separation energies. The generalized theory is presented for a four-band model system without band dispersion, where analytic formulae are attainable for arbitrary SOC for the relation between the momentum- and spin-relaxation rates. As an extended description, we also consider an empirical pseudopotential approximation where SOC is deduced from the band potential (apart from an empirical scaling constant) and the spin-relaxation rate can be obtained numerically. Both approaches recover the usual EY theory for weak SOC and give that the spin-relaxation rate approaches the momentum-relaxation rate in the limit of strong SOC. We argue that this limit is realized in gold by analyzing spin relaxation data. A calculation of the g-factor shows that the empirical Elliott-relation, which links the g-factor and spin-relaxation rate, is retained even for strong SOC. PMID:26943483
The Elliott-Yafet theory of spin relaxation generalized for large spin-orbit coupling
NASA Astrophysics Data System (ADS)
Kiss, Annamária; Szolnoki, Lénard; Simon, Ferenc
2016-03-01
We generalize the Elliott-Yafet (EY) theory of spin relaxation in metals with inversion symmetry for the case of large spin-orbit coupling (SOC). The EY theory treats the SOC to the lowest order but this approach breaks down for metals of heavy elements (such as e.g. caesium or gold), where the SOC energy is comparable to the relevant band-band separation energies. The generalized theory is presented for a four-band model system without band dispersion, where analytic formulae are attainable for arbitrary SOC for the relation between the momentum- and spin-relaxation rates. As an extended description, we also consider an empirical pseudopotential approximation where SOC is deduced from the band potential (apart from an empirical scaling constant) and the spin-relaxation rate can be obtained numerically. Both approaches recover the usual EY theory for weak SOC and give that the spin-relaxation rate approaches the momentum-relaxation rate in the limit of strong SOC. We argue that this limit is realized in gold by analyzing spin relaxation data. A calculation of the g-factor shows that the empirical Elliott-relation, which links the g-factor and spin-relaxation rate, is retained even for strong SOC.
NASA Astrophysics Data System (ADS)
Gungordu, Erkut
2000-11-01
Generalized Contributon Theory has been implemented for three dimensional (x-y-z) cartesian geometry. The TORT 3D neutron/photon transport code is used for the calculation of the forward and adjoint directional fluxes and these are used for the generation of the contribution theory parameters. A new 3D contribution code has been developed for the generation of the contributon theory parameters. The new 3D contributon code is also capable of doing 2D calculations by using the data generated by the TORT code with its 2D calculational option. The integral response calculations of the contributon code are verified by the integral response conservation theorem of spatial channel theory using a 3D, eight-group symmetric dipole problem. The slowing down theory calculations of the contributon code are also verified using the slowing down equation with the same 3D problem. The spatial channel theory calculations are illustrated by a 3D, eight-group unsymmetrical dipole problem. This 3D geometry contains an irregular streaming gap and a shield region which is placed in front of the detector. The visualizations of the integral contributon flux show the important spatial regions of the response flow. The streamlines drawn by a quantitative streamline distribution technique reveals the spatial concentrations of the integral response flow. Quantitative streamline visualizations with three different 3D, eight-group unsymmetrical dipole problems very clearly show that the response flows through the least resistant regions of the medium. The volumetric color-contour visualizations of the response flow from different perspectives are also used to illustrate quantitatively the spatial response flow magnitude. The energy dependent processes of the response flow are investigated by contributon slowing down theory. The same 3D, eight-group unsymmetrical dipole problem prepared for the spatial channel theory applications is used for the numerical interpretation of the slowing down theory
Nonlinear Viscoelastic Analysis of Orthotropic Beams Using a General Third-Order Theory
2012-06-20
continuous functions for all the primary variables, thus simplifying the implementation . A two-point recur- rence scheme is developed such that history from...Keywords: Finite element model Spectral/hp approximations General third-order beam theory Viscoelastic behavior von Kármán nonlinearity a b s t r a c t...The fully discretized finite element equations are obtained by approximating the convolution integrals using a trapezoidal rule. A two-point recurrence
Topological String Models for the Generalized Two-Dimensional Yang-Mills Theories
NASA Astrophysics Data System (ADS)
Sugawara, Y.
1996-06-01
We discuss some aspects of the large N expansions of the generalized two-dimensional Yang-Mills theories (gYM2), and especially, clarify the geometrical meanings of the higher Casimirs. Based on these results we attempt to extend the Cordes-Moore-Ramgoolam topological string model describing the ordinary YM2 to those describing gYM2. The concept of ``deformed gravitational descendants'' will be introduced for this purpose.
