Sample records for expression library immunization

  1. Immune-Related Transcriptome of Coptotermes formosanus Shiraki Workers: The Defense Mechanism

    PubMed Central

    Hussain, Abid; Li, Yi-Feng; Cheng, Yu; Liu, Yang; Chen, Chuan-Cheng; Wen, Shuo-Yang

    2013-01-01

    Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites. PMID:23874972

  2. Identification of immune protective genes of Eimeria maxima through cDNA expression library screening.

    PubMed

    Yang, XinChao; Li, MengHui; Liu, JianHua; Ji, YiHong; Li, XiangRui; Xu, LiXin; Yan, RuoFeng; Song, XiaoKai

    2017-02-16

    Eimeria maxima is one of the most prevalent Eimeria species causing avian coccidiosis, and results in huge economic loss to the global poultry industry. Current control strategies, such as anti-coccidial medication and live vaccines have been limited because of their drawbacks. The third generation anticoccidial vaccines including the recombinant vaccines as well as DNA vaccines have been suggested as a promising alternative strategy. To date, only a few protective antigens of E. maxima have been reported. Hence, there is an urgent need to identify novel protective antigens of E. maxima for the development of neotype anticoccidial vaccines. With the aim of identifying novel protective genes of E. maxima, a cDNA expression library of E. maxima sporozoites was constructed using Gateway technology. Subsequently, the cDNA expression library was divided into 15 sub-libraries for cDNA expression library immunization (cDELI) using parasite challenged model in chickens. Protective sub-libraries were selected for the next round of screening until individual protective clones were obtained, which were further sequenced and analyzed. Adopting the Gateway technology, a high-quality entry library was constructed, containing 9.2 × 10 6 clones with an average inserted fragments length of 1.63 kb. The expression library capacity was 2.32 × 10 7 colony-forming units (cfu) with an average inserted fragments length of 1.64 Kb. The expression library was screened using parasite challenged model in chickens. The screening yielded 6 immune protective genes including four novel protective genes of EmJS-1, EmRP, EmHP-1 and EmHP-2, and two known protective genes of EmSAG and EmCKRS. EmJS-1 is the selR domain-containing protein of E. maxima whose function is unknown. EmHP-1 and EmHP-2 are the hypothetical proteins of E. maxima. EmRP and EmSAG are rhomboid-like protein and surface antigen glycoproteins of E. maxima respectively, and involved in invasion of the parasite. Our results provide a cDNA expression library for further screening of T cell stimulating or inhibiting antigens of E. maxima. Moreover, our results provide six candidate protective antigens for developing new vaccines against E. maxima.

  3. Single-step colony assay for screening antibody libraries.

    PubMed

    Kato, Mieko; Hanyu, Yoshiro

    2017-08-10

    We describe a method, single-step colony assay, for simple and rapid screening of single-chain Fv fragment (scFv) libraries. Colonies of Escherichia coli expressing the scFv library are formed on a hydrophilic filter that is positioned in contact with a membrane coated with an antigen. scFv expression is triggered upon treatment of colonies with an induction reagent, following which scFvs are secreted from the cells and diffused to the antigen-coated membrane. scFvs that exhibit binding affinity for the antigen are captured by the membrane-immobilized antigen. Lastly, detection of scFv binding of the antigen on the membrane allows identification of the clones on the filter that express antigen-specific scFvs. We tested this methodology by using an anti-rabbit IgG scFv, scFv(A10B), and a rat immune scFv library. Experiments conducted using scFv(A10B) revealed that this method improves scFv expression during the colony assay. By using our method to screen an immune library of 3×10 3 scFv clones, we established several clones exhibiting affinity for the antigen. Moreover, we tested 7 other antigens, including peptides, and successfully identified positive clones. We believe that this simple procedure and controlled scFv expression of the single-step colony assay could make the antibody screening both rapid and reliable and lead to successful isolation of positive clones from antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    PubMed

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  5. Prolongation of the survival of breast cancer-bearing mice immunized with GM-CSF-secreting syngeneic/allogeneic fibroblasts transfected with a cDNA expression library from breast cancer cells.

    PubMed

    Kim, Tae S; Jung, Mi Y; Cho, Daeho; Cohen, Edward P

    2006-10-30

    Breast cancer cells, like other types of neoplastic cells, form weakly immunogenic tumor-associated antigens. The antigenic properties of the tumor-associated antigens can be enhanced if they are expressed by highly immunogenic cells. In this study, a cancer vaccine was prepared by transfer of a cDNA expression library from SB5b breast carcinoma into mouse fibroblast cells of C3H/He mouse origin (H-2(k)), that had been previously modified to secrete GM-CSF and to express allogeneic class I-determinants (H-2(b)). The transfected syngeneic/allogeneic fibroblasts secreting GM-CSF were used as a vaccine in C3H/He mice. Robust cell-mediated immunity toward the breast cancer cells was generated in mice immunized with the cDNA-based vaccine. The immunity, mediated predominantly by CD8(+) T lymphocytes, was directed toward the breast cancer cells, but not against either of two other non-cross-reactive neoplasms of C3H/He mice. The immunity was sufficient to prolong the survival of mice with established breast cancer. Among other advantages, preparation of the vaccine by cDNA-transfer into a fibroblast cell line enabled the recipient cells to be modified in advance of DNA-transfer to augment their immunogenic properties. As the transferred DNA is replicated as the transfected cells divide, the vaccine could be prepared from microgram quantities of tumor tissue.

  6. Development and experimental validation of a 20K Atlantic cod (Gadus morhua) oligonucleotide microarray based on a collection of over 150,000 ESTs.

    PubMed

    Booman, Marije; Borza, Tudor; Feng, Charles Y; Hori, Tiago S; Higgins, Brent; Culf, Adrian; Léger, Daniel; Chute, Ian C; Belkaid, Anissa; Rise, Marlies; Gamperl, A Kurt; Hubert, Sophie; Kimball, Jennifer; Ouellette, Rodney J; Johnson, Stewart C; Bowman, Sharen; Rise, Matthew L

    2011-08-01

    The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.

  7. Selection and expression of recombinant single domain antibodies from a hyper-immunized library against the hapten azoxystrobin.

