Sample records for expression level increased

  1. The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells.

    PubMed

    Nagaya, Shingo; Kawamura, Kazue; Shinmyo, Atsuhiko; Kato, Ko

    2010-02-01

    To express a foreign gene in plants effectively, a good expression system is required. Here we describe the identification of a transcriptional terminator that supports increased levels of expression. The terminators of several Arabidopsis genes were examined in transfected Arabidopsis T87 protoplasts. The heat shock protein 18.2 (HSP) terminator was the most effective in supporting increased levels of expression. The HSP terminator increases mRNA levels of both transiently and stably expressed transgenes approximately 2-fold more than the NOS (nopaline synthase) terminator. When combined with the HSP terminator, a translational enhancer increased gene expression levels approximately 60- to 100-fold in transgenic plants.

  2. Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress.

    PubMed

    Guo, Hui; Xian, Jian-An; Li, Bin; Ye, Chao-Xia; Wang, An-Li; Miao, Yu-Tao; Liao, Shao-An

    2013-05-01

    Apoptotic cell ratio and mRNA expression of caspase-3, cathepsin B (CTSB), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx) in hemocytes of white shrimp Litopenaeus vannamei exposed to nitrite-N (20 mg/L) was investigated at different stress time (0, 4, 8, 12, 24, 48 and 72 h). The apoptotic cell ratio and mRNA expression level of CTSB were significantly increased in shrimp exposed to nitrite-N for 48 and 72 h. Caspase-3 mRNA expression level significantly increased by 766.50% and 1811.16% for 24 and 48 h exposure, respectively. HSP70 expression level significantly increased at 8 and 72 h exposure. MnSOD mRNA expression in hemocytes up-regulated at 8 and 48 h, while CAT mRNA expression level increased at 24 and 48 h. GPx expression showed a trend that increased first and then decreased. Significant increases of GPx expression were observed at 8 and 12 h exposure. Expression level of TRx reached its highest level after 48 h exposure. These results suggest that nitrite exposure induces expression of apoptosis-related genes in hemocytes, and subsequently caused hemocyte apoptosis. Meanwhile, expression levels of HSP70 and antioxidant enzymes up-regulated to protect the hemocyte against nitrite stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. CCR5 Expression Levels in HIV-Uninfected Women Receiving Hormonal Contraception

    PubMed Central

    Sciaranghella, Gaia; Wang, Cuiwei; Hu, Haihong; Anastos, Kathryn; Merhi, Zaher; Nowicki, Marek; Stanczyk, Frank Z.; Greenblatt, Ruth M.; Cohen, Mardge; Golub, Elizabeth T.; Watts, D. Heather; Alter, Galit; Young, Mary A.; Tsibris, Athe M. N.

    2015-01-01

    Human immunodeficiency virus (HIV) infectivity increases as receptor/coreceptor expression levels increase. We determined peripheral CD4, CCR5, and CXCR4 expression levels in HIV-uninfected women who used depot medroxyprogesterone acetate (DMPA; n = 32), the levonorgestrel-releasing intrauterine device (LNG-IUD; n = 27), oral contraceptive pills (n = 32), or no hormonal contraception (n = 33). The use of LNG-IUD increased the proportion of CD4+ and CD8+ T cells that expressed CCR5; increases in the magnitude of T-cell subset CCR5 expression were observed with DMPA and LNG-IUD use (P < .01 for all comparisons). LNG-IUD and, to a lesser extent, DMPA use were associated with increased peripheral T-cell CCR5 expression. PMID:25895986

  4. Effects of nutritional level of concentrate-based diets on meat quality and expression levels of genes related to meat quality in Hainan black goats.

    PubMed

    Wang, Dingfa; Zhou, Luli; Zhou, Hanlin; Hou, Guanyu; Shi, Liguang; Li, Mao; Huang, Xianzhou; Guan, Song

    2015-02-01

    The present study investigated the effects of the nutritional levels of diets on meat quality and related gene expression in Hainan black goat. Twenty-four goats were divided into six dietary treatments and were fed a concentrate-based diet with two levels of crude protein (CP) (15% or 17%) and three levels of digestive energy (DE) (11.72, 12.55 or 13.39 MJ/kg DM) for 90 days. Goats fed the concentrate-based diet with 17% CP had significantly (P < 0.05) higher average daily gains (ADG) and better feed conversion rates (FCR). The pH 24h value tended to decrease (P < 0.05) with increasing DE levels. The tenderness of Longissimus dorsi muscle (LD) and Semimembranosus muscle (SM) reduced with increasing CP levels (P < 0.05). With increasing DE levels, tenderness was increased (P < 0.05). The heart fatty acid-binding protein (H-FABP) mRNA expression levels in LD and SM increased with increasing DE levels (P < 0.05), but decreased with increasing CP levels (P < 0.05). The calpastatin (CAST) and μ-calpain mRNA expressions levels in LD and SM were affected significantly (P < 0.05) by CP and DE levels in the diet. Therefore, the nutritional levels of diets affect meat quality and expression levels of genes associated with meat quality in Hainan black goats. © 2014 Japanese Society of Animal Science.

  5. Improvement of expression level of polysaccharide lyases with new tag GAPDH in E. coli.

    PubMed

    Chen, Zhenya; Li, Ye; Sun, Xinxiao; Yuan, Qipeng

    2016-10-20

    Escherichia coli (E. coli) is widely used to express a variety of heterologous proteins. Efforts have been made to enhance the expression level of the desired protein. However, problems still exist to regulate the level of protein expression and therefore, new strategies are needed to overcome those issues. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which is properly expressed in E. coli might play a leading role and increase the expression levels of the target proteins. In this study, GAPDH was fused with a target enzyme, ChSase ABC I, an endoeliminase and polysaceharide lyase. Our results confirmed this hypothesis and indicated that GAPDH boosted the expression level of ChSase ABC I with an increase of 2.25 times, while the enzymatic activity with an increase of 2.99 times. The hypothesis were also supported by RT-PCR study and GAPDH was more effective in enhancing the expression level and enzymatic activity as compared to MBP, which is commonly used as fused tag and can improve the soluble expression of target protein. addition, the expression level and enzymatic activity of other polysaceharide lyases were also improved in the presence of GAPDH. The findings of this study prove that GAPDH has a strong effect on enhancing the expression level and enzymatic activity of the target proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice

    PubMed Central

    Ai, Ding; Chen, Chiyuan; Han, Seongah; Ganda, Anjali; Murphy, Andrew J.; Haeusler, Rebecca; Thorp, Edward; Accili, Domenico; Horton, Jay D.; Tall, Alan R.

    2012-01-01

    Individuals with type 2 diabetes have an increased risk of atherosclerosis. One factor underlying this is dyslipidemia, which in hyperinsulinemic subjects with early type 2 diabetes is typically characterized by increased VLDL secretion but normal LDL cholesterol levels, possibly reflecting enhanced catabolism of LDL via hepatic LDLRs. Recent studies have also suggested that hepatic insulin signaling sustains LDLR levels. We therefore sought to elucidate the mechanisms linking hepatic insulin signaling to regulation of LDLR levels. In WT mice, insulin receptor knockdown by shRNA resulted in decreased hepatic mTORC1 signaling and LDLR protein levels. It also led to increased expression of PCSK9, a known post-transcriptional regulator of LDLR expression. Administration of the mTORC1 inhibitor rapamycin caused increased expression of PCSK9, decreased levels of hepatic LDLR protein, and increased levels of VLDL/LDL cholesterol in WT but not Pcsk9–/– mice. Conversely, mice with increased hepatic mTORC1 activity exhibited decreased expression of PCSK9 and increased levels of hepatic LDLR protein levels. Pcsk9 is regulated by the transcription factor HNF1α, and our further detailed analyses suggest that increased mTORC1 activity leads to activation of PKCδ, reduced activity of HNF4α and HNF1α, decreased PCSK9 expression, and ultimately increased hepatic LDLR protein levels, which result in decreased circulating LDL levels. We therefore suggest that PCSK9 inhibition could be an effective way to reduce the adverse side effect of increased LDL levels that is observed in transplant patients taking rapamycin as immunosuppressive therapy. PMID:22426206

  7. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs and cytokines expression patterns in jejunum and ileum of broilers

    PubMed Central

    Yajing, Sun; Arain, Muhammad Asif; Weifen, Li; Ping, Li; Bloch, Dost Muhammad; Wenhua, Liu

    2017-01-01

    The present study was designed to evaluate the effects of Saccharomyces boulardii (Sb) and Bacillus subtilis B10 (Bs) on intestinal epithelial Toll like receptors (TLR), and Cytokine expression response to understand the intestinal epithelial innate immune mechanism in broilers. A total of 300 birds (Sanhuang broilers) were allotted into three groups (n = 100) and each divided into five replications (n = 20). Control group (Ctr) birds were fed basal diet, broilers in experimental groups received (1×108cfu/kg feed) Sb and Bs respectively in addition to basal diet for 72 days. The result showed significant increase in mRNA expression level of TLR2, TLR4 and TLR15. Down streaming MyD88, TRAF6, TAB2 and NF-κB mRNA level noted higher, in the jejunum and ileum as compared to control group. Meanwhile, IL-6, TNFα, IL-10, TGF-β expression levels showed high expression in the jejunum of Sb and Bs groups. IL-10 expression level increased in the ileum and IL-6, TNFα, IL-10 and TGF-β expression levels increased in the jejunum of Sb group. Levels of IL-1 β, IL-17, and IL-4, increased merely in Sb group. Ileal cytokines IL-1β, IL-17 and IL-4concentration were noted higher in Sb group, and IL-1β, and IL-4 levels were up-regulated in Bs group. The results indicated that the INF-γ and IL-8 level decreased in Sb and BS groups. Serum IgA and sIgA level increased in both treatment groups. Our findings illustrated that S. boulardii and B. subtilis B10 may have a role to induce mucosal immunity by activating the TLRs and cytokines expressions in broilers. PMID:28319123

  8. Saccharomyces boulardii and Bacillus subtilis B10 modulate TLRs and cytokines expression patterns in jejunum and ileum of broilers.

    PubMed

    Rajput, Imran Rashid; Ying, Huang; Yajing, Sun; Arain, Muhammad Asif; Weifen, Li; Ping, Li; Bloch, Dost Muhammad; Wenhua, Liu

    2017-01-01

    The present study was designed to evaluate the effects of Saccharomyces boulardii (Sb) and Bacillus subtilis B10 (Bs) on intestinal epithelial Toll like receptors (TLR), and Cytokine expression response to understand the intestinal epithelial innate immune mechanism in broilers. A total of 300 birds (Sanhuang broilers) were allotted into three groups (n = 100) and each divided into five replications (n = 20). Control group (Ctr) birds were fed basal diet, broilers in experimental groups received (1×108cfu/kg feed) Sb and Bs respectively in addition to basal diet for 72 days. The result showed significant increase in mRNA expression level of TLR2, TLR4 and TLR15. Down streaming MyD88, TRAF6, TAB2 and NF-κB mRNA level noted higher, in the jejunum and ileum as compared to control group. Meanwhile, IL-6, TNFα, IL-10, TGF-β expression levels showed high expression in the jejunum of Sb and Bs groups. IL-10 expression level increased in the ileum and IL-6, TNFα, IL-10 and TGF-β expression levels increased in the jejunum of Sb group. Levels of IL-1 β, IL-17, and IL-4, increased merely in Sb group. Ileal cytokines IL-1β, IL-17 and IL-4concentration were noted higher in Sb group, and IL-1β, and IL-4 levels were up-regulated in Bs group. The results indicated that the INF-γ and IL-8 level decreased in Sb and BS groups. Serum IgA and sIgA level increased in both treatment groups. Our findings illustrated that S. boulardii and B. subtilis B10 may have a role to induce mucosal immunity by activating the TLRs and cytokines expressions in broilers.

  9. The histamine-synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin.

    PubMed

    Gutowska-Owsiak, D; Greenwald, L; Watson, C; Selvakumar, T A; Wang, X; Ogg, G S

    2014-10-01

    Histamine is an abundant mediator accumulating in the skin of atopic patients, where it is thought to be derived from immune cells. While keratinocytes express histidine decarboxylase (HDC), levels of the enzyme in normal or diseased epidermis and factors that influence its expression in human keratinocytes are not known. To assess levels of HDC in inflammatory skin diseases and factors influencing its expression. Normal and filaggrin-insufficient human keratinocytes, organotypic epidermal models and skin samples were investigated for the expression of HDC. The effect of cytokines, bacterial and allergen stimuli exposure and functional changes in differentiation were evaluated in vitro. We detected abundant expression of the HDC protein in all models studied; expression was increased in atopic skin samples. Filaggrin-insufficient keratinocytes maintained HDC levels, but exposure of keratinocytes to thymic stromal lymphopoietin, tumour necrosis factor-α, lipopolysaccharide (LPS) and house dust mite (HDM) extract increased HDC expression in vitro. Furthermore, filaggrin expression in cultured keratinocytes increased following histamine depletion. Keratinocytes express abundant HDC protein, and the levels increase in atopic skin. LPS, HDM and cytokines, which are implicated in allergic inflammation, promote the expression of the enzyme and upregulate histamine levels in keratinocytes. Actively produced histamine influences keratinocyte differentiation, suggesting functional relevance of the axis to atopic dermatitis. The findings therefore identify a new point of therapeutic intervention. © 2014 British Association of Dermatologists.

  10. Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana.

    PubMed

    Kayıhan, Doğa Selin; Kayıhan, Ceyhun; Çiftçi, Yelda Özden

    2016-12-01

    This work was aimed to evaluate the effect of boron (B) toxicity on oxidative damage level, non-enzymatic antioxidant accumulation such as anthocyanin, flavonoid and proline and expression levels of antioxidant enzymes including superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) and their respective activities as well as expression levels of miR398 and miR408 in Arabidopsis thaliana. Plants were germinated and grown on MS medium containing 1 mM B (1B) and 3 mM B (3B) for 14 d. Toxic B led to a decrease of photosynthetic pigments and an increase in accumulation of total soluble and insoluble sugars in accordance with phenotypically viewed chlorosis of seedlings through increasing level of B concentration. Along with these inhibitions, a corresponding increase in contents of flavonoid, anthocyanin and proline occurred that provoked oxidative stress tolerance. 3B caused a remarkable increase in total SOD activity whereas the activities of APX, GR and CAT remained unchanged as verified by expected increase in H 2 O 2 content. In contrast to GR, the coincidence was found between the expressions of SOD and APX genes and their respective activities. 1B induced mir398 expression, whereas 3B did not cause any significant change in expression of mir408 and mir398. Expression levels of GR genes were coordinately regulated with DHAR2 expression. Moreover, the changes in expression level of MDAR2 was in accordance with changes in APX6 expression and total APX activity, indicating fine-tuned regulation of ascorbate-glutathione cycle which might trigger antioxidative responses against B toxicity in Arabidopsis thaliana. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. EPA and DHA increased PPARγ expression and deceased integrin-linked kinase and integrin β1 expression in rat glomerular mesangial cells treated with lipopolysaccharide.

    PubMed

    Han, Wenchao; Zhao, Hui; Jiao, Bo; Liu, Fange

    2014-04-01

    Fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to prevent the progression of nephropathy and retard the progression of kidney disease. This study sought to investigate the underlying mechanisms of EPA and DHA in terms of peroxisome proliferator-activated receptor γ (PPARγ), integrin-linked kinase (ILK), and integrin β1 expression in glomerular mesangial cells (GMCs) because of their critical roles in the development and progression of nephropathy. Lipopolysaccharide (LPS) significantly reduced the expression of PPARγand increased the expression of ILK at the mRNA level and at the protein level in GMCs as indicated by real-time PCR and Western blotting. In addition, LPS increased integrin β1 expression in GMCs at the mRNA level. Treatment with EPA and DHA significantly increased the expression of PPARγ and decreased the expression of ILK and integrin β1 in GMCs. These data suggest that the renoprotective effects of EPA and DHA may be related to their potential to increase the expression of PPARγ and decrease the expression of ILK and integrin β1.

  12. Sheep YAP1 temporal and spatial expression trend and its relation with MyHCs expression.

    PubMed

    Gao, W; Sun, W; Su, R; Lv, X Y; Wang, Q Z; Li, D; Musa, H H; Chen, L; Zhou, H; Xu, H S; Hua, W H

    2016-04-04

    RT-PCR was used to study the temporal and spatial pattern of Yes-associated protein 1 (YAP1) and myosin heavy chain (MyHC) expression in four different skeletal muscles (i.e., longissimus dorsi muscle, soleus muscle, gastrocnemius muscle, and extensor digitorum longus) and three growth stages (i.e., 2 days old, 2 and 6 months old) of Hu Sheep. The results showed that YAP1 was differentially expressed in skeletal muscles of sheep, that expression increased gradually with age, and that there were high levels of expression in the gastrocnemius muscle and lower levels in the longissimus dorsi muscle. MyHCI was expressed at high levels in the soleus muscle and at lower levels in the longissimus dorsi muscle. In contrast, MyHCIIA and MyHCIIX were expressed at high levels in the extensor digitorum longus and at lower levels in the soleus muscle. The expression of MyHCI and MyHCIIA decreased with increasing age while that of MyHCIIX increased. YAP1 expression was negatively correlated with MyHCII (P < 0.01) and positively correlated with MyHCIIX (P < 0.01) across all growth stages and skeletal muscle types studied. We speculate that after birth, the thicker muscle fiber diameter is associated with the high expression of MyHCIIX. Therefore, we conclude that YAP1 expression affects sheep muscle fiber development after birth and provides important genetic information for the selection candidate genes for sheep muscle growth.

  13. Naringin promotes differentiation of bone marrow stem cells into osteoblasts by upregulating the expression levels of microRNA-20a and downregulating the expression levels of PPARγ.

    PubMed

    Fan, Jifeng; Li, Jie; Fan, Qinbo

    2015-09-01

    Naringin is a dihydrotestosterone flavonoid compound that significantly inhibits bone loss, improves bone density, and enhances biomechanical anti‑compression performance. Previous studies have demonstrated that naringin improves the activity levels of osteocalcin (OC) and alkaline phosphatase (ALP) in MC3T3‑E1 osteoblast precursor cells. The present study investigated the effects of naringin on osteoblastic differentiation and inhibition of adipocyte formation in bone marrow stem cells (BMSCs). The levels of osteogenesis were modulated via upregulation of the expression levels of microRNA (miR)‑20a, and downregulation of the expression levels of peroxisome proliferator‑activated receptor γ (PPARγ). The results indicated that naringin significantly enhanced BMSC proliferation in a dose‑dependent manner. In addition, naringin significantly increased the mRNA expression levels of OC, ALP, and collagen type I. Furthermore, naringin decreased the protein expression levels of PPARγ, and increased the expression levels of miR‑20a in the BMSCs. These results suggested that miR‑20a may regulate the expression of PPARγ in BMSCs. To our knowledge, this is the first study to report naringin‑induced osteogenesis via upregulation of the expression levels of miR‑20a, and downregulation of the expression levels of PPARγ. These results indicated the important role of naringin in BMSC differentiation.

  14. Inhibiting ERα expression in the medial amygdala increases prosocial behavior in male meadow voles (Microtus pennsylvanicus).

    PubMed

    Stetzik, Lucas; Ganshevsky, Denis; Lende, Michelle N; Roache, Laura E; Musatov, Sergei; Cushing, Bruce S

    2018-05-30

    This study tested the hypothesis that site-specific estrogen receptor alpha (ERα) expression is a critical factor in the expression of male prosocial behavior and aggression. Previous studies have shown that in the socially monogamous prairie vole (Microtus ochrogaster) low levels of ERα expression, in the medial amygdala (MeA), play an essential role in the expression of high levels of male prosocial behavior and that increasing ERα expression reduced male prosocial behavior. We used an shRNA adeno-associated viral vector to knock down/inhibit ERα in the MeA of the polygynous male meadow vole (M. pennsylvanicus), which displays significantly higher levels of ERα in the MeA than its monogamous relative. Control males were transfected with a luciferase expressing AAV vector. After treatment males participated in three social behavior tests, a same-sex dyadic encounter, an opposite-sex social preference test and an alloparental test. We predicted that decreasing MeA ERα would increase male meadow vole's prosocial behavior and reduce aggression. The results generally supported the hypothesis. Specifically, MeA knockdown males displayed lower levels of defensive aggression during dyadic encounters and increased levels of overall side-x-side physical contact with females during the social preference test, eliminating the partner preference observed in controls. There was no effect on pup interactions, with both treatments expressing low levels of alloparental behavior. Behaviors affected were similar to those in male prairie voles with increased ERα in the BST rather than the MeA, suggesting that relative changes of expression within these nuclei may play a critical role in regulating prosocial behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Increased expression of 78 kD glucose-regulated protein promotes cardiomyocyte apoptosis in a rat model of liver cirrhosis

    PubMed Central

    Zhang, Lili; Zhang, Huiying; Lv, Minli; Jia, Jiantao; Fan, Yimin; Tian, Xiaoxia; Li, Xujiong; Li, Baohong; Ji, Jingquan; Wang, Limin; Zhao, Zhongfu; Han, Dewu; Ji, Cheng

    2015-01-01

    Aims: This study was to investigate the role and underlying mechanism of 78 kD glucose-regulated protein (GRP78) in cardiomyocyte apoptosis in a rat model of liver cirrhosis. Methods: A rat model of liver cirrhosis was established with multiple pathogenic factors. A total of 42 male SD rats were randomly divided into the liver cirrhosis group and control group. Cardiac structure analysis was performed to assess alterations in cardiac structure. Cardiomyocytes apoptosis was detected by TdT-mediated dUTP nick end labeling method. Expression of GRP78, CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) and B cell lymphoma-2 (Bcl-2) was detected by immunohistochemical staining. Results: The ratios of left ventricular wall thickness to heart weight and heart weight to body weight were significantly increased with the progression of liver cirrhosis (P < 0.05). Apoptosis index of cardiomyocytes was significantly increased with the progression of liver cirrhosis (P < 0.05). The expression levels of GRP78, CHOP and caspase-12 were significantly increased in the progression of liver cirrhosis (P < 0.05). The expression levels of NF-κB p65 and Bcl-2 were highest in the 4-wk liver cirrhosis, and they were decreased in the 6-wk and 8-wk in the progression of liver cirrhosis. GRP78 expression levels were positively correlated with apoptosis index, CHOP and caspase-12 expression levels (P < 0.05). CHOP expression levels were negatively correlated with NF-κB p65 and Bcl-2 expression levels (P < 0.05). Conclusion: Increased expression of GRP78 promotes cardiomyocyte apoptosis in rats with cirrhotic cardiomyopathy. PMID:26464674

  16. Interferon-τ increases BoLA-I for implantation during early pregnancy in dairy cows.

    PubMed

    Zhu, Zhe; Li, Binbin; Wu, Yue; Wang, Xiao; Deng, GanZhen

    2017-11-10

    Interferon-τ (IFN-τ) signals pregnancy recognition in ruminants. We investigated the effects of IFN-τ produced by embryo trophoblastic cells (ETCs) on expression of bovine leukocyte antigen-I (BoLA-I), a bovine analogue of human MHC-I, in endometrial luminal epithelial cells (EECs) during early pregnancy in dairy cows. Expression of IFN-τ and BoLA-I was increased in endometrial tissues during early pregnancy. Expression of the anti-inflammatory cytokine IL-10 was increased in endometrial tissues, while expression of the pro-inflammatory cytokine IL-6 was decreased, indicating immunosuppression. Progesterone increased IFN-τ expression in EECs. IFN-τ increased p-STAT1 and p-STAT3 levels in EECs, but reduced TRAF3 levels. In addition, IFN-τ increased expression of BoLA-I and IL-10, but decreased expression of IL-6 in EECs. These results indicate that IFN-τ enables stable implantation in dairy cows by increasing expression of BoLA-I, and by immunosuppression mediated by increased IL-10 and decreased IL-6 expression.

  17. Interferon-τ increases BoLA-I for implantation during early pregnancy in dairy cows

    PubMed Central

    Zhu, Zhe; Li, Binbin; Wu, Yue; Wang, Xiao; Deng, GanZhen

    2017-01-01

    Interferon-τ (IFN-τ) signals pregnancy recognition in ruminants. We investigated the effects of IFN-τ produced by embryo trophoblastic cells (ETCs) on expression of bovine leukocyte antigen-I (BoLA-I), a bovine analogue of human MHC-I, in endometrial luminal epithelial cells (EECs) during early pregnancy in dairy cows. Expression of IFN-τ and BoLA-I was increased in endometrial tissues during early pregnancy. Expression of the anti-inflammatory cytokine IL-10 was increased in endometrial tissues, while expression of the pro-inflammatory cytokine IL-6 was decreased, indicating immunosuppression. Progesterone increased IFN-τ expression in EECs. IFN-τ increased p-STAT1 and p-STAT3 levels in EECs, but reduced TRAF3 levels. In addition, IFN-τ increased expression of BoLA-I and IL-10, but decreased expression of IL-6 in EECs. These results indicate that IFN-τ enables stable implantation in dairy cows by increasing expression of BoLA-I, and by immunosuppression mediated by increased IL-10 and decreased IL-6 expression. PMID:29221114

  18. Increased Expression of Escherichia coli Polynucleotide Phosphorylase at Low Temperatures Is Linked to a Decrease in the Efficiency of Autocontrol

    PubMed Central

    Mathy, N.; Jarrige, A.-C.; Robert-Le Meur, M.; Portier, C.

    2001-01-01

    Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18°C, the amount of PNPase is twice that found in cells grown at 30°C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level. PMID:11395447

  19. Increased expression of Escherichia coli polynucleotide phosphorylase at low temperatures is linked to a decrease in the efficiency of autocontrol.

    PubMed

    Mathy, N; Jarrige, A C; Robert-Le Meur, M; Portier, C

    2001-07-01

    Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18 degrees C, the amount of PNPase is twice that found in cells grown at 30 degrees C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level.

  20. Differential expression of genes associated with lipid metabolism in longissimus dorsi of Korean bulls and steers.

    PubMed

    Bong, Jin Jong; Jeong, Jin Young; Rajasekar, Panchamoorthy; Cho, Young Moo; Kwon, Eung Gi; Kim, Hyeong Cheol; Paek, Bong Hyun; Baik, Myunggi

    2012-07-01

    The objective of this study was to compare expression of genes associated with lipid deposition and removal between bulls and steers in the longissimus dorsi muscle (LM) tissue of Korean cattle. Castration increased the expression of lipid uptake lipoprotein lipase, fatty acid translocase, and fatty acid transport protein 1 in LM. Castration increased lipogenic gene expression of both acetyl-CoA carboxylase and fatty acid synthase. In contrast, castration downregulated lipolytic gene expression of both adipose triglyceride lipase (ATGL) and monoglyceride lipase. Steers showed higher expression levels of insulin signaling phospho-v-akt murine thymoma viral oncogene homolog 1 than bulls but lower protein levels of nuclear Forkhead box O 1 (FoxO1) than bulls, suggesting that increased insulin signaling following castration decreases nuclear FoxO1 levels, leading to downregulation of ATGL gene expression. These findings suggest that castration contributes to increases in lipid uptake and lipogenesis and a decrease in lipolysis, resulting in improved marbling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Gender-related difference in altered gene expression of a sterol regulatory element binding protein, SREBP-2, by lead nitrate in rats: correlation with development of hypercholesterolemia.

    PubMed

    Kojima, Misaki; Degawa, Masakuni

    2006-01-01

    Changes in gene expression levels of hepatic sterol regulatory element binding protein-2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) after a single i.v. injection of lead nitrate (LN, 100 micromol kg(-1) body weight) were examined comparatively by real time reverse transcriptase-polymerase chain reaction (RT-PCR) in male and female rats. Significant increases in the gene expression level of SREBP-2, a transcription factor for the HMGR gene, occurred at 6-12 h in male and at 24-36 h in female rats after LN-treatment. The gene expression level of HMGR, a rate-limiting enzyme for cholesterol biosynthesis, significantly increased at 3-48 h in male rats and 12-48 h in female rats. Subsequently, significant increases in the amount of hepatic total cholesterol in male and female rats were also observed at 3-48 h and 24-48 h, respectively. The present findings demonstrate that increases in gene expressions of hepatic SREBP-2 and HMGR and the amount of hepatic total cholesterol by LN occur earlier in male rats than in the females, and that increases in the gene expression level of HMGR and the amount of hepatic total cholesterol occur prior to the increase in the gene expression level of SREBP-2 in either sex of rats. Copyright (c) 2006 John Wiley & Sons, Ltd.

  2. Estradiol increases urethral tone through the local inhibition of neuronal nitric oxide synthase expression.

    PubMed

    Gamé, Xavier; Allard, Julien; Escourrou, Ghislaine; Gourdy, Pierre; Tack, Ivan; Rischmann, Pascal; Arnal, Jean-François; Malavaud, Bernard

    2008-03-01

    Estrogens are known to modulate lower urinary tract (LUT) trophicity and neuronal nitric oxide synthase (nNOS) expression in several organs. The aim of this study was to explore the effects of endogenous and supraestrus levels of 17beta-estradiol (E2) on LUT and urethral nNOS expression and function. LUT function and histology and urethral nNOS expression were studied in adult female mice subjected either to sham surgery, surgical castration, or castration plus chronic E2 supplementation (80 microg.kg(-1).day(-1), i.e., pregnancy level). The micturition pattern was profoundly altered by long-term supraestrus levels of E2 with decreased frequency paralleled by increased residual volumes higher than those of ovariectomized mice. Urethral resistance was increased twofold in E2-treated mice, with no structural changes in urethra, supporting a pure tonic mechanism. Acute nNOS inhibition by 7-nitroindazole decreased frequency and increased residual volumes in ovariectomized mice but had no additive effect on the micturition pattern of long-term supraestrus mice, showing that long-term supraestrus E2 levels and acute inhibition of nNOS activity had similar functional effects. Finally, E2 decreased urethral nNOS expression in ovariectomized mice. Long-term supraestrus levels of E2 increased urethral tone through inhibition of nNOS expression, whereas physiological levels of E2 had no effect.

  3. Crosstalk between EET and HO-1 downregulates Bach1 and adipogenic marker expression in mesenchymal stem cell derived adipocytes

    PubMed Central

    Vanella, Luca; Kim, Dong Hyun; Sodhi, Komal; Barbagallo, Ignazio; Burgess, Angela P.; Falck, John R.; Schwartzman, Michal L.; Abraham, Nader G.

    2013-01-01

    Epoxygenase activity and synthesis of epoxyeicosatrienoic acids (EETs) have emerged as important modulators of obesity and diabetes. We examined the effect of the EET-agonist 12-(3-hexylureido)dodec-8(2) enoic acid on mesenchymal stem cell (MSC) derived adipocytes proliferation and differentiation. MSCs expressed substantial levels of EETs and inhibition of soluble epoxide hydrolase (sEH) increased the level of EETs and decreased adipogenesis. EET agonist treatment increased HO-1 expression by inhibiting a negative regulator of HO-1 expression, Bach-1. EET treatment also increased βcatenin and pACC levels while decreasing PPARγ C/EBPα and fatty acid synthase levels. These changes were manifested by a decrease in the number of large inflammatory adipocytes, TNFα, IFNγ and IL-1α, but an increase in small adipocytes and in adiponectin levels. In summary, EET agonist treatment inhibits adipogenesis and decreases the levels of inflammatory cytokines suggesting the potential action of EETs as intracellular lipid signaling modulators of adipogenesis and adiponectin. PMID:21821145

  4. Influence of HLA-C Expression Level on HIV Control

    PubMed Central

    Apps, Richard; Qi, Ying; Carlson, Jonathan M.; Chen, Haoyan; Gao, Xiaojiang; Thomas, Rasmi; Yuki, Yuko; Del Prete, Greg Q.; Goulder, Philip; Brumme, Zabrina L.; Brumme, Chanson J.; John, Mina; Mallal, Simon; Nelson, George; Bosch, Ronald; Heckerman, David; Stein, Judy L.; Soderberg, Kelly A.; Moody, M. Anthony; Denny, Thomas N.; Zeng, Xue; Fang, Jingyuan; Moffett, Ashley; Lifson, Jeffrey D.; Goedert, James J.; Buchbinder, Susan; Kirk, Gregory D.; Fellay, Jacques; McLaren, Paul; Deeks, Steven G.; Pereyra, Florencia; Walker, Bruce; Michael, Nelson L.; Weintrob, Amy; Wolinsky, Steven; Liao, Wilson; Carrington, Mary

    2013-01-01

    A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn’s disease, suggesting a broader influence of HLA expression levels in human disease. PMID:23559252

  5. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  6. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  7. Rachiplusia nu larva as a biofactory to achieve high level expression of horseradish peroxidase.

    PubMed

    Romero, Lucía Virginia; Targovnik, Alexandra Marisa; Wolman, Federico Javier; Cascone, Osvaldo; Miranda, María Victoria

    2011-05-01

    A process based on orally-infected Rachiplusia nu larvae as biological factories for expression and one-step purification of horseradish peroxidase isozyme C (HRP-C) is described. The process allows obtaining high levels of pure HRP-C by membrane chromatography purification. The introduction of the partial polyhedrin homology sequence element in the target gene increased HRP-C expression level by 2.8-fold whereas it increased 1.8-fold when the larvae were reared at 27 °C instead of at 24 °C, summing up a 4.6-fold overall increase in the expression level. Additionally, HRP-C purification by membrane chromatography at a high flow rate greatly increase D the productivity without affecting the resolution. The V(max) and K(m) values of the recombinant HRP-C were similar to those of the HRP from Armoracia rusticana roots. © Springer Science+Business Media B.V. 2011

  8. Time-Dependent Changes in Increased Levels of Plasma Irisin and Muscle PGC-1α and FNDC5 after Exercise in Mice.

    PubMed

    Pang, Minhui; Yang, Jianwei; Rao, Jiaming; Wang, Haiqing; Zhang, Jiayi; Wang, Shengyong; Chen, Xiongfei; Dong, Xiaomei

    2018-02-01

    Exercise induces the expression of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) in skeletal muscle, which promotes the cleavage of fibronectin type III domain-containing protein 5 (FNDC5) to irisin. To explore the relationship between irisin and its regulators, we analyzed the plasma irisin levels and the muscle levels of FNDC5 and PGC-1α after exercise. Male C57BL/6J mice underwent a treadmill exercise (60% of VO 2max ) for 30 min or one hour (h), and blood and gastrocnemius samples were collected before exercise (pre-exercise), immediately after exercise, and during 24-h recovery after 1-h exercise. We found that plasma irisin levels were significantly increased during exercise (P < 0.05), while FNDC5 protein levels were not significantly increased. Moreover, PGC-1α mRNA and protein levels were significantly increased during 30-min exercise, but were decreased during 1-h exercise. After 1-h exercise, the irisin levels peaked at 6 h (20.71 ± 0.25 ng/ml) and decreased to pre-exercise levels by 24 h (15.45 ± 0.27 ng/ml). Likewise, PGC-1α mRNA and protein levels were increased at 1 h and maintained at elevated levels for 6 h; thereafter, the expression levels of PGC1-α protein were decreased to pre-exercise levels at 12 h. Thus, the restoration of PGC-1α expression to the pre-exercise levels was followed by the decrease in plasma irisin levels. By contrast, during 24-h recovery, the expression levels of FNDC5 mRNA and protein were maintained at elevated levels. These results suggest that the coordinated expression of FNDC5 and PGC-1α may contribute to the increased levels of plasma irisin after exercise.

  9. Total bile acids in the maternal and fetal compartment in relation to placental ABCG2 expression in preeclamptic pregnancies complicated by HELLP syndrome.

    PubMed

    Jebbink, Jiska; Veenboer, Geertruda; Boussata, Souad; Keijser, Remco; Kremer, Andreas E; Elferink, Ronald Oude; van der Post, Joris; Afink, Gijs; Ris-Stalpers, Carrie

    2015-01-01

    To investigate total bile acid (TBA) levels in maternal (MB) and umbilical cord blood (UCB) in normotensive, preeclamptic (PE), and PE pregnancies complicated by hemolysis elevated liver enzymes and low platelets (HELLP) syndrome in the context of ABCG2 placental gene expression levels, a recently reported placental bile acid transporter. TBA levels were determined in 83 paired MB and UCB samples of normotensive, PE and PE/HELLP pregnancies and in 22 paired arterial and venous UCB samples from uncomplicated term pregnancies. ABCG2 gene expression was measured in 104 human placentas by reverse transcriptase quantitative polymerase chain reaction. Overall, TBA levels in MB are higher compared to levels in UCB (p<0.0001), but this comparison looses statistical significance for the 11 PE/HELLP cases. TBA levels in maternal blood are increased in PE/HELLP compared to PE pregnancies (p=0.016). TBA levels in arterial and venous UCB from 22 normotensive pregnancies are not statistically different. ABCG2 expression is reduced in pregnancies where preeclampsia is further complicated by HELLP syndrome. ABCG2 expression in human placenta is not correlated with TBA levels in either the maternal or fetal compartment. Increased maternal TBA levels in PE/HELLP pregnancies indicate a relation between bile acids in the maternal circulation and HELLP syndrome. As overall TBA levels in maternal blood are increased compared to UCB, we conclude that the placenta partly protects the fetus from increased maternal TBA levels. This consistent difference in TBA levels between the maternal and fetal compartment is unrelated to the placental expression of ABCG2. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Diagnostic and Prognostic Significance of Serum and Tissue Galectin 3 Expression in Patients with Carcinoma of the Bladder

    PubMed Central

    Gendy, Hoda El; Madkour, Bothina; Abdelaty, Sara; Essawy, Fayza; Khattab, Dina; Hammam, Olfat; Nour, Hani H.

    2014-01-01

    Background Galectins are group of proteins found in the cytoplasm, nucleus, cell surface and extracellular matrix. Galectin 3 (Gal-3) displays pathological expression in a variety of processes such as tumorigenesis. Patients and Method 70 patients classified into the control group, cystitis group, transitional cell carcinoma group, and squamous cell carcinoma group were enrolled in this study which aimed to detect the serum level and the intensity of tissue expression of Gal-3. Results Both serum level and tissue expression of Gal-3 were statistically higher in bladder cancer patients compared to the other groups. Gal-3 level expression increased from low to high grade urothelial tumors, with a statistically significant increase of its level and expression between muscle invasive and non-muscle invasive Ta urothelial tumors. Conclusion The serum Gal-3 level is sensitive and specific for the diagnosis of bladder cancer. The prognostic significance of tissue expression is to be confirmed. PMID:26195948

  11. Protease Activated Receptor-2 Expression and Function in Asthmatic Bronchial Smooth Muscle

    PubMed Central

    Gilbert, Guillaume; Carvalho, Gabrielle; Trian, Thomas; Ozier, Annaig; Gillibert-Duplantier, Jennifer; Ousova, Olga; Maurat, Elise; Thumerel, Matthieu; Quignard, Jean-François; Girodet, Pierre-Olivier; Marthan, Roger; Berger, Patrick

    2014-01-01

    Asthmatic bronchial smooth muscle (BSM) is characterized by structural remodeling associated with mast cell infiltration displaying features of chronic degranulation. Mast cell-derived tryptase can activate protease activated receptor type-2 (PAR-2) of BSM cells. The aims of the present study were (i) to evaluate the expression of PAR-2 in both asthmatic and non asthmatic BSM cells and, (ii) to analyze the effect of prolonged stimulation of PAR-2 in asthmatic BSM cells on cell signaling and proliferation. BSM cells were obtained from both 33 control subjects and 22 asthmatic patients. PAR-2 expression was assessed by flow cytometry, western blot and quantitative RT-PCR. Calcium response, transduction pathways and proliferation were evaluated before and following PAR-2 stimulation by SLIGKV-NH2 or trypsin for 1 to 3 days. Asthmatic BSM cells expressed higher basal levels of functional PAR-2 compared to controls in terms of mRNA, protein expression and calcium response. When PAR-2 expression was increased by means of lentivirus in control BSM cells to a level similar to that of asthmatic cells, PAR-2-induced calcium response was then similar in both types of cell. However, repeated PAR-2 stimulations increased the proliferation of asthmatic BSM cells but not that of control BSM cells even following lentiviral over-expression of PAR-2. Such an increased proliferation was related to an increased phosphorylation of ERK in asthmatic BSM cells. In conclusion, we have demonstrated that asthmatic BSM cells express increased baseline levels of functional PAR-2. This higher basal level of PAR-2 accounts for the increased calcium response to PAR-2 stimulation, whereas the increased proliferation to repeated PAR-2 stimulation is related to increased ERK phosphorylation. PMID:24551046

  12. [The level of superoxide dismutase expression in primary and metastatic colorectal cancer cells in hypoxia and tissue normoxia].

    PubMed

    Skrzycki, Michał; Czeczot, Hanna; Chrzanowska, Alicja; Otto-Ślusarczyk, Dagmara

    2015-11-01

    Superoxide oxidase (SOD) is a key antioxidant enzyme protecting cells against oxidative stress, which might induce cancerogenesis. In tumor cells SOD influences the level of the reactive oxygen species (ROS) allowing for survival and proliferation. High rate of cells proliferation in tumor leads to their temporary hypoxia due to lower rate of angiogenesis. Therefore during tumor development, cancer cells function in conditions of hypoxia or tissue normoxia. The aim of study was to evaluate of SOD isoenzymes (SOD1 and SOD2) expression level in cell lines of primary (SW 480) and metastatic (SW 620) colorectal cancer, cultured in hypoxia (1% oxygen), tissue normoxia (10% oxygen), and atmospheric normoxia (21% oxygen). Cells were cultured in MEM medium in different oxygen concentrations (1%, 10%, 21%) in hypoxic chamber with oxygenation regulator. The number of living cells in lines SW 480 and 620 was determined by trypan blue method. Expression of SOD1 and SOD2 at the mRNA level was determined by RT-PCR and PCR. In both studied cell lines (SW 480 and SW 620), the number of living cells (viability) was increased in hypoxia and atmospheric normoxia. The expression level of SOD1 and SOD2 in studied cell lines was different. The lowest level of expression of both SOD isoenzymes was observed in hypoxia. In conditions of atmospheric normoxia the expression level of SOD1 in SW480 cell line was increased, and similar in SW620 cell line comparing to tissue normoxia. Whereas the SOD2 expression level in atmospheric normoxia conditions in both cell lines was significantly increased. Observed differences were statistically significant (p ≤ 0,05). The profile of expression of SOD1 and SOD2 in cell lines SW480 and SW620 indicates differentiated response of tumor cells depending on access to oxygen. Low level of SOD isoenzymes expression in SW480 and SW620 cells in hypoxia indicates decreased production of ROS. Differences of SOD isoenzymes expression level in tissue normoxia indicate their compensatory action, allowing to maintain the balance between O₂- removal and H₂O₂production in studied tumor cells. In atmospheric normoxia conditions increased expression level of SOD1 and SOD2 observed in studied cell lines points to oxidative stress. © 2015 MEDPRESS.

  13. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  14. Comparative study of the efficacy of pulsed electromagnetic field and low level laser therapy on mitogen-activated protein kinases.

    PubMed

    El-Makakey, Ayman M; El-Sharaby, Radwa M; Hassan, Mohammed H; Balbaa, Alaa

    2017-03-01

    Mitogen-Activated Protein Kinases (MAPKs) consist of three major signaling members: extracellular signal-regulated kinase (ERK), p38 and C-JUN N-terminal kinase (JNK). We investigated physiological effects of Pulsed Electromagnetic Field Therapy (PEMFT) and Low Level Laser Therapy (LLLT) on human body, adopting the expression level of mitogen-activated protein kinases as an indicator via assessment of the activation levels of three major families of MAPKS, ERK, p38 and JNK in the peripheral lymphocytes of patients before and after the therapies. Assessment for the expression levels of MAPKs families' were done, in the peripheral lymphocytes of patients recently have appendectomy, using flow cytometric analysis of multiple signaling pathways, pre and post LLLT and PEMFT application (twice daily for 6 successive days) on the appendectomy wound. There were non-significant differences in the expression levels of MAPKs families' pre- therapies application. But there were significant increase in the ERK expression levels post application of LLLT compared to its pre application (p<0.01). Also, there was significant increase in the ERK, p38 and C-Jun N terminal expression level values post application of PEMFT compared to its pre application expression levels (p<0.01 for each). The present study demonstrates that PEMFT has a powerful healing effect more than LLLT as it increase the activation of ERK, P38 and C-Jun-N Terminal while LLLT only increase the activation of ERK. LLLT has more potent pain decreasing effect than PEMFT as it does not activate P38 pathway like PEMFT.

  15. The ERK/CREB pathway is involved in the c-Ski expression induced by low TGF-β1 concentrations during primary fibroblast proliferation.

    PubMed

    Li, Ping; Liu, Ping; Peng, Yan; Zhang, Zhuo-Hang; Li, Xiao-Ming; Xiong, Ren-Ping; Chen, Xing; Zhao, Yan; Ning, Ya-Lei; Yang, Nan; Zhang, Bo; Zhou, Yuan-Guo

    2018-06-27

    Increasing evidence has suggested that bidirectional regulation of cell proliferation is one important effect of TGF-β1 in wound healing. Increased c-Ski expression plays a role in promoting fibroblast proliferation at low TGF-β1 concentrations, but the mechanism by which low TGF-β1 concentrations regulate c-Ski levels remains unclear. In this study, the proliferation of rat primary fibroblasts was assessed with an ELISA BrdU kit. The mRNA and protein expression and phosphorylation levels of corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting. We first found that low TGF-β1 concentrations not only promoted c-Ski mRNA and protein expression in rat primary fibroblasts but also increased the phosphorylation levels of Extracellular Signal-Regulated Kinases (ERK) and cAMP response element binding (CREB) protein. An ERK kinase (mitogen-activated protein kinase kinase, MEK) inhibitor significantly inhibited ERK1/2 phosphorylation levels, markedly reducing c-Ski expression and CREB phosphorylation levels and abrogating the growth-promoting effect of low TGF-β1 concentrations. At the same time, Smad2/3 phosphorylation levels were not significantly changed. Taken together, these results suggest that the increased cell proliferation induced by low TGF-β1 concentrations mediates c-Ski expression potentially through the ERK/CREB pathway rather than through the classic TGF-β1/Smad pathway.

  16. Osteopontin plays a pivotal role in increasing severity of respiratory syncytial virus infection

    PubMed Central

    Sampayo-Escobar, Viviana; Green, Ryan; Cheung, Michael B.; Bedi, Raminder; Mohapatra, Subhra

    2018-01-01

    The molecular mechanisms underlying susceptibility to severe respiratory syncytial virus (RSV) infection remain poorly understood. Herein, we report on the role of osteopontin (OPN) in regulation of RSV infection in human epithelial cells and how interleukin-1 beta (IL-1β), a cytokine secreted soon after RSV infection, when persistently expressed can induce OPN expression leading to increased viral infection. We first compared OPN expression in two human epithelial cell lines: HEK-293 and HEp-2. In contrast to HEp-2, HEK-293 expresses low levels of pro-caspase-1 resulting in decreased IL-1β expression in response to RSV infection. We found a correlation between low IL-1β levels and a delay in induction of OPN expression in RSV-infected HEK-293 cells compared to HEp-2. This phenomenon could partially explain the high susceptibility of HEp-2 cells to RSV infection versus the moderate susceptibility of HEK-293 cells. Also, HEK-293 cells expressing low levels of pro-caspase-1 exhibit decreased IL-1β expression and delayed OPN expression in response to RSV infection. HEK-293 cells incubated with human rIL-1β showed a dose-dependent increase in OPN expression upon RSV infection. Also, incubation with rOPN increased RSV viral load. Moreover, HEp-2 cells or mice infected with a mucogenic RSV strain RSV-L19F showed elevated levels of OPN in contrast to mice infected with the laboratory RSV strain rA2. This correlated with elevated levels of OPN following infection with RSV-L19F compared to rA2. Together, these results demonstrate that increased OPN expression is regulated in part by IL-1β, and the interplay between IL-1β and OPN signaling may play a pivotal role in the spread of RSV infection. PMID:29677209

  17. Hepatitis C virus core protein induces dysfunction of liver sinusoidal endothelial cell by down-regulation of silent information regulator 1.

    PubMed

    Sun, Li-Jie; Yu, Jian-Wu; Shi, Yu-Guang; Zhang, Xiao-Yu; Shu, Meng-Ni; Chen, Mo-Yang

    2018-05-01

    Hepatic fibrosis is a frequent feature of chronic hepatitis C virus (HCV) infection. Some evidence has suggested the potential role of silent information regulator 1 (SIRT1) in organ fibrosis. The aim of this study was to investigate the effect of HCV core protein on expression of SIRT1 of liver sinusoidal endothelial cell (LSEC) and function of LSEC. LSECs were co-cultured with HepG2 cells or HepG2 cells expressing HCV core protein and LSECs cultured alone were used as controls. After co-culture, the activity and expression levels of mRNA and protein of SIRT1 in LSEC were detected by a SIRT1 fluorometric assay kit, real time-PCR (RT-PCR), Western blot, respectively. The levels of adiponectin receptor 2 (AdipoR2), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by Western blot. Cluster of differentiation 31 (CD31), CD14, and von Willebrand factor (vWf) of LSECs was performed by flow cytometry. The level of reactive oxygen species (ROS) was assayed. Malondialdehyde (MDA), superoxide dismutase (SOD), adiponectin, nitric oxide (NO), and endothelin-1 (ET-1) levels in the co-culture supernatant were measured. The co-culture supernatant was then used to cultivate LX-2 cells. The levels of α-smooth muscle actin (ASMA) and transforming growth factor-β1 (TGF-β1) protein in LX-2 cells were measured by Western blot. Compared with LSEC co-cultured with HepG2 cells group, in LSEC co-cultured with HepG2-core cells group, the activity and expression level of mRNA and protein of SIRT1 reduced; the level of adiponectin reduced and the expression level of AdipoR2 protein decreased; ROS levels increased; the expression level of eNOS, VEGF protein decreased; and the expression level of CD14 decreased; the expression level of vWf and CD31 increased; NO and SOD levels decreased; whereas ET-1 and MDA levels increased; the levels of ASMA and TGF-β1 protein in LX-2 cells increased. SIRT1 activator improved the above-mentioned changes. HCV core protein may down-regulate the activity and the expression of SIRT1 of LSEC, then decreasing synthesis of adiponectin and the expression of AdipoR2, thus inducing contraction of LSEC and hepatic sinusoidal capillarization and increasing oxidative stress, ultimately cause hepatic stellate cell (HSC) activation. Treatment with SIRT1 activator restored the function of LSEC and inhibited the activation of HSC. © 2018 Wiley Periodicals, Inc.

  18. Inflammation Stimulates the Expression of PCSK9

    PubMed Central

    Feingold, Kenneth R.; Moser, Arthur H.; Shigenaga, Judy K.; Patzek, Sophie M.; Grunfeld, Carl

    2008-01-01

    Inflammation induces marked changes in lipid and lipoprotein metabolism. Proprotein convertase subtilisin kexin 9 (PCSK9) plays an important role in regulating LDL receptor degradation. Here we demonstrate that LPS decreases hepatic LDL receptor protein but at the same time hepatic LDL receptor mRNA levels are not decreased. We therefore explored the effect of LPS on PCSK9 expression. LPS results in a marked increase in hepatic PCSK9 mRNA levels (4 hours-2.5 fold increase; 38 hours-12.5 fold increase). The increase in PCSK9 is a sensitive response with 1 ug LPS inducing a ½ maximal response. LPS also increased PCSK9 expression in the kidney. Finally, zymosan and turpentine, other treatments that induce inflammation, also stimulated hepatic expression of PCSK9. Thus, inflammation stimulates PCSK9 expression leading to increased LDL receptor degradation and decreasing LDL receptors thereby increasing serum LDL, which could have beneficial effects on host defense. PMID:18638454

  19. Expression of modified tocopherol content and profile in sunflower tissues.

    PubMed

    Del Moral, Lidia; Fernández-Martínez, José M; Pérez-Vich, Begoña; Velasco, Leonardo

    2012-01-30

    Alpha-tocopherol is the predominant tocopherol form in sunflower seeds. Sunflower lines that accumulate increased levels of beta-, gamma- and delta-tocopherol in seeds as well as lines with reduced and increased total seed tocopherol content have been developed. The objective of this research was to evaluate whether the modified tocopherol levels are expressed in plant tissues other than seeds. Lines with increased levels of beta-, gamma- and delta-tocopherol in seeds also possessed increased levels of these tocopherols in leaves, roots and pollen. Correlation coefficients for the proportion of individual tocopherols in different plant tissues were significantly positive in all cases, ranging from 0.68 to 0.97. A line with reduced tocopherol content in seeds also showed reduced content in roots and pollen. Genetic modifications producing altered seed tocopherol profiles in sunflower are also expressed in leaves, roots and pollen. Reduced total seed tocopherol content is mainly expressed at the root and pollen level. The expression of tocopherol mutations in other plant tissues will enable further studies on the physiological role of tocopherols and could be of interest for early selection for these traits in breeding programmes. Copyright © 2011 Society of Chemical Industry.

  20. Male mice are susceptible to high fat diet-induced hyperglycaemia and display increased circulatory retinol binding protein 4 (RBP4) levels and its expression in visceral adipose depots.

    PubMed

    Asha, G V; Raja Gopal Reddy, M; Mahesh, M; Vajreswari, A; Jeyakumar, S M

    2016-01-01

    Vitamin A and its metabolites are known to modulate adipose tissue development and its associated complications. Here, we assessed the vitamin A status and its metabolic pathway gene expression in relation to sexual dimorphism by employing 35 days old C57BL/6J male and female mice, which were fed either stock or high fat (HF) diet for 26 weeks. HF diet feeding increased body weight/weight gain and white adipose tissue (WAT) of visceral and subcutaneous regions, however, increase in vitamin A levels observed only in subcutaneous WAT. Further, the expression of most of the vitamin A metabolic pathway genes showed no sexual dimorphism. The observed HF diet-induced hyperglycaemia in male corroborates with increased retinol binding protein 4 (RBP4) levels in plasma and its expression in visceral adipose depots. In conclusion, the male mice are susceptible to high fat diet-induced hyperglycaemia and display higher plasma RBP4 levels, possibly due to its over-expression in visceral adipose depots.

  1. Light interference as a possible stressor altering HSP70 and its gene expression levels in brain and hepatic tissues of golden spiny mice.

    PubMed

    Ashkenazi, Lilach; Haim, Abraham

    2012-11-15

    Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.

  2. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  3. Modulation of heterologous expression from PBAD promoter in Escherichia coli production strains.

    PubMed

    Széliová, Diana; Krahulec, Ján; Šafránek, Martin; Lišková, Veronika; Turňa, Ján

    2016-10-20

    Promoter PBAD is frequently used for heterologous gene expression due to several advantages, such as moderately high expression levels, induction by an inexpensive and non-toxic monosaccharide L-arabinose and tight regulation of transcription, which is particularly important for expression of toxic proteins. A drawback of this promoter is all-or-none induction that occurs at subsaturating inducer concentrations. Although the overall expression level of the cell culture seems to correlate with increasing arabinose concentrations, the population is a mixture of induced and uninduced cells and with increasing arabinose concentrations, only the fraction of induced cells increases. This phenomenon is caused by autocatalytic gene expression - the expression of the arabinose transporter AraE is induced by the transported molecule. In this work the promoter PE, controlling the expression of araE, was exchanged for the stronger PBAD promoter in two Escherichia coli strains commonly used for heterologous protein production. This modification should increase a basal number of arabinose transporters in the cell wall and reduce the threshold concentration required for induction and thus reduce heterogeneity of cell population. Heterogeneity and level of expression in individual cells were analysed by flow cytometry using gfp as a reporter gene. In the strain BL21ai, the promoter exchange increased the number of induced cells at subsaturating arabinose concentrations as well as a yield of protein at saturating inducer concentration. In contrast, the modification did not improve these characteristics in RV308ai. In both strains it was possible to modulate the expression level in induced cells 3-6-fold even at subsaturating arabinose concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of Added Zinc on Skeletal Muscle Morphometrics and Gene Expression of Finishing Pigs Fed Ractopamine-HCL.

    PubMed

    Burnett, D D; Paulk, C B; Tokach, M D; Nelssen, J L; Vaughn, M A; Phelps, K J; Dritz, S S; DeRouchey, J M; Goodband, R D; Haydon, K D; Gonzalez, J M

    2016-01-01

    Finishing pigs (n = 320) were used in a 35-day study to determine the effects of ractopamine-HCl (RAC) and supplemental Zinc (Zn) level on loin eye area (LEA) and gene expression. Pens were randomly allotted to the following treatments for the final 35 days on feed: a corn-soybean meal diet (CON), a diet with 10 ppm RAC (RAC+), and RAC diet plus added Zn at 75, 150, or 225 ppm. Sixteen pigs per treatment were randomly selected for collection of serial muscle biopsies and carcass data on day 0, 8, 18, and 32 of the treatment phase. Compared to CON carcasses, RAC+ carcasses had 12.6% larger (P = 0.03) LEA. Carcasses from RAC diets with added Zn had a tendency for increased (quadratic, P < 0.10) LEA compared to the RAC+ carcasses. Compared to RAC+ pigs, relative expression of IGF1 decreased with increasing levels of Zn on day 8 and 18 of treatment, but expression levels were similar on day 32 due to Zn treatments increasing in expression while the RAC+ treatment decreased (Zn quadratic × day quadratic, P = 0.04). A similar trend was detected for the expression of β1-receptor where expression levels in the RAC+ pigs were greater than Zn supplemented pigs on day 8 and 18 of the experiment, but the magnitude of difference between the treatments was reduced on day 32 due to a decrease in expression by RAC+ pigs and an increase in expression by the Zn pigs (Zn quadratic × day quadratic, P = 0.01). The ability of Zn to prolong the expression of these two genes may be responsible for the tendency of Zn to increase LEA in RAC supplemented pigs.

  5. Prenatal Loud Music and Noise: Differential Impact on Physiological Arousal, Hippocampal Synaptogenesis and Spatial Behavior in One Day-Old Chicks

    PubMed Central

    Sanyal, Tania; Kumar, Vivek; Nag, Tapas Chandra; Jain, Suman; Sreenivas, Vishnu; Wadhwa, Shashi

    2013-01-01

    Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibel sound (110 dB; music and noise) exposure on the plasma noradrenaline level, synaptic protein expression in the hippocampus and spatial behavior of neonatal chicks remained unexplored. Here, we report that high decibel music stimulation moderately increases plasma noradrenaline level and positively modulates spatial orientation, learning and memory of one day-old chicks. In contrast, noise at the same sound pressure level results in excessive increase of plasma noradrenaline level and impairs the spatial behavior. Further, to assess the changes at the molecular level, we have quantified the expression of functional synapse markers: synaptophysin and PSD-95 in the hippocampus. Compared to the controls, both proteins show significantly increased expressions in the music stimulated group but decrease in expressions in the noise group. We propose that the differential increase of plasma noradrenaline level and altered expression of synaptic proteins in the hippocampus are responsible for the observed behavioral consequences following prenatal 110 dB music and noise stimulation. PMID:23861759

  6. Increased expression of Toll-like receptors (TLRs) 7 and 9 and other cytokines in systemic lupus erythematosus (SLE) patients: ethnic differences and potential new targets for therapeutic drugs.

    PubMed

    Lyn-Cook, Beverly D; Xie, Chenghui; Oates, Jarren; Treadwell, Edward; Word, Beverly; Hammons, George; Wiley, Kenneth

    2014-09-01

    Increased expression of pro-inflammatory cytokines such as interferon, tumor necrosis factors (TNFs) and specific interleukins (ILs) has been found in a number of autoimmune diseases, including systemic lupus erythematous (SLE). These cytokines are induced by toll-like receptors (TLRs). Toll-like receptors are activated in response to accumulation of apoptotic bodies. These receptors play critical roles in innate immune systems. Increased levels of interferon-alpha (INF-α) have also been found in many SLE patients and often correlate with disease severity. The objectives of this study were to examine the expression of selected TLRs and cytokines that have been identified in animal models and some limited human studies in a group of African Americans (AA) and European Americans (EA) women with lupus in comparison to age-matched non-lupus women. Blood samples were consecutively obtained by informed consent from 286 patients, 153 lupus and 136 non-lupus, seen in the rheumatology clinics at East Carolina University. Cytokines were analyzed from blood serum using enzyme linked immunoassay (ELISA) for IL-6 and INF-α. Total RNA was isolated, using a Paxgene kit, from peripheral blood mononuclear cells of African American and European American women blood samples. Quantitative real-time PCR using the CFX real-time system was conducted on all samples to determine TLRs 7 and 9, as well as INF-α expression. Toll-like receptor 7 (p<0.01) and 9 (p=0.001) expression levels were significantly increased in lupus patients compared to age-matched controls. African American women with lupus had a 2-fold increase in TLR-9 expression level when compared to their healthy controls or European American lupus patients. However, there was no ethnic difference in expression of TLR-7 in lupus patients. INF-α expression was significantly higher in lupus patients (p<0.0001) and also showed ethnic difference in expression. Serum levels revealed significant increases in expression of IL-6, IFN-γ and TNF-α in lupus patients compared to non-lupus patients. African American women with lupus had significantly higher serum levels of IL-6 and TNF-α. African American women with lupus demonstrated increased levels of specific pro-inflammatory cytokines and Toll-like receptors when compared to EA women. Increased expression in these lupus patients provides an opportunity for targeting with antagonist as a new therapy for systemic lupus erythematous. Published by Elsevier Ltd.

  7. The effects of laughter on post-prandial glucose levels and gene expression in type 2 diabetic patients.

    PubMed

    Hayashi, Takashi; Murakami, Kazuo

    2009-07-31

    This report mainly summarizes the results of our study in which the physiological effects of laughter--as a positive emotional expression--were analyzed with respect to gene expression changes to demonstrate the hypothesis that the mind and genes mutually influence each other. We observed that laughter suppressed 2-h postprandial blood glucose level increase in patients with type 2 diabetes and analyzed gene expression changes. Some genes showed specific changes in their expression. In addition, we revealed that laughter decreased the levels of prorenin in blood; prorenin is involved in the onset of diabetic complications. Further, laughter normalized the expression of the prorenin receptor gene on peripheral blood leukocytes, which had been reduced in diabetic patients; this demonstrated that the inhibitory effects of laughter on the onset/deterioration of diabetic complications at the gene-expression level. In a subsequent study, we demonstrated the effects of laughter by discriminating 14 genes, related to natural killer (NK) cell activity, to exhibit continuous increases in expression as a result of laughter. Our results supported NK cell-mediated improvement in glucose tolerance at the gene-expression level. In this report, we also review other previous studies on laughter.

  8. [Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome].

    PubMed

    Makhnovskii, P A; Kuzmin, I V; Nefedova, L N; Kima, A I

    2016-01-01

    Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.

  9. Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity.

    PubMed

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Rotellar, Fernando; Valentí, Victor; Silva, Camilo; Gil, María J; Salvador, Javier; Frühbeck, Gema

    2012-10-01

    Obesity is associated with an altered inflammatory and extracellular matrix (ECM) profile. Tenascin C (TNC) is an ECM glycoprotein with proinflammatory effects. We aimed to explore the expression levels of TNC in adipose tissue analyzing the contribution of adipocytes and stromovascular fraction cells (SVFC) as well as its impact on inflammation and ECM regulation. We also analyzed the effect of the stimulation with TNF-α and lipopolysaccharide (LPS) on both SVFC and adipocytes. Samples obtained from 75 subjects were used in the study. Expression levels of TNC, TLR4, MMP2, and MMP9 were analyzed in visceral adipose tissue (VAT) as well as in both adipocytes and SVFC. In addition, Tnc expression was measured in two mice models of obesity. We show, for the first time, that VAT expression levels of TNC are increased in normoglycemic and type 2 diabetic obese patients (P<0.01) as well as in obese patients with nonalcoholic steatohepatitis (P<0.01). Furthermore, expression levels of Tnc in epididymal adipose tissue from two different mice models of obesity were significantly increased (P<0.01). TNC and TLR4 were mainly expressed by SVFC, and its expression was significantly enhanced (P<0.01) by TNF-α treatment. LPS treatment also increased mRNA levels of TNC. Moreover, the addition of exogenous TNC induced (P<0.05) TLR4 and CCL2 mRNA expression in human adipocyte cultures. These findings indicate that TNC is involved in the etiopathology of obesity via visceral adipose tissue inflammation representing a link with ECM remodeling.

  10. The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes.

    PubMed

    Yin, Yiran; Tang, Lian; Shi, Lei

    2017-03-01

    The expression of the metastasis suppressor gene KISS-1 in osteosarcoma cells during apoptosis and autophagy was evaluated. MG-63 osteosarcoma cells were transfected with either KISS-1 overexpression or KISS-1 knockdown expression vector in vitro, and compared with cell lines transfected with empty vector. After 12, 24, 48 and 72 h of cell culture, the cell proliferation was examined. The MTT method was used to detect apoptosis by flow cytometry, and the mRNA levels of apoptosis and autophagy markers caspase-3, Bcl-2, Bax, LC3 and Beclin1 were assessed by RT-PCR. Our results showed that cells in the control and low expression group kept proliferating during the cell culture period of 72 h, while the cells in the overexpression group progressively decreased in number. Also, the proliferation rate of the low expression group was significantly higher than that of the control group. The relative mRNA expression levels of caspase-3 and Bax mRNA in the control and low expression group showed no change (the expression was lowest in the low expression group). Moreover, the mRNA level of Bcl-2 increased in both cell groups. The mRNA expression levels of caspase-3 and Bax in the overexpression group were increased, and the level of Bcl-2 was reduced significantly. At the same time, the relative expression level of LC3 and Beclin1 mRNA in the control and low expression groups remained the same, and that of the overexpression group increased. The mRNA levels of LC3 and Beclin1 in the overexpression group were the highest, and that of the low expression group the lowest. The differences were statistically significant (P<0.05). Based on these results, we showed that KISS-1 inhibited the proliferation of osteosarcoma in vitro, probably by accelerating the processes of apoptosis and autophagy in the cells.

  11. Fasciola hepatica reinfection potentiates a mixed Th1/Th2/Th17/Treg response and correlates with the clinical phenotypes of anemia

    PubMed Central

    Perez-Crespo, Ignacio; Chillón-Marinas, Carlos; Khoubbane, Messaoud; Quesada, Carla; Reguera-Gomez, Marta; Mas-Coma, Santiago; Fresno, Manuel; Gironès, Núria

    2017-01-01

    Background Fascioliasis is a severe zoonotic disease of worldwide extension caused by liver flukes. In human fascioliasis hyperendemic areas, reinfection and chronicity are the norm and anemia is the main sign. Herein, the profile of the Th1/Th2/Th17/Treg expression levels is analyzed after reinfection, correlating them with their corresponding hematological biomarkers of morbidity. Methodology/Principal findings The experimental design reproduces the usual reinfection/chronicity conditions in human fascioliasis endemic areas and included Fasciola hepatica primo-infected Wistar rats (PI) and rats reinfected at 8 weeks (R8), and at 12 weeks (R12), and negative control rats. In a cross-sectional study, the expression of the genes associated with Th1 (Ifng, Il12a, Il12b, Nos2), Th2 (Il4, Arg1), Treg (Foxp3, Il10, Tgfb, Ebi3), and Th17 (Il17) in the spleen and thymus was analyzed. After 20 weeks of primary infection, PI did not present significant changes in the expression of those genes when compared to non-infected rats (NI), but an increase of Il4, Arg1 and Ifng mRNA in the spleen was observed in R12, suggesting the existence of an active mixed Th1/Th2 systemic immune response in reinfection. Foxp3, Il10, Tgfb and Ebi3 levels increased in the spleen in R12 when compared to NI and PI, indicating that the Treg gene expression levels are potentiated in chronic phase reinfection. Il17 gene expression levels in R12 in the spleen increased when compared to NI, PI and R8. Gene expression levels of Il10 in the thymus increased when compared to NI and PI in R12. Ifng expression levels in the thymus increased in all reinfected rats, but not in PI. The clinical phenotype was determined by the fluke burden, the rat body weight and the hemogram. Multivariate mathematical models were built to describe the Th1/Th2/Th17/Treg expression levels and the clinical phenotype. In reinfection, two phenotypic patterns were detected: i) one which includes only increased splenic Ifng expression levels but no Treg expression, correlating with severe anemia; ii) another which includes increased splenic Ifng and Treg expression levels, correlating with a less severe anemia. Conclusions/Significance In animals with established F. hepatica infection a huge increase in the immune response occurs, being a mixed Th2/Treg associated gene expression together with an expression of Ifng. Interestingly, a Th17 associated gene expression is also observed. Reinfection in the chronic phase is able to activate a mixed immune response (Th1/Th2/Th17/Treg) against F. hepatica but T and B proliferation to mitogens is strongly suppressed in all infected rats vs control in the advanced chronic phase independently of reinfection The systemic immune response is different in each group, suggesting that suppression is mediated by different mechanisms in each case. Immune suppression could be due to the parasite in PI and R8 rats and the induction of suppressive cells such as Treg in R12. This is the first study to provide fundamental insight into the immune profile in fascioliasis reinfection and its relation with the clinical phenotypes of anemia. PMID:28362822

  12. Effects of wort gravity and nitrogen level on fermentation performance of brewer's yeast and the formation of flavor volatiles.

    PubMed

    Lei, Hongjie; Zhao, Haifeng; Yu, Zhimin; Zhao, Mouming

    2012-03-01

    Normal gravity wort and high gravity wort with different nitrogen levels were used to examine their effects on the fermentation performance of brewer's yeast and the formation of flavor volatiles. Results showed that both the wort gravity and nitrogen level had significant impacts on the growth rate, viability, flocculation, and gene expression of brewer's yeast and the levels of flavor volatiles. The sugar (glucose, maltose, and maltotriose) consumption rates and net cell growth decreased when high gravity worts were used, while these increased with increasing nitrogen level. Moreover, high gravity resulted in lower expression levels of ATF1, BAP2, BAT1, HSP12, and TDH, whereas the higher nitrogen level caused higher expression levels for these genes. Furthermore, the lower nitrogen level resulted in increases in the levels of higher alcohols and esters at high wort gravity. All these results demonstrated that yeast physiology and flavor balance during beer brewing were significantly affected by the wort gravity and nitrogen level.

  13. Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects.

    PubMed

    Hashidume, Tsutomu; Kato, Asuka; Tanaka, Tomohiro; Miyoshi, Shoko; Itoh, Nobuyuki; Nakata, Rieko; Inoue, Hiroyasu; Oikawa, Akira; Nakai, Yuji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-06-17

    Soy protein β-conglycinin has serum lipid-lowering and anti-obesity effects. We showed that single ingestion of β-conglycinin after fasting alters gene expression in mouse liver. A sharp increase in fibroblast growth factor 21 (FGF21) gene expression, which is depressed by normal feeding, resulted in increased postprandial circulating FGF21 levels along with a significant decrease in adipose tissue weights. Most increases in gene expressions, including FGF21, were targets for the activating transcription factor 4 (ATF4), but not for peroxisome proliferator-activated receptor α. Overexpression of a dominant-negative form of ATF4 significantly reduced β-conglycinin-induced increases in hepatic FGF21 gene expression. In FGF21-deficient mice, β-conglycinin effects were partially abolished. Methionine supplementation to the diet or primary hepatocyte culture medium demonstrated its importance for activating liver or hepatocyte ATF4-FGF21 signaling. Thus, dietary β-conglycinin intake can impact hepatic and systemic metabolism by increasing the postprandial circulating FGF21 levels.

  14. Expression and activity levels of chymase in mast cells of burn wound tissues increase during the healing process in a hamster model.

    PubMed

    Dong, Xianglin; Xu, Tao; Ma, Shaolin; Wen, Hao

    2015-06-01

    The present study aimed to investigate the changes in the expression levels and activity of mast cell chymase in the process of burn wound healing in a hamster model of deep second-degree burn. The hamster model was established by exposing a ~3 cm diameter area of bare skin to hot water (75°C) for 0, 6, 8, 10 or 12 sec. Tissue specimens were collected 24 h after burning and histological analysis revealed that hot water contact for 12 sec was required to produce a deep second-degree burn. Quantitative polymerase chain reaction and a radioimmunoassay were used to the determine changes in chymase mRNA expression levels and activity. The mRNA expression levels and activity of chymase were increased in the burn wound tissues when compared with the normal skin. However, no statistically significant differences were observed in mast cell chymase activity amongst the various post-burn stages. Chymase mRNA expression levels peaked at day 1 post-burn, subsequently decreasing at days 3 and 7 post-burn and finally increasing again at day 14 post-burn. In summary, a hamster model of deep second-degree burn can be created by bringing the skin into contact with water at 75°C for 12 sec. Furthermore, the mRNA expression levels and activity of chymase in the burn wound tissues increased when compared with those in normal skin tissues.

  15. Expression and activity levels of chymase in mast cells of burn wound tissues increase during the healing process in a hamster model

    PubMed Central

    DONG, XIANGLIN; XU, TAO; MA, SHAOLIN; WEN, HAO

    2015-01-01

    The present study aimed to investigate the changes in the expression levels and activity of mast cell chymase in the process of burn wound healing in a hamster model of deep second-degree burn. The hamster model was established by exposing a ~3 cm diameter area of bare skin to hot water (75°C) for 0, 6, 8, 10 or 12 sec. Tissue specimens were collected 24 h after burning and histological analysis revealed that hot water contact for 12 sec was required to produce a deep second-degree burn. Quantitative polymerase chain reaction and a radioimmunoassay were used to the determine changes in chymase mRNA expression levels and activity. The mRNA expression levels and activity of chymase were increased in the burn wound tissues when compared with the normal skin. However, no statistically significant differences were observed in mast cell chymase activity amongst the various post-burn stages. Chymase mRNA expression levels peaked at day 1 post-burn, subsequently decreasing at days 3 and 7 post-burn and finally increasing again at day 14 post-burn. In summary, a hamster model of deep second-degree burn can be created by bringing the skin into contact with water at 75°C for 12 sec. Furthermore, the mRNA expression levels and activity of chymase in the burn wound tissues increased when compared with those in normal skin tissues. PMID:26136958

  16. Increased expression of placental growth factor in high-grade endometrial carcinoma

    PubMed Central

    COENEGRACHTS, LIEVE; SCHRAUWEN, STEFANIE; VAN BREE, RITA; DESPIERRE, EVELYN; LUYTEN, CATHERINE; JONCKX, BART; STASSEN, JEAN MARIE; VERGOTE, IGNACE; AMANT, FRÉDÉRIC

    2013-01-01

    Placental growth factor (PlGF), a homolog of vascular endothelial growth factor (VEGF), exerts pleiotropic functions in cancer by affecting tumor cells as well as endothelial and inflammatory cells. Moreover, PlGF expression correlates with tumor stage, recurrence, metastasis and patient outcome in different types of cancer. Recently, administration of anti-PlGF therapy reduced tumor growth and metastasis in preclinical tumor models. In the present study, we evaluated the diagnostic and prognostic value of systemic and local expression of PlGF in primary endometrial carcinomas. PlGF levels in tumor lysates (n=128) and serum (n=88) of patients with primary endometrial cancer were determined using ELISA. PlGF mRNA expression in endometrial carcinoma tissues was quantified by quantitative qRT-PCR. Results were compared to endometrial cancer stage and grade. Systemic PlGF levels were not altered in patients with endometrial cancer (FIGO stage I-II-III) as compared to healthy controls. Only in FIGO stage IV patients, serum PlGF levels were slightly increased. Local PlGF mRNA and protein expression in endometrial tumors progressively increased with tumor grade. In endometrioid carcinomas, PlGF mRNA expression was significantly increased in endometrioid grade 3 tumors as compared to normal endometrial tissue. PlGF protein expression was significantly increased in endometrioid grade 2 and 3 carcinomas and in serous carcinomas as compared to normal endometrial tissue. Our study showed that systemic/serum PlGF levels cannot be used as a diagnostic or prognostic marker in endometrial cancer. However, the increased local expression of PlGF, primarily in high-grade carcinomas, underscores the possibility for preclinical assessment of anti-PlGF therapy in endometrial cancer. PMID:23232836

  17. Increased expression of placental growth factor in high-grade endometrial carcinoma.

    PubMed

    Coenegrachts, Lieve; Schrauwen, Stefanie; Van Bree, Rita; Despierre, Evelyn; Luyten, Catherine; Jonckx, Bart; Stassen, Jean Marie; Vergote, Ignace; Amant, Frédéric

    2013-02-01

    Placental growth factor (PlGF), a homolog of vascular endothelial growth factor (VEGF), exerts pleiotropic functions in cancer by affecting tumor cells as well as endothelial and inflammatory cells. Moreover, PlGF expression correlates with tumor stage, recurrence, metastasis and patient outcome in different types of cancer. Recently, administration of anti-PlGF therapy reduced tumor growth and metastasis in preclinical tumor models. In the present study, we evaluated the diagnostic and prognostic value of systemic and local expression of PlGF in primary endometrial carcinomas. PlGF levels in tumor lysates (n=128) and serum (n=88) of patients with primary endometrial cancer were determined using ELISA. PlGF mRNA expression in endometrial carcinoma tissues was quantified by quantitative qRT-PCR. Results were compared to endometrial cancer stage and grade. Systemic PlGF levels were not altered in patients with endometrial cancer (FIGO stage I-II-III) as compared to healthy controls. Only in FIGO stage IV patients, serum PlGF levels were slightly increased. Local PlGF mRNA and protein expression in endometrial tumors progressively increased with tumor grade. In endometrioid carcinomas, PlGF mRNA expression was significantly increased in endometrioid grade 3 tumors as compared to normal endometrial tissue. PlGF protein expression was significantly increased in endometrioid grade 2 and 3 carcinomas and in serous carcinomas as compared to normal endometrial tissue. Our study showed that systemic/serum PlGF levels cannot be used as a diagnostic or prognostic marker in endometrial cancer. However, the increased local expression of PlGF, primarily in high-grade carcinomas, underscores the possibility for preclinical assessment of anti-PlGF therapy in endometrial cancer.