Strong-field effects and time asymmetry in general relativity and in bimetric gravitation theory
NASA Astrophysics Data System (ADS)
Damour, Thibault
1984-10-01
The concepts underlying our present theoretical understanding of the radiative two-condensed-body problem in general relativity and in bimetric gravitation theory are critically reviewed. The relevance of the 1935 Einstein-Rosen “bridge” article is emphasized. The possibility (first suggested by N. Rosen, for the linearized approximation) of extending to gravity the Wheeler-Feynman time-symmetric approach is questioned.
Generalization of the Skyrme model for the unified theory of pions and nucleons
Kindo, T.; Yukawa, T.
1988-09-01
Skyrme's Lagrangian is generalized within the pion field alone to include all possible terms which appear in the chiral perturbation theory up to fourth order in the field derivative and the symmetry-breaking mass. The parameters entering in the Lagrangian are fixed from the low-energy pion properties. Adding a sixth-order term to the Lagrangian for stabilization the hedgehog soliton is quantized semiclassically. Static properties of the soliton reproduce those of the nucleon with fairly good accuracy.
Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction
NASA Astrophysics Data System (ADS)
Goutéraux, Blaise; Smolic, Jelena; Smolic, Milena; Skenderis, Kostas; Taylor, Marika
2012-01-01
We show that a class of Einstein-Maxwell-Dilaton (EMD) theories are re- lated to higher dimensional AdS-Maxwell gravity via a dimensional reduction over com- pact Einstein spaces combined with continuation in the dimension of the compact space to non-integral values (`generalized dimensional reduction'). This relates (fairly complicated) black hole solutions of EMD theories to simple black hole/brane solutions of AdS-Maxwell gravity and explains their properties. The generalized dimensional reduction is used to infer the holographic dictionary and the hydrodynamic behavior for this class of theories from those of AdS. As a specific example, we analyze the case of a black brane carrying a wave whose universal sector is described by gravity coupled to a Maxwell field and two neutral scalars. At thermal equilibrium and finite chemical potential the two operators dual to the bulk scalar fields acquire expectation values characterizing the breaking of con- formal and generalized conformal invariance. We compute holographically the first order transport coefficients (conductivity, shear and bulk viscosity) for this system.
Cosmological self-tuning and local solutions in generalized Horndeski theories
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Esposito-Farèse, Gilles
2017-01-01
We study both the cosmological self-tuning and the local predictions (inside the Solar System) of the most general shift-symmetric beyond Horndeski theory. We first show that the cosmological self-tuning is generic in this class of theories: By adjusting a mass parameter entering the action, a large bare cosmological constant can effectively be reduced to a small observed one. Requiring then that the metric should be close enough to the Schwarzschild solution in the Solar System, to pass the experimental tests of general relativity, and taking into account the renormalization of Newton's constant, we select a subclass of models which presents all desired properties: It is able to screen a big vacuum energy density, while predicting an exact Schwarzschild-de Sitter solution around a static and spherically symmetric source. As a by-product of our study, we identify a general subclass of beyond Horndeski theory for which regular self-tuning black hole solutions exist, in the presence of a time-dependent scalar field. We discuss possible future development of the present work.
Ratio of shear viscosity to entropy density in generalized theories of gravity
Brustein, Ram; Medved, A. J. M.
2009-01-15
Near the horizon of a black brane solution in anti-de Sitter space, the long-wavelength fluctuations of the metric exhibit hydrodynamic behavior. For Einstein's theory, the ratio of the shear viscosity of near-horizon metric fluctuations {eta} to the entropy per unit of transverse volume s is {eta}/s=1/4{pi}. We propose that, in generalized theories of gravity, this ratio is given by the ratio of two effective gravitational couplings and can be different than 1/4{pi}. Our proposal confirms that {eta}/s is equal to 1/4{pi} for any theory that can be transformed into Einstein's theory, such as F(R) gravity. Our proposal also implies that matter interactions--except those including explicit or implicit factors of the Riemann tensor--will not modify {eta}/s. The proposed formula reproduces, in a very simple manner, some recently found results for Gauss-Bonnet gravity. We also make a prediction for {eta}/s in Lovelock theories of any order or dimensionality.
Generalized local frame transformation theory for Rydberg atoms in external fields
NASA Astrophysics Data System (ADS)
Giannakeas, Panagiotis; Robicheaux, Francis; Greene, Chris H.
2016-05-01
In this work a rigorous theoretical framework is developed generalizing the local frame transformation theory (GLFT) and it is applied to the photoionization spectra of Rydberg atoms in an external electric field. The resulting development is compared with previous theoretical treatments, including the first version of local frame transformation theory, developed initially by Fano and Harmin. Our revised version of the theory yields non-trivial corrections because we now take into account the full Hilbert space on the energy shell without adopting truncations utilized by the original Fano-Harmin theory. The semi-analytical calculations from GLFT approach are compared with ab initio numerical simulations yielding errors of few tens of MHz whereas the errors in the original Fano-Harmin theory are one or two orders of magnitude larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet modern experimental standards. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award numbers DE-SC0010545 (for PG and CHG) and DE-SC0012193 (for FR).