    PubMed

    Makvandi-Nejad, Shokouh; Fjällman, Ted; Arbabi-Ghahroudi, Mehdi; MacKenzie, C Roger; Hall, J Christopher

    2011-10-28

    Three V(H)Hs against the model hapten, azoxystrobin (MW 403), were isolated from a hyper-immunized phage-displayed V(H)H library. This library was constructed by isolating the V(H)H-coding genes from the lymphocytes collected from a Llama glama that was immunized with azoxystrobin conjugated to bovine serum albumin (BSA). Six rounds of panning were performed against azoxystrobin conjugated to either ovalbumin (OVA) or rabbit serum albumin (RSA) to enrich clones containing V(H)Hs specific to the hapten. After screening 95 clones, three V(H)Hs (A27, A72, and A85) with different amino acid sequences were identified, expressed in soluble format in Escherichia coli HB2151, and purified using nickel-immobilized metal affinity chromatography. Competitive inhibition enzyme-linked immunosorbent assay (CI-ELISA) showed that A27 and A85 were specific to azoxystrobin while A72 was not. The IC(50) values of A27 and A85 V(H)Hs were 7.2 and 2.0μM, respectively. To our knowledge A85 is one of the highest affinity V(H)Hs that has yet been isolated against a hydrophobic hapten such as azoxystrobin. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Transcriptome analysis of Ruditapes philippinarum hepatopancreas provides insights into immune signaling pathways under Vibrio anguillarum infection.

    PubMed

    Ren, Yipeng; Xue, Junli; Yang, Huanhuan; Pan, Baoping; Bu, Wenjun

    2017-05-01

    The Manila clam, Ruditapes philippinarum, is one of the most economically important aquatic clams that are harvested on a large scale by the mariculture industry in China. However, increasing reports of bacterial pathogenic diseases have had a negative effect on the aquaculture industry of R. philippinarum. In the present study, the two transcriptome libraries of untreated (termed H) and challenged Vibrio anguillarum (termed HV) hepatopancreas were constructed and sequenced from Manila clam using an Illumina-based paired-end sequencing platform. In total, 75,302,886 and 66,578,976 high-quality clean reads were assembled from 101,080,746 and 99,673,538 raw data points from the two transcriptome libraries described above, respectively. Furthermore, 156,116 unigenes were generated from 210,685 transcripts, with an N50 length of 1125 bp, and from the annotated SwissProt, NR, NT, KO, GO, KOG and KEGG databases. Moreover, a total of 4071 differentially expressed unigenes (HV vs H) were detected, including 903 up-regulated and 3168 down-regulated genes. Among these differentially expressed unigenes, 226 unigenes were annotated using KEGG annotation in 16 immune-related signaling pathways, including Toll-like receptor, NF-kappa B, MAPK, NOD-like receptor, RIG-I-like receptor, and the TNF and chemokine signaling pathways. Finally, 20,341 simple sequence repeats (SSRs) and 214,430 potential single nucleotide polymorphisms (SNPs) were detected from the H and HV transcriptome libraries. In conclusion, these studies identified many candidate immune-related genes and signaling pathways and conducted a comparative analysis of the differentially expressed unigenes from Manila clam hepatopancreas in response to V. anguillarum stimulation. These data laid the foundation for studying the innate immune systems and defense mechanisms in R. philippinarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    PubMed

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  10. Identification of highly expressed host microRNAs that respond to white spot syndrome virus infection in the Pacific white shrimp Litopenaeus vannamei (Penaeidae).

    PubMed

    Zeng, D G; Chen, X L; Xie, D X; Zhao, Y Z; Yang, Q; Wang, H; Li, Y M; Chen, X H

    2015-05-11

    MicroRNAs (miRNAs) are known to play an important role in regulating both adaptive and innate immunity. Pacific white shrimp (Litopenaeus vannamei) is the most widely farmed crustacean species in the world. However, little is known about the role miRNAs play in shrimp immunity. To understand the impact of viral infection on miRNA expression in shrimp, we used high-throughput sequencing technology to sequence two small RNA libraries prepared from L. vannamei under normal and white spot syndrome virus (WSSV) challenged conditions. Approximately 19,312,189 and 39,763,551 raw reads corresponding to 17,414,787 and 28,633,379 high-quality mappable reads were obtained from the two libraries, respectively. Twelve conserved miRNAs and one novel miRNA that were highly expressed (>100 RPM) in L. vannamei were identified. Of the identified miRNAs, 8 were differentially expressed in response to the virus infection, of which 1 was upregulated and 7 were downregulated. The prediction of miRNA targets showed that the target genes of the differentially expressed miRNAs were related to immunity, apoptosis, and development functions. Our study provides the first characterization of L. vannamei miRNAs in response to WSSV infection, which will help to reveal the roles of miRNAs in the antiviral mechanisms of shrimp.

  11. Paramyosin from the parasitic mite Sarcoptes scabiei: cDNA cloning and heterologous expression.

    PubMed

    Mattsson, J G; Ljunggren, E L; Bergström, K

    2001-05-01

    The burrowing mite Sarcoptes scabiei is the causative agent of the highly contagious disease sarcoptic mange or scabies. So far, there is no in vitro propagation system for S. scabiei available, and mites used for various purposes must be isolated from infected hosts. Lack of parasite-derived material has limited the possibilities to study several aspects of scabies, including pathogenesis and immunity. It has also hampered the development of high performance serological assays. We have now constructed an S. scabiei cDNA expression library with mRNA purified from mites isolated from red foxes. Immunoscreening of the library enabled us to clone a full-length cDNA coding for a 102.5 kDa protein. Sequence similarity searches identified the protein as a paramyosin. Recombinant S. scabiei paramyosin expressed in Escherichia coli was recognized by sera from dogs and swine infected with S. scabiei. We also designed a small paramyosin construct of about 17 kDa that included the N-terminal part, an evolutionary variable part of the helical core, and the C-terminal part of the molecule. The miniaturized protein was efficiently expressed in E. coli and was recognized by sera from immunized rabbits. These data demonstrate that the cDNA library can assist in the isolation of important S. scabiei antigens and that recombinant proteins can be useful for the study of scabies.

  12. A review of the immune molecules in the sea cucumber.

    PubMed

    Xue, Zhuang; Li, Hui; Wang, Xiuli; Li, Xia; Liu, Yang; Sun, Jing; Liu, Cenjie

    2015-05-01

    It is very important to identify and characterize the immune-related genes that respond to pathogens. Until recently, only some of the immune-related genes in sea cucumbers had been characterized. Their expression patterns after pathogen challenges have been analyzed via expressed sequence tag libraries, microarray studies and proteomic approaches. These genes include lectins, antimicrobial peptides, lysozyme, enzymes, clotting protein, pattern recognition proteins, Toll receptors, complement C3 and other humoral factors that might participate in the innate immune system of sea cucumbers. Although the participation of some of these immune molecules in the sea cucumber's innate immune defense against invading pathogens has been demonstrated, the functions of many of the molecules remain unclear. This review focuses on the discovery and functional characterization of the immune-related molecules from the sea cucumber for the first time and provides new insights into the immune mechanisms of the sea cucumber, which opens new possibilities for developing drugs for novel anti-bacterial and antiviral applications in fisheries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Immune Antibody Libraries: Manipulating The Diverse Immune Repertoire for Antibody Discovery.