  18. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, Maria Lauda; USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033; The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosismore » and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and growth suppression. • Putrescine induces AP-1, which activates MAT2A promoter to increase its expression. • Putrescine increases ornithine decarboxylase expression, which induce MAT2A promoter. • Expression of MAT2A correlates with that of ornithine decarboxylase in colon cancer.« less

  19. Effect of Dietary Nutrient Density on Small Intestinal Phosphate Transport and Bone Mineralization of Broilers during the Growing Period.

    PubMed

    Li, Jianhui; Yuan, Jianmin; Miao, Zhiqiang; Song, Zhigang; Yang, Yu; Tian, Wenxia; Guo, Yuming

    2016-01-01

    A 2 × 4 factorial experiment was conducted to determine the effects of dietary nutrient density on growth performance, small intestinal epithelial phosphate transporter expression, and bone mineralization of broiler chicks fed with diets with different nutrient densities and nonphytate phosphorus (NPP) levels. The broilers were fed with the same starter diets from 0 to 21 days of age. In the grower phase (day 22 to 42), the broilers were randomly divided into eight groups according to body weight. Relatively high dietary nutrient density (HDND) and low dietary nutrient density (LDND) diets were assigned metabolic energy (ME) values of 3,150 and 2,950 kcal/kg, respectively. Crude protein and essential amino acid levels were maintained in the same proportion as ME to prepare the two diet types. NPP levels were 0.25%, 0.30%, 0.35%, and 0.40% of the diets. Results showed that a HDND diet significantly increased the body weight gain (BWG) of broilers and significantly decreased the feed conversion ratio and NPP consumed per BWG. HDND significantly decreased tibial P content of the broilers. Conversely, mRNA expression of NaPi-IIb and protein expression of calbindin were significantly increased in the intestine of broilers fed a HDND diet. HDND also increased vitamin D receptor (VDR) expression, especially at a relatively low dietary NPP level (0.25%). The mRNA expression of NaPi-IIa in the kidneys was significantly increased at a relatively low dietary NPP level (0.25%) to maintain P balance. Tibial P, calcium, and ash content were significantly decreased, as were calbindin and VDR expression levels in the intestine at a low NPP level. Therefore, HDND improved the growth rate of broilers and increased the expression of phosphate and calcium transporter in the small intestine, but adversely affected bone mineralization.

  20. Dietary Docosahexaenoic Acid Supplementation Enhances Expression of Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier and Brain Docosahexaenoic Acid Levels.

    PubMed

    Pan, Yijun; Morris, Elonie R; Scanlon, Martin J; Marriott, Philip J; Porter, Christopher Jh; Nicolazzo, Joseph A

    2018-03-27

    The cytoplasmic trafficking of docosahexaenoic acid (DHA), a cognitively-beneficial fatty acid, across the blood-brain barrier (BBB) is governed by fatty acid-binding protein 5 (FABP5). Lower levels of brain DHA have been observed in Alzheimer's disease (AD), which is associated with diminished BBB expression of FABP5. Therefore, upregulating FABP5 expression at the BBB may be a novel approach for enhancing BBB transport of DHA in AD. DHA supplementation has been shown to be beneficial in various mouse models of AD, and therefore, the aim of this study was to determine whether DHA has the potential to upregulate the BBB expression of FABP5, thereby enhancing its own uptake into the brain. Treating human brain microvascular brain endothelial (hCMEC/D3) cells with the maximum tolerable concentration of DHA (12.5 μM) for 72 hr resulted in a 1.4-fold increase in FABP5 protein expression. Associated with this was increased expression of fatty acid transport proteins 1 and 4. To study the impact of dietary DHA supplementation, 6-8 week old C57BL/6 mice were fed with a control diet or a DHA-enriched diet for 21 days. Brain microvascular FABP5 protein expression was upregulated 1.7-fold in mice fed the DHA-enriched diet, and this was associated with increased brain DHA levels (1.3-fold). Despite an increase in brain DHA levels, reduced BBB transport of 14 C-DHA was observed over a 1 min perfusion, possibly as a result of competitive binding to FABP5 between dietary DHA and 14 C-DHA. The current study has demonstrated that DHA can increase BBB expression of FABP5, as well as fatty acid transporters, overall increasing brain DHA levels. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. VGF expression by T lymphocytes in patients with Alzheimer's disease

    PubMed Central

    Glorius, Sarah; Dobrowolny, Henrik; Greiner-Bohl, Sabrina; Mawrin, Christian; Bommhardt, Ursula; Hartig, Roland; Bogerts, Bernhard; Busse, Mandy

    2015-01-01

    Secretion of VGF is increased in cerebrospinal fluid and blood in neurodegenerative disorders like Alzheimer's disease (AD) and VGF is a potential biomarker for these disorders. We have shown that VGF is expressed in peripheral T cells and is correlated with T cell survival and cytokine secretion. The frequency of VGF+CD3+ T cells increases with normal aging. We found an increased number of VGF-expressing T cells in patients with AD compared to aged healthy controls, which was associated with enhanced HbA1c levels in blood. Upon treatment with rivastigmine, T cell proliferation and VGF expression in AD patients decreased to the level found in controls. Moreover, rapamycin treatment in vitro reduced the number of VGF+CD3+ cells in AD patients to control levels. PMID:26142708

  2. Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells.

    PubMed

    Hirata, Noriko; Naruto, Shunsuke; Ohguchi, Kenji; Akao, Yukihiro; Nozawa, Yoshinori; Iinuma, Munekazu; Matsuda, Hideaki

    2007-07-15

    (-)-Cubebin showed a melanogenesis stimulation activity in a concentration-dependent manner in murine B16 melanoma cells without any significant effects on cell proliferation. Tyrosinase activity was increased at 24-72 h after addition of cubebin to B16 cells, and then intracellular melanin amount was increased at 48-96 h after the treatment. The expression levels of tyrosinase were time-dependently enhanced after the treatment with cubebin. At the same time, the expression levels of tyrosinase mRNA were also increased after addition of cubebin. Furthermore Western blot analysis revealed that cubebin elevated the level of phosphorylation of p38 mitogen-activated protein kinase (MAPK). SB203580, a selective inhibitor of p38 MAPK, completely blocked cubebin-induced expression of tyrosinase mRNA in B16 cells. These results suggested that cubebin increased melanogenesis in B16 cells through the enhancement of tyrosinase expression mediated by activation of p38 MAPK.

  3. Regulation of hepatic bile acid transporters Ntcp and Bsep expression.

    PubMed

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D

    2007-12-03

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers.

  4. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  5. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. The regulation of pituitary-thyroid abnormalities by peripheral administration of levothyroxine increased brain-derived neurotrophic factor and reelin protein expression in an animal model of Alzheimer's disease.

    PubMed

    Shabani, Sahreh; Farbood, Yaghoob; Mard, Seyyed Ali; Sarkaki, Alireza; Ahangarpour, Akram; Khorsandi, Layasadat

    2018-03-01

    Alzheimer's disease (AD) is associated with decreased serum levels of thyroid hormones (THs), increased levels of thyroid-stimulating hormone (TSH), and decreased protein expression of brain-derived neurotrophic factor (BDNF) and reelin in the hippocampus. In this study, we have evaluated the effect of subcutaneous administration of levothyroxine (L-T 4 ) on levels of THs and TSH as well as protein expression of BDNF and reelin in AD rats. To make an animal model of AD, amyloid-beta peptide (Aβ) plus ibotenic acid were infused intrahippocampally, and rats were treated with L-T 4 and (or) saline for 10 days. The levels of THs and TSH were measured by ELISA kits. Protein synthesis was detected by Western blotting method. Results have been shown that serum level of THs, BDNF, and reelin protein expression in the hippocampus were significantly decreased (P < 0.001) in AD animals and elevated significantly in AD rats treated with L-T 4 (P < 0.01). Data showed that TSH level significantly decreased in AD rats treated with L-T 4 (P < 0.05). These findings indicated that L-T 4 increased BDNF and reelin protein expression by regulation of serum THs and TSH level in Aβ-induced AD rats.

  7. Expression levels of brown/beige adipocyte-related genes in fat depots of vitamin A-restricted fattening cattle.

    PubMed

    Chen, Hsuan-Ju; Ihara, Tsubasa; Yoshioka, Hidetugu; Itoyama, Erina; Kitamura, Shoko; Nagase, Hiroshi; Murakami, Hiroaki; Hoshino, Yoichiro; Murakami, Masaru; Tomonaga, Shozo; Matsui, Tohru; Funaba, Masayuki

    2018-06-15

    Brown/beige adipocytes dissipate energy as heat. We previously showed that brown/beige adipocytes are present in white adipose tissue (WAT) of fattening cattle. The present study examined the effect of vitamin A restriction on mRNA expression of brown/beige adipocyte-related genes. In Japan, fattening cattle are conventionally fed a vitamin A-restricted diet to improve beef marbling. Twelve Japanese Black steers aged 10 months were fed control feed (n=6) or vitamin A-restricted feed (n=6) for 20 months. Subcutaneous WAT (scWAT) and mesenteric WAT (mesWAT) were collected, and mRNA expression levels of molecules related to function of brown/beige adipocytes (Ucp1, Cidea, Dio2, Cox7a and Cox8b) as well as transcriptional regulators related to brown/beige adipogenesis (Zfp516, Nfia, Prdm16, and Pgc-1α) were evaluated. The vitamin A restriction significantly increased or tended to increase expression levels of Cidea and Pgc-1α in scWAT, and Cidea, Dio2, and Nfia in mesWAT. Previous studies revealed that the bone morphogenetic protein (BMP) pathway was responsible for commitment of mesenchymal stem cells to brown/beige adipocyte-lineage cells. The vitamin A restriction increased expression of Bmp7 and some Bmp receptors in WAT. The interrelationship between gene expression levels indicated that expression levels of Nfia, Prdm16, and Pgc-1α were closely related to those of genes related to function of brown/beige adipocytes in scWAT. Also, expression levels of Nfia, Prdm16, and Pgc-1α were highly correlated with those of Alk3 in scWAT. In summary, the present results suggest that the vitamin A restriction increases the number or activity of brown/beige adipocytes through regulatory expression of transcriptional regulators to induce brown/beige adipogenesis especially in scWAT of fattening cattle, which may be governed by the Bmp pathway.

  8. Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and L-arginine metabolism in mice.

    PubMed

    Ito, Tatsuo; Kubo, Masayuki; Nagaoka, Kenjiro; Funakubo, Narumi; Setiawan, Heri; Takemoto, Kei; Eguchi, Eri; Fujikura, Yoshihisa; Ogino, Keiki

    2018-02-01

    Obesity is a risk factor for vascular endothelial cell dysfunction characterized by low-grade, chronic inflammation. Increased levels of arginase I and concomitant decreases in L-arginine bioavailability are known to play a role in the pathogenesis of vascular endothelial cell dysfunction. In the present study, we focused on changes in the systemic expression of arginase I as well as L-arginine metabolism in the pre-disease state of early obesity prior to the onset of atherosclerosis. C57BL/6 mice were fed a control diet (CD; 10% fat) or high-fat diet (HFD; 60% fat) for 8 weeks. The mRNA expression of arginase I in the liver, adipose tissue, aorta, and muscle; protein expression of arginase I in the liver and plasma; and systemic levels of L-arginine bioavailability and NO 2 - were assessed. HFD-fed mice showed early obesity without severe disease symptoms. Arginase I mRNA and protein expression levels in the liver were significantly higher in HFD-fed obese mice than in CD-fed mice. Arginase I levels were slightly increased, whereas L-arginine levels were significantly reduced, and these changes were followed by reductions in NO 2 - levels. Furthermore, hepatic arginase I levels positively correlated with plasma arginase I levels and negatively correlated with L-arginine bioavailability in plasma. These results suggested that increases in the expression of hepatic arginase I and reductions in plasma L-arginine and NO 2 - levels might lead to vascular endothelial dysfunction in the pre-disease state of early obesity.

  9. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration ofmore » sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.« less

  10. The function of oxytocin: a potential biomarker for prostate cancer diagnosis and promoter of prostate cancer.

    PubMed

    Xu, Huan; Fu, Shi; Chen, Qi; Gu, Meng; Zhou, Juan; Liu, Chong; Chen, Yanbo; Wang, Zhong

    2017-05-09

    To measure the level of oxytocin in serum and prostate cancer (PCa) tissue and study its effect on the proliferation of PCa cells. Oxytocin level in serum was significantly increased in PCa patients compared with the no-carcinoma individuals. Additionally, the levels of oxytocin and its receptor were also elevated in the PCa tissue. However, no significant difference existed among the PCa of various Gleason grades. Western blot analysis confirmed the previous results and revealed an increased expression level of APPL1. The level of oxytocin in serum was measured by ELISA analysis. The expression of oxytocin and its receptor in prostate was analyzed by immunohistochemistry. The proliferation and apoptosis of PCa cells were assessed by the Cell Counting Kit 8 (CCK8) assay, cell cycle analysis and caspase3 activity analysis, respectively. Western blot analysis was used for the detection of PCNA, Caspase3 and APPL1 protein levels. Serum and prostatic oxytocin levels are increased in the PCa subjects. Serum oxytocin level may be a biomarker for PCa in the future. Oxytocin increases PCa growth and APPL1 expression.

  11. Associations between expression levels of nucleotide excision repair proteins in lymphoblastoid cells and risk of squamous cell carcinoma of the head and neck.

    PubMed

    Han, Peng; Liu, Hongliang; Shi, Qiong; Liu, Zhensheng; Troy, Jesse D; Lee, Walter T; Zevallos, Jose P; Li, Guojun; Sturgis, Erich M; Wei, Qingyi

    2018-06-01

    Squamous cell carcinoma of head and neck (SCCHN) is one of the most common malignancies worldwide, and nucleotide excision repair (NER) is involved in SCCHN susceptibility. In this analysis of 349 newly diagnosed SCCHN patients and 295 cancer-free controls, we investigated whether expression levels of eight core NER proteins were associated with risk of SCCHN. We quantified NER protein expression levels in cultured peripheral lymphocytes using a reverse-phase protein microarray. Compared with the controls, SCCHN patients had statistically significantly lower expression levels of ERCC3 and XPA (P = 0.001 and 0.001, respectively). After dividing the subjects by controls' median values of expression levels, we found a dose-dependent association between an increased risk of SCCHN and low expression levels of ERCC3 (adjusted OR, 1.75, and 95% CI: 1.26-2.42; P trend  = 0.008) and XPA (adjusted OR, 1.88; 95% CI, 1.35-2.60; P trend  = 0.001). We also identified a significant multiplicative interaction between smoking status and ERCC3 expression levels (P = 0.014). Finally, after integrating demographic and clinical variables, we found that the addition of ERCC3 and XPA expression levels to the model significantly improved the sensitivity of the expanded model on SCCHN risk. In conclusion, reduced protein expression levels of ERCC3 and XPA were associated with an increased risk of SCCHN. However, these results need to be confirmed in additional large studies. © 2018 Wiley Periodicals, Inc.

  12. Egr-1 and serum response factor are involved in growth factors- and serum-mediated induction of E2-EPF UCP expression that regulates the VHL-HIF pathway.

    PubMed

    Lim, Jung Hwa; Jung, Cho-Rok; Lee, Chan-Hee; Im, Dong-Soo

    2008-11-01

    E2-EPF ubiquitin carrier protein (UCP) has been shown to be highly expressed in common human cancers and target von Hippel-Lindau (VHL) for proteosomal degradation in cells, thereby stabilizing hypoxia-inducible factor (HIF)-1alpha. Here, we investigated cellular factors that regulate the expression of UCP gene. Promoter deletion assay identified binding sites for early growth response-1 (Egr-1) and serum response factor (SRF) in the UCP promoter. Hepatocyte or epidermal growth factor (EGF), or phorbol 12-myristate 13-acetate induced UCP expression following early induction of Egr-1 expression in HeLa cells. Serum increased mRNA and protein levels of SRF and UCP in the cell. By electrophoretic mobility shift and chromatin immunoprecipitation assays, sequence-specific DNA-binding of Egr-1 and SRF to the UCP promoter was detected in nuclear extracts from HeLa cells treated with EGF and serum, respectively. Overexpression of Egr-1 or SRF increased UCP expression. RNA interference-mediated depletion of endogenous Egr-1 or SRF impaired EGF- or serum-mediated induction of UCP expression, which was required for cancer cell proliferation. Systemic delivery of EGF into mice also increased UCP expression following early induction of Egr-1 expression in mouse liver. The induced UCP expression by the growth factors or serum increased HIF-1alpha protein level under non-hypoxic conditions, suggesting that the Egr-1/SRF-UCP-VHL pathway is in part responsible for the increased HIF-1alpha protein level in vitro and in vivo. Thus, growth factors and serum induce expression of Egr-1 and SRF, respectively, which in turn induces UCP expression that positively regulates cancer cell growth.

  13. Effects of Different Levels of Calcium Intake on Brain Cell Apoptosis in Fluorosis Rat Offspring and Its Molecular Mechanism.

    PubMed

    Sun, Yan; Ke, Lulu; Zheng, Xiangren; Li, Tao; Ouyang, Wei; Zhang, Zigui

    2017-04-01

    The purpose of the investigation is to reveal the influence of dietary calcium on fluorosis-induced brain cell apoptosis in rat offspring, as well as the underlying molecular mechanism. Sprague-Dawley (SD) female rats were randomly divided into five groups: control group, fluoride group, low calcium, low calcium fluoride group, and high calcium fluoride group. SD male rats were used for breeding only. After 3 months, male and female rats were mated in a 1:1 ratio. Subsequently, 18-day-old gestation rats and 14- and 28-day-old rats were used as experimental subjects. We determined the blood/urine fluoride, the blood/urine calcium, the apoptosis in the hippocampus, and the expression levels of apoptosis-related genes, namely Bcl-2, caspase 12, and JNK. Blood or blood/urine fluoride levels and apoptotic cells were found significantly increased in fluorosis rat offspring as compared to controls. Furthermore, the Bcl-2 messenger RNA (mRNA) expression levels significantly decreased, and caspase 12 mRNA levels significantly increased in each age group as compared to controls. Compared with the fluoride group, the blood/urine fluoride content and apoptotic cells evidently decreased in the high calcium fluoride group, Bcl-2 mRNA expression significantly increased and caspase 12 mRNA expression significantly decreased in each age group. All results showed no gender difference. Based on these results, the molecular mechanisms of fluorosis-induced brain cell apoptosis in rat offspring may include the decrease in Bcl-2 mRNA expression level and increase in caspase 12 mRNA expression signaling pathways. High calcium intake could reverse these gene expression trends. By contrast, low calcium intake intensified the toxic effects of fluoride on brain cells.

  14. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    PubMed Central

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  15. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.

    PubMed

    Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin

    2010-12-17

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    PubMed

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  17. Expression of endothelin-1 and constitutional nitric oxide synthase messenger RNA in saphenous vein endothelial cells exposed to arterial flow shear stress.

    PubMed

    Zhu, Z G; Li, H H; Zhang, B R

    1997-11-01

    It has long been speculated that increased blood flow shear stress might be one of the major factors affecting the patency of grafted saphenous vein in coronary artery bypass operations. The underlying cellular and molecular mechanisms for so-called "shear stress damage" have not yet been well elucidated. Endothelial cells harvested from human saphenous vein were cultured in vitro and then exposed to a high arterial level flow shear stress in the parallel flow chamber. The expression levels of endothelin-1 and constitutional nitric oxide synthase by the endothelial cells were evaluated semiquantitatively at the gene transcription (messenger RNA) level using reverse transcription polymerase chain reaction. After 7 hours of exposure to arterial level shear stress, the expression of constitutional nitric oxide synthase messenger RNA by saphenous vein endothelial cells was significantly reduced, whereas the expression of endothelin-1 messenger RNA was substantially increased. These changes were more predominant at 24 hours. Arterial level flow shear stress could cause important changes in the gene transcription level in saphenous vein endothelial cells within a short period of time. The functional alterations of saphenous vein endothelial cells, as manifested by the increased expression of endothelin-1 and decreased expression of nitric oxide synthase messenger RNA, might play a crucial role in the vein graft remodeling process.

  18. Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role of tumor necrosis factor

    PubMed Central

    Saber, Anne T; Jacobsen, Nicklas R; Bornholdt, Jette; Kjær, Sanna L; Dybdahl, Marianne; Risom, Lotte; Loft, Steffen; Vogel, Ulla; Wallin, Håkan

    2006-01-01

    Background Particulate air pollution has been associated with lung and cardiovascular disease, for which lung inflammation may be a driving mechanism. The pro-inflammatory cytokine, tumor necrosis factor (TNF) has been suggested to have a key-role in particle-induced inflammation. We studied the time course of gene expression of inflammatory markers in the lungs of wild type mice and Tnf-/- mice after exposure to diesel exhaust particles (DEPs). Mice were exposed to either a single or multiple doses of DEP by inhalation. We measured the mRNA level of the cytokines Tnf and interleukin-6 (Il-6) and the chemokines, monocyte chemoattractant protein (Mcp-1), macrophage inflammatory protein-2 (Mip-2) and keratinocyte derived chemokine (Kc) in the lung tissue at different time points after exposure. Results Tnf mRNA expression levels increased late after DEP-inhalation, whereas the expression levels of Il-6, Mcp-1 and Kc increased early. The expression of Mip-2 was independent of TNF if the dose was above a certain level. The expression levels of the cytokines Kc, Mcp-1 and Il-6, were increased in the absence of TNF. Conclusion Our data demonstrate that Tnf is not important in early DEP induced inflammation and rather exerts negative influence on Mcp-1 and Kc mRNA levels. This suggests that other signalling pathways are important, a candidate being one involving Mcp-1. PMID:16504008

  19. Expression of Msx genes in regenerating and developing limbs of axolotl.

    PubMed

    Koshiba, K; Kuroiwa, A; Yamamoto, H; Tamura, K; Ide, H

    1998-12-15

    Msx genes, homeobox-containing genes, have been isolated as homologues of the Drosophila msh gene and are thought to play important roles in the development of chick or mouse limb buds. We isolated two Msx genes, Msx1 and Msx2, from regenerating blastemas of axolotl limbs and examined their expression patterns using Northern blot and whole mount in situ hybridization during regeneration and development. Northern blot analysis revealed that the expression level of both Msx genes increased during limb regeneration. The Msx2 expression level increased in the blastema at the early bud stage, and Msx1 expression level increased at the late bud stage. Whole mount in situ hybridization revealed that Msx2 was expressed in the distal mesenchyme and Msx1 in the entire mesenchyme of the blastema at the late bud stage. In the developing limb bud, Msx1 was expressed in the entire mesenchyme, while Msx2 was expressed in the distal and peripheral mesenchyme. The expression patterns of Msx genes in the blastemas and limb buds of the axolotl were different from those reported for chick or mouse limb buds. These expression patterns of axolotl Msx genes are discussed in relation to the blastema or limb bud morphology and their possible roles in limb patterning.

  20. Immunophenotyping of Monocytes During Human Sepsis Shows Impairment in Antigen Presentation: A Shift Toward Nonclassical Differentiation and Upregulation of FcγRi-Receptor.

    PubMed

    Ferreira da Mota, Nadijane Valeria; Brunialti, Milena Karina Colo; Santos, Sidneia Sousa; Machado, Flavia Ribeiro; Assunçao, Murillo; de Azevedo, Luciano Cesar Pontes; Salomao, Reinaldo

    2017-12-05

    Monocytes and macrophages are pivotal in the host response to sepsis, recognizing the infecting microorganism and triggering an inflammatory response. These functions are, at least in part, modulated by the expression of cell surface receptors. We aimed to characterize the monocyte phenotype from septic patients during an ongoing sepsis process and its association with clinical outcomes. Sixty-one septic patients and 31 healthy volunteers (HVs) were enrolled in the study. Samples were obtained from patients at baseline (D0, N = 61), and after 7 (D7, N = 36) and 14 days of therapy (D14, N = 22). Monocytes from septic patients presented decreased expression of CD86, HLA-DR, CD200R, CCR2, CXCR2, and CD163 compared with HV monocytes. In contrast, the PD-1, PD-L1, CD206, CD64, and CD16 expression levels were upregulated in patients. HLA-DR, CD64, PD-1, and PD-L1 expression levels were higher in survivors than in nonsurvivors. Increased CD86, HLA-DR, and CXCR2 expression levels were observed in follow-up samples; in contrast, CD64 and CD16 GMFI decreased over time. In conclusion, monocytes from septic patients show antigen presentation impairment as characterized by decreased HLA-DR and costimulatory CD86 expression and increased PD-1 and PD-L1 expression. On the contrary, increased monocyte inflammatory and phagocytic activities may be inferred by the increased CD16 and CD64 expression. We found conflicting results regarding differentiation toward the M2 phenotype, with increased CD206 expression and decreased CD163 expression on monocytes from septic patients, whereas the subset of nonclassical monocytes was demonstrated by increased CD16.

  1. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch)

    PubMed Central

    Tatsuki, Miho

    2013-01-01

    The fruit of melting-flesh peach (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high expression of PpACS1 (an isogene of 1-aminocyclopropane-1-carboxylic acid synthase), resulting in rapid fruit softening at the late-ripening stage. In contrast, the fruit of stony hard peach cultivars do not soften and produce little ethylene due to low expression of PpACS1. To elucidate the mechanism for suppressing PpACS1 expression in stony hard peaches, a microarray analysis was performed. Several genes that displayed similar expression patterns as PpACS1 were identified and shown to be indole-3-acetic acid (IAA)-inducible genes (Aux/IAA, SAUR). That is, expression of IAA-inducible genes increased at the late-ripening stage in melting flesh peaches; however, these transcripts were low in mature fruit of stony hard peaches. The IAA concentration increased suddenly just before harvest time in melting flesh peaches exactly coinciding with system 2 ethylene production. In contrast, the IAA concentration did not increase in stony hard peaches. Application of 1-naphthalene acetic acid, a synthetic auxin, to stony hard peaches induced a high level of PpACS1 expression, a large amount of ethylene production and softening. Application of an anti-auxin, α-(phenylethyl-2-one)-IAA, to melting flesh peaches reduced levels of PpACS1 expression and ethylene production. These observations indicate that suppression of PpACS1 expression at the late-ripening stage of stony hard peach may result from a low level of IAA and that a high concentration of IAA is required to generate a large amount of system 2 ethylene in peaches. PMID:23364941

  2. Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF-β2 expression.

    PubMed

    Kim, Sangmin; Han, Jeonghun; Jeon, Myeongjin; You, Daeun; Lee, Jeongmin; Kim, Hee Jung; Bae, Sarang; Nam, Seok Jin; Lee, Jeong Eon

    2016-08-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that regulates many biological events including cell motility and angiogenesis. Here, we investigated the role of elevated TGF-β2 level in triple negative breast cancer (TNBC) cells and the inhibitory effect of silibinin on TGF-β2 action in TNBC cells. Breast cancer patients with high TGF-β2 expression have a poor prognosis. The levels of TGF-β2 expression increased significantly in TNBC cells compared with those in non-TNBC cells. In addition, cell motility-related genes such as fibronectin (FN) and matrix metalloproteinase-2 (MMP-2) expression also increased in TNBC cells. Basal FN, MMP-2, and MMP-9 expression levels decreased in response to LY2109761, a dual TGF-β receptor I/II inhibitor, in TNBC cells. TNBC cell migration also decreased in response to LY2109761. Furthermore, we observed that TGF-β2 augmented the FN, MMP-2, and MMP-9 expression levels in a time- and dose-dependent manner. In contrast, TGF-β2-induced FN, MMP-2, and MMP-9 expression levels decreased significantly in response to LY2109761. Interestingly, we found that silibinin decreased TGF-β2 mRNA expression level but not that of TGF-β1 in TNBC cells. Cell migration as well as basal FN and MMP-2 expression levels decreased in response to silibinin. Furthermore, silibinin significantly decreased TGF-β2-induced FN, MMP-2, and MMP-9 expression levels and suppressed the lung metastasis of TNBC cells. Taken together, these results suggest that silibinin suppresses metastatic potential of TNBC cells by inhibiting TGF-β2 expression in TNBC cells. Thus, silibinin may be a promising therapeutic drug to treat TNBC.

  3. [Expression of MiR-130a in Serum Samples of Patients with Epithelial Ovarian Cancer and Its Association with Platinum Resistance].

    PubMed

    Chen, Cen; Wang, Hong-jing; Yang, Ling-Yun; Jia, Xi-biao; Xu, Pan; Chen, Jing; Liu, Ya

    2016-01-01

    To determine the expression of miR-130a in patients with epithelial ovarian cancer and its association with platinum resistance. 32 patients with platinum resistance and 30 patients without platinum resistance were recruited in this study. Real-time PCR was performed to detect the expression of miR-130a in the serum samples of the patients. ELISA was used to measure the expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and B-cell lymphoma-2 (BCL-2). Platinum-resistant patients had significantly higher levels of expression of miR-130a and BCL-2, and lower level of PTEN than platinum-sensitive patients (P < 0.05). The expression level of miR-130a increased with increased severity in histological classification and appearance of lymph node metastasis in the platinum-resistant patients (P < 0.05). MiR-130a may mediate the generation of platinum resistance in epithelial ovarian cancer through inhibiting PTEN to activate PI3K/AKT signaling pathway and increasing BCL-2 to inhibit tumor cell apoptosis. MiR-130a may be a new potential target of gene therapy in platinum-resistant ovarian cancers.

  4. Impact of interleukin-21 in the pathogenesis of primary Sjogren's syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands

    PubMed Central

    2011-01-01

    Introduction Interleukin (IL)-21 is a cytokine that controls the functional activity of effector T helper cells and the differentiation of Th17 cells, and promotes B-cell differentiation. To test whether IL-21 participates in the pathogenesis of primary Sjögren's syndrome (SS), serum IL-21 level was measured and IL-21 expression in the labial salivary glands (LSG) was examined. Methods Serum IL-21 levels in 40 primary SS, 40 rheumatoid arthritis (RA), and 38 systemic lupus erythematosus (SLE) patients and 20 healthy controls were measured. Serum IL-21 levels of SS patients were assessed for correlations with laboratory data, including anti-nuclear antibody, anti-Ro/La antibodies, globulin, immunoglobulin (Ig) class, and IgG subclass. LSGs from 16 primary SS and 4 controls with sicca symptoms were evaluated for IL-21 and IL-21 receptor (IL-21R) expression by immunohistochemistry. Confocal microscopy was performed to further characterize the IL-21 positive cells. Results Primary SS patients had significantly higher serum IL-21 levels than controls, and these increments correlated positively with levels of IgG, IgG1. Serum IgG1 levels correlated with anti-Ro antibody titers. Immunohistochemical analyses showed that lymphocytic foci and the periductal area of the LSGs from SS patients expressed high levels of IL-21 and lower levels of IL-21R, whereas the control LSGs showed minimal expression of both antigens. The more the lymphocyte infiltrated, IL-21expression in LSGs showed a tendency to increase. Confocal microscopic analyses revealed that IL-21 expressing infiltrating lymphocytes in the LSGs of SS patients also expressed CXCR5. Conclusions Primary SS is associated with high serum IL-21 levels that correlate positively with serum IgG, especially IgG1, levels. The expression of IL-21 is increased as more lymphocytes infiltrated in LSGs. These observations suggest that IL-21 may play an important role in primary SS pathogenesis. PMID:22030011

  5. Expression and function of methylthioadenosine phosphorylase in chronic liver disease.

    PubMed

    Czech, Barbara; Dettmer, Katja; Valletta, Daniela; Saugspier, Michael; Koch, Andreas; Stevens, Axel P; Thasler, Wolfgang E; Müller, Martina; Oefner, Peter J; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2013-01-01

    To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease. MTAP expression was analyzed by qRT-PCR, Western blot and immunohistochemical analysis. Levels of MTA were determined by liquid chromatography-tandem mass spectrometry. MTAP was downregulated in hepatocytes in murine fibrosis models and in patients with chronic liver disease, leading to a concomitant increase in MTA levels. In contrast, activated hepatic stellate cells (HSCs) showed strong MTAP expression in cirrhotic livers. However, also MTA levels in activated HSCs were significantly higher than in hepatocytes, and there was a significant correlation between MTA levels and collagen expression in diseased human liver tissue indicating that activated HSCs significantly contribute to elevated MTA in diseased livers. MTAP suppression by siRNA resulted in increased MTA levels, NFκB activation and apoptosis resistance, while overexpression of MTAP caused the opposite effects in HSCs. The anti-apoptotic effect of low MTAP expression and high MTA levels, respectively, was mediated by induced expression of survivin, while inhibition of survivin abolished the anti-apoptotic effect of MTA on HSCs. Treatment with a DNA demethylating agent induced MTAP and reduced survivin expression, while oxidative stress reduced MTAP levels but enhanced survivin expression in HSCs. MTAP mediated regulation of MTA links polyamine metabolism with NFκB activation and apoptosis in HSCs. MTAP and MTAP modulating mechanisms appear as promising prognostic markers and therapeutic targets for hepatic fibrosis.

  6. Expression and Function of Methylthioadenosine Phosphorylase in Chronic Liver Disease

    PubMed Central

    Czech, Barbara; Dettmer, Katja; Valletta, Daniela; Saugspier, Michael; Koch, Andreas; Stevens, Axel P.; Thasler, Wolfgang E.; Müller, Martina; Oefner, Peter J.; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2013-01-01

    To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease. Design MTAP expression was analyzed by qRT-PCR, Western blot and immunohistochemical analysis. Levels of MTA were determined by liquid chromatography-tandem mass spectrometry. Results MTAP was downregulated in hepatocytes in murine fibrosis models and in patients with chronic liver disease, leading to a concomitant increase in MTA levels. In contrast, activated hepatic stellate cells (HSCs) showed strong MTAP expression in cirrhotic livers. However, also MTA levels in activated HSCs were significantly higher than in hepatocytes, and there was a significant correlation between MTA levels and collagen expression in diseased human liver tissue indicating that activated HSCs significantly contribute to elevated MTA in diseased livers. MTAP suppression by siRNA resulted in increased MTA levels, NFκB activation and apoptosis resistance, while overexpression of MTAP caused the opposite effects in HSCs. The anti-apoptotic effect of low MTAP expression and high MTA levels, respectively, was mediated by induced expression of survivin, while inhibition of survivin abolished the anti-apoptotic effect of MTA on HSCs. Treatment with a DNA demethylating agent induced MTAP and reduced survivin expression, while oxidative stress reduced MTAP levels but enhanced survivin expression in HSCs. Conclusion MTAP mediated regulation of MTA links polyamine metabolism with NFκB activation and apoptosis in HSCs. MTAP and MTAP modulating mechanisms appear as promising prognostic markers and therapeutic targets for hepatic fibrosis. PMID:24324622

  7. Expression of fas protein on CD4+T cells irradiated by low level He-Ne

    NASA Astrophysics Data System (ADS)

    Nie, Fan; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Objective: To investigate the influence on the Expression of Fas protein on CD4+ T cells irradiated by low level He-Ne laser in the cases of psoriasis. Methods:the expression of CD4+ T Fas protein was determined in the casee of psoriasis(n=5) pre and post-low level laser irradiation(30 min、60min and 120min)by flow cytometry as compared withthe control(n=5). Results:In the cases of psoriasis,the expression of CD4+T FAS protein 21.4+/-3.1% was increased significantly than that of control group 16.8+/-2.1% pre-irradiation, p<0.05in the control,there is no difference between pre and post- irradiation,p>0.05in the cases , the expression of CD4+T Fas protein wae positively corelated to the irradiation times, when the energy density arrived to 22.92J/cm2(60 minutes)and 45.84J/cm2(120minutes), the expression of CD4+ T Fas protein was increased significantly as compared with pre-irradiation,p<0.05.Conclusion: The expression of CD4+T Fas protein may be increased by low level He-Ne laser irradiation ,the uncontrolled status of apoptosis could be corrected.

  8. Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles.

    PubMed

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie

    2009-06-12

    Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo.At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9+/-0.8 g (control, normal diet,) 21.9+/-1.4 g (EPO, normal diet), 35.3+/-3.3 g (control, high-fat diet) and 28.8+/-2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass.The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles.In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles.

  9. Erythropoietin Over-Expression Protects against Diet-Induced Obesity in Mice through Increased Fat Oxidation in Muscles

    PubMed Central

    Hojman, Pernille; Brolin, Camilla; Gissel, Hanne; Brandt, Claus; Zerahn, Bo; Pedersen, Bente Klarlund; Gehl, Julie

    2009-01-01

    Erythropoietin can be over-expressed in skeletal muscles by gene electrotransfer, resulting in 100-fold increase in serum EPO and significant increases in haemoglobin levels. Earlier studies have suggested that EPO improves several metabolic parameters when administered to chronically ill kidney patients. Thus we applied the EPO over-expression model to investigate the metabolic effect of EPO in vivo. At 12 weeks, EPO expression resulted in a 23% weight reduction (P<0.01) in EPO transfected obese mice; thus the mice weighed 21.9±0.8 g (control, normal diet,) 21.9±1.4 g (EPO, normal diet), 35.3±3.3 g (control, high-fat diet) and 28.8±2.6 g (EPO, high-fat diet). Correspondingly, DXA scanning revealed that this was due to a 28% reduction in adipose tissue mass. The decrease in adipose tissue mass was accompanied by a complete normalisation of fasting insulin levels and glucose tolerance in the high-fat fed mice. EPO expression also induced a 14% increase in muscle volume and a 25% increase in vascularisation of the EPO transfected muscle. Muscle force and stamina were not affected by EPO expression. PCR array analysis revealed that genes involved in lipid metabolism, thermogenesis and inflammation were increased in muscles in response to EPO expression, while genes involved in glucose metabolism were down-regulated. In addition, muscular fat oxidation was increased 1.8-fold in both the EPO transfected and contralateral muscles. In conclusion, we have shown that EPO when expressed in supra-physiological levels has substantial metabolic effects including protection against diet-induced obesity and normalisation of glucose sensitivity associated with a shift to increased fat metabolism in the muscles. PMID:19521513

  10. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    PubMed Central

    2014-01-01

    Background Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and mutant plants. PMID:25082369

  11. Macrophage Transcriptional Responses following In Vitro Infection with a Highly Virulent African Swine Fever Virus Isolate

    PubMed Central

    Zhang, Fuquan; Hopwood, Paul; Abrams, Charles C.; Downing, Alison; Murray, Frazer; Talbot, Richard; Archibald, Alan; Lowden, Stewart; Dixon, Linda K.

    2006-01-01

    We used a porcine microarray containing 2,880 cDNAs to investigate the response of macrophages to infection by a virulent African swine fever virus (ASFV) isolate, Malawi LIL20/1. One hundred twenty-five targets were found to be significantly altered at either or both 4 h and 16 h postinfection compared with targets after mock infection. These targets were assigned into three groups according to their temporal expression profiles. Eighty-six targets showed increased expression levels at 4 h postinfection but returned to expression levels similar to those in mock-infected cells at 16 h postinfection. These encoded several proinflammatory cytokines and chemokines, surface proteins, and proteins involved in cell signaling and trafficking pathways. Thirty-four targets showed increased expression levels at 16 h postinfection compared to levels at 4 h postinfection and in mock-infected cells. One host gene showed increased expression levels at both 4 and 16 h postinfection compared to levels in mock-infected cells. The microarray results were validated for 12 selected genes by quantitative real-time PCR. Levels of protein expression and secretion were measured for two proinflammatory cytokines, interleukin 1β and tumor necrosis factor alpha, during a time course of infection with either the virulent Malawi LIL20/1 isolate or the OUR T88/3 nonpathogenic isolate. The results revealed differences between these two ASFV isolates in the amounts of these cytokines secreted from infected cells. PMID:17041222

  12. Selenium Deficiency Influences the Expression of Selenoproteins and Inflammatory Cytokines in Chicken Aorta Vessels.

    PubMed

    Du, Qiang; Yao, Haidong; Yao, Linlin; Zhang, Ziwei; Lei, Xingen; Xu, Shiwen

    2016-10-01

    Selenium deficiency is known to cause cardiovascular diseases. However, the role of Se deficiency in causing oxidative damage and inflammation injury to the aorta vessels of chickens is not well known. In the present study, 180 1-day-old chickens were randomly divided into two groups, a low-Se group (L group) and a control-Se group (C group). The messenger RNA (mRNA) levels of 25 selenoproteins, the mRNA and protein expression levels of inflammatory cytokines (including NF-κB, TNF-α, COX-2, and PTGES), and the antioxidant levels in chicken aorta vessels were examined. The results showed that the mRNA levels of 25 selenoproteins and the activity of Gpx were decreased, while the mRNA and protein expression levels of inflammatory cytokines and the MDA content were increased by Se deficiency in chicken aorta vessels. The data from the present study indicated that Se deficiency decreases the expression of selenoproteins, reduces antioxidant function, and increases the expression of inflammatory factors in chicken aorta vessels.

  13. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium.

    PubMed

    Shynlova, Oksana; Mitchell, Jennifer A; Tsampalieros, Anne; Langille, B Lowell; Lye, Stephen J

    2004-04-01

    Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.

  14. Differential action of glucocorticoids on apolipoprotein E gene expression in macrophages and hepatocytes

    PubMed Central

    Trusca, Violeta Georgeta; Fuior, Elena Valeria; Fenyo, Ioana Madalina; Kardassis, Dimitris; Simionescu, Maya

    2017-01-01

    Apolipoprotein E (apoE) has anti-atherosclerotic properties, being involved in the transport and clearance of cholesterol-rich lipoproteins as well as in cholesterol efflux from cells. We hypothesized that glucocorticoids may exert anti-inflammatory properties by increasing the level of macrophage-derived apoE. Our data showed that glucocorticoids increased apoE expression in macrophages in vitro as well as in vivo. Dexamethasone increased ~6 fold apoE mRNA levels in cultured peritoneal macrophages and RAW 264.7 cells. Administered to C57BL/6J mice, dexamethasone induced a two-fold increase in apoE expression in peritoneal macrophages. By contrast, glucocorticoids did not influence apoE expression in hepatocytes, in vitro and in vivo. Moreover, dexamethasone enhanced apoE promoter transcriptional activity in RAW 264.7 macrophages, but not in HepG2 cells, as tested by transient transfections. Analysis of apoE proximal promoter deletion mutants, complemented by protein-DNA interaction assays demonstrated the functionality of a putative glucocorticoid receptors (GR) binding site predicted by in silico analysis in the -111/-104 region of the human apoE promoter. In hepatocytes, GR can bind to their specific site within apoE promoter but are not able to modulate the gene expression. The modulatory blockade in hepatocytes is a consequence of partial involvement of transcription factors and other signaling molecules activated through MEK1/2 and PLA2/PLC pathways. In conclusion, our study indicates that glucocorticoids (1) differentially target apoE gene expression; (2) induce a significant increase in apoE level specifically in macrophages. The local increase of apoE gene expression in macrophages at the level of the atheromatous plaque may have therapeutic implications in atherosclerosis. PMID:28355284

  15. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation.

    PubMed

    Cross, Jane L; Boulos, Sherif; Shepherd, Kate L; Craig, Amanda J; Lee, Sharon; Bakker, Anthony J; Knuckey, Neville W; Meloni, Bruno P

    2012-07-01

    In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    PubMed Central

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  17. Expression of Toll-Like Receptors 2 and 4 and Related Cytokines in Patients with Hepatic Cystic and Alveolar Echinococcosis

    PubMed Central

    Tuxun, Tuerhongjiang; Ma, Hai-Zhang; Apaer, Shadike; Zhang, Heng; Aierken, Amina; Li, Yu-Peng; Lin, Ren-Yong; Zhao, Jin-Ming; Zhang, Jin-Hui; Wen, Hao

    2015-01-01

    Several studies have demonstrated the important role of Toll-like receptors in various parasitic infections. This study aims to explore expression of Toll-like receptors (TLRs) and related cytokines in patients with human cystic echinococcosis (CE) and alveolar echinococcosis (AE). 78 subjects including AE group (N = 28), CE group (N = 22), and healthy controls (HC, N = 28) were enrolled in this study. The mRNA expression levels of TLR2 and TLR4 in blood and hepatic tissue and plasma levels related cytokines were detected by using ELISA. Median levels of TLR2 mRNA in AE and CE groups were significantly elevated as compared with that in healthy control group. Median levels of TLR4 expression were increased in AE and CE. Plasma concentration levels of IL-5, IL-6, and IL-10 were slightly increased in AE and CE groups compared with those in HC group with no statistical differences (p > 0.05). The IL-23 concentration levels were significantly higher in AE and CE groups than that in HC subjects with statistical significance. The increased expression of TLR2 and IL-23 might play a potential role in modulating tissue infiltrative growth of the parasite and its persistence in the human host. PMID:26635448

  18. Activation of hepatic Nogo-B receptor expression—A new anti-liver steatosis mechanism of statins

    PubMed Central

    Zhang, Wenwen; Yang, Xiaoxiao; Chen, Yuanli; Hu, Wenquan; Liu, Lipei; Zhang, Xiaomeng; Liu, Mengyang; Sun, Lei; Liu, Ying; Yu, Miao; Li, Xiaoju; Li, Luyuan; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-01-01

    Deficiency of hepatic Nogo-B receptor (NgBR) expression activates liver X receptor α (LXRα) in an adenosine monophosphate-activated protein kinase α (AMPKα)-dependent manner, thereby inducing severe hepatic lipid accumulation and hypertriglyceridemia. Statins have been demonstrated non-cholesterol lowering effects including anti-nonalcoholic fatty liver disease (NAFLD). Herein, we investigated if the anti-NAFLD function of statins depends on activation of NgBR expression. In vivo, atorvastatin protected apoE deficient or NgBR floxed, but not hepatic NgBR deficient mice, against Western diet (WD)-increased triglyceride levels in liver and serum. In vitro, statins reduced lipid accumulation in nonsilencing small hairpin RNA-transfected (shNSi), but not in NgBR small hairpin RNA-transfected (shNgBRi) HepG2 cells. Inhibition of cellular lipid accumulation by atorvastatin is related to activation of AMPKα, and inactivation of LXRα and lipogenic genes. Statin also inhibited expression of oxysterol producing enzymes. Associated with changes of hepatic lipid levels by WD or atorvastatin, NgBR expression was inversely regulated. At cellular levels, statins increased NgBR mRNA and protein expression, and NgBR protein stability. In contrast to reduced cellular cholesterol levels by statin or β-cyclodextrin, increased cellular cholesterol levels decreased NgBR expression suggesting cholesterol or its synthesis intermediates inhibit NgBR expression. Indeed, mevalonate, geranylgeraniol or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or farnesol, blocked atorvastatin-induced NgBR expression. Furthermore, we determined that induction of hepatic NgBR expression by atorvastatin mainly depended on inactivation of extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (Akt). Taken together, our study demonstrates that statins inhibit NAFLD mainly through activation of NgBR expression. PMID:29217477

  19. Recurrent selection for transgene expression levels in maize results in proxy selection for a native gene with the same promoter

    USDA-ARS?s Scientific Manuscript database

    High expression levels of a transgene can be very useful, making a transgene easier to evaluate for safety and efficacy. High expression levels can also increase the economic benefit of the production of high value proteins in transgenic plants. The goal of this research is to determine if recurre...

  20. Vitamin D receptor expression and potential role of vitamin D on cell proliferation and steroidogenesis in goat ovarian granulosa cells.

    PubMed

    Yao, Xiaolei; Zhang, Guomin; Guo, Yixuan; Ei-Samahy, Mohamed; Wang, Shuting; Wan, Yongjie; Han, Le; Liu, Zifei; Wang, Feng; Zhang, Yanli

    2017-10-15

    This study aimed to investigate the expression of the vitamin D receptor (VDR) in goat follicles and to determine the effects of Vit D 3 supplementation on goat granulosa cells (GCs) function linked to follicular development. The results demonstrated that VDR was prominently localized in GCs, with expression increasing with follicle diameter. Addition of Vit D 3 (1α,25-(OH) 2 VD 3 ; 10 nM) to GCs caused an increase in VDR and in steroidogenic acute regulator (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA expression. Additionally, Vit D 3 increased the cyclic adenosine monophosphate (cAMP), estradiol (E 2 ), and progesterone (P 4 ) levels, while it decreased anti-müllerian hormone receptor (AMHR) and follicle-stimulating hormone receptor (FSHR) mRNA expression (P < 0.05). Addition of FSH remarkably increased E 2, P 4 , and cAMP levels (P < 0.05), and Vit D 3 further enhanced the E 2 and cAMP levels in the presence of FSH (P < 0.05). Vit D 3 significantly induced the mRNA expression of CDK4 and CyclinD1, and downregulated P21 gene expression (P < 0.05). In addition, Vit D 3 significantly decreased reactive oxygen species (ROS) production and increased the mRNA and protein expression of superoxide dismutase 2 (SOD2) and catalase (CAT) (P < 0.05). In conclusion, VDR is expressed in GCs of the goat ovaries and Vit D 3 might play an important role in GCs proliferation by regulating cellular oxidative stress and cell cycle-related genes. Meanwhile, Vit D 3 enhances the E 2 and P 4 output of GCs by regulating the expression of 3β-HSD and StAR and the level of cAMP, which regulate steroidogenesis, supporting a potential role for Vit D 3 in follicular development. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    PubMed

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  2. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system

    PubMed Central

    Wong, Peiyan; Sze, Ying; Gray, Laura Jane; Chang, Cecilia Chin Roei; Cai, Shiwei; Zhang, Xiaodong

    2015-01-01

    Dysregulations in the brain serotonergic system and exposure to environmental stressors have been implicated in the development of major depressive disorder. Here, we investigate the interactions between the stress and serotonergic systems by characterizing the behavioral and biochemical effects of chronic stress applied during early-life or adulthood in wild type (WT) mice and mice with deficient tryptophan hydroxylase 2 (TPH2) function. We showed that chronic mild stress applied in adulthood did not affect the behaviors and serotonin levels of WT and TPH2 knock-in (KI) mice. Whereas, maternal separation (MS) stress increased anxiety- and depressive-like behaviors of WT mice, with no detectable behavioral changes in TPH2 KI mice. Biochemically, we found that MS WT mice had reduced brain serotonin levels, which was attributed to increased expression of monoamine oxidase A (MAO A). The increased MAO A expression was detected in MS WT mice at 4 weeks old and adulthood. No change in TPH2 expression was detected. To determine whether a pharmacological stressor, dexamethasone (Dex), will result in similar biochemical results obtained from MS, we used an in vitro system, SH-SY5Y cells, and found that Dex treatment resulted in increased MAO A expression levels. We then treated WT mice with Dex for 5 days, either during postnatal days 7–11 or adulthood. Both groups of Dex treated WT mice had reduced basal corticosterone and glucocorticoid receptors expression levels. However, only Dex treatment during PND7–11 resulted in reduced serotonin levels and increased MAO A expression. Just as with MS WT mice, TPH2 expression in PND7–11 Dex-treated WT mice was unaffected. Taken together, our findings suggest that both environmental and pharmacological stressors affect the expression of MAO A, and not TPH2, when applied during the critical postnatal period. This leads to long-lasting perturbations in the serotonergic system, and results in anxiety- and depressive-like behaviors. PMID:25964750

  3. Antisense oligodeoxynucleotide inhibits vascular endothelial growth factor expression in U937 foam cells.

    PubMed

    Yang, Peng-Yuan; Rui, Yao-Cheng; Jin, You-Xin; Li, Tie-Jun; Qiu, Yan; Zhang, Li; Wang, Jie-Song

    2003-06-01

    To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liporotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. U937 cells were incubated with ox-LDL 80 mg/L for 48 h, then, the foam cells were treated with asODN (0, 5, 10, and 20 micromol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markedly inhibited the increase of VEGF. After treatment with asODN 20 micromol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.

  4. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    PubMed Central

    Rovira, Mireia; Arrey, Gerard; Planas, Josep V.

    2017-01-01

    Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR) and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK) was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest improved aerobic capacity as a result of swimming-induced exercise. Finally, the induction of myokine expression by swimming-induced exercise support the hypothesis that these myokines may have been produced and secreted by the exercised zebrafish muscle and acted on fast muscle cells to promote metabolic remodeling. These results support the use of zebrafish as a suitable model for studies on muscle remodeling in vertebrates, including humans. PMID:29326600

  5. Nocturnal Light Exposure Alters Hepatic Pai-1 Expression by Stimulating the Adrenal Pathway in C3H Mice

    PubMed Central

    Aoshima, Yoshiki; Sakakibara, Hiroyuki; Suzuki, Taka-aki; Yamazaki, Shunsuke; Shimoi, Kayoko

    2014-01-01

    Recent studies have suggested the possibility that nocturnal light exposure affects many biological processes in rodents, especially the circadian rhythm, an endogenous oscillation of approximately 24 h. However, there is still insufficient information about the physiological effects of nocturnal light exposure. In this study, we examined the changes in gene expression and serum levels of plasminogen activator inhibitor-1 (PAI-1), a major component of the fibrinolytic system that shows typical circadian rhythmicity, in C3H/He mice. Zeitgeber time (ZT) was assessed with reference to the onset of light period (ZT0). Exposure to fluorescent light (70 lux) for 1 h in the dark period (ZT14) caused a significant increase in hepatic Pai-1 gene expression at ZT16. Serum PAI-1 levels also tended to increase, albeit not significantly. Expression levels of the typical clock genes Bmal1, Clock, and Per1 were significantly increased at ZT21, ZT16, and ZT18, respectively. Exposure to nocturnal light significantly increased plasma adrenalin levels. The effects of nocturnal light exposure on Pai-1 expression disappeared in adrenalectomized mice, although the changes in clock genes were still apparent. In conclusion, our results suggest that nocturnal light exposure, even for 1 h, alters hepatic Pai-1 gene expression by stimulating the adrenal pathway. Adrenalin secreted from the adrenal gland may be an important signaling mediator of the change in Pai-1 expression in response to nocturnal light exposure. PMID:25077763

  6. Regulation of DREAM Expression by Group I mGluR

    PubMed Central

    Lee, Jinu; Kim, Insook; Oh, So Ra; Ko, Suk Jin; Lim, Mi Kyung; Kim, Dong Goo

    2011-01-01

    DREAM (downstream regulatory element antagonistic modulator) is a calcium-binding protein that regulates dynorphin expression, promotes potassium channel surface expression, and enhances presenilin processing in an expression level-dependent manner. However, no molecular mechanism has yet explained how protein levels of DREAM are regulated. Here we identified group I mGluR (mGluR1/5) as a positive regulator of DREAM protein expression. Overexpression of mGluR1/5 increased the cellular level of DREAM. Up-regulation of DREAM resulted in increased DREAM protein in both the nucleus and cytoplasm, where the protein acts as a transcriptional repressor and a modulator of its interacting proteins, respectively. DHPG (3,5-dihydroxyphenylglycine), a group I mGluR agonist, also up-regulated DREAM expression in cortical neurons. These results suggest that group I mGluR is the first identified receptor that may regulate DREAM activity in neurons. PMID:21660149

  7. The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.).

    PubMed

    Abdollahi Mandoulakani, Babak; Eyvazpour, Elham; Ghadimzadeh, Morteza

    2017-07-01

    Basil (Ocimum basilicum L.), a medicinal plant of the Lamiaceae family, is used in traditional medicine; its essential oil is a rich source of phenylpropanoids. Methylchavicol and methyleugenol are the most important constituents of basil essential oil. Drought stress is proposed to enhance the essential oil composition and expression levels of the genes involved in its biosynthesis. In the current investigation, an experiment based on a completely randomized design (CRD) with three replications was conducted in the greenhouse to study the effect of drought stress on the expression level of four genes involved in the phenylpropanoid biosynthesis pathway in O. basilicum c.v. Keshkeni luvelou. The genes studied were chavicol O-methyl transferase (CVOMT), eugenol O-methyl transferase (EOMT), cinnamate 4-hydroxylase (C4H), 4-coumarate coA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD). The effect of drought stress on the essential oil compounds and their relationship with the expression levels of the studied genes were also investigated. Plants were subjected to levels of 100%, 75%, and 50% of field capacity (FC) at the 6-8 leaf stage. Essential oil compounds were identified by gas chromatography/mass spectrometry (GC-MS) at flowering stage and the levels of gene expression were determind by real time PCR in plant leaves at the same stage. Results showed that drought stress increased the amount of methylchavicol, methyleugenol, β-Myrcene and α-bergamotene. The maximum amount of these compounds was observed at 50% FC. Real-time PCR analysis revealed that severe drought stress (50% FC) increased the expression level of CVOMT and EOMT by about 6.46 and 46.33 times, respectively, whereas those of CAD relatively remained unchanged. The expression level of 4CL and C4H reduced under drought stress conditions. Our results also demonstrated that changes in the expression levels of CVOMT and EOMT are significantly correlated with methylchavicol (r = 0.94, P ≤ 0.05) and methyleugenol (r = 0.98, P ≤ 0.05) content. Thus, drought stress probably increases the methylchavicol and methyleugenol content, in part, through increasing the expression levels of CVOMT and EOMT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Relationship between serum levels of triglycerides and vascular inflammation, measured as COX-2, in arteries from diabetic patients: a translational study

    PubMed Central

    2013-01-01

    Background Inflammation is a common feature in the majority of cardiovascular disease, including Diabetes Mellitus (DM). Levels of pro-inflammatory markers have been found in increasing levels in serum from diabetic patients (DP). Moreover, levels of Cyclooxygenase-2 (COX-2) are increased in coronary arteries from DP. Methods Through a cross-sectional design, patients who underwent CABG were recruited. Vascular smooth muscle cells (VSMC) were cultured and COX-2 was measured by western blot. Biochemical and clinical data were collected from the medical record and by blood testing. COX-2 expression was analyzed in internal mammary artery cross-sections by confocal microscopy. Eventually, PGI2 and PGE2 were assessed from VSMC conditioned media by ELISA. Results Only a high glucose concentration, but a physiological concentration of triglycerides exposure of cultured human VSMC derived from non-diabetic patients increased COX-2 expression .Diabetic patients showed increasing serum levels of glucose, Hb1ac and triglycerides. The bivariate analysis of the variables showed that triglycerides was positively correlated with the expression of COX-2 in internal mammary arteries from patients (r2 = 0.214, P < 0.04). Conclusions We conclude that is not the glucose blood levels but the triglicerydes leves what increases the expression of COX-2 in arteries from DP. PMID:23642086

  9. Predictive factors for the sensitivity of radiotherapy and prognosis of esophageal squamous cell carcinoma.

    PubMed

    Wu, Shaobin; Wang, Xianwei; Chen, Jin-Xiang; Chen, Yuxiang

    2014-05-01

    To identify predictive biomarkers for radiosensitization and prognosis of esophageal squamous cell carcinoma (ESCC). A total of 150 advanced stage ESCC patients were treated with preoperative radiotherapy. The protein levels of Dicer 1, DNA methyltransferase 1 (Dnmt1), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and the mRNA levels of Dicer 1, Dnmt1, and let-7b microRNA (miRNA) were measured in ESCC tumor tissues before and after radiotherapy. Global DNA methylation was measured and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed. Negative Dicer 1, Dnmt1, and DNA-PKcs protein expression were observed in 72%, 67.3%, and 50.7% of ESCC patients, respectively. Primary Dicer 1 and Dnmt1 expression positively correlated with radiation sensitization and longer survival of ESCC patients, while increased Dicer 1 and Dnmt1 expression after radiation correlated with increased apoptosis in residual tumor tissues. Dicer 1 and Dnmt1 expression correlated with let-7b miRNA expression and global DNA methylation levels, respectively. In contrast, positive DNA-PKcs expression negatively correlated with radiation-induced pathological reactions, and increased DNA-PKcs expression correlated with increased apoptosis after radiation. Global DNA hypomethylation and low miRNA expression are involved in the sensitization of ESCC to radiotherapy and prognosis of patients with ESCC.

  10. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells.

    PubMed

    Voynow, J A; Young, L R; Wang, Y; Horger, T; Rose, M C; Fischer, B M

    1999-05-01

    Chronic neutrophil-predominant inflammation and hypersecretion of mucus are common pathophysiological features of cystic fibrosis, chronic bronchitis, and viral- or pollution-triggered asthma. Neutrophils release elastase, a serine protease, that causes increased mucin production and secretion. The molecular mechanisms of elastase-induced mucin production are unknown. We hypothesized that as part of this mechanism, elastase upregulates expression of a major respiratory mucin gene, MUC5AC. A549, a human lung carcinoma cell line that expresses MUC5AC mRNA and protein, and normal human bronchial epithelial cells in an air-liquid interface culture were stimulated with neutrophil elastase. Neutrophil elastase increased MUC5AC mRNA levels in a time-dependent manner in both cell culture systems. Neutrophil elastase treatment also increased MUC5AC protein levels in A549 cells. The mechanism of MUC5AC gene regulation by elastase was determined in A549 cells. The induction of MUC5AC gene expression required serine protease activity; other classes of proteases had no effect on MUC5AC gene expression. Neutrophil elastase increased MUC5AC mRNA levels by enhancing mRNA stability. This is the first report of mucin gene regulation by this mechanism.

  11. Differential allelic expression of IL13 and CSF2 genes associated with asthma.

    PubMed

    Burkhardt, Jana; Kirsten, Holger; Wolfram, Grit; Quente, Elfi; Ahnert, Peter

    2012-07-01

    An important area of genetic research is the identification of functional mechanisms in polymorphisms associated with diseases. A highly relevant functional mechanism is the influence of polymorphisms on gene expression levels (differential allelic expression, DAE). The coding single nucleotide polymorphisms (SNPs) CSF2(rs25882) and IL13(rs20541) have been associated with asthma. In this work, we investigated whether the mRNA expression levels of CSF2 or IL13 were correlated with these SNPs. Samples were analyzed by mass spectrometry-based quantification of gene expression. Both SNPs influenced gene expression levels (CSF2(rs25882): p(overall) = 0.008 and p(DAE samples) = 0.00006; IL13(rs20541): p(overall) = 0.059 and p(DAE samples) = 0.036). For CSF2, the expression level was increased by 27.4% (95% CI: 18.5%-35.4%) in samples with significant DAE in the presence of one copy of risk variant CSF2(rs25882-T). The average expression level of IL13 was increased by 29.8% (95% CI: 3.1%-63.4%) in samples with significant DAE in the presence of one copy of risk variant IL13(rs20541-A). Enhanced expression of CSF2 could stimulate macrophages and neutrophils during inflammation and may be related to the etiology of asthma. For IL-13, higher expression could enhance the functional activity of the asthma-associated isoform. Overall, the analysis of DAE provides an efficient approach for identifying possible functional mechanisms that link disease-associated variants with altered gene expression levels.

  12. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain.

    PubMed

    Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui

    2010-08-06

    CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.

  13. Redox regulation of antioxidant enzymes: post-translational modulation of catalase and glutathione peroxidase activity by resveratrol in diabetic rat liver.

    PubMed

    Sadi, Gökhan; Bozan, Davut; Yildiz, Huseyin Bekir

    2014-08-01

    Resveratrol is a strong antioxidant that exhibits blood glucose-lowering effects, which might contribute to its usefulness in preventing complications associated with diabetes. The present study aimed to investigate resveratrol effects on catalase (CAT) and glutathione peroxidase (GPx) gene and protein expression, their phosphorylation states and activities in rat liver of STZ-induced diabetes. Diabetes increased the levels of total protein phosphorylation and p-CAT, while mRNA expression, protein levels, and activity were reduced. Although diabetes induced transcriptional repression over GPx, it did not affect the protein levels and activity. When resveratrol was administered to diabetic rats, an increase in activity was associated with an increase in p-GPx levels. Decrease in Sirtuin1 (SIRT1) and nuclear factor erythroid 2-related factor (Nrf2) and increase in nuclear factor kappa B (NFκB) gene expression in diabetes were associated with a decrease in CAT and GPx mRNA expression. A possible compensatory mechanism for reduced gene expression of antioxidant enzymes is proved to be nuclear translocation of redox-sensitive Nrf2 and NFκB in diabetes which is confirmed by the increase in nuclear and decrease in cytoplasmic protein levels of Nrf2 and NFκB. Taken together, these findings revealed that an increase in the oxidized state in diabetes intricately modified the cellular phosphorylation status and regulation of antioxidant enzymes. Gene regulation of antioxidant enzymes was accompanied by nuclear translocation of Nrf2 and NFκB. Resveratrol administration also activated a coordinated cytoprotective response against diabetes-induced changes in liver tissues.

  14. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells.

    PubMed

    Lucchetti, Donatella; Calapà, Federica; Palmieri, Valentina; Fanali, Caterina; Carbone, Federica; Papa, Alfredo; De Maria, Ruggero; De Spirito, Marco; Sgambato, Alessandro

    2017-07-01

    Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Micro-RNA-126 Reduces the Blood Thrombogenicity in Diabetes Mellitus via Targeting of Tissue Factor.

    PubMed

    Witkowski, Marco; Weithauser, Alice; Tabaraie, Termeh; Steffens, Daniel; Kränkel, Nicolle; Witkowski, Mario; Stratmann, Bernd; Tschoepe, Diethelm; Landmesser, Ulf; Rauch-Kroehnert, Ursula

    2016-06-01

    Diabetes mellitus involves vascular inflammatory processes and is a main contributor to cardiovascular mortality. Notably, heightened levels of circulating tissue factor (TF) account for the increased thrombogenicity and put those patients at risk for thromboembolic events. Here, we sought to investigate the role of micro-RNA (miR)-driven TF expression and thrombogenicity in diabetes mellitus. Plasma samples of patients with diabetes mellitus were analyzed for TF protein and activity as well as miR-126 expression before and after optimization of the antidiabetic treatment. We found low miR-126 levels to be associated with markedly increased TF protein and TF-mediated thrombogenicity. Reduced miR-126 expression was accompanied by increased vascular inflammation as evident from the levels of vascular adhesion molecule-1 and fibrinogen, as well as leukocyte counts. With optimization of the antidiabetic treatment miR-126 levels increased and thrombogenicity was reduced. Using a luciferase reporter system, we demonstrated miR-126 to directly bind to the F3-3'-untranslated region, thereby reducing TF expression both on mRNA and on protein levels in human microvascular endothelial cells as well as TF mRNA and activity in monocytes. Circulating miR-126 exhibits antithrombotic properties via regulating post-transcriptional TF expression, thereby impacting the hemostatic balance of the vasculature in diabetes mellitus. © 2016 The Authors.

  16. Antenatal retinoic acid administration increases trophoblastic retinol-binding protein dependent retinol transport in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Kutasy, Balazs; Friedmacher, Florian; Pes, Lara; Coyle, David; Doi, Takashi; Paradisi, Francesca; Puri, Prem

    2016-04-01

    Low pulmonary retinol levels and disrupted retinoid signaling pathway (RSP) have been implicated in the pathogenesis of congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH). It has been demonstrated that nitrofen disturbs the main retinol-binding protein (RBP)-dependent trophoblastic retinol transport. Several studies have demonstrated that prenatal treatment with retinoic acid (RA) can reverse PH in the nitrofen-induced CDH model. We hypothesized that maternal administration of RA can increase trophoblastic RBP-dependent retinol transport in a nitrofen model of CDH. Pregnant rats were treated with nitrofen or vehicle on gestational day 9 (D9) and sacrificed on D21. RA was given i.p. on D18, D19, and D20. Retinol and RA levels were measured using high-performance liquid chromatography. Immunohistochemistry was performed to evaluate trophoblastic expression of RBP. Expression levels of the primary RSP genes were determined using quantitative real-time PCR and immunohistochemistry. Markedly increased trophoblastic RBP immunoreactivity was observed in CDH+RA compared to CDH. Significantly increased serum and pulmonary retinol and RA levels were detected in CDH+RA compared to CDH. Pulmonary expression of RSP genes and proteins were increased in CDH+RA compared to CDH. Increased trophoblastic RBP expression and retinol transport after antenatal administration of RA suggest that retinol-triggered RSP activation may attenuate CDH-associated PH by elevating serum and pulmonary retinol levels.

  17. Angiotensin II alters the expression of duodenal iron transporters, hepatic hepcidin, and body iron distribution in mice.

    PubMed

    Tajima, Soichiro; Ikeda, Yasumasa; Enomoto, Hideaki; Imao, Mizuki; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Miyamoto, Licht; Ishizawa, Keisuke; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-08-01

    Angiotensin II (ANG II) has been shown to affect iron metabolism through alteration of iron transporters, leading to increased cellular and tissue iron contents. Serum ferritin, a marker of body iron storage, is elevated in various cardiovascular diseases, including hypertension. However, the associated changes in iron absorption and the mechanism underlying increased iron content in a hypertensive state remain unclear. The C57BL6/J mice were treated with ANG II to generate a model of hypertension. Mice were divided into three groups: (1) control, (2) ANG II-treated, and (3) ANG II-treated and ANG II receptor blocker (ARB)-administered (ANG II-ARB) groups. Mice treated with ANG II showed increased serum ferritin levels compared to vehicle-treated control mice. In ANG II-treated mice, duodenal divalent metal transporter-1 and ferroportin (FPN) expression levels were increased and hepatic hepcidin mRNA expression and serum hepcidin concentration were reduced. The mRNA expression of bone morphogenetic protein 6 and CCAAT/enhancer-binding protein alpha, which are regulators of hepcidin, was also down-regulated in the livers of ANG II-treated mice. In terms of tissue iron content, macrophage iron content and renal iron content were increased by ANG II treatment, and these increases were associated with reduced expression of transferrin receptor 1 and FPN and increased expression of ferritin. These changes induced by ANG II treatment were ameliorated by the administration of an ARB. Angiotensin II (ANG II) altered the expression of duodenal iron transporters and reduced hepcidin levels, contributing to the alteration of body iron distribution.

  18. Systemic Chemokine Levels with "Gut-Specific" Vedolizumab in Patients with Inflammatory Bowel Disease-A Pilot Study.

    PubMed

    Zwicker, Stephanie; Lira-Junior, Ronaldo; Höög, Charlotte; Almer, Sven; Boström, Elisabeth A

    2017-08-22

    Vedolizumab, a gut-specific biological treatment for inflammatory bowel disease (IBD), is an antibody that binds to the α₄β₇ integrin and blocks T-cell migration into intestinal mucosa. We aimed to investigate chemokine levels in serum of IBD-patients treated with vedolizumab. In this pilot study, we included 11 IBD patients (8 Crohn's disease, 3 ulcerative colitis) previously non-respondent to anti-tumor necrosis factor (TNF)-agents. Patients received vedolizumab at week 0, 2 and 6 and were evaluated for clinical efficacy at week 10. Clinical characteristics and routine laboratory parameters were obtained and patients were classified as responders or non-responders. Expression of 21 chemokines in serum was measured using Proximity Extension Assay and related to clinical outcome. At week 10, 6 out of 11 patients had clinically responded. Overall expression of CCL13 increased after treatment. In non-responders, expression of CCL13 and CXCL8 increased after treatment, and CCL20 and CXCL1 expressions were higher compared to responders. In responders, CCL28 decreased after treatment. C-reactive protein (CRP) correlated negatively with 6 chemokines before therapy, but not after therapy. Systemic CCL13 expression increases in IBD-patients after vedolizumab therapy and several chemokine levels differ between responders and non-responders. An increased CCL13-level when starting vedolizumab treatment, might indicate potential prognostic value of measuring chemokine levels when starting therapy with vedolizumab. This study provides new information on modulation of systemic chemokine levels after vedolizumab treatment.

  19. Early social deprivation impairs pair bonding and alters serum corticosterone and the NAcc dopamine system in mandarin voles.

    PubMed

    Yu, Peng; An, Shucheng; Tai, Fadao; Wang, Jianli; Wu, Ruiyong; Wang, Bo

    2013-12-01

    Early life stress has a long-term negative impact on emotion, learning, memory and adult sexual behavior, and these deficits most likely impair pair bonding. Here, we investigated whether early social deprivation (ED) affects the formation of pair bonds in socially monogamous mandarin voles (Microtus mandarinus). In a partner preference test (PPT), ED-reared adult females and males did not show a preference for their partner, spent more time exploring the cage of an unfamiliar animal and directed high levels of aggression toward unfamiliar animals. In social interaction test, ED increased exploring behavior only in females, but increased movement around the partner and reduced inactivity in both males and females. Three days of cohabitation did not alter serum corticosterone levels in ED-reared males, but increased corticosterone levels in males that received bi-parental care (PC). Interestingly, serum corticosterone levels in ED- and PC-reared females declined after cohabitation. ED significantly increased basal serum corticosterone levels in males, but had no effect on females. ED significantly up-regulated the levels of dopamine and the mRNA expression of dopamine 1-type receptor (D1R) in the nucleus accumbens (NAcc) in females and males. ED suppressed dopamine 2-type receptor mRNA (D2R) expression in females, but increased this in males. After three days of cohabitation, levels of D1R mRNA and D2R mRNA expression changed in opposite directions in PC-reared voles, but in the same direction in ED-reared males, and only the expression of D2R mRNA increased in ED-reared females. Our results indicate that early social deprivation inhibits pair bonding at adulthood. This inhibition is possibly associated with sex-specific alterations in serum corticosterone, levels of dopamine and mRNA expression of two types of dopamine receptors in the NAcc. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression.

    PubMed

    Xie, Hua; Wang, Hao

    2018-03-01

    Prior studies have demonstrated that phosphatase of regenerating liver-3 (PRL-3) serves avital function in cell proliferation and metastasis in breast cancer. However, the molecular mechanisms underlying the function of PRL-3 in breast cancer remain unknown. PRL-3 expression was analyzed in 24 pairs of breast cancer and normal tissues using the reverse transcription-quantitative polymerase chain reaction assay. The results of the present study identified that the expression of PLR-3 in breast cancer tissues was increased 4.2-fold, compared with normal tissues. Notably, overexpression of PRL-3 significantly promoted the proliferation of cancer cells and inhibited endogenous p53 expression by downregulating the expression level of p14 alternate reading frame (p14 ARF ). In addition, decreased expression levels of PRL-3 resulted in decreased breast cancer cell proliferation and increased expression level of p14 ARF . These results suggested that PRL-3 enhances cell proliferation by downregulating p14 ARF expression, which results in decreased levels ofp53. The results of the present study demonstrated that PRL-3 promotes tumor proliferation by affecting the p14 ARF -p53 axis, and that it may serve as a prognostic marker for patients with breast cancer.

  1. Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes.

    PubMed

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-05

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α.

  2. Differential Regulation of the Ascorbic Acid Transporter SVCT2 during Development and in Response to Ascorbic Acid Depletion

    PubMed Central

    Meredith, M. Elizabeth; Harrison, Fiona E.; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter-2 (SVCT2) is the only ascorbic acid (ASC) transporter significantly expressed in brain. It is required for life and critical during brain development to supply adequate levels of ASC. To assess SVCT2 function in the developing brain, we studied time-dependent SVCT2 mRNA and protein expression in mouse brain, using liver as a comparison tissue because it is the site of ASC synthesis. We found that SVCT2 expression followed an inverse relationship with ASC levels in the developing brain. In cortex and cerebellum, ASC levels were high throughout late embryonic stages and early post-natal stages and decreased with age, whereas SVCT2 mRNA and protein levels were low in embryos and increased with age. A different response was observed for liver, in which ASC levels and SVCT2 expression were both low throughout embryogenesis and increased post-natally. To determine whether low intracellular ASC might be capable of driving SVCT2 expression, we depleted ASC by diet in adult mice unable to synthesize ASC. We observed that SVCT2 mRNA and protein were not affected by ASC depletion in brain cortex, but SVCT2 protein expression was increased by ASC depletion in the cerebellum and liver. The results suggest that expression of the SVCT2 is differentially regulated during embryonic development and in adulthood. PMID:22001929

  3. Expression of protease-activated receptor (PAR)-2, but not other PARs, is regulated by inflammatory cytokines in rat astrocytes.