Generalized local-frame-transformation theory for excited species in external fields
NASA Astrophysics Data System (ADS)
Giannakeas, P.; Greene, Chris H.; Robicheaux, F.
2016-07-01
A rigorous theoretical framework is developed for a generalized local-frame-transformation theory (GLFT). The GLFT is applicable to the following systems: Rydberg atoms or molecules in an electric field and negative ions in any combination of electric and/or magnetic fields. A first test application to the photoionization spectra of Rydberg atoms in an external electric field demonstrates dramatic improvement over the first version of the local-frame-transformation theory developed initially by U. Fano [Phys. Rev. A 24, 619 (1981), 10.1103/PhysRevA.24.619] and D. A. Harmin [Phys. Rev. A 26, 2656 (1982), 10.1103/PhysRevA.26.2656]. This revised GLFT theory yields nontrivial corrections because it now includes the full on-shell Hilbert space without adopting the truncations in the original theory. Comparisons of the semianalytical GLFT Stark spectra with ab initio numerical simulations yield errors in the range of a few tens of MHz, an improvement over the original Fano-Harmin theory, whose errors are 10-100 times larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet most modern experimental standards.
Wang, Zimeng; Giammar, Daniel E
2013-05-07
The inclusion of multidentate adsorption reactions has improved the ability of surface complexation models (SCM) to predict adsorption to mineral surfaces, but variation in the mass action expression for these reactions has caused persistent ambiguity and occasional mishandling. The principal differences are the exponent (α) for the activity of available surface sites and the inclusion of surface site activity on a molar concentration versus fraction basis. Exemplified by bidentate surface complexation, setting α at two within the molar-based framework will cause critical errors in developing a self-consistent model. Despite the publication of several theoretical discussions regarding appropriate approaches, mishandling and confusion has persisted in the model applications involving multidentate surface complexes. This review synthesizes the theory of modeling multidentate surface complexes in a style designed to enable improvements in SCM practice. The implications of selecting an approach for multidentate SCM are illustrated with a previously published data set on U(VI) adsorption to goethite. To improve the translation of theory into improved practice, the review concludes with suggestions for handling multidentate reactions and publishing results that can avoid ambiguity or confusion. Although most discussion is exemplified by the generic bidentate case, the general issues discussed are relevant to higher denticity adsorption.
General variational many-body theory with complete self-consistency for trapped bosonic systems
Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.
2006-06-15
In this work we develop a complete variational many-body theory for a system of N trapped bosons interacting via a general two-body potential. The many-body solution of this system is expanded over orthogonal many-body basis functions (configurations). In this theory both the many-body basis functions and the respective expansion coefficients are treated as variational parameters. The optimal variational parameters are obtained self-consistently by solving a coupled system of noneigenvalue--generally integro-differential--equations to get the one-particle functions and by diagonalizing the secular matrix problem to find the expansion coefficients. We call this theory multiconfigurational Hartree theory for bosons or MCHB(M), where M specifies explicitly the number of one-particle functions used to construct the configurations. General rules for evaluating the matrix elements of one- and two-particle operators are derived and applied to construct the secular Hamiltonian matrix. We discuss properties of the derived equations. We show that in the limiting cases of one configuration the theory boils down to the well-known Gross-Pitaevskii and the recently developed multi-orbital mean fields. The invariance of the complete solution with respect to unitary transformations of the one-particle functions is utilized to find the solution with the minimal number of contributing configurations. In the second part of our work we implement and apply the developed theory. It is demonstrated that for any practical computation where the configurational space is restricted, the description of trapped bosonic systems strongly depends on the choice of the many-body basis set used, i.e., self-consistency is of great relevance. As illustrative examples we consider bosonic systems trapped in one- and two-dimensional symmetric and asymmetric double well potentials. We demonstrate that self-consistency has great impact on the predicted physical properties of the ground and excited states
NASA Astrophysics Data System (ADS)
Colosi, Daniele; Dohse, Max
2017-04-01
We use the General Boundary Formulation (GBF) of Quantum Field Theory to compute the S-matrix for a general interacting scalar field in a wide class of curved spacetimes. As a by-product we obtain the general expression of the Feynman propagator for the scalar field, defined in the following three types of spacetime regions. First, there are the familiar interval regions (e.g. a time interval times all of space). Second, we consider the rod hypercylinder regions (all of time times a solid ball in space). Third, the tube hypercylinders (all of time times a solid shell in space) are related to interval regions, and result from removing a smaller rod from a concentric larger one. Using the Schrödinger representation for the quantum states combined with Feynman's path integral quantization, we obtain the S-matrix as the asymptotic limit of the GBF amplitude associated with finite interval, and rod regions. For interval regions, whose boundary consists of two Cauchy surfaces, the asymptotic GBF-amplitude becomes the standard S-matrix. Our work generalizes previous results (obtained in Minkowski, Rindler, de Sitter, and Anti de Sitter spacetimes) to a wide class of curved spacetimes.