    PubMed

    Lim, Theam Soon; Chan, Soo Khim

    2016-01-01

    Antibody phage display is highly dependent on the availability of antibody libraries. There are several forms of libraries depending mainly on the origin of the source materials. There are three major classes of libraries, mainly the naïve, immune and synthetic libraries. Immune antibody libraries are designed to isolate specific and high affinity antibodies against disease antigens. The pre-exposure of the host to an infection results in the production of a skewed population of antibodies against the particular infection. This characteristic takes advantage of the in vivo editing machinery to generate bias and specific immune repertoire. The skewed but diverse repertoire of immune libraries has been adapted successfully in the generation of antibodies against a wide range of diseases. We envisage immune antibody libraries to play a greater role in the discovery of antibodies for diseases in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Production of a Human Antibody Library in the Phage-Display Vector pSEX81.

    PubMed

    Welschof, M; Little, M; Dörsam, H

    1998-01-01

    Human monoclonal antibodies (MAbs) are more suitable than MAbs of animal origin for clinical applications because of lower hypersensitivity reactions, less formation of circulating immune complexes and lower anti-immunoglobulin responses The classical production of human MAbs via the hybridoma technique or Epstein-Barr virus (EBV) transformation is limited by the instability of cell lines, low antibody production, and the problems of imununizing humans with certain antigens (1,2). A promising alternative 1s the production of human recombinant antibodies (3). Recombinant DNA technology has made it possible to clone human antibody genes in vectors and to generate antibody expression libraries (4-7). One approach has been to amplify and recombine the IgG repertoire of an "immunized" donor. This has been used to isolate several antibodies related to diseases (8,9). In order to obtain more universal antibody libraries the naive IgM repertoire of several "unimmunized" donors were pooled (10,12). The complexity of the combinatorial libraries has been further increased by creating the so-called "semisynthetic" antibody libraries (22-14).

  15. Comparative analysis of differential gene expression in kidney tissues of moribund and surviving crucian carp (Carassius auratus gibelio) in response to cyprinid herpesvirus 2 infection.

    PubMed

    Xu, Lijuan; Podok, Patarida; Xie, Jun; Lu, Liqun

    2014-08-01

    Cyprinid herpesvirus 2 (CyHV-2) has recently been associated with high mortality of cultured crucian carp (Carassius auratus gibelio) in eastern China. In this study, we established a real-time PCR method to confirm viral infection of crucian carp and to quantify CyHV-2 particles obtained by sucrose gradient centrifugation from diseased fish. Virus-free crucian carp were artificially infected with CyHV-2 using an injection method, which resulted in a dose-dependent death rate. In situ hybridization analysis indicated that there was extensive viral replication and lysis in the kidneys of moribund fish, in contrast to very limited replication in surviving fish. To probe the host immune response to viral infection at the level of gene expression, we identified virus-responsive genes using suppression subtractive hybridization (SSH) in head kidney tissues, the principal immune organ of fish, from moribund and surviving crucian carps after viral challenge. From the moribund SSH library, 363 expressed sequence tags (ESTs) were clustered to 234 unigenes (including 15 singletons and 45 contigs). From the survivor SSH library, 599 ESTs was clustered to 549 unigenes (including 107 singletons and 105 contigs). We further analyzed the transcriptional levels of all immune-related genes by quantitative real-time RT-PCR, which confirmed the upregulation of 90.48 % of these genes. The significantly upregulated immune-related genes identified in this study can serve as candidate marker genes for acute CyHV-2 infection.

  16. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    PubMed

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2018-03-01

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  17. Comprehensive Genetic Dissection of the Hemocyte Immune Response in the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Lombardo, Fabrizio; Ghani, Yasmeen; Kafatos, Fotis C.; Christophides, George K.

    2013-01-01

    Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca2+ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens. PMID:23382679

  18. Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection.

    PubMed

    Liu, Hai-peng; Chen, Rong-yuan; Zhang, Qiu-xia; Peng, Hui; Wang, Ke-jian

    2011-07-01

    White spot syndrome virus (WSSV) is one of the most important viral pathogens in crustaceans. During WSSV infection, multiple cell signaling cascades are activated, leading to the generation of antiviral molecules and initiation of programmed cell death of the virus infected cells. To gain novel insight into cell signaling mechanisms employed in WSSV infection, we have used suppression subtractive hybridization (SSH) to elucidate the cellular response to WSSV challenge at the gene level in red claw crayfish haematopoietic tissue (Hpt) stem cell cultures. Red claw crayfish Hpt cells were infected with WSSV for 1h (L1 library) and 12h (L12 library), respectively, after which the cell RNA was prepared for SSH using uninfected cells as drivers. By screening the L1 and L12 forward libraries, we have isolated the differentially expressed genes of crayfish Hpt cells upon WSSV infection. Among these genes, the level of many key molecules showed clearly up-regulated expression, including the genes involved in immune responses, cytoskeletal system, signal transduction molecules, stress, metabolism and homestasis related genes, and unknown genes in both L1 and L12 libraries. Importantly, of the 2123 clones screened, 176 novel genes were found the first time to be up-regulated in WSSV infection in crustaceans. To further confirm the up-regulation of differentially expressed genes, the semi-quantitative RT-PCR were performed to test twenty randomly selected genes, in which eight of the selected genes exhibited clear up-regulation upon WSSV infection in red claw crayfish Hpt cells, including DNA helicase B-like, multiprotein bridging factor 1, apoptosis-linked gene 2 and an unknown gene-L1635 from L1 library; coatomer gamma subunit, gabarap protein gene, tripartite motif-containing 32 and an unknown gene-L12-254 from L2 library, respectively. Taken together, as well as in immune and stress responses are regulated during WSSV infection of crayfish Hpt cells, our results also light the significance of cytoskeletal system, signal transduction and other unknown genes in the regulation of antiviral signals during WSSV infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Human Neoplasms Elicit Multiple Specific Immune Responses in the Autologous Host

    NASA Astrophysics Data System (ADS)

    Sahin, Ugur; Tureci, Ozlem; Schmitt, Holger; Cochlovius, Bjorn; Johannes, Thomas; Schmits, Rudolf; Stenner, Frank; Luo, Guorong; Schobert, Ingrid; Pfreundschuh, Michael

    1995-12-01

    Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.