    PubMed

    Sokolova, Elena; Aleshin, Stepan; Reiser, Georg

    2012-02-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS) and are believed to play an important role in normal brain functioning as well as in development of various inflammatory and neurodegenerative disorders. Pathological conditions cause altered expression of PARs in brain cells and therefore altered responsiveness to PAR activation. The exact mechanisms of regulation of PAR expression are not well studied. Here, we evaluated in rat astrocytes the influence of LPS, pro-inflammatory cytokines TNFα and IL-1β and continuous PAR activation by PAR agonists on the expression levels of PARs. These stimuli are important in inflammatory and neurological disorders, where their levels are increased. We report that LPS as well as cytokines TNFα and IL-1β affected only the PAR-2 level, but their effects were opposite. LPS and TNFα increased the functional expression of PAR-2, whereas IL-1β down-regulated the functional response of PAR-2. Agonists of PAR-1 specifically increased mRNA level of PAR-2, but not protein level. Transcript levels of other PARs were not changed after PAR-1 activation. Stimulation of the cells with PAR-2 or PAR-4 agonists did not alter PAR levels. We found that up-regulation of PAR-2 is dependent on PKC activity, mostly via its Ca²⁺-sensitive isoforms. Two transcription factors, NFκB and AP-1, are involved in up-regulation of PAR-2. These findings provide new information about the regulation of expression of PAR subtypes in brain cells. This is of importance for targeting PARs, especially PAR-2, for the treatment of CNS disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Beneficial effects of the heme oxygenase-1/carbon monoxide system in patients with severe sepsis/septic shock.

    PubMed

    Takaki, Shoji; Takeyama, Naoshi; Kajita, Yuka; Yabuki, Teru; Noguchi, Hiroki; Miki, Yasuo; Inoue, Yasusuke; Nakagawa, Takashi; Noguchi, Hiroshi

    2010-01-01

    We evaluated the relations among the arterial carbon monoxide (CO) concentration, heme oxygenase (HO)-1 expression by monocytes, oxidative stress, plasma levels of cytokines and bilirubin, and the outcome of patients with severe sepsis or septic shock. Thirty-six patients who fulfilled the criteria for severe sepsis or septic shock and 21 other patients without sepsis during their stay in the intensive care unit were studied. HO-1 protein expression by monocytes, arterial CO, oxidative stress, bilirubin, and cytokines were measured. Arterial blood CO, cytokine, and bilirubin levels, and monocyte HO-1 protein expression were higher in patients with severe sepsis/septic shock than in non-septic patients. Increased HO-1 expression was related to the arterial CO concentration and oxidative stress. There was a positive correlation between survival and increased HO-1 protein expression or a higher CO level. Arterial CO and monocyte HO-1 protein expression were increased in critically ill patients, particularly those with severe sepsis or septic shock, suggesting that oxidative stress is closely related to HO-1 expression. The HO-1/CO system may play an important role in sepsis.

  5. The Circular RNA Interacts with STAT3, Increasing Its Nuclear Translocation and Wound Repair by Modulating Dnmt3a and miR-17 Function.

    PubMed

    Yang, Zhen-Guo; Awan, Faryal Mehwish; Du, William W; Zeng, Yan; Lyu, Juanjuan; Wu, De; Gupta, Shaan; Yang, Weining; Yang, Burton B

    2017-09-06

    Delayed or impaired wound healing is a major health issue worldwide, especially in patients with diabetes and atherosclerosis. Here we show that expression of the circular RNA circ-Amotl1 accelerated healing process in a mouse excisional wound model. Further studies showed that ectopic circ-Amotl1 increased protein levels of Stat3 and Dnmt3a. The increased Dnmt3a then methylated the promoter of microRNA miR-17, decreasing miR-17-5p levels but increasing fibronectin expression. We found that Stat3, similar to Dnmt3a and fibronectin, was a target of miR-17-5p. Decreased miR-17-5p levels would increase expression of fibronectin, Dnmt3a, and Stat3. All of these led to increased cell adhesion, migration, proliferation, survival, and wound repair. Furthermore, we found that circ-Amotl1 not only increased Stat3 expression but also facilitated Stat3 nuclear translocation. Thus, the ectopic expressed circ-Amotl1 and Stat3 were mainly translocated to nucleus. In the presence of circ-Amotl1, Stat3 interacted with Dnmt3a promoter with increased affinity, facilitating Dnmt3a transcription. Ectopic application of circ-Amotl1 accelerating wound repair may shed light on skin wound healing clinically. Copyright © 2017. Published by Elsevier Inc.

  6. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  7. Changes in free amino acid concentrations and associated gene expression profiles in the abdominal muscle of kuruma shrimp (Marsupenaeus japonicus) acclimated at different salinities.

    PubMed

    Koyama, Hiroki; Mizusawa, Nanami; Hoashi, Masataka; Tan, Engkong; Yasumoto, Ko; Jimbo, Mitsuru; Ikeda, Daisuke; Yokoyama, Takehiko; Asakawa, Shuichi; Piyapattanakorn, Sanit; Watabe, Shugo

    2018-06-05

    Shrimps inhabiting coastal waters can survive in a wide range of salinity. However, the molecular mechanisms involved in their acclimation to different environmental salinities have remained largely unknown. In the present study, we acclimated kuruma shrimp ( Marsupenaeus japonicus ) at 1.7%, 3.4% and 4.0% salinities. After acclimating for 6, 12, 24 and 72 h, we determined free amino acid concentrations in their abdominal muscle, and performed RNA sequencing analysis on this muscle. The concentrations of free amino acids were clearly altered depending on salinity after 24 h of acclimation. Glutamine and alanine concentrations were markedly increased following the increase of salinity. In association with such changes, many genes related to amino acid metabolism changed their expression levels. In particular, the increase of the expression level of the gene encoding glutamate-ammonia ligase, which functions in glutamine metabolism, appeared to be associated with the increased glutamine concentration at high salinity. Furthermore, the increased alanine concentration at high salinity was likely associated with the decrease in the expression levels of the the gene encoding alanine-glyoxylate transaminase. Thus, there is a possibility that changes in the concentration of free amino acids for osmoregulation in kuruma shrimp are regulated by changes in the expression levels of genes related to amino acid metabolism. © 2018. Published by The Company of Biologists Ltd.

  8. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice

    PubMed Central

    Ai, Ding; Baez, Juan M.; Jiang, Hongfeng; Conlon, Donna M.; Hernandez-Ono, Antonio; Frank-Kamenetsky, Maria; Milstein, Stuart; Fitzgerald, Kevin; Murphy, Andrew J.; Woo, Connie W.; Strong, Alanna; Ginsberg, Henry N.; Tabas, Ira; Rader, Daniel J.; Tall, Alan R.

    2012-01-01

    Recent GWAS have identified SNPs at a human chromosom1 locus associated with coronary artery disease risk and LDL cholesterol levels. The SNPs are also associated with altered expression of hepatic sortilin-1 (SORT1), which encodes a protein thought to be involved in apoB trafficking and degradation. Here, we investigated the regulation of Sort1 expression in mouse models of obesity. Sort1 expression was markedly repressed in both genetic (ob/ob) and high-fat diet models of obesity; restoration of hepatic sortilin-1 levels resulted in reduced triglyceride and apoB secretion. Mouse models of obesity also exhibit increased hepatic activity of mammalian target of rapamycin complex 1 (mTORC1) and ER stress, and we found that administration of the mTOR inhibitor rapamycin to ob/ob mice reduced ER stress and increased hepatic sortilin-1 levels. Conversely, genetically increased hepatic mTORC1 activity was associated with repressed Sort1 and increased apoB secretion. Treating WT mice with the ER stressor tunicamycin led to marked repression of hepatic sortilin-1 expression, while administration of the chemical chaperone PBA to ob/ob mice led to amelioration of ER stress, increased sortilin-1 expression, and reduced apoB and triglyceride secretion. Moreover, the ER stress target Atf3 acted at the SORT1 promoter region as a transcriptional repressor, whereas knockdown of Atf3 mRNA in ob/ob mice led to increased hepatic sortilin-1 levels and decreased apoB and triglyceride secretion. Thus, in mouse models of obesity, induction of mTORC1 and ER stress led to repression of hepatic Sort1 and increased VLDL secretion via Atf3. This pathway may contribute to dyslipidemia in metabolic disease. PMID:22466652

  9. Chronic High Fructose Intake Reduces Serum 1,25 (OH)2D3 Levels in Calcium-Sufficient Rodents

    PubMed Central

    Douard, Veronique; Patel, Chirag; Lee, Jacklyn; Tharabenjasin, Phuntila; Williams, Edek; Fritton, J. Christopher; Sabbagh, Yves; Ferraris, Ronaldo P.

    2014-01-01

    Excessive fructose consumption inhibits adaptive increases in intestinal Ca2+ transport in lactating and weanling rats with increased Ca2+ requirements by preventing the increase in serum levels of 1,25(OH)2D3. Here we tested the hypothesis that chronic fructose intake decreases 1,25(OH)2D3 levels independent of increases in Ca2+ requirements. Adult mice fed for five wk a high glucose-low Ca2+ diet displayed expected compensatory increases in intestinal and renal Ca2+ transporter expression and activity, in renal CYP27B1 (coding for 1α-hydroxylase) expression as well as in serum 1,25(OH)2D3 levels, compared with mice fed isocaloric glucose- or fructose-normal Ca2+ diets. Replacing glucose with fructose prevented these increases in Ca2+ transporter, CYP27B1, and 1,25(OH)2D3 levels induced by a low Ca2+ diet. In adult mice fed for three mo a normal Ca2+ diet, renal expression of CYP27B1 and of CYP24A1 (24-hydroxylase) decreased and increased, respectively, when the carbohydrate source was fructose instead of glucose or starch. Intestinal and renal Ca2+ transporter activity and expression did not vary with dietary carbohydrate. To determine the time course of fructose effects, a high fructose or glucose diet with normal Ca2+ levels was fed to adult rats for three mo. Serum levels of 1,25(OH)2D3 decreased and of FGF23 increased significantly over time. Renal expression of CYP27B1 and serum levels of 1,25(OH)2D3 still decreased in fructose- compared to those in glucose-fed rats after three mo. Serum parathyroid hormone, Ca2+ and phosphate levels were normal and independent of dietary sugar as well as time of feeding. Thus, chronically high fructose intakes can decrease serum levels of 1,25(OH)2D3 in adult rodents experiencing no Ca2+ stress and fed sufficient levels of dietary Ca2+. This finding is highly significant because fructose constitutes a substantial portion of the average diet of Americans already deficient in vitamin D. PMID:24718641

  10. Human Papillomavirus Types 16 and 18 Early-expressed Proteins Differentially Modulate the Cellular Redox State and DNA Damage

    PubMed Central

    Cruz-Gregorio, Alfredo; Manzo-Merino, Joaquín; Gonzaléz-García, María Cecilia; Pedraza-Chaverri, José; Medina-Campos, Omar Noel; Valverde, Mahara; Rojas, Emilio; Rodríguez-Sastre, María Alexandra; García-Cuellar, Claudia María; Lizano, Marcela

    2018-01-01

    Oxidative stress has been proposed as a risk factor for cervical cancer development. However, few studies have evaluated the redox state associated with human papillomavirus (HPV) infection. The aim of this work was to determine the role of the early expressed viral proteins E1, E2, E6 and E7 from HPV types 16 and 18 in the modulation of the redox state in an integral form. Therefore, generation of reactive oxygen species (ROS), concentration of reduced glutathione (GSH), levels and activity of the antioxidant enzymes catalase and superoxide dismutase (SOD) and deoxyribonucleic acid (DNA) damage, were analysed in epithelial cells ectopically expressing the viral proteins. Our research shows that E6 oncoproteins decreased GSH and catalase protein levels, as well as its enzymatic activity, which was associated with an increase in ROS production and DNA damage. In contrast, E7 oncoproteins increased GSH, as well as catalase protein levels and its activity, which correlated with a decrease in ROS without affecting DNA integrity. The co-expression of both E6 and E7 oncoproteins neutralized the effects that were independently observed for each of the viral proteins. Additionally, the combined expression of E1 and E2 proteins increased ROS levels with the subsequent increase in the marker for DNA damage phospho-histone 2AX (γH2AX). A decrease in GSH, as well as SOD2 levels and activity were also detected in the presence of E1 and E2, even though catalase activity increased. This study demonstrates that HPV early expressed proteins differentially modulate cellular redox state and DNA damage. PMID:29483822

  11. Concurrent hypothalamic gene expression under acute and chronic long days: Implications for initiation and maintenance of photoperiodic response in migratory songbirds.

    PubMed

    Mishra, Ila; Bhardwaj, Sanjay K; Malik, Shalie; Kumar, Vinod

    2017-01-05

    Hypothalamic expression of the thyroid hormone (TH) responsive gonadostimulatory (eya3, cga, tshβ, dio2, dio3, gnrh, gnih) and neurosteroid pathway genes (androgen receptor [ar], aromatase [cyp19], estrogen receptor [er] α and β) was examined in photosensitive redheaded buntings exposed to 2 (acute, experiment 1) or 12 (chronic, experiment 2) long days (16L:8D). Experiment 2 also included a photorefractory group. Acute long days caused a significant increase in eya3, cga, tshβ, dio2 and gnrh and decrease in dio3 mRNA levels. eya3, cga and tshβ expressions were unchanged after the chronic long days. We also found increased cyp19, erα and erβ mRNA levels after acute, and increased cyp19 and decreased erβ levels after the chronic long-day exposure. Photorefractory buntings showed expression patterns similar to that in the photosensitive state, except for high gnrh and gnih and low dio3 mRNA levels. Consistent with gene expression patterns, there were changes in fat deposition, body mass, testis size, and plasma levels of testosterone, tri-iodothyronine and thyroxine. These results show concurrent photostimulation of the TH-signalling and neurosteroid pathways, and extend the idea, based on differences in gene expression, that transitions in seasonal photoperiodic states are accomplished at the transcriptional levels in absolute photorefractory species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility.

    PubMed

    Messerli, Shanta M; Kasinathan, Ravi S; Morgan, William; Spranger, Stefani; Greenberg, Robert M

    2009-09-01

    One potential physiological target for new antischistosomals is the parasite's system for excretion of wastes and xenobiotics. P-glycoprotein (Pgp), a member of the ATP-binding-cassette superfamily of proteins, is an ATP-dependent efflux pump involved in transport of toxins and xenobiotics from cells. In vertebrates, increased expression of Pgp is associated with multidrug resistance in tumor cells. Pgp may also play a role in drug resistance in helminths. In this report, we examine the relationship between praziquantel (PZQ), the current drug of choice against schistosomiasis, and Pgp expression in Schistosoma mansoni. We show that levels of RNA for SMDR2, a Pgp homolog from S. mansoni, increase transiently in adult male worms following exposure to sub-lethal concentrations (100-500 nM) of PZQ. A corresponding, though delayed, increase in anti-Pgp immunoreactive protein expression occurs in adult males following exposure to PZQ. The level of anti-Pgp immunoreactivity in particular regions of adult worms also increases in response to PZQ. Adult worms from an Egyptian S. mansoni isolate with reduced sensitivity to PZQ express increased levels of SMDR2 RNA and anti-Pgp-immunoreactive protein, perhaps indicating a role for multidrug resistance proteins in development or maintenance of PZQ resistance.

  13. Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility

    PubMed Central

    Messerli, Shanta M.; Kasinathan, Ravi S.; Morgan, William; Spranger, Stefani; Greenberg, Robert M.

    2009-01-01

    One potential physiological target for new antischistosomals is the parasite’s system for excretion of wastes and xenobiotics. P-glycoprotein (Pgp), a member of the ATP-binding cassette superfamily of proteins, is an ATP-dependent efflux pump involved in transport of toxins and xenobiotics from cells. In vertebrates, increased expression of Pgp is associated with multidrug resistance in tumor cells. Pgp may also play a role in drug resistance in helminths. In this report, we examine the relationship between praziquantel (PZQ), the current drug of choice against schistosomiasis, and Pgp expression in Schistosoma mansoni. We show that levels of RNA for SMDR2, a Pgp homolog from S. mansoni, increase transiently in adult male worms following exposure to sublethal concentrations (100 – 500 nM) of PZQ. A corresponding, though delayed, increase in anti-Pgp immunoreactive protein expression occurs in adult males following exposure to PZQ. The level of anti-Pgp immunoreactivity in particular regions of adult worms also increases in response to PZQ. Adult worms from an Egyptian S. mansoni isolate with reduced sensitivity to PZQ express increased levels of SMDR2 RNA and anti-Pgp-immunoreactive protein, perhaps indicating a role for multidrug resistance proteins in development or maintenance of PZQ resistance. PMID:19406169

  14. Chronic Mild Stress Alters Kynurenine Pathways Changing the Glutamate Neurotransmission in Frontal Cortex of Rats.

    PubMed

    Martín-Hernández, David; Tendilla-Beltrán, Hiram; Madrigal, José L M; García-Bueno, Borja; Leza, Juan C; Caso, Javier R

    2018-05-03

    Immune stimulation might be involved in the pathophysiology of major depressive disorder (MDD). This stimulation induces indoleamine 2,3-dioxygenase (IDO), an enzyme that reduces the tryptophan bioavailability to synthesize serotonin. IDO products, kynurenine metabolites, exert neurotoxic/neuroprotective actions through glutamate receptors. Thus, we study elements of these pathways linked to kynurenine metabolite activity examining whether antidepressants (ADs) can modulate them. Male Wistar rats were exposed to chronic mild stress (CMS), and some of them were treated with ADs. The expression of elements of the IDO pathway, including kynurenine metabolites, and their possible modulation by ADs was studied in the frontal cortex (FC). CMS increased IDO expression in FC compared to control group, and ADs restored the IDO expression levels to control values. CMS-induced IDO expression led to increased levels of the excitotoxic quinolinic acid (QUINA) compared to control, and ADs prevented the rise in such levels. Neither CMS nor ADs changed significantly the antiexcitotoxic kynurenic acid (KYNA) levels. The QUINA/KYNA ratio, calculated as excitotoxicity risk indicator, increased after CMS and ADs prevented this increase. CMS lowered excitatory amino acid transporter (EAAT)-1 and EAAT-4 expression, and some ADs restored their expression levels. Furthermore, CMS decreased N-methyl-D-aspartate receptor (NMDAR)-2A and 2B protein expression, and ADs mitigated this decrease. Our research examines the link between CMS-induced pro-inflammatory cytokines and the kynurenine pathway; it shows that CMS alters the kynurenine pathway in rat FC. Importantly, it also reveals the ability of classic ADs to prevent potentially harmful situations related to the brain scenario caused by CMS.

  15. Increased FOXP3 expression in tumour-associated tissues of horses affected with equine sarcoid disease.

    PubMed

    Mählmann, K; Hamza, E; Marti, E; Dolf, G; Klukowska, J; Gerber, V; Koch, C

    2014-12-01

    Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  17. Expression of transcription factors during sodium phenylacetate induced erythroid differentiation in K562 cells.

    PubMed

    Rath, A V; Schmahl, G E; Niemeyer, C M

    1997-01-01

    During 15 days of treatment of K562 cells with sodium phenylacetate, we observed an increase in the cellular hemoglobin concentration with a similar increase in the expression of gamma-globin mRNA. Morphological studies demonstrated characteristic features of erythroid differentiation and maturation. At the same time there was no change in the level of expression of the cell surface antigenes CD33, CD34, CD45, CD71 and glycophorin A. Likewise, the level of expression of the erythroid transcription factors GATA-1, GATA-2, NF-E2, SCL and RBTN2, all expressed in untreated K562 cells, did not increase during sodium phenylacetate induced erythroid differentiation. The expression of the nuclear factors Evi-1 and c-myb, known to inhibit erythroid differentiation, did not decrease. We conclude that sodium phenylacetate treatment of K562 cells increases gamma-globin mRNA and induces cell maturation as judged by morphology without affecting the expression of the erythroid transcription factors, some of which are known to be involved in the regulation of beta-like globin genes.

  18. A non-circadian role for clock-genes in sleep homeostasis: a strain comparison.

    PubMed

    Franken, Paul; Thomason, Ryan; Heller, H Craig; O'Hara, Bruce F

    2007-10-18

    We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound. In all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6 h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased. These findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep.

  19. Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šošić-Jurjević, Branka, E-mail: brankasj@ibiss.bg.ac.rs; Filipović, Branko; Wirth, Eva Katrin

    We previously reported that genistein (G) and daidzein (D) administered subcutaneously (10 mg/kg) induce changes in the angio-follicular units of the thyroid gland, reduce concentration of total thyroid hormones (TH) and increase thyrotropin (TSH) in serum of orchidectomized middle-aged (16-month-old) rats. To further investigate these effects, we now examined expression levels of the thyroglobulin (Tg), thyroperoxidase (Tpo), vascular endothelial growth factor A (Vegfa) and deiodinase type 1 (Dio 1) genes in the thyroid; in the pituitary, genes involved in TH feedback control (Tsh β, Dio 1, Dio 2, Trh receptor); and in the liver and kidney, expression of T{sub 3}-activatedmore » genes Dio 1 and Spot 14, as well as transthyretin (Ttr), by quantitative real-time PCR. We also analyzed TPO-immunopositivity and immunofluorescence of T{sub 4} bound to Tg, determined thyroid T{sub 4} levels and measured deiodinase enzyme activities in examined organs. Decreased expression of Tg and Tpo genes (p < 0.05) correlated with immunohistochemical staining results, and together with decreased serum total T{sub 4} levels, indicates decreased Tg and TH synthesis following treatments with both isoflavones. However, expression of Spot 14 (p < 0.05) gene in liver and kidney was up-regulated, and liver Dio 1 expression and activity (p < 0.05) increased. At the level of pituitary, no significant change in gene expression levels, or Dio 1 and 2 enzyme activities was observed. In conclusion, both G and D impaired Tg and TH synthesis, but at the same time increased tissue availability of TH in peripheral tissues of Orx middle-aged rats. - Highlights: • We tested how genistein and daidzein interfere with thyroid hormone homeostasis. • Thyroid: decreased expression of Tg and TPO genes correlated with IHC results. • Serum: total T{sub 4} reduced and TSH increased. • Liver and kidney: expression of Spot 14 and liver Dio 1 activity increased. • Pituitary: expression of T{sub 3}-regulated genes and Dio 1 and 2 activities unchanged.« less

  20. CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis.

    PubMed

    Yasuoka, Hironao; Kodama, Rieko; Hirokawa, Mitsuyoshi; Takamura, Yuuki; Miyauchi, Akira; Sanke, Tokio; Nakamura, Yasushi

    2008-09-30

    Metastasis to regional lymph nodes is a common step in the progression of cancer. Recent evidence suggests that tumor production of CXCR4 promotes lymph node metastasis. Nitric oxide (NO) may also increase metastatic ability in human cancers. Nitrite/nitrate levels and functional CXCR4 expression were assessed in K1 and B-CPAP papillary thyroid carcinoma (PTC) cells after induction and/or inhibition of NO synthesis. CXCR4 expression was also analyzed in primary human PTC. The relationship between nitrotyrosine levels, which are a biomarker for peroxynitrate formation from NO in vivo, CXCR4 expression, and lymph node status was also analyzed. Production of nitrite/nitrate and functional CXCR4 expression in both cell lines was increased by treatment with the NO donor DETA NONOate. The NOS inhibitor L-NAME eliminated this increase. Positive CXCR4 immunostaining was observed in 60.7% (34/56) of PTCs. CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis in human PTC. Our data indicate that NO stimulates CXCR4 expression in vitro. Formation of the NO biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in human PTC. NO may induce lymph node metastasis via CXCR4 induction in papillary thyroid carcinoma.

  1. CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis

    PubMed Central

    Yasuoka, Hironao; Kodama, Rieko; Hirokawa, Mitsuyoshi; Takamura, Yuuki; Miyauchi, Akira; Sanke, Tokio; Nakamura, Yasushi

    2008-01-01

    Background Metastasis to regional lymph nodes is a common step in the progression of cancer. Recent evidence suggests that tumor production of CXCR4 promotes lymph node metastasis. Nitric oxide (NO) may also increase metastatic ability in human cancers. Methods Nitrite/nitrate levels and functional CXCR4 expression were assessed in K1 and B-CPAP papillary thyroid carcinoma (PTC) cells after induction and/or inhibition of NO synthesis. CXCR4 expression was also analyzed in primary human PTC. The relationship between nitrotyrosine levels, which are a biomarker for peroxynitrate formation from NO in vivo, CXCR4 expression, and lymph node status was also analyzed. Results Production of nitrite/nitrate and functional CXCR4 expression in both cell lines was increased by treatment with the NO donor DETA NONOate. The NOS inhibitor L-NAME eliminated this increase. Positive CXCR4 immunostaining was observed in 60.7% (34/56) of PTCs. CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis in human PTC. Conclusion Our data indicate that NO stimulates CXCR4 expression in vitro. Formation of the NO biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in human PTC. NO may induce lymph node metastasis via CXCR4 induction in papillary thyroid carcinoma. PMID:18826577

  2. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway

    PubMed Central

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A.; Pfeffer, Lawrence M.

    2017-01-01

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro, and inhibited GBM tumorigenesis in vivo. Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro, and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway. PMID:29348882

  3. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.

    PubMed

    Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M

    2017-12-22

    Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.

  4. MicroRNA-218 inhibits the proliferation of human choriocarcinoma JEG-3 cell line by targeting Fbxw8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Dazun; Tan, Zhihui; Lu, Rong

    2014-08-08

    Highlights: • The miR-218 expression was decreased in choriocarcinoma cell lines. • The Fbxw8 protein expression was increased in choriocarcinoma cell lines. • We show that Fbxw8 is bona-fide target of miR-218 in JEG-3. • Ectopic miR-218 expression inhibits the proliferation of JEG-3 via Fbxw8. • Overexpression of miR-218 affected cyclin A and p27 expression via Fbxw8. - Abstract: MicroRNAs (miRNAs) are endogenous 19–25 nucleotide noncoding single-stranded RNAs that regulate gene expression by blocking the translation or decreasing the stability of mRNAs. In this study, we showed that miR-218 expression levels were decreased while Fbxw8 expression levels were increased inmore » human choriocarcinoma cell lines, and identified Fbxw8 as a novel direct target of miR-218. Overexpression of miR-218 inhibited cell growth arrest at G2/M phase, suppressed the protein levels of cyclin A and up-regulated the expression levels of p27 through decreasing the levels of Fbxw8. On the other hand, forced expression of Fbxw8 partly rescued the effect of miR-218 in the cells, attenuated cell proliferation decrease the percentage of cells at G2/M phase, induced cyclin A protein expression and suppressed the protein level of p27 through up-regulating the levels of Fbxw8. Taken together, these findings will shed light the role to mechanism of miR-218 in regulating JEG-3 cells proliferation via miR-218/Fbxw8 axis, and miR-218 may serve as a novel potential therapeutic target in human choriocarcinoma in the future.« less

  5. Hsp27 (HSPB1) differential expression in normal salivary glands and pleomorphic adenomas and association with an increased Bcl2/Bax ratio.

    PubMed

    Siqueira, Elisa C de; Souza, Fabrício T A; Diniz, Marina G; Gomez, Ricardo S; Gomes, Carolina C

    2015-01-01

    Pleomorphic adenoma (PA) is the most common salivary gland neoplasm. The Hsp27 (HSPB1) is an antiapoptotic protein whose synthesis follows cytotoxic stresses and result in a transient increase in tolerance to subsequent cell injury. Although Hsp27 is expressed in a range of normal tissues and neoplasms, a wide variation in its expression exists among different cells and tissues types. In certain tumours of glandular origin (such as oesophageal adenocarcinomas), the level of Hsp27 is decreased. In the present study, Hsp27 protein levels were evaluated by enzyme-linked immunosorbent assay (ELISA) in a set of 18 fresh PA and 12 normal salivary gland samples. In addition, we tested if Hsp27 protein levels correlated with p53 expression and cell proliferation index, as well as with the transcriptional levels of Bcl-2-associated X protein (BAX), B cell lymphoma 2 (BCL2) and Caspase 3 in PA. We further tested the association between Hsp27 expression and PA tumour size. While all normal salivary gland samples expressed Hsp27 protein, only half of the PA samples expressed it, resulting in a reduced expression of Hsp27 in PA when compared with normal salivary glands (P = 0.003). The expression levels of this protein correlated positively with a higher messenger ribonucleic acid (mRNA) ratio of Bcl2/Bax (R = 0.631; P = 0.01). In conclusion, a decreased Hsp27 protein expression level in PA was found. In addition, Hsp27 levels correlated positively with the Bcl2/Bax mRNA ratio, suggesting an antiapoptotic effect.

  6. 17β-Estradiol Alters Oxidative Stress Response Protein Expression and Oxidative Damage in the Uterus

    PubMed Central

    Yuan, Lisi; Dietrich, Alicia K.; Nardulli, Ann M.

    2014-01-01

    The steroid hormone 17β-estradiol (E2) has profound effects on the uterus. However, with the E2-induced increase in uterine cell proliferation and metabolism comes increased production of reactive oxygen species (ROS). We examined the expression of an interactive network of oxidative stress response proteins including thioredoxin (Trx), Cu/Zn superoxide dismutase (SOD1), apurinic endonuclease (Ape1), and protein disulfide isomerase (PDI). We demonstrated that treatment of ovariectomized C57BL/6J female mice with E2 increased the mRNA and protein levels of Trx, but decreased SOD1 and Ape1 mRNA and protein expression. In contrast, E2 treatment increased PDI protein levels but had no effect on PDI transcript levels.Interestingly, E2 treatment also increased two markers of cellular damage, lipid peroxidation and protein carbonylation. Our studies suggest that the decreased expression of SOD1 and Ape1 caused by E2 treatment may in the long term result in disruption of ROS regulation and play a role in endometrial carcinogenesis. PMID:24103313

  7. Increased expression of high mobility group box protein 1 and vascular endothelial growth factor in placenta previa.

    PubMed

    Xie, Han; Qiao, Ping; Lu, Yi; Li, Ying; Tang, Yuping; Huang, Yiying; Bao, Yirong; Ying, Hao

    2017-12-01

    Placenta previa is often associated with preterm delivery, reduced birth weight, a higher frequency of placental accreta and postpartum haemorrhage, and increased likelihood of blood transfusion. The present study aimed to examine the expression of high mobility group box protein 1 (HMGB1) in the placenta of women with or without placenta previa. The study group consisted of placental tissues obtained from women with or without placenta previa. The expression levels of HMGB1 and vascular endothelial growth factor (VEGF) were evaluated in the placental tissues using reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. The mRNA expression levels of HMGB1 and VEGF were significantly increased in the placenta previa group compared with in the normal group. In addition, the placenta previa group exhibited increased HMGB1 and VEGF staining in vascular endothelial cells and trophoblasts. There were no significant differences in the expression of HMGB1 or VEGF between groups with or without placenta accreta or postpartum haemorrhage. The present study hypothesised that the increased expression of HMGB1 in the placenta may be associated with the pathogenesis of placenta previa by regulating the expression of the proangiogenic factor VEGF.

  8. Adipose tissue IL-8 is increased in normal weight women after menopause and reduced after gastric bypass surgery in obese women.

    PubMed

    Alvehus, Malin; Simonyte, Kotryna; Andersson, Therése; Söderström, Ingegerd; Burén, Jonas; Rask, Eva; Mattsson, Cecilia; Olsson, Tommy

    2012-11-01

    The menopausal transition is characterized by increased body fat accumulation, including redistribution from peripheral to central fat depots. This distribution is associated with an increased risk of type 2 diabetes and cardiovascular disease that are linked to low-grade inflammation. We determined whether postmenopausal women have higher levels of inflammatory markers, compared with premenopausal women. We also wanted to determine whether these markers are reduced by stable weight loss in obese women. Anthropometric data, blood samples and subcutaneous adipose tissue biopsies were collected from normal weight premenopausal and postmenopausal women and obese women before and 2 years after gastric bypass (GBP) surgery. Serum protein levels and adipose tissue gene expression of inflammatory markers were investigated. IL-8 expression in adipose tissue and circulating levels were higher in postmenopausal vs premenopausal women. IL-8 expression was associated with waist circumference, independent of menopausal status. IL-6 expression and serum levels of monocyte chemoattractant protein (MCP)-1 were higher in postmenopausal vs premenopausal women. Two years after GBP surgery, adipose expression of IL-8, tumour necrosis factor-α and MCP-1 decreased significantly. Serum insulin levels were associated with inflammation-related gene expression before GBP surgery, but these associations disappeared after surgery. Postmenopausal women have an increased inflammatory response in the subcutaneous fat and circulation. Inflammatory markers in adipose tissue decreased significantly after surgery-induced weight loss. This effect may be beneficial for metabolic control and reduced cardiovascular risk after weight loss. © 2011 Blackwell Publishing Ltd.

  9. Atorvastatin Protects Myocardium Against Ischemia-Reperfusion Injury Through Inhibiting miR-199a-5p.

    PubMed

    Zuo, YaBei; Wang, YuZhao; Hu, HaiJuan; Cui, Wei

    2016-01-01

    This study aimed to evaluate the protective effects of atorvastatin against myocardial ischemia/reperfusion (I/R) injury in cardiomyocytes and its possible underlying mechanism. Direct cytotoxic effect of OGD/R on cardiomyocytes with and without atorvastatin pretreatment was evaluated. Effects of atorvastatin on expression of GSK-3β and miR-199a-5p were determined using RT-PCR and Western blot. In addition, GSK-3β expression with miR-199a-5p upregulation and downregulation was detected using RT-PCR, Western blot, and immunohistochemistry. Pretreatment with atorvastatin significantly improved the recovery of cells viability from OGD/R (p<0.05). In addition, the atorvastatin pretreatment significantly increased GSK-3β expression both in mRNA level and protein level and decreased miR-199a-5p expression in mRNA level (p<0.05). Upregulation and downregulation of miR-199a-5p respectively decreased and increased GSK-3β expression both in mRNA level and protein level. These results suggested that atorvastatin provides the cardioprotective effects against I/R injury via increasing GSK-3β through inhibition of miR-199a-5p. © 2016 The Author(s) Published by S. Karger AG, Basel.

  10. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells.

    PubMed

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-02-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.

  11. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1α in HCA-7 human colon cancer cells

    PubMed Central

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-01-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer. PMID:25692008

  12. Impacts of elevated CO2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen.

    PubMed

    Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N; Chen, Fajun

    2017-11-07

    Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO 2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO 2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO 2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO 2 .

  13. Cloning and expression analysis of carboxyltransferase of acetyl-coA carboxylase from Jatropha curcas.

    PubMed

    Xie, Wu-Wei; Gao, Shun; Wang, Sheng-Hua; Zhu, Jin-Qiu; Xu, Ying; Tang, Lin; Chen, Fang

    2010-01-01

    A full-length cDNA of the carboxyltransferase (accA) gene of acetyl-coenzym A (acetyl-CoA) carboxylase from Jatropha curcas was cloned and sequenced. The gene with an open reading frame (ORF) of 1149 bp encodes a polypeptide of 383 amino acids, with a molecular mass of 41.9 kDa. Utilizing fluorogenic real-time polymerase chain reaction (RT-PCR), the expression levels of the accA gene in leaves and fruits at early, middle and late stages under pH 7.0/8.0 and light/darkness stress were investigated. The expression levels of the accA gene in leaves at early, middle and late stages increased significantly under pH 8.0 stress compared to pH 7.0. Similarly, the expression levels in fruits showed a significant increase under darkness condition compared to the control. Under light stress, the expression levels in the fruits at early, middle and late stages showed the largest fluctuations compared to those of the control. These findings suggested that the expression levels of the accA gene are closely related to the growth conditions and developmental stages in the leaves and fruits of Jatropha curcas.

  14. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice

    PubMed Central

    Katic, Masa; Kennedy, Adam R.; Leykin, Igor; Norris, Andrew; McGettrick, Aileen; Gesta, Stephane; Russell, Steven J.; Bluher, Matthias; Maratos-Flier, Eleftheria; Kahn, C. Ronald

    2009-01-01

    Summary Caloric restriction, leanness and decreased activity of insulin/insulin-like growth factor 1 (IGF-1) receptor signaling are associated with increased longevity in a wide range of organisms from Caenorhabditis elegans to humans. Fat-specific insulin receptor knock-out (FIRKO) mice represent an interesting dichotomy, with leanness and increased lifespan, despite normal or increased food intake. To determine the mechanisms by which a lack of insulin signaling in adipose tissue might exert this effect, we performed physiological and gene expression studies in FIRKO and control mice as they aged. At the whole body level, FIRKO mice demonstrated an increase in basal metabolic rate and respiratory exchange ratio. Analysis of gene expression in white adipose tissue (WAT) of FIRKO mice from 6 to 36 months of age revealed persistently high expression of the nuclear-encoded mitochondrial genes involved in glycolysis, tricarboxylic acid cycle, β-oxidation and oxidative phosphorylation as compared to expression of the same genes in WAT from controls that showed a tendency to decline in expression with age. These changes in gene expression were correlated with increased cytochrome c and cytochrome c oxidase subunit IV at the protein level, increased citrate synthase activity, increased expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and PGC-1β, and an increase in mitochondrial DNA in WAT of FIRKO mice. Together, these data suggest that maintenance of mitochondrial activity and metabolic rates in adipose tissue may be important contributors to the increased lifespan of the FIRKO mouse. PMID:18001293

  15. Constitutive androstane receptor activation evokes the expression of glycolytic genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarushkin, Andrei A.; Kazantseva, Yuliya A.; Prokopyeva, Elena A.

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in amore » mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation. - Highlights: • CAR-mediated liver growth is correlated with increased expression of cMyc. • CAR activation increased the expression of glycolytic genes in mouse livers. • CAR activation increased the level of Pkm2 in mouse livers.« less

  16. Induction of endoplasmic reticulum stress and changes in expression levels of Zn2+-transporters in hypertrophic rat heart.

    PubMed

    Olgar, Yusuf; Ozdemir, Semir; Turan, Belma

    2018-03-01

    Clinical and experimental studies have shown an association between intracellular free Zn 2+ ([Zn 2+ ] i )-dyshomeostasis and cardiac dysfunction besides [Ca 2+ ] i -dyshomeostasis. Since [Zn 2+ ] i -homeostasis is regulated through Zn 2+ -transporters depending on their subcellular distributions, one can hypothesize that any imbalance in Zn 2+ -homeostasis via alteration in Zn 2+ -transporters may be associated with the induction of ER stress and apoptosis in hypertrophic heart. We used a transverse aortic constriction (TAC) model to induce hypertrophy in young male rat heart. We confirmed the development of hypertrophy with a high ratio of heart to body weight and cardiomyocyte capacitance. The expression levels of ER stress markers GRP78, CHOP/Gadd153, and calnexin are significantly high in TAC-group in comparison to those of controls (SHAM-group). Additionally, we detected high expression levels of apoptotic status marker proteins such as the serine kinase GSK-3β, Bax-to-Bcl-2 ratio, and PUMA in TAC-group in comparison to SHAM-group. The ratios of phospho-Akt to Akt and phospho-NFκB to the NFκB are significantly higher in TAC-group than in SHAM-group. Furthermore, we observed markedly increased phospho-PKCα and PKCα levels in TAC-group. We, also for the first time, determined significantly increased ZIP7, ZIP14, and ZnT8 expressions along with decreased ZIP8 and ZnT7 levels in the heart tissue from TAC-group in comparison to SHAM-group. Furthermore, a roughly calculated total expression level of ZIPs responsible for Zn 2+ -influx into the cytosol (increased about twofold) can be also responsible for the markedly increased [Zn 2+ ] i detected in hypertrophic cardiomyocytes. Taking into consideration the role of increased [Zn 2+ ] i via decreased ER-[Zn 2+ ] in the induction of ER stress in cardiomyocytes, our present data suggest that differential changes in the expression levels of Zn 2+ -transporters can underlie mechanical dysfunction, in part due to the induction of ER stress and apoptosis in hypertrophic heart via increased [Zn 2+ ] i - besides [Ca 2+ ] i -dyshomeostasis.

  17. Hepatitis B surface antigen gene expression is regulated by sex steroids and glucocorticoids in transgenic mice.

    PubMed Central

    Farza, H; Salmon, A M; Hadchouel, M; Moreau, J L; Babinet, C; Tiollais, P; Pourcel, C

    1987-01-01

    We have investigated the basis for liver-specific and sex-linked expression of hepatitis B surface antigen (HBsAg) gene in transgenic mice by monitoring the level of liver HBsAg mRNA and serum HBsAg at different stages of development and in response to sex-hormone regulation. Transcription of the HBsAg gene starts at day 15 of development, together with that of the albumin gene, and reaches a comparable level at birth. HBsAg mRNA level and HBsAg production are parallel in males and females during prenatal development and until the first month of life, but HBsAg gene expression increases 5-10 times in males at puberty. After castration, the level of expression decreases dramatically in both males and females and is subsequently increased by injection of testosterone or estradiol. Glucocorticoids also regulated positively expression of the HBsAg gene. Our results suggest that sex hormones play a role in hepatitis B virus gene expression during natural infection and could explain the difference in incidence of chronic carriers between men and women. Images PMID:3469661

  18. Perivascular Delivery of Notch 1 siRNA Inhibits Injury-Induced Arterial Remodeling

    PubMed Central

    Redmond, Eileen M.; Liu, Weimin; Hamm, Katie; Hatch, Ekaterina; Cahill, Paul A.; Morrow, David

    2014-01-01

    Objectives To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling. Methods and Results Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown. Conclusion These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA. PMID:24416200

  19. Cocoa butter and safflower oil elicit different effects on hepatic gene expression and lipid metabolism in rats.

    PubMed

    Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra

    2009-11-01

    The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.

  20. Aberrant expression of interleukin-22 and its targeting microRNAs in oral lichen planus: a preliminary study.

    PubMed

    Shen, Zhengyu; Du, Guanhuan; Zhou, Zengtong; Liu, Wei; Shi, Linjun; Xu, Hui

    2016-08-01

    Oral lichen planus (OLP) is a T cell-mediated autoimmune disease involving oral mucosa. Interleukin-22 (IL-22) as the signature cytokine of T helper 22 cells is increasingly recognized as a key regulator in various autoimmune diseases. Our previous study reported that IL-22 immunoexpression in OLP was significantly increased compared with the normal controls. The objective of this preliminary study was to compare the IL-22 expression levels in oral biopsies from patients with OLP (n = 50) against normal oral mucosa (n = 19) using RT-qPCR and Western blot, identify the potential targeting miRNAs of IL-22, and examine the miRNA expression levels in OLP. Interleukin-22 expression level in OLP was significantly increased compared with the normal controls. The Dual-Luciferase reporter assay system in human embryonic kidney 293 (HEK293) cells demonstrated that miR-562 and miR-203 were the target miRNAs of IL-22, which was consistent with predictions from bioinformatics software analyses. Interestingly, miR-562 expression in OLP was significantly decreased, but miR-203 expression in OLP was significantly increased compared with the normal controls. This preliminary study for the first time reported that aberrant expression levels of miR-562 and miR-203 were associated with high expression of IL-22 and demonstrated the target relationship between miRNAs and IL-22 in HEK293 cells. Our data indicated that IL-22 and its targeting miRNAs contribute to the pathogenesis of OLP. Further studies are required to investigate the regulatory pathways of IL-22 and miR-562 and miR-203 in OLP. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Vascular endothelial growth factor polymorphisms and a synchronized examination of plasma and tissue expression in epithelial ovarian cancers.

    PubMed

    Bhaskari, J; Premalata, C S; Shilpa, V; Rahul, B; Pallavi, V R; Ramesh, G; Krishnamoorthy, Lakshmi

    2016-01-01

    In this study, we have analyzed six genetic polymorphisms of the VEGF-A gene and correlated the genetic data with plasma and tissue expression of VEGF-A in epithelial ovarian carcinomas. A total of 130 cases including 95 malignant carcinomas, 17 low malignant potential and 18 benign tumours were studied. rs699947, rs833061, rs1570360, rs2010963, rs1413711 and rs3025039 were studied by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma levels of VEGF-A were estimated by enzyme-linked immunosorbent assay (ELISA) and tissue expression of VEGF-A by immunohistochemistry (IHC). Four polymorphisms of the above excluding rs699947 and rs3025039 showed significant association with malignancy, and we observed the presence of positive correlation between haplotype CCGGCC and increased expression of VEGF-A in both plasma and tissues which also correlated with poor prognosis and recurrence suggesting a probable increase in resistance to treatment in such carriers. Highly upregulated tissue expression of VEGF-A was seen in all epithelial ovarian carcinomas with intensity of expression increasing from benign to malignant cases. ELISA data from our study showed an increase in circulating levels of VEGF-A in malignancies. VEGF-A plasma levels can be employed as a biomarker for high-grade malignancy in epithelial ovarian cancers alongside tissue expression and CA-125 levels. This study is unique due to the fact that a simultaneous analysis of plasma and tissue expression has been demonstrated and is a first such study in epithelial ovarian cancers and representing the Indian population (South-east Asian) synchronized with genetic polymorphism data as well.

  2. Effects of in vitro fertilization and embryo culture on TRP53 and Bax expression in B6 mouse embryos.

    PubMed

    Chandrakanthan, Vashe; Li, Aiqing; Chami, Omar; O'Neill, Christopher

    2006-11-21

    In the mouse, embryo culture results in a characteristic phenotype of retarded embryo preimplantation development and reduced numbers of cells within embryos. The expression of TRP53 is central to the regulation of the cell's capacity to proliferate and survive. In this study we found that Trp53 mRNA is expressed throughout the preimplantation stage of development. Levels of TRP53 protein expression were low during the cleavage stages and increased at the morula and blastocyst stages in B6 embryos collected from the reproductive tract. Embryos collected at the zygote stage and cultured for 96 h also showed low levels of TRP53 expression at precompaction stages. There were higher levels of TRP53 in cultured morula and the level in cultured blastocysts was clearly increased above blastocysts collected directly from the uterus. Immunolocalization of TRP53 showed that its increased expression in cultured blastocysts corresponded with a marked accumulation of TRP53 within the nuclei of embryonic cells. This pattern of expression was enhanced in embryos produced by in vitro fertilization and subjected to culture. The TRP53 was transcriptionally active since culture also induced increased expression of Bax, yet this did not occur in embryos lacking Trp53 (Trp53-/-). The rate of development of Trp53-/- zygotes to the blastocyst stage was not different to wildtype controls when embryos were cultured in groups of ten but was significantly faster when cultured individually. The results show that zygote culture resulted in the accumulation of transcription activity of TRP53 in the resulting blastocysts. This accounts for the adverse effects of culture of embryos individually, but does not appear to be the sole cause of the retarded preimplantation stage growth phenotype associated with culture in vitro.

  3. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression.

    PubMed

    Gonsebatt, M E; Del Razo, L M; Cerbon, M A; Zúñiga, O; Sanchez-Peña, L C; Ramírez, P

    2007-09-01

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 microM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.

  4. Low-level overexpression of p53 promotes warfarin-induced calcification of porcine aortic valve interstitial cells by activating Slug gene transcription.

    PubMed

    Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei

    2018-03-09

    The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Increased Expression of Toll-Like Receptors by Monocytes and Natural Killer Cells in ANCA-Associated Vasculitis

    PubMed Central

    Tadema, Henko; Abdulahad, Wayel H.; Stegeman, Coen A.; Kallenberg, Cees G. M.; Heeringa, Peter

    2011-01-01

    Introduction Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. Methods Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. Results In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4+ monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. Conclusions In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation. PMID:21915309

  6. Balancing Cell Migration with Matrix Degradation Enhances Gene Delivery to Cells Cultured Three-Dimensionally Within Hydrogels

    PubMed Central

    Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.

    2010-01-01

    In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design parameters for maximizing gene delivery from hydrogels. PMID:20450944

  7. Cyclin E-p27 opposition and regulation of the G1 phase of the cell cycle in the murine neocortical PVE: a quantitative analysis of mRNA in situ hybridization

    NASA Technical Reports Server (NTRS)

    Delalle, I.; Takahashi, T.; Nowakowski, R. S.; Tsai, L. H.; Caviness, V. S. Jr

    1999-01-01

    We have analyzed the expression patterns of mRNAs of five cell cycle related proteins in the ventricular zone of the neocortical cerebral wall over the course of the neuronogenetic interval in the mouse. One set of mRNAs (cyclin E and p21) are initially expressed at high levels but expression then falls to a low asymptote. A second set (p27, cyclin B and cdk2) are initially expressed at low levels but ascend to peak levels only to decline again. These patterns divide the overall neuronogenetic interval into three phases. In phase 1 cyclin E and p21 levels of mRNA expression are high, while those of mRNAs of p27, cdk2 and cyclin B are low. In this phase the fraction of cells leaving the cycle after each mitosis, Q, is low and the duration of the G1 phase, TG1, is short. In phase 2 levels of expression of cyclin E and p21 fall to asymptote while levels of expression of mRNA of the other three proteins reach their peaks. Q increases to approach 0.5 and TG1 increases even more rapidly to approach its maximum length. In phase 3 levels of expression of cyclin E and p21 mRNAs remain low and those of the mRNAs of the other three proteins fall. TG1 becomes maximum and Q rapidly increases to 1.0. The character of these phases can be understood in part as consequences of the reciprocal regulatory influence of p27 and cyclin E and of the rate limiting functions of p27 at the restriction point and of cyclin E at the G1 to S transition.

  8. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts.

    PubMed

    Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M

    1998-03-27

    To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.

  9. α1-Adrenergic receptor downregulates hepatic FGF21 production and circulating FGF21 levels in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2017-01-18

    Fibroblast growth factor 21 (FGF21) is primarily secreted by the liver as an endocrine hormone and is suggested as a promising target for the treatment of metabolic diseases. FGF21 acts centrally to exert its effects on energy expenditure and body weight via the sympathetic nervous system in mice. Here we show that intraperitoneal injection of phentolamine (an α-adrenergic receptor antagonist, 5mg/kg) significantly increased plasma FGF21 levels compared with the saline controls in C57BL6J mice, whereas alprenolol (a β-adrenergic receptor antagonist, 6mg/kg) had no effect. In addition, intraperitoneal injection of prazosin (an α1-adrenergic receptor antagonist, 5mg/kg) significantly increased plasma FGF21 levels compared with the controls, whereas yohimbine (an α2-adrenergic receptor antagonist, 5mg/kg) had no effect. Moreover, the treatment with prazosin significantly increased the expression of hepatic FGF21, while having no effect on the expression of hepatic PPARα and PPARγ. After a 5-h fast, intraperitoneal injection of prazosin significantly increased plasma FGF21 levels and impaired glucose tolerance compared with controls. These findings suggest that α1-adrenergic receptor downregulates the expression of hepatic FGF21 and plasma FGF21 levels independently of feeding and hepatic PPARα and PPARγ expression in mice, and that the increases in circulating FGF21 levels might be related to impaired glucose tolerance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Chronic intermittent ethanol exposure selectively alters the expression of Gα subunit isoforms and RGS subtypes in rat prefrontal cortex.

    PubMed

    Luessen, D J; Sun, H; McGinnis, M M; McCool, B A; Chen, R

    2017-10-01

    Chronic alcohol exposure induces pronounced changes in GPCR-mediated G-protein signaling. Recent microarray and RNA-seq analyses suggest associations between alcohol abuse and the expression of genes involved in G-protein signaling. The activity of G-proteins (e.g. Gαi/o and Gαq) is negatively modulated by regulator of G-protein signaling (RGS) proteins which are implicated in drugs of abuse including alcohol. The present study used 7days of chronic intermittent ethanol exposure followed by 24h withdrawal (CIE) to investigate changes in mRNA and protein levels of G-protein subunit isoforms and RGS protein subtypes in rat prefrontal cortex, a region associated with cognitive deficit attributed to excessive alcohol drinking. We found that this ethanol paradigm induced differential expression of Gα subunits and RGS subtypes. For example, there were increased mRNA and protein levels of Gαi1/3 subunits and no changes in the expression of Gαs and Gαq subunits in ethanol-treated animals. Moreover, CIE increased the mRNA but not the protein levels of Gαo. Additionally, a modest increase in Gαi2 mRNA level by CIE was accompanied by a pronounced increase in its protein level. Interestingly, we found that CIE increased mRNA and protein levels of RGS2, RGS4, RGS7 and RGS19 but had no effect on the expression of RGS5, RGS6, RGS8, RGS12 or RGS17. Changes in the expression of Gα subunits and RGS subtypes could contribute to the functional alterations of certain GPCRs following chronic ethanol exposure. The present study suggests that RGS proteins may be potential new targets for intervention of alcohol abuse via modification of Gα-mediated GPCR function. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ischemic preconditioning increases GSK-3β/β-catenin levels and ameliorates liver ischemia/reperfusion injury in rats.

    PubMed

    Yan, Yichao; Li, Guangying; Tian, Xiaofeng; Ye, Yingjiang; Gao, Zhidong; Yao, Jihong; Zhang, Feng; Wang, Shan

    2015-06-01

    Ischemic preconditioning (IPC) ameliorates ischemia/reperfusion (I/R) injury in a number of organs, and the glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway regulates I/R-induced proliferation and apoptosis in the central nervous system and heart. However, the function of this signaling pathway in IPC during liver I/R remains unclear. Thus, in this study, we aimed to investigte the role of the GSK-3β/β-catenin pathway during I/R and following ischemic preconditioning. For this purpose, 30 Sprague-Dawley rats were randomly divided into the sham-operated, the I/R and the IPC groups (n=10). Following reperfusion, liver pathology, as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST), maleic dialdehyde (MDA) and superoxide dismutase (SOD) levels were assessed. Western blot analysis was performed to quantify the GSK-3β, Ser9-phospho-GSK-3β (p-GSK-3β), cytosolic and nuclear β-catenin, vascular endothelial growth factor (VEGF), Bcl-2 and survivin levels. In addition, the Bcl-2 and survivin mRNA levels were assessed by RT-qPCR. Compared with the sham-operated group, I/R increased serum ALT, AST and MDA activity and decreased SOD levels, while IPC significantly decreased serum ALT, AST and MDA activity and increased SOD levels, compared with the I/R group. Simultaneously, I/R increased p-GSK-3β protein expression, and decreased Bcl-2 and survivin protein and mRNA levels. IPC further increased the protein expression of p-GSK-3β, and also increased cytosolic and nuclear β-catenin and VEGF expression compared with the I/R group; the expression of Bcl-2 and survivin was also increased by IPC, both at the mRNA and protein level. The total GSK-3β expression remained unaltered in all the groups. In conclusion, our data demonstrate that IPC exerts protective effects against liver injury induced by I/R and activates the GSK-3β/β-catenin signaling pathway.

  12. [Correlation between EGLN1 gene, protein express in lung tissue of rats and pulmonary artery pressure at different altitude].

    PubMed

    Li, S H; Li, S; Sun, L; Bai, Z Z; Yang, Q Y; Ga, Q; Jin, G E

    2016-08-23

    To investigate the correlation between pulmonary artery pressure (PAP) and the expression level of Egl nine homologue 1 (EGLN1) gene or its protein in lung tissue of rats at different altitudes. Totally 121 male Wistar rats were randomly divided into low altitude group (n=11), moderate altitude group and high altitude group, the rats in moderate altitude and high altitude group were further divided into 1(st) day, 3(rd) days, 7(th) days, 15(th) day and 30(th) day group according to the exposure time to hypoxic environment, each group 11 rats. The low altitude group, the PAP of rats were determined by physiological signal acquisition system, and tissue samples were collected in liquid nitrogen container for storage at an altitude of 498 m area. Moderate altitude group rats were placed in altitude of 2 260 meters of natural environment, 5 high altitude groups rats were placed in the hypobaric hypoxic chamber, simulating altitude of 4 500 meters. The PAP of rats in moderate altitude group and high altitude group were also determined by physiological signal acquisition system, and tissue samples were collected when rats were exposed to hypoxia at 1(st), 3(rd), 7(th), 15(th) and 30(th) day; Western blot was used to determine expression levels of EGLN1 protein, and person correlation analysis was used to analyze whether the protein was related to the formation of pulmonary arterial hypertension (PH) under hypoxia. Real-time quantitive PCR method determined expression levels of EGLN1 mRNA in lung tissues, and the relative expression method was used to analyze PCR data, and finally assess whether the EGLN1 gene was the initial cause of the formation of PH during hypoxia. The mean PAP of rats was (20.0±3.2) mmHg (1 mmHg=0.133 kPa) in low altitude group; in moderate altitude group, mean PAP began to increase slightly when rats were exposed to hypoxia on the 15(th) day and reached at (22.7±4.1) mmHg on hypoxic 30(th) day, but compared with the low altitude group, there was no statistical difference (P> 0.05); the mean PAP of rats in high altitude group began to rise on the 7(th) day (28.7±7.7) mmHg, which was higher than that in low altitude group (P<0.05), and significantly increased to (42.3±9.1) mmHg (P<0.001) on hypoxic 30(th) day; it was significantly proportional with exposure to hypoxic time, and compared to low altitude group and moderate altitude group, there was significant difference (P<0.05). EGLN1 protein expression in the lung tissue of rats had no significant difference between the low altitude group and moderate altitude group, and its expression level in the high altitude group were significantly decreased, furthermore, the expression level decreased with the increase of hypoxia exposure time (P<0.05); PAP and EGLN1 protein expression levels showed a negative correlation (r=-0.662). The transcription level of mRNA EGLN1 in high altitude group was significantly increased under hypobaric hypoxia, it was 72 times more than that of the moderate altitude group, and nearly 300 times than that of the low altitude group, respectively (both P<0.001=. EGLN1 gene expression in lung tissue of rat is affected by hypoxia, the expression level increases with the increase of the altitude; but the protein expression level, in contrast with gene expression level, is decreased with the increase of altitude and is significantly negatively correlated with mean PAP.

  13. Changes in the expression of Th17 cell-associated cytokines in the development of rheumatic heart disease.

    PubMed

    Wen, Yun; Zeng, Zhiyu; Gui, Chun; Li, Lang; Li, Wenting

    2015-01-01

    Autoimmunity plays a critical role in the development of rheumatic heart disease (RHD). Recent studies have linked Th17 cells to the autoimmune mechanism associated with RHD. This study aimed to investigate changes in Th17 cell-related cytokine expression in acute and chronic RHD. We established a Lewis rat model of experimental RHD, which was induced by inactivated Group A streptococci and complete Freund's adjuvant. After 7- and 24-week intervention treatments, we measured serum levels of interleukin-17 (IL-17) and IL-6, key cytokines associated with Th17 cells, using a Luminex liquichip method, and levels of IL-17 and IL-6 in heart tissues using immunohistochemical assays. Moreover, expression levels of IL-17, IL-21, IL-6, and IL-23 in mitral valve tissues of human RHD patients were also measured using immunohistochemistry. Compared with the normal control group, serum IL-17 and IL-6 concentrations were significantly increased, and the expression levels of IL-17 and IL-6 in the mitral valve were also significantly increased in 7- or 24-week RHD rats (P<.017). Compared with the control group, expression of IL-17, IL-21, IL-6, and IL-23 in mitral valve tissues was significantly increased in RHD patients (P<.05). Our study suggested that the increased expression of Th17 cell-associated cytokines might play an important role in the pathogenesis and development of RHD. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Upregulation of innate antiviral restricting factor expression in the cord blood and decidual tissue of HIV-infected mothers.

    PubMed

    Pereira, Nátalli Zanete; Cardoso, Elaine Cristina; Oliveira, Luanda Mara da Silva; de Lima, Josenilson Feitosa; Branco, Anna Cláudia Calvielli Castelo; Ruocco, Rosa Maria de Souza Aveiro; Zugaib, Marcelo; de Oliveira Filho, João Bosco; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2013-01-01

    Programs for the prevention of mother-to-child transmission of HIV have reduced the transmission rate of perinatal HIV infection and have thereby increased the number of HIV-exposed uninfected (HEU) infants. Natural immunity to HIV-1 infection in both mothers and newborns needs to be further explored. In this study, we compared the expression of antiviral restricting factors in HIV-infected pregnant mothers treated with antiretroviral therapy (ART) in pregnancy (n=23) and in cord blood (CB) (n=16), placental tissues (n=10-13) and colostrum (n=5-6) samples and compared them to expression in samples from uninfected (UN) pregnant mothers (n=21). Mononuclear cells (MNCs) were prepared from maternal and CB samples following deliveries by cesarean section. Maternal (decidua) and fetal (chorionic villus) placental tissues were obtained, and colostrum was collected 24 h after delivery. The mRNA and protein expression levels of antiviral factors were then evaluated. We observed a significant increase in the mRNA expression levels of antiviral factors in MNCs from HIV-infected mothers and CB, including the apolipoprotein B mRNA-editing enzyme 3G (A3G), A3F, tripartite motif family-5α (TRIM-5α), TRIM-22, myxovirus resistance protein A (MxA), stimulator of interferon (IFN) genes (STING) and IFN-β, compared with the levels detected in uninfected (UN) mother-CB pairs. Moreover, A3G transcript and protein levels and α-defensin transcript levels were decreased in the decidua of HIV-infected mothers. Decreased TRIM-5α protein levels in the villi and increased STING mRNA expression in both placental tissues were also observed in HIV-infected mothers compared with uninfected (UN) mothers. Additionally, colostrum cells from infected mothers showed increased tetherin and IFN-β mRNA levels and CXCL9 protein levels. The data presented here indicate that antiviral restricting factor expression can be induced in utero in HIV-infected mothers. Future studies are warranted to determine whether this upregulation of antiviral factors during the perinatal period has a protective effect against HIV-1 infection.

  15. Upregulation of Innate Antiviral Restricting Factor Expression in the Cord Blood and Decidual Tissue of HIV-Infected Mothers

    PubMed Central

    Pereira, Nátalli Zanete; Cardoso, Elaine Cristina; Oliveira, Luanda Mara da Silva; de Lima, Josenilson Feitosa; Branco, Anna Cláudia Calvielli Castelo; Ruocco, Rosa Maria de Souza Aveiro; Zugaib, Marcelo; de Oliveira Filho, João Bosco; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2013-01-01

    Programs for the prevention of mother-to-child transmission of HIV have reduced the transmission rate of perinatal HIV infection and have thereby increased the number of HIV-exposed uninfected (HEU) infants. Natural immunity to HIV-1 infection in both mothers and newborns needs to be further explored. In this study, we compared the expression of antiviral restricting factors in HIV-infected pregnant mothers treated with antiretroviral therapy (ART) in pregnancy (n=23) and in cord blood (CB) (n=16), placental tissues (n=10-13) and colostrum (n=5-6) samples and compared them to expression in samples from uninfected (UN) pregnant mothers (n=21). Mononuclear cells (MNCs) were prepared from maternal and CB samples following deliveries by cesarean section. Maternal (decidua) and fetal (chorionic villus) placental tissues were obtained, and colostrum was collected 24 h after delivery. The mRNA and protein expression levels of antiviral factors were then evaluated. We observed a significant increase in the mRNA expression levels of antiviral factors in MNCs from HIV-infected mothers and CB, including the apolipoprotein B mRNA-editing enzyme 3G (A3G), A3F, tripartite motif family-5α (TRIM-5α), TRIM-22, myxovirus resistance protein A (MxA), stimulator of interferon (IFN) genes (STING) and IFN-β, compared with the levels detected in uninfected (UN) mother-CB pairs. Moreover, A3G transcript and protein levels and α-defensin transcript levels were decreased in the decidua of HIV-infected mothers. Decreased TRIM-5α protein levels in the villi and increased STING mRNA expression in both placental tissues were also observed in HIV-infected mothers compared with uninfected (UN) mothers. Additionally, colostrum cells from infected mothers showed increased tetherin and IFN-β mRNA levels and CXCL9 protein levels. The data presented here indicate that antiviral restricting factor expression can be induced in utero in HIV-infected mothers. Future studies are warranted to determine whether this upregulation of antiviral factors during the perinatal period has a protective effect against HIV-1 infection. PMID:24367701

  16. Increased Levels of Calprotectin in Obesity Are Related to Macrophage Content: Impact on Inflammation and Effect of Weight Loss

    PubMed Central

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Rotellar, Fernando; Valentí, Victor; Silva, Camilo; Gil, María J; Fernández-Real, José Manuel; Salvador, Javier; Frühbeck, Gema

    2011-01-01

    Calprotectin has been recently described as a novel marker of obesity. The aim of this study was to determine the circulating concentrations and expression levels of calprotectin subunits (S100A8 and S100A9) in visceral adipose tissue (VAT), exploring its impact on insulin resistance and inflammation and the effect of weight loss. We included 53 subjects in the study. Gene expression levels of the S100A8/A9 complex were analyzed in VAT as well as in both adipocytes and stromovascular fraction cells (SVFCs). In addition, circulating calprotectin and soluble receptor for the advanced glycation end product (sRAGE) concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB) (n = 26). Circulating concentrations and VAT expression of S100A8/A9 complex were increased in normoglycemic and type 2 diabetic obese patients (P < 0.01) and associated with markers of inflammation (P < 0.01). Oppositely, concentrations of sRAGE were significantly lower (P < 0.001) in both obese groups compared to lean volunteers. Elevated calprotectin levels in obese patients decreased (P < 0.00001) after RYGB, whereas sRAGE concentrations tended to increase. Calprotectin was mainly expressed by SVFCs, and its expression was significantly correlated (P < 0.01) with mRNA levels of the monocyte-macrophage–related molecules macrophage-specific antigen CD68 (CD68), monocyte chemotactic protein 1 (MCP1), integrin α-M (CD11B), and NADPH oxidase 2 (NOX2). Tumor necrosis factor-α treatment significantly enhanced (P < 0.05) the mRNA levels of S100 calcium-binding protein A8 (S100A8) of human visceral adipocytes. The increased levels of calprotectin in obesity and obesity-associated type 2 diabetes, its positive association with inflammation as well as the higher expression levels in the SVFCs in VAT suggests a potential role of this protein as a chemotactic factor in the recruitment of macrophages to VAT, increasing inflammation and the development of obesity-associated comorbidities. PMID:21738950

  17. Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain.

    PubMed

    Pichiule, P; Chávez, J C; Xu, K; LaManna, J C

    1999-12-10

    This study examined vascular endothelial growth factor (VEGF) expression in rat brain after reversible global cerebral ischemia produced by cardiac arrest and resuscitation. Three alternative splicing forms, VEGF(188), VEGF(164) and VEGF(120), were observed in cortex, hippocampus and brainstem by RT-PCR analysis. After 24 h of recovery from cardiac arrest, mRNA levels corresponding to VEGF(188) and VEGF(164) were significantly increased by about double in all the regions analyzed. These mRNA levels remained elevated at 24 and 48 h of recovery but returned to basal expression after 7 days of recovery. Changes in VEGF(120) expression after cardiac arrest did not reach statistical significance. VEGF protein expression measured by Western blot was also increased by about double at 24 and 48 h of recovery but returned to control levels after 7 days of recovery. VEGF immunohistochemistry localized this increased expression mostly associated with astrocytes. Considering its biological activity, VEGF induction after cardiac arrest and resuscitation may be responsible for the increased vascular permeability and the resultant vasogenic edema, found 24-48 h after reversible global ischemia.

  18. Losartan attenuates vascular remodeling of the aorta in spontaneously hypertensive rats and the underlying mechanism.

    PubMed

    Li, Fangxiong; Shi, Ruizheng; Liao, Meichun; Li, Jianzhe; Li, Shixun; Pan, Wei; Yang, Tianlun; Zhang, Guogang

    2010-08-01

    To determine the effect of losartan on vascular remodeling and the underlying mechanism in spontaneously hypertensive rats(SHR). SHR of 12 weeks old were given losartan orally [0, 15, 30 mg/(kg.d), n=12]. The tail arterial pressure was measured every week. Eight weeks later, the pathological changes and p22(phox) expression in the thoracic aorta, the activity of catalase (CAT), the contents of H(2)O(2) and Ang II in the plasma were evaluated. Blood pressure was increased in the SHR accompanied by the thickened wall and increased p22(phox) expression in the thoracic aorta. The plasma levels of H(2)O(2) and Ang II were elevated while the CAT level was decreased in the SHR. Administration of losartan reversed the thickened wall and increased the CAT activity concomitantly with the decreased plasma levels of H(2)O(2) and p22(phox) expression in the SHR. The plasma level of Ang II increased after the losartan treatment. Oxidative stress induces the vascular remodeling of the aorta in the SHR. Losartan can reverse the vascular remodeling through down-regulating p22(phox) expression and inhibiting the oxidative stress.

  19. Prostaglandin E2 Induces IL-6 and IL-8 Production by the EP Receptors/Akt/NF-κB Pathways in Nasal Polyp-Derived Fibroblasts.

    PubMed

    Cho, Jung-Sun; Han, In-Hye; Lee, Hye Rim; Lee, Heung-Man

    2014-09-01

    Interleukin 6 (IL-6) and IL-8 participate in the pathogenesis of chronic rhinosinusitis with nasal polyps, and their levels are increased by prostaglandin E2 (PGE2) in different cell types. The purposes of this study were to determine whether PGE2 has any effect on the increase in the levels of IL-6 and IL-8 in nasal polyp-derived fibroblasts (NPDFs) and subsequently investigate the possible mechanism of this effect. Different concentrations of PGE2 were used to stimulate NPDFs at different time intervals. NPDFs were treated with agonists and antagonists of E prostanoid (EP) receptors. To determine the signaling pathway for the expression of PGE2-induced IL-6 and IL-8, PGE2 was treated with Akt and NF-κB inhibitors in NPDFs. Reverse transcription-polymerase chain reaction for IL-6 and IL-8 mRNAs was performed. IL-6 and IL-8 levels were measured byenzyme-linked immunosorbent assay (ELISA). The activation of Akt and NF-κB was evaluated by western blot analysis. PGE2 significantly increased the mRNA and protein expression levels of IL-6 and IL-8 in NPDFs. The EP2 and EP4 agonists and antagonists induced and inhibited IL-6 expression. However, the EP4 agonist and antagonist were only observed to induce and inhibit IL-8 expression level. The Akt and NF-κB inhibitors significantly blocked PGE2-induced expression of IL-6 and IL-8. PGE2 increases IL-6 expression via EP2 and EP4 receptors, and IL-8 expression via the EP4 receptor in NPDFs. It also activates the Akt and NF-κB signal pathways for the production of IL-6 and IL-8 in NPDFs. These results suggest that signaling pathway for IL-6 and IL-8 expression induced by PGE2 might be a useful therapeutic target for the treatment of nasal polyposis.

  20. Influence of silencing soluble epoxide hydrolase with RNA interference on cardiomyocytes apoptosis induced by doxorubicin.

    PubMed

    Du, Guangsheng; Lv, Jiagao; He, Li; Ma, Yexin

    2011-06-01

    In order to investigate the influence of silencing soluble epoxide hydrolase (sEH) with double-stranded small interfering RNA (siRNA) on cardiomyocytes apoptosis induced by doxorubicin (DOX), two plasmids containing siRNA sequences specific to sEH were constructed and transfected into the primary cultured cardiomyocytes by using FuGENE HD transfection agents. The mRNA and protein expression levels of sEH were detected by semiquantitative RT-PCR and Western blotting respectively, and the plasmids that silenced sEH most significantly were selected, and renamed EH-R. The plasmids carrying a nonspecific siRNA coding sequence (PCN) served as the negative control. Cardiomyocytes were divided into four groups: control group, DOX group, PCN+DOX group, and EH-R+DOX group. Apoptosis of cardiomyocytes was induced by DOX at a concentration of 1 μmol/L. Apoptosis rate of cardiomyocytes was determined by flow cytometery. The protein expression levels of Bcl-2 and Bax were detected by Western blotting. The results showed that the expression of sEH was down-regulated by EH-R plasmid. The expression levels of sEH mRNA and protein in the EH-R+DOX group were significantly decreased as compared with other groups (P<0.01). As compared with the control group, the apoptosis rate of cardiomyocytes in three DOX-treated groups was obviously increased, the expression levels of Bax increased, and those of Bcl-2 decreased (P<0.01). However, the expression levels of Bax were decreased, those of Bcl-2 increased and the apoptosis rate of cardiomyocytes obviously decreased in EH-R+DOX group when compared with those in the DOX group and the PCN+DOX group (P<0.01 for each). It was concluded that the recombinant plasmids could be successfully constructed, and transfected into the primary cultured cardiomyocytes. They could ameliorate the DOX-induced cardiomyocytes apoptosis by selectively inhibiting the expression of sEH with RNAi and increasing the expression of Bcl-2.

  1. Differential involvement of 3', 5'-cyclic adenosine monophosphate-dependent protein kinase in regulation of Fos and tyrosine hydroxylase expression in the heart after naloxone induced morphine withdrawal.

    PubMed

    Almela, Pilar; Cerezo, Manuela; González-Cuello, A; Milanés, M Victoria; Laorden, M Luisa

    2007-01-01

    We previously demonstrated that morphine withdrawal induced hyperactivity of the heart by the activation of noradrenergic pathways innervating the left and right ventricle, as evaluated by noradrenaline (NA) turnover and Fos expression. We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibitor of PKA on Fos protein expression, tyrosine hydroxylase (TH) immunoreactivity levels and NA turnover in the left and right ventricle. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity and phospho-CREB (cyclic AMP response element protein) levels were observed in the heart. Moreover, morphine withdrawal induces Fos expression, an enhancement of NA turnover and an increase in the total TH levels. When the selective PKA inhibitor HA-1004 was infused, concomitantly with morphine pellets, it diminished the increase in NA turnover and the total TH levels observed in morphine-withdrawn rats. However, this inhibitor neither modifies the morphine withdrawal induced Fos expression nor the increase of nonphosphorylated TH levels. The present findings indicate that an up-regulated PKA-dependent transduction pathway might contribute to the activation of the cardiac catecholaminergic neurons in response to morphine withdrawal and suggest that Fos is not a target of PKA at heart levels.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimo, Naoki; Matsuoka, Taka-aki, E-mail: matsuoka@endmet.med.osaka-u.ac.jp; Miyatsuka, Takeshi

    Alleviation of hyperglycaemia and hyperlipidemia improves pancreatic β-cell function in type 2 diabetes. However, the underlying molecular mechanisms are still not well clarified. In this study, we aimed to elucidate how the expression alterations of key β-cell factors are altered by the short-term selective alleviation of glucotoxicity or lipotoxicity. We treated db/db mice for one week with empagliflozin and/or bezafibrate to alleviate glucotoxicity and/or liptotoxicity, respectively. The gene expression levels of Pdx1 and Mafa, and their potential targets, insulin 1, Slc2a2, and Glp1r, were higher in the islets of empagliflozin-treated mice, and levels of insulin 2 were higher in micemore » treated with both reagents, than in untreated mice. Moreover, compared to the pretreatment levels, Mafa and insulin 1 expression increased in empagliflozin-treated mice, and Slc2a2 increased in combination-treated mice. In addition, empagliflozin treatment enhanced β-cell proliferation assessed by Ki-67 immunostaining. Our date clearly demonstrated that the one-week selective alleviation of glucotoxicity led to the better expression levels of the key β-cell factors critical for β-cell function over pretreatment levels, and that the alleviation of lipotoxicity along with glucotoxicity augmented the favorable effects under diabetic conditions. - Highlights: • One-week selective reduction of gluco- and lipo-toxicity in db/db mice was performed. • Selective glucotoxicity reduction increases key pancreatic β-cell factors expression. • Selective glucotoxicity reduction improves β-cell factors over pretreatment levels. • Selective glucotoxicity reduction turns β-cell mass toward increase. • Lipotoxicity reduction has additive effects on glucotoxicity reduction.« less

  3. Systemic Chemokine Levels with “Gut-Specific” Vedolizumab in Patients with Inflammatory Bowel Disease—A Pilot Study

    PubMed Central

    Zwicker, Stephanie; Lira-Junior, Ronaldo; Höög, Charlotte

    2017-01-01

    Vedolizumab, a gut-specific biological treatment for inflammatory bowel disease (IBD), is an antibody that binds to the α4β7 integrin and blocks T-cell migration into intestinal mucosa. We aimed to investigate chemokine levels in serum of IBD-patients treated with vedolizumab. In this pilot study, we included 11 IBD patients (8 Crohn’s disease, 3 ulcerative colitis) previously non-respondent to anti-tumor necrosis factor (TNF)-agents. Patients received vedolizumab at week 0, 2 and 6 and were evaluated for clinical efficacy at week 10. Clinical characteristics and routine laboratory parameters were obtained and patients were classified as responders or non-responders. Expression of 21 chemokines in serum was measured using Proximity Extension Assay and related to clinical outcome. At week 10, 6 out of 11 patients had clinically responded. Overall expression of CCL13 increased after treatment. In non-responders, expression of CCL13 and CXCL8 increased after treatment, and CCL20 and CXCL1 expressions were higher compared to responders. In responders, CCL28 decreased after treatment. C-reactive protein (CRP) correlated negatively with 6 chemokines before therapy, but not after therapy. Systemic CCL13 expression increases in IBD-patients after vedolizumab therapy and several chemokine levels differ between responders and non-responders. An increased CCL13-level when starting vedolizumab treatment, might indicate potential prognostic value of measuring chemokine levels when starting therapy with vedolizumab. This study provides new information on modulation of systemic chemokine levels after vedolizumab treatment. PMID:28829369

  4. Hydrostatic Pressure Influences HIF-2 Alpha Expression in Chondrocytes

    PubMed Central

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-01

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α. PMID:25569085

  5. Polysaccharides from Enteromorpha prolifera Improve Glucose Metabolism in Diabetic Rats

    PubMed Central

    Lin, Wenting; Wang, Wenxiang; Liao, Dongdong; Chen, Damiao; Zhu, Pingping; Cai, Guoxi; Kiyoshi, Aoyagi

    2015-01-01

    This study investigated the effects of polysaccharides from Enteromorpha prolifera (PEP) on glucose metabolism in a rat model of diabetes mellitus (DM). PEP (0, 150, 300, and 600 mg/kg) was administered intragastrically to rats for four weeks. After treatment, fasting blood glucose (FBG) and insulin (INS) levels were measured, and the insulin sensitivity index (ISI) was calculated. The morphopathological changes in the pancreas were observed. Serum samples were collected to measure the oxidant-antioxidant status. The mRNA expression levels of glucokinase (GCK) and insulin receptor (InsR) in liver tissue and glucose transporter type 4 (GLUT-4) and adiponectin (APN) in adipose tissue were determined. Compared with the model group, the FBG and INS levels were lower, the ISI was higher, and the number of islet β-cells was significantly increased in all the PEP groups. In the medium- and high-dose PEP groups, MDA levels decreased, and the enzymatic activities of SOD and GSH-Px increased. The mRNA expression of InsR and GCK increased in all the PEP groups; APN mRNA expression increased in the high-dose PEP group, and GLUT-4 mRNA expression increased in adipose tissue. These findings suggest that PEP is a potential therapeutic agent that can be utilized to treat DM. PMID:26347892

  6. Thromboxane synthase expression and correlation with VEGF and angiogenesis in non-small cell lung cancer.

    PubMed

    Cathcart, Mary Clare; Gately, Kathy; Cummins, Robert; Drakeford, Clive; Kay, Elaine W; O'Byrne, Kenneth J; Pidgeon, Graham P

    2014-05-01

    Thromboxane synthase (TXS) metabolizes prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with angiogenesis and poor outcome. TXS has been identified as a potential therapeutic target in NSCLC. This study examines a link between TXS expression, angiogenesis, and survival in NSCLC. TXS and VEGF metabolite levels were measured in NSCLC serum samples (n=46) by EIA. TXB2 levels were correlated with VEGF. A 204-patient TMA was stained for TXS, VEGF, and CD-31 expression. Expression was correlated with a range of clinical parameters, including overall survival. TXS expression was correlated with VEGF and CD-31. Stable TXS clones were generated and the effect of overexpression on tumor growth and angiogenesis markers was examined in-vitro and in-vivo (xenograft mouse model). Serum TXB2 levels were correlated with VEGF (p<0.05). TXS and VEGF were expressed to a varying degree in NSCLC tissue. TXS was associated with VEGF (p<0.0001) and microvessel density (CD-31; p<0.05). TXS and VEGF expression levels were higher in adenocarcinoma (p<0.0001) and female patients (p<0.05). Stable overexpression of TXS increased VEGF secretion in-vitro. While no significant association with patient survival was observed for either TXS or VEGF in our patient cohort, TXS overexpression significantly (p<0.05) increased tumor growth in-vivo. TXS overexpression was also associated with higher levels of VEGF, microvessel density, and reduced apoptosis in xenograft tumors. TXS promotes tumor growth in-vivo in NSCLC, an effect which is at least partly mediated through increased tumor angiogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Perturbation of Staphylococcus aureus Gene Expression by the Enoyl-Acyl Carrier Protein Reductase Inhibitor AFN-1252

    PubMed Central

    Parsons, Joshua B.; Kukula, Maciej; Jackson, Pamela; Pulse, Mark; Simecka, Jerry W.; Valtierra, David; Weiss, William J.; Kaplan, Nachum

    2013-01-01

    This study examines the alteration in Staphylococcus aureus gene expression following treatment with the type 2 fatty acid synthesis inhibitor AFN-1252. An Affymetrix array study showed that AFN-1252 rapidly increased the expression of fatty acid synthetic genes and repressed the expression of virulence genes controlled by the SaeRS 2-component regulator in exponentially growing cells. AFN-1252 did not alter virulence mRNA levels in a saeR deletion strain or in strain Newman expressing a constitutively active SaeS kinase. AFN-1252 caused a more pronounced increase in fabH mRNA levels in cells entering stationary phase, whereas the depression of virulence factor transcription was attenuated. The effect of AFN-1252 on gene expression in vivo was determined using a mouse subcutaneous granuloma infection model. AFN-1252 was therapeutically effective, and the exposure (area under the concentration-time curve from 0 to 48 h [AUC0–48]) of AFN-1252 in the pouch fluid was comparable to the plasma levels in orally dosed animals. The inhibition of fatty acid biosynthesis by AFN-1252 in the infected pouches was signified by the substantial and sustained increase in fabH mRNA levels in pouch-associated bacteria, whereas depression of virulence factor mRNA levels in the AFN-1252-treated pouch bacteria was not as evident as it was in exponentially growing cells in vitro. The trends in fabH and virulence factor gene expression in the animal were similar to those in slower-growing bacteria in vitro. These data indicate that the effects of AFN-1252 on virulence factor gene expression depend on the physiological state of the bacteria. PMID:23459481

  8. Increased expression of Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 correlated with poor prognosis of hepatocellular carcinoma.