Zhang, Jinwu; Liu, Jianhong; Wang, Xin; Zou, Anquan
2017-08-01
General Strain Theory delineates different types of strain and intervening processes from strain to deviance and crime. In addition to explaining individual strain-crime relationship, a contextualized version of general strain theory, which is called the Macro General Strain Theory, has been used to analyze how aggregate variables influence aggregate and individual deviance and crime. Using a sample of 1,852 students (Level 1) nested in 52 schools (Level 2), the current study tests the Macro General Strain Theory using Chinese data. The results revealed that aggregate life stress and strain have influences on aggregate and individual deviance, and reinforce the individual stress-deviance association. The current study contributes by providing the first Macro General Strain Theory test based on Chinese data and offering empirical evidence for the multilevel intervening processes from strain to deviance. Limitations and future research directions are discussed.
Expressing Disagreement in ELF Business Negotiations: Theory and Practice
ERIC Educational Resources Information Center
Bjorge, Anne Kari
2012-01-01
English spoken by those who do not share their first language is increasingly referred to as English lingua franca (ELF). For ELF speakers, it can be a challenge to express conflicting opinions, as a common language and/or cultural background cannot be taken for granted. This is recognized by writers of business English textbooks, who provide…
Towards a general theory of neural computation based on prediction by single neurons.
Fiorillo, Christopher D
2008-10-01
Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise"). A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of undifferentiated neurons
The Present Situation in Quantum Theory and its Merging with General Relativity
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2017-08-01
We discuss the problems of quantum theory (QT) complicating its merging with general relativity (GR). QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics (QM) and quantum field theory (QFT) are the most widely known (but, e.g., Bohmian mechanics is also a part of QT). The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this is the main point of the paper: it is meaningless to try to unify QFT so heavily suffering of infinities with GR. We also highlight difficulties of the QFT-treatment of entanglement. We compare the QFT and QM based measurement theories by presenting both theoretical and experimental viewpoints. Then we discuss two basic mathematical constraints of both QM and QFT, namely, the use of real (and, hence, complex) numbers and the Hilbert state space. We briefly present non-archimedean and non-hilbertian approaches to QT and their consequences. Finally, we claim that, in spite of the Bell theorem, it is still possible to treat quantum phenomena on the basis of a classical-like causal theory. We present a random field model generating the QM and QFT formalisms. This emergence viewpoint can serve as the basis for unification of novel QT (may be totally different from presently powerful QM and QFT) and GR. (It may happen that the latter would also be revolutionary modified.)
A general theory of intertemporal decision-making and the perception of time
Namboodiri, Vijay M. K.; Mihalas, Stefan; Marton, Tanya M.; Hussain Shuler, Marshall G.
2014-01-01
Animals and humans make decisions based on their expected outcomes. Since relevant outcomes are often delayed, perceiving delays and choosing between earlier vs. later rewards (intertemporal decision-making) is an essential component of animal behavior. The myriad observations made in experiments studying intertemporal decision-making and time perception have not yet been rationalized within a single theory. Here we present a theory—Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)—that explains a wide variety of behavioral observations made in intertemporal decision-making and the perception of time. Our theory postulates that animals make intertemporal choices to optimize expected reward rates over a limited temporal window which includes a past integration interval—over which experienced reward rate is estimated—as well as the expected delay to future reward. Using this theory, we derive mathematical expressions for both the subjective value of a delayed reward and the subjective representation of the delay. A unique contribution of our work is in finding that the past integration interval directly determines the steepness of temporal discounting and the non-linearity of time perception. In so doing, our theory provides a single framework to understand both intertemporal decision-making and time perception. PMID:24616677
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S; Murphy, Patrick C.
2014-01-01
Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.
Rakoczy, Hannes; Harder-Kasten, Antje; Sturm, Lioba
2012-02-01
Following up on existing, mixed findings in the literature on social cognition in old age different aspects of theory of mind were investigated in younger and older adults. In line with some previous findings, older participants--though matched with the younger ones on crystallized abilities--performed significantly worse both on tasks requiring the ascription of complex intentional attitudes to story protagonists and on tasks of recognizing subtle emotional expressions from video displays. Control analyses showed, however, that these deficits are partly explained by domain-general declines in processing speed and executive function. The implications of these findings for the nature of social cognition and its fate in old age are discussed. ©2011 The British Psychological Society.