  20. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis.

    PubMed

    Gurung, Bhusan; Bhardwaj, Pardeep K; Talukdar, Narayan C

    2016-11-01

    In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.

  1. Genome-Wide Identification of Destruxin A-Responsive Immunity-Related MicroRNAs in Diamondback Moth, Plutella xylostella.

    PubMed

    Shakeel, Muhammad; Xu, Xiaoxia; Xu, Jin; Li, Shuzhong; Yu, Jialin; Zhou, Xianqiang; Xu, Xiaojing; Hu, Qiongbo; Yu, Xiaoqiang; Jin, Fengliang

    2018-01-01

    Plutella xylostella , a global key pest, is one of the major lepidopteran pests of cruciferous vegetables owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of the entomopathogenic fungus, Metarhizium anisopliae , has broad-spectrum insecticidal effects and has been used as an alternative control strategy to reduce harmful effects of insecticides. However, microRNA (miRNA)-regulated reactions against destruxin A have not been elucidated yet. Therefore, here, to identify immunity-related miRNAs, we constructed four small RNA libraries from destruxin A-injected larvae of P. xylostella at three different time courses (2, 4, and 6 h) with a control, and sequenced by Illumina. Our results showed that totally 187 known and 44 novel miRNAs were identified in four libraries by bioinformatic analysis. Interestingly, among differentially expressed known miRNAs, some conserved miRNAs, such as miR-263, miR-279, miR-306, miR-2a, and miR-308, predicted to be involved in regulating immunity-related genes, were also identified. Worthy to mention, miR-306 and miR-279 were also listed as common abundantly expressed miRNA in all treatments. The Kyoto Encyclopedia of Genes and Genomes pathway analysis also indicated that differentially expressed miRNAs were involved in several immunity-related signaling pathways, including toll signaling pathway, IMD signaling pathway, JAK-STAT signaling pathway, and cell adhesion molecules signaling pathway. To the best of our knowledge, this is the first comprehensive report of destruxin A-responsive immunity-related miRNAs in P. xylostella . Our findings will improve in understanding the role of destruxin A-responsive miRNAs in the host immune system and would be useful to develop biological control strategies for controlling P. xylostella .

  2. Genome-Wide Identification of Destruxin A-Responsive Immunity-Related MicroRNAs in Diamondback Moth, Plutella xylostella

    PubMed Central

    Shakeel, Muhammad; Xu, Xiaoxia; Xu, Jin; Li, Shuzhong; Yu, Jialin; Zhou, Xianqiang; Xu, Xiaojing; Hu, Qiongbo; Yu, Xiaoqiang; Jin, Fengliang

    2018-01-01

    Plutella xylostella, a global key pest, is one of the major lepidopteran pests of cruciferous vegetables owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of the entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects and has been used as an alternative control strategy to reduce harmful effects of insecticides. However, microRNA (miRNA)-regulated reactions against destruxin A have not been elucidated yet. Therefore, here, to identify immunity-related miRNAs, we constructed four small RNA libraries from destruxin A-injected larvae of P. xylostella at three different time courses (2, 4, and 6 h) with a control, and sequenced by Illumina. Our results showed that totally 187 known and 44 novel miRNAs were identified in four libraries by bioinformatic analysis. Interestingly, among differentially expressed known miRNAs, some conserved miRNAs, such as miR-263, miR-279, miR-306, miR-2a, and miR-308, predicted to be involved in regulating immunity-related genes, were also identified. Worthy to mention, miR-306 and miR-279 were also listed as common abundantly expressed miRNA in all treatments. The Kyoto Encyclopedia of Genes and Genomes pathway analysis also indicated that differentially expressed miRNAs were involved in several immunity-related signaling pathways, including toll signaling pathway, IMD signaling pathway, JAK–STAT signaling pathway, and cell adhesion molecules signaling pathway. To the best of our knowledge, this is the first comprehensive report of destruxin A-responsive immunity-related miRNAs in P. xylostella. Our findings will improve in understanding the role of destruxin A-responsive miRNAs in the host immune system and would be useful to develop biological control strategies for controlling P. xylostella. PMID:29472927

  3. Construction of a cDNA library from female adult of Toxocara canis, and analysis of EST and immune-related genes expressions.

    PubMed

    Zhou, Rongqiong; Xia, Qingyou; Huang, Hancheng; Lai, Min; Wang, Zhenxin

    2011-10-01

    Toxocara canis is a widespread intestinal nematode parasite of dogs, which can also cause disease in humans. We employed an expressed sequence tag (EST) strategy in order to study gene-expression including development, digestion and reproduction of T. canis. ESTs provided a rapid way to identify genes, particularly in organisms for which we have very little molecular information. In this study, a cDNA library was constructed from a female adult of T. canis and 215 high-quality ESTs from 5'-ends of the cDNA clones representing 79 unigenes were obtained. The titer of the primary cDNA library was 1.83×10(6)pfu/mL with a recombination rate of 99.33%. Most of the sequences ranged from 300 to 900bp with an average length of 656bp. Cluster analysis of these ESTs allowed identification of 79 unique sequences containing 28 contigs and 51 singletons. BLASTX searches revealed that 18 unigenes (22.78% of the total) or 70 ESTs (32.56% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest of the 61 unigenes (77.22% of the total) or 145 ESTs (67.44% of the total) were closely matched to the known genes or sequences deposited in the public databases. These genes were classified into seven groups based on their known or putative biological functions. We also confirmed the gene expression patterns of several immune-related genes using RT-PCR examination. This work will provide a valuable resource for the further investigations in the stage-, sex- and tissue-specific gene transcription or expression. Copyright © 2011. Published by Elsevier Inc.

  4. Construction of High-Quality Camel Immune Antibody Libraries.

    PubMed

    Romão, Ema; Poignavent, Vianney; Vincke, Cécile; Ritzenthaler, Christophe; Muyldermans, Serge; Monsion, Baptiste

    2018-01-01

    Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 10 7 -10 8 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 10 8 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.

  5. Construction of Rabbit Immune Antibody Libraries.

    PubMed

    Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo

    2018-01-01

    Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.