    PubMed

    Yang, Lian-Yue; Tao, Yi-Ming; Ou, Di-Peng; Wang, Wei; Chang, Zhi-Gang; Wu, Fan

    2006-10-01

    Because of its role in cell migration, the Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) 2 has been implicated in cancer metastasis. Evidence to support such a role of WAVE2 in human cancer, however, is lacking. We thus examined the expression of WAVE2 in hepatocellular carcinoma (HCC) tissues to test whether the levels of WAVE2 expression correlated to the progression of HCC. Samples of 112 HCC patients were determined immunohistochemically for WAVE2 expression and the correlation of WAVE2 levels with prognosis was analyzed. Among the 112 cases, 31 paired HCC and paracarcinomatous liver tissue specimens were analyzed for WAVE2 levels by reverse transcription-PCR and Western blotting, respectively. Among 112 cases of HCCs, the immunohistochemistry data indicated significant increase of WAVE2 expression levels in 71 cases. Importantly, the increased WAVE2 expression correlated with the multiple tumor nodules (P = 0.008), the absence of capsular formation (P = 0.035), Edmondson-Steiner grade (P = 0.009), vein invasion (P = 0.023), and a shortened median survival time (326 versus 512 days; P = 0.003). Multivariable Cox regression analysis revealed the WAVE2 expression level was an independent factor for prognosis. The immunohistochemistry data were further confirmed by results of reverse transcription-PCR and Western analysis of 31 HCC cases, in which the WAVE2 mRNA and protein in HCC tissues were significantly elevated when compared with paracarcinomatous liver tissue (P < 0.001). WAVE2 expression is elevated in HCC tissues, which correlates with a poor prognosis, suggesting WAVE2 as a candidate prognostic marker of HCC.

  9. All-trans retinoic acid increases the expression of oxidative myosin heavy chain through the PPARδ pathway in bovine muscle cells derived from satellite cells.

    PubMed

    Kim, Jongkyoo; Wellmann, Kimberly B; Smith, Zachary K; Johnson, Bradley J

    2018-04-24

    All-trans retinoic acid (ATRA) has been associated with various physiological phenomenon in mammalian adipose tissue and skeletal muscle. We hypothesized that ATRA may affect skeletal muscle fiber type in bovine satellite cell culture through various transcriptional processes. Bovine primary satellite cell (BSC) culture experiments were conducted to determine dose effects of ATRA on expression of genes and protein levels related to skeletal muscle fiber type and metabolism. The semimembranosus from crossbred steers (n = 2 steers), aged approximately 24 months, were used to isolate BSC for 3 separate assays. Myogenic differentiation was induced using 3% horse serum upon cultured BSC with increasing doses (0, 1, 10, 100, 1000 nM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of protein kinase B (Akt), AMP-activated protein kinase alpha (AMPK), glucose transporter 4 (GLUT4), myogenin, lipoprotein lipase (LPL), myosin heavy chain (MHC) I, MHC IIA,MHC IIX, insulin like growth factor -1 (IGF-1), Peroxisome proliferator activated receptor gamma (PPARγ), PPARδ, and Smad transcription factor 3 (SMAD3) mRNA relative to ribosomal protein subunit 9 (RPS9). The mRNA expression of LPL was increased (P < 0.05) with 100 and 1000nM of ATRA. Expression of GLUT4 was altered (P < 0.05) by ATRA. The treatment of ATRA (1000nM) also increased (P < 0.05) mRNA gene expression of SMAD3. The gene expression of both PPARδ and PPARγ were increased (P < 0.05) with 1000nM of ATRA. Protein level of PPARδ was also affected (P < 0.05) by 1000nM of ATRA and resulted in a greater (P < 0.05) protein level of PPARδ compared to CON. All-trans retinoic acid (10nM) increased gene expression of MHC I (P < 0.05) compared to CON. Expression of MHC IIA was also influenced (P < 0.05) by ATRA. The mRNA expression of MHC IIX was decreased (P < 0.05) with 100 and 1000nM of ATRA.In muscle cells, ATRA may cause muscle fibers to transition towards the MHC isoform that prefers oxidative metabolism, as evidenced by increased expression of genes associated with the MHC I isoform. These changes in MHC isoforms appeared to be brought about by changing PPARδ gene expression and protein levels.

  10. Differences of Cd uptake and expression of OAS and IRT genes in two varieties of ryegrasses.

    PubMed

    Chi, Sunlin; Qin, Yuli; Xu, Weihong; Chai, Yourong; Feng, Deyu; Li, Yanhua; Li, Tao; Yang, Mei; He, Zhangmi

    2018-06-16

    Pot experiment was conducted to study the difference of cadmium uptake and OAS and IRT genes' expression between the two ryegrass varieties under cadmium stress. The results showed that with the increase of cadmium levels, the dry weights of roots of the two ryegrass varieties, and the dry weights of shoots and plants of Abbott first increased and then decreased. When exposed to 75 mg kg -1 Cd, the dry weights of shoot and plant of Abbott reached the maximum, which increased by 11.13 and 10.67% compared with the control. At 75 mg kg -1 Cd, cadmium concentrations in shoot of the two ryegrass varieties were higher than the critical value of Cd hyperaccumulator (100 mg kg -1 ), 111.19 mg kg -1 (Bond), and 133.69 mg kg -1 (Abbott), respectively. The OAS gene expression in the leaves of the two ryegrass varieties showed a unimodal curve, which was up to the highest at the cadmium level of 150 mg kg -1 , but fell back at high cadmium levels of 300 and 600 mg kg -1 . The OAS gene expression in Bond and Abbott roots showed a bimodal curve. The OAS gene expression in Bond root and Abbott stem mainly showed a unimodal curve. The expression of IRT genes family in the leaves of ryegrass varieties was basically in line with the characteristics of unimodal curve, which was up to the highest at cadmium level of 75 or 150 mg kg -1 , respectively. The IRT expression in the ryegrass stems showed characteristics of bimodal and unimodal curves, while that in the roots was mainly unimodal. The expression of OAS and IRT genes was higher in Bond than that in Abbott due to genotype difference between the two varieties. The expression of OAS and IRT was greater in leaves than that in roots and stems. Ryegrass tolerance to cadmium can be increased by increasing the expression of OAS and IRT genes in roots and stems, and transfer of cadmium from roots and stems to the leaves can be enhanced by increasing expression OAS and IRT in leaves.

  11. Cortistatin Is a Key Factor Regulating the Sex-Dependent Response of the GH and Stress Axes to Fasting in Mice.

    PubMed

    Cordoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M

    2016-07-01

    Cortistatin (CORT) shares high structural and functional similarities with somatostatin (SST) but displays unique sex-dependent pituitary actions. Indeed, although female CORT-knockout (CORT-KO) mice exhibit enhanced GH expression/secretion, Proopiomelanocortin expression, and circulating ACTH/corticosterone/ghrelin levels, male CORT-KO mice only display increased plasma GH/corticosterone levels. Changes in peripheral ghrelin and SST (rather than hypothalamic levels) seem to regulate GH/ACTH axes in CORT-KOs under fed conditions. Because changes in GH/ACTH axes during fasting provide important adaptive mechanisms, we sought to determine whether CORT absence influences GH/ACTH axes during fasting. Accordingly, fed and fasted male/female CORT-KO were compared with littermate controls. Fasting increased circulating GH levels in male/female controls but not in CORT-KO, suggesting that CORT can be a relevant regulator of GH secretion during fasting. However, GH levels were already higher in CORT-KO than in controls in fed state, which might preclude a further elevation in GH levels. Interestingly, although fasting-induced pituitary GH expression was elevated in both male/female controls, GH expression only increased in fasted female CORT-KOs, likely owing to specific changes observed in key factors controlling somatotrope responsiveness (ie, circulating ghrelin and IGF-1, and pituitary GHRH and ghrelin receptor expression). Fasting increased corticosterone levels in control and, most prominently, in CORT-KO mice, which might be associated with a desensitization to SST signaling and to an augmentation in CRH and ghrelin-signaling regulating corticotrope function. Altogether, these results provide compelling evidence that CORT plays a key, sex-dependent role in the regulation of the GH/ACTH axes in response to fasting.

  12. Increasing procaspase 8 expression using repurposed drugs to induce HIV infected cell death in ex vivo patient cells

    PubMed Central

    Sampath, Rahul; Cummins, Nathan W.; Natesampillai, Sekar; Bren, Gary D.; Chung, Thomas D.; Baker, Jason; Henry, Keith; Pagliuzza, Amélie; Badley, Andrew D.

    2017-01-01

    HIV persists because a reservoir of latently infected CD4 T cells do not express viral proteins and are indistinguishable from uninfected cells. One approach to HIV cure suggests that reactivating HIV will activate cytotoxic pathways; yet when tested in vivo, reactivating cells do not die sufficiently to reduce cell-associated HIV DNA levels. We recently showed that following reactivation from latency, HIV infected cells generate the HIV specific cytotoxic protein Casp8p41 which is produced by HIV protease cleaving procaspase 8. However, cell death is prevented, possibly due to low procaspase 8 expression. Here, we tested whether increasing procaspase 8 levels in CD4 T cells will produce more Casp8p41 following HIV reactivation, causing more reactivated cells to die. Screening 1277 FDA approved drugs identified 168 that increased procaspase 8 expression by at least 1.7-fold. Of these 30 were tested for anti-HIV effects in an acute HIVIIIb infection model, and 9 drugs at physiologic relevant levels significantly reduced cell-associated HIV DNA. Primary CD4 T cells from ART suppressed HIV patients were treated with one of these 9 drugs and reactivated with αCD3/αCD28. Four drugs significantly increased Casp8p41 levels following HIV reactivation, and decreased total cell associated HIV DNA levels (flurbiprofen: p = 0.014; doxycycline: p = 0.044; indomethacin: p = 0.025; bezafibrate: P = 0.018) without effecting the viability of uninfected cells. Thus procaspase 8 levels can be increased pharmacologically and, in the context of HIV reactivation, increase Casp8p41 causing death of reactivating cells and decreased HIV DNA levels. Future studies will be required to define the clinical utility of this or similar approaches. PMID:28628632

  13. In obese mice, exercise training increases 11β-HSD1 expression, contributing to glucocorticoid activation and suppression of pulmonary inflammation.

    PubMed

    Du, Shu-Fang; Yu, Qing; Chuan, Kai; Ye, Chang-Lin; He, Ze-Jia; Liu, Shu-Juan; Zhu, Xiao-Yan; Liu, Yu-Jian

    2017-10-01

    Exercise training is advocated for treating chronic inflammation and obesity-related metabolic syndromes. Glucocorticoids (GCs), the anti-inflammatory hormones, are synthesized or metabolized in extra-adrenal organs. This study aims to examine whether exercise training affects obesity-associated pulmonary inflammation by regulating local GC synthesis or metabolism. We found that sedentary obese ( ob/ob ) mice exhibited increased levels of interleukin (IL)-1β, IL-18, monocyte chemotactic protein (MCP)-1, and leukocyte infiltration in lung tissues compared with lean mice, which was alleviated by 6 wk of exercise training. Pulmonary corticosterone levels were decreased in ob/ob mice. Exercise training increased pulmonary corticosterone levels in both lean and ob/ob mice. Pulmonary corticosterone levels were negatively correlated with IL-1β, IL-18, and MCP-1. Immunohistochemical staining of the adult mouse lung sections revealed positive immunoreactivities for the steroidogenic acute regulatory protein, the cholesterol side-chain cleavage enzyme (CYP11A1), the steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (3β-HSD), and type 1 and type 2 11β-hydroxysteroid dehydrogenase (11β-HSD) but not for 11β-hydroxylase (CYP11B1). Exercise training significantly increased pulmonary 11β-HSD1 expression in both lean and ob/ob mice. In contrast, exercise training per se had no effect on pulmonary 11β-HSD2 expression, although pulmonary 11β-HSD2 levels in ob/ob mice were significantly higher than in lean mice. RU486, a glucocorticoid receptor antagonist, blocked the anti-inflammatory effects of exercise training in lung tissues of obese mice and increased inflammatory cytokines in lean exercised mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local GC activation and suppression of pulmonary inflammation in obese mice. NEW & NOTEWORTHY Treadmill training leads to a significant increase in pulmonary corticosterone levels in ob/ob mice, which is in parallel with the favorable effects of exercise on obesity-associated pulmonary inflammation. Exercise training increases pulmonary 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression but has no significant effect on 11β-HSD2 expression in both lean and ob/ob mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local glucocorticoid activation and suppression of pulmonary inflammation in obese mice. Copyright © 2017 the American Physiological Society.

  14. Association between macrophage migration inhibitory factor in the endometrium and estrogen in endometriosis

    PubMed Central

    ZHANG, XIAO; MU, LIN

    2015-01-01

    Recent studies have shown that macrophage migration inhibitory factor (MIF) has a possible role in endometriosis-related pain and infertility, yet it has not been explored whether the mRNA level of MIF is altered in endometrial tissues from patients with endometriosis. The aim of the present study was to compare the expression of MIF in endometrial tissues from women with and without endometriosis, and to analyze the association between endometrial MIF expression and 17β-estradiol (E2). The protein and mRNA expression of MIF in the human endometrial tissue was assessed by western blotting and reverse transcription-polymerase chain reaction analysis, respectively. The MIF expression of women with endometriosis was found to be significantly higher than that of the controls. A positive correlation was noted between the serum E2 level and MIF expression. In endometrial cells from women with endometriosis, the level of E2-induced MIF upregulation was significantly higher than that in cells from women without endometriosis. In conclusion, this study demonstrated a significant increase in MIF expression in the endometrial tissues of women with endometriosis and an association between MIF expression and E2 level. MIF expression in endometrial cells from patients with endometriosis showed an increased sensitivity to stimulation by E2. PMID:26622394

  15. Characterization of the Humoral Immune Response during Staphylococcus aureus Bacteremia and Global Gene Expression by Staphylococcus aureus in Human Blood

    PubMed Central

    den Reijer, Paul Martijn; Lemmens-den Toom, Nicole; Kant, Samantha; Snijders, Susan V.; Boelens, Hélène; Tavakol, Mehri; Verkaik, Nelianne J.; van Belkum, Alex; Verbrugh, Henri A.; van Wamel, Willem J. B.

    2013-01-01

    Attempts to develop an efficient anti-staphylococcal vaccine in humans have so far been unsuccessful. Therefore, more knowledge of the antigens that are expressed by Staphylococcus aureus in human blood and induce an immune response in patients is required. In this study we further characterize the serial levels of IgG and IgA antibodies against 56 staphylococcal antigens in multiple serum samples of 21 patients with a S. aureus bacteremia, compare peak IgG levels between patients and 30 non-infected controls, and analyze the expression of 3626 genes by two genetically distinct isolates in human blood. The serum antibody levels were measured using a bead-based flow cytometry technique (xMAP®, Luminex corporation). Gene expression levels were analyzed using a microarray (BµG@s microarray). The initial levels and time taken to reach peak IgG and IgA antibody levels were heterogeneous in bacteremia patients. The antigen SA0688 was associated with the highest median initial-to-peak antibody fold-increase for IgG (5.05-fold) and the second highest increase for IgA (2.07-fold). Peak IgG levels against 27 antigens, including the antigen SA0688, were significantly elevated in bacteremia patients versus controls (P≤0.05). Expression of diverse genes, including SA0688, was ubiquitously high in both isolates at all time points during incubation in blood. However, only a limited number of genes were specifically up- or downregulated in both isolates when cultured in blood, compared to the start of incubation in blood or during incubation in BHI broth. In conclusion, most staphylococcal antigens tested in this study, including many known virulence factors, do not induce uniform increases in the antibody levels in bacteremia patients. In addition, the expression of these antigens by S. aureus is not significantly altered by incubation in human blood over time. One immunogenic and ubiquitously expressed antigen is the putative iron-regulated ABC transporter SA0688. PMID:23308212

  16. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  17. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate

    PubMed Central

    Hollar, Amy R.; Choi, Jinyoung; Grimm, Adam T.; Buchholz, Daniel R.

    2011-01-01

    Spadefoot toad species display extreme variation in larval period duration, due in part to evolution of thyroid hormone (TH) physiology. Specifically, desert species with short larval periods have higher tail tissue content of TH and exhibit increased responsiveness to TH. To address the molecular basis of larval period differences, we examined TH receptor (TR) expression across species. Based on the dual function model for the role of TR in development, we hypothesized that desert spadefoot species with short larval periods would have 1) late onset of TR expression prior to the production of endogenous TH and 2) higher TR levels when endogenous TH becomes available. To test these hypotheses, we cloned fragments of TRα and TRβ genes from the desert spadefoot toads Scaphiopus couchii and Spea multiplicata and their non-desert relative Pelobates cultripes and measured their mRNA levels in tails using quantitative PCR in the absence (premetamorphosis) or presence (natural metamorphosis) of TH. All species express TRα and TRβ from the earliest stages measured (from just after hatching), but S. couchii, which has the shortest larval period, had more TRα throughout development compared to P. cultripes, which has the longest larval period. TRβ mRNA levels were similar across species. Exogenous T3 treatment induced faster TH-response gene expression kinetics in S. couchii compared to the other species, consistent with its increased TRα mRNA expression and indicative of a functional consequence of more TRα activity at the molecular level. To directly test whether higher TRα expression may contribute to shorter larval periods, we overexpressed TRα via plasmid injection into tail muscle cells of the model frog Xenopus laevis and found an increased rate of muscle cell death in response to TH. These results suggest that increased TRα expression evolved in S. couchii and contribute to its higher metamorphic rates. PMID:21651912

  18. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-inducedmore » PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.« less

  19. Fusion partners can increase the expression of recombinant interleukins via transient transfection in 2936E cells

    PubMed Central

    Carter, Jane; Zhang, Jue; Dang, Thien-Lan; Hasegawa, Haruki; Cheng, Janet D; Gianan, Irene; O'Neill, Jason W; Wolfson, Martin; Siu, Sophia; Qu, Sheldon; Meininger, David; Kim, Helen; Delaney, John; Mehlin, Christopher

    2010-01-01

    The expression levels of five secreted target interleukins (IL-11, 15, 17B, 32, and IL23 p19 subunit) were tested with three different fusion partners in 2936E cells. When fused to the N-terminus, human serum albumin (HSA) was found to enhance the expression of both IL-17B and IL-15, cytokines which did not express at measurable levels on their own. Although the crystallizable fragment of an antibody (Fc) was also an effective fusion partner for IL-17B, Fc did not increase expression of IL-15. Fc was superior to HSA for the expression of the p19 subunit of IL-23, but no partner led to measurable levels of IL-32γ secretion. Glutathione S-transferase (GST) did not enhance the expression of any target and suppressed the production of IL-11, a cytokine which expressed robustly both on its own and when fused to HSA or Fc. Cleavage of the fusion partner was not always possible. The use of HSA or Fc as N-terminal fusions can be an effective technique to express difficult proteins, especially for applications in which the fusion partner need not be removed. PMID:20014434

  20. Amelioration of Cardiac Function and Activation of Anti-Inflammatory Vasoactive Peptides Expression in the Rat Myocardium by Low Level Laser Therapy

    PubMed Central

    Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio

    2014-01-01

    Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808

  1. A heterologous hormone response element enhances expression of rat beta-casein promoter-driven chloramphenicol acetyltransferase fusion genes in the mammary gland of transgenic mice.

    PubMed

    Greenberg, N M; Reding, T V; Duffy, T; Rosen, J M

    1991-10-01

    Previous studies have demonstrated that the entire rat beta-casein (R beta C) gene and a -524/+490 R beta C fragment-chloramphenicol acetyltransferase (CAT) fusion gene are expressed preferentially in the mammary gland of transgenic mice in a developmentally regulated fashion. However, transgene expression was infrequent, less than 1% of that observed for the endogenous gene, and varied as much as 500-fold, presumably due to the site of chromosomal integration. To determine whether a heterologous hormone-responsive enhancer could be used to increase both the level and frequency of expression in the mammary gland, a fragment derived from the mouse mammary tumor virus long terminal repeat containing four hormone response elements (HREs) was inserted into the R beta C promoter at a site not known to contain transcriptional regulatory elements. Transgenic mice generated which carried HRE-enhanced R beta C-CAT fusion genes expressed CAT activity in the mammary glands of all founder lines examined at levels that were on average 13-fold greater than for lines generated with similar constructs not carrying HREs. In the highest expressing line, the level of HRE-enhanced transgene expression was found to be developmentally regulated, increasing 14-fold in the mammary gland from virgin to day 10 of lactation. In this line, expression was also observed in the thymus and spleen; however, the level of CAT activity was 4-fold lower than in the mammary gland and was not developmentally regulated. In adrenalectomized mice, the administration of dexamethasone stimulated CAT expression in the mammary gland but not in the thymus and spleen. These studies demonstrate that in the context of the R beta C promoter, the HRE functions in the mammary gland to increase both the frequency and level of transgene expression.

  2. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca2+ oscillations in asthma.

    PubMed

    Chen, Jun; Miller, Marina; Unno, Hirotoshi; Rosenthal, Peter; Sanderson, Michael J; Broide, David H

    2017-09-07

    Airway hyperresponsiveness is a major feature of asthma attributed predominantly to an extrinsic immune/inflammatory response increasing airway smooth muscle (ASM) contractility. We investigated whether increased ASM expression of orosomucoid-like 3 (ORMDL3), a gene on chromosome 17q21 highly linked to asthma, induced increased ASM proliferation and contractility in vitro and influenced airway contractility and calcium flux in ASM in precision-cut lung slices (PCLSs) from wild-type and hORMDL3 Zp3-Cre mice (which express increased levels of human ORMDL3 [hORMDL3]). Levels of ASM proliferation and contraction were assessed in ASM cells transfected with ORMDL3 in vitro. In addition, airway contractility and calcium oscillations were quantitated in ASM cells in PCLSs derived from naive wild-type and naive hORMDL3 Zp3-Cre mice, which do not have a blood supply. Increased ASM expression of ORMDL3 in vitro resulted in increased ASM proliferation and contractility. PCLSs derived from naive hORMDL3 Zp3-Cre mice, which do not have airway inflammation, exhibit increased airway contractility with increased calcium oscillations in ASM cells. Increased ASM ORMDL3 expression increases levels of ASM sarcoplasmic reticulum Ca 2+ ATPase 2b (SERCA2b), which increases ASM proliferation and contractility. Overall, these studies provide evidence that an intrinsic increase in ORMDL3 expression in ASM can induce increased ASM proliferation and contractility, which might contribute to increased airway hyperresponsiveness in the absence of airway inflammation in asthmatic patients. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Expression of β-catenin protein in hepatocellular carcinoma and its relationship with alpha-fetoprotein.

    PubMed

    Ren, Ya-Jun; Huang, Tao; Yu, Hong-Lu; Zhang, Li; He, Qian-Jin; Xiong, Zhi-Fan; Peng, Hua

    2016-12-01

    This study aimed to investigate the expression of β-catenin in hepatocellular carcinoma (HCC) tissues and its relationship with α-fetoprotein (AFP) in HCC. Immunohistochemistry was used to determine the expression of β-catenin in normal liver tissues (n=10), liver cirrhosis tissues (n=20), and primary HCC tissues (n=60). The relationship between β-catenin expression and clinical parameters of HCC was investigated. Real-time PCR and Western blotting were used to detect the mRNA and protein expression levels of β-catenin in the liver cancer cell line SMMC-7721 transfected with a plasmid encoding AFP, and also the mRNA and protein expression levels of β-catenin were measured in the liver cancer cell line Huh7 before and after the transfection with AFP shRNA plasmids. The results showed that β-catenin was only expressed on the cell membrane in normal liver tissues. Its localization to the cytoplasm and nucleus of cells was observed in a small proportion of cirrhotic tissues or adjacent HCC tissues, and such ectopic expression of β-catenin was predominant in HCC tissues. The abnormal expression of β-catenin was correlated with serum AFP levels, cancer cell differentiation and vascular invasion (P<0.05). Additionally, the increased expression of AFP resulted in the upregulation of β-catenin mRNA and protein levels, while knockdown of AFP with AFP shRNA led to significantly decreased β-catenin mRNA and protein levels (P<0.05). It was suggested that the abnormal expression of β-catenin is implicated in hepatic carcinogenesis and development. AFP can lead to increased expression of β-catenin, which may account for the poor prognosis of AFP-associated HCC patients.

  4. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats.

    PubMed

    Zepeda, Rodrigo; Contreras, Valentina; Pissani, Claudia; Stack, Katherine; Vargas, Macarena; Owen, Gareth I; Lazo, Oscar M; Bronfman, Francisca C

    2016-08-01

    Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Valsartan Upregulates Kir2.1 in Rats Suffering from Myocardial Infarction via Casein Kinase 2.

    PubMed

    Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua

    2015-06-01

    Myocardial infarction (MI) results in an increased susceptibility to ventricular arrhythmias, due in part to decreased inward-rectifier K+ current (IK1), which is mediated primarily by the Kir2.1 protein. The use of renin-angiotensin-aldosterone system antagonists is associated with a reduced incidence of ventricular arrhythmias. Casein kinase 2 (CK2) binds and phosphorylates SP1, a transcription factor of KCNJ2 that encodes Kir2.1. Whether valsartan represses CK2 activation to ameliorate IK1 remodeling following MI remains unclear. Wistar rats suffering from MI received either valsartan or saline for 7 days. The protein levels of CK2 and Kir2.1 were each detected via a Western blot analysis. The mRNA levels of CK2 and Kir2.1 were each examined via quantitative real-time PCR. CK2 expression was higher at the infarct border; and was accompanied by a depressed IK1/Kir2.1 protein level. Additionally, CK2 overexpression suppressed KCNJ2/Kir2.1 expression. By contrast, CK2 inhibition enhanced KCNJ2/Kir2.1 expression, establishing that CK2 regulates KCNJ2 expression. Among the rats suffering from MI, valsartan reduced CK2 expression and increased Kir2.1 expression compared with the rats that received saline treatment. In vitro, hypoxia increased CK2 expression and valsartan inhibited CK2 expression. The over-expression of CK2 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. AT1 receptor antagonist valsartan reduces CK2 activation, increases Kir2.1 expression and thereby ameliorates IK1 remodeling after MI in the rat model.

  6. Short-term dopaminergic regulation of GABA release in dopamine deafferented caudate-putamen is not directly associated with glutamic acid decarboxylase gene expression.

    PubMed

    O'Connor, W T; Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H; Ungerstedt, U

    1991-07-08

    In vivo microdialysis and in situ hybridization were combined to study dopaminergic regulation of gamma-amino butyric acid (GABA) neurons in rat caudate-putamen (CPu). Potassium-stimulated GABA release in CPu was elevated following a dopamine deafferentation. Local perfusion with exogenous dopamine (50 microM) for 3 h via the microdialysis probe attenuated the potassium-stimulated increase in extracellular GABA in CPu. Expression of glutamic acid decarboxylase (GAD) mRNA was also increased in the dopamine deafferented CPu. However, local perfusion with dopamine had no significant attenuating effect on the increased GAD mRNA expression. These findings indicate that dopaminergic regulation of GABA neurons in the dopamine deafferented CPu includes both a short-term effect at the level of GABA release independent of changes in GAD mRNA expression and a long-term modulation at the level of GAD gene expression.

  7. A Critical Role of Mitochondria in BDNF-Associated Synaptic Plasticity After One-Week Vortioxetine Treatment.

    PubMed

    Chen, Fenghua; Danladi, Jibrin; Ardalan, Maryam; Elfving, Betina; Müller, Heidi K; Wegener, Gregers; Sanchez, Connie; Nyengaard, Jens R

    2018-06-01

    Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling. Rats were treated for 1 week with vortioxetine or fluoxetine at pharmacologically relevant doses. Number of synapses and mitochondria in hippocampus CA1 were quantified by electron microscopy. Brain-derived neurotrophic factor protein levels were visualized with immunohistochemistry. Gene and protein expression of synapse and mitochondria-related markers were investigated with real-time quantitative polymerase chain reaction and immunoblotting. Vortioxetine increased number of synapses and mitochondria significantly, whereas fluoxetine had no effect after 1-week dosing. BDNF levels in hippocampus DG and CA1 were significantly higher after vortioxetine treatment. Gene expression levels of Rac1 after vortioxetine treatment were significantly increased. There was a tendency towards increased gene expression levels of Drp1 and protein levels of Rac1. However, both gene and protein levels of c-Fos were significantly decreased. Furthermore, there was a significant positive correlation between BDNF levels and mitochondria and synapse numbers. Our results imply that mitochondria play a critical role in synaptic plasticity accompanied by increased BDNF levels. Rapid changes in BDNF levels and synaptic/mitochondria plasticity of hippocampus following vortioxetine compared with fluoxetine may be ascribed to vortioxetine's modulation of serotonin receptors.

  8. AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle.

    PubMed

    Kim, Young-Chae; Seok, Sunmi; Byun, Sangwon; Kong, Bo; Zhang, Yang; Guo, Grace; Xie, Wen; Ma, Jian; Kemper, Byron; Kemper, Jongsook Kim

    2018-02-07

    Phosphatidylcholines (PC) and S-adenosylmethionine (SAM) are critical determinants of hepatic lipid levels, but how their levels are regulated is unclear. Here, we show that Pemt and Gnmt, key one-carbon cycle genes regulating PC/SAM levels, are downregulated after feeding, leading to decreased PC and increased SAM levels, but these effects are blunted in small heterodimer partner (SHP)-null or FGF15-null mice. Further, aryl hydrocarbon receptor (AhR) is translocated into the nucleus by insulin/PKB signaling in the early fed state and induces Pemt and Gnmt expression. This induction is blocked by FGF15 signaling-activated SHP in the late fed state. Adenoviral-mediated expression of AhR in obese mice increases PC levels and exacerbates steatosis, effects that are blunted by SHP co-expression or Pemt downregulation. PEMT, AHR, and PC levels are elevated in simple steatosis patients, but PC levels are robustly reduced in steatohepatitis-fibrosis patients. This study identifies AhR and SHP as new physiological regulators of PC/SAM levels.

  9. Abscisic Acid (ABA ) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy

    PubMed Central

    Li, Jianzhao; Xu, Ying; Niu, Qingfeng; He, Lufang; Teng, Yuanwen; Bai, Songling

    2018-01-01

    Dormancy is an adaptive mechanism that allows temperate deciduous plants to survive unfavorable winter conditions. In the present work, we investigated the possible function of abscisic acid (ABA) on the endodormancy process in pear. The ABA content increased during pear flower bud endodormancy establishment and decreased towards endodormancy release. In total, 39 putative genes related to ABA metabolism and signal transductions were identified from pear genome. During the para- to endodormancy transition, PpNCED-2 and PpNCED-3 had high expression levels, while PpCYP707As expression levels were low. However, during endodormancy, the expression of PpCYP707A-3 sharply increased with increasing cold accumulation. At the same time, the ABA content of pear buds declined, and the percentage of bud breaks rapidly increased. On the other hand, the expression levels of PpPYLs, PpPP2Cs, PpSnRK2s, and PpABI4/ABI5s were also changed during the pear flower bud dormancy cycle. Furthermore, exogenous ABA application to para-dormant buds significantly reduced the bud breaks and accelerated the transition to endodormancy. During the whole treatment time, the expression level of PpPP2C-12 decreased to a greater extent in ABA-treated buds than in control. However, the expression levels of PpSnRK2-1, PpSnRK2-4, and PpABI5-1 were higher in ABA-treated buds. Our results indicated that PpCYP707A-3 and PpNCEDs play pivotal roles on the regulation of endodormancy release, while ABA signal transduction pathway also appears to be involved in the process. The present work provided the basic information about the function of ABA-related genes during pear flower bud dormancy process. PMID:29361708

  10. Triiodothyronine induces lipid oxidation and mitochondrial biogenesis in rat Harderian gland.

    PubMed

    Santillo, A; Burrone, L; Falvo, S; Senese, R; Lanni, A; Chieffi Baccari, G

    2013-10-01

    The rat Harderian gland (HG) is an orbital gland producing a copious lipid secretion. Recent studies indicate that its secretory activity is regulated by thyroid hormones. In this study, we found that both isoforms of the thyroid hormone receptor (Trα (Thra) and Trβ (Thrb)) are expressed in rat HGs. Although Thra is expressed at a higher level, only Thrb is regulated by triiodothyronine (T3). Because T3 induces an increase in lipid metabolism in rat HGs, we investigated the effects of an animal's thyroid state on the expression levels of carnitine palmitoyltransferase-1A (Cpt1a) and carnitine palmitoyltransferase-1B (Cpt1b) and acyl-CoA oxidase (Acox1) (rate-limiting enzymes in mitochondrial and peroxisomal fatty acid oxidation respectively), as well as on the mitochondrial compartment, thereby correlating mitochondrial activity and biogenesis with morphological analysis. We found that hypothyroidism decreased the expression of Cpt1b and Acox1 mRNA, whereas the administration of T3 to hypothyroid rats increased transcript levels. Respiratory parameters and catalase protein levels provided further evidence that T3 modulates mitochondrial and peroxisomal activities. Furthermore, in hypothyroid rat HGs, the mitochondrial number and their total area decreased with respect to the controls, whereas the average area of the individual mitochondrion did not change. However, the average area of the individual mitochondrion was reduced by ∼50% in hypothyroid T3-treated HGs, and the mitochondrial number and the total area of the mitochondrial compartment increased. The mitochondrial morphometric data correlated well with the molecular results. Indeed, hypothyroid status did not modify the expression of mitochondrial biogenesis genes such as Ppargc1a, Nrf1 and Tfam, whereas T3 treatment increased the expression level of these genes.

  11. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Duanmin; Su, Cunjin; Jiang, Min

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs,more » siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.« less

  12. MEK-dependent IL-8 induction regulates the invasiveness of triple-negative breast cancer cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Interleukin-8 (IL-8) serves as a prognostic marker for breast cancer, and its expression level correlates with metastatic breast cancer and poor prognosis. Here, we investigated the levels of IL-8 expression in a variety of breast cancer cells and the regulatory mechanism of IL-8 in triple-negative breast cancer (TNBC) cells. Our results showed that IL-8 expression correlated positively with overall survival in basal-type breast cancer patients. The levels of IL-8 mRNA expression and protein secretion were significantly increased in TNBC cells compared with non-TNBC cells. In addition, the invasiveness of the TNBC cells was dramatically increased by IL-8 treatment and then augmented invasion-related proteins such as matrix metalloproteinase (MMP)-2 or MMP-9. We observed that elevated IL-8 mRNA expression and protein secretion were suppressed by a specific MEK1/2 inhibitor, UO126. In contrast, the overexpression of constitutively active MEK significantly increased the level of IL-8 mRNA expression in BT474 non-TNBC cells. Finally, we investigated the effect of UO126 on the tumorigenecity of TNBC cells. Our results showed that anchorage-independent growth, cell invasion, and cell migration were also decreased by UO126 in TNBC cells. As such, we demonstrated that IL-8 expression is regulated through MEK/ERK-dependent pathways in TNBC cells. A diversity of MEK blockers, including UO126, may be promising for treating TNBC patients.

  13. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results aremore » consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.« less

  14. Post-Weaning Diet Affects Faecal Microbial Composition but Not Selected Adipose Gene Expression in the Cat (Felis catus)

    PubMed Central

    Bermingham, Emma N.; Kittelmann, Sandra; Young, Wayne; Kerr, Katherine R.; Swanson, Kelly S.; Roy, Nicole C.; Thomas, David G.

    2013-01-01

    The effects of pre- (i.e., gestation and during lactation) and post-weaning diet on the composition of faecal bacterial communities and adipose expression of key genes in the glucose and insulin pathways were investigated in the cat. Queens were maintained on a moderate protein:fat:carbohydrate kibbled (“Diet A”; 35:20:28% DM; n  =  4) or high protein:fat:carbohydrate canned (“Diet B”; 45:37:2% DM; n = 3) diet throughout pregnancy and lactation. Offspring were weaned onto these diets in a nested design (n  =  5 per treatment). Faecal samples were collected at wk 8 and 17 of age. DNA was isolated from faeces and bacterial 16S rRNA gene amplicons were analysed by pyrosequencing. RNA was extracted from blood (wk 18) and adipose tissue and ovarian/testicular tissues (wk 24) and gene expression levels determined using RT-qPCR. Differences (P<0.05) in composition of faecal bacteria were observed between pregnant queens fed Diet A or B. However, pre-weaning diet had little effect on faecal bacterial composition in weaned kittens. In contrast, post-weaning diet altered bacterial population profiles in the kittens. Increased (P<0.05) abundance of Firmicutes (77% vs 52% of total reads) and Actinobacteria (0.8% vs 0.2% of total reads), and decreased (P<0.05) abundance of Fusobacteria (1.6% vs 18.4% of total reads) were observed for kittens fed the Diet A compared to those fed Diet B post-weaning. Feeding Diet B pre-weaning increased (P<0.05) the expression levels of INRS, LEPT, PAI-1 and tended to increase GLUT1, while the expression levels of IRS-1 in blood increased in kittens fed Diet A pre-weaning. Post-weaning diet had no effect on expression levels of target genes. Correlations between the expression levels of genes involved in glucose and insulin pathways and faecal Bacteriodetes and Firmicutes phyla were identified. The reasons for why post-weaning diet affects microbial populations and not gene expression levels are of interest. PMID:24312255

  15. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less

  16. Disease duration and age influence CARD15 expression in Crohn's disease.

    PubMed

    Poniewierka, Elżbieta; Neubauer, Katarzyna; Kempiński, Radosław; Sadakierska-Chudy, Anna

    2016-01-05

    One of the susceptibility genes in Crohn's disease (CD) is CARD15. Our study examined the relationship between peripheral CARD15 expression and phenotype and duration of CD, treatment methods and inflammatory indices. Sixty patients with CD and 30 healthy volunteers as controls were enrolled in the study. Total RNA was isolated from peripheral blood mononuclear cells (PBMCs) with E.Z.N.A. Total RNA Kit (Omega Bio-tek) then quantitative real-time PCR was performed on the ABI Prism 7900 HT Real-Time PCR System. CARD15 gene expression in PBMCs in CD was significantly higher than in the control group. The highest level of gene expression was found in CD patients in the fourth decade of life. The mRNA level of the CARD15 gene was higher in patients with disease duration between 12 and 60 months. A positive correlation was found between erythrocyte sedimentation rate (ESR) and gene expression level. Gene expression increased with increasing level of C-reactive protein and ESR, but it was not statistically significant. CARD15 expression significantly decreased in CD patients treated with anti-TNFα agents compared to azathioprine or steroid treatment groups. Expression of the CARD15 gene in Crohn›s disease is higher than in healthy individuals. Disease duration and age of patients seem to be the most important factors influencing CARD15 expression.

  17. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells.

    PubMed

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-11-09

    This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway.

  18. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells

    PubMed Central

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-01-01

    Background This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. Material/Methods HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. Results The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. Conclusions TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway. PMID:26551326

  19. Overexpression of SKP2 promotes the radiation resistance of esophageal squamous cell carcinoma.

    PubMed

    Wang, Xiao-Chun; Tian, Li-Li; Tian, Jing; Jiang, Xiao-Yan

    2012-01-01

    SKP2 is the substrate recognition subunit of the SCF(SKP2) ubiquitin ligase complex. It is implicated in ubiquitin-mediated degradation of the cyclin-dependent kinase (CDK) inhibitor p27(KIP1) and positively regulates the G(1)/S transition. Overexpression of SKP2 has been found in many kinds of tumors. In the present study, we found that SKP2 expression levels increased in esophageal squamous cell carcinoma tissues. Elevated expression of SKP2 correlated significantly with tumor stage and positive lymph node metastasis (P < 0.05). Moreover, a significantly negative correlation was found between SKP2 expression and the survival of patients who received radiotherapy (P < 0.05). At the molecular level, induced expression of SKP2 promoted the radioresistance of EC9706 cells. Knockdown of SKP2 expression sensitized cancer cells to radiation, and a wobble mutant of SKP2 that was resistant to SKP2 siRNA was able to rescue this effect. Increased or decreased expression levels of SKP2 had effects on Rad51 expression after irradiation. These results demonstrate for the first time that overexpression of SKP2 was correlated with the increased radioresistance of esophageal squamous cell carcinoma. Elevated expression of SKP2 promoted the radioresistance of cancer cells, and this effect was mediated at least in part by the Rad51 pathway.

  20. Abnormal mRNA Expression Levels of Telomere-Binding Proteins Represent Biomarkers in Myelodysplastic Syndromes: A Case-Control Study.

    PubMed

    Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing

    2017-08-02

    As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.

  1. Activating glutamate decarboxylase activity by removing the autoinhibitory domain leads to hyper γ-aminobutyric acid (GABA) accumulation in tomato fruit.

    PubMed

    Takayama, Mariko; Matsukura, Chiaki; Ariizumi, Tohru; Ezura, Hiroshi

    2017-01-01

    The C-terminal extension region of SlGAD3 is likely involved in autoinhibition, and removing this domain increases GABA levels in tomato fruits. γ-Aminobutyric acid (GABA) is a ubiquitous non-protein amino acid with several health-promoting benefits. In many plants including tomato, GABA is synthesized via decarboxylation of glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), which generally contains a C-terminal autoinhibitory domain. We previously generated transgenic tomato plants in which tomato GAD3 (SlGAD3) was expressed using the 35S promoter/NOS terminator expression cassette (35S-SlGAD3-NOS), yielding a four- to fivefold increase in GABA levels in red-ripe fruits compared to the control. In this study, to further increase GABA accumulation in tomato fruits, we expressed SlGAD3 with (SlGAD3 OX ) or without (SlGAD3ΔC OX ) a putative autoinhibitory domain in tomato using the fruit ripening-specific E8 promoter and the Arabidopsis heat shock protein 18.2 (HSP) terminator. Although the GABA levels in SlGAD3 OX fruits were equivalent to those in 35S-SlGAD3-NOS fruits, GABA levels in SlGAD3ΔC OX fruits increased by 11- to 18-fold compared to control plants, indicating that removing the autoinhibitory domain increases GABA biosynthesis activity. Furthermore, the increased GABA levels were accompanied by a drastic reduction in glutamate and aspartate levels, indicating that enhanced GABA biosynthesis affects amino acid metabolism in ripe-fruits. Moreover, SlGAD3ΔC OX fruits exhibited an orange-ripe phenotype, which was associated with reduced levels of both carotenoid and mRNA transcripts of ethylene-responsive carotenogenic genes, suggesting that over activation of GAD influences ethylene sensitivity. Our strategy utilizing the E8 promoter and HSP terminator expression cassette, together with SlGAD3 C-terminal deletion, would facilitate the production of tomato fruits with increased GABA levels.

  2. MUC Expression in Gallbladder Epithelial Tissues in Cholesterol-Associated Gallbladder Disease

    PubMed Central

    Yoo, Kyo-Sang; Choi, Ho Soon; Jun, Dae Won; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Lee, Kyeong Geun; Paik, Seung Sam; Kim, Yong Seok; Lee, Jin

    2016-01-01

    Background/Aims Gallstone pathogenesis is linked to mucin hypersecretion and bacterial infection. Several mucin genes have been identified in gallbladder epithelial cells (GBECs). We investigated MUC expression in cholesterol-associated gallbladder disease and evaluated the relationship between mucin and bacterial infection. Methods The present study involved 20 patients with cholesterol stones with cholecystitis, five with cholesterol stones with cholesterolosis, six with cholesterol polyps, two with gallbladder cancer, and six controls. Canine GBECs treated with lipopolysaccharide were also studied. MUC3, MUC5AC, MUC5B, and MUC6 antibodies were used for dot/slot immunoblotting and immunohistochemical studies of the gallbladder epithelial tissues, canine GBECs, and bile. Reverse-transcription polymerase chain reaction was performed to evaluate MUC3 and MUC5B expression. Results MUC3, MUC5AC, MUC5B, and MUC6 were expressed in the normal gallbladder epithelium, and of those, MUC3 and MUC5B exhibited the highest expression levels. Greatly increased levels of MUC3 and MUC5B expression were observed in the cholesterol stone group, and slightly increased levels were observed in the cholesterol polyp group; MUC3 and MUC5B mRNA was also upregulated in those groups. Canine GBECs treated with lipopolysaccharide also showed upregulation of MUC3 and MUC5B. Conclusions The mucin genes with the highest expression levels in gallbladder tissue in cholesterol-associated diseases were MUC3 and MUC5B. Cholesterol stones and gallbladder infections were associated with increased MUC3 and MUC5B expression. PMID:27563024

  3. Increased expression of Apo-J and Omi/HtrA2 after Intracerebral Hemorrage in rats.

    PubMed

    Li, Feng; Yang, Jing; Guo, Xiaoyan; Zheng, Xiaomei; Lv, Zhiyu; Shi, Chang Qing; Li, Xiaogang

    2018-03-23

    To investigate the changes of Apo-J and Omi/HtrA2 protein expression in rats with intracerebral hemorrage. 150 SD adult rats were randomly divided into 3 groups: (1) Normal Control (NC) group, (2) Sham group, (3) Intracerebral Hemorrage (ICH) group. The data were collected at 6h, 12h, 1d, 2d, 3d, 5d and 7d. Apoptosis was measured by Tunel staining. The distributions of the Apo-J and Omi/HtrA2 proteins were determined by immunohistochemical staining. The levels of Apo-J mRNA and Omi/HtrA2 mRNA expressions were examined by RT-PCR. Apoptosis in ICH group was higher than Sham and NC groups (p<0.05). Both the Apo-J and Omi/HtrA2 expression levels were increased in the peripheral region of hemorrhage, with a peak at 3d. The Apo-J mRNA level positively correlated with HtrA2 mRNA level in ICH group (r=0.883, p<0.001). The expressions of Apo-J and Omi/HtrA2 paralelly increased in peripheral region of rat cerebral hemorrhage. Local high expressed Apo-J in the peripheral regions might play a neuroprotective role by inhibiting apoptosis via Omi/HtrA2 pathway after hemorrhage. Copyright © 2018. Published by Elsevier Inc.

  4. Clofazimine Modulates the Expression of Lipid Metabolism Proteins in Mycobacterium leprae-Infected Macrophages

    PubMed Central

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine. PMID:23236531

  5. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    PubMed

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  6. Tumor Necrosis Factor B (TNFB) Genetic Variants and Its Increased Expression Are Associated with Vitiligo Susceptibility

    PubMed Central

    Laddha, Naresh C.; Dwivedi, Mitesh; Gani, Amina R.; Mansuri, Mohmmad Shoab; Begum, Rasheedunnisa

    2013-01-01

    Genetic polymorphisms in TNFB are involved in the regulation of its expression and are found to be associated with various autoimmune diseases. The aim of the present study was to determine whether TNFB +252A/G (rs909253) and exon 3 C/A (rs1041981) polymorphisms are associated with vitiligo susceptibility, and expression of TNFB and ICAM1 affects the disease onset and progression. We have earlier reported the role of TNFA in autoimmune pathogenesis of vitiligo, and we now show the involvement of TNFB in vitiligo pathogenesis. The two polymorphisms investigated in the TNFB were in strong linkage disequilibrium and significantly associated with vitiligo. TNFB and ICAM1 transcripts were significantly increased in patients compared to controls. Active vitiligo patients showed significant increase in TNFB transcripts compared to stable vitiligo. The genotype-phenotype analysis revealed that TNFB expression levels were higher in patients with GG and AA genotypes as compared to controls. Patients with the early age of onset and female patients showed higher TNFB and ICAM1 expression. Overall, our findings suggest that the increased TNFB transcript levels in vitiligo patients could result, at least in part, from variations at the genetic level which in turn leads to increased ICAM1 expression. For the first time, we show that TNFB +252A/G and exon 3 C/A polymorphisms are associated with vitiligo susceptibility and influence the TNFB and ICAM1 expression. Moreover, the study also emphasizes influence of TNFB and ICAM1 on the disease progression, onset and gender bias for developing vitiligo. PMID:24312346

  7. Uncoupled iron homeostasis in type 2 diabetes mellitus.

    PubMed

    Altamura, Sandro; Kopf, Stefan; Schmidt, Julia; Müdder, Katja; da Silva, Ana Rita; Nawroth, Peter; Muckenthaler, Martina U

    2017-12-01

    Diabetes mellitus is frequently associated with iron overload conditions, such as primary and secondary hemochromatosis. Conversely, patients affected by type 2 diabetes mellitus (T2DM) show elevated ferritin levels, a biomarker for increased body iron stores. Despite these documented associations between dysregulated iron metabolism and T2DM, the underlying mechanisms are poorly understood. Here, we show that T2DM patients have reduced serum levels of hepcidin, the iron-regulated hormone that maintains systemic iron homeostasis. Consistent with this finding, we also observed an increase in circulating iron and ferritin levels. Our analysis of db/db mice demonstrates that this model recapitulates the systemic alterations observed in patients. Interestingly, db/db mice show an overall hepatic iron deficiency despite unaltered expression of ferritin and the iron importer TfR1. In addition, the liver correctly senses increased circulating iron levels by activating the BMP/SMAD signaling pathway even though hepcidin expression is decreased. We show that increased AKT phosphorylation may override active BMP/SMAD signaling and decrease hepcidin expression in 10-week old db/db mice. We conclude that the metabolic alterations occurring in T2DM impact on the regulation of iron homeostasis on multiple levels. As a result, metabolic perturbations induce an "iron resistance" phenotype, whereby signals that translate increased circulating iron levels into hepcidin production, are dysregulated. T2DM patients show increased circulating iron levels. T2DM is associated with inappropriately low hepcidin levels. Metabolic alterations in T2DM induce an "iron resistance" phenotype.

  8. High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice.

    PubMed

    Chang, Seo-Na; Han, Juhee; Abdelkader, Tamer Said; Kim, Tae-Hyoun; Lee, Ji Min; Song, Juha; Kim, Kyung-Sul; Park, Jong-Hwan; Park, Jae-Hak

    2014-09-01

    Prostate cancer is the most frequently diagnosed cancer in Western men, and more men have been diagnosed at younger ages in recent years. A high-fat Western-style diet is a known risk factor for prostate cancer and increases oxidative stress. We evaluated the association between dietary animal fat and expression of antioxidant enzymes, particularly glutathione peroxidase 3 (GPx3), in the early stages of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Six-week-old male nontransgenic and TRAMP mice were placed on high animal fat (45% Kcal fat) or control (10% Kcal fat) diets and sacrificed after 5 or 10 weeks. The histopathological score increased with age and high-fat diet consumption. The histopathological scores in dorsal and lateral lobes increased in the 10-week high-fat diet group (6.2±0.2 and 6.2±0.4, respectively) versus the 10-week control diet group (5.3±0.3 and 5.2±0.2, respectively). GPx3 decreased both at the mRNA and protein levels in mouse prostate. GPx3 mRNA expression decreased (∼36.27% and ∼23.91%, respectively) in the anterior and dorsolateral prostate of TRAMP mice fed a high-fat diet compared to TRAMP mice fed a control diet. Cholesterol treatment increased PC-3 human prostate cancer cell proliferation, decreased GPx3 mRNA and protein levels, and increased H2 O2 levels in culture medium. Moreover, increasing GPx3 mRNA expression by troglitazone in PC-3 cells decreased cell proliferation and lowered H2 O2 levels. Dietary fat enhances prostate cancer progression, possibly by suppressing GPx3 expression and increasing proliferation of prostate intraepithelial neoplasia (PIN) epithelial cells. © 2014 Wiley Periodicals, Inc.

  9. Sclerostin as a potential novel biomarker for aortic valve calcification: an in-vivo and ex-vivo study.

    PubMed

    Koos, Ralf; Brandenburg, Vincent; Mahnken, Andreas Horst; Schneider, Rebekka; Dohmen, Guido; Autschbach, Rüdiger; Marx, Nikolaus; Kramann, Rafael

    2013-05-01

    Sclerostin is a key negative regulator of bone formation. It was hypothesized that sclerostin might also play a potential role in the development of aortic valve calcification (AVC). The study aim was to evaluate serum sclerostin levels in patients with different degrees of AVC compared to a healthy control group, and to investigate local sclerostin expression in explanted calcified and non-calcified aortic valves. A prospective cross-sectional study was performed in 115 patients (mean age 74 +/- 7 years) with echocardiographically proven AVC. Sclerostin serum levels were measured using ELISA and compared to values obtained from a healthy control population. For quantification of AVC, all patients of the study cohort underwent non-contrast-enhanced dual-source computed tomography (DSCT). Immunohistochemistry (IHC) staining for sclerostin and mRNA sclerostin expression was analyzed in 10 calcified aortic valves and 10 non-calcified age-matched control valves. Patients with AVC showed significantly higher sclerostin serum levels as compared to healthy controls (0.94 +/- 0.45 versus 0.58 +/- 0.26 ng/ml, p < 0.001). A significant correlation between sclerostin serum levels and Agatston AVC scores as assessed by DSCT was observed (r = 0.62, p < 0.001) in the study cohort. IHC revealed positive sclerostin staining in nine calcified valves, in contrast to negative staining for sclerostin in all non-calcified valves. Quantitative real-time PCR confirmed the increased sclerostin expression on mRNA level, with a significant up-regulation of sclerostin mRNA (fold change 150 +/- 52, p < 0.001) expression being shown in calcified aortic valves compared to non-calcified control valves. Co-staining experiments revealed that sclerostin-expressing cells co-express the major osteogenic transcription factor Runx2 and the extracellular matrix protein osteocalcin. Patients with AVC showed increased sclerostin serum levels compared to a healthy reference population, and it was revealed that the severity of AVC may be linked to increased sclerostin serum levels. Moreover, the PCR and staining data demonstrated an increased sclerostin expression in parallel to prototypic markers of osteogenic transdifferentiation, indicating a role of sclerostin in the valvular calcification process.

  10. Insight into mechanism of oxidative DNA damage in angiomyolipomas from TSC patients

    PubMed Central

    Habib, Samy L

    2009-01-01

    Background The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. Loss of heterozygosity at the 8-oxoG-DNA glycosylase (OGG1) allele is found in human kidney clear cell carcinoma identifying loss of OGG1 function as a possible contributor to tumorigenesis in the kidney. Tuberin regulates OGG1 through the transcription factor NF-YA in cultured cells. The purpose of this study is to determine the effect of tuberin-deficiency on OGG1 protein and mRNA levels as well as on 8-oxodG levels in kidney tumors from patients with TSC. In addition we evaluated the phophorylation level of downstream targets of mTOR, phospho-S70K, in kidney tumor tissue from TSC patients. Results Kidney angiomyolipoma tissue from TSC patients expresses significant levels of phopho-tuberin and low levels of tuberin compared to control kidney tissue. The increase in tuberin phosphorylation and the decrease tuberin expression are associated with decrease in OGG1 protein and mRNA levels in tumor samples compared to normal kidney samples. The decrease OGG1 expression is also associated with significant decrease in the transcription factor, NF-YA, expression in tumor samples compared to normal tissues. In addition, the levels of 8-oxodG are 4-fold higher in tumors compared to control samples. The significant increase of phospho-tuberin expression is associated with increase phosphorylation of S6K in tumor samples compared to controls. Cyclin D1 expression is also 3-fold higher in increase in the tumor tissues compared to normal kidney tissues. Conclusion These data indicate that tuberin deficiency in angiomyolipoma enhances mTOR activation by phosphorylation of S6K and downregulation of protein and mRNA expression of OGG1 resulted in accumulation of oxidized DNA in patients with TSC. These data suggest that tuberin and OGG1 are important proteins in the pathogenesis of angiomyolipoma in TSC patients. PMID:19265534

  11. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singaravelu, Ragunath; National Research Council of Canada, Ottawa, Ontario K1A 0R6; Lyn, Rodney K.

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limitedmore » cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.« less

  12. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis1[W

    PubMed Central

    Weichert, Nicola; Saalbach, Isolde; Weichert, Heiko; Kohl, Stefan; Erban, Alexander; Kopka, Joachim; Hause, Bettina; Varshney, Alok; Sreenivasulu, Nese; Strickert, Marc; Kumlehn, Jochen; Weschke, Winfriede; Weber, Hans

    2010-01-01

    Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations. PMID:20018590

  13. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    PubMed

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  14. The expression of 11β-hydroxysteroid dehydrogenase type 1 is increased in experimental periodontitis in rats.

    PubMed

    Nakata, Takaya; Umeda, Makoto; Masuzaki, Hiroaki; Sawai, Hirofumi

    2016-10-03

    The involvement of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into active glucocorticoids intracellularly, in metabolic diseases and chronic inflammatory diseases has been elucidated. We recently reported that an increase in 11β-HSD1 expression was associated with chronic periodontitis in humans irrespective of obesity. To further clarify the role of 11β-HSD1 in chronic periodontitis, the expression of 11β-HSD1 was investigated in experimental periodontitis model in rats. Experimental periodontitis was induced by silk ligature of left maxillary second molars of 7-week-old male Wistar rats, and periodontal tissues were collected at day 3. The expression of 11β-HSD1, 11β-HSD2, and TNFα mRNA was examined using real time reverse transcription-polymerase chain reaction. The expression of TNFα was used as an indicator of inflammation. Thus, the rats in which the levels of TNFα mRNA were increased in the ligature-induced periodontitis compared with the control were analysed. The findings demonstrated that the expression of 11β-HSD1 mRNA was significantly increased in experimental periodontitis compared with the control. The increase in the levels of 11β-HSD1 mRNA in the ligature-induced periodontitis compared with the control was positively correlated with that of TNFα mRNA. On the other hand, the expression of 11β-HSD2 mRNA, which inactivates glucocorticoids, was slightly decreased in experimental periodontitis. Therefore, the ratio of 11β-HSD1 versus 11β-HSD2 mRNA was significantly higher in experimental periodontitis than in the control. These results suggest that the increased expression of 11β-HSD1, which would result in the increased levels of intracellular glucocorticoids, may play a role in the pathophysiology of experimental periodontitis.

  15. Smad4-Mediated Signaling Inhibits Intestinal Neoplasia by Inhibiting Expression of β-Catenin

    PubMed Central

    Freeman, Tanner J.; Smith, J. Joshua; Chen, Xi; Washington, M. Kay; Roland, Joseph T.; Means, Anna L.; Eschrich, Steven A.; Yeatman, Timothy J.; Deane, Natasha G.; Beauchamp, R. Daniel

    2012-01-01

    Background & Aims Mutational inactivation of APC is an early event in colorectal cancer (CRC) progression that affects the stability and increases the activity of β-catenin, a mediator of Wnt signaling. CRC progression also involves inactivation of signaling via transforming growth factor (TGF)β and bone morphenogenic protein (BMP), which are tumor suppressors. However, the interactions between these pathways are not clear. We investigated the effects of loss of the transcription factor Smad4 loss on levels of β-catenin mRNA and Wnt signaling. Methods We used microarray analysis to associate levels of Smad4 and β-catenin mRNA in colorectal tumor samples from 250 patients. We performed oligonucleotide-mediated knockdown of Smad4 in human embryonic kidney (HEK293T) and in HCT116 colon cancer cells and transgenically expressed Smad4 in SW480 colon cancer cells. We analyzed adenomas from (APCΔ1638/+) and (APCΔ1638/+)x(K19CreERT2Smad4lox/lox) mice using laser-capture microdissection. Results In human CRC samples, reduced levels of Smad4 correlated with increased levels of β-catenin mRNA. In Smad4-depleted cell lines, levels of β-catenin mRNA and Wnt signaling increased. Inhibition of BMP or depletion of Smad4 in HEK293T cells increased binding of RNA polymerase II to the β-catenin gene. Expression of Smad4 in SW480 cells reduced Wnt signaling and levels of β-catenin mRNA. In mice with heterozygous disruption of Apc(APCΔ1638/+), Smad4-deficient intestinal adenomas had increased levels of β-catenin mRNA and expression of Wnt target genes, compared with adenomas from APCΔ1638/+mice that expressed Smad4. Conclusions Transcription of β-catenin is inhibited by BMP signaling to Smad4. These findings provide important information about the interaction among TGF-β, BMP, and Wnt signaling pathways in CRC progression. PMID:22115830

  16. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    PubMed

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE PAGES

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; ...

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  18. Developmental changes in skin collagen biosynthesis pathway in posthatch male and female chickens

    NASA Technical Reports Server (NTRS)

    Pines, M.; Schickler, M.; Hurwitz, S.; Yamauchi, M.

    1996-01-01

    The developmental changes in skin collagen biosynthesis pathway in male and female chickens were evaluated. Concentration of collagen, levels of mRNA for collagen type I subunits and for lysyl hydroxylase, and the level of three lysyl oxidase-derived cross-links: dehydro-dihydroxylysinonorleucine (DHLNL), dehydro-hydroxylysinonorleucine (HLNL), and dehydro-histidinohydroxymerodesmosine (HHMD) were determined during 4 wk posthatching. Skin collagen content increased with age and was higher in males than in females. In both sexes, the expression of the genes coding for alpha 1 and alpha 2 of collagen type I decreased with age: alpha 1(I) gene expression decreased from Day 3 onwards, whereas the reduction in alpha 2(I) gene expression started 1 wk later. At all ages examined, the expression of both genes was higher in male than in female skin. Males and females lysyl hydroxylase gene expression remained low until Day 16, after which an increase in the enzyme gene expression was observed. An increase in skin HLNL content was observed from Day 3 in both sexes reaching a peak in males at Day 9 and in females 1 wk later. The DHLNL content, which was higher in males than in females at all ages tested, dramatically decreased in both male and female skin from 3 d of age, reaching its lowest level at Day 16, and remained at that low level thereafter. The skin content of HHMD in males and females followed an oscillatory behavior with higher peaks in the male skin. The results suggest that the higher tensile strength of male skin than female skin may be due to the elevated skin collagen content that resulted from increased expression in collagen type I genes on the one hand, and from the higher amounts of various collagen cross-links on the other.

  19. hnRNP K plays a protective role in TNF-α-induced apoptosis in podocytes.

    PubMed

    Zhao, Shili; Feng, Junxia; Wang, Qi; Tian, Lu; Zhang, Yunfang; Li, Hongyan

    2018-06-29

    Apoptosis of podocytes contributes to proteinuria in many chronic kidney diseases. The cytokine, tumor necrosis factor-α (TNF-α) is thought to be involved in podocyte apoptosis, but the underlying mechanism is not understood. In our study, we established a model of TNF-α-induced apoptosis by isolating primary podocytes from mice. After exposing cells to TNF-α, we determined the expression levels of heterogeneous nuclear ribonucleoprotein K (hnRNP K) and cellular FLICE-inhibitory protein (c-FLIP) and the phosphorylation levels of glycogen synthase kinase β (GSK3β) and extracellular signal-regulated kinase (ERK). We then knocked down or overexpressed the levels of hnRNP K and observed its effects on the expressions of c-FLIP, caspase-8, caspase-3, and the phosphorylation of GSK3β and ERK. In addition, we examined the percentage of cells undergoing apoptosis and studied cell cycle distribution. We found that TNF-α induced apoptosis in podocytes and that the expressions of hnRNP K and c-FLIP were significantly decreased, whereas the phosphorylations of GSK3β and ERK were significantly increased. Both gene knockdown and overexpression of hnRPN K resulted in varied expressions/phosphorylations of c-FLIP, GSK3β, and ERK. Moreover, decreased hnRPN K expression contributed to increased levels of caspase-8 and capase-3, as well as an increase in cell apoptosis and G0/G1 arrest. In conclusion, down-regulated expression of hnRNP K by TNF-α resulted in a decrease in the expression of c-FLIP as well as increases in phosphorylated GSK3β, ERK, caspase-8, and caspase-3, and then critically contributed to the podocyte apoptosis. © 2018 The Author(s).

  20. Investigation of antiviral state mediated by interferon-inducible transmembrane protein 1 induced by H9N2 virus and inactivated viral particle in human endothelial cells.

    PubMed

    Feng, Bo; Zhao, Lihong; Wang, Wei; Wang, Jianfang; Wang, Hongyan; Duan, Huiqin; Zhang, Jianjun; Qiao, Jian

    2017-11-03

    Endothelial cells are believed to play an important role in response to virus infection. Our previous microarray analysis showed that H9N2 virus infection and inactivated viral particle inoculation increased the expression of interferon-inducible transmembrane protein 1 (IFITM1) in human umbilical vein endothelial cells (HUVECs). In present study, we deeply investigated the expression patterns of IFITM1 and IFITM1-mediated antiviral response induced by H9N2 virus infection and inactivated viral particle inoculation in HUVECs. Epithelial cells that are considered target cells of the influenza virus were selected as a reference control. First, we quantified the expression levels of IFITM1 in HUVECs induced by H9N2 virus infection or viral particle inoculation using quantitative real-time PCR and western blot. Second, we observed whether hemagglutinin or neuraminidase affected IFITM1 expression in HUVECs. Finally, we investigated the effect of induced-IFITM1 on the antiviral state in HUVECs by siRNA and activation plasmid transfection. Both H9N2 virus infection and viral particle inoculation increased the expression of IFITM1 without elevating the levels of interferon-ɑ/β in HUVECs. HA or NA protein binding alone is not sufficient to increase the levels of IFITM1 and interferon-ɑ/β in HUVECs. IFITM1 induced by viral particle inoculation significantly decreased the virus titers in culture supernatants of HUVECs. Our results showed that inactivated viral particle inoculation increased the expression of IFITM1 at mRNA and protein levels. Moreover, the induction of IFITM1 expression mediated the antiviral state in HUVECs.

  1. Carotenoid accumulation in postharvest "Cara Cara" navel orange (Citrus sinensis Osbeck) fruits stored at different temperatures was transcriptionally regulated in a tissue-dependent manner.

    PubMed

    Tao, Nengguo; Wang, Changfeng; Xu, Juan; Cheng, Yunjiang

    2012-09-01

    The main objective of this work was to investigate the effect of storage temperature (4 and 20 °C) on carotenoid accumulation and on the expression levels of seven carotenoid biosynthetic genes (Psy, Pds, Zds, Lcyb, Lcye, Hyb and Zep) in postharvest 'Cara Cara' navel orange (C. sinensis Osbeck) fruits. Storage at 20 °C rapidly increased the carotenoid content in the peel, whereas the content remained unchanged in the pulp before 35 days of storage. By contrast, storage at 4 °C maintained the carotenoid content in the peel before 35 days of storage, after which it slightly increased as time progressed. However, the content in the pulp gradually increased over the entire storage period. In the peel, the gene expressions of Psy and Lcyb were up-regulated at 20 °C but remained unchanged at 4 °C. In addition, the gene expressions of Zds, Hyb, and Zep were repressed at both temperatures before the early storage, followed by a rapid increase only at 20 °C. Then the expressions remained constant level at both temperatures, with the expression level at 20 °C higher than that at 4 °C. Low temperature (4 °C) apparently induced the expression of all the test carotenoid biosynthetic genes in the pulp, in contrast to the nearly stable level at 20 °C. Our present study suggests that the carotenoid biosynthesis in postharvest 'Cara Cara' fruits is transcriptionally regulated, and storage temperature affects the carotenoid accumulation and gene expression in a tissue-dependent manner. Temperature could affect the carotenoid biosynthesis in postharvest 'Cara Cara' fruits in a tissue-dependent manner. The carotenoid biosynthesis in postharvest 'Cara Cara' fruits was transcriptionally regulated by correlated genes.

  2. Brown adipose tissue (BAT) specific vaspin expression is increased after obesogenic diets and cold exposure and linked to acute changes in DNA-methylation.

    PubMed

    Weiner, Juliane; Rohde, Kerstin; Krause, Kerstin; Zieger, Konstanze; Klöting, Nora; Kralisch, Susan; Kovacs, Peter; Stumvoll, Michael; Blüher, Matthias; Böttcher, Yvonne; Heiker, John T

    2017-06-01

    Several studies have demonstrated anti-diabetic and anti-obesogenic properties of visceral adipose tissue-derived serine protease inhibitor (vaspin) and so evoked its potential use for treatment of obesity-related diseases. The aim of the study was to unravel physiological regulators of vaspin expression and secretion with a particular focus on its role in brown adipose tissue (BAT) biology. We analyzed the effects of obesogenic diets and cold exposure on vaspin expression in liver and white and brown adipose tissue (AT) and plasma levels. Vaspin expression was analyzed in isolated white and brown adipocytes during adipogenesis and in response to adrenergic stimuli. DNA-methylation within the vaspin promoter was analyzed to investigate acute epigenetic changes after cold-exposure in BAT. Our results demonstrate a strong induction of vaspin mRNA and protein expression specifically in BAT of both cold-exposed and high-fat (HF) or high-sugar (HS) fed mice. While obesogenic diets also upregulated hepatic vaspin mRNA levels, cold exposure tended to increase vaspin gene expression of inguinal white adipose tissue (iWAT) depots. Concomitantly, vaspin plasma levels were decreased upon obesogenic or thermogenic triggers. Vaspin expression was increased during adipogenesis but unaffected by sympathetic activation in brown adipocytes. Analysis of vaspin promoter methylation in AT revealed lowest methylation levels in BAT, which were acutely reduced after cold exposure. Our data demonstrate a novel BAT-specific regulation of vaspin gene expression upon physiological stimuli in vivo with acute epigenetic changes that may contribute to cold-induced expression in BAT. We conclude that these findings indicate functional relevance and potentially beneficial effects of vaspin in BAT function.

  3. Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-β signaling pathway.

    PubMed

    Bokhari, Amber A; Baker, Tabari M; Dorjbal, Batsukh; Waheed, Sana; Zahn, Christopher M; Hamilton, Chad A; Maxwell, G Larry; Syed, Viqar

    2016-10-25

    Nestin, an intermediate filament protein and a stem cell marker is expressed in several tumors. Until recently, little was known about the expression levels and the role of Nestin in endometrial cancer. Compared to the immortalized endometrial epithelial cell line EM-E6/E7-TERT, endometrial cancer cell lines express high to moderate levels of Nestin. Furthermore, endometrial tumors and tumor cell lines have a cancer stem-like cell subpopulation expressing CD133. Among the cancer lines, AN3CA and KLE cells exhibited both a significantly higher number of CD133+ cells and expressed Nestin at higher levels than Ishikawa cells. Knockdown of Nestin in AN3CA and KLE increased cells in G0/G1 phase of the cell cycle, whereas overexpression in Ishikawa decreased cells in G0/G1 phase and increased cells in S-phase. Nestin knockdown cells showed increased p21, p27, and PNCA levels and decreased expression of cyclin-D1 and D3. In contrast, Nestin overexpression revealed an inverse expression pattern of cell cycle regulatory proteins. Nestin knockdown inhibited cancer cell growth and invasive potential by downregulating TGF-β signaling components, MMP-2, MMP-9, vimentin, SNAIL, SLUG, Twist, N-cadherin, and upregulating the epithelial cell marker E-cadherin whereas the opposite was observed with Nestin overexpressing Ishikawa cells. Nestin knockdown also inhibited, while overexpression promoted invadopodia formation and pFAK expression. Knockdown of Nestin significantly reduced tumor volume in vivo. Finally, progesterone inhibited Nestin expression in endometrial cancer cells. These results suggest that Nestin can be a therapeutic target for cancer treatment.

  4. Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-β signaling pathway

    PubMed Central

    Bokhari, Amber A.; Baker, Tabari M.; Dorjbal, Batsukh; Waheed, Sana; Zahn, Christopher M.; Hamilton, Chad A.; Maxwell, G. Larry; Syed, Viqar

    2016-01-01

    Nestin, an intermediate filament protein and a stem cell marker is expressed in several tumors. Until recently, little was known about the expression levels and the role of Nestin in endometrial cancer. Compared to the immortalized endometrial epithelial cell line EM-E6/E7-TERT, endometrial cancer cell lines express high to moderate levels of Nestin. Furthermore, endometrial tumors and tumor cell lines have a cancer stem-like cell subpopulation expressing CD133. Among the cancer lines, AN3CA and KLE cells exhibited both a significantly higher number of CD133+ cells and expressed Nestin at higher levels than Ishikawa cells. Knockdown of Nestin in AN3CA and KLE increased cells in G0/G1 phase of the cell cycle, whereas overexpression in Ishikawa decreased cells in G0/G1 phase and increased cells in S-phase. Nestin knockdown cells showed increased p21, p27, and PNCA levels and decreased expression of cyclin-D1 and D3. In contrast, Nestin overexpression revealed an inverse expression pattern of cell cycle regulatory proteins. Nestin knockdown inhibited cancer cell growth and invasive potential by downregulating TGF-β signaling components, MMP-2, MMP-9, vimentin, SNAIL, SLUG, Twist, N-cadherin, and upregulating the epithelial cell marker E-cadherin whereas the opposite was observed with Nestin overexpressing Ishikawa cells. Nestin knockdown also inhibited, while overexpression promoted invadopodia formation and pFAK expression. Knockdown of Nestin significantly reduced tumor volume in vivo. Finally, progesterone inhibited Nestin expression in endometrial cancer cells. These results suggest that Nestin can be a therapeutic target for cancer treatment. PMID:27626172

  5. IL-33 stimulates expression of the GPR84 (EX33) fatty acid receptor gene and of cytokine and chemokine genes in human adipocytes.