Uncertainty Quantification of Composite Laminate Damage with the Generalized Information Theory
J. Lucero; F. Hemez; T. Ross; K.Kline; J.Hundhausen; T. Tippetts
2006-05-01
This work presents a survey of five theories to assess the uncertainty of projectile impact induced damage on multi-layered carbon-epoxy composite plates. Because the types of uncertainty dealt with in this application are multiple (variability, ambiguity, and conflict) and because the data sets collected are sparse, characterizing the amount of delamination damage with probability theory alone is possible but incomplete. This motivates the exploration of methods contained within a broad Generalized Information Theory (GIT) that rely on less restrictive assumptions than probability theory. Probability, fuzzy sets, possibility, and imprecise probability (probability boxes (p-boxes) and Dempster-Shafer) are used to assess the uncertainty in composite plate damage. Furthermore, this work highlights the usefulness of each theory. The purpose of the study is not to compare directly the different GIT methods but to show that they can be deployed on a practical application and to compare the assumptions upon which these theories are based. The data sets consist of experimental measurements and finite element predictions of the amount of delamination and fiber splitting damage as multilayered composite plates are impacted by a projectile at various velocities. The physical experiments consist of using a gas gun to impact suspended plates with a projectile accelerated to prescribed velocities, then, taking ultrasound images of the resulting delamination. The nonlinear, multiple length-scale numerical simulations couple local crack propagation implemented through cohesive zone modeling to global stress-displacement finite element analysis. The assessment of damage uncertainty is performed in three steps by, first, considering the test data only; then, considering the simulation data only; finally, performing an assessment of total uncertainty where test and simulation data sets are combined. This study leads to practical recommendations for reducing the uncertainty and
Generalized Hybrid-Orbital Method for Combining Density Functional Theory with Molecular Mechanicals
Pu, Jingzhi; Gao, Jiali; Truhlar, Donald G.
2015-01-01
The generalized hybrid orbital (GHO) method has previously been formulated for combining molecular mechanics with various levels of quantum mechanics, in particular semiempirical neglect of diatomic differential overlap theory, ab initio Hartree–Fock theory, and self-consistent charge density functional tight-binding theory. To include electron-correlation effects accurately and efficiently in GHO calculations, we extend the GHO method to density functional theory in the generalized-gradient approximation and hybrid density functional theory (denoted by GHO-DFT and GHO-HDFT, respectively) using Gaussian-type orbitals as basis functions. In the proposed GHO-(H)DFT formalism, charge densities in auxiliary hybrid orbitals are included to calculate the total electron density. The orthonormality constraints involving the auxiliary Kohn–Sham orbitals are satisfied by carrying out the hybridization in terms of a set of Löwdin symmetrically orthogonalized atomic basis functions. Analytical gradients are formulated for GHO-(H)DFT by incorporating additional forces associated with GHO basis transformations. Scaling parameters are introduced for some of the one-electron integrals and are optimized to obtain the correct charges and geometry near the QM/MM boundary region. The GHO-(H)DFT method based on the generalized gradient approach (GGA) (BLYP and mPWPW91) and HDFT methods (B3 LYP, mPW1PW91, and MPW1K) is tested—for geometries and atomic charges—against a set of small molecules. The following quantities are tested: 1) the C–C stretch potential in ethane, 2) the torsional barrier for internal rotation around the central C–C bond in n-butane, 3) proton affinities for a set of alcohols, amines, thiols, and acids, 4) the conformational energies of alanine dipeptide, and 5) the barrier height of the hydrogenatom transfer between n-C4H10 and n-C4H9, where the reaction center is described at the MPW1K/6–31G(d) level of theory. PMID:16086343
A generalized non-local optical response theory for plasmonic nanostructures.
Mortensen, N A; Raza, S; Wubs, M; Søndergaard, T; Bozhevolnyi, S I
2014-05-02
Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory explains surprisingly well both the frequency shifts and size-dependent damping in individual metallic nanoparticles as well as the observed broadening of the crossover regime from bonding-dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a classical broadening mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene.
Cosmology in generalized Horndeski theories with second-order equations of motion
NASA Astrophysics Data System (ADS)
Kase, Ryotaro; Tsujikawa, Shinji
2014-08-01
We study the cosmology of an extended version of Horndeski theories with second-order equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background. In addition to a dark energy field χ associated with the gravitational sector, we take into account multiple scalar fields ϕI (I =1,2,…,N-1) characterized by the Lagrangians P(I)(XI) with XI=∂μϕI∂μϕI. These additional scalar fields can model the perfect fluids of radiation and nonrelativistic matter. We derive propagation speeds of scalar and tensor perturbations as well as conditions for the absence of ghosts. The theories beyond Horndeski induce nontrivial modifications to all the propagation speeds of N scalar fields, but the modifications to those for the matter fields ϕI are generally suppressed relative to that for the dark energy field χ. We apply our results to the covariantized Galileon with an Einstein-Hilbert term in which partial derivatives of the Minkowski Galileon are replaced by covariant derivatives. Unlike the covariant Galileon with second-order equations of motion in general space-time, the scalar propagation speed square cs12 associated with the field χ becomes negative during the matter era for late-time tracking solutions, so the two Galileon theories can be clearly distinguished at the level of linear cosmological perturbations.