  6. Transcriptomic analysis of Ruditapes philippinarum hemocytes reveals cytoskeleton disruption after in vitro Vibrio tapetis challenge.

    PubMed

    Brulle, Franck; Jeffroy, Fanny; Madec, Stéphanie; Nicolas, Jean-Louis; Paillard, Christine

    2012-10-01

    The Manila clam, Ruditapes philippinarum, is an economically-important, commercial shellfish; harvests are diminished in some European waters by a pathogenic bacterium, Vibrio tapetis, that causes Brown Ring disease. To identify molecular characteristics associated with susceptibility or resistance to Brown Ring disease, Suppression Subtractive Hybridization (SSH) analyzes were performed to construct cDNA libraries enriched in up- or down-regulated transcripts from clam immune cells, hemocytes, after a 3-h in vitro challenge with cultured V. tapetis. Nine hundred and ninety eight sequences from the two libraries were sequenced, and an in silico analysis identified 235 unique genes. BLAST and "Gene ontology" classification analyzes revealed that 60.4% of the Expressed Sequence Tags (ESTs) have high similarities with genes involved in various physiological functions, such as immunity, apoptosis and cytoskeleton organization; whereas, 39.6% remain unidentified. From the 235 unique genes, we selected 22 candidates based upon physiological function and redundancy in the libraries. Then, Real-Time PCR analysis identified 3 genes related to cytoskeleton organization showing significant variation in expression attributable to V. tapetis exposure. Disruption in regulation of these genes is consistent with the etiologic agent of Brown Ring disease in Manila clams. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. SEREX analysis for tumor antigen identification in a mouse model of adenocarcinoma.

    PubMed

    Hampton, T A; Conry, R M; Khazaeli, M B; Shaw, D R; Curiel, D T; LoBuglio, A F; Strong, T V

    2000-03-01

    Evaluation of immunotherapy strategies in mouse models of carcinoma is hampered by the limited number of known murine tumor antigens (Ags). Although tumor Ags can be identified based on cytotoxic T-cell activation, this approach is not readily accomplished for many tumor types. We applied an alternative strategy based on a humoral immune response, SEREX, to the identification of tumor Ags in the murine colon adenocarcinoma cell line MC38. Immunization of syngeneic C57BL/6 mice with MC38 cells by three different methods induced a protective immune response with concomitant production of anti-MC38 antibodies. Immunoscreening of an MC38-derived expression library resulted in the identification of the endogenous ecotropic leukemia virus envelope (env) protein and the murine ATRX protein as candidate tumor Ags. Northern blot analysis demonstrated high levels of expression of the env transcript in MC38 cells and in several other murine tumor cell lines, whereas expression in normal colonic epithelium was absent. ATRX was found to be variably expressed in tumor cell lines and in normal tissue. Further analysis of the expressed env sequence indicated that it represents a nonmutated tumor Ag. Polynucleotide immunization with DNA encoding the env polypeptide resulted in strong and specific antibody responses to this self Ag in all immunized mice. Thus, SEREX offers a rapid means of identifying tumor Ags in murine cancer models.

  8. Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies.

    PubMed

    Romao, Ema; Morales-Yanez, Francisco; Hu, Yaozhong; Crauwels, Maxine; De Pauw, Pieter; Hassanzadeh, Gholamreza Ghassanzadeh; Devoogdt, Nick; Ackaert, Chloe; Vincke, Cecile; Muyldermans, Serge

    2016-01-01

    The discovery of functional heavy chain-only antibodies devoid of light chains in sera of camelids and sharks in the early nineties provided access to the generation of minimal-sized, single-domain, in vivo affinity-matured, recombinant antigenbinding fragments, also known as Nanobodies. Recombinant DNA technology and adaptation of phage display vectors form the basis to construct large naïve, synthetic or medium sized immune libraries from where multiple Nanobodies have been retrieved. Alternative selection methods (i.e. bacterial display, bacterial two-hybrid, Cis-display and ribosome display) have also been developed to identify Nanobodies. The antigen affinity, stability, expression yields and structural details of the Nanobodies have been determined by standard technology. Nanobodies were subsequently engineered for higher stability and affinity, to have a sequence closer to that of human immunoglobulin domains, or to add designed effector functions. Antigen specific Nanobodies recognizing with high affinity their cognate antigen were retrieved from various libraries. High expression yields are obtained from microorganisms, even when expressed in the cytoplasm. The purified Nanobodies are shown to possess beneficial biochemical and biophysical properties. The crystal structure of Nanobody::antigen complexes reveal the preference of Nanobodies for cavities on the antigen surface. Thanks to the properties described above, Nanobodies became a highly valued and versatile tool for biomolecular research. Moreover, numerous diagnostic and therapeutic Nanobody-based applications have been developed in the past decade. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Comparison of the efficiency of antibody selection from semi-synthetic scFv and non-immune Fab phage display libraries against protein targets for rapid development of diagnostic immunoassays.

    PubMed

    Chan, Conrad E Z; Chan, Annie H Y; Lim, Angeline P C; Hanson, Brendon J

    2011-10-28

    Rapid development of diagnostic immunoassays against novel emerging or genetically modified pathogens in an emergency situation is dependent on the timely isolation of specific antibodies. Non-immune antibody phage display libraries are an efficient in vitro method for selecting monoclonal antibodies and hence ideal in these circumstances. Such libraries can be constructed from a variety of sources e.g. B cell cDNA or synthetically generated, and use a variety of antibody formats, typically scFv or Fab. However, antibody source and format can impact on the quality of antibodies generated and hence the effectiveness of this methodology for the timely production of antibodies. We have carried out a comparative screening of two antibody libraries, a semi-synthetic scFv library and a human-derived Fab library against the protective antigen toxin component of Bacillus anthracis and the epsilon toxin of Clostridium botulinum. We have shown that while the synthetic library produced a diverse collection of specific scFv-phage, these contained a high frequency of unnatural amber stops and glycosylation sites which limited their conversion to IgG, and also a high number which lost specificity when expressed as IgG. In contrast, these limitations were overcome by the use of a natural human library. Antibodies from both libraries could be used to develop sandwich ELISA assays with similar sensitivity. However, the ease and speed with which full-length IgG could be generated from the human-derived Fab library makes screening this type of library the preferable method for rapid antibody generation for diagnostic assay development. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. De novo transcriptome analysis of immune response on cobia (Rachycentron canadum) infected with Photobacterium damselae subsp. piscicida revealed inhibition of complement components and involvement of MyD88-independent pathway.