    PubMed

    Zaibi, Mohamed S; Kępczyńska, Małgorzata A; Harikumar, Parvathy; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-15

    Expression of GPCR fatty acid sensor/receptor genes in adipocytes is modulated by inflammatory mediators, particularly IL-1β. In this study we examined whether the IL-1 gene superfamily member, IL-33, also regulates expression of the fatty acid receptor genes in adipocytes. Human fat cells, differentiated from preadipocytes, were incubated with IL-33 at three different dose levels for 3 or 24 h and mRNA measured by qPCR. Treatment with IL-33 induced a dose-dependent increase in GPR84 mRNA at 3 h, the level with the highest dose being 13.7-fold greater than in controls. Stimulation of GPR84 expression was transitory; the mRNA level was not elevated at 24 h. In contrast to GPR84, IL-33 had no effect on GPR120 expression. IL-33 markedly stimulated expression of the IL1B, CCL2, IL6, CXCL2 and CSF3 genes, but there was no effect on ADIPOQ expression. The largest effect was on CSF3, the mRNA level of which increased 183-fold over controls at 3 h with the highest dose of IL-33; there was a parallel increase in the secretion of G-CSF protein into the medium. It is concluded that in human adipocytes IL-33, which is synthesised in adipose tissue, has a strong stimulatory effect on the expression of cytokine and chemokine genes, particularly CSF3, and on the expression of GPR84, a pro-inflammatory fatty acid receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release.

    PubMed

    Matsunaga, James; Medeiros, Marco A; Sanchez, Yolanda; Werneid, Kristian F; Ko, Albert I

    2007-10-01

    The life cycle of the pathogen Leptospira interrogans involves stages outside and inside the host. Entry of L. interrogans from moist environments into the host is likely to be accompanied by the induction of genes encoding virulence determinants and the concomitant repression of genes encoding products required for survival outside of the host. The expression of the adhesin LigA, the haemolysin Sph2 (Lk73.5) and the outer-membrane lipoprotein LipL36 of pathogenic Leptospira species have been reported to be regulated by mammalian host signals. A previous study demonstrated that raising the osmolarity of the leptospiral growth medium to physiological levels encountered in the host by addition of various salts enhanced the levels of cell-associated LigA and LigB and extracellular LigA. In this study, we systematically examined the effects of osmotic upshift with ionic and non-ionic solutes on expression of the known mammalian host-regulated leptospiral genes. The levels of cell-associated LigA, LigB and Sph2 increased at physiological osmolarity, whereas LipL36 levels decreased, corresponding to changes in specific transcript levels. These changes in expression occurred irrespective of whether sodium chloride or sucrose was used as the solute. The increase of cellular LigA, LigB and Sph2 protein levels occurred within hours of adding sodium chloride. Extracellular Sph2 levels increased when either sodium chloride or sucrose was added to achieve physiological osmolarity. In contrast, enhanced levels of extracellular LigA were observed only with an increase in ionic strength. These results indicate that the mechanisms for release of LigA and Sph2 differ during host infection. Thus, osmolarity not only affects leptospiral gene expression by affecting transcript levels of putative virulence determinants but also affects the release of such proteins into the surroundings.

  7. Regulation of theta-antigen expression by agents altering cyclic AMP level and by thymic factor.

    PubMed

    Bach, M A; Fournier, C; Bach, J F

    1975-02-28

    Thymic factor, cyclic AMP, and products increasing its cellular level, such as Prostaglandin E1, induce the appearance of the theta-antigen on T-cell precursors whether assessed by a rossette-inhibition assay or a cytotoxic assay after cell fractionation on BSA discontinuous gradiet. Synergism has been demonstrated between cyclic AMPT and TF for that effect. Conversely, decrease of theta expression has been obtained by altering cyclic AMP level in theta-positive cells either increasing it by dibutyryl cAMP treatment or decreasing it by indomethacin treatment. Finally, these data suggest the involvement of cyclic AMP in the regulation of theta expression under thymic hormone control.

  8. Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum.

    PubMed

    Alizadeh, Fahimeh; Abdullah, Siti Nor Akmar; Khodavandi, Alireza; Abdullah, Faridah; Yusuf, Umi Kalsom; Chong, Pei Pei

    2011-07-01

    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland

    PubMed Central

    Seon, Sojeong; Jeon, Daun; Kim, Heejeong; Chung, Yiwa; Choi, Narae; Yang, Hyunwon

    2017-01-01

    ABSTRACT Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β-estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland. PMID:28484746

  10. An autocrine γ-aminobutyric acid signaling system exists in pancreatic β-cell progenitors of fetal and postnatal mice.

    PubMed

    Feng, Mary M; Xiang, Yun-Yan; Wang, Shuanglian; Lu, Wei-Yang

    2013-01-01

    Gamma-aminobutyric acid (GABA) is produced and secreted by adult pancreatic β-cells, which also express GABA receptors mediating autocrine signaling and regulating β-cell proliferation. However, whether the autocrine GABA signaling involves in β-cell progenitor development or maturation remains uncertain. By means of immunohistochemistry we analyzed the expression profiles of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) and the α1-subunit of type-A GABA receptor (GABAARα1) in the pancreas of mice at embryonic day 15.5 (E15.5), E18.5, postnatal day 1 (P1) and P7. Our data showed that at E15.5 the pancreatic and duodenum homeobox-1 (Pdx1) was expressed in the majority of cells in the developing pancreata. Notably, insulin immunoreactivity was identified in a subpopulation of pancreatic cells with a high level of Pdx1 expression. About 80% of the high-level Pdx-1 expressing cells in the pancreas expressed GAD and GABAARα1 at all pancreatic developmental stages. In contrast, only about 30% of the high-level Pdx-1 expressing cells in the E15.5 pancreas expressed insulin; i.e., a large number of GAD/GABAARα1-expressing cells did not express insulin at this early developmental stage. The expression level of GAD and GABAARα1 increased steadily, and progressively more GAD/GABAARα1-expressing cells expressed insulin in the course of pancreatic development. These results suggest that 1) GABA signaling proteins appear in β-cell progenitors prior to insulin expression; and 2) the increased expression of GABA signaling proteins may be involved in β-cell progenitor maturation.

  11. Bone sialoprotein stimulates focal adhesion-related signaling pathways: role in migration and survival of breast and prostate cancer cells.

    PubMed

    Gordon, Jonathan A R; Sodek, Jaro; Hunter, Graeme K; Goldberg, Harvey A

    2009-08-15

    Bone sialoprotein (BSP) is a secreted glycoprotein found in mineralized tissues however, BSP is aberrantly expressed in a variety of osteotropic tumors. Elevated BSP expression in breast and prostate primary carcinomas is directly correlated with increased bone metastases and tumor progression. In this study, the intracellular signaling pathways responsible for BSP-induced migration and tumor survival were examined in breast and prostate cancer cells (MDA-MB-231, Hs578T and PC3). Additionally, the effects of exogenous TGF-beta1 and EGF, cytokines associated with tumor metastasis and present in high-levels in the bone microenvironment, were examined in BSP-expressing cancer cells. Expression of BSP but not an integrin-binding mutant (BSP-KAE) in tumor cell lines resulted in increased levels of alpha(v)-containing integrins and number of mature focal adhesions. Adhesion of cells to recombinant BSP or the expression of BSP stimulated focal adhesion kinase and ERK phosphorylation, as well as activated AP-1-family proteins. Activation of these pathways by BSP expression increased the expression of the matrix metalloproteinases MMP-2, MMP-9, and MMP-14. The BSP-mediated activation of the FAK-associated pathway resulted in increased cancer cell invasion in a Matrigel-coated Boyden-chamber assay and increased cell survival upon withdrawal of serum. Addition of EGF or TGF-beta1 to the BSP-expressing cell lines significantly increased ERK phosphorylation, AP-1 activation, MMP-2 expression, cell migration and survival compared to untreated cells expressing BSP. This study thus defines the cooperative mechanisms by which BSP can enhance specific factors associated with a metastatic phenotype in tumor cell lines, an effect that is increased by circulating TGF-beta1 and EGF. (c) 2009 Wiley-Liss, Inc.

  12. Expression of syntaxin 8 in visceral adipose tissue is increased in obese patients with type 2 diabetes and related to markers of insulin resistance and inflammation.

    PubMed

    Lancha, Andoni; López-Garrido, Santiago; Rodríguez, Amaia; Catalán, Victoria; Ramírez, Beatriz; Valentí, Víctor; Moncada, Rafael; Silva, Camilo; Gil, María J; Salvador, Javier; Frühbeck, Gema; Gómez-Ambrosi, Javier

    2015-01-01

    Obesity is associated with increased adipose tissue inflammation as well as with the development of type 2 diabetes (T2D). Syntaxin 8 (STX8) is a protein required for the transport of endosomes. In this study we analyzed the relationship of STX8 with the presence of T2D in the context of obesity. With this purpose, 21 subjects (seven lean [LN], eight obese normoglycemic [OB-NG] and six obese with type 2 diabetes [OB-T2D]) were included in the study. Gene and protein expression levels of STX8 and GLUT4 were analyzed in visceral adipose tissue (VAT). mRNA (p = 0.008) and protein (p <0.001) expression levels of STX8 were significantly increased in VAT of OB-T2D patients. Moreover, gene expression levels of SLC2A4 (GLUT4) were downregulated (p = 0.002) in VAT of obese patients. We found that STX8 was positively correlated (p <0.05) with fasting glucose concentrations, plasma glucose 2 h after an OGTT and C-reactive protein. Interestingly, the expression of STX8 was negatively correlated (p <0.05) with the expression of SLC2A4 in VAT. Increased STX8 expression in VAT appears to be associated with the presence of T2D in obese patients through a mechanism that may involve GLUT4. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  13. Tissue-specific changes in OGG1 and SOD mRNA expression caused by NaOCl exposure in black seabream ( Acanthopagrus schlegelii)

    NASA Astrophysics Data System (ADS)

    Park, Ho-Ra; Kim, Yong; Yeo, Won-Jun; Kim, Ji-Hye; Han, Kyung-Nam

    2017-09-01

    The DNA-damage defense mechanism was studied in black seabreams after oxidative stress caused by exposure to sodium hypochlorite (NaOCl). Liver, muscle, and brain tissues were obtained after different NaOCl-exposure times (0, 24, 48, 72, and 96 h) and concentrations (0.5, 1, 1.5, 2, and 3 mg/L), after which oxoguanine glycosylase (OGG1) and superoxide dismutase (SOD) mRNA-expression levels were analyzed. At all NaOCl concentrations tested, liver OGG1 expression increased to a maximum in a time-dependent manner after NaOCl exposure and then decreased. In muscles, OGG1 expression increased over time following exposure to a low concentration of NaOCl (0.5, 1, and 1.5 mg/L), whereas it showed a mixed pattern (both increases and decreases observed) in the high-concentration groups (2 and 3 mg/L). SOD mRNA expression increased over time, both in the liver and muscles. In the brain, both OGG1 and SOD mRNA expression levels were highest after exposure to the lowest NaOCl concentration (0.5 mg/L), whereas basal levels were maintained over time at higher concentrations. These results indicate that OGG1 and SOD provide resistance to oxidative stress in black seabreams. In addition, continuous exposure to oxidative stress can suppress enzyme expression, suggesting a risk for long-term exposure to NaOCl.

  14. Verification of protein sparing by feeding carbohydrate to common carp Cyprinus carpio

    NASA Astrophysics Data System (ADS)

    Cheng, Zhenyan; Li, Jinghui; Zhang, Baolong; Fang, Zhenzhen; Sun, Jinhui; Bai, Dongqing; Sun, Jinsheng; Qiao, Xiuting

    2017-03-01

    A 9-week feeding trial in floating freshwater cages (1.0 m×1.0 m×2.0 m) was conducted to study the effects of different dietary levels of protein and starch on growth, body composition, and gene expression of enzymes in common carp, Cyprinus carpio (mean body weight, 36.12±1.18 g) to evaluate the protein-sparing effect of dietary carbohydrate. Four diets were formulated with corn starch as the carbohydrate source to obtain corn starch levels of 6.5%, 13%, 19.5%, or 26% and protein levels of 30.5%, 28.2%, 26.4%, and 24.2%. The results showed no differences in growth performance of fish fed the diets with different protein and corn starch levels, but body composition and glucose metabolic enzyme activity of carp were significantly affected by the different diets ( P< 0.05). Weight gain, specific growth rate, and the feed conversion ratio were not different in fish fed the different dietary treatments. Protein efficiency ratio increased significantly as corn starch level increased ( P< 0.05). Whole-body crude lipid composition increased with increasing dietary corn starch level ( P< 0.05). Glucokinase (GK), hexokinase, and pyruvate kinase (PK) activities increased significantly with increasing dietary corn starch level ( P< 0.05), whereas glucose-6-phosphate (G6Pase) activity decreased with increasing dietary corn starch level ( P< 0.05). GK gene expression was significantly higher in fish fed the high-corn starch diet than those fed the low-corn starch diet ( P< 0.05). G6pase gene expression tended to decrease with increasing starch level ( P> 0.05). In summary, the results indicate a protein-sparing effect by substituting carbohydrate in the diet of common carp.

  15. The farnesoid X receptor agonist obeticholic acid upregulates biliary excretion of asymmetric dimethylarginine via MATE-1 during hepatic ischemia/reperfusion injury

    PubMed Central

    Berardo, Clarissa; Siciliano, Veronica; Rizzo, Vittoria; Adorini, Luciano; Richelmi, Plinio

    2018-01-01

    Background We previously showed that increased asymmetric dimethylarginine (ADMA) biliary excretion occurs during hepatic ischemia/reperfusion (I/R), prompting us to study the effects of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) on bile, serum and tissue levels of ADMA after I/R. Material and methods Male Wistar rats were orally administered 10mg/kg/day of OCA or vehicle for 5 days and were subjected to 60 min partial hepatic ischemia or sham-operated. After a 60 min reperfusion, serum, tissue and bile ADMA levels, liver mRNA and protein expression of ADMA transporters (CAT-1, CAT-2A, CAT-2B, OCT-1, MATE-1), and enzymes involved in ADMA synthesis (protein-arginine-N-methyltransferase-1, PRMT-1) and metabolism (dimethylarginine-dimethylaminohydrolase-1, DDAH-1) were measured. Results OCA administration induced a further increase in biliary ADMA levels both in sham and I/R groups, with no significant changes in hepatic ADMA content. A reduction in CAT-1, CAT-2A or CAT-2B transcripts was found in OCA-treated sham-operated rats compared with vehicle. Conversely, OCA administration did not change CAT-1, CAT-2A or CAT-2B expression, already reduced by I/R. However, a marked decrease in OCT-1 and increase in MATE-1 expression was observed. A similar trend occurred with protein expression. Conclusion The reduced mRNA expression of hepatic CAT transporters suggests that the increase in serum ADMA levels is probably due to decreased liver uptake of ADMA from the systemic circulation. Conversely, the mechanism involved in further increasing biliary ADMA levels in sham and I/R groups treated with OCA appears to be MATE-1-dependent. PMID:29346429

  16. Decidual β-carotene-15,15'-oxygenase-1 and 2 (BCMO1,2) expression is increased in nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Takahashi, Hiromizu; Kutasy, Balazs; Pes, Lara; Paradisi, Francesca; Puri, Prem

    2015-01-01

    Retinoids are essential for fetal and lung development. Beta-carotene(BC) is the main dietary retinoid source and beta-carotene-15,15'-oxygenase-1 and 2 (Bcmo1,2) is the primary enzyme generating retinoid from BC in adult mammalian tissues. Placenta has a major role in the retinol homeostasis in fetal life: Since there is no fetal retinol synthesis, maternal retinol has to cross the placenta. It has been recently shown that BC can be converted to retinol by Bcmo1,2 in placenta for retinol transfer and moreover, BC can cross the placenta intact. The placental Bcmo1,2 expression is tightly controlled by placental retinol level. In severe retinol deficiency it has been shown that placental Bcmo1,2 expression are increased for generating retinol from dietary maternal BC even when the main retinol transfer is blocked. In recent years, low pulmonary retinol levels and disrupted retinoid signaling pathway have been implicated in the pathogenesis of pulmonary hypoplasia and congenital diaphragmatic hernia (CDH) in the nitrofen model of CDH. Recently, it has been demonstrated that the main retinol transfer in the placenta is blocked in the nitrofen model of CDH causing increased placental and decreased serum retinol level. The aim of our study was to determine maternal and fetal β-carotene levels and to investigate the hypothesis that placental expression of BCMO1 and BCMO2 is altered in nitrofen-exposed rat fetuses with CDH. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Maternal and fetal serum, placenta, liver and left lungs were harvested on D21 and divided into two groups: control (n = 8) and nitrofen with CDH (n = 8). Immunochistochemistry was performed to evaluate trophoblasts by cytokeratin expression and placental Bcmo1,2 expression. Expression levels of Bcmo1,2 genes in fetal lungs and liver were determined using RT-PCR and immunohistochemistry. BC level was measured using HPLC. Markedly increased decidual Bcmo1,2 immunoreactivity was observed in CDH group compared to controls. There was no difference neither in the trophoblastic Bcmo1,2 immunoreactivity nor in the pulmonary and liver Bcmo1,2 expression compared to controls. There was no significant difference in maternal serum BC levels between control and CDH mothers (2.14 ± 0.55 vs 2.56 ± 1.6 μM/g, p = 0.8). BC was not detectable neither in the fetal serum nor liver or lungs. Our data show that nitrofen increases maternal but not fetal Bcmo1,2 expression in the placenta in nitrofen-induced CDH group. The markedly increased decidual Bcmo1,2 expression suggests that nitrofen may trigger local, decidual retinol synthesis in the nitrofen model of CDH.

  17. Antioxidant Expression Response to Free Radicals in Active Men and Women Fallowing to a Session Incremental Exercise; Numerical Relationship Between Antioxidants and Free Radicals.

    PubMed

    Baghaiee, Behrouz; Aliparasti, Mohammad Reza; Almasi, Shohreh; Siahkuhian, Marefat; Baradaran, Behzad

    2016-06-01

    Energy production is a necessary process to continue physical activities, and exercise is associated with more oxygen consumption and increase of oxidative stress. what seems important is the numerical relationship between antioxidant and free radicals. Although the activity of some enzymes increases with physical activities, but it is possible that gene expression of this enzyme is not changed during exercise. The aim of the present study is to investigate the antioxidant enzymes gene expression and changes in malondialdehyde (MDA) and total antioxidant capacity (TAC) levels in men and women affected by a session of incremental exercise and to carefully and numerically assess the relationship between MDA changes and gene expression and activity of antioxidant enzymes. 12 active men and 12 active women (21 - 24 years old) participated voluntarily in this study. Peripheral blood samples were taken from the subjects in three phases, before and after graduated exercise test (GXT) and 3 hours later (recovery). The gene expression of manganese superoxide dismutase (MnSOD) enzyme increased significantly in women in the recovery phase (P < 0.05). Catalase gene expression significantly increased in men in both phases (immediately & recovery) (P < 0.05). But the changes in active women were only significant immediately after the exercise. TAC levels increased significantly in men in the recovery phase and in active women immediately after the exercise (P < 0.05). MDA activity also increased significantly in men in both phases (P < 0.05). However, in women the increase was significant only in the recovery phase (P < 0.05). There was a reverse relationship between changes in MnSOD and copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) levels and MDA in men (P < 0.05). In active women there was also a significant relationship between changes in MDA and gene expression of Cu/ZnSOD and TAC (P < 0.05). The increase in free radicals during incremental exercises challenges gene expression and activity of antioxidant enzymes. However, despite the negative effects of free radicals, in women, activity and gene expression of antioxidant enzymes respond appropriately to free radicals.

  18. Expression of uncoupling protein 3 is upregulated in skeletal muscle during sepsis.

    PubMed

    Sun, Xiaoyan; Wray, Curtis; Tian, Xintian; Hasselgren, Per-Olof; Lu, James

    2003-09-01

    Uncoupling protein 3 (UCP3) is a member of the mitochondrial transporter superfamily that is expressed primarily in skeletal muscle. UCP3 is upregulated in various conditions characterized by skeletal muscle atrophy, including hyperthyroidism, fasting, denervation, diabetes, cancer, lipopolysaccharide (LPS), and treatment with glucocorticoids (GCs). The influence of sepsis, another condition characterized by muscle cachexia, on UCP3 expression and activity is not known. We examined UCP3 gene and protein expression in skeletal muscles from rats after cecal ligation and puncture and from sham-operated control rats. Sepsis resulted in a two- to threefold increase in both mRNA and protein levels of UCP3 in skeletal muscle. Treatment of rats with the glucocorticoid receptor antagonist RU-38486 prevented the sepsis-induced increase in gene and protein expression of UCP3. The UCP3 mRNA and protein levels were increased 2.4- to 3.6-fold when incubated muscles from normal rats were treated with dexamethasone (DEX) and/or free fatty acids (FFA) ex vivo. In addition, UCP3 mRNA and protein levels were significantly increased in normal rat muscles in vivo with treatment of either DEX or FFA. The results suggest that sepsis upregulates the gene and protein expression of UCP3 in skeletal muscle, which may at least in part be mediated by GCs and FFA.

  19. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells.

    PubMed

    Kim, Hyung Gyun; Jin, Sun Woo; Kim, Yong An; Khanal, Tilak; Lee, Gi Ho; Kim, Se Jong; Rhee, Sang Dal; Chung, Young Chul; Hwang, Young Jung; Jeong, Tae Cheon; Jeong, Hye Gwang

    2017-08-01

    Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E 2 . Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Osmoadaptation of wine yeast (Saccharomyces cerevisiae) during Icewine fermentation leads to high levels of acetic acid.

    PubMed

    Heit, C; Martin, S J; Yang, F; Inglis, D L

    2018-06-01

    Volatile acidity (VA) production along with gene expression patterns, encoding enzymes involved in both acetic acid production and utilization, were investigated to relate gene expression patterns to the production of undesired VA during Icewine fermentation. Icewine juice and diluted Icewine juice were fermented using the Saccharomyces cerevisiae wine yeast K1-V1116. Acetic acid production increased sixfold during the Icewine fermentation vs the diluted juice condition, while ethyl acetate production increased 2·4-fold in the diluted fermentation relative to the Icewine. Microarray analysis profiled the transcriptional response of K1-V1116 under both conditions. ACS1 and ACS2 were downregulated 19·0-fold and 11·2-fold, respectively, in cells fermenting Icewine juice compared to diluted juice. ALD3 expression was upregulated 14·6-fold, and gene expressions involved in lipid and ergosterol synthesis decreased during Icewine fermentation. Decreased expression of ACS1 and ACS2 together with increased ALD3 expression contributes to the higher acetic acid and lower ethyl acetate levels generated by K1-V1116 fermenting under hyperosmotic stress. This work represents a more comprehensive understanding of how and why commercial wine yeast respond at the transcriptional and metabolic level during fermentation of Icewine juice, and how these responses contribute to increased acetic acid and decreased ethyl acetate production. © 2018 The Society for Applied Microbiology.

  1. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake

    PubMed Central

    Yang, Muhua; Liu, Weidong; Pellicane, Christina; Sahyoun, Christine; Joseph, Biny K.; Gallo-Ebert, Christina; Donigan, Melissa; Pandya, Devanshi; Giordano, Caroline; Bata, Adam; Nickels, Joseph T.

    2014-01-01

    Dysregulation of cholesterol homeostasis is associated with various metabolic diseases, including atherosclerosis and type 2 diabetes. The sterol response element binding protein (SREBP)-2 transcription factor induces the expression of genes involved in de novo cholesterol biosynthesis and low density lipoprotein (LDL) uptake, thus it plays a crucial role in maintaining cholesterol homeostasis. Here, we found that overexpressing microRNA (miR)-185 in HepG2 cells repressed SREBP-2 expression and protein level. miR-185-directed inhibition caused decreased SREBP-2-dependent gene expression, LDL uptake, and HMG-CoA reductase activity. In addition, we found that miR-185 expression was tightly regulated by SREBP-1c, through its binding to a single sterol response element in the miR-185 promoter. Moreover, we found that miR-185 expression levels were elevated in mice fed a high-fat diet, and this increase correlated with an increase in total cholesterol level and a decrease in SREBP-2 expression and protein. Finally, we found that individuals with high cholesterol had a 5-fold increase in serum miR-185 expression compared with control individuals. Thus, miR-185 controls cholesterol homeostasis through regulating SREBP-2 expression and activity. In turn, SREBP-1c regulates miR-185 expression through a complex cholesterol-responsive feedback loop. Thus, a novel axis regulating cholesterol homeostasis exists that exploits miR-185-dependent regulation of SREBP-2 and requires SREBP-1c for function. PMID:24296663

  2. Paclitaxel-induced lung injury and its amelioration by parecoxib sodium.

    PubMed

    Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian

    2015-08-10

    To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage.

  3. Paclitaxel-induced lung injury and its amelioration by parecoxib sodium

    PubMed Central

    Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian

    2015-01-01

    To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage. PMID:26256764

  4. Effects of a Transposable Element Insertion on Alcohol Dehydrogenase Expression in Drosophila Melanogaster

    PubMed Central

    Dunn, R. C.; Laurie, C. C.

    1995-01-01

    Variation in the DNA sequence and level of alcohol dehydrogenase (Adh) gene expression in Drosophila melanogaster have been studied to determine what types of DNA polymorphisms contribute to phenotypic variation in natural populations. The Adh gene, like many others, shows a high level of variability in both DNA sequence and quantitative level of expression. A number of transposable element insertions occur in the Adh region and one of these, a copia insertion in the 5' flanking region, is associated with unusually low Adh expression. To determine whether this insertion (called RI42) causes the low expression level, the insertion was excised from the cloned RI42 Adh gene and the effect was assessed by P-element transformation. Removal of this insertion causes a threefold increase in the level of ADH, clearly showing that it contributes to the naturally occurring variation in expression at this locus. Removal of all but one LTR also causes a threefold increase, indicating that the mechanism is not a simple sequence disruption. Furthermore, this copia insertion, which is located between the two Adh promoters and their upstream enhancer sequences, has differential effects on the levels of proximal and distal transcripts. Finally, a test for the possible modifying effects of two suppressor loci, su(w(a)) and su(f), on this insertional mutation was negative, in contrast to a previous report in the literature. PMID:7498745

  5. Impact of STAT/SOCS mRNA Expression Levels after Major Injury

    PubMed Central

    Brumann, M.; Matz, M.; Kusmenkov, T.; Stegmaier, J.; Biberthaler, P.; Kanz, K.-G.; Mutschler, W.; Bogner, V.

    2014-01-01

    Background. Fulminant changes in cytokine receptor signalling might provoke severe pathological alterations after multiple trauma. The aim of this study was to evaluate the posttraumatic imbalance of the innate immune system with a special focus on the STAT/SOCS family. Methods. 20 polytraumatized patients were included. Blood samples were drawn 0 h–72 h after trauma; mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3 were quantified by qPCR. Results. IL-10 mRNA expression increased significantly in the early posttraumatic period. STAT 3 mRNA expressions showed a significant maximum at 6 h after trauma. SOCS 1 levels significantly decreased 6 h–72 h after trauma. SOCS 3 levels were significantly higher in nonsurvivors 6 h after trauma. Conclusion. We present a serial, sequential investigation in human neutrophil granulocytes of major trauma patients evaluating mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3. Posttraumatically, immune disorder was accompanied by a significant increase of IL-10 and STAT 3 mRNA expression, whereas SOCS 1 mRNA levels decreased after injury. We could demonstrate that death after trauma was associated with higher SOCS 3 mRNA levels already at 6 h after trauma. To support our results, further investigations have to evaluate protein levels of STAT/SOCS family in terms of posttraumatic immune imbalance. PMID:24648661

  6. A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency.

    PubMed

    Aoki, V W; Liu, L; Carrell, D T

    2006-01-01

    Sperm protamine deficiency has been associated with human male infertility. However, the aetiology of deregulated protamine expression remains elusive. The objective of this study was to evaluate the underlying aetiology of protamine deficiency in male infertility patients with deregulated protamine expression. Protamine-1 (P1) and protamine-2 (P2) protein concentrations were compared against P1 and P2 mRNA levels in the sperm of 166 male infertility patients and 27 men of known fertility. Protamine protein concentrations were quantified by nuclear protein extraction, gel electrophoresis and densitometry analysis. Semi-quantitative real-time RT-PCR was used to quantify P1 and P2 mRNA levels. P1 mRNA concentrations were significantly increased in patients underexpressing P1 protein versus those with normal and increased P1 levels. In patients with an abnormally low ratio of P1 to P2 (P1/P2 <0.8), there was a significant increase in P1 mRNA retention. Patients underexpressing P2 also had significantly increased mean P2 mRNA levels, although the majority of these P2-deficient patients showed an increased frequency of significantly reduced P2 mRNA levels. This is the first study to concomitantly evaluate P1 and P2 protein and mRNA levels in mature human sperm. Abnormally elevated protamine mRNA retention appears to be associated with aberrant protamine expression in infertile human males. These data suggest that defects in protamine translation regulation may contribute to protamine deficiency in infertile males.

  7. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    PubMed Central

    Méndez, Rosa O.; Santiago, Alejandra; Yepiz-Plascencia, Gloria; Peregrino-Uriarte, Alma B.; de la Barca, Ana M. Calderón; García, Hugo S.

    2014-01-01

    Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall), absorption, plasma zinc (by absorption spectrophotometry) and the expression levels (by quantitative PCR), of the transporters ZIP1 (zinc importer) and ZnT1 (zinc exporter) in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001) from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05) near 150 µg/dL, but increased by 31 µg/dL (p < 0.05) for 6/24 adolescents (group A) and decreased by 25 µg/dL (p < 0.05) for other 6/24 adolescents (group B). Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006) in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39). An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05) the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1. PMID:24922175

  8. Effects of different dietary intake on mRNA levels of MSTN, IGF-I, and IGF-II in the skeletal muscle of Dorper and Hu sheep hybrid F1 rams.

    PubMed

    Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F

    2014-07-24

    MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.

  9. β-catenin induces expression of prohibitin gene in acute leukemic cells

    PubMed Central

    Kim, Dong Min; Jang, Hanbit; Shin, Myung Geun; Kim, Jeong-Hoon; Shin, Sang Mo; Min, Sang-Hyun; Kim, Il-Chul

    2017-01-01

    Prohibitin (PHB) is a multifunctional protein conserved in eukaryotic systems and shows various expression levels in tumor cells. However, regulation of PHB is not clearly understood. Here, we focused on the regulation of PHB expression by Wnt signaling, one of dominant regulatory signals in various leukemic cells. High mRNA levels of PHB were found in half of clinical leukemia samples. PHB expression was increased by inhibition of the MAPK pathway and decreased by activation of EGF signal. Although cell proliferating signals downregulated the transcription of PHB, treatment with lithium chloride, an analog of the Wnt signal, induced PHB level in various cell types. We identified the TCF-4/LEF-1 binding motif, CATCTG, in the promoter region of PHB by site-directed mutagenesis and ChIP assay. This β-catenin-mediated activation of PHB expression was independent of c-MYC activation, a product of Wnt signaling. These data indicate that PHB is a direct target of β-catenin and the increased level of PHB in leukemia can be regulated by Wnt signaling. PMID:28440457

  10. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects ofmore » GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.« less

  11. Expression and activity of Rac1 is negatively affected in the dehydroepiandrosterone induced polycystic ovary of mouse

    PubMed Central

    2014-01-01

    Background Polycystic ovarian syndrome (PCOS) is characterized by the presence of multiple follicular cysts, giving rise to infertility due to anovulation. This syndrome affects about 10% of women, worldwide. The exact molecular mechanism leading to PCOS remains obscure. RhoGTPase has been associated with oogenesis, but its role in PCOS remains unexplored. Therefore, we attempted to elucidate the Vav-Rac1 signaling in PCOS mice model. Methods We generated a PCOS mice model by injecting dehydroepiandrosterone (DHEA) for a period of 20 days. The expression levels of Rac1, pRac1, Vav, pVav and Caveolin1 were analyzed by employing immuno-blotting and densitometry. The association between Vav and Rac1 proteins were studied by immuno-precipitation. Furthermore, we analyzed the activity of Rac1 and levels of inhibin B and 17β-estradiol in ovary using biochemical assays. Results The presence of multiple follicular cysts in ovary were confirmed by histology. The activity of Rac1 (GTP bound state) was significantly reduced in the PCOS ovary. Similarly, the expression levels of Rac1 and its phosphorylated form (pRac1) were decreased in PCOS in comparison to the sham ovary. The expression level and activity (phosphorylated form) of guanine nucleotide exchanger of Rac1, Vav, was moderately down-regulated. We observed comparatively increased expressions of Caveolin1, 17β-estradiol, and inhibin B in the polycystic ovary. Conclusion We conclude that hyperandrogenization (PCOS) by DHEA diminishes ovarian Rac1 and Vav expression and activity along with an increase in expression of Caveolin1. This is accompanied by an increase in the intra-ovarian level of '17 β-estradiol and inhibin B. PMID:24628852

  12. Differential expression of cysteine desulfurases in soybean

    PubMed Central

    2011-01-01

    Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression. PMID:22099069

  13. Tissue distribution and effects of fasting and obesity on the ghrelin axis in mice.

    PubMed

    Morash, Michael G; Gagnon, Jeffrey; Nelson, Stephanie; Anini, Younes

    2010-08-09

    Ghrelin is a 28 amino acid peptide hormone derived from the 117 amino acid proghrelin, following cleavage by proprotein convertase 1 (PC1). In this study, we comprehensively assessed the tissue distribution and the effect of fasting and obesity on preproghrelin, Exon-4D, PC1 and GOAT expression and proghrelin-derived peptide (PGDP) secretion. The stomach was the major source of preproghrelin expression and PDGPs, followed by the small intestine. The remaining peripheral tissues (including the brain and pancreas) contained negligible expression levels. We detected obestatin in all stomach proghrelin cells, however, 22% of proghrelin cells in the small intestine did not express obestatin. There were strain differences in ghrelin secretion in response to fasting between CD1 and C57BL/6 mice. After a 24 hour-fast, CD1 mice had increased plasma levels of total ghrelin and obestatin with no change in preproghrelin mRNA or PGDP tissues levels. C57BL/6 mice showed a different response to a 24 hour-fast having increased proghrelin mRNA expression, stomach acylated ghrelin peptide and no change in plasma obestatin in C57BL/6 mice. In obese mice (ob/ob and diet-induced obesity (DIO)) there was a significant increase in preproghrelin mRNA levels while tissue and plasma PGDP levels were significantly reduced. Fasting did not affect PGDP in obese mice. Obese models displayed differences in GOAT expression, which was elevated in DIO mice, but reduced in ob/ob mice. We did not find co-localization of the leptin receptor in ghrelin expressing stomach cells, ruling out a direct effect of leptin on stomach ghrelin synthesis and secretion. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Effects of birth trauma and estrogen on urethral elastic fibers and elastin expression.

    PubMed

    Lin, Guiting; Ning, Hongxiu; Wang, Guifang; Banie, Lia; Lue, Tom F; Lin, Ching-Shwun

    2010-10-01

    To investigate the effects of birth trauma and estrogen on urethral elastic fibers and elastin expression. Pregnant rats were subjected to sham operation (Delivery-only), DVDO (delivery, vaginal distension and ovariectomy), or DVDO + E₂ (estrogen). At 2, 4, 8, or 12 weeks, their urethras were harvested for elastic fiber staining and reverse transcription-polymerase chain reaction analysis. Urethral cells were treated with transforming growth factor- β1 (TGFβ1) and/or estrogen and analyzed for elastin mRNA expression. Urethral cells were also examined for the activities of Smad1- and Smad3/4-responsive elements in response to TGFβ1 and estrogen. At 8 weeks post-treatment, the urethras of DVDO rats had fewer and shorter elastic fibers when compared with Delivery-only rats, and those of DVDO + E₂ rats had fewer and shorter elastic fibers when compared with DVDO rats. Elastin mRNA was expressed at low levels in Delivery-only rats and at increasingly higher levels in DVDO rats at 2, 4, and 8 weeks but at sharply lower levels in DVDO + E₂ rats when compared with DVDO rats at 8 weeks. Urethral cells expressed increasingly higher levels of elastin mRNA in response to increasing concentrations of TGFβ1 up to 1 ng/mL. At this TGFβ1 concentration, urethral cells expressed significantly lower levels of elastin mRNA when treated with estrogen before or after TGFβ1 treatment. Both Smad1- and Smad3/4-responsive elements were activated by TGFβ1 and such activation was suppressed by estrogen. Birth trauma appears to activate urethral elastin expression via TGFβ1 signaling. Estrogen interferes with this signaling, resulting in improper assembly of elastic fibers. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum.

    PubMed

    Unger, Tina; Bette, Stefanie; Zhang, Jiong; Theis, Martin; Engele, Jürgen

    2012-01-06

    The glial glutamate transporter subtypes, GLT-1/EAAT-2 and GLAST/EAAT-1 clear the bulk of extracellular glutamate and are severely dysregulated in various acute and chronic brain diseases. Despite the previous identification of several extracellular factors modulating glial glutamate transporter expression, our knowledge of the regulatory network controlling glial glutamate transport in health and disease still remains incomplete. In studies with cultured cortical astrocytes, we previously obtained evidence that glial glutamate transporter expression is also affected by gap junctions/connexins. To assess whether gap junctions would likewise control the in vivo expression of glial glutamate transporters, we have now assessed their expression levels in brains of conditional Cx43 knockout mice, total Cx30 knockouts, as well as Cx43/Cx30 double knockouts. We found that either knocking out Cx30, Cx43, or both increases GLT-1/EAAT-2 protein levels in the cerebral cortex to a similar extent. By contrast, GLAST/EAAT-1 protein levels maximally increased in cerebral cortices of Cx30/Cx43 double knockouts, implying that gap junctions differentially affect the expression of GLT-1/EAAT-2 and GLAST/EAAT-1. Quantitative PCR analysis further revealed that increases in glial glutamate transporter expression are brought about by transcriptional and translational/posttranslational processes. Moreover, GLT-1/EAAT-2- and GLAST/EAAT-1 protein levels remained unchanged in the hippocampi of Cx43/Cx30 double knockouts when compared to Cx43fl/fl controls, indicating brain region-specific effects of gap junctions on glial glutamate transport. Since astrocytic gap junction coupling is affected in various forms of brain injuries, our findings point to gap junctions/connexins as important regulators of glial glutamate turnover in the diseased cerebral cortex. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. The effect of FcγRIIA and FcγRIIB on coronary artery lesion formation and intravenous immunoglobulin treatment responses in children with Kawasaki disease

    PubMed Central

    Chang, Ling-Sai; Lo, Mao-Hung; Li, Sung-Chou; Yang, Ming-Yu; Hsieh, Kai-Sheng; Kuo, Ho-Chang

    2017-01-01

    Previous research has found patients with the FcγRIIIB NA1 variant having increased risk of intravenous immunoglobulin (IVIG) resistance in Kawasaki disease (KD). Our previous studies revealed that elevated FcγRIIA expression correlated with the susceptibility of KD patients. We conducted this research to determine whether and how Fcγ receptors affect the susceptibility, IVIG treatment response, and coronary artery lesions (CAL) of KD patients. The activating FcγRIIA and inhibitory FcγRIIB methylation levels of seven patients with KD and four control subjects were examined using HumanMethylation27 BeadChip. We enrolled a total of 44 KD patients and 10 control subjects with fevers. We performed real-time RT-PCR to determine the FcγRIIA and FcγRIIB expression levels, as well as a luciferase assay of FcγRIIA. We found a considerable increase in methylation of both FcγRIIA and FcγRIIB in KD patients undergoing IVIG treatment. Promoter methylation of FcγRIIA inhibited reporter activity in K562 cells using luciferase assay. The FcγRIIB mRNA expression levels were not found to increase susceptibility, CAL formation, or IVIG resistance. FcγRIIA mRNA expression levels were significantly higher in IVIG-resistant patients than in those that responded to IVIG during the pre-treatment period. Furthermore, the FcγRIIA/IIB mRNA expression ratio was considerably higher in KD patients with CAL than in those without CAL. FcγRIIA and FcγRIIB both demonstrated increased methylation levels in KD patients that underwent IVIG treatment. FcγRIIA expression influenced the IVIG treatment response of KD patients. The FcγRIIA/IIB mRNA expression ratio was greater in KD patients with CAL formation. PMID:27893416

  17. Altered Redox Status Accompanies Progression to Metastatic Human Bladder Cancer

    PubMed Central

    Hempel, Nadine; Ye, Hanqing; Abessia, Bryan; Mian, Badar; Melendez, J. Andres

    2009-01-01

    The role of reactive oxygen species (ROS) in bladder cancer progression remains an unexplored field. Expression levels of enzymes regulating ROS levels are often altered in cancer. Search of publicly available micro-array data reveals that expression of mitochondrial manganese superoxide dismutase (Sod2), responsible for the conversion of superoxide (O2-.) to hydrogen peroxide (H2O2), is consistently increased in high grade and advanced stage bladder tumors. Here we aim to identify the role of Sod2 expression and ROS in bladder cancer. Using an in vitro human bladder tumor model we monitored the redox state of both non-metastatic (253J) and highly metastatic (253J B-V) bladder tumor cell lines. 253J B-V cells displayed significantly higher Sod2 protein and activity levels compared to their parental 253J cell line. The increase in Sod2 expression was accompanied by a significant decrease in catalase activity, resulting in a net increase in H2O2 production in the 253J B-V line. Expression of pro-metastatic and –angiogenic factors, matrix metalloproteinase 9 (MMP-9) and vascular endothelial derived growth factor (VEGF), respectively, were similarly upregulated in the metastatic line. Expression of both MMP-9 and VEGF were shown to be H2O2-dependent, as removal of H2O2 by overexpression of catalase attenuated their expression. Similarly, expression of catalase effectively reduced the clonogenic activity of 253J B-V cells. These findings indicate that metastatic bladder cancer cells display an altered antioxidant expression profile, resulting in a net increase in ROS production, which leads to the induction of redox-sensitive pro-tumorigenic and pro-metastatic genes such as VEGF and MMP-9. PMID:18930813

  18. Orange-spotted grouper (Epinephelus coioides) orexin: molecular cloning, tissue expression, ontogeny, daily rhythm and regulation of NPY gene expression.

    PubMed

    Yan, Aifen; Zhang, Lingjuang; Tang, Zhiguo; Zhang, Yanhong; Qin, Chaobin; Li, Bo; Li, Wensheng; Lin, Haoran

    2011-07-01

    Orexin-A and -B, collectively called orexins, are hypothalamic neuropeptides involved in the regulation of food intake, sleep and energy balance. In this study, the full-length cDNA of prepro-orexin was isolated from the hypothalamus of orange-spotted grouper (Epinephelus coioides) using RT-PCR and RACE. The grouper prepro-orexin cDNA is 711 bp in length and encodes a 149-amino acid precursor protein that contains a 46-amino acid signal peptide, a 43-amino acid mature orexin-A peptide, a 27-amino acid mature orexin-B peptide and a 33-amino acid C terminus of unknown function. The tissue distribution and ontogeny of prepro-orexin were examined by quantitative real-time PCR. We found that the prepro-orexin mRNA is widely expressed in brain and peripheral tissues, with abundant expression in the hypothalamus. During the embryonic development, prepro-orexin mRNA was first detected in neurula stage embryos, and its expression gradually increased during the remainder of embryogenesis. Our analysis of grouper hypothalamic prepro-orexin expression showed that prepro-orexin mRNA levels were greater in the light phase than in the dark phase and increased significantly at meal-time. Intraperitoneal injection of orexin-A caused a dose-related increase in hypothalamus NPY mRNA expression level after 4h. Orexin-A also increased NPY mRNA expression level from static hypothalamic fragments incubation. Our results imply that orexin may be involved in feeding in the orange-spotted grouper and orexin-A is a stimulator of NPY mRNA expression in vivo and in vitro. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Digestion of a single meal affects gene expression of ion and ammonia transporters and glutamine synthetase activity in the gastrointestinal tract of freshwater rainbow trout.

    PubMed

    Bucking, Carol; Wood, Chris M

    2012-04-01

    Experiments on freshwater rainbow trout, Oncorhynchus mykiss, demonstrated how digestion affected the transcriptional expression of gastrointestinal transporters following a single satiating meal (~3% body mass ration) after a 1-week fast. Quantitative real-time polymerase chain reaction was employed to measure the relative mRNA expression of three previously cloned and sequenced transporters [H(+)-K(+)-ATPase (HKA), Na(+)/HCO(3)(-) cotransporter (NBC), and the Rhesus glycoprotein (Rhbg1; an ammonia transporter)] over a 24-h time course following feeding. Plasma total ammonia increased about threefold from pre-feeding levels to 288 μmol l(-1), whereas total ammonia levels in chyme supernatant reached a sixfold higher value (1.8 mmol l(-1)) than plasma levels. Feeding did not appear to have a statistically significant effect on the relative mRNA expression of the gastric HKA or Rhbg1. However, the relative mRNA expression of gastric NBC was increased 24 h following the ingestion of a meal. Along the intestinal tract, feeding increased the relative mRNA expression of Rhbg1, but had no effect on the expression of NBC. Expression of the gastric HKA was undetectable in the intestinal tract of freshwater rainbow trout. Digestion increased the activity of glutamine synthetase in the posterior intestine at 12 and 24 h following feeding. This study is among the first to show that there are digestion-associated changes in gene expression and enzyme activity in the gastrointestinal tract of teleost fish illustrating the dynamic plasticity of this organ. These post-prandial changes occur over the relative short-term duration of digesting a single meal.

  20. Endogenous Agmatine Induced by Ischemic Preconditioning Regulates Ischemic Tolerance Following Cerebral Ischemia

    PubMed Central

    Kim, Jae Hwan; Kim, Jae Young; Jung, Jin Young; Lee, Yong Woo; Lee, Won Taek; Huh, Seung Kon

    2017-01-01

    Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance. PMID:29302205

  1. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    PubMed

    Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-08-01

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  2. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial–mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Lu; Luo, Fei; Liu, Yi

    Lung cancer is regarded as the leading cause of cancer-related deaths, and cigarette smoking is one of the strongest risk factors for the development of lung cancer. However, the mechanisms for cigarette smoke-induced lung carcinogenesis remain unclear. The present study investigated the effects of an miRNA (miR-217) on levels of an lncRNA (MALAT1) and examined the role of these factors in the epithelial–mesenchymal transition (EMT) induced by cigarette smoke extract (CSE) in human bronchial epithelial (HBE) cells. In these cells, CSE caused decreases of miR-217 levels and increases in lncRNA MALAT1 levels. Over-expression of miR-217 with a mimic attenuated themore » CSE-induced increase of MALAT1 levels, and reduction of miR-217 levels by an inhibitor enhanced expression of MALAT1. Moreover, the CSE-induced increase of MALAT1 expression was blocked by an miR-217 mimic, indicating that miR-217 negatively regulates MALAT1 expression. Knockdown of MALAT1 reversed CSE-induced increases of EZH2 (enhancer of zeste homolog 2) and H3K27me3 levels. In addition to the alteration from epithelial to spindle-like mesenchymal morphology, chronic exposure of HBE cells to CSE increased the levels of EZH2, H3K27me3, vimentin, and N-cadherin and decreased E-cadherin levels, effects that were reversed by MALAT1 siRNA or EZH2 siRNA. The results indicate that miR-217 regulation of EZH2/H3K27me3 via MALAT1 is involved in CSE-induced EMT and malignant transformation of HBE cells. The posttranscriptional silencing of MALAT1 by miR-217 provides a link, through EZH2, between ncRNAs and the EMT and establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure decreases miR-217 levels and increases MALAT1 levels. • miR-217 negatively regulates MALAT1 expression. • MALAT1, via EZH2, is involved in the EMT of CSE-transformed HBE cells.« less

  3. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  4. 11β-HSD1 reduces metabolic efficacy and adiponectin synthesis in hypertrophic adipocytes.

    PubMed

    Koh, Eun Hee; Kim, Ah-Ram; Kim, Hyunshik; Kim, Jin Hee; Park, Hye-Sun; Ko, Myoung Seok; Kim, Mi-Ok; Kim, Hyuk-Joong; Kim, Bum Joong; Yoo, Hyun Ju; Kim, Su Jung; Oh, Jin Sun; Woo, Chang-Yun; Jang, Jung Eun; Leem, Jaechan; Cho, Myung Hwan; Lee, Ki-Up

    2015-06-01

    Mitochondrial dysfunction in hypertrophic adipocytes can reduce adiponectin synthesis. We investigated whether 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression is increased in hypertrophic adipocytes and whether this is responsible for mitochondrial dysfunction and reduced adiponectin synthesis. Differentiated 3T3L1 adipocytes were cultured for up to 21 days. The effect of AZD6925, a selective 11β-HSD1 inhibitor, on metabolism was examined. db/db mice were administered 600 mg/kg AZD6925 daily for 4 weeks via gastric lavage. Mitochondrial DNA (mtDNA) content, mRNA expression levels of 11 β -H sd1 and mitochondrial biogenesis factors, adiponectin synthesis, fatty acid oxidation (FAO), oxygen consumption rate and glycolysis were measured. Adipocyte hypertrophy in 3T3L1 cells exposed to a long duration of culture was associated with increased 11 β -Hsd1 mRNA expression and reduced mtDNA content, mitochondrial biogenesis factor expression and adiponectin synthesis. These cells displayed reduced mitochondrial respiration and increased glycolysis. Treatment of these cells with AZD6925 increased adiponectin synthesis and mitochondrial respiration. Inhibition of FAO by etomoxir blocked the AZD6925-induced increase in adiponectin synthesis, indicating that 11β-HSD1-mediated reductions in FAO are responsible for the reduction in adiponectin synthesis. The expression level of 11 β -Hsd1 was higher in adipose tissues of db/db mice. Administration of AZD6925 to db/db mice increased the plasma adiponectin level and adipose tissue FAO. In conclusion, increased 11β-HSD1 expression contributes to reduced mitochondrial respiration and adiponectin synthesis in hypertrophic adipocytes. © 2015 Society for Endocrinology.

  5. Oral lichen planus may enhance the expression of Th17-associated cytokines in local lesions of chronic periodontitis.

    PubMed

    Wang, Hui; Han, Qi; Luo, Zhenhua; Xu, Caixia; Liu, Jiajia; Dan, Hongxia; Xu, Yi; Zeng, Xin; Chen, Qianming

    2014-07-01

    This study aims to compare the expression levels of interleukin (IL)-17 and IL-23 in local periodontal tissues from patients with both chronic periodontitis and oral lichen planus (CP-OLP), patients with chronic periodontitis (CP) only, patients with oral lichen planus (OLP) only, and healthy controls (HC). The periodontal tissues were collected from 15 CP-OLP patients, 15 CP patients, 15 OLP patients, and 10 healthy controls. Immunohistochemistry (IHC) and real-time quantitative PCR (qPCR) was performed to investigate the protein and mRNA expression level of IL-17 and IL-23 in periodontal lesions from these four groups. IHC statistical analysis showed that the expression level of IL-17- and IL-23p19-positive cells significantly increased in CP-OLP group compared with that in CP (P < 0.01) and OLP groups (P < 0.05), showing intense staining reaction in local lamina propria lesions. Meanwhile, qPCR result showed higher IL-17 mRNA level in CP-OLP compared with that in CP and OLP groups and demonstrated a significant increase than OLP group (P < 0.05). Moreover, it was found that IL-17 mRNA expression level in erosive CP-OLP patients was significantly correlated with probing depth and attachment loss (P < 0.05). This study indicated that there was an increased expression level of IL-17 and IL-23 in periodontal tissues from periodontitis patients with oral lichen planus, which might aggravate the inflammatory response in local lesions. Oral lichen planus and chronic periodontitis may have interaction in disease pathogenesis, while IL-17 detection in local lesions may be helpful in identifying the disease severity in periodontitis patients with oral lichen planus.

  6. Hepcidin expression does not rescue the iron-poor phenotype of Kupffer cells in Hfe-null mice after liver transplantation.

    PubMed

    Garuti, Cinzia; Tian, Yinghua; Montosi, Giuliana; Sabelli, Manuela; Corradini, Elena; Graf, Rolf; Ventura, Paolo; Vegetti, Alberto; Clavien, Pierre-Alain; Pietrangelo, Antonello

    2010-07-01

    Hemochromatosis is a common hereditary disease caused by mutations in HFE and characterized by increased absorption of iron in the intestine. However, the intestine does not appear to be the site of mutant HFE activity in the disease; we investigated the role of the liver-the source of the iron regulatory hormone hepcidin-in pathogenesis in mice. We exchanged livers between Hfe wild-type (+/+) and Hfe null (-/-) mice by orthotopic liver transplantation (OLT) and assessed histopathology, serum and tissue iron parameters, and hepatic hepcidin messenger RNA expression. At 6-8 months after OLT, Hfe(-/-) mice that received Hfe(-/-) livers maintained the hemochromatosis phenotype: iron accumulation in hepatocytes but not Kupffer cells (KC), increased transferrin levels, and low levels of iron in the spleen. Hfe(+/+) mice that received Hfe(-/-) livers had increased levels of iron in serum and liver and low levels of iron in spleen. However, they did not develop the iron-poor KCs that characterize hemochromatosis: KCs appeared iron rich, although hepatic hepcidin expression was low. Transplantation of Hfe(+/+) livers into Hfe(-/-) mice prevented hepatic iron accumulation but did not return spleen and plasma levels of iron to normal; KCs still appeared to be iron poor, despite normal hepcidin expression. In Hfe(-/-) mice, transplantation of livers from Hfe(+/+) mice reversed the iron-loading phenotype associated with hemochromatosis (regardless of Hfe expression in intestine). However, KCs still had low levels of iron that were not affected by hepatic hepcidin expression. These findings indicate an independent, iron-modifying effect of HFE in KCs. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination.

    PubMed

    Palumbo, S; Toscano, C D; Parente, L; Weigert, R; Bosetti, F

    2011-07-01

    Phospholipases A(2) (PLA(2)) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of pro-inflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS). Here, we aimed to determine whether brain expression PLA(2) enzymes and the terminal prostagland in levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase. Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for 6 weeks to allow spontaneous remyelination. We found that after 4-6 weeks of cuprizone, sPLA(2)(V) and cPLA(2), but not iPLA(2)(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA(2)(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE(2), PGD(2), PGI(2) and TXB(2) were also increased during demyelination. During remyelination, none of the PLA(2) isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE(2), PGI(2) and PGD(2) levels returned to normal, whereas TXB(2) was still upregulated after 3 weeks of cuprizone withdrawal. Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA(2)(V) is the major isoform contributing to AA release. Published by Elsevier Ltd.

  8. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination

    PubMed Central

    Palumbo, S.; Toscano, C.D.; Parente, L.; Weigert, R.; Bosetti, F.

    2011-01-01

    Phospholipases A2 (PLA2) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of proinflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS). Here, we aimed to determine whether brain expression PLA2 enzymes and the terminal prostaglandin levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase. Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for six weeks to allow spontaneous remyelination. We found that after 4–6 weeks of cuprizone, sPLA2(V) and cPLA2, but not iPLA2(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA2(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE2, PGD2, PGI2 and TXB2 were also increased during demyelination. During remyelination, none of the PLA2 isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE2, PGI2, and PGD2 levels returned to normal, whereas TXB2 was still upregulated after 3 weeks of cuprizone withdrawal. Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA2(V) is the major isoform contributing to AA release. PMID:21530210

  9. Maintaining HNF6 expression prevents AdHNF3beta-mediated decrease in hepatic levels of Glut-2 and glycogen.

    PubMed

    Tan, Yongjun; Adami, Guy; Costa, Robert H

    2002-04-01

    The hepatocyte nuclear factor 3 (HNF-3) proteins are members of the Forkhead Box (Fox) family of transcription factors that play important roles in regulating expression of genes involved in cellular proliferation, differentiation, and metabolic homeostasis. In previous studies we increased liver expression of HNF-3beta by using either transgenic mice (transthyretin HNF-3beta) or recombinant adenovirus infection (AdHNF3beta), and observed diminished hepatic levels of glycogen, and glucose transporter 2 (Glut-2), as well as the HNF-6, HNF-3, HNF-1alpha, HNF-4alpha, and C/EBPalpha transcription factors. We conducted the present study to determine whether maintaining HNF-6 protein expression during AdHNF3beta infection prevents reduction of hepatic levels of glycogen and the earlier-mentioned genes. Here, we show that AdHNF3beta- and AdHNF6-infected mouse liver displayed increased hepatic levels of glycogen, Glut-2, HNF-3gamma, HNF-1alpha, and HNF-4alpha at 2 and 3 days postinfection (PI). Furthermore, restoration of hepatic glycogen levels after AdHNF3beta and AdHNF6 coinfection was associated with increased Glut-2 expression. AdHNF6 infection alone caused a 2-fold increase in hepatic Glut-2 levels, suggesting that HNF 6 stimulates in vivo transcription of the Glut-2 gene. DNA binding assays showed that only recombinant HNF-6 protein, but not the HNF-3 proteins, binds to the mouse -185 to -144 bp Glut-2 promoter sequences. Cotransfection assays in human hepatoma (HepG2) cells with either HNF-3 or HNF-6 expression vectors show that only HNF-6 provided significant transcriptional activation of the Glut-2 promoter. In conclusion, these studies show that the hepatic Glut-2 promoter is a direct target for HNF-6 transcriptional activation.

  10. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging

    PubMed Central

    Zeng, Qinghai; Zhou, Fang; Lei, Li; Chen, Jing; Lu, Jianyun; Zhou, Jianda; Cao, Ke; Gao, Lihua; Xia, Fang; Ding, Shu; Huang, Lihua; Xiang, Hong; Wang, Jingjing; Xiao, Yangfan; Xiao, Rong; Huang, Jinhua

    2017-01-01

    Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL-PS-associated inhibition of ultraviolet B (UVB)-induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence-associated β-galactosidase staining (SA-β-gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) −1 and C-telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP-1 protein expression, and increased cellular ROS levels compared with non-exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL-PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP-1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL-PS untreated cells. These results demonstrate that GL-PS protects fibroblasts against photoaging by eliminating UVB-induced ROS. This finding indicates GL-PS treatment may serve as a novel strategy for antiphotoaging. PMID:27959406

  11. The association between different molecular weights of hyaluronic acid and CHAD, HIF-1α, COL2A1 expression in chondrocyte cultures

    PubMed Central

    Sirin, Duygu Yasar; Kaplan, Necati; Yilmaz, Ibrahim; Karaarslan, Numan; Ozbek, Hanefi; Akyuva, Yener; Kaya, Yasin Emre; Oznam, Kadir; Akkaya, Nuray; Guler, Olcay; Akkaya, Semih; Mahirogullari, Mahir

    2018-01-01

    The aim of the present study was to investigate the effects of three different formulations of hyaluronic acid (HA): Low molecular weight (MW) Sinovial One®, medium MW Viscoplus® and high MW Durolane®, on chondrocyte proliferation and collagen type II (COL2A1), hypoxia-inducible factor 1α (HIF-1α) and chondroadherin (CHAD) expression in primary chondrocyte cultures. Standard primary chondrocyte cultures were established from osteochondral tissues surgically obtained from 6 patients with gonarthrosis. Cell morphology was evaluated using an inverted light microscope; cell proliferation was determined with a MTT assay and confirmed with acridine orange/propidium iodide staining. Levels of CHAD, COL2A1 and HIF-1α expression were assessed using specific TaqMan gene expression assays. The results demonstrated the positive effect of HA treatment on cell proliferation, which was independent from the MW. COL2A1 expression increased in the medium and high MW HA treated groups. It was observed that HIF-1α expression increased in the high MW treated group alone. CHAD expression increased only in the medium MW HA treated group. Evaluation of gene expression revealed that levels of expression increased as the duration of HA application increased, in the medium and high MW HA treated groups. In terms of increased viability and proliferation, a longer duration of HA application was more effective. Taken together, it may be concluded that the administration of medium and high MW HA may be a successful way of treating diseases affecting chondrocytes in a clinical setting. PMID:29849772

  12. Expression of Histophilus somni IbpA DR2 protective antigen in the diatom Thalassiosira pseudonana.

    PubMed

    Davis, Aubrey; Crum, Lauren T; Corbeil, Lynette B; Hildebrand, Mark

    2017-07-01

    Increasing demand for the low-cost production of valuable proteins has stimulated development of novel expression systems. Many challenges faced by existing technology may be overcome by using unicellular microalgae as an expression platform due to their ability to be cultivated rapidly, inexpensively, and in large scale. Diatoms are a particularly productive type of unicellular algae showing promise as production organisms. Here, we report the development of an expression system in the diatom Thalassiosira pseudonana by expressing the protective IbpA DR2 antigen from Histophilus somni for the production of a vaccine against bovine respiratory disease. The utilization of diatoms with their typically silicified cell walls permitted development of silicon-responsive transcription elements to induce protein expression. Specifically, we demonstrate that transcription elements from the silicon transporter gene SIT1 are sufficient to drive high levels of IbpA DR2 expression during silicon limitation and growth arrest. These culture conditions eliminate the flux of cellular resources into cell division processes, yet do not limit protein expression. In addition to improving protein expression levels by molecular manipulations, yield was dramatically increased through cultivation enhancement including elevated light and CO 2 supplementation. We substantially increased recombinant protein production over starting levels to 1.2% of the total sodium dodecyl sulfate-extractable protein in T. pseudonana, which was sufficient to conduct preliminary immunization trials in mice. Mice exposed to 5 μg of diatom-expressed DR2 in whole or sonicated cells (without protein purification) exhibited a modest immune response without the addition of adjuvant.

  13. RNA recognition by human TLR8 can lead to autoimmune inflammation

    PubMed Central

    Gong, Mei; Cepika, Alma-Martina; Xu, Zhaohui; Tripodo, Claudio; Bennett, Lynda; Crain, Chad; Quartier, Pierre; Cush, John J.; Pascual, Virginia; Coffman, Robert L.; Barrat, Franck J.

    2013-01-01

    Studies on the role of the RNA receptor TLR8 in inflammation have been limited by its different function in human versus rodents. We have generated multiple lines of transgenic mice expressing different levels of human TLR8. The high copy number chimeras were unable to pass germline; developed severe inflammation targeting the pancreas, salivary glands, and joints; and the severity of the specific phenotypes closely correlated with the huTLR8 expression levels. Mice with relatively low expression levels survived and bred successfully but had increased susceptibility to collagen-induced arthritis, and the levels of huTLR8 correlated with proinflammatory cytokines in the joints of the animals. At the cellular level, huTLR8 signaling exerted a DC-intrinsic effect leading to up-regulation of co-stimulatory molecules and subsequent T cell activation. A pathogenic role for TLR8 in human diseases was suggested by its increased expression in patients with systemic arthritis and the correlation of TLR8 expression with the elevation of IL-1β levels and disease status. We found that the consequence of self-recognition via TLR8 results in a constellation of diseases, strikingly distinct from those related to TLR7 signaling, and points to specific inflammatory diseases that may benefit from inhibition of TLR8 in humans. PMID:24277153

  14. Silicic Acid and Beer Consumption Reverses the Metal Imbalance and the Prooxidant Status Induced by Aluminum Nitrate in Mouse Brain.

    PubMed

    González-Muñoz, María José; Garcimartán, Alba; Meseguer, Isabel; Mateos-Vega, Carmen José; Orellana, José María; Peña-Fernández, Antonio; Benedí, Juana; Sánchez-Muniz, Francisco J

    2017-01-01

    Emerging evidence suggests that by affecting mineral balance, aluminum (Al) may enhance some events associated with neurodegenerative diseases. To examine the effect of Al(NO3)3 exposure on brain Al, cooper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), silicon (Si), and zinc (Zn) levels, and the metal-change implication in brain oxidant and inflammatory status. Four groups of six-week-old male NMRI mice were treated for three months: i) controls, administrated with deionized water; ii) Al, which received Al(NO3)3; iii) Al+silicic acid, which were given Al(NO3)3 plus silicic acid; and iv) Al+beer, which received Al(NO3)3 plus beer. Brain Al and TBARS levels and TNFα and GPx expressions increased, while Cu, Mn, and Zn levels, and catalase and CuZn-SOD expression decreased (at least, p < 0.05) in Al versus control animals. Al, Si, and TBARS levels and TNFα expression decreased (p < 0.05) in Al+silicic acid and Al+beer specimens while Cu, Mn, and Zn levels and antioxidant expression increased versus the Al group. Brain Al levels correlated negatively with those of Cu, Fe, Mn, and Zn, and catalase, CuZn-SOD, and GPx enzyme expressions but positively with Si and TBARS levels and TNFα expression. Two components of the principal component analysis (PCA) explained 71.2% of total data variance (p < 0.001). PCA connected the pro-oxidant markers with brain Al content, while brain Zn and Cu levels were closer to antioxidant enzyme expression. Administration of Al(NO3)3 induced metal imbalance, inflammation, and antioxidant status impairment in the brain. Those effects were blocked to a significant extent by silicic acid and beer administration.

  15. Genetic regulation of adipose tissue transcript expression is involved in modulating serum triglyceride and HDL-cholesterol.

    PubMed

    Sajuthi, Satria P; Sharma, Neeraj K; Comeau, Mary E; Chou, Jeff W; Bowden, Donald W; Freedman, Barry I; Langefeld, Carl D; Parks, John S; Das, Swapan K

    2017-10-20

    Dyslipidemia is a major contributor to the increased cardiovascular disease and mortality associated with obesity and type 2 diabetes. We hypothesized that variation in expression of adipose tissue transcripts is associated with serum lipid concentrations in African Americans (AAs), and common genetic variants regulate expression levels of these transcripts. Fasting serum lipid levels, genome-wide transcript expression profiles of subcutaneous adipose tissue, and genome-wide SNP genotypes were analyzed in a cohort of non-diabetic AAs (N=250). Serum triglyceride (TRIG) and high density lipoprotein-cholesterol (HDL-C) levels were associated (FDR<0.01) with expression level of 1021 and 1875 adipose tissue transcripts, respectively, but none associated with total cholesterol or LDL-C levels. Serum HDL-C-associated transcripts were enriched for salient biological pathways, including branched-chain amino acid degradation, and oxidative phosphorylation. Genes in immuno-inflammatory pathways were activated among individuals with higher serum TRIG levels. We identified significant cis-regulatory SNPs (cis-eSNPs) for 449 serum lipid-associated transcripts in adipose tissue. The cis-eSNPs of 12 genes were nominally associated (p<0.001) with serum lipid level in genome wide association studies in Global Lipids Genetics Consortium (GLGC) cohorts. Allelic effect direction of cis-eSNPs on expression of MARCH2, BEST1 and TMEM258 matched with effect direction of these SNP alleles on serum TRIG or HDL-C levels in GLGC cohorts. These data suggest that expressions of serum lipid-associated transcripts in adipose tissue are dependent on common cis-eSNPs in African Americans. Thus, genetically-mediated transcriptional regulation in adipose tissue may play a role in reducing HDL-C and increasing TRIG in serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. IL-6 mediates differentiation disorder during spermatogenesis in obesity-associated inflammation by affecting the expression of Zfp637 through the SOCS3/STAT3 pathway.

    PubMed

    Huang, Guizhen; Yuan, Miao; Zhang, Jie; Li, Jun; Gong, Di; Li, Yanyan; Zhang, Jie; Lin, Ping; Huang, Lugang

    2016-06-22

    Zfp637 is a recently identified zinc finger protein, and its functions remain largely unknown. Here, we innovatively demonstrate the effects of Zfp637 on the differentiation of mouse spermatogonia and on its downstream target gene SOX2 in vitro. Obesity has been recognized as a chronic inflammatory disease that leads to decreased sexual function and sexual development disorders. We observed higher levels of IL-6 in serum and testis homogenates from obese mice compared with control mice. We also demonstrated that high levels of IL-6 inhibited Zfp637 expression, and we elucidated the underlying mechanisms. SOCS3 overexpression and STAT3 phosphorylation inhibitor (AG490) were used to investigate the function of the SOCS3/STAT3 pathway during this process. Our results showed that exposure of mouse spermatogonial cells to high levels of IL-6 inhibited Zfp637 expression by increasing SOCS3 expression and inhibiting the phosphorylation of STAT3, further reducing cellular differentiation. Consistent with the in vitro results, we observed increasing expression levels of SOCS3 and SOX2, but a reduction of Zfp637 expression, in obese mouse testes. In conclusion, Zfp637 plays a crucial role in spermatogenesis by downregulating SOX2 expression, and IL-6 can decrease the expression of Zfp637 through the SOCS3/STAT3 signaling pathway.

  17. Effect of lipoic acid on paraoxonase-1 and paraoxonase-3 protein levels, mRNA expression and arylesterase activity in liver hepatoma cells.

    PubMed

    Ozgun, Eray; Sayilan Ozgun, Gulben; Tabakcioglu, Kiymet; Suer Gokmen, Selma; Sut, Necdet; Eskiocak, Sevgi

    2017-10-01

    Paraoxonase-1 (PON1) and PON3 (PON3) are anti-atherosclerotic enzymes, synthesized primarily in liver and bound to HDL in circulation. The aim of the present study was to investigate the effects of therapeutic doses of lipoic acid on PON1 and PON3 protein levels, mRNA expression and arylesterase activity in liver. We treated HepG2 cells with 10, 40 and 200 μM lipoic acid for 72 h. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. PON1 and PON3 protein levels were measured by Western blotting, their mRNA expression was measured by quantitative PCR and arylesterase activity was measured spectrophotometrically. 200 µM lipoic acid caused a significant increase on PON1 and PON3 protein levels and arylesterase activity as compared with control, 10 µM and 40 µM lipoic acid-treated cells. 200 µM lipoic acid also caused a significant decrease on PON1 mRNA expression whereas on a significant increase PON3 mRNA expression as compared with control, 10 µM and 40 µM lipoic acid-treated cells. Our study showed that although lipoic acid up-regulates PON3 but down-regulates PON1 mRNA expression, it increases both PON1 and PON3 protein levels and arylesterase activity in HepG2 cells. We can report that lipoic acid may be useful for preventing atherosclerosis at therapeutic doses.

  18. G protein, phosphorylated-GATA4 and VEGF expression in the hearts of transgenic mice overexpressing β1- and β2-adrenergic receptors

    PubMed Central

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Won, Moo-Ho; Kim, Yang Hee; Ahn, Ji Hyeon; Park, Jinseu; Choi, Soo Young; Jeon, Yong Hwan

    2017-01-01

    β1- and β2-adrenergic receptors (ARs) regulate cardiac contractility, calcium handling and protein phosphorylation. The present study aimed to examine the expression levels of vascular endothelial growth factor A (VEGF-A) and several G proteins, and the phosphorylation of transcription factor GATA binding protein 4 (GATA4), by western blot analysis, using isolated hearts from 6 month-old transgenic (TG) mice that overexpress β1AR or β2AR. Cardiac contractility/relaxation and heart rate was increased in both β1AR TG and β2AR TG mouse hearts compared with wild type; however, no significant differences were observed between the β1- and β2AR TG mouse hearts. Protein expression levels of inhibitory guanine nucleotide-binding protein (Gi) 2, Gi3 and G-protein-coupled receptor kinase 2 were upregulated in both TG mice, although the upregulation of Gi2 was more prominent in the β2AR TG mice. VEGF-A expression levels were also increased in both TG mice, and were highest in the β1AR TG mice. In addition, the levels of phosphorylated-GATA4 expression were increased in β1- and β2AR TG mice. In conclusion, the present study demonstrated that cardiac contractility/relaxation and heart rate is increased in β1AR TG and β2AR TG mice, and indicated that this increase may be related to the overexpression of G proteins and G-protein-associated proteins. PMID:28487987

  19. Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair.

    PubMed

    Sarga, L; Hart, N; Koch, L G; Britton, S L; Hajas, G; Boldogh, I; Ba, X; Radak, Z

    2013-11-12

    Regular exercise promotes brain function via a wide range of adaptive responses, including the increased expression of antioxidant and oxidative DNA damage-repairing systems. Accumulation of oxidized DNA base lesions and strand breaks is etiologically linked to for example aging processes and age-associated diseases. Here we tested whether exercise training has an impact on brain function, extent of neurogenesis, and expression of 8-oxoguanine DNA glycosylase-1 (Ogg1) and SIRT1 (silent mating-type information regulation 2 homolog). To do so, we utilized strains of rats with low- and high-running capacity (LCR and HCR) and examined learning and memory, DNA synthesis, expression, and post-translational modification of Ogg1 hippocampal cells. Our results showed that rats with higher aerobic/running capacity had better spatial memory, and expressed less Ogg1, when compared to LCR rats. Furthermore, exercise increased SIRT1 expression and decreased acetylated Ogg1 (AcOgg1) levels, a post-translational modification important for efficient repair of 8-oxo-7,8-dihydroguanine (8-oxoG). Our data on cell cultures revealed that nicotinamide, a SIRT1-specific inhibitor, caused the greatest increase in the acetylation of Ogg1, a finding further supported by our other observations that silencing SIRT1 also markedly increased the levels of AcOgg1. These findings imply that high-running capacity is associated with increased hippocampal function, and SIRT1 level/activity and inversely correlates with AcOgg1 levels and thereby the repair of genomic 8-oxoG. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Rapid corticosteroid-dependent regulation of mineralocorticoid receptor protein expression in rat brain.

    PubMed

    Kalman, Brian A; Spencer, Robert L

    2002-11-01

    Corticosteroid hormones regulate many aspects of neural function via mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Although GR expression is negatively regulated by endogenous corticosteroids, the autologous regulation of MR expression has been less well studied, partly due to limitations of receptor binding assays that cannot measure the ligand-activated form of MR. Using MR-reactive antibodies and Western blot, we examined relative MR protein expression in rat brain and its potential autoregulation by corticosteroids. We found that MR protein expression is autoregulated in a negative fashion by adrenal steroids. Compared with GR, we see a more rapid regulation of MR, such that there is a substantial increase in MR protein within 12 h after adrenalectomy, whereas GR levels show very little increase until more than 24 h after adrenalectomy. Also, in contrast to GR, which has been found to be regulated by both MR and GR, adrenalectomy-induced increase in MR was prevented by treatment with the MR selective agonist, aldosterone, but not the GR selective agonist, RU28362. Interestingly, acute treatment of adrenalectomized rats with corticosterone produced a significant decrease in whole-cell MR protein within 45 min, suggesting ligand-induced rapid degradation of MR. Chronic high levels of corticosterone also produced a significant decrease in MR protein levels below adrenal-intact rat levels. These results have important implications for previous studies that estimated the proportion of MR that are occupied in vivo by various circulating levels of corticosterone. Those studies compared available MR binding levels in adrenal-intact rats with 24-h adrenalectomized rats, with the assumption that there were no differences between the various conditions in total receptor expression. Those studies concluded that MR is nearly fully occupied by even the lowest circulating corticosterone levels. Given the 2- to 3-fold increase in MR protein that we have observed within 24 h after adrenalectomy, it is likely that those studies significantly overestimated the proportion of MR that were occupied by low basal corticosterone levels. These results support the prospect that MR as well as GR can participate in the transduction of phasic corticosteroid signals.

  1. Increased c-kit and stem cell factor expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-05-01

    Persistent pulmonary hypertension(PPH) in congenital diaphragmatic hernia (CDH) is caused by increased vascular cell proliferation and endothelial cell (EC) dysfunction, thus leading to obstructive changes in the pulmonary vasculature. C-Kit and its ligand, stem cell factor(SCF), are expressed by ECs in the developing lung mesenchyme, suggesting an important role during lung vascular formation. Conversely, absence of c-Kit expression has been demonstrated in ECs of dysplastic alveolar capillaries. We hypothesized that c-Kit and SCF expression is increased in the pulmonary vasculature of nitrofen-induced CDH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9(D9). Fetuses were sacrificed on D15, D18, and D21, and divided into control and CDH group. Pulmonary gene expression levels of c-Kit and SCF were analyzed by qRT-PCR. Immunofluorescence double staining for c-Kit and SCF was combined with CD34 to evaluate protein expression in ECs of the pulmonary vasculature. Relative mRNA levels of c-Kit and SCF were significantly increased in lungs of CDH fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly increased vascular c-Kit and SCF expression in mesenchymal ECs of CDH lungs on D15, D18, and D21 compared to controls. Increased expression of c-Kit and SCF in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that increased c-Kit signaling during lung vascular formation may contribute to vascular remodeling and thus to PPH. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression.

    PubMed

    Lavebratt, C; Olsson, S; Backlund, L; Frisén, L; Sellgren, C; Priebe, L; Nikamo, P; Träskman-Bendz, L; Cichon, S; Vawter, M P; Osby, U; Engberg, G; Landén, M; Erhardt, S; Schalling, M

    2014-03-01

    The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P=0.005, n=19) or schizophrenia (P=0.02, n=36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P=0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P=0.03) and reduced lymphoblastoid and hippocampal KMO expression (P≤0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.