Bays, Harold
2005-05-01
Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics.
Transverse vibrations of shear-deformable beams using a general higher order theory
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1993-01-01
A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.
The Mössbauer rotor experiment and the general theory of relativity
NASA Astrophysics Data System (ADS)
Corda, Christian
2016-05-01
In the recent paper Yarman et al. (2015), the authors claim that our general relativistic analysis in Corda (2015), with the additional effect due to clock synchronization, cannot explain the extra energy shift in the Mössbauer rotor experiment. In their opinion, the extra energy shift due to the clock synchronization is of order 10-13 and cannot be detected by the detectors of γ-quanta which are completely insensitive to such a very low order of energy shifts. In addition, they claim to have shown that the extra energy shift can be explained in the framework of the so-called YARK gravitational theory. They indeed claim that such a theory should replace the general theory of relativity (GTR) as the correct theory of gravity. In this paper we show that the authors Yarman et al. (2015) had a misunderstanding of our theoretical analysis in Corda (2015). In fact, in that paper we have shown that electromagnetic radiation launched by the central source of the apparatus is redshifted of a quantity 0 . 6 ¯ v2/c2 when arriving to the detector of γ-quanta. This holds independently by the issue that the original photons are detected by the resonant absorber which, in turns, triggers the γ-quanta which arrive to the final detector. In other words, the result in Corda (2015) was a purely theoretical result that is completely independent of the way the experiment is concretely realized. Now, we show that, with some clarification, the results of Corda (2015) hold also when one considers the various steps of the concrete detection. In that case, the resonant absorber detects the energy shift and the separated detector of γ-quanta merely measures the resulting intensity. In addition, we also show that the YARK gravitational theory is in macroscopic contrast with geodesic motion and, in turn, with the weak equivalence principle (WEP). This is in contrast with another claim of the authors of Yarman et al. (2015), i.e. that the YARK gravitational theory arises from the WEP
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1989-01-01
The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.
Sex-specific demography and generalization of the Trivers-Willard theory
NASA Astrophysics Data System (ADS)
Schindler, Susanne; Gaillard, Jean-Michel; Grüning, André; Neuhaus, Peter; Traill, Lochran W.; Tuljapurkar, Shripad; Coulson, Tim
2015-10-01
The Trivers-Willard theory proposes that the sex ratio of offspring should vary with maternal condition when it has sex-specific influences on offspring fitness. In particular, mothers in good condition in polygynous and dimorphic species are predicted to produce an excess of sons, whereas mothers in poor condition should do the opposite. Despite the elegance of the theory, support for it has been limited. Here we extend and generalize the Trivers-Willard theory to explain the disparity between predictions and observations of offspring sex ratio. In polygynous species, males typically have higher mortality rates, different age-specific reproductive schedules and more risk-prone life history tactics than females; however, these differences are not currently incorporated into the Trivers-Willard theory. Using two-sex models parameterized with data from free-living mammal populations with contrasting levels of sex differences in demography, we demonstrate how sex differences in life history traits over the entire lifespan can lead to a wide range of sex allocation tactics, and show that correlations between maternal condition and offspring sex ratio alone are insufficient to conclude that mothers adaptively adjust offspring sex ratio.
General results for higher spin Wilson lines and entanglement in Vasiliev theory
Hegde, Ashwin; Kraus, Per; Perlmutter, Eric
2016-01-28
Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includes a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical W_{N} vacuum block, and our results provide an explicit result for this object.
[Review of studies on generalized self-efficacy and the explanatory potential of epigenetic theory].
Miyoshi, Akiko; Ono, Hisashi
2011-02-01
In this article, we review studies of generalized self-efficacy (GSE) involving the characteristics, measurement, changes, and formation of GSE. We discuss controversial issues regarding developmental changes in GSE, such as the age at which GSE develops and becomes established, and its causal direction, i.e., does task-specific self-efficacy have an effect on GSE, or does GSE have an effect on task-specific self-efficacy. We suggest that studies of GSE should be designed to address these questions. Since it is possible to study the long-term development of GSE using epigenetic theory, we suggest that this theory should be the theoretical framework for GSE studies. GSE studies would also benefit from consideration of the theory of competence (concept of virtue) based on the perspective of healthy ego-development. Moreover, not only positive aspects of GSE, but also negative aspects, such as over-aspiration, should be investigated. We conclude that multifaceted studies of GSE based on theories of personality development should be undertaken.