    PubMed

    Tran, Hung Bao; Lee, Yen-Hung; Guo, Jiin-Ju; Cheng, Ta-Chih

    2018-06-01

    Cobia, Rachycentron canadum, one of the most important aquatic species in Taiwan, has suffered heavy losses from Photobacterium damselae subsp. piscicida, which is the causal agent of photobacteriosis. In this study, the transcriptomic profiles of livers and spleens from Pdp-infected and non-infected cobia were obtained for the first time by Illumina-based paired-end sequencing method with a focus on immune-related genes. In total, 164,882 high quality unigenes were obtained in four libraries. Following Pdp infection, 7302 differentially expressed unigenes from liver and 8600 differentially expressed unigenes from spleen were identified. Twenty-seven of the differently expressed genes were further validated by RT-qPCR (average correlation coefficient 0.839, p-value <0.01). Results indicated a negative regulation of complement components and increased expression of genes involved in MyD88-independent pathway. Moreover, a remarkable finding was the increased expression of IL-10, implying an inadequacy of immune responses. This study not only characterized several putative immune pathways, but also provided a better understanding of the molecular responses to photobacteriosis in cobia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Principles and application of antibody libraries for infectious diseases.

    PubMed

    Lim, Bee Nar; Tye, Gee Jun; Choong, Yee Siew; Ong, Eugene Boon Beng; Ismail, Asma; Lim, Theam Soon

    2014-12-01

    Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.

  12. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes.

    PubMed

    Xu, Jin; Xu, Xiaoxia; Shakeel, Muhammad; Li, Shuzhong; Wang, Shuang; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Yu, Xiaoqiang; Jin, Fengliang

    2017-01-01

    Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea . To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella .

  13. Sequencing, annotation, and characterization of the influenza ferret infectome.

    PubMed

    León, Alberto J; Banner, David; Xu, Luoling; Ran, Longsi; Peng, Zhiyu; Yi, Kang; Chen, Chao; Xu, Fengping; Huang, Jinrong; Zhao, Zhen; Lin, Zhen; Huang, Stephen H S; Fang, Yuan; Kelvin, Alyson A; Ross, Ted M; Farooqui, Amber; Kelvin, David J

    2013-02-01

    Ferrets have become an indispensable tool in the understanding of influenza virus virulence and pathogenesis. Furthermore, ferrets are the preferred preclinical model for influenza vaccine and therapeutic testing. Here we characterized the influenza infectome during the different stages of the infectious process in ferrets with and without prior specific immunity to influenza. RNA from lung tissue and lymph nodes from infected and naïve animals was subjected to next-generation sequencing, followed by de novo data assembly and annotation of the resulting sequences; this process generated a library comprising 13,202 ferret mRNAs. Gene expression profiles during pandemic H1N1 (pdmH1N1) influenza virus infection were analyzed by digital gene expression and solid support microarrays. As expected during primary infection, innate immune responses were triggered in the lung tissue; meanwhile, in the lymphoid tissue, genes encoding antigen presentation and maturation of effector cells of adaptive immunity increased dramatically. After 5 days postinfection, the innate immune gene expression was replaced by the adaptive immune response, which correlates with viral clearance. Reinfection with homologous pandemic influenza virus resulted in a diminished innate immune response, early adaptive immune gene regulation, and a reduction in clinical severity. The fully annotated ferret infectome will be a critical aid to the understanding of the molecular events that regulate disease severity and host-influenza virus interactions among seasonal, pandemic, and highly pathogenic avian influenzas.

  14. Gene discovery in Eimeria tenella by immunoscreening cDNA expression libraries of sporozoites and schizonts with chicken intestinal antibodies.

    PubMed

    Réfega, Susana; Girard-Misguich, Fabienne; Bourdieu, Christiane; Péry, Pierre; Labbé, Marie

    2003-04-02

    Specific antibodies were produced ex vivo from intestinal culture of Eimeria tenella infected chickens. The specificity of these intestinal antibodies was tested against different parasite stages. These antibodies were used to immunoscreen first generation schizont and sporozoite cDNA libraries permitting the identification of new E. tenella antigens. We obtained a total of 119 cDNA clones which were subjected to sequence analysis. The sequences coding for the proteins inducing local immune responses were compared with nucleotide or protein databases and with expressed sequence tags (ESTs) databases. We identified new Eimeria genes coding for heat shock proteins, a ribosomal protein, a pyruvate kinase and a pyridoxine kinase. Specific features of other sequences are discussed.

  15. Construction of cDNA library from intestine, mesentery and coelomocyte of Apostichopus japonicus Selenka infected with Vibrio sp. and a preliminary analysis of immunity-related genes

    NASA Astrophysics Data System (ADS)

    Liu, Hongzhan; Zheng, Fengrong; Sun, Xiuqin; Cai, Yimei

    2012-06-01

    The aquaculture of sea cucumber Apostichopus japonicus (Echinodermata, Holothuroidea) has grown rapidly during recent years and has become an important sector of the marine industry in Northern China. However, with the rapid growth of the industry and the use of non-standard culture techniques, epidemic diseases of A. japonicus now pose increasing problems to the industry. To screen the genes with stress response to bacterial infection in sea cucumber at a genome wide level, we constructed a cDNA library from A. japonicus Selenka (Aspidochirotida: Stichopodidae) after infecting them with Vibrio sp. for 48 h. Total RNA was extracted from the intestine, mesentery and coelomocyte of infected sea cucumber using Trizol and mRNA was isolated by Oligotex mRNA Kits. The ligated cDNAs were transformed into DH5α, and a library of 3.24×105 clones (3.24×105 cfu mL-1) was obtained with the sizes of inserted fragments ranging from 0.8 to 2.5 kb. Sequencing the cDNA clones resulted in a total of 1106 ESTs that passed the quality control. BlastX and BlastN searches have identified 168 (31.5%) ESTs sharing significant homology with known sequences in NCBI protein or nucleotide databases. Among a panel of 25 putative immunity-related genes, serum lectin isoform, complement component 3, complement component 3-like genes were further studied by real-time PCR and they all increased more than 5 fold in response to Vibrio sp. challenge. Our library provides a valuable molecular tool for future study of invertebrate immunity against bacterial infection and our gene expression data indicates the importance of the immune system in the evolution and development of sea cucumber.

  16. Comparative transcriptomic analysis provides insights into antibacterial mechanisms of Branchiostoma belcheri under Vibrio parahaemolyticus infection.