  3. Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats.

    PubMed

    Qin, B; Polansky, M M; Anderson, R A

    2010-03-01

    We reported earlier that dietary cinnamon extract (CE) improves systemic insulin sensitivity and dyslipidemia by enhancing insulin signaling. In the present study, we have examined the effects of CE on several biomarkers including plasma levels of adipose-derived adipokines, and the potential molecular mechanisms of CE in epididymal adipose tissue (EAT). In Wistar rats fed a high-fructose diet (HFD) to induce insulin resistance, supplementation with a CE (Cinnulin PF, 50 mg/kg daily) for 8 weeks reduced blood glucose, plasma insulin, triglycerides, total cholesterol, chylomicron-apoB48, VLDL-apoB100, and soluble CD36. CE also inhibited plasma retinol binding protein 4 (RBP4) and fatty acid binding protein 4 (FABP4) levels. CE-induced increases in plasma adiponectin were not significant. CE did not affect food intake, bodyweight, and EAT weight. In EAT, there were increases in the insulin receptor ( IR) and IR substrate 2 ( IRS2) mRNA, but CE-induced increases in mRNA expression of IRS1, phosphoinositide-3-kinase, AKT1, glucose transporters 1 and 4 , and glycogen synthase 1 expression and decreased trends in mRNA expression of glycogen synthase kinase 3beta were not statistically significant. CE also enhanced the mRNA levels of ADIPOQ, and inhibited sterol regulatory element binding protein-1c mRNA levels. mRNA and protein levels of fatty acid synthase and FABP4 were inhibited by CE and RBP4, and CD36 protein levels were also decreased by CE. These results suggest that CE effectively ameliorates circulating levels of adipokines partially mediated via regulation of the expression of multiple genes involved in insulin sensitivity and lipogenesis in the EAT.

  4. [Behavior in the forced-swimming test and expression of BDNF and Bcl-xl genes in the rat brain].

    PubMed

    Berezova, I V; Shishkina, G T; Kalinina, T S; Dygalo, N N

    2011-01-01

    A single exposure of rats to the forced-swimming stress decreased BDNF mRNA levels in the cortex and increased Bcl-xl gene expression in the hippocampus and amygdala 24 h after the stress. The animals demonstrated a depressive-like behavior and elevated blood corticosterone level. There was a significant negative correlation between BDNF mRNA level in the cortex and immobility time during swimming. Repeated exposure to swimming stress caused the elevation of the hippocampal BDNF mRNA level assessed 24 h after the second swimming session. The data suggest that stress-induced down-regulation of cortical BDNF gene expression and behavioral despair in the forced-swimming test may be interrelated. The increase in the BDNF and Bcl-xl mRNA levels may contribute to the mechanisms protecting the brain against negative effects of stress.

  5. Role of leptin in delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Banerjee, A; Meenakumari, K J; Krishna, A

    2010-08-01

    An adiposity-associated rise in leptin occurs at the time of delayed embryonic development in Cynopterus sphinx. The aim of present study was to examine the mechanism by which leptin may inhibit progesterone, and therefore could be responsible for delayed development. The study showed a significant increase in circulating leptin level during the period of increased fat accumulation, which coincided with significant decrease in serum progesterone level and delayed embryonic development in C. sphinx. The study showed increased Ob-R expression in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed suppressive effect of leptin on progesterone synthesis. The effect of high dose of leptin on ovarian steroidogenesis was found to be mediated through decreased expression of StAR and LH-R proteins in the ovary. The treatment with leptin caused increased expression of STAT 3 and iNOS proteins in the ovary, which correlated with decreased expression of StAR protein in the ovary. The inhibitory effects of leptin on progesterone synthesis in the ovary are thus mediated through STAT 3 and iNOS-NO signaling pathways. This study further demonstrated low expression of PCNA coinciding with the increased concentration of the leptin receptor in the utero-embryonic unit and high circulating leptin level during November. In conclusion, adiposity associated increased leptin level during November-December might play role in suppressing progesterone synthesis in the corpus luteum as well as suppressing the rate of cell-proliferation in the utero-embryonic unit thereby causing delayed embryonic development in C. sphinx. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Haplodeficiency of Klotho Gene Causes Arterial Stiffening via Upregulation of Scleraxis Expression and Induction of Autophagy.

    PubMed

    Chen, Kai; Zhou, Xiaoli; Sun, Zhongjie

    2015-11-01

    The prevalence of arterial stiffness increases with age, whereas the level of the aging-suppressor protein klotho decreases with age. The objective of this study is to assess whether haplodeficiency of klotho gene causes arterial stiffness and to investigate the underlying mechanism. Pulse wave velocity, a direct measure of arterial stiffness, was increased significantly in klotho heterozygous (klotho(+/-)) mice versus their age-matched wild-type (WT) littermates, suggesting that haplodeficiency of klotho causes arterial stiffening. Notably, plasma aldosterone levels were elevated significantly in klotho(+/-) mice. Treatment with eplerenone (6 mg/kg per day IP), an aldosterone receptor blocker, abolished klotho deficiency-induced arterial stiffening in klotho(+/-) mice. Klotho deficiency was associated with increased collagen and decreased elastin contents in the media of aortas. In addition, arterial matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-β1 expression and myofibroblast differentiation were increased in klotho(+/-) mice. These klotho deficiency-related changes can be blocked by eplerenone. Protein expression of scleraxis, a transcription factor for collagen synthesis, and LC3-II/LC3-I, an index of autophagy, were upregulated in aortas of klotho(+/-) mice, which can be abolished by eplerenone. In cultured mouse aortic smooth muscle cells, aldosterone increased collagen-1 expression that can be completely eliminated by small interfering RNA knockdown of scleraxis. Interestingly, aldosterone decreased elastin levels in smooth muscle cells, which can be abolished by small interfering RNA knockdown of Beclin-1, an autophagy-related gene. In conclusion, this study demonstrated for the first time that klotho deficiency-induced arterial stiffening may involve aldosterone-mediated upregulation of scleraxis and induction of autophagy, which led to increased collagen-1 expression and decreased elastin levels, respectively. © 2015 American Heart Association, Inc.

  7. Post-junctional facilitation of substance P signaling in a tibia fracture rat model of complex regional pain syndrome type I

    PubMed Central

    Wei, Tzuping; Li, Wen-wu; Guo, Tian-Zhi; Zhao, Rong; Wang, Liping; Clark, David J; Oaklander, Ann Louise; Schmelz, Martin; Kingery, Wade S.

    2009-01-01

    Tibia fracture in rats evokes nociceptive, vascular, and bone changes resembling complex regional pain syndrome (CRPS). Substance P (SP) signaling contributes to the hindpaw warmth, increased vascular permeability, and edema observed in this model, suggesting that neurogenic inflammatory responses could be enhanced after fracture. Four weeks after tibia fracture we measured SP and calcitonin gene-related peptide (CGRP) protein levels in the sciatic nerve and serum. Hindpaw skin extravasation responses and SP receptor (NK1), CGRP receptor (calcitonin receptor-like receptor, CRLR) and neutral endopeptidase (NEP) protein levels were also determined. Gene expression levels of these peptides, receptors, and peptidase were examined in the DRG and skin. Spontaneous and intravenous SP-evoked extravasation responses were increased ipsilateral, but not contralateral to the fracture. Fracture increased SP and CGRP gene expression in the ipsilateral L4,L5 DRG and neuropeptide protein levels in the sciatic nerve and in serum, but had no effect on electrically-evoked SP and CGRP release. NK1 receptor expression was increased in the ipsilateral hindpaw skin keratinocytes and endothelial cells after injury, but CRLR and NEP expression were unchanged. Fracture also increased epidermal thickness, but had no effect on epidermal skin neurite counts. These results demonstrate that spontaneous and intravenous SP-evoked extravasation responses are enhanced in the ipsilateral hindlimb after fracture and that fracture chronically increases the expression of endothelial and keratinocyte NK1 receptors in the injured limb. We postulate that SP activation of these up-regulated NK1 receptors results in skin warmth, protein leakage, edema, and keratinocyte proliferation in the injured limb. PMID:19464118

  8. Post-junctional facilitation of Substance P signaling in a tibia fracture rat model of complex regional pain syndrome type I.

    PubMed

    Wei, Tzuping; Li, Wen-Wu; Guo, Tian-Zhi; Zhao, Rong; Wang, Liping; Clark, David J; Oaklander, Anne Louise; Schmelz, Martin; Kingery, Wade S

    2009-08-01

    Tibia fracture in rats evokes nociceptive, vascular, and bone changes resembling complex regional pain syndrome (CRPS). Substance P (SP) signaling contributes to the hindpaw warmth, increased vascular permeability, and edema observed in this model, suggesting that neurogenic inflammatory responses could be enhanced after fracture. Four weeks after tibia fracture we measured SP and calcitonin gene-related peptide (CGRP) protein levels in the sciatic nerve and serum. Hindpaw skin extravasation responses and SP receptor (NK1), CGRP receptor (calcitonin receptor-like receptor, CRLR) and neutral endopeptidase (NEP) protein levels were also determined. Gene expression levels of these peptides, receptors, and peptidase were examined in the DRG and skin. Spontaneous and intravenous SP-evoked extravasation responses were increased ipsilateral, but not contralateral to the fracture. Fracture increased SP and CGRP gene expression in the ipsilateral L4,L5 DRG and neuropeptide protein levels in the sciatic nerve and in serum, but had no effect on electrically evoked SP and CGRP release. NK1 receptor expression was increased in the ipsilateral hindpaw skin keratinocytes and endothelial cells after injury, but CRLR and NEP expression were unchanged. Fracture also increased epidermal thickness, but had no effect on epidermal skin neurite counts. These results demonstrate that spontaneous and intravenous SP-evoked extravasation responses are enhanced in the ipsilateral hindlimb after fracture and that fracture chronically increases the expression of endothelial and keratinocyte NK1 receptors in the injured limb. We postulate that SP activation of these up-regulated NK1 receptors results in skin warmth, protein leakage, edema, and keratinocyte proliferation in the injured limb.

  9. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.

    PubMed

    Chen, Zhong; Gallie, Daniel R

    2012-09-01

    In response to conditions of excess light energy, plants induce non-photochemical quenching (NPQ) as a protective mechanism to prevent over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, which contributes significantly to reversible NPQ to thermally dissipate excess absorbed light energy, involves de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin in response to excess light energy. The activation of violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction, requires the generation of a light-induced, transthylakoid pH gradient. In this work, we overexpressed or repressed the expression of VDE in Arabidopsis (Arabidopsis thaliana) to examine whether VDE is rate-limiting for the induction of NPQ. Increasing VDE expression increased the de-epoxidation state of xanthophyll pigments, the rate of NPQ induction, and the level of NPQ achieved under subsaturating light. In saturating light, however, overexpression of VDE did not increase the xanthophyll pigment de-epoxidation state, the level of NPQ achieved following its initial induction, or substantially improve tolerance to high light. Only under chilling, which reduces VDE activity, did an increase in VDE expression provide slightly greater phototolerance. Repression of VDE expression impaired violaxanthin de-epoxidation, reduced the generation of NPQ, and lowered the level of NPQ achieved while increasing photosensitivity. These results demonstrate that the endogenous level of VDE is rate-limiting for NPQ in Arabidopsis under subsaturating but not saturating light and can become rate-limiting under chilling conditions. These results also show that increasing VDE expression confers greater phototolerance mainly under conditions which limit endogenous VDE activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. A Critical Role of Mitochondria in BDNF-Associated Synaptic Plasticity After One-Week Vortioxetine Treatment

    PubMed Central

    Chen, Fenghua; Danladi, Jibrin; Ardalan, Maryam; Elfving, Betina; Müller, Heidi K; Sanchez, Connie; Nyengaard, Jens R

    2018-01-01

    Abstract Background Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling. Methods Rats were treated for 1 week with vortioxetine or fluoxetine at pharmacologically relevant doses. Number of synapses and mitochondria in hippocampus CA1 were quantified by electron microscopy. Brain-derived neurotrophic factor protein levels were visualized with immunohistochemistry. Gene and protein expression of synapse and mitochondria-related markers were investigated with real-time quantitative polymerase chain reaction and immunoblotting. Results Vortioxetine increased number of synapses and mitochondria significantly, whereas fluoxetine had no effect after 1-week dosing. BDNF levels in hippocampus DG and CA1 were significantly higher after vortioxetine treatment. Gene expression levels of Rac1 after vortioxetine treatment were significantly increased. There was a tendency towards increased gene expression levels of Drp1 and protein levels of Rac1. However, both gene and protein levels of c-Fos were significantly decreased. Furthermore, there was a significant positive correlation between BDNF levels and mitochondria and synapse numbers. Conclusion Our results imply that mitochondria play a critical role in synaptic plasticity accompanied by increased BDNF levels. Rapid changes in BDNF levels and synaptic/mitochondria plasticity of hippocampus following vortioxetine compared with fluoxetine may be ascribed to vortioxetine’s modulation of serotonin receptors. PMID:29514282

  11. Expression of green fluorescent protein in Xylella fastidiosa is affected by passage through host plants.

    PubMed

    Qin, Xiaoting; Hartung, John S

    2004-09-01

    Xylella fastidiosa, a Gram-negative bacterial plant pathogen, causes Pierce's disease of grapevine in North America. In South America the pathogen causes citrus variegated chlorosis, which is widespread in Brazil. We have introduced into Xylella fastidiosa a mini-Tn5 transposon that encodes a green fluorescent protein (GFP) gene optimized for expression in bacteria. The mini-Tn5 derivative was inserted into different sites of the genome in independent transconjugants as determined by Southern blotting. The GFP gene was expressed well and to different levels in different transconjugants. Four independent transconjugants were separately used to inoculate sweet orange and tobacco seedlings. The transconjugants were able to colonize the plants and were subsequently isolated from points distal to the inoculation sites. When the relative fluorescence of the transconjugants that had been passed through either tobacco or sweet orange was compared with that of the same transconjugant maintained continuously in vitro, we observed that passage through either plant host significantly increased the level of expression of the GFP. The increased level of expression of GFP was transient, and was lost upon further culture in vitro. Xylella fastidiosa forms biofilms in planta which are believed to represent a metabolically differentiated state. The increased expression of GFP observed after passage through plants may be accounted for by this phenomenon.

  12. Hypoxia mediates mutual repression between microRNA-27a and PPARγ in the pulmonary vasculature.

    PubMed

    Kang, Bum-Yong; Park, Kathy K; Green, David E; Bijli, Kaiser M; Searles, Charles D; Sutliff, Roy L; Hart, C Michael

    2013-01-01

    Pulmonary hypertension (PH) is a serious disorder that causes significant morbidity and mortality. The pathogenesis of PH involves complex derangements in multiple pathways including reductions in peroxisome proliferator-activated receptor gamma (PPARγ). Hypoxia, a common PH stimulus, reduces PPARγ in experimental models. In contrast, activating PPARγ attenuates hypoxia-induced PH and endothelin 1 (ET-1) expression. To further explore mechanisms of hypoxia-induced PH and reductions in PPARγ, we examined the effects of hypoxia on selected microRNA (miRNA or miR) levels that might reduce PPARγ expression leading to increased ET-1 expression and PH. Our results demonstrate that exposure to hypoxia (10% O2) for 3-weeks increased levels of miR-27a and ET-1 in the lungs of C57BL/6 mice and reduced PPARγ levels. Hypoxia-induced increases in miR-27a were attenuated in mice treated with the PPARγ ligand, rosiglitazone (RSG, 10 mg/kg/d) by gavage for the final 10 d of exposure. In parallel studies, human pulmonary artery endothelial cells (HPAECs) were exposed to control (21% O2) or hypoxic (1% O2) conditions for 72 h. Hypoxia increased HPAEC proliferation, miR-27a and ET-1 expression, and reduced PPARγ expression. These alterations were attenuated by treatment with RSG (10 µM) during the last 24 h of hypoxia exposure. Overexpression of miR-27a or PPARγ knockdown increased HPAEC proliferation and ET-1 expression and decreased PPARγ levels, whereas these effects were reversed by miR-27a inhibition. Further, compared to lungs from littermate control mice, miR-27a levels were upregulated in lungs from endothelial-targeted PPARγ knockout (ePPARγ KO) mice. Knockdown of either SP1 or EGR1 was sufficient to significantly attenuate miR-27a expression in HPAECs. Collectively, these studies provide novel evidence that miR-27a and PPARγ mediate mutually repressive actions in hypoxic pulmonary vasculature and that targeting PPARγ may represent a novel therapeutic approach in PH to attenuate proliferative mediators that stimulate proliferation of pulmonary vascular cells.

  13. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    PubMed

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  14. Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression

    PubMed Central

    Torzilli, P. A.; Bhargava, M.; Chen, C. T.

    2011-01-01

    Objective: Exposure of articular cartilage to interleukin-1 (IL-1) results in increased synthesis of matrix degrading enzymes. Previously mechanical load applied together with IL-1 stimulation was found to reduce aggrecan cleavage by ADAMTS-4 and 5 and MMP-1, -3, -9, and -13 and reduce proteoglycan loss from the extracellular matrix. To further delineate the inhibition mechanism the gene expression of ADAMTS-4 and 5; MMP-1, -3, -9, and -13; and TIMP-1, -2, and -3 were measured. Design: Mature bovine articular cartilage was stimulated with a 0.5 MPa compressive stress and 10 ng/ml of IL-1α for 3 days and then allowed to recover without stimulation for 1 additional day. The media was assayed for proteoglycan content on a daily basis, while chondrocyte gene expression (mRNA) was measured during stimulation and 1 day of recovery. Results: Mechanical load alone did not change the gene expression for ADAMTS, MMP, or TIMP. IL-1 caused an increase in gene expression for all enzymes after 1 day of stimulation while not affecting the TIMP levels. Load applied together with IL-1 decreased the expression levels of ADAMTS-4 and -5 and MMP-1 and -3 and increased TIMP-3 expression. Conclusions: A mechanical load appears to modify cartilage degradation by IL-1 at the cellular level by reducing mRNA. PMID:22039566

  15. Swim training and the genetic expression of adipokines in monosodium glutamate-treated obese rats.

    PubMed

    Svidnicki, Paulo Vinicius; Leite, Nayara Carvalho; Vicari, Marcelo Ricardo; Almeida, Mara Cristina de; Artoni, Roberto Ferreira; Favero, Giovani Marino; Grassiolli, Sabrina; Nogaroto, Viviane

    2015-06-01

    The aim of this study was to evaluate the genetic expression of adipokines in the adipocytes of monosodium glutamate (MSG)-treated obese rats submitted to physical activity. Obesity was induced by neonatal MSG administration. Exercised rats (MSG and control) were subjected to swim training for 30 min for 10 weeks, whereas their respective controls remained sedentary. Total RNA was obtained from sections of the mesenteric adipose tissue of the rats. mRNA levels of adiponectin (Adipoq), tumor necrosis factor alpha (Tnf), peroxisome proliferator-activated receptor alpha (Ppara), and peroxisome proliferator-activated receptor gamma (Pparg) adipokines were quantified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). In the exercise-trained control group, the expression of Adipoq increased compared to the sedentary control, which was not observed in the MSG-obese rats. Increased levels of Tnf in MSG-obese rats were not reversed by the swim training. The expression of Ppara was higher in sedentary MSG-obese rats compared to the sedentary control. Swimming increased this adipokine expression in the exercise-trained control rats compared to the sedentary ones. mRNA levels of Pparg were higher in the sedentary MSG-rats compared to the sedentary control; however, the exercise did not influenced its expression in the groups analyzed. In conclusion, regular physical activity was not capable to correct the expression of proinflammatory adipokines in MSG-obese rat adipocytes.

  16. Integrin Expression Regulates Neuroblastoma Attachment and Migration1

    PubMed Central

    Meyer, Amy; van Golen, Cynthia M.; Kim, Bhumsoo; van Golen, Kenneth L.; Feldman, Eva L.

    2004-01-01

    Abstract Neuroblastoma (NBL) is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR) and that β1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of β1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of β1 integrin, whereas tumorigenic N-cells express little β1 integrin. Alterations in β1 integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that β1 integrin is degraded more slowly in S-type cells (SHEP) than in N-type cells (SH-SY5Y and IMR32). Inhibition of α5β1 integrin prevents SHEP (but not SH-SY5Y or IMR32) cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease β1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of αvβ3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration. PMID:15256055

  17. Differential Effects of Methyl Jasmonate on the Expression of the Early Light-Inducible Proteins and Other Light-Regulated Genes in Barley1

    PubMed Central

    Wierstra, Inken; Kloppstech, Klaus

    2000-01-01

    The effects of methyl jasmonate (JA-Me) on early light-inducible protein (ELIP) expression in barley (Hordeum vulgare L. cv Apex) have been studied. Treatment of leaf segments with JA-Me induces the same symptoms as those exhibited by norflurazon bleaching, including a loss of pigments and enhanced light stress that results in increased ELIP expression under both high- and low-light conditions. The expression of both low- and high-molecular-mass ELIP families is considerably down-regulated by JA-Me at the transcript and protein levels. This repression occurs despite increased photoinhibition measurable as a massive degradation of D1 protein and a delayed recovery of photosystem II activity. In JA-Me-treated leaf segments, the decrease of the photochemical efficiency of photosystem II under high light is substantially more pronounced as compared to controls in water. The repression of ELIP expression by JA-Me is superimposed on the effect of the increased light stress that leads to enhanced ELIP expression. The fact that the reduction of ELIP transcript levels is less pronounced than those of light-harvesting complex II and small subunit of Rubisco transcripts indicates that light stress is still affecting gene expression in the presence of JA-Me. The jasmonate-induced protein transcript levels that are induced by JA-Me decline under light stress conditions. PMID:11027731

  18. Rescue of dystrophic skeletal muscle by PGC-1α involves a fast to slow fiber type shift in the mdx mouse.

    PubMed

    Selsby, Joshua T; Morine, Kevin J; Pendrak, Klara; Barton, Elisabeth R; Sweeney, H Lee

    2012-01-01

    Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV) driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day) resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle.

  19. Increased 5-hydroxymethylcytosine and Ten-eleven Translocation Protein Expression in Ultraviolet B-irradiated HaCaT Cells

    PubMed Central

    Wang, Dan; Huang, Jin-Hua; Zeng, Qing-Hai; Gu, Can; Ding, Shu; Lu, Jian-Yun; Chen, Jing; Yang, Sheng-Bo

    2017-01-01

    Background: DNA hydroxymethylation refers to a chemical modification process in which 5-methylcytosine (5mC) is catalyzed to 5- hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family proteins. Recent studies have revealed that aberrant TETs expression or 5hmC level may play important roles in the occurrence and development of various pathological and physiological processes including cancer and aging. This study aimed to explore the relation between aberrant DNA hydroxymethylation with skin photoaging and to investigate the levels of TETs, 5mC, and 5hmC expression 24 h after 40 mJ/cm2 and 80 mJ/cm2 doses of ultraviolet B (UVB) irradiation to HaCaT cells. Methods: To explore whether aberrant DNA hydroxymethylation is also related to skin photoaging, 40 mJ/cm2 and 80 mJ/cm2 doses of UVB were chosen to treat keratinocytes (HaCaT cells). After 24 h of UVB irradiation, 5mC and 5hmC levels were determined by immunohistochemistry (IHC) and immunofluorescence (IF), and at the same time, the expression levels of matrix metalloproteinase 1 (MMP-1) and TETs were assessed by reverse transcription-polymerase chain reaction or Western blot analysis. Results: After 40 mJ/cm2 and 80 mJ/cm2 doses of UVB exposure, both IHC and IF results showed that 5hmC levels increased significantly, while the 5mC levels did not exhibit significant changes in HaCaT cells, compared with HaCat cells without UVB exposure. Moreover, compared with HaCat cells without UVB exposure, the levels of TET1, TET2, and TET3 mRNA and protein expression were significantly upregulated (mRNA: P = 0.0022 and 0.0043 for TET1; all P < 0.0001 for TET2; all P = 0.0006 for TET3; protein: P = 0.0012 and 0.0006 for TET1; all P = 0.0022 for TET2; and all P = 0.0002 for TET3), and the levels of MMP-1 mRNA expression increased dose dependently in 40 mJ/cm2 and 80 mJ/cm2 UVB-irradiated groups. Conclusion: UVB radiation could cause increased 5hmC and TET expression, which might become a novel biomarker in UVB-related skin aging. PMID:28229992

  20. Upregulation of capacity for glutathione synthesis in response to amino acid deprivation: regulation of glutamate-cysteine ligase subunits

    PubMed Central

    Sikalidis, Angelos K.; Mazor, Kevin M.; Lee, Jeong-In; Roman, Heather B.; Hirschberger, Lawrence L.; Stipanuk, Martha H.

    2014-01-01

    Using HepG2/C3A cells and MEFs, we investigated whether induction of GSH synthesis in response to sulfur amino acid deficiency is mediated by the decrease in cysteine levels or whether it requires a decrease in GSH levels per se. Both the glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunit mRNA levels were upregulated in response to a lack of cysteine or other essential amino acids, independent of GSH levels. This upregulation did not occur in MEFs lacking GCN2 (general control non-derepressible 2, also known as eIF2α kinase 4) or in cells expressing mutant eIF2α lacking the eIF2α kinase Ser51 phosphorylation site, indicating that expression of both GCLC and GCLM was mediated by the GCN2/ATF4 stress response pathway. Only the increase in GCLM mRNA level, however, was accompanied by a parallel increase in protein expression, suggesting that the enhanced capacity for GSH synthesis depended largely on increased association of GCLC with its regulatory subunit. Upregulation of both GCLC and GLCM mRNA levels in response to cysteine deprivation was dependent on new protein synthesis, which is consistent with expression of GCLC and GCLM being mediated by proteins whose synthesis depends on activation of the GCN2/ATF4 pathway. Our data suggest that the regulation of GCLC expression may be mediated by changes in the abundance of transcriptional regulators, whereas the regulation of GCLM expression may be mediated by changes in the abundance of mRNA stabilizing or destabilizing proteins. Upregulation of GCLM levels in response to low cysteine levels may serve to protect the cell in the face of a future stress requiring GSH as an antioxidant or conjugating/detoxifying agent. PMID:24557597

  1. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure

    PubMed Central

    WU, XIAO-YAN; LUO, AN-YU; ZHOU, YI-RONG; REN, JIANG-HUA

    2014-01-01

    The roles of oxidative stress on nuclear factor (NF)-κB activity and cardiomyocyte apoptosis during heart failure were examined using the antioxidant N-acetylcysteine (NAC). Heart failure was established in Japanese white rabbits with intravenous injections of doxorubicin, with ten rabbits serving as a control group. Of the rabbits with heart failure, 12 were not treated (HF group) and 13 received NAC (NAC group). Cardiac function was assessed using echocardiography and hemodynamic analysis. Myocardial cell apoptosis, apoptosis-related protein expression, NF-κBp65 expression and activity, total anti-oxidative capacity (tAOC), 8-iso-prostaglandin F2α (8-iso-PGF2α) expression and glutathione (GSH) expression levels were determined. In the HF group, reduced tAOC, GSH levels and Bcl-2/Bax ratios as well as increased 8-iso-PGF2α levels and apoptosis were observed (all P<0.05), which were effects that were attenuated by the treatment with NAC. NF-κBp65 and iNOS levels were significantly higher and the P-IκB-α levels were significantly lower in the HF group; expression of all three proteins returned to pre-HF levels following treatment with NAC. Myocardial cell apoptosis was positively correlated with left ventricular end-diastolic pressure (LVEDP), NF-κBp65 expression and 8-iso-PGF2α levels, but negatively correlated with the maximal and minimal rates of increase in left ventricular pressure (+dp/dtmax and −dp/dtmin, respectively) and the Bcl-2/Bax ratio (all P<0.001). The 8-iso-PGF2α levels were positively correlated with LVEDP and negatively correlated with +dp/dtmax and −dp/dtmin (all P<0.001). The present study demonstrated that NAC increased the antioxidant capacity, decreased the NF-κB activation and reduced myocardial cell apoptosis in an in vivo heart failure model. PMID:24889421

  2. Hyperoxic exposure of immature mice increases the inflammatory response to subsequent rhinovirus infection: Association with danger signals

    PubMed Central

    Cui, Tracy X.; Maheshwer, Bhargavi; Hong, Jun Y.; Goldsmith, Adam M.; Bentley, J. Kelley; Popova, Antonia P.

    2016-01-01

    Infants with a history of prematurity and bronchopulmonary dysplasia (BPD) have a high risk of asthma and viral-induced exacerbations later in life. We hypothesized that hyperoxic exposure, a predisposing factor to BPD, modulates the innate immune response, producing an exaggerated pro-inflammatory reaction to viral infection. Two-to-3 day-old C57BL/6J mice were exposed to air or 75% oxygen for 14 days. Mice were infected intranasally with rhinovirus (RV) immediately after O2 exposure. Lung mRNA and protein expression, histology, dendritic cells (DCs) and airways responsiveness were assessed 1-12 days after infection. Tracheal aspirates from premature human infants were collected for mRNA detection. Hyperoxia increased lung IL-12 expression which persisted up to 12 days post-exposure. Hyperoxia-exposed RV-infected mice showed further increases in IL-12 and increased expression of IFN-γ, TNF-α, CCL2, CCL3 and CCL4, as well as increased airway inflammation and responsiveness. In RV-infected, air-exposed mice the response was not significant. Induced IL-12 expression in hyperoxia-exposed, RV-infected mice was associated with increased IL-12-producing CD103+ lung DCs. Hyperoxia also increased expression of Clec9a, a CD103+ DC-specific damaged cell-recognition molecule. Hyperoxia increased levels of ATP metabolites and expression of adenosine receptor A1, further evidence of cell damage and related signaling. In human preterm infants, tracheal aspirate Clec9a expression positively correlated with the level of prematurity. Hyperoxic exposure increases the activation of CD103+, Clec9a+ DCs, leading to increased inflammation and airway hyperresponsiveness upon RV infection. In premature infants, danger signal-induced DC activation may promote pro-inflammatory airway responses, thereby increasing respiratory morbidity. PMID:27183577

  3. Metallothionein-1 and nitric oxide expression are inversely correlated in a murine model of Chagas disease

    PubMed Central

    Gonzalez-Mejia, Martha Elba; Torres-Rasgado, Enrique; Porchia, Leonardo M; Salgado, Hilda Rosas; Totolhua, José-Luis; Ortega, Arturo; Hernández-Kelly, Luisa Clara Regina; Ruiz-Vivanco, Guadalupe; Báez-Duarte, Blanca G; Pérez-Fuentes, Ricardo

    2014-01-01

    Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels. PMID:24676665

  4. Angiodrastic Chemokines in Colorectal Cancer: Clinicopathological Correlations.

    PubMed

    Emmanouil, George; Ayiomamitis, George; Zizi-Sermpetzoglou, Adamantia; Tzardi, Maria; Moursellas, Andrew; Voumvouraki, Argyro; Kouroumalis, Elias

    2018-01-01

    To study the expression of angiodrastic chemokines in colorectal tumors and correlate findings with clinicopathological parameters and survival. The proangiogenic factor VEGF, the angiogenic chemokines CXCL8 and CXCL6, and the angiostatic chemokine CXCL4 were measured by ELISA in tumor and normal tissue of 35 stage II and III patients and correlated with the histopathology markers Ki67, p53, p21, bcl2, EGFR, and MLH1 and 5-year survival. The Wilcoxon and chi-square tests were used for statistical comparisons. There was a significant increase of CXCL6 ( p = 0.005) and VEGF ( p = 0.003) in cancerous tissue compared to normal. Patients with lower levels of CXCL8 and CXCL4 lived significantly longer. Patients with loss of EGFR expression had higher levels of CXCL8 while p21 loss was associated with higher levels of CXCL6. Chemokine levels were not correlated with TNM or Dukes classification. Strong expression of p53 was accompanied by decreased survival. (1) The angiogenic factors CXCL6 and VEGF are increased in colorectal cancer tissue with no association with the clinical stage of the disease or survival. (2) However, increased levels of tissue CXCL8 and CXCL4 are associated with poor survival. (3) Strong expression of p53 is found in patients with poor survival.

  5. Moonlight affects nocturnal Period2 transcript levels in the pineal gland of the reef fish Siganus guttatus.

    PubMed

    Sugama, Nozomi; Park, Ji-Gweon; Park, Yong-Ju; Takeuchi, Yuki; Kim, Se-Jae; Takemura, Akihiro

    2008-09-01

    The golden rabbitfish Siganus guttatus is a reef fish with a restricted lunar-synchronized spawning cycle. It is not known how the fish recognizes cues from the moon and exerts moon-related activities. In order to evaluate the perception and utilization of moonlight by the fish, the present study aimed to clone and characterize Period2 (Per2), a light-inducible clock gene in lower vertebrates, and to examine daily variations in rabbitfish Per2 (rfPer2) expression as well as the effect of light and moonlight on its expression in the pineal gland. The partially-cloned rfPer2 cDNA (2933 bp) was highly homologous (72%) to zebrafish Per2. The rfPer2 levels increased at ZT6 and decreased at ZT18 in the whole brain and several peripheral organs. The rfPer2 expression in the pineal gland exhibited a daily variation with an increase during daytime. Exposing the fish to light during nighttime resulted in a rapid increase of its expression in the pineal gland, while the level was decreased by intercepting light during daytime. Two hours after exposing the fish to moonlight at the full moon period, the rfPer2 expression was upregulated. These results suggest that rfPer2 is a light-inducible clock gene and that its expression is affected not only by daylight but also by moonlight. Since the rfPer2 expression level during the full moon period was higher than that during the new moon period, the monthly variation in the rfPer2 expression is likely to occur with the change in amplitude between the full and new moon periods.

  6. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Collier, Lauren; Bauman, William A; Cardozo, Christopher P

    2012-01-01

    Nandrolone, an anabolic steroid, slows denervation atrophy of rat muscle, prevents denervation-induced nuclear accumulation of intracellular domain of the Notch receptor, and elevates expression of Numb. Numb acts as an inhibitor of Notch signaling and promotes myogenic differentiation of satellite cells. Turnover of Numb is regulated by mdm2, an E3 ubiquitin ligase. With these considerations in mind, we investigated the effects of nandrolone on the expression of Numb and mdm2 proteins and determined the effect of mdm2 on nandrolone-induced alterations in Numb protein in C2C12 myoblasts. When C2C12 cells were cultured in a medium favoring differentiation (Dulbecco modified Eagle medium containing 2% horse serum), nandrolone up-regulated Numb protein levels in a time-dependent manner and prolonged Numb protein half-life from 10 to 18 hours. In contrast, nandrolone reduced the expression of mdm2 protein. To determine whether the decreased mdm2 expression induced by nandrolone was responsible for the increased levels and prolonged half-life of Numb protein in this cell line, mdm2-small interfering RNA (siRNA) was employed to inhibit mdm2 expression. Compared to cells transfected with scrambled siRNA (negative control), transfection with mdm2-siRNA increased basal Numb protein expression but abolished the further increase in Numb protein levels by nandrolone. In addition, transfection of mdm2-siRNA mimicked the effect of nandrolone to prolong the half-life of Numb protein. Moreover, when C2C12 cells were forced to overexpress mdm2, there was a significant decline in the expression of both basal and inducible Numb protein. Our data suggest that nandrolone, by a novel mechanism for this agent in a muscle cell type, increases Numb protein levels in C2C12 myoblasts by stabilizing Numb protein against degradation, at least in part, via suppression of mdm2 expression.

  7. [Effect of qinghuobaiduyin on the expression of high mobility group box chromosomal protein 1 in macrophage].

    PubMed

    Li, Ping; Xu, Dan; Luo, Chengqun

    2010-07-01

    To observe the expression of high mobility group box chromosomal protein 1(HMGB1) in RAW264.7 macrophages after interfering with burning serum and qinghuobaidu-yin (QHBDY), and to find out the endogenous protection mechanism of QHBDY resisting inflammation reaction. RT-PCR was used to detect the expression of HMGB1 in RAW264.7 macrophages after interfering RAW264.7 macrophages with normal SD rat serum, burning SD rat serum, and QHBDY feeding SD rat serum. Small quantity of HMGB1 mRNA was expressed in RAW264.7. The expression of HMGB1 mRNA fluctuated around the standard level after interfering with normal serum of SD rats. The expression of HMGB1 mRNA rose at 3 h, and then decreased to the standard level; at 18 h, it rose rapidly; at 36 h, it reached the peak; and at 48 h, it remained at the high level after interfering with burning serum. The expression of HMGB1 mRNA increased at 3 h, and then decreased to the standard level. At 24 h, it started to rise after interfering with herb serum, and was lower than that of; the burning serum group (P<0.05). Burning serum can increase the expression of HMGB1 mRNA in RAW264.7. QHBDY can decrease the high expression of HMGB1 mRNA in RAW264.7 caused by burning serum.

  8. Increased syndecan-4 expression in sera and skin of patients with atopic dermatitis.

    PubMed

    Nakao, Momoko; Sugaya, Makoto; Takahashi, Naomi; Otobe, Sayaka; Nakajima, Rina; Oka, Tomonori; Kabasawa, Miyoko; Suga, Hiraku; Morimura, Sohshi; Miyagaki, Tomomitsu; Fujita, Hideki; Asano, Yoshihide; Sato, Shinichi

    2016-11-01

    Syndecan-4 (SDC-4) is a cell surface proteoglycan, which participates in signaling during cell adhesion, migration, proliferation, endocytosis, and mechanotransduction, and is expressed on various cells, including endothelial cells, epithelial cells, T cells, and eosinophils. Emerging evidences have suggested that SDC-4 might contribute to Th2-driven allergic immune responses. Here, we examined the role of SDC-4 in patients with atopic dermatitis (AD). Serum SDC-4 levels in AD patients were significantly higher than in healthy individuals, and they increased according to the disease severity. Importantly, they positively correlated with Eczema Area and Severity Index and itch visual analogue scale scores. Furthermore, serum SDC-4 levels decreased after treatment. We also analyzed SDC-4 expression in AD lesional skin. SDC-4 mRNA levels in AD skin were significantly higher than those of normal skin. Immunohistochemical staining revealed that SDC-4 was highly expressed in the epidermis and endothelial cells in AD lesional skin. Taken together, our study has demonstrated that SDC-4 expression was increased in sera and skin of AD patients, suggesting that SDC-4 may contribute to the development of AD.

  9. Panax ginseng induces the expression of CatSper genes and sperm hyperactivation

    PubMed Central

    Park, Eun Hwa; Kim, Do Rim; Kim, Ha Young; Park, Seong Kyu; Chang, Mun Seog

    2014-01-01

    The cation channel of sperm (CatSper) protein family plays important roles in male reproduction and infertility. The four members of this family are expressed exclusively in the testis and are localized differently in sperm. To investigate the effects of Panax ginseng treatment on the expression of CatSper genes and sperm hyperactivation in male mice, sperm motility and CatSper gene expression were assessed using a computer-assisted semen analysis system, a Fluoroskan Ascent microplate fluorometer to assess Ca2+ influx, real-time polymerase chain reaction, Western blotting and immunofluorescence. The results suggested that the Ca2+ levels of sperm cells treated with P. ginseng were increased significantly compared with the normal group. The P. ginseng-treated groups showed increased sperm motility parameters, such as the curvilinear velocity and amplitude of lateral head displacement. Taken together, the data suggest that CatSper messenger ribonucleic acid levels were increased significantly in mouse testes in the P. ginseng-treated group, as was the protein level, with the exception of CatSper2. In conclusion, P. ginseng plays an important role in improving sperm hyperactivation via CatSper gene expression. PMID:24969054

  10. Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB Transcription Factor in Tomato Fruit[W

    PubMed Central

    Dal Cin, Valeriano; Tieman, Denise M.; Tohge, Takayuki; McQuinn, Ryan; de Vos, Ric C.H.; Osorio, Sonia; Schmelz, Eric A.; Taylor, Mark G.; Smits-Kroon, Miriam T.; Schuurink, Robert C.; Haring, Michel A.; Giovannoni, James; Fernie, Alisdair R.; Klee, Harry J.

    2011-01-01

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and 13C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles. PMID:21750236

  11. Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain.

    PubMed

    Kopp, J; Lindefors, N; Brené, S; Hall, H; Persson, H; Sedvall, G

    1992-01-01

    Prolonged treatment with dopamine D2 receptor antagonists is known to elevate the density of dopamine D2 receptor binding sites in caudate-putamen and nucleus accumbens in rat and human brain. In this study we used the dopamine D2 receptor antagonist raclopride (3 mumol/kg, s.c.) to determine if a single injection or daily administration of this drug for up to 18 days changed the expression of dopamine D2 receptor mRNA in rat caudate-putamen and accumbens as measured by in situ hybridization. A single injection of raclopride did not significantly change the numerical density of dopamine D2 receptor mRNA-expressing neurons in any of the regions examined. A daily administration of raclopride for 18 days resulted in a 31% increase in the number of cells expressing detectable amounts of dopamine D2 receptor mRNA in dorsolateral caudate-putamen and in a 20% increase in the area of silver grains over individual hybridization-positive neurons in this brain region measured on emulsion-dipped slides. The region-specific increase in the D2 receptor mRNA level in dorsolateral caudate-putamen was confirmed by measurement of the hybridization signal on X-ray film autoradiograms. The levels of D2 receptor mRNA remained unchanged in medial caudate-putamen and accumbens after 18 days' treatment. The region-selective increase in dopamine D2 receptor mRNA expression in dorsolateral caudate-putamen indicates a differential regulation of dopamine D2 receptor mRNA expression in a subpopulation of caudate-putamen neurons by this neuroleptic. We suggest that the increase in dopamine D2 receptor density in caudate-putamen known to follow prolonged dopamine D2 receptor blockade to some extent is regulated at the level of gene expression.

  12. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells.

    PubMed

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-07-01

    Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25-30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10(-6) M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  13. Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes.

    PubMed

    Veleba, Mark; De Majumdar, Shyamasree; Hornsey, Michael; Woodford, Neil; Schneiders, Thamarai

    2013-05-01

    The intrinsically encoded ramA gene has been linked to tigecycline resistance through the up-regulation of efflux pump AcrAB in Enterobacter cloacae. The molecular basis for increased ramA expression in E. cloacae and Enterobacter aerogenes, as well as the role of AraC regulator rarA, has not yet been shown. To ascertain the intrinsic molecular mechanism(s) involved in tigecycline resistance in Enterobacter spp., we analysed the expression levels of ramA and rarA and corresponding efflux pump genes acrAB and oqxAB in Enterobacter spp. clinical isolates. The expression levels of ramA, rarA, oqxA and acrA were tested by quantitative real-time RT-PCR. The ramR open reading frames of the ramA-overexpressing strains were sequenced; strains harbouring mutations were transformed with wild-type ramR to study altered ramA expression and tigecycline susceptibility. Tigecycline resistance was mediated primarily by increased ramA expression in E. cloacae and E. aerogenes. Only the ramA-overexpressing E. cloacae isolates showed increased rarA and oqxA expression. Upon complementation with wild-type ramR, all Enterobacter spp. containing ramR mutations exhibited decreased ramA and acrA expression and increased tigecycline susceptibility. Exceptions were one E. cloacae strain and one E. aerogenes strain, where a decrease in ramA levels was not accompanied by lower acrA expression. Increased ramA expression due to ramR deregulation is the primary mediator of tigecycline resistance in clinical isolates of E. cloacae and E. aerogenes. However, some ramA-overexpressing isolates do not show changes in ramR, suggesting alternate pathways of ramA regulation; the rarA regulator and the oqxAB efflux pump may also play a role in tigecycline resistance in E. cloacae.

  14. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells

    PubMed Central

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-01-01

    Abstract Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. PMID:22040127

  15. Decrease of PECAM-1-gene-expression induced by proinflammatory cytokines IFN-γ and IFN-α is reversed by TGF-β in sinusoidal endothelial cells and hepatic mononuclear phagocytes

    PubMed Central

    Neubauer, Katrin; Lindhorst, Alexander; Tron, Kyrylo; Ramadori, Giuliano; Saile, Bernhard

    2008-01-01

    Background and aim The mechanisms of transmigration of inflammatory cells through the sinusoids are still poorly understood. This study aims to identify in vitro conditions (cytokine treatment) which may allow a better understanding of the changes in PECAM (platelet endothelial cell adhesion molecule)-1-gene-expression observed in vivo. Methods and results In this study we show by immunohistochemistry, that there is an accumulation of ICAM-1 (intercellular cell adhesion molecule-1) and ED1 positive cells in necrotic areas of livers of CCl4-treated rats, whereas there are few PECAM-1 positive cells observable. After the administration of CCl4, we could detect an early rise of levels of IFN-γ followed by an enhanced TGF-β protein level. As shown by Northern blot analysis and surface protein expression analysed by flow cytometry, IFN-γ-treatment decreased PECAM-1-gene-expression in isolated SECs (sinusoidal endothelial cells) and mononuclear phagocytes (MNPs) in parallel with an increase in ICAM-1-gene-expression in a dose and time dependent manner. In contrast, TGF-β-treatment increased PECAM-1-expression. Additional administration of IFN-γ to CCl4-treated rats and observations in IFN-γ-/- mice confirmed the effect of IFN-γ on PECAM-1 and ICAM-1-expression observed in vitro and increased the number of ED1-expressing cells 12 h after administration of the toxin. Conclusion The early decrease of PECAM-1-expression and the parallel increase of ICAM-1-expression following CCl4-treatment is induced by elevated levels of IFN-γ in livers and may facilitate adhesion and transmigration of inflammatory cells. The up-regulation of PECAM-1-expression in SECs and MNPs after TGF-β-treatment suggests the involvement of PECAM-1 during the recovery after liver damage. PMID:18466611

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onodera, Yasuhito; Bissell, Mina

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA andmore » GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.« less

  17. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab.

    PubMed

    Raaby, L; Langkilde, A; Kjellerup, R B; Vinter, H; Khatib, S H; Hjuler, K F; Johansen, C; Iversen, L

    2015-08-01

    Tumour necrosis factor (TNF)-α inhibition is an effective treatment for moderate to severe plaque-type psoriasis. A change in the cytokine expression profile occurs in the skin after 4 days of treatment, preceding any clinical or histological improvements. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression, but miRNA expression has never been studied in psoriatic skin during treatment. To investigate changes in miRNA expression in psoriatic skin during adalimumab treatment and to compare results with changes in miRNA expression in a mouse model of Aldara-induced psoriasis-like skin inflammation. Punch biopsies were obtained from nonlesional and lesional psoriatic skin during adalimumab treatment. In the mouse model of Aldara-induced skin inflammation, biopsies were obtained from TNF-α knockout (KO), IL-17A KO and wild-type mice. miRNA expression levels were analysed with microarray, reverse transcriptase quantitative polymerase chain reaction and in situ hybridization. In psoriatic skin, no changes in miRNA expression were seen 4 days after treatment initiation. After 14 days of treatment, the expression of several miRNAs was normalized towards the level seen in nonlesional skin before treatment. miR-23b expression increased after 14 days of treatment and remained high for 84 days, despite unaltered levels at baseline. In the mouse model of Aldara-induced skin inflammation, the level of miR-146a increased, whereas no regulation was seen for miR-203, miR-214-3p, miR-125a, miR-23b or let-7d-5p. This study demonstrates that the changes seen in the cytokine expression levels after 4 days of treatment with adalimumab are not facilitated by early changes in miRNA expression. © 2015 British Association of Dermatologists.

  18. Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease.

    PubMed

    Ooi, Jolene; Hayden, Michael R; Pouladi, Mahmoud A

    2015-12-01

    Monoamine oxidases (MAO) are important components of the homeostatic machinery that maintains the levels of monoamine neurotransmitters, including dopamine, in balance. Given the imbalance in dopamine levels observed in Huntington disease (HD), the aim of this study was to examine MAO activity in a mouse striatal cell model of HD and in human neural cells differentiated from control and HD patient-derived induced pluripotent stem cell (hiPSC) lines. We show that mouse striatal neural cells expressing mutant huntingtin (HTT) exhibit increased MAO expression and activity. We demonstrate using luciferase promoter assays that the increased MAO expression reflects enhanced epigenetic activation in striatal neural cells expressing mutant HTT. Using cellular stress paradigms, we further demonstrate that the increase in MAO activity in mutant striatal neural cells is accompanied by enhanced susceptibility to oxidative stress and impaired viability. Treatment of mutant striatal neural cells with MAO inhibitors ameliorated oxidative stress and improved cellular viability. Finally, we demonstrate that human HD neural cells exhibit increased MAO-A and MAO-B expression and activity. Altogether, this study demonstrates abnormal MAO expression and activity and suggests a potential use for MAO inhibitors in HD.

  19. Tadalafil modulates aromatase activity and androgen receptor expression in a human osteoblastic cell in vitro model.

    PubMed

    Aversa, A; Fittipaldi, S; Bimonte, V M; Wannenes, F; Papa, V; Francomano, D; Greco, E A; Lenzi, A; Migliaccio, S

    2016-02-01

    Phosphodiesterase type-5 inhibitor (PDE5i) tadalafil administration in men with erectile dysfunction is associated with increased testosterone/estradiol ratio, leading to hypothesize a potential increased effect of androgen action on target tissues. We aimed to characterize, in a cellular model system in vitro, the potential modulation of aromatase and sex steroid hormone receptors upon exposure to tadalafil (TAD). Human osteoblast-like cells SAOS-2 were chosen as an in vitro model system since osteoblasts are target of steroid hormones. Cells were tested for viability upon TAD exposure, which increased cell proliferation. Then, cells were treated with/without TAD for several times to evaluate potential modulation in PDE5, aromatase (ARO), androgen (AR) and estrogen (ER) receptor expression. Osteoblasts express significant levels of both PDE5 mRNA and protein. Exposure of cells to increasing concentrations of TAD (10(-8)-10(-7) M) decreased PDE5 mRNA and protein expression. Also, TAD inhibited ARO mRNA and protein expression leading to an increase in testosterone levels in the supernatants. Interestingly, TAD increased total AR mRNA and protein expression and decreased ERα, with an increased ratio of AR/ER, suggesting preferential androgenic vs estrogenic pathway activation. Our results demonstrate for the first time that TAD decreases ARO expression and increases AR protein expression in human SAOS-2, strongly suggesting a new control of steroid hormones pathway by PDE5i. These findings might represent the first evidence of translational actions of PDE5i on AR, which leads to hypothesize a growing relevance of this molecule in men with prostate cancer long-term treated with TAD for sexual rehabilitation.

  20. Molecular cloning, characterization, and expression analysis of a heat shock protein (HSP) 70 gene from Paphia undulata.

    PubMed

    Wu, Xiangwei; Tan, Jing; Cai, Mingyi; Liu, Xiande

    2014-06-15

    In this study, a full-length HSP70 cDNA from Paphia undulata was cloned using reverse transcriptase polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE). The full-length cDNA is 2,351 bp, consisting of a 5'-untranslated region (UTR) of 83 bp, a 3'-UTR of 315 bp, and an open reading frame (ORF) of 1,953 bp. This cDNA encodes 650 amino acids with an estimated molecular weight of 71.3 kDa and an isoelectric point of 5.51. Based on the amino acid sequence analysis and phylogenetic analysis, this HSP70 gene was identified as a member of the cytoplasmic HSP70 family, being the constitutive expression, and it was designated as PuHSC70. The distribution of PuHSC70 mRNA in the mantle, digestive gland, adductor muscle, gonad, gill, heart, and hemocytes suggested that PuHSC70 is ubiquitously expressed. The mRNA levels of PuHSC70 under high temperature and high salinity stresses were analyzed by real-time PCR. Under high temperature stress of 32°C, PuHSC70 mRNA in the mantle, digestive gland, gill, and heart was significantly up-regulated at 1h and 2h, and it was then progressively down-regulated. In the adductor muscle, the level of PuHSC70 mRNA gradually increased throughout the study period; the mRNA levels in the gonad and hemocytes increased significantly at 4h and 8h (P<0.05) and then decreased at 8h and 14 h, respectively, however they increased again afterwards, reaching the highest levels at 50h. Under high salinity (32 ‰) stress, the mRNA levels of PuHSC70 in the mantle and gonad were increased significantly only at 24h and 48 h (P<0.05), and at the rest of the study period they were slightly elevated. Compared with the pretreatment level, the levels of expression in the digestive gland and gill were unchanged or reduced throughout the study period. The levels of PuHSC70 mRNA in the adductor muscle, hemocytes, and heart were significantly increased, reaching a maximum at 24h, and then they gradually decreased; moreover, in the heart, the mRNA expression recovered to the pretreatment level at 50h; while in the adductor muscle and hemocytes, the expression level remained higher than that of the control. The cloning and expression analyses of PuHSC70 provide theoretical basis to further study the mechanism of physiological response to thermal and high salinity stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer.

    PubMed

    Kim, Min Jun; Choi, Mee Young; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Wan Sung

    2018-01-12

    O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G 0 /G 1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.

  2. Estrogen Receptor Expression in Atypical Hyperplasia: Lack of Association with Breast Cancer

    PubMed Central

    Barr Fritcher, Emily G.; Degnim, Amy C.; Hartmann, Lynn C.; Radisky, Derek C.; Boughey, Judy C.; Anderson, Stephanie S.; Vierkant, Robert A.; Frost, Marlene H.; Visscher, Daniel W.; Reynolds, Carol

    2011-01-01

    Background Estrogen receptor (ER) is expressed in normal and malignant breast epithelium, and expression levels have been found to increase with age in normal breast epithelium but not in atypical hyperplasia (AH) and carcinoma in situ. Here we assess ER expression in AH and its association with later breast cancer. Methods ER expression was assessed immunohistochemically in archival sections from 246 women with AH who had open benign breast biopsy from 1967–1991. The ACISRIII (Dako, Carpinteria, CA) was utilized to calculate ER expression in all atypical foci. Using multivariate linear regression, we examined associations of ER expression with age at biopsy, indication for biopsy, type of atypia, number of atypical foci, involution status, and family history. Breast cancer risk across levels of ER expression was also assessed compared to the Iowa SEER control population. Results Among 246 women, 87 (35%) had atypical ductal hyperplasia (ADH), 141 (57%) had atypical lobular hyperplasia (ALH), and 18 (7%) had both. Forty-nine (20%) developed breast cancer (median follow-up of 14.4 years). Multivariate analysis indicated that type of atypia and age at diagnosis were significantly associated with ER percent staining and intensity [p<0.05]. ER expression was increased in women with ADH and/or those over age 55. ER expression did not significantly impact breast cancer risk in patients diagnosed with atypia. Conclusion We found increasing ER expression in atypical hyperplasia with increasing age. ER expression in atypical hyperplasia does not further discriminate breast cancer risk in women with atypia. PMID:21209395

  3. Cilostazol Upregulates Autophagy via SIRT1 Activation: Reducing Amyloid-β Peptide and APP-CTFβ Levels in Neuronal Cells.

    PubMed

    Lee, Hye Rin; Shin, Hwa Kyoung; Park, So Youn; Kim, Hye Young; Bae, Sun Sik; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan; Kim, Chi Dae

    2015-01-01

    Autophagy is a vital pathway for the removal of β-amyloid peptide (Aβ) and the aggregated proteins that cause Alzheimer's disease (AD). We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ) by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1-42, protein levels of beclin-1, autophagy-related protein5 (Atg5), and SIRT1 decreased significantly. Pretreatment with cilostazol (10-30 μM) or resveratrol (20 μM) prevented these Aβ1-42 evoked suppressions. LC3-II (a marker of mammalian autophagy) levels were significantly increased by cilostazol, and this increase was reduced by 3-methyladenine. To evoke endogenous Aβ overproduction, N2aSwe cells (N2a cells stably expressing human APP containing the Swedish mutation) were cultured in medium with or without tetracycline (Tet+ for 48 h and then placed in Tet- condition). Aβ and APP-CTFβ expressions were increased after 12~24 h in Tet- condition, and these increased expressions were significantly reduced by pretreating cilostazol. Cilostazol-induced reductions in the expressions of Aβ and APP-CTFβ were blocked by bafilomycin A1 (a blocker of autophagosome to lysosome fusion). After knockdown of the SIRT1 gene (to ~40% in SIRT1 protein), cilostazol failed to elevate the expressions of beclin-1, Atg5, and LC3-II, indicating that cilostazol increases these expressions by up-regulating SIRT1. Further, decreased cell viability induced by Aβ was prevented by cilostazol, and this inhibition was reversed by 3-methyladenine, indicating that the protective effect of cilostazol against Aβ induced neurotoxicity is, in part, ascribable to the induction of autophagy. In conclusion, cilostazol modulates autophagy by increasing the activation of SIRT1, and thereby enhances Aβ clearance and increases cell viability.

  4. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  5. Type III TGF-β Receptor Enhances Colon Cancer Cell Migration and Anchorage-Independent Growth12

    PubMed Central

    Gatza, Catherine E; Holtzhausen, Alisha; Kirkbride, Kellye C; Morton, Allyson; Gatza, Michael L; Datto, Michael B; Blobe, Gerard C

    2011-01-01

    The type III TGF-β receptor (TβRIII or betagylcan) is a TGF-β superfamily coreceptor with emerging roles in regulating TGF-β superfamily signaling and cancer progression. Alterations in TGF-β superfamily signaling are common in colon cancer; however, the role of TβRIII has not been examined. Although TβRIII expression is frequently lost at the message and protein level in human cancers and suppresses cancer progression in these contexts, here we demonstrate that, in colon cancer, TβRIII messenger RNA expression is not significantly altered and TβRIII expression is more frequently increased at the protein level, suggesting a distinct role for TβRIII in colon cancer. Increasing TβRIII expression in colon cancer model systems enhanced ligand-mediated phosphorylation of p38 and the Smad proteins, while switching TGF-β and BMP-2 from inhibitors to stimulators of colon cancer cell proliferation, inhibiting ligand-induced p21 and p27 expression. In addition, increasing TβRIII expression increased ligand-stimulated anchorage-independent growth, a resistance to ligand- and chemotherapy-induced apoptosis, cell migration and modestly increased tumorigenicity in vivo. In a reciprocal manner, silencing endogenous TβRIII expression decreased colon cancer cell migration. These data support a model whereby TβRIII mediates TGF-β superfamily ligand-induced colon cancer progression and support a context-dependent role for TβRIII in regulating cancer progression. PMID:21847367

  6. Delta-like ligand 4: A predictor of poor prognosis in clear cell renal cell carcinoma

    PubMed Central

    WANG, WEI; YU, YI; WANG, YA; LI, XIAOMING; BAO, JUNSHENG; WU, GONGJIN; CHANG, HONG; SHI, TINGKAI; YUE, ZHONGJIN

    2014-01-01

    Delta-like ligand 4 (Dll4)-Notch signaling is important in tumor angiogenesis; however, the prognostic value of D114 detection in patients with clear cell renal cell carcinoma (CCRCC) remains unclear. The present study aimed to determine whether the presence of high Dll4 expression levels was correlated with poor prognosis in CCRCC following curative resection. The D114 expression levels in four paired samples of CCRCC tissues and adjacent normal renal tissues were assayed by western blotting. Surgical specimens comprised 121 CCRCC tissue samples and 65 normal renal tissue samples, obtained from patients with CCRCC. The specimens were immunohistochemically assessed to determine Dll4 and vascular endothelial growth factor receptor 2 (VEGFR-2) expression levels. The prognostic significance of Dll4 expression levels was evaluated by the Kaplan-Meier method and Cox regression analysis. The correlation between Dll4 expression levels and VEGFR-2 expression levels, tumor stage, tumor grade and metastasis, was examined by χ2 test and multivariate logistic regression. As determined by the western blotting results, Dll4 protein expression levels were significantly increased in CCRCC tissues compared with those in adjacent non-cancerous tissues. From the analysis of the surgical specimens, 53 (43.8%) CCRCC patients exhibited immunohistochemically high Dll4 expression levels and 68 (56.2%) patients exhibited low Dll4 expression levels. The survival curves revealed that the patients with high Dll4 expression levels had significantly shorter survival times than the patients with low Dll4 expression levels (P<0.001). Multivariate survival analysis demonstrated that the presence of high Dll4 expression levels was independently associated with reduced overall survival and progression-free survival times (P=0.021 and 0.034, respectively). A positive correlation was also identified between Dll4 and VEGFR-2 expression levels (P=0.001). In conclusion, the results show that the presence of high Dll4 expression levels was clearly associated with high VEGFR-2 expression levels, tumor grade, tumor stage and poor prognosis in CCRCC patients. Therefore, inhibition of Dll4 may exert potent growth inhibitory effects on tumors resistant to anti-VEGF therapies for CCRCC. PMID:25364440

  7. Effect of fenofibrate on oxidative DNA damage and on gene expression related to cell proliferation and apoptosis in rats.

    PubMed

    Nishimura, Jihei; Dewa, Yasuaki; Muguruma, Masako; Kuroiwa, Yuichi; Yasuno, Hiroaki; Shima, Tomomi; Jin, Mailan; Takahashi, Miwa; Umemura, Takashi; Mitsumori, Kunitoshi

    2007-05-01

    To investigate the relationship between fenofibrate (FF) and oxidative stress, enzymatic, histopathological, and molecular biological analyses were performed in the liver of male F344 rats fed 2 doses of FF (Experiment 1; 0 and 6000 ppm) for 3 weeks and 3 doses (Experiment 2; 0, 3000, and 6000 ppm) for 9 weeks. FF treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver. However, it decreased those of superoxide dismutase in the liver in both experiments. Increased 8-hydroxy-2'-deoxyguanosine levels in liver DNA and lipofuscin accumulation were observed in the treated rats of Experiment 2. In vitro measurement of reactive oxygen species (ROS) in rat liver microsomes revealed a dose-dependent increase due to FF treatment. Microarray (only Experiment 1) or real-time reverse transcription-polymerase chain reaction analyses revealed that the expression levels of metabolism and DNA repair-related genes such as Aco, Cyp4a1, Cat, Yc2, Gpx2, Apex1, Xrcc5, Mgmt, Mlh1, Gadd45a, and Nbn were increased in FF-treated rats. These results provide evidence of a direct or indirect relationship between oxidative stress and FF treatment. In addition, increases in the expression levels of cell cycle-related genes such as Chek1, Cdc25a, and Ccdn1; increases in the expression levels of cell proliferation-related genes such as Hdgfrp3 and Vegfb; and fluctuations in the expression levels of apoptosis-related genes such as Casp11 and Trp53inp1 were observed in these rats. This suggests that cell proliferation induction, apoptosis suppression, and DNA damage due to oxidative stresses are probably involved in the mechanism of hepatocarcinogenesis due to FF in rats.

  8. Thymosin Beta-4 Induces Mouse Hair Growth

    PubMed Central

    Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun

    2015-01-01

    Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts. PMID:26083021

  9. Thymosin Beta-4 Induces Mouse Hair Growth.

    PubMed

    Gao, Xiaoyu; Liang, Hao; Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun

    2015-01-01

    Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts.

  10. Tuberin Inhibits Production of the Matrix Protein Fibronectin in Diabetes

    PubMed Central

    Yadav, Mukesh; Tizani, Shaza; Bhandari, Basant; Valente, Anthony J.

    2012-01-01

    Exposure of proximal tubular epithelial cells to high glucose contributes to the accumulation of tubulointerstitial and matrix proteins in diabetic nephropathy, but how this occurs is not well understood. We investigated the effect of the signaling molecule tuberin, which modulates the mammalian target of rapamycin pathway, on renal hypertrophy and fibronectin expression. We found that the kidney mass was significantly greater in partially tuberin-deficient (TSC2+/−) diabetic rats than wild-type diabetic rats. Furthermore, TSC2+/− rats exhibited significant increases in the basal levels of phospho-tuberin and fibronectin expression in the kidney cortex. Increased levels of phosphorylated tuberin associated with an increase in fibronectin expression in both wild-type and TSC2+/− diabetic rats. Treatment with insulin abrogated the diabetes-induced increase in fibronectin expression. In vitro, high glucose enhanced fibronectin expression in TSC2+/− primary proximal tubular epithelial cells; both inhibition of Akt and inhibition of the mammalian target of rapamycin could prevent this effect of glucose. In addition, forced expression of tuberin in tuberin-null cells abolished the expression of fibronectin protein. Taken together, these data suggest that tuberin plays a central role in the development of renal hypertrophy and in modulating the production of the matrix protein fibronectin in diabetes. PMID:22904348

  11. The expression of Fas Ligand by macrophages and its upregulation by human immunodeficiency virus infection.

    PubMed Central

    Dockrell, D H; Badley, A D; Villacian, J S; Heppelmann, C J; Algeciras, A; Ziesmer, S; Yagita, H; Lynch, D H; Roche, P C; Leibson, P J; Paya, C V

    1998-01-01

    Fas/Fas Ligand (FasL) interactions play a significant role in peripheral T lymphocyte homeostasis and in certain pathological states characterized by T cell depletion. In this study, we demonstrate that antigen-presenting cells such as monocyte-derived human macrophages (MDM) but not monocyte-derived dendritic cells express basal levels of FasL. HIV infection of MDM increases FasL protein expression independent of posttranslational mechanisms, thus highlighting the virus-induced transcriptional upregulation of FasL. The in vitro relevance of these observations is confirmed in human lymphoid tissue. FasL protein expression is constitutive and restricted to tissue macrophages and not dendritic cells. Moreover, a significant increase in macrophage-associated FasL is observed in lymphoid tissue from HIV (+) individuals (P < 0.001), which is further supported by increased levels of FasL mRNA using in situ hybridization. The degree of FasL protein expression in vivo correlates with the degree of tissue apoptosis (r = 0.761, P < 0. 001), which is significantly increased in tissue from HIV-infected patients (P < 0.001). These results identify human tissue macrophages as a relevant source for FasL expression in vitro and in vivo and highlight the potential role of FasL expression in the immunopathogenesis of HIV infection. PMID:9616211

  12. Nifedipine Increases Iron Content in WKPT-0293 Cl.2 Cells via Up-Regulating Iron Influx Proteins

    PubMed Central

    Yu, Shuang-Shuang; Jiang, Li-Rong; Ling, Yan; Qian, Zhong-Ming; Zhou, Yu-Fu; Li, Juan; Ke, Ya

    2017-01-01

    Nifedipine was reported to enhance urinary iron excretion in iron overloaded mice. However, it remains unknown how nifedipine stimulates urinary iron excretion in the kidney. We speculated that nifedipine might inhibit the TfR1/ DMT1 (transferrin receptor 1/divalent metal transporter1)-mediated iron uptake by proximal tubule cells in addition to blocking L-type Ca2+ channels, leading to an increase in iron in lumen-fluid and then urinary iron excretion. To test this hypothesis, we investigated the effects of nifedipine on iron content and expression of TfR1, DMT1 and ferroportin1 (Fpn1) in WKPT-0293 Cl.2 cells of the S1 segment of the proximal tubule in rats, using a graphite furnace atomic absorption spectrophotometer and Western blot analysis, respectively. We demonstrated for the first time that nifedipine significantly enhanced iron content as well as TfR1 and DMT1 expression and had no effect on Fpn1 levels in the cells. We also found that ferric ammonium citrate decreased TfR1 levels, increased Fpn1 expression and had no effect on DMT1 content, while co-treatment with nifedipine and FAC increase TfR1 and DMT1 expression and also had no effect on Fpn1 levels. These findings suggest that the nifedipine-induced increase in cell iron may mainly be due to the corresponding increase in TfR1 and DMT1 expression and also imply that the effects of nifedipine on iron transport in proximal tubule cells can not explain the increase in urinary iron excretion. PMID:28243203

  13. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    PubMed Central

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  14. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens.

    PubMed

    Eklund, D Magnus; Thelander, Mattias; Landberg, Katarina; Ståldal, Veronika; Nilsson, Anders; Johansson, Monika; Valsecchi, Isabel; Pederson, Eric R A; Kowalczyk, Mariusz; Ljung, Karin; Ronne, Hans; Sundberg, Eva

    2010-04-01

    The plant hormone auxin plays fundamental roles in vascular plants. Although exogenous auxin also stimulates developmental transitions and growth in non-vascular plants, the effects of manipulating endogenous auxin levels have thus far not been reported. Here, we have altered the levels and sites of auxin production and accumulation in the moss Physcomitrella patens by changing the expression level of homologues of the Arabidopsis SHI/STY family proteins, which are positive regulators of auxin biosynthesis genes. Constitutive expression of PpSHI1 resulted in elevated auxin levels, increased and ectopic expression of the auxin response reporter GmGH3pro:GUS, and in an increased caulonema/chloronema ratio, an effect also induced by exogenous auxin application. In addition, we observed premature ageing and necrosis in cells ectopically expressing PpSHI1. Knockout of either of the two PpSHI genes resulted in reduced auxin levels and auxin biosynthesis rates in leafy shoots, reduced internode elongation, delayed ageing, a decreased caulonema/chloronema ratio and an increased number of axillary hairs, which constitute potential auxin biosynthesis sites. Some of the identified auxin functions appear to be analogous in vascular and non-vascular plants. Furthermore, the spatiotemporal expression of the PpSHI genes and GmGH3pro:GUS strongly overlap, suggesting that local auxin biosynthesis is important for the regulation of auxin peak formation in non-vascular plants.

  15. Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai.

    PubMed

    Wu, Chenglong; Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Zhong, Xiaoli

    2011-06-01

    The expression patterns of different genes encoding antioxidant enzymes and heat shock proteins were investigated, in present study, by real-time quantitative PCR in the hepatopancreas of abalone Haliotis discus hannai fed with different levels of dietary zinc (6.69, 33.8, 710.6 and 3462.5 mg/kg) for 20 weeks. The antioxidant enzymes include Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase (CAT), mu-glutathione-s-transferase (mu-GST) and thioredoxin peroxidase (TPx). The results showed that the mRNA expression of these antioxidant enzymes increased and reached the maximum at the dietary zinc level of 33.8 mg/kg, and then dropped progressively. Expression levels of the heat shock proteins (HSP26, HSP70 and HSP90) firstly increased at 33.8 mg/kg dietary Zn level, and reached to the maximum at 710.6 mg/kg, then dropped at 3462.5 mg/kg (p<0.05). Excessive dietary Zn (710.6 and 3462.5 mg/kg) significantly increases the Zn content and significantly decreases the total antioxidant capacity (T-AOC) in hepatopancreas (p<0.05). These findings showed that dietary Zn (33.8 mg/kg) could highly trigger the expression levels of antioxidant enzymes and heat shock proteins, but excessive dietary Zn (710.6 and 3462.5 mg/kg) induces a high oxidative stress in abalone. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Liver fibrosis in bile duct-ligated rats correlates with increased hepatic IL-17 and TGF-β2 expression.

    PubMed

    Zepeda-Morales, Adelaida Sara M; Del Toro-Arreola, Susana; García-Benavides, Leonel; Bastidas-Ramírez, Blanca E; Fafutis-Morris, Mary; Pereira-Suárez, Ana L; Bueno-Topete, Miriam R

    2016-01-01

    BACKGROUND AND RATIONALE FOR THE STUDY: IL-17, TGF-β1/2 are cytokines involved in the development of kidney, pulmonary and liver fibrosis. However, their expression kinetics in the pathogenesis of cholestatic liver fibrosis have not yet been fully explored. The aim of the study was to analyze the expression of IL-17, RORγt, NKp46, TGF-β1, and TGF-β2 in the liver of rats with bile duct ligation (BDL). Hepatic IL-17A gene expression analyzed by qRT-PCR showed a dramatic increase of 350 and 10 fold, at 8 and 30 days post BDL, respectively. TGFβ1 and TGFβ2 gene expression significantly increased throughout the whole fibrotic process. At the protein level in liver homogenates, IL-17, TGF-β1, and RORγt significantly increased at 8 and 30 days after BDL. Interestingly, a significant increase in the protein levels of TGF-β2 and decrease of NKp46 was observed only 30 days after BDL. Unexpectedly, TGF-β2 exhibited stronger signals than TGF-β1 at the gene expression and protein levels. Histological analysis showed bile duct proliferation and collagen deposition. Our results suggest that pro-fibrogenic cytokines IL-17, TGF-β1 and, strikingly, TGF-β2 might be important players of liver damage in the pathogenesis of early and advanced experimental cholestatic fibrosis. Th17 cells might represent an important source of IL-17, while NK cell depletion may account for the perpetuation of liver damage in the BDL model.

  17. Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drug-like compounds

    PubMed Central

    Cherry, Jonathan J; Osman, Erkan Y; Evans, Matthew C; Choi, Sungwoon; Xing, Xuechao; Cuny, Gregory D; Glicksman, Marcie A; Lorson, Christian L; Androphy, Elliot J

    2013-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease that causes progressive muscle weakness, which primarily targets proximal muscles. About 95% of SMA cases are caused by the loss of both copies of the SMN1 gene. SMN2 is a nearly identical copy of SMN1, which expresses much less functional SMN protein. SMN2 is unable to fully compensate for the loss of SMN1 in motor neurons but does provide an excellent target for therapeutic intervention. Increased expression of functional full-length SMN protein from the endogenous SMN2 gene should lessen disease severity. We have developed and implemented a new high-throughput screening assay to identify small molecules that increase the expression of full-length SMN from a SMN2 reporter gene. Here, we characterize two novel compounds that increased SMN protein levels in both reporter cells and SMA fibroblasts and show that one increases lifespan, motor function, and SMN protein levels in a severe mouse model of SMA. PMID:23740718

  18. Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via Angiotensin II its receptors-mediated mechanism in rats.

    PubMed

    Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu

    2014-11-11

    To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.

  19. The expression of BAFF in the muscles of patients with dermatomyositis.

    PubMed

    Baek, Ahmi; Park, Hyung Jun; Na, Sang-Jun; Shim, Dong Suk; Moon, Joon-Shik; Yang, Young; Choi, Young-Chul

    2012-08-15

    A B-cell activating factor of the tumor necrosis factor (TNF) family (BAFF) plays a crucial role in B-cell survival and maturation. An elevated serum BAFF level has been linked to several autoimmune diseases such as Sjögren syndrome, systemic lupus erythematosus and rheumatoid arthritis. Dermatomyositis (DM), one of autoimmune inflammatory myopathies, is characterized by inflammatory cell infiltration (CD4(+) T cells and B cells) in skeletal muscle. Serum BAFF level was significantly high in DM, but the role of BAFF is not well understood. We investigated the role of BAFF in the immunopathogenesis of DM. To examine the transcriptional increase of BAFF gene expression, we performed RT-PCR analysis with skeletal muscle tissue that contained 4 controls and 9 patients with DM. Next, in order to detect BAFF expression and cellular localization in DM, we executed immunostaining in cryosection of biopsied muscle tissue with 4 controls and 8 patients and we adopted to double immunostaining to find which inflammatory cells expressed BAFF-receptor (BAFF-R). BAFF mRNA level was increased in DM patients compared with normal controls. BAFF expression was markedly increased at muscle fibers in the perifascicular area but not blood vessels. BAFF-R was expressed in inflammatory cells in skeletal muscle tissues of DM patients. We found that BAFF expression in muscle tissue may be associated with an increased number of CD4(+) T cells and CD19(+) B cells in DM. Our study results suggest that BAFF might play an important role in the pathogenesis of DM. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system

    PubMed Central

    Shi, Wei; Meszaros, J Gary; Zeng, Shao-ju; Sun, Ying-yu; Zuo, Ming-xue

    2013-01-01

    Aim: Living high training low” (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats. Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks. Hematological parameters, hemodynamic measurement, heart hypertrophy and plasma angiotensin II (Ang II) level of the rats were measured. The gene and protein expression of angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor I (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry, respectively. Results: LLTL, LHS and LHTL significantly improved cardiac function, increased hemoglobin concentration and RBC. At the molecular level, LLTL, LHS and LHTL significantly decreased the expression of ACE, AGT and AT1 genes, but increased the expression of ACE and AT1 proteins in heart tissue. Moreover, ACE and AT1 protein expression was significantly increased in the endocardium, but unchanged in the epicardium. Conclusion: LHTL training protocol suppresses ACE, AGT and AT1 gene expression in heart tissue, but increases ACE and AT1 protein expression specifically in the endocardium, suggesting that the physiological heart hypertrophy induced by LHTL is regulated by region-specific expression of renin-angiotensin system components. PMID:23377552

  1. Impacts of ezetimibe on PCSK9 in rats: study on the expression in different organs and the potential mechanisms.

    PubMed

    Xu, Rui-Xia; Liu, Jun; Li, Xiao-Lin; Li, Sha; Zhang, Yan; Jia, Yan-Jun; Sun, Jing; Li, Jian-Jun

    2015-03-14

    Previous studies including our group have indicated the effects of ezetimibe on increased plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) concentration, while the rapid expression in different organs and the potential molecular mechanisms for this impact have not been carefully evaluated. Thirty rats were randomly divided into two groups (n = 15 for each), which were orally administrated with ezetimibe (10 mg/kg/day) or normal saline. Blood samples were obtained at day 3 after orally administration, and the PCSK9 levels were determined by ELISA. We further analyzed the mRNA expression of PCSK9, low-density lipoprotein receptor (LDLR), sterol regulator element-binding protein 2 (SREBP2), and hepatocyte nuclear factor 1 alpha (HNF-1α) by real-time PCR, as well as the protein expression by western blot, in liver, intestine and kidney respectively. Ezetimibe significantly increased plasma PCSK9 levels compared with control group, while there was no significant difference between the two groups with regard to lipid profile at day 3. Moreover, ezetimibe remarkably increased the expression of PCSK9, LDLR, SREBP2 and HNF-1α in liver. Enhanced expression of PCSK9, LDLR and SREBP2 protein were found in intestine and kidney, while no changes in the expression of HNF-1α were observed in intestine and kidney of rats with ezetimibe treatment. The data demonstrated that ezetimibe increased PCSK9 expression through the SREBP2 and HNF-1α pathways in different organs, subsequently resulting in elevated plasma PCSK9 levels prior to the alterations of lipid profile in rats.