General results for higher spin Wilson lines and entanglement in Vasiliev theory
Hegde, Ashwin; Kraus, Per; Perlmutter, Eric
2016-01-28
Here, we develop tools for the efficient evaluation of Wilson lines in 3D higher spin gravity, and use these to compute entanglement entropy in the hs[λ ] Vasiliev theory that governs the bulk side of the duality proposal of Gaberdiel and Gopakumar. Our main technical advance is the determination of SL(N) Wilson lines for arbitrary N, which, in suitable cases, enables us to analytically continue to hs[λ ] via N→ -λ. We then apply this result to compute various quantities of interest, including entanglement entropy expanded perturbatively in the background higher spin charge, chemical potential, and interval size. This includesmore » a computation of entanglement entropy in the higher spin black hole of the Vasiliev theory. Our results are consistent with conformal field theory calculations. We also provide an alternative derivation of the Wilson line, by showing how it arises naturally from earlier work on scalar correlators in higher spin theory. The general picture that emerges is consistent with the statement that the SL(N) Wilson line computes the semiclassical WN vacuum block, and our results provide an explicit result for this object.« less
Propagation of gravitational waves in the generalized tensor-vector-scalar theory
Sagi, Eva
2010-03-15
Efforts are underway to improve the design and sensitivity of gravitational wave detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet-undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more mixed longitudinal-transverse modes and two trace modes, of which at least one has longitudinal polarization. Additionally, the propagation speeds are different from the speed of light.
NASA Astrophysics Data System (ADS)
Zhou, Chenyi; Guo, Hong
2017-01-01
We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.
Generalization of Wertheim's theory for the assembly of various types of rings.
Tavares, J M; Almarza, N G; Telo da Gama, M M
2015-08-07
We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by εAA and by εAB ≡ rεAA, respectively. The angle θ between the 2 A-patches on each particle is fixed at 60°, 90° or 120°. For values of r below 1/2 and above a threshold rth(θ) the models exhibit a phase diagram with two critical points. Both theory and simulation predict that rth increases when θ decreases. We show that the mechanism that prevents phase separation for models with decreasing values of θ is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings (loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of θ, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
Time-dependent current-density functional theory for generalized open quantum systems.
Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán
2009-06-14
In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.
Pfalzgraff, William C; Kelly, Aaron; Markland, Thomas E
2015-12-03
The development of methods that can efficiently and accurately treat nonadiabatic dynamics in quantum systems coupled to arbitrary atomistic environments remains a significant challenge in problems ranging from exciton transport in photovoltaic materials to electron and proton transfer in catalysis. Here we show that our recently introduced MF-GQME approach, which combines Ehrenfest mean field theory with the generalized quantum master equation framework, is able to yield quantitative accuracy over a wide range of charge-transfer regimes in fully atomistic environments. This is accompanied by computational speed-ups of up to 3 orders of magnitude over a direct application of Ehrenfest theory. This development offers the opportunity to efficiently investigate the atomistic details of nonadiabatic quantum relaxation processes in regimes where obtaining accurate results has previously been elusive.
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology
Messner, Steven F.
2016-01-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives—Situational Action Theory and Institutional Anomie Theory—that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally. PMID:27087864
General contact mechanics theory for randomly rough surfaces with application to rubber friction.
Scaraggi, M; Persson, B N J
2015-12-14
We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic, or viscoelastic and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interface separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for the classical case of a rubber block sliding on a road surface. We find that with increasing sliding speed, the influence of the roughness on the rubber block decreases to the extent that only the roughness of the stiff counter face needs to be considered.
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen
2004-08-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at {Omicron}(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.
New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory
Kao, C.-W.; Pasquini, Barbara; Vanderhaeghen, Marc
2004-12-01
We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering at O(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low-energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the virtual Compton scattering amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double-polarization experiments which allow one to access these spin-flip GPs of the nucleon.
Hydrogen Dissociation in Generalized Hartree-Fock Theory: Breaking the diatomic bond
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Masood, Samina; Tymczak, Cj
Generalized Hartree Fock theory predicts molecular Hydrogen dissociation without correlation. A variational Gaussian-Sinc linear superposition is the basis of 50 calculations with 3-4 significant digits of quality. The spin singlet covalent bond spontaneously breaks into a pair of uncorrelated doublets at atomic separation of 1.22 Angstroms. Quantum spin numbers and energetic comparison with Configuration Interaction theory--correlation--point to a first order phase transition in the molecular Hydrogen bond without correlation. Welch Foundation (Grant J-1675), the ARO (Grant W911Nf-13-1-0162), the Texas Southern University High Performance Computing Center (http:/hpcc.tsu.edu/; Grant PHY-1126251) and NSF-CREST CRCN project (Grant HRD-1137732).