    PubMed

    Zhang, Qi-Lin; Zhu, Qian-Hua; Liang, Ming-Zhong; Wang, Feng; Guo, Jun; Deng, Xian-Yu; Chen, Jun-Yuan; Wang, Yu-Jun; Lin, Lian-Bing

    2018-05-01

    Amphioxus, a basal chordate, is widely considered to be an existing proxy of the invertebrate ancestor of vertebrates, and it exhibits susceptibility to various pathogen infections and pathogenic mimic challenges. Here, in order to understand more clearly its antibacterial mechanisms, we analyzed the ribosomal RNA (rRNA)-depleted transcriptome of Chinese amphioxus (Branchiostoma belcheri) infected with Vibrio parahaemolyticus (V. p.) via next-generation deep sequencing technology (RNA-seq). We identified a total of 3214 differentially expressed genes (DEGs) by comparing V. p.-infected and control transcriptome libraries, including 2219 significantly up-regulated and 995 significantly down-regulated DEGs in V. p.-infected amphioxus. The DEGs with the top 10 most dramatic expression fold changes after V. p. infection, as well as 53 immune-related DEGs (IRDs) belonging to four primary categories of innate immunity were analyzed further. Through gene ontology (GO) and pathway enrichment analysis, DEGs were found to be primarily related to immune processes, apoptosis, catabolic and metabolic processes, binding and enzyme activity, while pathways involving bacterial infection, immune signaling, immune response, cancer, and apoptosis were overrepresented. We validated the RNA-seq results by detecting the expression levels of 10 IRDs using qRT-PCR, and we surveyed the dynamic variation in gene expression for these IRDs at 0, 6, 12, 24, and 48 h after V. p. Subsequently, according to the RNA-seq results, the presence of a primitive Toll-like receptor (TLR)-mediated antibacterial immune signaling pathway was predicted in B. belcheri. This study provides valuable information regarding antibacterial immunity for further research into the evolution of immunity in vertebrates and broadens our understanding of the innate immune response against bacterial invasion in amphioxus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library.

    PubMed

    Dong, Sa; Bo, Zongyi; Zhang, Cunzheng; Feng, Jianguo; Liu, Xianjin

    2018-04-01

    Single-chain variable fragment (scFv) is a kind of antibody that possess only one chain of the complete antibody while maintaining the antigen-specific binding abilities and can be expressed in prokaryotic system. In this study, scFvs against Cry1 toxins were screened out from an immunized mouse phage displayed antibody library, which was successfully constructed with capacity of 6.25 × 10 7  CFU/mL. Using the mixed and alternative antigen coating strategy and after four rounds of affinity screening, seven positive phage-scFvs against Cry1 toxins were selected and characterized. Among them, clone scFv-3H9 (MG214869) showing relative stable and high binding abilities to six Cry1 toxins was selected for expression and purification. SDS-PAGE indicated that the scFv-3H9 fragments approximately 27 kDa were successfully expressed in Escherichia coli HB2151 strain. The purified scFv-3H9 was used to establish the double antibody sandwich enzyme-linked immunosorbent assay method (DAS-ELISA) for detecting six Cry1 toxins, of which the lowest detectable limits (LOD) and the lowest quantitative limits (LOQ) were 3.14-11.07 and 8.22-39.44 ng mL -1 , respectively, with the correlation coefficient higher than 0.997. The average recoveries of Cry1 toxins from spiked rice leaf samples were ranged from 84 to 95%, with coefficient of variation (CV) less than 8.2%, showing good accuracy for the multi-residue determination of six Cry1 toxins in agricultural samples. This research suggested that the constructed phage display antibody library based on the animal which was immunized with the mixture of several antigens under the same category can be used for the quick and effective screening of generic antibodies.

  18. Asian Citrus Psyllid Expression Profiles Suggest Candidatus Liberibacter Asiaticus-Mediated Alteration of Adult Nutrition and Metabolism, and of Nymphal Development and Immunity

    PubMed Central

    He, Ruifeng; Nelson, William; Yin, Guohua; Cicero, Joseph M.; Willer, Mark; Kim, Ryan; Kramer, Robin; May, Greg A.; Crow, John A.; Soderlund, Carol A.; Gang, David R.; Brown, Judith K.

    2015-01-01

    The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease, or Huanglongbing (HLB). The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt), classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW) (http://www.sohomoptera.org/ACPPoP/). Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas transmission. PMID:26091106

  19. Rapid isolation of IgNAR variable single-domain antibody fragments from a shark synthetic library.

    PubMed

    Shao, Cui-Ying; Secombes, Chris J; Porter, Andrew J

    2007-01-01

    The immunoglobulin isotype IgNAR (Novel Antigen Receptor) was discovered in the serum of the nurse shark (Ginglymostoma cirratum) and wobbegong shark (Orectolobus maculates) as a homodimer of two protein chains, each composed of a single variable domain (V) domain and five constant domains. The IgNAR variable domain contains an intact antigen-binding site and functions as an independent domain able to react to antigen with both high specificity and affinity. Here we describe the successful construction of a synthetic phage-displayed library based upon a single anti-lysozyme clone HEL-5A7 scaffold, which was previously selected from an immune IgNAR variable domain library. The complementarity-determining region 3 (CDR3) loop of this clone was varied in both length and composition and the derived library was used to pan against two model proteins, lysozyme and leptin. A single anti-lysozyme clone (Ly-X20) and anti-leptin clone (Lep-12E1) were selected for further study. Both clones were shown to be functionally expressed in Escherichia coli, extremely thermostable and bind to corresponding antigens specifically. The results here demonstrate that a synthetic IgNAR variable domain library based on a single framework scaffold can be used as a route to generate antigen binders quickly, easily and without the need of immunization.

  20. Bovine mammary gene expression profiling during the onset of lactation.

    PubMed

    Gao, Yuanyuan; Lin, Xueyan; Shi, Kerong; Yan, Zhengui; Wang, Zhonghua

    2013-01-01

    Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d), day 7 before parturition (-7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR) of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  1. Differential Gene Expression from Midguts of Refractory and Susceptible Lines of the Mosquito, Aedes aegypti, Infected with Dengue-2 Virus

    PubMed Central

    Barón, Olga L.; Ursic-Bedoya, Raul J.; Lowenberger, Carl A.; Ocampo, Clara B.