  2. Improvement in adenoviral gene transfer efficiency after preincubation at +37 degrees C in vitro and in vivo.

    PubMed

    Kossila, Maija; Jauhiainen, Suvi; Laukkanen, Mikko O; Lehtolainen, Pauliina; Jääskeläinen, Maiju; Turunen, Päivi; Loimas, Sami; Wahlfors, Jarmo; Ylä-Herttuala, Seppo

    2002-01-01

    Adenovirus is a widely used vector in gene transfer experiments because it produces high transduction efficiency in vitro and in vivo by means of the coxsackie-adenovirus receptor (CAR) and major histocompatibility complex (MHC) class I alpha-2 domain. Adenoviral gene transfer efficiency has been reported to correlate with cellular CAR expression. We report here a simple method to increase adenoviral gene transfer efficiency in cells that do not express high levels of CAR: preincubation of adenovirus for 30-40 minutes at +37 degrees C significantly increased the transduction efficiency in vitro in CHO and BALB/3T3 cells, in which CAR is expressed at very low levels. Increased transduction efficiency of preincubated adenovirus was also detected in vivo in rat brain tissue. In addition, we found that adenoviruses were rapidly inactivated in human serum in a complement-independent manner, whereas fetal bovine serum (FBS) had hardly any effects on the viral infectivity. We conclude that preincubation of adenoviral vectors at +37 degrees C may substantially increase gene transfer efficiency in applications in which target cells do not express high levels of CAR.

  3. Triptorelin and cetrorelix induce immune responses and affect uterine development and expressions of genes and proteins of ESR1, LHR, and FSHR of mice.

    PubMed

    Wei, Suocheng; Guo, Huiling; Gong, Zhuandi; Zhang, Fengwei; Ma, Zhongren

    2016-06-01

    GnRH immunity can reduce the expression of pituitary GnRH levels, and cause the changes in reproductive behaviors. It is unclear whether triptorelin (TRI) and cetrorelix (CET) immunity influences uterine development and expression of follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), and estradiol receptor 1 (ERS1) in the uterus. The study investigated the effects of active immunity of GnRH agonist and antagonist on uterine development, microstructures, expression of hormone receptors mRNAs, and proteins in uteri. One hundred and five mice were assigned into CET, TRI, and control groups (CG). Mice in CET-1, CET-2, and CET-3 (n = 15) were subcutaneously injected with 10, 20, and 40 μg CET antigens for seven days, respectively. Mice in TRI-1, TRI-2, and TRI-3 were injected with 10, 20, and 40 μg TRI antigens for seven days, respectively. The qPCR and Western blot were implemented to determine expressions of ESR1, LHR and FSHR mRNAs, and proteins. Compared with CG, the uterine weights of CET-1, CET-2, and CET-3 increased by 42.86, 62.86, and 10.00% on day 35 (p < 0.05), respectively. Uterine weights of TRI-2, TRI-3 reduced by 28.57% and 11.43% (p < 0.05), respectively. The uterine cavity in CET-1, CET-2, and CET-3 increased; the uterine wall became thick. The cytoplasm of endometrial epithelial cells (EEC) increased slightly. In TRI group, the uterine wall thinned. Uterine cavity became narrow slightly in TRI-1. Numbers of uterine glands reduced. The endometrium epithelial thickness (EET) in CET-1 and CET-2 increased by 68.21% and 79.46% (p < 0.05), respectively. EET in TRI-1 was decreased by 13.69%. Uterine wall thicknesses (UWT) in CET-1 and CET-2 were higher than CG, with the increment of 28.59% and 30.72%. UWT of TRI-1, TRI-2, and TRI-3 reduced by 29.35, 15.36, and 14.41%, respectively. Expressions of ESR1, FSHR, and LHR mRNAs in CET and TRI mice increased. ESR1 and FSHR protein levels increased in all experimental mice (p < 0.05), with a maximum of TRI-3. LHR protein levels of the CET decreased. LHR protein levels of TRI group increased, with a maximum of TRI-3 (p < 0.05). ESR1 protein level had significant negative correlations to mRNA expressions of ESR1, LHR, and FSHR. CET immunity promoted the uterine development, improved EET and UWT, and also promoted the expressions of ESR1 and FSHR protein levels. It lessened the LHR protein levels. TRI immunity blocked EET and UWT, inhibited uterine growth and development. The efficacy of CET immunity was more obvious than TRI.

  4. System Re-set: High LET Radiation or Transient Musculoskeletal Disuse Cause Lasting Changes in Oxidative Defense Pathways Within Bone

    NASA Technical Reports Server (NTRS)

    Kumar, Akhilesh; Chatterjee, A.; Alwood, Joshua S.; Dvorochkin, Natalya; Almeida, Eduardo A. C.

    2011-01-01

    Six months post-IR, there were no notable changes in skeletal expression of 84 principal genes in the p53 signaling pathway due to low dose IR (0.5Gy), HU, or both. In contrast, numerous genes relevant to oxidative stress were regulated by the treatments, typically in a direction indicative of increased oxidative stress and impaired defense. IR and HU independently reduced (between 0.46 to 0.88 fold) expression levels of Noxa1, Gpx3, Prdx2, Prdx3, and Zmynd17. Surprisingly, transient HU alone (sham-irradiated) decreased expression of several redox-related genes (Gpx1,Gstk1, Prdx1, Txnrd2), which were not affected significantly by IR alone. Irradiation increased (1.13 fold) expression of a gene responsible for production of superoxides by neutrophils (NCF2). Of interest, only combined treatment with HU and IR led to increased expression levels of Ercc2, (1.19 fold), a DNA excision repair enzyme. Differences in gene expression levels may reflect a change in gene expression on a per cell basis, a shift in the repertoire of specific cell types within the tissue, or both. Serum nitrite/nitrate levels were elevated to comparable levels (1.6-fold) due to IR, HU or both, indicative of elevated systemic nitrosyl stress. CONCLUSIONS The magnitude of changes in skeletal expression of oxidative stress-related genes six months after irradiation and/or transient unloading tended to be relatively modest (0.46-1.15 fold), whereas the p53 pathway was not affected. The finding that many different oxidative stress-related genes differed from controls at this late time point implicates a generalized impairment of oxidative defense within skeletal tissue, which coincides with both profound radiation damage to osteoprogenitors/stem cells in bone marrow and impaired remodeling of mineralized tissue.

  5. Expression of Immune Genes on Chromosome 6p21.3-22.1 in Schizophrenia

    PubMed Central

    Sinkus, Melissa L.; Adams, Catherine E.; Logel, Judith; Freedman, Robert; Leonard, Sherry

    2013-01-01

    Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking. PMID:23395714

  6. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    PubMed

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. TNF-alpha infusion impairs corpora cavernosa reactivity.

    PubMed

    Carneiro, Fernando S; Zemse, Saiprazad; Giachini, Fernanda R C; Carneiro, Zidonia N; Lima, Victor V; Webb, R Clinton; Tostes, Rita C

    2009-03-01

    Erectile dysfunction (ED), as well as cardiovascular diseases (CVDs), is associated with endothelial dysfunction and increased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). We hypothesized that increased TNF-alpha levels impair cavernosal function. In vitro organ bath studies were used to measure cavernosal reactivity in mice infused with vehicle or TNF-alpha (220 ng/kg/min) for 14 days. Gene expression of nitric oxide synthase isoforms was evaluated by real-time polymerase chain reaction. Corpora cavernosa from TNF-alpha-infused mice exhibited decreased nitric oxide (NO)-dependent relaxation, which was associated with decreased endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) cavernosal expression. Cavernosal strips from the TNF-alpha-infused mice displayed decreased nonadrenergic-noncholinergic (NANC)-induced relaxation (59.4 +/- 6.2 vs. control: 76.2 +/- 4.7; 16 Hz) compared with the control animals. These responses were associated with decreased gene expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated, as well as phenylephrine (PE)-induced, contractile responses (PE-induced contraction; 1.32 +/- 0.06 vs. control: 0.9 +/- 0.09, mN) were increased in cavernosal strips from TNF-alpha-infused mice. Additionally, infusion of TNF-alpha increased cavernosal responses to endothelin-1 and endothelin receptor A subtype (ET(A)) receptor expression (P < 0.05) and slightly decreased tumor necrosis factor-alpha receptor 1 (TNFR1) expression (P = 0.063). Corpora cavernosa from TNF-alpha-infused mice display increased contractile responses and decreased NANC nerve-mediated relaxation associated with decreased eNOS and nNOS gene expression. These changes may trigger ED and indicate that TNF-alpha plays a detrimental role in erectile function. Blockade of TNF-alpha actions may represent an alternative therapeutic approach for ED, especially in pathologic conditions associated with increased levels of this cytokine.

  8. Partially hydrolyzed guar gum supplement reduces high-fat diet increased blood lipids and oxidative stress and ameliorates FeCl3-induced acute arterial injury in hamsters

    PubMed Central

    Kuo, Dar-Chih; Hsu, Shih-Ping; Chien, Chiang-Ting

    2009-01-01

    Increased reactive oxygen species (ROS) and hyperlipidemia can promote arterial thrombus. We evaluated the potential of a partially hydrolyzed guar gum (PHGG) as dietary fiber on lipid profiles and FeCl3-induced arterial thrombosis in the high fat-diet fed hamsters. Our in vitro results found that PHGG is efficient to scavenge O2-•, H2O2, and HOCl. High fat-diet increased plasma triglyceride, total cholesterol, LDL, VLDL, methylguanidine and dityrosine level and accelerated FeCl3-induced arterial thrombosis formation (from 463 ± 51 to 303 ± 45 sec). Low dose PHGG supplement significantly decreased the total cholesterol, LDL, methylguanidine and dityrosine level and delayed the time for arterial thrombosis formation (528 ± 75 sec). High dose PHGG supplement decreased the level in triglyceride, total cholesterol, LDL and VLDL and further delayed the time for arterial thrombus (671 ± 36 sec). The increased Bax protein and decreased Bcl-2 and HSP-70 protein expression was found in the carotid and femoral arteries of high fat-diet hamsters. Low and high dose of PHGG supplement decreased Bax expression and increased Bcl-2 and HSP-70 protein expression. We found that FeCl3 significantly enhanced intercellular adhesion molecule-1 and 4-hydroxynonenal expression in the endothelial site of damaged artery after 150-sec FeCl3 stimulation. PHGG supplement decreased the endothelial ICAM-1 and 4-hydroxynonenal expression after 150-sec FeCl3 stimulation. Based on these results, we conclude that PHGG supplement can increase antioxidant protein expression and thus decrease oxidative stress induced arterial injury. PMID:19272178

  9. Elevated Expression of Immunoreceptor Tyrosine-Based Inhibitory Motif (TIGIT) on T Lymphocytes is Correlated with Disease Activity in Rheumatoid Arthritis.

    PubMed

    Luo, Qing; Deng, Zhen; Xu, Chuxin; Zeng, Lulu; Ye, Jianqing; Li, Xue; Guo, Yang; Huang, Zikun; Li, Junming

    2017-03-10

    BACKGROUND It is well known that lymphocytes play an important role in rheumatoid arthritis (RA). T cell immunoreceptors with immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif (TIGIT) have immunosuppressive co-stimulatory molecules that mediate inhibitory effects, but their roles in RA are poorly understood. MATERIAL AND METHODS Were recruited 76 patients with RA and 33 healthy controls (HC). Clinical manifestations, laboratory measurements, physical examination, and medical history of RA patients were recorded. The expression of TIGIT on CD3+ T lymphocytes, B lymphocytes, monocytes, neutrophils, CD3+CD4+ T lymphocytes, and CD3+CD8+ T lymphocytes was determined using flow cytometry. The expression of TIGIT on T lymphocytes in patients with RA was further analyzed to investigate its correlations with markers of autoimmune response, inflammation, and disease activity in RA. RESULTS Compared with HC, the expression levels of TIGIT on CD3+CD4+ T lymphocytes and CD3+CD8+ T lymphocytes were significantly increased in patients with RA (P < 0.01). The frequency of TIGIT-expressing CD3+CD4+ T lymphocytes was positively correlated with RF, increased ACPA, ESR, and CRP levels. The frequency of TIGIT-expressing CD3+CD8+ T lymphocytes was positively correlated with RF and ESR levels. Furthermore, the expression level of TIGIT on CD3+CD4+ T lymphocytes was positively correlated with the DAS28 score in RA. CONCLUSIONS The expression levels of TIGIT on T lymphocytes were elevated and correlated with disease activity in RA.

  10. Inverse Relationship of the CMKLR1 Relative Expression and Chemerin Serum Levels in Obesity with Dysmetabolic Phenotype and Insulin Resistance

    PubMed Central

    Corona-Meraz, Fernanda-Isadora; Navarro-Hernández, Rosa-Elena; Ruíz-Quezada, Sandra-Luz; Madrigal-Ruíz, Perla-Monserrat; Castro-Albarrán, Jorge; Chavarría-Ávila, Efraín; Guzmán-Ornelas, Milton-Omar; Gómez-Bañuelos, Eduardo; Petri, Marcelo-Herón; Ramírez-Cedano, Joel-Isidro; Aguilar-Aldrete, María-Elena; Ríos-Ibarra, Clara; Vázquez-Del Mercado, Mónica

    2016-01-01

    Background. In obesity there is a subclinical chronic low-grade inflammatory response where insulin resistance (IR) may develop. Chemerin is secreted in white adipose tissue and promotes low-grade inflammatory process, where it expressed CMKLR1 receptor. The role of chemerin and CMKLR1 in inflammatory process secondary to obesity is not defined yet. Methods. Cross-sectional study with 134 individuals classified as with and without obesity by body mass index (BMI) and IR. Body fat storage measurements and metabolic and inflammatory markers were measured by routine methods. Soluble chemerin and basal levels of insulin by ELISA and relative expression of CMKLR1 were evaluated with qPCR and 2−ΔΔCT method. Results. Differences (P < 0.05) were observed between obesity and lean individuals in body fat storage measurements and metabolic-inflammatory markers. Both CMKLR1 expression and chemerin levels were increased in obesity without IR. Soluble chemerin levels correlate with adiposity and metabolic markers (r = 8.8% to 38.5%), P < 0.05. Conclusion. The increment of CMKLR1 expression was associated with insulin production. Increased serum levels of chemerin in obesity were observed, favoring a dysmetabolic response. The results observed in this study suggest that both chemerin and CMKLR1 have opposite expression in the context of low-grade inflammatory response manifested in the development of IR. PMID:27239101

  11. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  12. Efficacy of lycopene on modulation of renal antioxidant enzymes, ACE and ACE gene expression in hyperlipidaemic rats.

    PubMed

    Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum

    2016-07-01

    We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.

  13. Nuclear 82-kDa choline acetyltransferase decreases amyloidogenic APP metabolism in neurons from APP/PS1 transgenic mice.

    PubMed

    Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane

    2014-09-01

    Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to increased levels of Aβ. Decreasing levels of 82-kDa ChAT due to increasing age or neurodegeneration could alter the balance towards increasing Aβ production, with this potentiating the decline in function of cholinergic neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-β1, and vascular endothelial growth factor.

    PubMed

    Abrahams, Alferso C; Habib, Sayed M; Dendooven, Amélie; Riser, Bruce L; van der Veer, Jan Willem; Toorop, Raechel J; Betjes, Michiel G H; Verhaar, Marianne C; Watson, Christopher J E; Nguyen, Tri Q; Boer, Walther H

    2014-01-01

    Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis. Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA. Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P < 0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P < 0.001), TGFβ1 (24-fold, P < 0.05), and VEGF (77-fold, P < 0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0 ± 4.5 vs. 0.91 ± 0.92 ng/ml, P < 0.01), while plasma CCN2 levels were not increased. Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2 as biomarker and target for CCN2-inhibiting agents to prevent or treat EPS warrants further study.

  15. Patients with Encapsulating Peritoneal Sclerosis Have Increased Peritoneal Expression of Connective Tissue Growth Factor (CCN2), Transforming Growth Factor-β1, and Vascular Endothelial Growth Factor

    PubMed Central

    Abrahams, Alferso C.; Habib, Sayed M.; Dendooven, Amélie; Riser, Bruce L.; van der Veer, Jan Willem; Toorop, Raechel J.; Betjes, Michiel G. H.; Verhaar, Marianne C.; Watson, Christopher J. E.; Nguyen, Tri Q.; Boer, Walther H.

    2014-01-01

    Introduction Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFβ1 and VEGF, in different stages of peritoneal fibrosis. Materials and methods Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA. Results Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P<0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGFβ1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P<0.001), TGFβ1 (24-fold, P<0.05), and VEGF (77-fold, P<0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0±4.5 vs. 0.91±0.92 ng/ml, P<0.01), while plasma CCN2 levels were not increased. Conclusions Peritoneal expression of CCN2, TGFβ1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2 as biomarker and target for CCN2-inhibiting agents to prevent or treat EPS warrants further study. PMID:25384022

  16. Analysis of FMR1 gene expression in female premutation carriers using robust segmented linear regression models

    PubMed Central

    García-Alegría, Eva; Ibáñez, Berta; Mínguez, Mónica; Poch, Marisa; Valiente, Alberto; Sanz-Parra, Arantza; Martinez-Bouzas, Cristina; Beristain, Elena; Tejada, Maria-Isabel

    2007-01-01

    Fragile X syndrome is caused by the absence or reduction of the fragile X mental retardation protein (FMRP) because FMR1 gene expression is reduced. Alleles with repeat sizes of 55–200 are classified as premutations, and it has been demonstrated that FMR1 expression is elevated in the premutation range. However, the majority of the studies reported were performed in males. We studied FMR1 expression in 100 female fragile X family members from the northern region of Spain using quantitative (fluorescence) real-time polymerase chain reaction. Of these 100 women, 19 had normal alleles, 19 were full mutation carriers, and 62 were premutation carriers. After confirming differences between the three groups of females, and increased levels of the FMR1 transcript among premutation carriers, we found that the relationship between mRNA levels and repeat size is nonlinear. These results were obtained using a novel methodology that, based on the size of the CGG repeats, allows us to find out the most probable threshold from which the relationship between CGG repeat number and mRNA levels changes. Using this approach, a significant positive correlation between CGG repeats and total mRNA levels has been found in the premutation range <100 CGG, but this correlation diminishes from 100 onward. However, when correcting by the X inactivation ratio, mRNA levels increase as the number of CGG repeats increases, and this increase is highly significant over 100 CGG. We suggest that due to skewed X inactivation, mRNA levels tend to normalize in females when the number of CGG repeats increases. PMID:17449730

  17. Unloading-induced bone loss was suppressed in gold-thioglucose treated mice.

    PubMed

    Hino, K; Nifuji, A; Morinobu, M; Tsuji, K; Ezura, Y; Nakashima, K; Yamamoto, H; Noda, M

    2006-10-15

    Loss of mechanical stress causes bone loss. However, the mechanisms underlying the unloading-induced bone loss are largely unknown. Here, we examined the effects of gold-thioglucose (GTG) treatment, which destroys ventromedial hypothalamus (VMH), on unloading-induced bone loss. Unloading reduced bone volume in control (saline-treated) mice. Treatment with GTG-reduced bone mass and in these GTG-treated mice, unloading-induced reduction in bone mass levels was not observed. Unloading reduced the levels of bone formation rate (BFR) and mineral apposition rate (MAR). GTG treatment also reduced these parameters and under this condition, unloading did not further reduce the levels of BFR and MAR. Unloading increased the levels of osteoclast number (Oc.N/BS) and osteoclast surface (Oc.S/BS). GTG treatment did not alter the basal levels of these bone resorption parameters. In contrast to control, GTG treatment suppressed unloading-induced increase in the levels of Oc.N/BS and Oc.S/BS. Unloading reduced the levels of mRNA expression of the genes encoding osteocalcin, type I collagen and Cbfa1 in bone. In contrast, GTG treatment suppressed such unloading-induced reduction of mRNA expression. Unloading also enhanced the levels of fat mass in bone marrow and mRNA expression of the genes encoding PPARgamma2, C/EBPalpha, and C/EBPbeta in bone. In GTG-treated mice, unloading did not increase fat mass and the levels of fat-related mRNA expression. These results indicated that GTG treatment suppressed unloading-induced alteration in bone loss. 2006 Wiley-Liss, Inc.

  18. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat.

    PubMed

    Hondares, Elayne; Rosell, Meritxell; Gonzalez, Frank J; Giralt, Marta; Iglesias, Roser; Villarroya, Francesc

    2010-03-03

    Plasma FGF21 levels and hepatic FGF21 gene expression increase dramatically after birth in mice. This induction is initiated by suckling, requires lipid intake, is impaired in PPARalpha null neonates, and is mimicked by treatment with the PPARalpha activator, Wy14,643. Neonates exhibit reduced FGF21 expression in response to fasting, in contrast to the upregulation occurring in adults. Changes in FGF21 expression due to suckling or nutritional manipulations were associated with circulating free fatty acid and ketone body levels. We mimicked the FGF21 postnatal rise by injecting FGF21 into fasting neonates, and found that this enhanced the expression of genes involved in thermogenesis within brown fat, and increased body temperature. Brown adipocytes treated with FGF21 exhibited increased expression of thermogenic genes, higher total and uncoupled respiration, and enhanced glucose oxidation. We propose that the induction of FGF21 production by the liver mediates direct activation of brown fat thermogenesis during the fetal-to-neonatal transition. 2010 Elsevier Inc. All rights reserved.

  19. Peroxisome Proliferator-Activated Receptor β/δ Cross Talks with E2F and Attenuates Mitosis in HRAS-Expressing Cells

    PubMed Central

    Zhu, Bokai; Khozoie, Combiz; Bility, Moses T.; Ferry, Christina H.; Blazanin, Nicholas; Glick, Adam B.; Gonzalez, Frank J.

    2012-01-01

    The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G2/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis. PMID:22473992

  20. Increased levels of circulating platelet derived microparticles in Crohn's disease patients.

    PubMed

    Tziatzios, Georgios; Polymeros, Dimitrios; Spathis, Aris; Triantafyllou, Maria; Gkolfakis, Paraskevas; Karakitsos, Petros; Dimitriadis, George; Triantafyllou, Konstantinos

    2016-10-01

    Platelet activation is a consistent feature in inflammatory bowel disease. However, the role of circulating platelet derived microparticles (PDMPs) and the effects of disease activity and treatment on their levels has not been clarified yet in this disorder. Using flow cytometry, we measured platelet derived microparticles and platelet derived microparticles expressing Annexin V in platelet rich plasma from 47 Crohn's disease and 43 ulcerative colitis patients and 24 healthy controls. Crohn's disease patients have greater PDMPs (0.31% ± 0.07% versus 0.14% ± 0.04%, p = 0.02) and PDMPs expressing Annexin V (27% ± 2.6% versus 14.6% ± 2.7%, p = 0.002) levels in comparison with healthy controls; however, both microparticles levels are not related with disease activity. Crohn's disease patients on 5-ASA therapy show lower levels of PDMPs in comparison with those on no 5-ASA (0.30% ± 0.07% versus 0.32% ± 0.09%, p = 0.048). Ulcerative colitis patients have similar PDMPs and PDMPs expressing Annexin V levels, compared to healthy controls (p = 0.06 and p = 0.2, respectively) and there is no correlation of both microparticles expression with disease activity. 5-ASA has no effect on both microparticles levels in ulcerative colitis patients. Anti-TNF-α treatment has no effect on study's microparticles expression in Crohn's and ulcerative colitis patients. Circulating levels of platelet derived microparticles are increased only in Crohn's patients, but they do not correlate with disease activity. 5-ASA treatment is associated with lower levels of PDMPs only in Crohn's, while anti-TNF-α treatment does not influence expression of microparticles in inflammatory bowel disease patients.

  1. Reversible Ca2+-induced fast-to-slow transition in primary skeletal muscle culture cells at the mRNA level

    PubMed Central

    Meißner, Joachim D; Kubis, Hans-Peter; Scheibe, Renate J; Gros, Gerolf

    2000-01-01

    The adult fast character and a Ca2+-inducible reversible transition from a fast to a slow type of rabbit myotube in a primary culture were demonstrated at the mRNA level by Northern blot analysis with probes specific for different myosin heavy chain (MyHC) isoforms and enzymes of energy metabolism. No non-adult MyHC isoform mRNA was detected after 22 days of culture. After 4 weeks of culture the fast MyHCIId mRNA was strongly expressed while MyHCI mRNA was virtually absent, indicating the fast adult character of the myotubes in the primary skeletal muscle culture. The data show that a fast-to-slow transition occurred in the myotubes at the level of MyHC isoform gene expression after treatment with the Ca2+ ionophore A23187. The effects of ionophore treatment were decreased levels of fast MyHCII mRNA and an augmented expression of the slow MyHCI gene. Changes in gene expression started very rapidly 1 day after the onset of ionophore treatment. Levels of citrate synthase mRNA increased and levels of glyceraldehyde 3-phosphate dehydrogenase mRNA decreased during ionophore treatment. This points to a shift from anaerobic to oxidative energy metabolism in the primary skeletal muscle culture cells at the level of gene expression. Withdrawal of the Ca2+ ionophore led to a return to increased levels of MyHCII mRNA and decreased levels of MyHCI mRNA, indicating a slow-to-fast transition in the myotubes and the reversibility of the effect of ionophore on MyHC isoform gene expression. PMID:10673542

  2. l-Homocarnosine attenuates inflammation in cerebral ischemia-reperfusion injury through inhibition of nod-like receptor protein 3 inflammasome.

    PubMed

    Huang, Jing; Wang, Tao; Yu, Daorui; Fang, Xingyue; Fan, Haofei; Liu, Qiang; Yi, Guohui; Yi, Xinan; Liu, Qibin

    2018-06-08

    We investigated the therapeutic effects of l-homocarnosine against inflammation in a rat model of cerebral ischemia-reperfusion injury. Rats were grouped into control, middle cerebral artery occlusion (MCAO), 0.5 mM l-homocarnosine + MCAO, and 1 mM l-homocarnosine + MCAO treatment groups. Superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase, lipid peroxidation, and reduced glutathione (GSH) levels were measured. Neurological scores were assessed, and histopathology, scanning electron microscopy (SEM), and fluorescence microscopy analyses were conducted. The mRNA expression levels of nod-like receptor protein 3 (NLRP3), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) and protein expression levels of NLRP3 were assessed. l-Homocarnosine supplementation substantially increased SOD, catalase, Gpx, and GSH levels, whereas it reduced the levels of lipid peroxidation relative to MCAO rats. l-Homocarnosine significantly reduced the infarct area and neurological deficit score, as well as histopathological alteration, apoptosis, and necrosis in brain tissue. The mRNA expression levels of NLRP3, TNF-α, and IL-6 were increased in MCAO rats, whereas l-homocarnosine supplementation reduced mRNA expression by >40%, and NLRP3 protein expression was reduced by >30% in 1 mM l-homocarnosine-treated MCAO rats. We propose that l-homocarnosine exerts a protective effect in cerebral ischemia-reperfusion injury-induced rats by downregulating NLRP3 expression. Copyright © 2017. Published by Elsevier B.V.

  3. Effect of temperature on gene expression in the pearl oyster Pinctada fucata

    NASA Astrophysics Data System (ADS)

    Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian

    2014-06-01

    In this study, we examined the effect of elevated temperature on the expression patterns of genes, i.e., nacrein, irr, n16, n19, and hsp70 in the pearl oyster Pinctada fucata. The experiment was carried out at 4 temperatures, i.e., 20°C (ambient, control), 24, 28°C, and 32°C. The expression levels of target genes in P. fucata were assayed at 0, 6, 24, 48, and 96 h via real-time polymerase chain reaction. Results showed that the expression levels of nacrein and irr had no significant variations among different time points below 28°C, but significantly increased over time at 32°C. The expression levels of n16 and n19 did not change markedly at 20°C. The former increased significantly at 6 h and 24 h while the latter substantially decreased during 6-96 h at 24, 28 and 32°C. Among different temperatures, the level of n16 was significantly lower at 20°C than at other temperatures during 6-96 h, and the level of n19 significantly varied among different temperatures at 48 h and 96 h. The expression level of hsp70 was significantly higher at 32°C than at 20, 24 and 28°C at 24 h. These results demonstrated that elevated temperature impacted the physiological processes of P. fucata and potentially influenced its adaptability to thermal stress.

  4. Transcript profiling of pattern recognition receptors in a semi domesticated breed of buffalo, Toda, of India.

    PubMed

    Vignesh, A R; Dhanasekaran, S; Raj, G Dhinakar; Balachandran, C; Pazhanivel, N; Sreekumar, C; Tirumurugaan, K G; Raja, A; Kumanan, K

    2012-06-15

    The primary objective of this study was to assess the expression profile and levels of toll-like receptor (TLR) mRNAs in the spleen, lung, mediastinal lymph node (MLN), jejunum, rectum, skin and peripheral blood mononuclear cells (PBMC) of Toda and Murrah buffalos. Spleen and PBMC had increased expression of TLR mRNAs 2, 4, 5, 6, 8, 9 and 10; lung had increased expression of TLR mRNAs 2, 4, 5, 6 and 8, MLN TLR mRNA 6, 9, 10 and decrease in TLR 3 and 7 mRNAs in skin. No significant differences were observed in the expression levels of any of the TLR mRNA in jejunum and rectum. Toda buffaloes showed significantly higher expression levels of TLR 9 mRNA in MLN, TLR mRNAs 1, 5, 6, 9 and 10 in skin and TLR mRNAs 2, 4, 7 and 9 in PBMC than Murrah buffaloes living in the vicinity. Toda and Murrah buffaloes were inoculated with TLR5 (flagellin) and TLR9 (CpG ODN) ligands in vivo and expression levels of the respective TLRs analyzed 12h later. Following CpG inoculation, Toda buffaloes had significantly higher levels of TLR 9 mRNA expression but not in Murrah. However, flagellin induction did not increase TLR 5 mRNA expression in both these breeds. Histological sections of the skin were made and infiltrating cell clusters were graded and quantified. Following CpG inoculation, Toda buffaloes showed higher numbers of infiltrating grade 1 and grade 3 cell clusters while Murrah showed lower numbers of infiltrating grade 1 cells as compared to mock-inoculated skin sections. Flagellin treatment revealed no significant differences in infiltrating cell clusters in both the breeds. The results have shown differential expression of TLR mRNAs in various tissues between two divergent buffalo breeds with the highest difference in TLR expression profile seen in the skin, the largest portal of entry of pathogens, of Toda. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Bcl-2 Allows Effector and Memory CD8+ T Cells To Tolerate Higher Expression of Bim

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Moreno-Fernandez, Maria E.; Sholl, Allyson; Katz, Jonathan D.; Grimes, H. Leighton; Hildeman, David A.

    2014-01-01

    As acute infections resolve, most effector CD8+ T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8+ T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8+ T cells reported to have a longer lifespan (i.e., KLRG1lowCD127high) have increased levels of Bcl-2 compared with their shorter-lived KLRG1highCD127low counterparts. Surprisingly, we found that these effector KLRG1lowCD127high CD8+ T cells also had increased levels of Bim compared with KLRG1highCD127low cells. Similar effects were observed in memory cells, in which CD8+ central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8+ effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8+ T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8+ T cells. Finally, we found that Bim levels were significantly increased in effector CD8+ T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate. PMID:21451108

  6. Gestational Protein Restriction Increases Angiotensin II Production in Rat Lung1

    PubMed Central

    Gao, Haijun; Yallampalli, Uma; Yallampalli, Chandra

    2013-01-01

    ABSTRACT Gestational protein restriction (PR) alters the renin-angiotensin system in uterine arteries and placentas and elevates plasma levels of angiotensin II in pregnant rats. To date, how PR increases maternal plasma levels of angiotensin II remains unknown. In this study, we hypothesize that the expression and/or the activity of angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 (ACE) in lungs, but not kidneys and blood, largely contribute to elevated plasma angiotensin II levels in pregnant rats subject to gestational PR. Time-scheduled pregnant Sprague-Dawley rats were fed a normal or low-protein diet from Day 3 of pregnancy until euthanized at Day 19 or 22. Expressions of Ace and Ace2 (angiotens in I converting enzyme [peptidyl-dipeptidase A] 2) in lungs and kidneys from pregnant rats by quantitative real-time PCR and Western blotting, and the activities of these proteins in lungs, kidneys, and plasma, were measured. The mRNA levels of Ace and Ace2 in lungs were elevated by PR at both Days 19 and 22 of pregnancy. The abundance of ACE protein in lungs was increased, but ACE2 protein was decreased, by PR. The activities of ACE, but not ACE2, in lungs were increased by PR. PR did not change expressions of Ace and Ace2, the activities of both ACE and ACE2 in kidneys, and the abundance and activity of plasma ACE. These findings suggest that maternal lungs contribute to the elevated plasma levels of angiotensin II by increasing both the expression and the activity of ACE in response to gestational PR. PMID:23365412

  7. Changes in the Brain Endocannabinoid System in Rat Models of Depression.

    PubMed

    Smaga, Irena; Jastrzębska, Joanna; Zaniewska, Magdalena; Bystrowska, Beata; Gawliński, Dawid; Faron-Górecka, Agata; Broniowska, Żaneta; Miszkiel, Joanna; Filip, Małgorzata

    2017-04-01

    A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB 1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB 2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB 1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).

  8. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors, Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2008-10-01

    recombinant KNG (25 ng/ml) for 24 h period resulted in a 5-fold increase in the levels of phospho- HSP27 and a 3-fold increase in ERK1/2...the levels of phospho- HSP27 . KNG increased normal and pagetic marrow stromal cell proliferation at 1.4-fold and 2.5-fold, respectively. KNG in the...presence of an ERK inhibitor peptide did not stimulate pagetic marrow stromal cell proliferation. Furthermore, siRNA suppression of HSP27 expression

  9. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors, Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2006-10-01

    recombinant KNG (25 ng/ml) for 24 h period resulted in a 5-fold increase in the levels of phospho- HSP27 and a 3-fold increase in ERK1/2 phosphorylation in...levels of phospho- HSP27 . KNG increased normal and pagetic marrow stromal cell proliferation at 1.4-fold and 2.5-fold, respectively. KNG in the presence of...an ERK inhibitor peptide did not stimulate pagetic marrow stromal cell proliferation. Furthermore, siRNA suppression of HSP27 expression

  10. Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels.

    PubMed

    Buggio, Maurizio; Towe, Christopher; Annan, Anand; Kaliberov, Sergey; Lu, Zhi Hong; Stephens, Calvin; Arbeit, Jeffrey M; Curiel, David T

    2016-01-01

    Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Substance P enhances collagen remodeling and MMP-3 expression by human tenocytes.

    PubMed

    Fong, Gloria; Backman, Ludvig J; Hart, David A; Danielson, Patrik; McCormack, Bob; Scott, Alex

    2013-01-01

    The loss of collagen organization is considered a hallmark histopathologic feature of tendinosis. At the cellular level, tenocytes have been shown to produce signal substances that were once thought to be restricted to neurons. One of the main neuropeptides implicated in tendinosis, substance P (SP), is known to influence collagen organization, particularly after injury. The aim of this study was to examine the influence of SP on collagen remodeling by primary human tendon cells cultured in vitro in three-dimensional collagen lattices. We found that SP stimulation led to an increased rate of collagen remodeling mediated via the neurokinin-1 receptor (NK-1 R), the preferred cell receptor for SP. Gene expression analysis showed that SP stimulation resulted in significant increases in MMP3, COL3A1 and ACTA2 mRNA levels in the collagen lattices. Furthermore, cyclic tensile loading of tendon cell cultures along with the administration of exogenous SP had an additive effect on MMP3 expression. Immunoblotting confirmed that SP increased MMP3 protein levels via the NK-1 R. This study indicates that SP, mediated via NK-1 R, increases collagen remodeling and leads to increased MMP3 mRNA and protein expression that is further enhanced by cyclic mechanical loading. Copyright © 2012 Orthopaedic Research Society.

  12. Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells.

    PubMed

    Sonoki, Hiroyuki; Tanimae, Asami; Furuta, Takumi; Endo, Satoshi; Matsunaga, Toshiyuki; Ichihara, Kenji; Ikari, Akira

    2018-06-01

    Claudin-2 is highly expressed in human lung adenocarcinoma cells and involved in the promotion of proliferation. Here, we searched for a compound, which can decrease claudin-2 expression using lung adenocarcinoma A549 cells. In the screening using compounds included in royal jelly and propolis, the protein level of claudin-2 was dose-dependently decreased by caffeic acid phenethyl ester (CAPE), whereas the mRNA level and promoter activity were only decreased by 50 μM CAPE. These results suggest that CAPE down-regulates claudin-2 expression mediated by two different mechanisms. CAPE (50 μM) decreased the level of p-NF-κB, whereas it increased that of IκB. The CAPE-induced decrease in promoter activity of claudin-2 was blocked by the mutation in an NF-κB-binding site. The inhibition of NF-κB may be involved in the decrease in mRNA level of claudin-2. The CAPE (10 μM)-induced decrease in claudin-2 expression was inhibited by chloroquine, a lysosomal inhibitor. CAPE increased the expression and activity of protein phosphatase (PP) 1 and 2A. The CAPE-induced decrease in claudin-2 expression was blocked by cantharidin, a potent PPs inhibitor. The cell proliferation was suppressed by CAPE, which was partially rescued by ectopic expression of claudin-2. In addition, the toxicity and accumulation of doxorubicin in 3D spheroid cells were enhanced by CAPE, which was inhibited by ectopic expression of claudin-2. Taken together, CAPE down-regulates claudin-2 expression at the transcriptional and post-translational levels, and enhances sensitivity of cells to doxorubicin in 3D culture conditions. CAPE may be a useful adjunctive compound in the treatment of lung adenocarcinoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    PubMed

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  14. Evaluation of genes involved in prostaglandin action in equine endometrium during estrous cycle and early pregnancy.

    PubMed

    Atli, Mehmet O; Kurar, Ercan; Kayis, Seyit A; Aslan, Selim; Semacan, Ahmet; Celik, Sefa; Guzeloglu, Aydin

    2010-10-01

    The aim was to evaluate expression of genes involved in the biosynthesis of prostaglandins (PTG), Prostaglandin H Synthase-1 (PTGS1) and PTGS2, PGF synthase (PTGFS), and PGE synthase (PTGES), PGF receptor (PTGFR), PGE receptors (PTGER2 and PTGER4), prostaglandin transporter (SLCO2A1) and hydroxyprostaglandin dehydrogenase-15 (HPGD). Endometrial biopsies were obtained from mares on day of ovulation (d0, n=4), late diestrus (LD, n=4), early luteolysis (EL, n=4) and after luteolysis (AL, n=4) during the cycle. Stages of the cycle were confirmed by plasma progesterone concentrations measured daily and ultrasound examinations. Biopsies were also taken on days 14 (P14; n=4), 15 (P15, n=4), 18 (P18, n=4) and 22 (P22; n=4) of pregnancy. Relative mRNA expressions were quantified using real-time RT-PCR. A mixed model was fitted on the normalized data and least significant difference test (α=0.05) was employed. Expression of PTGS1 mRNA was low throughout the estrous cycle and early days of pregnancy, but upregulated on P18 and P22. PTGS2 expression was increased on EL, but it was suppressed by pregnancy on P15, P18, and P22. PTGFS expression was upregulated in both cyclic and pregnant mares compared to d0 and its level was the highest on LD. PTGFR expression was transiently increased on LD and EL and was suppressed during early pregnancy. Both PTGES and PTGER2 expressions were increased on LD, EL, and early pregnancy, but were decreased after the luteolysis in cyclic mares as they remained high on P18 and P22. PTGER4 expression did not change throughout the cycle and early pregnancy. Levels of HPGD and SLCO2A1 were significantly increased only on P22. In conclusion, PTGS2 expression increases around the time of luteolysis and concurrent upregulation of PTGFS and PTGES indicates that equine endometrium has increased capability of PTG production around the time of luteolysis. However, pregnancy reduces PTGS2 expression, but maintains the high levels of PTGES during early pregnancy along with PTGER2 while PTGFR expression was suppressed. These findings suggest that possible luteotrophic action of PGE₂ is required in early equine pregnancy. PTGS1 is only upregulated later in the early pregnancy suggesting that it is not involved in luteolysis, but could be the main PTGS enzyme at this time during early pregnancy. An increase in HPGD and SLCO2A1 levels on P22 indicates a tight regulation of PTG action by pregnancy. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Effects of exendin-4 and selenium on the expression of GLP-1R, IRS-1, and preproinsulin in the pancreas of diabetic rats.

    PubMed

    Barakat, Ghinwa; Moustafa, Mohamed E; Khalifeh, Ibrahim; Hodroj, Mohammad H; Bikhazi, Anwar; Rizk, Sandra

    2016-08-01

    The mechanisms by which exendin-4 and selenium exert their antidiabetic actions are still unclear. Here, we investigated the effects of exendin-4 or selenium administration on the expression of glucagon-like peptide-1 receptor (GLP-1R), insulin receptor substrate-1 (IRS-1), and preproinsulin in the pancreas of diabetic rats. Diabetes was induced by streptozotocin administration. Diabetic rats were injected intraperitoneally with 0.03 μg exendin-4/kg body weight/daily or treated with 5 ppm selenium in drinking water for a period of 4 weeks. GLP-1R and IRS-1 levels were decreased while the level of preproinsulin messenger RNA (mRNA) was increased in the pancreas of diabetic untreated rats, as compared to that in control rats. Treatment of diabetic rats with exendin-4 increased protein and mRNA levels of GLP-1R, and IRS-1, and the mRNA level of preproinsulin in the pancreas, as compared to their levels in diabetic untreated rats. Selenium treatment of diabetic rats increased the pancreatic mRNA levels of GLP-1R, IRS-1, and preproinsulin. Exendin-4 or selenium treatment of diabetic rats also increased the numbers of pancreatic islets and GLP-1R molecules in the pancreas. Therefore, exendin-4 and selenium may exert their antidiabetic effects by increasing GLP-1R, IRS-1, and preproinsulin expression in the pancreas and by increasing the number of pancreatic islets.

  16. Life-cycle and growth-phase-dependent regulation of the ubiquitin genes of Trypanosoma cruzi.

    PubMed

    Manning-Cela, Rebeca; Jaishankar, Sobha; Swindle, John

    2006-07-01

    Trypanosoma cruzi, the causative agent of Chagas disease, exhibits a complex life cycle that is accompanied by the stage-specific gene expression. At the molecular level, very little is known about gene regulation in trypanosomes. Complex gene organizations coupled with polycistronic transcription units make the analysis of regulated gene expression difficult in trypanosomes. The ubiquitin genes of T. cruzi are a good example of this complexity. They are organized as a single cluster containing five ubiquitin fusion (FUS) and five polyubiquitin (PUB) genes that are polycistronically transcribed but expressed differently in response to developmental and environmental changes. Gene replacements were used to study FUS and PUB gene expression at different stages of growth and at different points in the life cycle of T. cruzi. Based on the levels of reporter gene expression, it was determined that FUS1 expression was downregulated as the parasites approached stationary phase, whereas PUB12.5 polyubiquitin gene expression increased. Conversely, FUS1 expression increases when epimastigotes and amastigotes differentiate into trypomastigotes, whereas the expression of PUB12.5 decreases when epimastigotes differentiate into amastigotes and trypomastigotes. Although the level of CAT activity in logarithmic growing epimastigotes is six- to seven-fold higher when the gene was expressed from the FUS1 locus than when expressed from the PUB12.5 locus, the rate of transcription from the two loci was the same implying that post-transcriptional mechanisms play a dominant role in the regulation of gene expression.

  17. The Nuclear Receptor Corepressor Has Organizational Effects within the Developing Amygdala on Juvenile Social Play and Anxiety-Like Behavior

    PubMed Central

    Jessen, Heather M.; Kolodkin, Mira H.; Bychowski, Meaghan E.; Auger, Catherine J.; Auger, Anthony P.

    2010-01-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females. PMID:20051490

  18. The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior.

    PubMed

    Jessen, Heather M; Kolodkin, Mira H; Bychowski, Meaghan E; Auger, Catherine J; Auger, Anthony P

    2010-03-01

    Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior. We used real-time PCR to show that NCoR mRNA levels are sexually dimorphic, that females express higher levels of NCoR mRNA within the developing amygdala and hypothalamus, and that NCoR mRNA levels are reduced by estradiol treatment. To investigate the functional role of NCoR on juvenile social behavior, we infused small interfering RNA targeted against NCoR within the developing rat amygdala and assessed the enduring impact on juvenile social play behavior, sociability, and anxiety-like behavior. As expected, control males exhibited higher levels of juvenile social play than control females. Reducing NCoR expression during development further increased juvenile play in males only. Interestingly, decreased NCoR expression within the developing amygdala had lasting effects on increasing juvenile anxiety-like behavior in males and females. These data suggest that the corepressor NCoR functions to blunt sex differences in juvenile play behavior, a sexually dimorphic and hormone-dependent behavior, and appears critical for appropriate anxiety-like behavior in juvenile males and females.

  19. Post-harvest light treatment increases expression levels of recombinant proteins in transformed plastids of potato tubers.

    PubMed

    Larraya, Luis M; Fernández-San Millán, Alicia; Ancín, María; Farran, Inmaculada; Veramendi, Jon

    2015-09-01

    Plastid genetic engineering represents an attractive system for the production of foreign proteins in plants. Although high expression levels can be achieved in leaf chloroplasts, the results for non-photosynthetic plastids are generally discouraging. Here, we report the expression of two thioredoxin genes (trx f and trx m) from the potato plastid genome to study transgene expression in amyloplasts. As expected, the highest transgene expression was detected in the leaf (up to 4.2% of TSP). The Trx protein content in the tuber was approximately two to three orders of magnitude lower than in the leaf. However, we demonstrate that a simple post-harvest light treatment of microtubers developed in vitro or soil-grown tubers induces up to 55 times higher accumulation of the recombinant protein in just seven to ten days. After the applied treatment, the Trx f levels in microtubers and soil-grown tubers increased to 0.14% and 0.11% of TSP, respectively. Moreover, tubers stored for eight months maintained the capacity of increasing the foreign protein levels after the light treatment. Post-harvest cold induction (up to five times) at 4°C was also detected in microtubers. We conclude that plastid transformation and post-harvest light treatment could be an interesting approach for the production of foreign proteins in potato. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Soluble soy protein peptic hydrolysate stimulates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Goto, Tsuyoshi; Mori, Ayaka; Nagaoka, Satoshi

    2013-08-01

    The molecular mechanisms underlying the potential health benefit effects of soybean proteins on obesity-associated metabolic disorders have not been fully clarified. In this study, we investigated the effects of soluble soybean protein peptic hydrolysate (SPH) on adipocyte differentiation by using 3T3-L1 murine preadipocytes. The addition of SPH increased lipid accumulation during adipocyte differentiation. SPH increased the mRNA expression levels of an adipogenic marker gene and decreased that of a preadipocyte marker gene, suggesting that SPH promotes adipocyte differentiation. SPH induced antidiabetic and antiatherogenic adiponectin mRNA expression and secretion. Moreover, SPH increased the mRNA expression levels of insulin-responsive glucose transporter 4 and insulin-stimulated glucose uptake. The expression levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, during adipocyte differentiation were up-regulated in 3T3-L1 cells treated with SPH, and lipid accumulation during adipocyte differentiation induced by SPH was inhibited in the presence of a PPARγ antagonist. However, SPH did not exhibit PPARγ ligand activity. These findings indicate that SPH stimulates adipocyte differentiation, at least in part, via the up-regulation of PPARγ expression levels. These effects of SPH might be important for the health benefit effects of soybean proteins on obesity-associated metabolic disorders. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Treatment with topical steroids downregulates IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 gene expression in eosinophilic esophagitis.

    PubMed

    Lucendo, Alfredo J; De Rezende, Livia; Comas, Carmen; Caballero, Teresa; Bellón, Teresa

    2008-09-01

    Our aim was to evaluate the changes induced by topical steroid treatment to the esophageal epithelial inflammatory eosinophilic and T-cell infiltrate and to IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 esophageal gene expression levels in patients with eosinophilic esophagitis (EE). Esophageal biopsies were taken from eight adult patients at the moment of diagnosis and after 3-month treatment with fluticasone propionate. Eosinophils, CD8, and CD4 T cells were examined by immunohistochemistry. IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 gene expression levels were measured by real-time PCR. Eight control samples were also analyzed. A significant decrease in the eosinophil infiltrate and in CD8(+) T-cell density was observed in the esophageal epithelium from the patients upon steroid treatment. IL-5 was not detected in control samples, and expression levels were variably downregulated after treatment in six of the patients. Gene expression of eotaxin-1/CCL11 showed relevant downregulation in four cases and a modest twofold decrease in three of the patients studied. Mean CCL11 expression values upon steroid treatment were similar to control samples (19.4 +/- 28.6 vs 8.42 +/- 5, P= 0.7). Eotaxin-3/CCL26 gene expression levels were significantly increased in EE. Although they were significantly downregulated upon steroid treatment, control expression levels were not reached in any of the cases analyzed (580.9 +/- 943.9 vs 1.45 +/- 1.0, P= 0.001). Our results confirm that eotaxin-3/CCL26 is significantly increased in EE esophageal samples. However, the individual analysis of IL-5, CCL11, and CCL26 expression data suggests that several cytokines and chemokines could participate in the physiopathology of EE in humans.

  2. FOXP3 expression is modulated by TGF-β1/NOTCH1 pathway in human melanoma

    PubMed Central

    Skarmoutsou, Eva; Bevelacqua, Valentina; D'Amico, Fabio; Russo, Angela; Spandidos, Demetrios A.; Scalisi, Aurora

    2018-01-01

    Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability. PMID:29620159

  3. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    PubMed

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  4. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes

    PubMed Central

    de Oliveira, Miriane; Síbio, Maria Teresa De; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina

    2015-01-01

    Objective To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. Methods 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey’s test or Student’s t test, were used to analyze data, and significance level was set at 5%. Results Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. Conclusion These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases. PMID:25993072

  5. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes.

    PubMed

    Oliveira, Miriane de; de Síbio, Maria Teresa; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina

    2015-01-01

    To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey's test or Student's t test, were used to analyze data, and significance level was set at 5%. Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases.

  6. The effects of sildenafil citrate on urinary podocin and nephrin mRNA expression in an L-NAME model of pre-eclampsia.

    PubMed

    Baijnath, Sooraj; Murugesan, Saravanakumar; Mackraj, Irene; Gathiram, Prem; Moodley, Jagidesa

    2017-03-01

    We investigated the effects of sildenafil citrate (SC) on podocyturia in N ω -nitro-L-arginine methyl ester hydrochloride (L-NAME) model of pre-eclampsia (PE). One hundred and twenty Sprague-Dawley rats (SDR) were divided into five groups like pregnant control (PC), early-onset PE (EOPE), late-onset PE(LOPE), early and late-onset PE with SC-treated groups [EOPE (SC); LOPE (SC)]. PE was induced in SDR by oral administration of L-NAME in drinking water for 4-8 days for EOPE and 8-14 day for LOPE. The blood pressure, urine volume and total urine protein were increased in EOPE and LOPE groups when compared to PC, and all the above parameters decreased in EOPE (SC) and LOPE (SC) groups when compared to EOPE and LOPE groups, respectively. The EOPE and LOPE groups showed an increase in urinary nephrin mRNA and podocin mRNA levels compared to PC group. Increases in serum and renal soluble fms-like tyrosine kinase-1 (sFlt-1) expression levels and decreases in renal vascular endothelial growth factor (VEGF) expression and serum placenta growth factor (PlGF) levels were observed in EOPE and LOPE groups when compared to PC group. In addition, decreases in serum and renal sFlt-1 expression levels and increases in renal VEGF expression and serum PlGF levels were observed in EOPE (SC) and LOPE (SC) groups when compared to EOPE and LOPE groups, respectively. The light microscopy showed that the renal tissue of L-NAME-treated rats had extensive glomerular damage, tubular damage and infiltration by mononuclear cells when compared to PC group. Therefore, SC ameliorated podocyturia through its effects on the antiangiogenic/angiogenic status in this animal model.

  7. Inhibition of Inducible Nitric Oxide Synthase Attenuates Monosodium Urate-induced Inflammation in Mice

    PubMed Central

    Ju, Tae-Jin; Dan, Jin-Myoung; Cho, Young-Je

    2011-01-01

    The present study elucidated the effect of the selective inducible nitric oxide synthase (iNOS) inhibitor N6-(1-iminoethyl)-L-lysine (L-NIL) on monosodium urate (MSU) crystal-induced inflammation and edema in mice feet. L-NIL (5 or 10 mg/kg/day) was administered intraperitoneally 4 h before injection of MSU (4 mg) into the soles of mice hindlimb feet. Twenty-four hours after MSU injection, foot thickness was increased by 160% and L-NIL pretreatment reduced food pad swelling in a dose dependent manner. Pretreatment of 10 mg/kg/day L-NIL significantly suppressed the foot pad swelling by MSU. Plasma level of nitric oxide (NO) metabolites and gene expression and protein level of iNOS in feet were increased by MSU, which was suppressed by L-NIL pretreatment. Similar pattern of change was observed in nitrotyrosine level. MSU increased the gene expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β and L-NIL pretreatment suppressed MSU-induced cytokines expression. The mRNA levels of superoxide dismutase and glutathione peroxidase1 were increased by MSU and L-NIL pretreatment normalized the gene expression. Phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was increased by MSU, which was suppressed by L-NIL pretreatment. The mRNA levels of iNOS, TNF-α, and IL-1β were increased by MSU in human dermal fibroblasts, C2C12 myoblasts, and human fetal osteoblasts in vitro, which was attenuated by L-NIL in a dose dependent manner. This study shows that L-NIL inhibits MSU-induced inflammation and edema in mice feet suggesting that iNOS might be involved in MSU-induced inflammation. PMID:22359474

  8. Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice.

    PubMed

    Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R; Lawrence, Catherine B; Coll, Anthony P; White, Anne

    2016-11-01

    Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances.

  9. Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice

    PubMed Central

    Sefton, Charlotte; Harno, Erika; Davies, Alison; Small, Helen; Allen, Tiffany-Jayne; Wray, Jonathan R.; Lawrence, Catherine B.; Coll, Anthony P.

    2016-01-01

    Glucocorticoid (Gc) excess, from endogenous overproduction in disorders of the hypothalamic-pituitary-adrenal axis or exogenous medical therapy, is recognized to cause adverse metabolic side effects. The Gc receptor (GR) is widely expressed throughout the body, including brain regions such as the hypothalamus. However, the extent to which chronic Gcs affect Gc concentrations in the hypothalamus and impact on GR and target genes is unknown. To investigate this, we used a murine model of corticosterone (Cort)-induced obesity and analyzed Cort levels in the hypothalamus and expression of genes relevant to Gc action. Mice were administered Cort (75 μg/mL) or ethanol (1%, vehicle) in drinking water for 4 weeks. Cort-treated mice had increased body weight, food intake, and adiposity. As expected, Cort increased plasma Cort levels at both zeitgeber time 1 and zeitgeber time 13, ablating the diurnal rhythm. Liquid chromatography dual tandem mass spectrometry revealed a 4-fold increase in hypothalamic Cort, which correlated with circulating levels and concentrations of Cort in other brain regions. This occurred despite decreased 11β-hydroxysteroid dehydrogenase (Hsd11b1) expression, the gene encoding the enzyme that regenerates active Gcs, whereas efflux transporter Abcb1 mRNA was unaltered. In addition, although Cort decreased hypothalamic GR (Nr3c1) expression 2-fold, the Gc-induced leucine zipper (Tsc22d3) mRNA increased, which indicated elevated GR activation. In keeping with the development of hyperphagia and obesity, Cort increased Agrp, but there were no changes in Pomc, Npy, or Cart mRNA in the hypothalamus. In summary, chronic Cort treatment causes chronic increases in hypothalamic Cort levels and a persistent elevation in Agrp, a mediator in the development of metabolic disturbances. PMID:27649090

  10. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells.

    PubMed

    Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander

    2017-10-23

    Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression dynamics of retinoic acid driven mESC differentiation from pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach. We find that the exit from pluripotency marks the start of a lineage transition as well as a transient phase of increased susceptibility to lineage specifying signals. Our study reveals several transcriptional signatures of this phase, including a sharp increase of gene expression variability and sequential expression of two classes of transcriptional regulators. In summary, we provide a comprehensive analysis of the exit from pluripotency and lineage commitment at the single cell level, a potential stepping stone to improved lineage manipulation through timing of differentiation cues.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  12. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity.

    PubMed

    Du, William W; Fang, Ling; Yang, Weining; Wu, Nan; Awan, Faryal Mehwish; Yang, Zhenguo; Yang, Burton B

    2017-02-01

    Circular RNAs are a class of non-coding RNAs that are receiving extensive attention. Despite reports showing circular RNAs acting as microRNA sponges, the biological functions of circular RNAs remain largely unknown. We show that in patient tumor samples and in a panel of cancer cells, circ-Foxo3 was minimally expressed. Interestingly, during cancer cell apoptosis, the expression of circ-Foxo3 was found to be significantly increased. We found that silencing endogenous circ-Foxo3 enhanced cell viability, whereas ectopic expression of circ-Foxo3 triggered stress-induced apoptosis and inhibited the growth of tumor xenografts. Also, expression of circ-Foxo3 increased Foxo3 protein levels but repressed p53 levels. By binding to both, circ-Foxo3 promoted MDM2-induced p53 ubiquitination and subsequent degradation, resulting in an overall decrease of p53. With low binding affinity to Foxo3 protein, circ-Foxo3 prevented MDM2 from inducing Foxo3 ubiquitination and degradation, resulting in increased levels of Foxo3 protein. As a result, cell apoptosis was induced by upregulation of the Foxo3 downstream target PUMA.

  13. Oxidized low-density lipoprotein and upregulated expression of osteonectin and bone sialoprotein in vascular smooth muscle cells.

    PubMed

    Farrokhi, Effat; Samani, Keihan Ghatreh; Chaleshtori, Morteza Hashemzadeh

    2014-01-01

    Oxidative stress has been associated with the progression of atherosclerosis and activation of genes that lead to increased deposition of proteins in the extracellular matrix. Bone sialoprotein (BSP) and osteonectin are proteins involved in the initiation and progression of vascular calcification. To investigate the effect of oxidized low-density lipoprotein on osteonectin and BSP expression in human aorta vascular smooth muscle cells (HA/VSMCs). We treated HA/VSMCs with oxidized low-density lipoprotein (oxLDL) and measured the relative expression of osteonectin and BSP genes using the real-time polymerase chain reaction (PCR) method. We investigated the protein levels produced by each gene using the western blotting technique. oxLDL increased osteonectin and BSP levels (mean [SD], 9.1 [2.1]-fold and 4.2 [0.75]-fold, respectively) after 48 hours. The western blotting results also confirmed the increased levels of osteonectin and BSP. oxLDL may enhance vascular calcification by promoting the expression of osteonectin and BSP. Copyright© by the American Society for Clinical Pathology (ASCP).

  14. Proteome map of Aspergillus nidulans during osmoadaptation.

    PubMed

    Kim, Yonghyun; Nandakumar, M P; Marten, Mark R

    2007-09-01

    The model filamentous fungus Aspergillus nidulans, when grown in a moderate level of osmolyte (+0.6M KCl), was previously found to have a significantly reduced cell wall elasticity (Biotech Prog, 21:292, 2005). In this study, comparative proteomic analysis via two-dimensional gel electrophoresis (2de) and matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry was used to assess molecular level events associated with this phenomenon. Thirty of 90 differentially expressed proteins were identified. Sequence homology and conserved domains were used to assign probable function to twenty-one proteins currently annotated as "hypothetical." In osmoadapted cells, there was an increased expression of glyceraldehyde-3-phosphate dehydrogenase and aldehyde dehydrogenase, as well as a decreased expression of enolase, suggesting an increased glycerol biosynthesis and decreased use of the TCA cycle. There also was an increased expression of heat shock proteins and Shp1-like protein degradation protein, implicating increased protein turnover. Five novel osmoadaptation proteins of unknown functions were also identified.

  15. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment.

    PubMed

    Spasojevic, Natasa; Jovanovic, Predrag; Dronjak, Sladjana

    2015-03-01

    We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  16. Finding NEMO in preeclampsia.

    PubMed

    Sakowicz, Agata; Hejduk, Paulina; Pietrucha, Tadeusz; Nowakowska, Magdalena; Płuciennik, Elżbieta; Pospiech, Karolina; Gach, Agnieszka; Rybak-Krzyszkowska, Magda; Sakowicz, Bartosz; Kaminski, Marek; Krasomski, Grzegorz; Biesiada, Lidia

    2016-04-01

    The mechanism of preeclampsia and its way of inheritance are still a mystery. Biochemical and immunochemical studies reveal a substantial increase in tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 concentrations in the blood of women with preeclampsia. The level of these factors is regulated by nuclear facxtor-kappa B, whose activation in a classical pathway requires inhibitory kappa B kinase gamma (known as NEMO or IKBKG). Moreover, NEMO can schedule between cytoplasma and the nucleus. In the nucleus, IKBKG interacts with other proteins, and thus, it is implicated in the regulation of different gene expressions, which are related to cell cycle progression, proliferation, differentiation, and apoptosis. This is the first study investigating the association between the level of NEMO gene expression and the presence of preeclampsia. We tested the hypothesis that the simultaneous increase in NEMO gene expression both in the mother and her fetus may be responsible for the preeclampsia development. Moreover, the relationships between clinical risk factors of preeclampsia and the levels of NEMO gene expression in blood, umbilical cord blood, and placentas were investigated. A total of 91 women (43 preeclamptic women and 48 controls) and their children were examined. Real-time reverse transcription-polymerase chain reaction was used to assess the amount total NEMO messenger ribonucleic acid (mRNA) content and the mRNA level of each NEMO transcript from exons 1A, 1B, and 1C in maternal blood, umbilical cord blood, and placentas. Univariate analyses and correlation tests were performed to examine the association between NEMO gene expression and preeclampsia. Newborn weight and height, maternal platelet number, and gestational age (week of delivery) were lower in the group of women with preeclampsia than controls. NEMO gene expression level was found to be almost 7 times higher in the group of women with preeclampsia than healthy controls. The correlation analysis found that a simultaneous increase in the expression level of total NEMO mRNA in maternal blood and the mRNA for total NEMO (Rs = 0.311, P < .05), transcripts 1A (Rs = 0.463, P < .01), 1B (Rs = 0.454, P < .01), and 1C (Rs = 0.563, P < .001) in fetal blood was observed in preeclamptic pregnancies. In addition, the mRNA levels for total NEMO and transcripts 1A, 1B, and 1C were lower in placentas derived from pregnancies complicated by preeclampsia. Simultaneous increase of NEMO gene expression in maternal and fetal blood seems to be relevant for preeclampsia development. The results of our study also suggest that a decreased NEMO gene expression level in preeclamptic placentas may be the main reason for their intensified apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Distribution of cellular HSV-1 receptor expression in human brain.

    PubMed

    Lathe, Richard; Haas, Juergen G

    2017-06-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  18. Heat Shock Protein-90 Inhibitors Enhance Antigen Expression on Melanomas and Increase T Cell Recognition of Tumor Cells

    PubMed Central

    Haggerty, Timothy J.; Dunn, Ian S.; Rose, Lenora B.; Newton, Estelle E.; Pandolfi, Franco; Kurnick, James T.

    2014-01-01

    In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer. PMID:25503774

  19. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    NASA Astrophysics Data System (ADS)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  20. Promotion of Metastasis-associated Gene Expression in Survived PANC-1 Cells Following Trichostatin A Treatment.

    PubMed

    Chen, Zongjing; Yang, Yunxiu; Liu, Biao; Wang, Benquan; Sun, Meng; Zhang, Ling; Chen, Bicheng; You, Heyi; Zhou, Mengtao

    2015-01-01

    Histone deacetylase inhibitors represent a promising class of potential anticancer agents for the treatment of human malignancies. In this study, the effects of trichostatin A (TSA) on apoptosis, metastasis-associated gene expression, and activation of the Notch pathway in human pancreatic cancer cell lines were investigated. After treatment with TSA, cell viability and apoptosis were evaluated using the MTT [3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide] assay, Hoechst 33258 staining, and flow cytometry. Moreover, RT-PCR and western blot analyses were performed to measure the expression levels of apoptosis-associated genes (Bcl-2, Bax, and caspase-3), metastasis-associated genes (E-cadherin, vimentin, and matrix metalloproteinases), and Notch pathway activation (Notch intracellular domain, NICD). The levels of matrix metalloproteinase 2 and NICD were also semi-quantified by immunoassay. Following treatment with TSA for 24 h, PANC-1, SW1990, and MIATACA-2 cells exhibited cell death. The MTT assay revealed that TSA significantly decreased cell viability in a dose-dependent manner in PANC-1 cells. The Hoechst 33258 staining and flow cytometry results evidenced a significant increase in PANC-1 cell apoptosis following TSA treatment. The expression levels of Bax and caspase-3 were increased significantly, whereas Bcl-2 was down-regulated after TSA treatment. In the PANC-1 cells that survived after TSA treatment, the expression levels of vimentin, E-cadherin, and MMP genes were altered by the promotion of potential metastasis and increased expression of NICD. TSA can induce apoptosis of pancreatic cancer cells. In addition, the up-regulation of metastasis-related genes and the activation of the Notch pathway in the survived PANC-1 cells may be associated with a too-low level of TSA or resistance to TSA.

  1. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels

    PubMed Central

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants. PMID:29320529

  2. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    PubMed

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  3. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/submore » 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.« less

  4. Apoptosis and expression of apoptosis-related genes in the mouse testis following heat exposure.

    PubMed

    Miura, Michiharu; Sasagawa, Isoji; Suzuki, Yasuhiro; Nakada, Teruhiro; Fujii, Junichi

    2002-04-01

    To investigate molecular mechanisms of germ cell apoptosis induced by heat exposure in mice. Controlled laboratory study. Departments of Urology and Biochemistry, Yamagata University School of Medicine, Yamagata, Japan. Forty-four male B6D2F1 mice. Heat exposure, 43 degrees C for 15 minutes. Testicular germ cell apoptosis (percentages of apoptotic tubules and apoptotic cells) was assessed by using DNA nick-end labeling, and expression of Bcl-2 family, Fas-FasL system, and p53 was evaluated by using Western analysis. Bilateral testicular weights decreased significantly from 3 days after heat exposure. Percentages of apoptotic tubules and apoptotic germ cells increased significantly from 1 day after heat exposure. There were no significant changes in the levels of Bcl-xl, Bad, and Bax after heat exposure. However, Bcl-2 expression level decreased significantly 7 days after heat exposure. In contrast, the expression level of Fas and p53 increased significantly from 1 day to 3 days after heat exposure, respectively. Expression level of FasL elevated significantly at days 1 and 2 but declined from day 3. Germ cell apoptosis induced by heat exposure is mainly mediated by the Fas-FasL system.

  5. Limbic and prefrontal responses to facial emotion expressions in depersonalization.

    PubMed

    Lemche, Erwin; Surguladze, Simon A; Giampietro, Vincent P; Anilkumar, Ananthapadmanabha; Brammer, Michael J; Sierra, Mauricio; Chitnis, Xavier; Williams, Steven C R; Gasston, David; Joraschky, Peter; David, Anthony S; Phillips, Mary L

    2007-03-26

    Depersonalization disorder, characterized by emotional detachment, has been associated with increased prefrontal cortical and decreased autonomic activity to emotional stimuli. Event-related fMRI with simultaneous measurements of skin conductance levels occurred in nine depersonalization disorder patients and 12 normal controls to neutral, mild and intense happy and sad facial expressions. Patients, but not controls, showed decreases in subcortical limbic activity to increasingly intense happy and sad facial expressions, respectively. For both happy and sad expressions, negative correlations between skin conductance measures in bilateral dorsal prefrontal cortices occurred only in depersonalization disorder patients. Abnormal decreases in limbic activity to increasingly intense emotional expressions, and increases in dorsal prefrontal cortical activity to emotionally arousing stimuli may underlie the emotional detachment of depersonalization disorder.

  6. N-acetylcysteine augments adenovirus-mediated gene expression in human endothelial cells by enhancing transgene transcription and virus entry.

    PubMed

    Jornot, L; Morris, M A; Petersen, H; Moix, I; Rochat, T

    2002-01-01

    It has previously been shown that oxidants reduce the efficiency of adenoviral transduction in human umbilical vein endothelial cells (HUVECs). In this study, the effect of the antioxidant N-acetylcysteine (NAC) in adenovirus-mediated gene transfer has been investigated. HUVECs were pretreated or not with NAC, and infected with E1E3-deleted adenovirus (Ad) containing the LacZ gene expressed from the RSV-LTR promoter/enhancer in the presence and absence of NAC. Transgene expression was assessed at the protein level (histochemical staining, measurement of beta-Gal activity, and western blot), mRNA level (real-time RT-PCR) and gene level (nuclear run on) 24 h and 48 h after infection. Adenoviral DNA was quantitated by real-time PCR, and cell surface expression of Coxsackie/adenovirus receptors (CAR) was determined by FACS analysis. Pretreatment of cells with NAC prior to Ad infection enhanced beta-Gal activity by two-fold due to an increase in viral DNA, which was related to increased CAR expression. When NAC was present only during the post-infection period, a five-fold increase in beta-Gal activity and LacZ gene transcriptional activity was observed. When NAC was present during both the pretreatment and the post-infection period, beta-Gal activity was further enhanced, by 15-fold. Augmentation of beta-Gal activity was paralleled by an increase in beta-Gal protein and mRNA levels. NAC did not affect the half-life of LacZ mRNA. Pretreatment with NAC prior to Ad infection enhances virus entry, while treatment with NAC post-infection increases transgene transcription. This strategy permits the use of lower adenoviral loads and thus might be helpful for gene therapy of vascular diseases. Copyright 2001 John Wiley & Sons, Ltd.

  7. Cytokine expression in patients with bladder pain syndrome/interstitial cystitis ESSIC type 3C.

    PubMed

    Logadottir, Yr; Delbro, Dick; Fall, Magnus; Gjertsson, Inger; Jirholt, Pernilla; Lindholm, Catharina; Peeker, Ralph

    2014-11-01

    Bladder wall nitric oxide production in patients with bladder pain syndrome type 3C is increased compared to undetectable nitric oxide in patients with nonHunner bladder pain syndrome and healthy controls. However, the underlying mechanism/s of the increased nitric oxide production is largely unknown. We compared mRNA expression of a select group of cytokines in patients with bladder pain syndrome/interstitial cystitis type 3C and in pain-free controls. Cold cup biopsies from 7 patients with bladder pain syndrome type 3C and 6 healthy subjects were analyzed. mRNA expression of IL-4, 6, 10 and 17A, iNOS, TNF-α, TGF-β and IFN-γ was estimated by real-time polymerase chain reaction. IL-17 protein expression was determined by immunohistochemistry. Mast cells were labeled with tryptase to evaluate cell appearance and count. IL-6, 10 and 17A, and iNOS mRNA levels as well as the number of mast cells infiltrating the bladder mucosa were significantly increased in patients with bladder pain syndrome type 3C compared to healthy controls. TNF-α, TGF-β and IFN-γ mRNA levels were similar in patients and controls. IL-17A expression at the protein level was up-regulated and localized to inflammatory cells and urothelium in patients with bladder pain syndrome type 3C. Patients with bladder pain syndrome/interstitial cystitis had increased mRNA levels of IL-17A, 10 and 6, and iNOS. IL-17A might be important in the inflammatory process. To our knowledge the increase in IL-17A is a novel finding that may have new treatment implications. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. BAG3 promotes chondrosarcoma progression by upregulating the expression of β-catenin

    PubMed Central

    Shi, Huijuan; Chen, Wenfang; Dong, Yu; Lu, Xiaofang; Zhang, Wenhui; Wang, Liantang

    2018-01-01

    To investigate the roles of B-cell lymphoma-2 associated athanogene 3 (BAG3) in human chondrosarcoma and the potential mechanisms, the expression levels of BAG3 were detected in the present study, and the associations between BAG3 and clinical pathological parameters, clinical stage as well as the survival of patients were analyzed. The present study detected BAG3 mRNA and protein expression in the normal cartilage cell line HC-a and in SW1353 chondrosarcoma cells by reverse transcription-quantitative polymerase chain reaction and western blot analysis. The BAG3 protein expression in 59 cases of chondrosarcoma, 30 patients with endogenous chondroma and 8 cases of normal cartilage was semi-quantitatively analyzed using the immunohistochemical method. In addition, the BAG3 protein expression level, the clinical pathological parameters, clinical stage and the survival time of patients with chondrosarcoma were analyzed. The plasmid transfection method was employed to upregulate the expression BAG3 and small RNA interference to downregulate the expression of BAG3 in SW1353 cells. The expression levels of BAG3 protein and mRNA were significantly increased in the chondrosarcoma cell line when compared with the normal cartilage cell line. The immunohistochemistry results indicated that BAG3 protein was overexpressed in the tissue of human chondrosarcoma. Statistical analysis showed that the expression level of BAG3 was significantly increased in the different Enneking staging of patients with chondrosarcoma and Tumor staging, and there were no statistical differences in age, gender, histological classification and tumor size. In the in vitro experiments, the data revealed that BAG3 significantly promoted chondrosarcoma cell proliferation, colony-formation, migration and invasion; however, it inhibited chondrosarcoma cell apoptosis. It was observed that BAG3 upregulated β-catenin expression at the mRNA and protein levels. In addition, BAG3 induced the expression of runt-related transcription factor 2 (RUNX2) in chondrosarcoma cells by upregulating β-catenin. These clinical analyses revealed a positive association between β-catenin and BAG3 in chondrosarcoma tumors. BAG3 was significantly increased in chondrosarcoma cells and tissues compared with the normal cartilage cells, tissue and cartilage benign tumors. Thus, BAG3 may serve as an oncogene in the development of chondrosarcoma via the induction of RUNX2 expression. The results of the present study contribute to further research on the biological development of chondrosarcoma. PMID:29484408

  9. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effectmore » of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy, therefore appear as promising options for the treatment of glioblastoma, which is refractory to the existing treatment strategies.« less

  10. The inhibitor of kappa B kinase-epsilon regulates MMP-3 expression levels and can promote lung metastasis.

    PubMed

    Seccareccia, E; Pinard, M; Wang, N; Li, S; Burnier, J; Dankort, D; Brodt, P

    2014-08-18

    The factors that determine the ability of metastatic tumor cells to expand and grow in specific secondary site(s) are not yet fully understood. Matrix metalloproteinases (MMP) were identified as potential regulators of the site-specificity of metastasis. We found that lung carcinoma cells ectopically expressing high levels of the receptor for the type I insulin like growth factor receptor (M27(R) cells) had a significant reduction in MMP-3 expression levels and this coincided with reduced metastasis to the lung. We used these cells to further investigate signaling pathways regulating MMP-3 expression and the role that MMP-3 plays in lung metastasis. We show that ectopic IκB kinase ɛ (IKKɛ) expression in these cells partly restored MMP-3 expression levels and also sensitized MMP-3 transcription to induction by phorbol 12-myristate 13-acetate (PMA). This increase in MMP-3 production was due to increased activation of several signal transduction mediators, including protein kinase C alpha, ERK2, Akt and the transcription factor p65. Furthermore, reconstitution of MMP-3 expression in M27(R) cells restored their ability to colonize the lung whereas silencing of MMP-3 in M27 cells reduced metastases. Collectively, our results implicate IKKɛ as a central regulator of PMA-induced cell signaling and MMP-3 expression and identify MMP-3 as an enabler of tumor cell expansion in the lung.Oncogenesis (2014) 3, e116; doi:10.1038/oncsis.2014.28; published online 18 August 2014.

  11. Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia.