A generalized theory for the design of contraction cones and other low speed ducts
NASA Technical Reports Server (NTRS)
Barger, R. L.; Bowen, J. T.
1972-01-01
A generalization of the Tsien method of contraction cone design is described. The design velocity distribution is expressed in such a form that the required high order derivatives can be obtained by recursion rather than by numerical or analytic differentiation. The method is applicable to the design of diffusers and converging-diverging ducts as well as contraction cones. The computer program is described and a FORTRAN listing of the program is provided.
Cartographic generalization of urban street networks based on gravitational field theory
NASA Astrophysics Data System (ADS)
Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei
2014-05-01
The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.
Information theory, gene expression, and combinatorial regulation: a quantitative analysis.
Jost, Jürgen; Scherrer, Klaus
2014-03-01
According to a functional definition of the term "gene", a protein-coding gene corresponds to a polypeptide and, hence, a coding sequence. It is therefore as such not yet present at the DNA level, but assembled from possibly heterogeneous pieces in the course of RNA processing. Assembly and regulation of genes require, thus, information about when and in which quantity specific polypeptides are to be produced. To assess this, we draw upon precise biochemical data. On the basis of our conceptual framework, we also develop formal models for the coordinated expression of specific sets of genes through the interaction of transcripts and mRNAs and with proteins via a precise putative regulatory code. Thus, the nucleotides in transcripts and mRNA are not only arranged into amino acid-coding triplets, but at the same time may participate in regulatory oligomotifs that provide binding sites for specific proteins. We can then quantify and compare product and regulatory information involved in gene expression and regulation.
Thermo-mechanical buckling analysis of FGM plate using generalized plate theory
NASA Astrophysics Data System (ADS)
Sharma, Kanishk; Kumar, Dinesh; Gite, Anil
2016-05-01
This paper investigates the thermo-mechanical buckling behavior of simply-supported FGM plate under the framework of generalized plate theory (GPT), which includes classical plate theory (CPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) as special cases. The governing equations for FGM plate under thermal and mechanical loading conditions are derived from the principle of virtual displacements and Navier-type solution is assumed for simply supported boundary condition. The efficiency and applicability of presented methodology is illustrated by considering various examples of thermal and mechanical buckling of FGM plates. The closed form solutions in the form of critical thermal and mechanical buckling loads, predicted by CPT, FSDT and HSDT are compared for different side-to-thickness of FGM plate. Subsequently, the effect of material gradation profile on critical buckling parameters is examined by evaluating the buckling response for a range of power law indexes. The effect of geometrical parameters on mechanical buckling of FGM plate under uni-axial and bi-axial loading conditions are also illustrated by calculating the critical load for various values of slenderness ratios. Furthermore a comparative analysis of critical thermal buckling loads of FGM plate for different temperature profiles is also presented. It is identified that all plate theories predicted approximately same critical buckling loads and critical buckling temperatures for thin FGM plate, however for thick FGM plates, CPT overestimates the critical buckling parameters. Moreover the critical buckling loads and critical buckling temperatures of FGM plate are found to be significantly lower than the corresponding homogenous isotropic ceramic plate (n=0).
Revisiting observables in generally covariant theories in the light of gauge fixing methods
Pons, J. M.; Salisbury, D. C.; Sundermeyer, K. A.
2009-10-15
We derive for generally covariant theories the generic dependency of observables on the original fields, corresponding to coordinate-dependent gauge fixings. This gauge choice is equivalent to a choice of intrinsically defined coordinates accomplished with the aid of spacetime scalar fields. With our approach we make full contact with, and give a new perspective to, the 'evolving constants of motion' program. We are able to directly derive generic properties of observables, especially their dynamics and their Poisson algebra in terms of Dirac brackets, extending earlier results in the literature. We also give a new interpretation of the observables as limits of canonical maps.
General N=1 supersymmetric flux vacua of massive type IIA string theory.
Behrndt, Klaus; Cvetic, Mirjam
2005-07-08
We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.
Bianchi type-II universe with wet dark fluid in general theory of relativity
NASA Astrophysics Data System (ADS)
Mahanta, Chandra Rekha; Sheikh, Azizur Rahman
2017-09-01
In this paper, dark energy models of the universe filled with wet dark fluid are constructed in the frame work of LRS Bianchi type-II space-time in General Theory of Relativity. A new equation of state modeled on the equation of state p = γ ( ρ - ρ_{*} ), which can describe liquid including water, is used. The exact solutions of Einstein's field equations are obtained in quadrature form and the models corresponding to the cases γ = 0 and γ = 1 are discussed in details.
Vortex creep and the internal temperature of neutron stars. I - General theory
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.
1984-01-01
The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.