    PubMed

    Gosemann, Jan-H; Friedmacher, Florian; Hunziker, Manuela; Alvarez, Luis; Corcionivoschi, Nicolae; Puri, Prem

    2013-01-01

    Persistent pulmonary hypertension remains a major cause of mortality and morbidity in congenital diaphragmatic hernia (CDH). NADPH oxidases (Nox) are the main source of superoxide production in vasculature. Nox4 is highly expressed in the smooth muscle and endothelial cells of the vascular wall and increased activity has been reported in the pulmonary vasculature of both experimental and human pulmonary hypertension. Peroxisome proliferator-activated receptor (PPARγ) is a key regulator of Nox4 expression. Targeted depletion of PPARγ results in pulmonary hypertension phenotype whereas activation of PPARγ attenuates pulmonary hypertension and reduces Nox4 production. The nitrofen-induced CDH model is an established model to study the pathogenesis of pulmonary hypertension in CDH. It has been previously reported that PPARγ-signaling is disrupted during late gestation and H(2)O(2) production is increased in nitrofen-induced CDH. We designed this study to investigate the hypothesis that Nox4 expression and activation is increased and vascular PPARγ is decreased in nitrofen-induced CDH. Pregnant rats were treated with either nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D21 and divided into control and CDH. RT-PCR, western blotting and confocal-immunofluorescence-double-staining were performed to determine pulmonary expression levels of PPARγ, Nox4 and Nox4-activation (p22(phox)). There was a marked increase in medial and adventitial thickness in pulmonary arteries of all sizes in CDH compared to controls. Pulmonary Nox4 levels were significantly increased whereas PPARγ levels were decreased in nitrofen-induced CDH compared to controls. Western blotting revealed increased pulmonary protein expression of the Nox4-activating subunit p22(phox) and decreased protein expression of PPARγ in CDH compared to controls. Confocal-microscopy confirmed markedly increased pulmonary expression of the Nox4 activating subunit p22(phox) accompanied by decreased perivascular PPARγ expression in lungs of nitrofen-exposed fetuses compared to controls. To our knowledge, the present study is the first to report increased Nox4 production in the pulmonary vasculature of nitrofen-induced CDH. Down-regulation of the PPARγ-signaling pathway may lead to increased superoxide production, resulting in pulmonary vascular dysfunction and contributing to pulmonary hypertension in the nitrofen-induced CDH model. PPARγ-activation inhibiting Nox4 production may therefore represent a potential therapeutic approach for the treatment of pulmonary hypertension in CDH.

  12. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging.

    PubMed

    Zeng, Qinghai; Zhou, Fang; Lei, Li; Chen, Jing; Lu, Jianyun; Zhou, Jianda; Cao, Ke; Gao, Lihua; Xia, Fang; Ding, Shu; Huang, Lihua; Xiang, Hong; Wang, Jingjing; Xiao, Yangfan; Xiao, Rong; Huang, Jinhua

    2017-01-01

    Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL‑PS‑associated inhibition of ultraviolet B (UVB)‑induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence‑associated β-galactosidase staining (SA‑β‑gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) ‑1 and C‑telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP‑1 protein expression, and increased cellular ROS levels compared with non‑exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL‑PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP‑1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL‑PS untreated cells. These results demonstrate that GL‑PS protects fibroblasts against photoaging by eliminating UVB‑induced ROS. This finding indicates GL‑PS treatment may serve as a novel strategy for antiphotoaging.

  13. Local expression of vaginal Th1 and Th2 cytokines in murine vaginal candidiasis under different immunity conditions.

    PubMed

    Chen, Shanjuan; Li, Shaohua; Wu, Yan; Liu, Zhixiang; Li, Jiawen

    2008-08-01

    To investigate the expression of vaginal Th1 and Th2 cytokines in rats with experimental vaginal candidiasis under different immune conditions, ICR murine vaginal candidiasis model was established and immno-suppressed murine models of vaginal cadidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls. The mRNA level of Th1 (IL-2)/Th2 (IL-4, IL-10, TGF-beta1) cytokines in murine vaginal tissues was determined by RT-PCR. The cykotine in local tissues was increased to different extent under normal immune condition. IL-2 mRNA was increased during early stage of infection, while IL-10 was increased transiently during late stage of infection. TGF-beta1 production was found to be increased persistently. At same time, the expression of IL-2 mRNA was suppressed in immno-suppressed group, and the level of IL-4, IL-10, and TGF-beta1 were higher than the normal immunity group to different degree during infection. The high level of IL-2 mRNA during early stage of infection was associated with clearance of mucosal Candidia albicans (C. albicans), and its expression suppressed leading to decreased clearance of mucosal C. albican in immuno-suppression. The over-expression of IL-4 and IL-10 could significantly enhance the susceptibility to C. albicans infection in mice.

  14. Overexpression of the Arabidopsis CBF3 Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation1

    PubMed Central

    Gilmour, Sarah J.; Sebolt, Audrey M.; Salazar, Maite P.; Everard, John D.; Thomashow, Michael F.

    2000-01-01

    We further investigated the role of the Arabidopsis CBF regulatory genes in cold acclimation, the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. The CBF genes, which are rapidly induced in response to low temperature, encode transcriptional activators that control the expression of genes containing the C-repeat/dehydration responsive element DNA regulatory element in their promoters. Constitutive expression of either CBF1 or CBF3 (also known as DREB1b and DREB1a, respectively) in transgenic Arabidopsis plants has been shown to induce the expression of target COR (cold-regulated) genes and to enhance freezing tolerance in nonacclimated plants. Here we demonstrate that overexpression of CBF3 in Arabidopsis also increases the freezing tolerance of cold-acclimated plants. Moreover, we show that it results in multiple biochemical changes associated with cold acclimation: CBF3-expressing plants had elevated levels of proline (Pro) and total soluble sugars, including sucrose, raffinose, glucose, and fructose. Plants overexpressing CBF3 also had elevated P5CS transcript levels suggesting that the increase in Pro levels resulted, at least in part, from increased expression of the key Pro biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthase. These results lead us to propose that CBF3 integrates the activation of multiple components of the cold acclimation response. PMID:11115899

  15. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510; Yoshizaki, Takayuki

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytesmore » by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.« less

  16. Effect of TCEA3 on the differentiation of bovine skeletal muscle satellite cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yue; Tong, Hui-Li; Li, Shu-Feng

    Bovine muscle-derived satellite cells (MDSCs) are important for animal growth. In this study, the effect of transcription elongation factor A3 (TCEA3) on bovine MDSC differentiation was investigated. Western blotting, immunofluorescence assays, and cytoplasmic and nuclear protein isolation and purification techniques were used to determine the expression pattern and protein localization of TCEA3 in bovine MDSCs during in vitro differentiation. TCEA3 expression was upregulated using the CRISPR/Cas9 technique to study its effects on MDSC differentiation in vitro. TCEA3 expression gradually increased during the in vitro differentiation of bovine MDSCs and peaked on the 5th day of differentiation. TCEA3 was mainly localized in the cytoplasmmore » of bovine MDSCs, and its expression was not detected in the nucleus. The level of TCEA3 was relatively higher in myotubes at a higher degree of differentiation than during early differentiation. After transfection with a TCEA3-activating plasmid vector (TCEA3 overexpression) for 24 h, the myotube fusion rate, number of myotubes, and expression levels of the muscle differentiation-related loci myogenin (MYOG) and myosin heavy chain 3 (MYH3) increased significantly during the in vitro differentiation of bovine MDSCs. After transfection with a TCEA3-inhibiting plasmid vector for 24 h, the myotube fusion rate, number of myotubes, and expression levels of MYOG and MYH3 decreased significantly. Our results indicated, for the first time, that TCEA3 promotes the differentiation of bovine MDSCs and have implications for meat production and animal rearing. - Highlights: • Muscle-derived satellite cell differentiation is promoted by TCEA3. • TCEA3 protein was localized in the cytoplasm, but not nuclei of bovine MDSCs. • TCEA3 levels increased as myotube differentiation increased. • TCEA3 affected myotube fusion, myotube counts, and MYOG and MYH3 levels.« less

  17. Impairment of nutritional regulation of adipose triglyceride lipase expression with age.

    PubMed

    Caimari, A; Oliver, P; Palou, A

    2008-08-01

    Fasting-induced lipolysis becomes less effective with age. We have studied whether nutritional regulation of adipose triglyceride lipase (ATGL)--with an important role in lipolysis in low energy states--is affected by age. Wistar rats of different ages (from 1 to 13 months) were distributed in control and fasted groups (14 h-food deprivation). ATGL mRNA expression was measured in different adipose depots at different ages and in only one depot at 13 months by reverse transcription (RT)-PCR. ATGL protein levels were determined at 3 and 7 months (not at 13 months) by western blot. Nonesterified fatty acid (NEFA), insulin and leptin levels were assessed in serum by enzymatic assays. ATGL expression was dependent on regional fat distribution, with higher levels in brown than in white adipose tissue depots; and was affected by age: ATGL mRNA was increased with age in the brown adipose tissue and was decreased in two of the studied white depots, the inguinal and retroperitoneal, not being affected in the epididymal and mesenteric. Age also affected ATGL nutritional regulation: fasting increased ATGL gene expression and protein levels in the different white adipose depots of the youngest rats (up to the age of 5 months), whereas there was no change in the oldest rats studied (7 and 13-months old). This was in agreement with the pattern of NEFA levels, which did not increase in serum of fasted rats in the oldest animals, whereas other homeostatic parameters, such as insulin and leptin, responded to fasting independently of age. ATGL expressed by brown adipose tissue was not affected by feeding conditions at any age. Nutritional regulation of ATGL expression in white adipose tissue is impaired with age, which could contribute to the increased difficulty for mobilizing lipids when animals are exposed to nutritional stress such as fasting.

  18. Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver.

    PubMed

    Aissa, Alexandre Ferro; Amaral, Catia Lira do; Venancio, Vinicius Paula; Machado, Carla da Silva; Hernandes, Lívia Cristina; Santos, Patrick Wellington da Silva; Curi, Rui; Bianchi, Maria de Lourdes Pires; Antunes, Lusânia Maria Greggi

    2017-01-01

    Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.

  19. Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes.

    PubMed Central

    Culver, J N; Lehto, K; Close, S M; Hilf, M E; Dawson, W O

    1993-01-01

    Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes. Images Fig. 2 Fig. 3 Fig. 4 PMID:8446627

  20. Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expression in the Colon of Weaned Piglets

    PubMed Central

    Liu, Ping; Pieper, Robert; Rieger, Juliane; Vahjen, Wilfried; Davin, Roger; Plendl, Johanna; Meyer, Wilfried; Zentek, Jürgen

    2014-01-01

    The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea. PMID:24609095

  1. Cathepsin B expression in colorectal cancer in a Middle East population: Potential value as a tumor biomarker for late disease stages

    PubMed Central

    Abdulla, Maha-Hamadien; Valli-Mohammed, Mansoor-Ali; Al-Khayal, Khayal; Shkieh, Abdulmalik Al; Zubaidi, Ahmad; Ahmad, Rehan; Al-Saleh, Khalid; Al-Obeed, Omar; McKerrow, James

    2017-01-01

    Cathepsin B (CTSB), is a cysteine protease belonging to the cathepsin (Clan CA) family. The diagnostic and prognostic significance of increased CTSB in the serum of cancer patients have been evaluated for some tumor types. CTSB serum and protein levels have also been reported previously in colorectal cancer (CRC) with contradictory results. The aim of the present study was to investigate CTSB expression in CRC patients and the association of CTSB expression with various tumor stages in a Middle East population. Serum CTSB levels were evaluated in 70 patients and 20 healthy control subjects using enzyme-linked immunosorbant assay (ELISA) technique. CTSB expression was determined in 100 pairs of CRC tumor and adjacent normal colonic tissue using quantitative PCR for mRNA levels. Detection of CTSB protein expression in tissues was carried out using both immunohistochemistry and western blotting techniques. ELISA analysis showed that in sera obtained from CRC patients, the CTSB concentration was significantly higher in late stage patients with lymph node metastases when compared to early stage patients with values of 2.9 and 0.33 ng/ml, respectively (P=0.001). The majority of tumors studied had detectable CTSB protein expression with significant increased positive staining in tumors cells when compared with matched normal colon subjects (P=0.006). The mRNA expression in early stage CRC compared to late stage CRC was 0.04±0.01 and 0.07±0.02, respectively. Increased mRNA expression was more frequently observed in the advanced cancer stages with lymph node metastases when compared with the control (P=0.002). Mann-Whitney test and paired t-test were used to compare serum CTSB and mRNA levels in early and late tumor stage. A subset of four paired tissue extracts were analyzed by western blotting. The result confirmed a consistent increase in the CTSB protein expression level in tumor tissues compared with that noted in the adjacent normal mucosal cells. These findings indicate that CTSB may be an important prognostic biomarker for late stage CRC and cases with lymph node metastases in the Middle Eastern population. Monitoring serum CTSB in CRC patients may predict and/or diagnose cases with lymph node metastases. PMID:28440429

  2. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice.

    PubMed

    Khare, Pragyanshu; Jagtap, Sneha; Jain, Yachna; Baboota, Ritesh K; Mangal, Priyanka; Boparai, Ravneet K; Bhutani, Kamlesh K; Sharma, Shyam S; Premkumar, Louis S; Kondepudi, Kanthi K; Chopra, Kanwaljit; Bishnoi, Mahendra

    2016-01-01

    Cinnamaldehyde, a bioactive component of cinnamon, is increasingly gaining interest for its preventive and therapeutic effects against metabolic complications like type-2 diabetes. This study is an attempt to understand the effect of cinnamaldehyde in high-fat diet (HFD)-associated increase in fasting-induced hyperphagia and related hormone levels, adipose tissue lipolysis and inflammation, and selected cecal microbial count in mice. Cinnamaldehyde, at 40 µM dose, prevented lipid accumulation and altered gene expression toward lipolytic phenotype in 3T3-L1 preadipocyte cell lines. In vivo, cinnamaldehyde coadministration prevented HFD-induced body weight gain, decreased fasting-induced hyperphagia, as well as circulating leptin and leptin/ghrelin ratio. In addition to that, cinnamaldehyde altered serum biochemical parameters related to lipolysis, that is, glycerol and free fatty acid levels. At transcriptional level, cinnamaldehyde increased anorectic gene expression in hypothalamus and lipolytic gene expression in visceral white adipose tissue. Furthermore, cinnamaldehyde also decreased serum IL-1β and inflammatory gene expression in visceral white adipose tissue. However, cinnamaldehyde did not modulate the population of selected gut microbial (Lactobacillus, Bifidibaceria, and Roseburia) count in cecal content. In conclusion, cinnamaldehyde increased adipose tissue lipolysis, decreased fasting-induced hyperphagia, normalized circulating levels of leptin/ghrelin ratio, and reduced inflammation in HFD-fed mice, which augurs well for its antiobesity role. © 2016 International Union of Biochemistry and Molecular Biology.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kook Hwan; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710; Jeong, Yeon Taek

    Highlights: •Metformin induces FGF21 expression in an AMPK independent manner. •Metformin enhances FGF21 expression by inhibiting mitochondrial complex I activity. •The PERK-eIF2α-ATF4 axis is required for metformin-induced FGF21 expression. •Metformin activates the ATF4-FGF21 axis in the liver of mouse. •Metformin increases serum FGF21 level in diabetic human subjects. -- Abstract: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-obesity and anti-diabetes effects. Because metformin is widely used as a glucose-lowering agent in patients with type 2 diabetes (T2D), we investigated whether metformin modulates FGF21 expression in cell lines, and in mice or human subjects. We found thatmore » metformin increased the expression and release of FGF21 in a diverse set of cell types, including rat hepatoma FaO, primary mouse hepatocytes, and mouse embryonic fibroblasts (MEFs). Intriguingly, AMP-activated protein kinase (AMPK) was dispensable for the induction of FGF21 by metformin. Mammalian target of rapamycin complex 1 (mTORC1) and peroxisome proliferator-activated receptor α (PPARα), which are additional targets of metformin, were not involved in metformin-induced FGF21 expression. Importantly, inhibition of mitochondrial complex I activity by metformin resulted in FGF21 induction through PKR-like ER kinase (PERK)-eukaryotic translation factor 2α (eIF2α)-activating transcription factor 4 (ATF4). We showed that metformin activated ATF4 and increased FGF21 expression in the livers of mice, which led to increased serum levels of FGF21. We also found that serum FGF21 level was increased in human subjects with T2D after metformin therapy for 6 months. In conclusion, our results indicate that metformin induced expression of FGF21 through an ATF4-dependent mechanism by inhibiting mitochondrial respiration independently of AMPK. Therefore, FGF21 induction by metformin might explain a portion of the beneficial metabolic effects of metformin.« less

  4. BMP-2 up-regulates PTEN expression and induces apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    PubMed

    Pi, Weifeng; Guo, Xuejun; Su, Liping; Xu, Weiguo

    2012-01-01

    To investigate the role of bone morphogenetic protein 2 (BMP-2) in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN) and apoptosis of pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Normal human PASMCs were cultured in growth medium (GM) and treated with BMP-2 from 5-80 ng/ml under hypoxia (5% CO(2)+94% N(2)+1% O(2)) for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR). Protein expression levels of PTEN, AKT and phosph-AKT (pAKT) were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic) (PTEN inhibitor) and GW9662 (PPARγ antagonist) were used to determine the signalling pathways. Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%). BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic) and GW9662 (PPARγ inhibitor) inhibited PTEN protein expression and recovered PASMCs proliferation rate. BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPARγ signalling pathway, instead of BMP/Smad signalling pathway.

  5. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron.

    PubMed

    Drakakaki, Georgia; Marcel, Sylvain; Glahn, Raymond P; Lund, Elizabeth K; Pariagh, Sandra; Fischer, Rainer; Christou, Paul; Stoger, Eva

    2005-12-01

    We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.

  6. Nandrolone attenuates aortic adaptation to exercise in rats.

    PubMed

    Sun, Mengwei; Shen, Weili; Zhong, Meifang; Wu, Pingping; Chen, Hong; Lu, Aiyun

    2013-03-15

    In this study, we investigated the interaction between exercise-induced mitochondrial adaptation of large vessels and the effects of chronic anabolic androgenic steroids (AASs). Four groups of Sprague-Dawley rats were studied: (i) sedentary, (ii) sedentary + nandrolone-treated, (iii) aerobic exercise trained, and (iv) trained + nandrolone-treated. Aerobic training increased the levels of aortic endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) in accordance with improved acetylcholine-induced vascular relaxation. These beneficial effects were associated with induction of mitochondrial complexes I and V, increased mitochondrial DNA copy number, and greater expression of transcription factors involved in mitochondrial biogenesis/fusion. We also observed enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein-7 (ATG7). The levels of thiobarbituric acid-reactive substances and protein carbonyls remained unchanged, whereas significant increases in catalase and mitochondrial manganese superoxide dismutase (MnSOD) levels were observed in the aortas of trained animals, when compared with sedentary controls. Nandrolone increased oxidative stress biomarkers and inhibited exercise-induced increases of eNOS, HO-1, catalase, and MnSOD expression. In addition, it also attenuated elevated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitofusin-2 expression, and further up-regulated LC3II conversion, beclin1, ATG7, and dynamin-related protein-1 expression. These results demonstrate that nandrolone attenuates aortic adaptations to exercise by regulating mitochondrial dynamic remodelling, including down-regulation of mitochondrial biogenesis and intensive autophagy.

  7. TREM-1 SNP rs2234246 regulates TREM-1 protein and mRNA levels and is associated with plasma levels of L-selectin

    PubMed Central

    Aldasoro Arguinano, Alex-Ander; Dadé, Sébastien; Stathopoulou, Maria; Derive, Marc; Coumba Ndiaye, Ndeye; Xie, Ting; Masson, Christine; Gibot, Sébastien

    2017-01-01

    High levels of TREM-1 are associated with cardiovascular and inflammatory diseases risks and the most recent studies have showed that TREM-1 deletion or blockade is associated with up to 60% reduction of the development of atherosclerosis. So far, it is unknown whether the levels of TREM-1 protein are genetically regulated. Moreover, TREM family receptors have been suggested to regulate the cellular adhesion process. The goal of this study was to investigate whether polymorphisms within TREM-1 are regulating the variants of serum TREM-1 levels and the expression levels of their mRNA. Furthermore, we aimed to point out associations between polymorphisms on TREM-1 and blood levels of selectins. Among the 10 SNPs studied, the minor allele T of rs2234246, was associated with increased sTREM-1 in the discovery population (p-value = 0.003), explaining 33% of its variance, and with increased levels of mRNA (p-value = 0.007). The same allele was associated with increased soluble L-selectin levels (p-value = 0.011). The higher levels of sTREM-1 and L-selectin were confirmed in the replication population (p-value = 0.0007 and p-value = 0.018 respectively). We demonstrated for the first time one SNP on TREM-1, affecting its expression levels. These novel results, support the hypothesis that TREM-1 affects monocytes extravasation and accumulation processes leading to atherogenesis and atherosclerotic plaque progression, possibly through increased inflammation and subsequent higher expression of sL-selectin. PMID:28771614

  8. Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales

    PubMed Central

    Margres, Mark J.; Wray, Kenneth P.; Seavy, Margaret; McGivern, James J.; Herrera, Nathanael D.; Rokyta, Darin R.

    2016-01-01

    Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation. PMID:26546003

  9. Expression of Fushi tarazu factor 1 homolog and Pit-1 genes in the pituitaries of pre-spawning chum and sockeye salmon.

    PubMed

    Higa, M; Ando, H; Urano, A

    2001-06-01

    Fushi tarazu factor-1 (FTZ-F1) and Pit-1 are major pituitary transcription factors, controlling expression of genes coding for gonadotropin (GTH) subunits and growth hormone/prolactin/somatolactin family hormone, respectively. As a first step to investigate physiological factors regulating gene expression of these transcription factors, we determined their mRNA levels in the pituitaries of chum salmon (Oncorhynchus keta) at different stages of sexual maturation. FTZ-F1 gene expression was increased in males at the stage before spermiation, where the levels of GTH alpha and IIbeta subunit mRNAs were elevated. Pit-1 mRNA showed maximum levels at the final stage of sexual maturation in both sexes, when expression of somatolactin gene peaked. To clarify whether gonadotropin-releasing hormone (GnRH) is involved in these increases in FTZ-F1 and Pit-1 gene expression, we examined effects of GnRH analog (GnRHa) administration on their gene expression in maturing sockeye salmon (Oncorhynchus nerka). GnRHa stimulated Pit-1 gene expression in females only, but failed to stimulate FTZ-F1 gene expression in both sexes. The up-regulated expression of FTZ-F1 and Pit-1 genes at the pre-spawning stages suggest that the two transcription factors have roles in sexual maturation of salmonids. Physiological factors regulating gene expression of FTZ-F1 and Pit-1 are discussed in this review.

  10. Effects of electroacupuncture on luteal regression and steroidogenesis in ovarian hyperstimulation syndrome model rat.

    PubMed

    Huang, Xuan; Chen, Li; Xia, You-Bing; Xie, Min; Sun, Qin; Yao, Bing

    2018-03-15

    Electroacupuncture (EA) is an effective and safe therapeutic method widely used for treating clinical diseases. Previously, we found that EA could decrease serum hormones and reduce ovarian size in ovarian hyperstimulation syndrome (OHSS) rat model. Nevertheless, the mechanisms that contribute to these improvements remain unclear. HE staining was used to count the number of corpora lutea (CL) and follicles. Immunohistochemical and ELISA were applied to examine luteal functional and structural regression. Immunoprecipitation was used for analyzing the interaction between NPY (neuropeptide Y) and COX-2; western blotting and qRT-PCR were used to evaluate the expressions of steroidogenic enzymes and PKA/CREB pathway. EA treatment significantly reduced the ovarian weight and the number of CL, also decreased ovarian and serum levels of PGE2 and COX-2 expression; increased ovarian PGF2α levels and PGF2α/PGE2 ratio; decreased PCNA expression and distribution; and increased cyclin regulatory inhibitor p27 expression to have further effect on the luteal formation, and promote luteal functional and structural regression. Moreover, expression of COX-2 in ovaries was possessed interactivity increased expression of NPY. Furthermore, EA treatment lowered the serum hormone levels, inhibited PKA/CREB pathway and decreased the expressions of steroidogenic enzymes. Hence, interaction with COX-2, NPY may affect the levels of PGF2α and PGE2 as well as impact the proliferation of granulosa cells in ovaries, thus further reducing the luteal formation, and promoting luteal structural and functional regression, as well as the ovarian steroidogenesis following EA treatment. EA treatment could be an option for preventing OHSS in ART. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Prostate Androgen-Regulated Mucin-Like protein 1: A Novel Regulator of Progesterone Metabolism

    PubMed Central

    Park, Ji Yeon; Jang, Hyein; Curry, Thomas E.; Sakamoto, Aiko

    2013-01-01

    The LH surge reprograms preovulatory follicular cells to become terminally differentiated luteal cells which produce high levels of progesterone and become resistant to apoptosis. PARM1 (prostate androgen regulated mucin-like protein 1) has been implicated in cell differentiation and cell survival in nonovarian cells, but little is known about PARM1 in the ovary. This study demonstrated that the LH surge induced a dramatic increase in Parm1 expression in periovulatory follicles and newly forming CL in both cycling and immature rat models. We further demonstrated that hCG increases Parm1 expression in granulosa cell cultures. The in vitro up-regulation of Parm1 expression was mediated by hCG-activated multiple signaling pathways and transcriptional activation of this gene. Parm1 knockdown increased the viability of cultured granulosa cells but resulted in a decrease in progesterone levels. The inhibitory effect of Parm1 silencing on progesterone was reversed by adenoviral mediated add-back expression of Parm1. Parm1 silencing had little effect on the expression of genes involved in progesterone biosynthesis and metabolism such as Scarb1, Ldlr, Vldlr, Scp2, Star, Cyp11a1, Hsd3b, and Srd5a1, while decreasing the expression of Akr1c3. Analyses of culture media steroid levels revealed that Parm1 knockdown had no effect on pregnenolone levels, while resulting in time-dependent decreases in progesterone and 20α-dihydroprogesterone and accelerated accumulation of 5α-pregnanediol. This study revealed that the up-regulation of Parm1 expression promotes progesterone and 20α-dihydroprogesterone accumulation in luteinizing granulosa cells by inhibiting progesterone catabolism to 5α-pregnanediol. PARM1 contributes to ovulation and/or luteal function by acting as a novel regulator of progesterone metabolism. PMID:24085821

  12. A HIF-1alpha-related gene involved in cell protection from hypoxia by suppression of mitochondrial function.

    PubMed

    Kakinuma, Yoshihiko; Katare, Rajesh G; Arikawa, Mikihiko; Muramoto, Kazuyo; Yamasaki, Fumiyasu; Sato, Takayuki

    2008-01-23

    Recently, we reported that acetylcholine-induced hypoxia-inducible factor-1alpha protects cardiomyocytes from hypoxia; however, the downstream factors reducing hypoxic stress are unknown. We identified apoptosis inhibitor (AI) gene as being differentially expressed between von Hippel Lindau (VHL) protein-positive cells with high levels of GRP78 expression and VHL-negative cells with lower GRP levels, using cDNA subtraction. AI decreased GRP78 level, suppressed mitochondrial function, reduced oxygen consumption and, ultimately, suppressed hypoxia-induced apoptosis. By contrast, knockdown of the AI gene increased mitochondrial function. Hypoxic cardiomyocytes and ischemic myocardium showed increased AI mRNA expression. These findings suggest that AI is involved in suppressing mitochondrial function, thereby leading to cellular stress eradication and consequently to protection during hypoxia.

  13. Geminivirus vectors for high-level expression of foreign proteins in plant cells.

    PubMed

    Mor, Tsafrir S; Moon, Yong-Sun; Palmer, Kenneth E; Mason, Hugh S

    2003-02-20

    Bean yellow dwarf virus (BeYDV) is a monopartite geminivirus that can infect dicotyledonous plants. We have developed a high-level expression system that utilizes elements of the replication machinery of this single-stranded DNA virus. The replication initiator protein (Rep) mediates release and replication of a replicon from a DNA construct ("LSL vector") that contains an expression cassette for a gene of interest flanked by cis-acting elements of the virus. We used tobacco NT1 cells and biolistic delivery of plasmid DNA for evaluation of replication and expression of reporter genes contained within an LSL vector. By codelivery of a GUS reporter-LSL vector and a Rep-supplying vector, we obtained up to 40-fold increase in expression levels compared to delivery of the reporter-LSL vectors alone. High-copy replication of the LSL vector was correlated with enhanced expression of GUS. Rep expression using a whole BeYDV clone, a cauliflower mosaic virus 35S promoter driving either genomic rep or an intron-deleted rep gene, or 35S-rep contained in the LSL vector all achieved efficient replication and enhancement of GUS expression. We anticipate that this system can be adapted for use in transgenic plants or plant cell cultures with appropriately regulated expression of Rep, with the potential to greatly increase yield of recombinant proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 430-437, 2003.

  14. Neurexin 1 (NRXN1) Splice Isoform Expression During Human Neocortical Development and Aging

    PubMed Central

    Jenkins, Aaron K.; Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Kleinman, Joel E.; Law, Amanda J.

    2015-01-01

    Neurexin 1 (NRXN1), a presynaptic adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including, autism, intellectual disability, and schizophrenia. To gain insight into NRXN1’s involvement in human cortical development we used quantitative real time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms NRXN1-α and NRXN1-β in prefrontal cortex from fetal stages to aging. Additionally, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison to non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, dramatically increasing with gestational age. In the postnatal DLPFC, expression levels were negatively correlated with age, peaking at birth until approximately 3 years of age, after which levels declined dramatically to be stable across the lifespan. NRXN1-β expression was modestly but significantly elevated in the brains of patients with schizophrenia compared to non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders. PMID:26216298

  15. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    PubMed

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Baicalein inhibits pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in-vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrashekar, Naveenkumar; Selvamani, Asokkumar; Subramanian, Raghunandhakumar

    2012-05-15

    The objective of the present study is to investigate the therapeutic efficacy of baicalein (BE) on inflammatory cytokines, which is in line with tumor invasion factors and antioxidant defensive system during benzo(a)pyrene [B(a)P] (50 mg/kg body weight) induced pulmonary carcinogenesis in Swiss albino mice. After experimental period, increased levels of total and differential cell count in bronchoalveolar lavage fluid were observed. Accompanied by marked increase in immature mast cell by toluidine blue staining and mature mast cell by safranin–alcian blue staining in B(a)P-induced lung cancer bearing animals. Protein expression levels studied by immunohistochemistry and immunoblot analysis of cytokines such asmore » tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were also found to be significantly increased in lung cancer bearing animals. B(a)P-exposed mice lung exhibits activated expression of nuclear transcription factor kappa-B as confirmed by immunofluorescence and immunoblot analysis. Administration of BE (12 mg/kg body weight) significantly counteracted all the above deleterious changes. Moreover, assessment of tumor invasion factors on protein levels by immunoblot and mRNA expression levels by RT-PCR revealed that BE treatment effectively negates B(a)P-induced upregulated expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and cyclo-oxygenase-2. Further analysis of lipid peroxidation markers such as thiobarbituric acid reactive substances, hydro-peroxides and antioxidants such as glutathione-S-transferase and reduced glutathione in lung tissue was carried out to substantiate the antioxidant effect of BE. The chemotherapeutic effect observed in the present study is attributed to the potent anti-inflammatory and antioxidant potential by BE against pulmonary carcinogenesis. -- Highlights: ► BE treatment protects from inflammatory cells and mast-cells accumulation in lungs. ► BE altered the expressions of TNF-α, IL-1β, i-NOS and NF-κBp65 at protein levels. ► BE modulates the expressions of MMP-2, MMP-9 and COX-2 at protein and mRNA levels. ► BE decreases LPO levels and enhances antioxidant status.« less

  17. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids

    PubMed Central

    Kalinina, Tatyana S.; Bulygina, Veta V.; Lanshakov, Dmitry A.; Babluk, Ekaterina V.

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons. PMID:26624017

  18. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study.

    PubMed

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Salah-Eldin, Alaa-Eldin; Ismail, Tamer Ahmed; Alshehiri, Zafer Saad; Attia, Hossam Fouad

    2016-06-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca‑Cola, Pepsi and 7‑Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi‑quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione‑S‑transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca‑Cola exhibited a hepatic decrease in the mRNA expression of α2‑macroglobulin compared with rats administered Pepsi and 7‑Up. On the other hand, SDC increased the mRNA expression of α1‑acid glycoprotein. The present renal studies revealed that Coca‑Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca‑Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio‑vital function of both the liver and kidney.

  19. Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2

    PubMed Central

    Everett, Peter; Clish, Clary B.; Sukhatme, Vikas P.

    2010-01-01

    Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy. PMID:20824065

  20. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study

    PubMed Central

    ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD

    2016-01-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione-S-transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca-Cola exhibited a hepatic decrease in the mRNA expression of α2-macroglobulin compared with rats administered Pepsi and 7-Up. On the other hand, SDC increased the mRNA expression of α1-acid glycoprotein. The present renal studies revealed that Coca-Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca-Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio-vital function of both the liver and kidney. PMID:27121771

  1. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice.

    PubMed

    Akundi, Ravi S; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D; Zhi, Lianteng; Cass, Wayne A; Sullivan, Patrick G; Büeler, Hansruedi

    2011-01-13

    PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death.

  2. Prenatal administration of retinoic acid increases the trophoblastic insulin-like growth factor 2 protein expression in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Kutasy, Balazs; Friedmacher, Florian; Duess, Johannes W; Puri, Prem

    2014-02-01

    The high mortality rate in congenital diaphragmatic hernia (CDH) is attributed to pulmonary hypoplasia (PH). Insulin-like growth factor 2 (IGF2) is an important regulator of fetal growth. The highest levels of IGF2 expression are found in the placenta, which are negatively regulated by decidual retinoid acid receptor alpha (RARα). It has been demonstrated that prenatal administration of retinoic acid (RA) suppresses decidual RARα expression. Previous studies have further shown that prenatal administration of RA can reverse PH in nitrofen-induced CDH model. In IGF2 knockout animals, low levels of IGF2 are associated with decreased placental growth and PH. We therefore hypothesized that nitrofen decreases trophoblastic IGF2 expression and prenatal administration of RA increases it through decidual RARα in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). RA was given intraperitoneally on D18, D19 and D20. Fetuses were harvested on D21 and divided into three groups: control, CDH and nitrofen+RA. Immunohistochemistry was performed to evaluate decidual RARα and trophoblastic IGF2 expression. Protein levels of IGF2 in serum, intra-amniotic fluid and left lungs were measured by enzyme-linked immunosorbent assay. Significant growth retardation of placenta and left lungs was observed in the CDH group compared to control and nitrofen+RA group. Markedly increased decidual RARα and decreased IGF2 immunoreactivity were found in the CDH group compared to control and nitrofen+RA group. Significantly decreased IGF2 protein levels were detected in serum, intra-amniotic fluid and left lungs in the CDH group compared to control and nitrofen+RA group. Our findings suggest that nitrofen may disturb trophoblastic IGF2 expression through decidual RARα resulting in retarded placental growth and PH in the nitrofen-induced CDH. Prenatal administration of RA may promote lung and placental growth by increasing trophoblastic IGF2 expression.

  3. Glutathione S-transferase pi isoform (GSTP1) expression in murine retina increases with developmental maturity.

    PubMed

    Lee, Wen-Hsiang; Joshi, Pratibha; Wen, Rong

    2014-01-01

    Glutathione S-transferase pi isoform (GSTP1) is an intracellular detoxification enzyme that catalyzes reduction of chemically reactive electrophiles and is a zeaxanthin-binding protein in the human macula. We have previously demonstrated that GSTP1 levels are decreased in human age-related macular degeneration (AMD) retina compared to normal controls (Joshi et al., Invest Ophthalmol Vis Sci, e-abstract, 2009). We also showed that GSTP1 levels parallel survival of human retinal pigment epithelial (RPE) cells exposed to ultraviolet (UV) light, and GSTP1 over-expression protects them against UV light damage (Joshi et al., Invest Ophthalmol Vis Sci, e-abstract, 2010). In the present work, we determined the developmental time course of GSTP1 expression in murine retina and in response to light challenge. Eyes from BALB/c mice at postnatal day 20, 1 month, and 2 months of age were prepared for retinal protein extraction and cryo sectioning, and GSTP1 levels in the retina were analyzed by Western blot and immunohistochemistry (IHC). Another group of BALB/c mice with the same age ranges was exposed to 1000 lx of white fluorescent light for 24 h, and their retinas were analyzed for GSTP1 expression by Western blot and IHC in a similar manner. GSTP1 levels in the murine retina increased in ascending order from postnatal day 20, 1 month, and 2 months of age. Moreover, GSTP1 expression in murine retina at postnatal day 20, 1 month, and 2 months of age increased in response to brief light exposure compared to age-matched controls under normal condition. GSTP1 expression in retina increases with developmental age in mice and accompanies murine retinal maturation. Brief exposure to light induces GSTP1 expression in the murine retina across various developmental ages. GSTP1 induction may be a protective response to light-induced oxidative damage in the murine retina.

  4. Glutathione S-Transferase Pi Isoform (GSTP1) Expression in Murine Retina Increases with Developmental Maturity

    PubMed Central

    Lee, Wen-Hsiang; Joshi, Pratibha; Wen, Rong

    2014-01-01

    Background and Aims Glutathione S-transferase pi isoform (GSTP1) is an intracellular detoxification enzyme that catalyzes reduction of chemically reactive electrophiles and is a zeaxanthin-binding protein in the human macula. We have previously demonstrated that GSTP1 levels are decreased in human age-related macular degeneration (AMD) retina compared to normal controls [1]. We also showed that GSTP1 levels parallel survival of human retinal pigment epithelial (RPE) cells exposed to UV light, and GSTP1 over-expression protects them against UV light damage [2]. In the present work, we determined the developmental time course of GSTP1 expression in murine retina and in response to light challenge. Methods Eyes from BALB/c mice at post-natal day 20, 1 month, and 2 months of age were prepared for retinal protein extraction and cryo sectioning, and GSTP1 levels in the retina were analyzed by Western blot and immunohistochemistry (IHC). Another group of BALB/c mice with the same age ranges was exposed to 1000 lux of white fluorescent light for 24 hours, and their retinas were analyzed for GSTP1 expression by Western blot and IHC in a similar manner. Results GSTP1 levels in the murine retina increased in ascending order from post-natal day 20, 1 month, and 2 months of age. Moreover, GSTP1 expression in murine retina at post-natal day 20, 1 month, and 2 months of age increased in response to brief light exposure compared to age-matched controls under normal condition. Conclusions GSTP1 expression in retina increases with developmental age in mice and accompanies murine retinal maturation. Brief exposure to light induces GSTP1 expression in the murine retina across various developmental ages. GSTP1 induction may be a protective response to light-induced oxidative damage in the murine retina. PMID:24664677

  5. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients.

    PubMed

    Logozzi, Mariantonia; Angelini, Daniela F; Iessi, Elisabetta; Mizzoni, Davide; Di Raimo, Rossella; Federici, Cristina; Lugini, Luana; Borsellino, Giovanna; Gentilucci, Alessandro; Pierella, Federico; Marzio, Vittorio; Sciarra, Alessandro; Battistini, Luca; Fais, Stefano

    2017-09-10

    Prostate specific antigen (PSA) test is the most common, clinically validated test for the diagnosis of prostate cancer (PCa). While neoplastic lesions of the prostate may cause aberrant levels of PSA in the blood, the quantitation of free or complexed PSA poorly discriminates cancer patients from those developing benign lesions, often leading to invasive and unnecessary surgical procedures. Microenvironmental acidity increases exosome release by cancer cells. In this study we evaluated whether acidity, a critical phenotype of malignancy, could influence exosome release and increase the PSA expression in nanovesicles released by PCa cells. To this aim, we exploited Nanoparticle Tracking Analysis (NTA), an immunocapture-based ELISA, and nanoscale flow-cytometry. The results show that microenvironmental acidity induces an increased release of nanovesicles expressing both PSA and the exosome marker CD81. In order to verify whether the changes induced by the local selective pressure of extracellular acidity may correspond to a clinical pathway we used the same approach to evaluate the levels of PSA-expressing exosomes in the plasma of PCa patients and controls, including subjects with benign prostatic hypertrophy (BPH). The results show that only PCa patients have high levels of nanovesicles expressing both CD81 and PSA. This study shows that tumor acidity exerts a selective pressure leading to the release of extracellular vesicles that express both PSA and exosome markers. A comparable scenario was shown in the plasma of prostate cancer patients as compared to both BPH and healthy controls. These results suggest that microenvironmental acidity may represent a key factor which determines qualitatively and quantitatively the release of extracellular vesicles by malignant tumors, including prostate cancer. This condition leads to the spill-over of nanovesicles into the peripheral blood of prostate cancer patients, where the levels of tumor biomarkers expressed by exosomes, such as PSA-exosomes, may represent a novel, non-invasive clinical tool for the screening and early diagnosis of prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes.

    PubMed

    Horie, Takahiro; Ono, Koh; Nishi, Hitoo; Iwanaga, Yoshitaka; Nagao, Kazuya; Kinoshita, Minako; Kuwabara, Yasuhide; Takanabe, Rieko; Hasegawa, Koji; Kita, Toru; Kimura, Takeshi

    2009-11-13

    GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3'UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes.

  7. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    PubMed

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  8. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib

    PubMed Central

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-01-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC. PMID:28521430

  9. Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels.

    PubMed

    Robert, Alexandrine; Monsinjon, Tiphaine; Delbecque, Jean-Paul; Olivier, Stéphanie; Poret, Agnès; Foll, Frank Le; Durand, Fabrice; Knigge, Thomas

    2016-06-01

    Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the normal regulation of the serotonergic system. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Expression of 11β-hydroxysteroid dehydrogenase 1 and 2 in patients with chronic rhinosinusitis and their possible contribution to local glucocorticoid activation in sinus mucosa.

    PubMed

    Jun, Young Joon; Park, Se Jin; Kim, Tae Hoon; Lee, Seung Hoon; Lee, Ki Jeong; Hwang, Soo Min; Lee, Sang Hag

    2014-10-01

    It has been suggested that glucocorticoids might act in target tissues to increase their own intracellular availability in response to inflammatory stimuli. These mechanisms depend on the local metabolism of glucocorticoids catalyzed by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). This study is to investigate the effect of chronic rhinosinusitis (CRS) on expression of 11β-HSD1, 11β-HSD2, steroidogenic enzymes (cytochrome P450, family 11, subfamily B, polypeptide 1 [CYP11B1] and cytochrome P450, family 11, subfamily A, polypeptide 1 [CYP11A1]), and endogenous cortisol levels in human sinus mucosa. Expression levels were compared with those of healthy control subjects. The expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were measured in healthy control subjects, patients with CRS with nasal polyps, and patients with CRS without nasal polyps by using real-time PCR, Western blotting, immunohistochemistry, and ELISA. Expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were determined in cultured epithelial cells treated with CRS-relevant cytokines. The conversion ratio of cortisone to cortisol was evaluated by using the small interfering RNA technique, 11β-HSD1 inhibitor, and measurement of 11β-HSD1 activity. 11β-HSD1, CYP11B1, and cortisol levels increased in patients with CRS with nasal polyps and those with CRS without nasal polyps, but 11β-HSD2 expression decreased. In cultured epithelial cells treated with IL-4, IL-5, IL-13, IL-1β, TNF-α, and TGF-β1, 11β-HSD1 expression and activity increased in parallel with expression levels of CYP11B1 and cortisol, but the production of 11β-HSD2 decreased. The small interfering RNA technique or the measurement of 11β-HSD1 activity showed that the sinus epithelium activates cortisone to cortisol in an 11β-HSD-dependent manner. These results indicate that CRS-relevant cytokines can modulate the expression of 11β-HSD1, 11β-HSD2, and CYP11B1 in the sinus mucosa, resulting in increasing intracellular concentrations of bioactive glucocorticoids. Copyright © 2014. Published by Elsevier Inc.

  11. The protein level of hypoxia-inducible factor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes.

    PubMed

    Li, Hong-Ge; Ren, Yong-Ming; Guo, Song-Chang; Cheng, Long; Wang, De-Peng; Yang, Jie; Chang, Zhi-Jie; Zhao, Xin-Quan

    2009-02-01

    The plateau pika (Ochotona curzoniae) is a high hypoxia-tolerant species living only at 3,000-5,000 m above sea-level on the Qinghai-Tibetan plateau. Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates a variety of cellular and systemic adaptations to hypoxia. To investigate how the plateau pika adapts to a high-altitude hypoxic environment at the molecular level, we examined the expression pattern of the HIF-1alpha protein in the pika by Western blot and immunohistochemical analysis. We found that HIF-1alpha protein is expressed at a significantly high level in the pika, which is higher in most tissues (particularly in the lung, liver, spleen and kidney) of the plateau pika than that of mice living at sea-level. Importantly, we found that the protein levels of HIF-1alpha in the lung, liver, spleen and kidney of the pika were increased with increased habitat altitudes. We observed that the plateau pika HIF-1alpha localized to the nucleus of cells by an immunostaining analysis, and enhanced HRE-driven gene expression by luciferase reporter assays. Our study suggests that the HIF-1alpha protein levels are related to the adaptation of the plateau pika to the high-altitude hypoxic environment.

  12. Efficient lowering of triglyceride levels in mice by human apoAV protein variants associated with hypertriglyceridemia.

    PubMed

    Vaessen, Stefan F C; Sierts, Jeroen A; Kuivenhoven, Jan Albert; Schaap, Frank G

    2009-02-06

    Variation in the apolipoprotein A5 (APOA5) gene has consistently been associated with increased plasma triglyceride (TG) levels in epidemiological studies. In vivo functionality of these variations, however, has thus far not been tested. Using adenoviral over-expression, we evaluated plasma expression levels and TG-lowering efficacies of wild-type human apoAV, two human apoAV variants associated with increased TG (S19W, G185C) and one variant (Q341H) that is predicted to have altered protein function. Injection of mice with adenovirus encoding wild-type or mutant apoAV resulted in an identical dose-dependent elevation of human apoAV levels in plasma. The increase in apoAV levels resulted in pronounced lowering of plasma TG levels at two viral dosages. Unexpectedly, the TG-lowering efficacy of all three apoAV variants was similar to wild-type apoAV. In addition, no effect on TG-hydrolysis-related plasma parameters (free fatty acids, glycerol and post-heparin lipoprotein lipase activity) was apparent upon expression of all apoAV variants. In conclusion, our data indicate that despite their association with hypertriglyceridemia and/or predicted protein dysfunction, the 19W, 185C and 341H apoAV variants are equally effective in reducing plasma TG levels in mice.

  13. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  14. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells.

    PubMed

    Booth, Laurence; Roberts, Jane L; Samuel, Peter; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-06-03

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET, PDGFRα and mutant RAS proteins via autophagic degradation. Neratinib interacted in an additive to synergistic fashion with the approved PARP1 inhibitor niraparib to kill ovarian cancer cells. Neratinib and niraparib caused the ATM-dependent activation of AMPK which in turn was required to cause mTOR inactivation, ULK-1 activation and ATG13 phosphorylation. The drug combination initially increased autophagosome levels followed later by autolysosome levels. Preventing autophagosome formation by expressing activated mTOR or knocking down of Beclin1, or knock down of the autolysosome protein cathepsin B, reduced drug combination lethality. The drug combination caused an endoplasmic reticulum stress response as judged by enhanced eIF2α phosphorylation that was responsible for reducing MCL-1 and BCL-XL levels and increasing ATG5 and Beclin1 expression. Knock down of BIM, but not of BAX or BAK, reduced cell killing. Expression of activated MEK1 prevented the drug combination increasing BIM expression and reduced cell killing. Downstream of the mitochondrion, drug lethality was partially reduced by knock down of AIF, but expression of dominant negative caspase 9 was not protective. Our data demonstrate that neratinib and niraparib interact to kill ovarian cancer cells through convergent DNA damage and endoplasmic reticulum stress signaling. Cell killing required the induction of autophagy and was cathepsin B and AIF -dependent, and effector caspase independent.

  15. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures.

    PubMed Central

    Joaquin, M; Rosa, J L; Salvadó, C; López, S; Nakamura, T; Bartrons, R; Gil, J; Tauler, A

    1996-01-01

    Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation. PMID:8660288

  16. Transient expression and cellular localization of recombinant proteins in cultured insect cells

    USDA-ARS?s Scientific Manuscript database

    Heterologous protein expression systems are used for production of recombinant proteins, interpretation of cellular trafficking/localization, and for the determination of biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for ...

  17. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    PubMed

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  18. FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels.

    PubMed

    Queipo-Ortuño, María Isabel; Escoté, Xavier; Ceperuelo-Mallafré, Victoria; Garrido-Sanchez, Lourdes; Miranda, Merce; Clemente-Postigo, Mercedes; Pérez-Pérez, Rafael; Peral, Belen; Cardona, Fernando; Fernández-Real, Jose Manuel; Tinahones, Francisco J; Vendrell, Joan

    2012-01-01

    FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.

  19. FABP4 Dynamics in Obesity: Discrepancies in Adipose Tissue and Liver Expression Regarding Circulating Plasma Levels

    PubMed Central

    Ceperuelo-Mallafré, Victoria; Garrido-Sanchez, Lourdes; Miranda, Merce; Clemente-Postigo, Mercedes; Pérez-Pérez, Rafael; Peral, Belen; Cardona, Fernando; Fernández-Real, Jose Manuel; Tinahones, Francisco J.; Vendrell, Joan

    2012-01-01

    Background FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. Objective In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. Methods The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. Results In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. Conclusion The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity. PMID:23139800

  20. Dysregulation of Anti-Inflammatory Annexin A1 Expression in Progressive Crohns Disease

    PubMed Central

    Sena, Angela; Grishina, Irina; Thai, Anne; Goulart, Larissa; Macal, Monica; Fenton, Anne; Li, Jay; Prindiville, Thomas; Oliani, Sonia Maria; Dandekar, Satya; Goulart, Luiz; Sankaran-Walters, Sumathi

    2013-01-01

    Background Development of inflammatory bowel disease (IBD) involves the interplay of environmental and genetic factors with the host immune system. Mechanisms contributing to immune dysregulation in IBD are not fully defined. Development of novel therapeutic strategies is focused on controlling aberrant immune response in IBD. Current IBD therapy utilizes a combination of immunomodulators and biologics to suppress pro-inflammatory effectors of IBD. However, the role of immunomodulatory factors such as annexin A1 (ANXA1) is not well understood. The goal of this study was to examine the association between ANXA1 and IBD, and the effects of anti-TNF-α, Infliximab (IFX), therapy on ANXA1 expression. Methods ANXA1 and TNF-α transcript levels in PBMC were measured by RT PCR. Clinical follow up included the administration of serial ibdQs. ANXA1 expression in the gut mucosa was measured by IHC. Plasma ANXA1 levels were measured by ELISA. Results We found that the reduction in ANXA1 protein levels in plasma coincided with a decrease in the ANXA1 mRNA expression in peripheral blood of IBD patients. ANXA1 expression is upregulated during IFX therapy in patients with a successful intervention but not in clinical non-responders. The IFX therapy also modified the cellular immune activation in the peripheral blood of IBD patients. Decreased expression of ANXA1 was detected in the colonic mucosa of IBD patients with incomplete resolution of inflammation during continuous therapy, which correlated with increased levels of TNF-α transcripts. Gut mucosal epithelial barrier disruption was evident by increased plasma bacterial 16S levels. Conclusion Loss of ANXA1 expression may support inflammation during IBD and can serve as a biomarker of disease progression. Changes in ANXA1 levels may be predictive of therapeutic efficacy. PMID:24130820

  1. Dysregulation of anti-inflammatory annexin A1 expression in progressive Crohns Disease.

    PubMed

    Sena, Angela; Grishina, Irina; Thai, Anne; Goulart, Larissa; Macal, Monica; Fenton, Anne; Li, Jay; Prindiville, Thomas; Oliani, Sonia Maria; Dandekar, Satya; Goulart, Luiz; Sankaran-Walters, Sumathi

    2013-01-01

    Development of inflammatory bowel disease (IBD) involves the interplay of environmental and genetic factors with the host immune system. Mechanisms contributing to immune dysregulation in IBD are not fully defined. Development of novel therapeutic strategies is focused on controlling aberrant immune response in IBD. Current IBD therapy utilizes a combination of immunomodulators and biologics to suppress pro-inflammatory effectors of IBD. However, the role of immunomodulatory factors such as annexin A1 (ANXA1) is not well understood. The goal of this study was to examine the association between ANXA1 and IBD, and the effects of anti-TNF-α, Infliximab (IFX), therapy on ANXA1 expression. ANXA1 and TNF-α transcript levels in PBMC were measured by RT PCR. Clinical follow up included the administration of serial ibdQs. ANXA1 expression in the gut mucosa was measured by IHC. Plasma ANXA1 levels were measured by ELISA. We found that the reduction in ANXA1 protein levels in plasma coincided with a decrease in the ANXA1 mRNA expression in peripheral blood of IBD patients. ANXA1 expression is upregulated during IFX therapy in patients with a successful intervention but not in clinical non-responders. The IFX therapy also modified the cellular immune activation in the peripheral blood of IBD patients. Decreased expression of ANXA1 was detected in the colonic mucosa of IBD patients with incomplete resolution of inflammation during continuous therapy, which correlated with increased levels of TNF-α transcripts. Gut mucosal epithelial barrier disruption was evident by increased plasma bacterial 16S levels. Loss of ANXA1 expression may support inflammation during IBD and can serve as a biomarker of disease progression. Changes in ANXA1 levels may be predictive of therapeutic efficacy.

  2. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.

    PubMed

    Macheda, Maria L; Rogers, Suzanne; Best, James D

    2005-03-01

    Malignant cells are known to have accelerated metabolism, high glucose requirements, and increased glucose uptake. Transport of glucose across the plasma membrane of mammalian cells is the first rate-limiting step for glucose metabolism and is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose transport in malignant cells has been associated with increased and deregulated expression of glucose transporter proteins, with overexpression of GLUT1 and/or GLUT3 a characteristic feature. Oncogenic transformation of cultured mammalian cells causes a rapid increase of glucose transport and GLUT1 expression via interaction with GLUT1 promoter enhancer elements. In human studies, high levels of GLUT1 expression in tumors have been associated with poor survival. Studies indicate that glucose transport in breast cancer is not fully explained by GLUT1 or GLUT3 expression, suggesting involvement of another glucose transporter. Recently, a novel glucose transporter protein, GLUT12, has been found in breast and prostate cancers. In human breast and prostate tumors and cultured cells, GLUT12 is located intracellularly and at the cell surface. Trafficking of GLUT12 to the plasma membrane could therefore contribute to glucose uptake. Several factors have been implicated in the regulation of glucose transporter expression in breast cancer. Hypoxia can increase GLUT1 levels and glucose uptake. Estradiol and epidermal growth factor, both of which can play a role in breast cancer cell growth, increase glucose consumption. Estradiol and epidermal growth factor also increase GLUT12 protein levels in cultured breast cancer cells. Targeting GLUT12 could provide novel methods for detection and treatment of breast and prostate cancer. 2004 Wiley-Liss, Inc.

  3. Molecular identification and functional analysis of Ctrp9 in Epinephelus coioides.

    PubMed

    Yang, Guokun; Qin, Chaobin; Wang, Bin; Jia, Jirong; Yuan, Xi; Sun, Caiyun; Li, Wensheng

    2017-05-01

    CTRP9 is a member of the C1q/TNF-related protein (CTRP) superfamily and has been studied in mammals, whereas the comparative studies of CTRP9 in non-mammalian species are still absent. In this study, ctrp9 was isolated and characterized from the orange-spotted grouper ( Epinephelus coioides ). The full-length cDNA of ctrp9 was 1378 bp in size with an ORF (open reading frame) of 1020 bp that encodes a 339 amino acid pre-pro hormone. The mRNA expression of ctrp9 showed a rather high level in the kidney and brain, but a low level in other tissues. Furthermore, the mRNA expression of ctrp9 decreased significantly in the liver after fasting for 7 days and restored to the normal levels after refeeding. In contrast, the ctrp9 mRNA level increased in the hypothalamus after fasting. The recombinant gCtrp9 (globular Ctrp9) was prepared using the Pichia pastoris expression system and was verified by Western blot as well as mass spectrometry assays. In the primary hepatocytes culture, the recombinant gCtrp9 could inhibit the glucose production after 12-h treatment. After i.p. (intraperitoneal) injection with recombinant gCtrp9, in hypothalamus, mRNA expression levels of npy and orexin (orexigenic factors) decreased, whereas the expression levels of crh and pomc (anorexigenic factors) increased. Moreover, i.p. injection with the recombinant gCtrp9 could reduce the serum concentrations of glucose, TG and low-density lipoprotein cholesterol but increase the content of high-density lipoprotein cholesterol. Our studies for the first time unveil the structure of Ctrp9 and its potential role as a regulatory factor of metabolism and food intake in teleost. © 2017 Society for Endocrinology.

  4. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism

    PubMed Central

    McClain, Donald A.; Abuelgasim, Khadega A.; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A.; Sergueeva, Adelina; Okhotin, Daniel J.; Cherqaoui, Rabia; Okhotin, David; Cox, James E.; Swierczek, Sabina; Song, Jihyun; Simon, M.Celeste; Huang, Jingyu; Simcox, Judith A.; Yoon, Donghoon; Prchal, Josef T.; Gordeuk, Victor R.

    2012-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzymes genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHLR200W homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wildtype VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHLR200W homozygotes. We expanded these observations in VHLR200W homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc but not Pdk2 was decreased and skeletal muscle expression of Glut1, Pdk1 and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  5. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorita, I.; Bilbao, E.; Schad, A.

    2007-04-15

    Metallothioneins (MTs) are metal-inducible proteins that can be used as biomarkers of metal exposure. In mussels two families of MT isoforms (MT10 and MT20) have been characterized. In this study, mussels (Mytilus galloprovincialis) were exposed to 200 ppb Cd and 40 ppb Cu for 2 and 9 days to characterize the tissue and isoform specificity of metal-induced MT expression. Non-radioactive in situ hybridization demonstrated that both MT isoforms were mainly transcribed in digestive tubule epithelial cells, especially in basophilic cells. Weaker MT expression was detected in non-ciliated duct cells, stomach and gill epithelial cells, haemocytes, adipogranular cells, spermatic follicles andmore » oocytes. RT-PCR resulted in cloning of a novel M. galloprovincialis isoform homologous to recently cloned Mytilus edulis intron-less MT10B isoform. In gills, Cd only affected MT10 gene expression after 2 days of exposure while increases in MT protein levels occurred at day 9. In the digestive gland, a marked increase of both isoforms, but especially of MT20, was accompanied by increased levels of MT proteins and basophilic cell volume density (Vv{sub BAS}) after 2 and 9 days and of intralysosomal metal accumulation in digestive cells after 9 days. Conversely, although metal was accumulated in digestive cells lysosomes and the Vv{sub BAS} increased in Cu-exposed mussels, Cu exposure did not produce an increase of MT gene expression or MT protein levels. These data suggest that MTs are expressed in a tissue-, cell- and isoform-specific way in response to different metals.« less

  6. Exploring the potential of the bacterial carotene desaturase CrtI to increase the beta-carotene content in Golden Rice.

    PubMed

    Al-Babili, Salim; Hoa, Tran Thi Cuc; Schaub, Patrick

    2006-01-01

    To increase the beta-carotene (provitamin A) content and thus the nutritional value of Golden Rice, the optimization of the enzymes employed, phytoene synthase (PSY) and the Erwinia uredovora carotene desaturase (CrtI), must be considered. CrtI was chosen for this study because this bacterial enzyme, unlike phytoene synthase, was expressed at barely detectable levels in the endosperm of the Golden Rice events investigated. The low protein amounts observed may be caused by either weak cauliflower mosaic virus 35S promoter activity in the endosperm or by inappropriate codon usage. The protein level of CrtI was increased to explore its potential for enhancing the flux of metabolites through the pathway. For this purpose, a synthetic CrtI gene with a codon usage matching that of rice storage proteins was generated. Rice plants were transformed to express the synthetic gene under the control of the endosperm-specific glutelin B1 promoter. In addition, transgenic plants expressing the original bacterial gene were generated, but the endosperm-specific glutelin B1 promoter was employed instead of the cauliflower mosaic virus 35S promoter. Independent of codon optimization, the use of the endosperm-specific promoter resulted in a large increase in bacterial desaturase production in the T(1) rice grains. However, this did not lead to a significant increase in the carotenoid content, suggesting that the bacterial enzyme is sufficiently active in rice endosperm even at very low levels and is not rate-limiting. The endosperm-specific expression of CrtI did not affect the carotenoid pattern in the leaves, which was observed upon its constitutive expression. Therefore, tissue-specific expression of CrtI represents the better option.

  7. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production

    USDA-ARS?s Scientific Manuscript database

    Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease res...

  8. Bit-1 is an essential regulator of myogenic differentiation

    PubMed Central

    Griffiths, Genevieve S.; Doe, Jinger; Jijiwa, Mayumi; Van Ry, Pam; Cruz, Vivian; de la Vega, Michelle; Ramos, Joe W.; Burkin, Dean J.; Matter, Michelle L.

    2015-01-01

    Muscle differentiation requires a complex signaling cascade that leads to the production of multinucleated myofibers. Genes regulating the intrinsic mitochondrial apoptotic pathway also function in controlling cell differentiation. How such signaling pathways are regulated during differentiation is not fully understood. Bit-1 (also known as PTRH2) mutations in humans cause infantile-onset multisystem disease with muscle weakness. We demonstrate here that Bit-1 controls skeletal myogenesis through a caspase-mediated signaling pathway. Bit-1-null mice exhibit a myopathy with hypotrophic myofibers. Bit-1-null myoblasts prematurely express muscle-specific proteins. Similarly, knockdown of Bit-1 expression in C2C12 myoblasts promotes early differentiation, whereas overexpression delays differentiation. In wild-type mice, Bit-1 levels increase during differentiation. Bit-1-null myoblasts exhibited increased levels of caspase 9 and caspase 3 without increased apoptosis. Bit-1 re-expression partially rescued differentiation. In Bit-1-null muscle, Bcl-2 levels are reduced, suggesting that Bcl-2-mediated inhibition of caspase 9 and caspase 3 is decreased. Bcl-2 re-expression rescued Bit-1-mediated early differentiation in Bit-1-null myoblasts and C2C12 cells with knockdown of Bit-1 expression. These results support an unanticipated yet essential role for Bit-1 in controlling myogenesis through regulation of Bcl-2. PMID:25770104

  9. Chemotherapy-Induced Monoamine Oxidase Expression in Prostate Carcinoma Functions as a Cytoprotective Resistance Enzyme and Associates with Clinical Outcomes

    PubMed Central

    Huang, Chung-Ying; Harris, William P.; Sim, Hong Gee; Lucas, Jared M.; Coleman, Ilsa; Higano, Celestia S.; Gulati, Roman; True, Lawrence D.; Vessella, Robert; Lange, Paul H.; Garzotto, Mark; Beer, Tomasz M.; Nelson, Peter S.

    2014-01-01

    To identify molecular alterations in prostate cancers associating with relapse following neoadjuvant chemotherapy and radical prostatectomy patients with high-risk localized prostate cancer were enrolled into a phase I-II clinical trial of neoadjuvant chemotherapy with docetaxel and mitoxantrone followed by prostatectomy. Pre-treatment prostate tissue was acquired by needle biopsy and post-treatment tissue was acquired by prostatectomy. Prostate cancer gene expression measurements were determined in 31 patients who completed 4 cycles of neoadjuvant chemotherapy. We identified 141 genes with significant transcript level alterations following chemotherapy that associated with subsequent biochemical relapse. This group included the transcript encoding monoamine oxidase A (MAOA). In vitro, cytotoxic chemotherapy induced the expression of MAOA and elevated MAOA levels enhanced cell survival following docetaxel exposure. MAOA activity increased the levels of reactive oxygen species and increased the expression and nuclear translocation of HIF1α. The suppression of MAOA activity using the irreversible inhibitor clorgyline augmented the apoptotic responses induced by docetaxel. In summary, we determined that the expression of MAOA is induced by exposure to cytotoxic chemotherapy, increases HIF1α, and contributes to docetaxel resistance. As MAOA inhibitors have been approved for human use, regimens combining MAOA inhibitors with docetaxel may improve clinical outcomes. PMID:25198178

  10. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    PubMed Central

    Sun, Rongli; Cao, Meng; Zhang, Juan; Yang, Wenwen; Wei, Haiyan; Meng, Xing; Yin, Lihong; Pu, Yuepu

    2016-01-01

    Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity. PMID:27809262

  11. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice.

    PubMed

    Sun, Rongli; Cao, Meng; Zhang, Juan; Yang, Wenwen; Wei, Haiyan; Meng, Xing; Yin, Lihong; Pu, Yuepu

    2016-10-31

    Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H₂O₂), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  12. Chemotherapy-induced monoamine oxidase expression in prostate carcinoma functions as a cytoprotective resistance enzyme and associates with clinical outcomes.

    PubMed

    Gordon, Ryan R; Wu, Mengchu; Huang, Chung-Ying; Harris, William P; Sim, Hong Gee; Lucas, Jared M; Coleman, Ilsa; Higano, Celestia S; Gulati, Roman; True, Lawrence D; Vessella, Robert; Lange, Paul H; Garzotto, Mark; Beer, Tomasz M; Nelson, Peter S

    2014-01-01

    To identify molecular alterations in prostate cancers associating with relapse following neoadjuvant chemotherapy and radical prostatectomy patients with high-risk localized prostate cancer were enrolled into a phase I-II clinical trial of neoadjuvant chemotherapy with docetaxel and mitoxantrone followed by prostatectomy. Pre-treatment prostate tissue was acquired by needle biopsy and post-treatment tissue was acquired by prostatectomy. Prostate cancer gene expression measurements were determined in 31 patients who completed 4 cycles of neoadjuvant chemotherapy. We identified 141 genes with significant transcript level alterations following chemotherapy that associated with subsequent biochemical relapse. This group included the transcript encoding monoamine oxidase A (MAOA). In vitro, cytotoxic chemotherapy induced the expression of MAOA and elevated MAOA levels enhanced cell survival following docetaxel exposure. MAOA activity increased the levels of reactive oxygen species and increased the expression and nuclear translocation of HIF1α. The suppression of MAOA activity using the irreversible inhibitor clorgyline augmented the apoptotic responses induced by docetaxel. In summary, we determined that the expression of MAOA is induced by exposure to cytotoxic chemotherapy, increases HIF1α, and contributes to docetaxel resistance. As MAOA inhibitors have been approved for human use, regimens combining MAOA inhibitors with docetaxel may improve clinical outcomes.

  13. Filgrastim (RHG-CSF) related modulation of the inflammatory response in patients at risk of sepsis or with sepsis.

    PubMed

    Weiss, M; Gross-Weege, W; Harms, B; Schneider, E M

    1996-03-01

    Over a period of 14 days a longitudinal analysis was performed on the effects of filgrastim (recombinant human granulocyte colony stimulating factor, rhG-CSF) administered to 20 postoperative/posttraumatic patients at risk of or with sepsis. The following parameters were determined: leukocyte counts, serum cytokine levels and the surface expression of functional antigens and adhesion molecules. Filgrastim (1 mu g/kg.day) was infused continuously on the first 3 days and tapered to 0.5 mu g/kg.day on the following 4 days or until discharge from the surgical intensive care unit. During infusion of filgrastim, G-CSF levels increased in 16 out of the 20 patients within 48 h. In these 16 patients, leukocyte counts increased in 15 out of 16 patients. Expression of CD64 was upregulated within 24 h. The expression of CD32 was upregulated in 8 out of 9 patients with an initial expression < 55%. LAM-1 expression was downregulated in all patients revealing an initial expression of LAM-1 > 40%. Soluble ICAM increased in 9 out of 11 patients. IL-8 decreased in all 6 patients presenting initial values of IL-8 > 90 pg/ml. IL-1RA increased in 10 patients. Filgrastim had no effect on the expression of CD14, CD16 and CD34 and on the levels of TNF-alpha and sTNF-R type I (p55). In conclusion, infusion of filgrastim in postoperative/post traumatic patients at risk of and with sepsis resulted in improved generation and function of neutrophils and appeared to counterregulate hyperactivation of proinflammatory processes.

  14. The Wnt5A/Protein Kinase C Pathway Mediates Motility in Melanoma Cells via the Inhibition of Metastasis Suppressors and Initiation of an Epithelial to Mesenchymal Transition*S

    PubMed Central

    Dissanayake, Samudra K.; Wade, Michael; Johnson, Carrie E.; O’Connell, Michael P.; Leotlela, Poloko D.; French, Amanda D.; Shah, Kavita V.; Hewitt, Kyle J.; Rosenthal, Devin T.; Indig, Fred E.; Jiang, Yuan; Nickoloff, Brian J.; Taub, Dennis D.; Trent, Jeffrey M.; Moon, Randall T.; Bittner, Michael; Weeraratna, Ashani T.

    2008-01-01

    We have shown that Wnt5A increases the motility of melanoma cells. To explore cellular pathways involving Wnt5A, we compared gain-of-function (WNT5A stable transfectants) versus loss-of-function (siRNA knockdown) of WNT5A by microarray analysis. Increasing WNT5A suppressed the expression of several genes, which were re-expressed after small interference RNA-mediated knockdown of WNT5A. Genes affected by WNT5A include KISS-1, a metastasis suppressor, and CD44, involved in tumor cell homing during metastasis. This could be validated at the protein level using both small interference RNA and recombinant Wnt5A (rWnt5A). Among the genes up-regulated by WNT5A was the gene vimentin, associated with an epithelial to mesenchymal transition (EMT), which involves decreases in E-cadherin, due to up-regulation of the transcriptional repressor, Snail. rWnt5A treatment increases Snail and vimentin expression, and decreases E-cadherin, even in the presence of dominant-negativeTCF4, suggesting that this activation is independent of Wnt/β-catenin signaling. Because Wnt5A can signal via protein kinase C (PKC), the role of PKC in Wnt5A-mediated motility and EMT was also assessed using PKC inhibition and activation studies. Treating cells expressing low levels of Wnt5A with phorbol ester increased Snail expression inhibiting PKC in cells expressing high levels of Wnt5A decreased Snail. Furthermore, inhibition of PKC before Wnt5A treatment blocked Snail expression, implying that Wnt5A can potentiate melanoma metastasis via the induction of EMT in a PKC-dependent manner. PMID:17426020

  15. Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus).

    PubMed

    Cui, Yanting; Liu, Bo; Xie, Jun; Xu, Pao; Habte-Tsion, H-Michael; Zhang, Yuanyuan

    2014-06-01

    In this study, we investigated the effects of hyperthermia and recovery on cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA), total antioxidant capacity (T-AOC), and heat shock protein (HSP60, 70, and 90) mRNA expression in the hepatic cells of the grass carp, Ctenopharyngodon idellus. Triplicate groups of cultured cells were exposed to 30, 32, or 34 °C for 0.5 h and then immediately incubated at 27 °C in 5 % CO2 for 6, 12, 24, or 48 h. Hyperthermia stress greatly reduced cell viability and increased LDH release. Cell damage declined after recovery. Hyperthermia stress increased the lipid peroxide levels and reduced the antioxidant capacity (e.g., reduced SOD and T-AOC) of the cells. However, oxidative damage declined as the recovery period increased, and the levels of MDA, SOD, and T-AOC were restored. After cells were exposed to 32 °C, the expression of HSP60 after recovery for 1, 2, and 4 h (P < 0.05), the expression of HSP70 after recovery for 0.5 and 1 h (P < 0.01), and the expression of HSP90 throughout recovery were significantly higher (P < 0.01) than the prestress levels. During the recovery period, the variations in HSP gene expression reflected the transition period from a state of cellular growth to one of the cellular repairs. In conclusion, hyperthermia depresses cell viability, induces oxidative damage, and increases HSP expression, which plays an important role during hyperthermic stress in grass carp hepatic cells.

  16. Association of innate defense proteins BPIFA1 and BPIFB1 with disease severity in COPD

    PubMed Central

    De Smet, Elise G; Seys, Leen JM; Verhamme, Fien M; Vanaudenaerde, Bart M; Brusselle, Guy G; Bingle, Colin D; Bracke, Ken R

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal inflammatory response in the lungs caused by the inhalation of noxious particles and gases. The airway epithelium has a protective function against these harmful agents by maintaining a physical barrier and by secreting defensive proteins, such as bactericidal/permeability-increasing fold-containing (BPIF) proteins, BPIFA1 and BPIFB1. However, inconsistent data regarding BPIFA1 expression in smokers and COPD patients have been reported to date. Therefore, we investigated the expression of BPIFA1 and BPIFB1 in a large cohort of never-smokers and smokers with and without COPD, both on the messenger RNA (mRNA) level in lung tissue and on the protein level in airway epithelium. Furthermore, we examined the correlation between BPIFA1 and BPIFB1 levels, goblet cell hyperplasia, and lung function measurements. BPIFA1 and BPIFB1 mRNA expressions were significantly increased in stage III–IV COPD patients compared with stage II COPD patients and subjects without COPD. In addition, protein levels in COPD patients were significantly increased in comparison with subjects without COPD. BPIFA1 and BPIFB1 levels were inversely correlated with measurements of airflow limitation and positively correlated with goblet cell hyperplasia. In addition, by the use of immunofluorescence double staining, we demonstrated the expression of BPIFB1 in goblet cells. In conclusion, we show that BPIFA1 and BPIFB1 levels are elevated in COPD patients and correlate with disease severity. PMID:29296079

  17. Heat shock protein 60 expression in heart, liver and kidney of broilers exposed to high temperature.

    PubMed

    Yan, Jianyan; Bao, Endong; Yu, Jimian

    2009-06-01

    The objective of this study was to investigate the expression and localization of HSP60 in the heart, liver, and kidney of acutely heat-stressed broilers at various stressing times. The plasma creatine kinase (CK) and glutamic pyruvic transaminase (GPT) concentrations statistic increased following heat stress. After 2h of heat stress, the tissues showed histopathological changes. Hsp60 expressed mainly in the cytoplasm of parenchyma cells heat stress. The intensity of the cytoplasmic staining varied and exhibited an organ-specific distribution pattern. Hsp60 levels in the hearts of heat-stressed chickens gradually increased at 1h (p<0.05) and peaked (p<0.05) at 5h; Hsp60 levels in the liver gradually decreased at 3h (p<0.05); Hsp60 levels in the kidney had no fluctuation. It is suggested that Hsp60 expression is tissue-specific and this may be linked to tissue damage in response to heat stress. The Hsp60 level is distinct in diverse tissues, indicating that Hsp60 may exert its protective effect by a tissue- and time-specific mechanism.

  18. Nuclear-encoded mitochondrial complex I gene expression is restored to normal levels by inhibition of unedited ATP9 transgene expression in Arabidopsis thaliana.

    PubMed

    Busi, María V; Gómez-Casati, Diego F; Perales, Mariano; Araya, Alejandro; Zabaleta, Eduardo

    2006-01-01

    Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.

  19. A non-neuronal cholinergic system regulates cellular ATP levels to maintain cell viability.

    PubMed

    Oikawa, Shino; Iketani, Mitsue; Kakinuma, Yoshihiko

    2014-01-01

    We previously suggested that a non-neuronal cholinergic system modulates energy metabolism through the mitochondria. However, the mechanisms responsible for making this system crucial remained undetermined. In this study, we developed a fusion protein expression vector containing a luciferase gene fused to the folic acid receptor-α gene. This protein of the vector was confirmed to target the plasma membrane of transfected HEK293 cells, and vector-derived luciferase activities and ATP levels in viable cells were positively correlated (r = 0.599). Using this luciferase vector, choline acetyltransferase (ChAT)-expressing cells (i.e., cells with an activated non-neuronal cholinergic system) had increased cellular ATP levels. ChAT-expressing cells also had upregulated IGF-1R and Glut-1 protein expressions as well as increased glucose uptake. This activated non-neuronal cholinergic system with efficient glucose metabolism rendered cells resistant to serum depletion-induced cell death. Our results indicate that a non-neuronal cholinergic system is involved in sustaining ATP levels to render cells resistant to a nutrient-deficient environment. © 2014 S. Karger AG, Basel.

  20. 24-Hydroxylase: potential key regulator in hypervitaminosis D3 in growing dogs.

    PubMed

    Tryfonidou, M A; Oosterlaken-Dijksterhuis, M A; Mol, J A; van den Ingh, T S G A M; van den Brom, W E; Hazewinkel, H A W

    2003-03-01

    A group of growing dogs supplemented with cholecalciferol (vitamin D(3); HVitD) was studied vs. a control group (CVitD; 54,000 vs. 470 IU vitamin D(3)/kg diet, respectively) from 3 to 21 wk of age. There were no differences in plasma levels of P(i) and growth-regulating hormones between groups and no signs of vitamin D(3) intoxication in HVitD. For the duration of the study in HVitD vs. CVitD, plasma 25-hydroxycholecalciferol levels increased 30- to 75-fold; plasma 24,25-dihydroxycholecalciferol levels increased 12- to 16-fold and were accompanied by increased renal 24-hydroxylase gene expression, indicating increased renal 24-hydroxylase activity. Although the synthesis of 1,25-dihydroxycholecalciferol [1,25(OH)(2)D(3)] was increased in HVitD vs. CVitD (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased renal 1alpha-hydroxylase gene expression), plasma 1,25(OH)(2)D(3) levels decreased by 40% as a result of the even more increased metabolic clearance of 1,25(OH)(2)D(3) (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased gene expression of intestinal and renal 24-hydroxylase). A shift of the Ca set point for parathyroid hormone to the left indicated increased sensitivity of the chief cells. Effective counterbalance was provided by hypoparathyroidism, hypercalcitoninism, and the key regulator 24-hydroxylase, preventing the development of vitamin D(3) toxicosis.

Top