    2010-01-01

    Suppressive subtractive hybridization was used to evaluate the differential expression of midgut genes of feral populations of Aedes aegypti (Diptera: Culicidae) from Colombia that are naturally refractory or susceptible to Dengue-2 virus infection. A total of 165 differentially expressed sequence tags (ESTs) were identified in the subtracted libraries. The analysis showed a higher number of differentially expressed genes in the susceptible Ae. aegypti individuals than the refractory mosquitoes. The functional annotation of ESTs revealed a broad response in the susceptible library that included immune molecules, metabolic molecules and transcription factors. In the refractory strain, there was the presence of a trypsin inhibitor gene, which could play a role in the infection. These results serve as a template for more detailed studies aiming to characterize the genetic components of refractoriness, which in turn can be used to devise new approaches to combat transmission of dengue fever. PMID:20572793

  2. Use of early passage fetal intestinal epithelial cells in semi-high-throughput screening assays: an approach to identify new innate immune system adjuvants.

    PubMed

    Buckner, Diana; Wilson, Suzanne; Kurk, Sandra; Hardy, Michele; Miessner, Nicole; Jutila, Mark A

    2006-09-01

    Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.

  3. Extending Immunological Profiling in the Gilthead Sea Bream, Sparus aurata, by Enriched cDNA Library Analysis, Microarray Design and Initial Studies upon the Inflammatory Response to PAMPs.

    PubMed

    Boltaña, Sebastian; Castellana, Barbara; Goetz, Giles; Tort, Lluis; Teles, Mariana; Mulero, Victor; Novoa, Beatriz; Figueras, Antonio; Goetz, Frederick W; Gallardo-Escarate, Cristian; Planas, Josep V; Mackenzie, Simon

    2017-02-03

    This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response.

  4. Construction of a complementary DNA library for Parelaphostrongylus tenuis and identification of a potentially sero-diagnostic recombinant antigen.

    PubMed

    Ogunremi, Oladele; Benjamin, Jane; MacDonald, Lily; Schimpf, Robert

    2008-12-01

    Newly developed serological tests for diagnosing parelaphostrongylosis in cervids, using the excretory-secretory products (ES) of the infective larvae of Parelaphostrongylus tenuis in enzyme-linked immunosorbent assays (ELISAs), have demonstrable superiority over the traditional method of larval recovery and microscopic identification. To generate a source of ELISA antigen by genetic engineering, we created a complementary DNA (cDNA) expression library by the reverse transcription of mRNA of P. tenuis adult worms, and ligation with the vector lambda-ZAP II. The library was screened using antisera produced in mice by immunization with a somatic antigen preparation of adult worms. Seventeen clones were isolated, sequenced, and checked for similarity to other DNA sequences in GenBank. A previously identified parasite gene encoding an aspartyl protease inhibitor (API) was isolated from the cDNA library, subcloned and expressed using the pET expression vector to produce a glutathione S transferase (GST)-His-S.Tag-P. tenuis API fusion protein (molecular weight = 63 kDa). An enzyme-linked immunosorbent assay utilizing the API fusion protein as the coating antigen was used to serologically diagnose all white-tailed deer (WTD, 10 out of 10) that had been inoculated with 6 - 150 L3 P. tenuis, indicating that the antigen may be a useful serodiagnostic antigen for P. tenuis infection in this cervid species.

  5. Induction of Strain-Transcending Immunity against Plasmodium chabaudi adami Malaria with a Multiepitope DNA Vaccine

    PubMed Central

    Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.

    2005-01-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504

  6. Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein.

    PubMed

    Qi, Hangfei; Chu, Virginia; Wu, Nicholas C; Chen, Zugen; Truong, Shawna; Brar, Gurpreet; Su, Sheng-Yao; Du, Yushen; Arumugaswami, Vaithilingaraja; Olson, C Anders; Chen, Shu-Hua; Lin, Chung-Yen; Wu, Ting-Ting; Sun, Ren

    2017-02-21

    Hepatitis C virus (HCV) encodes mechanisms to evade the multilayered antiviral actions of the host immune system. Great progress has been made in elucidating the strategies HCV employs to down-regulate interferon (IFN) production, impede IFN signaling transduction, and impair IFN-stimulated gene (ISG) expression. However, there is a limited understanding of the mechanisms governing how viral proteins counteract the antiviral functions of downstream IFN effectors due to the lack of an efficient approach to identify such interactions systematically. To study the mechanisms by which HCV antagonizes the IFN responses, we have developed a high-throughput profiling platform that enables mapping of HCV sequences critical for anti-IFN function at high resolution. Genome-wide profiling performed with a 15-nt insertion mutant library of HCV showed that mutations in the p7 region conferred high levels of IFN sensitivity, which could be alleviated by the expression of WT p7 protein. This finding suggests that p7 protein of HCV has an immune evasion function. By screening a liver-specific ISG library, we identified that IFI6-16 significantly inhibits the replication of p7 mutant viruses without affecting WT virus replication. In contrast, knockout of IFI6-16 reversed the IFN hypersensitivity of p7 mutant virus. In addition, p7 was found to be coimmunoprecipitated with IFI6-16 and to counteract the function of IFI6-16 by depolarizing the mitochondria potential. Our data suggest that p7 is a critical immune evasion protein that suppresses the antiviral IFN function by counteracting the function of IFI6-16.

  7. Production of Recombinant Human scFv Against Tetanus Toxin Heavy Chain by Phage Display Technology.

    PubMed

    Khalili, Ehsan; Lakzaei, Mostafa; Rasaee, Mohhamad Javad; Aminian, Mahdi

    2015-10-01

    Tetanus, as a major cause of death in developing countries, is caused by tetanus neurotoxin. Recombinant antibodies against tetanus neurotoxin can be useful in tetanus management. Phage display of antibody fragments from immune human antibody libraries with single chain constructs combining the variable fragments (scFv) has been one of the most prominent technologies in antibody engineering. The aim of this study was the generation of a single chain fragment of variable region (scFv) library and selection of specific antibodies with high affinity against tetanus toxin. Immune human single chain fragment variable (HuscFv) antibody phagemid library was displayed on pIII of filamentous bacteriophage. Selection of scFv clones was performed against tetanus toxin antigens after three rounds of panning. The selected scFv clones were analyzed for inhibition of tetanus toxin binding to ganglioside GT1b. After the third round of panning, over 35 HuscFv phages specific for tetanus toxin were isolated from this library of which 15 clones were found to bind specifically to tetanus toxin. The selected HuscFv phages expressed as a soluble HuscFv peptide and some clones showed positive signals against tetanus toxin. We found that six HuscFv clones inhibit toxin binding to ganglioside GT1b. These selected antibodies can be used in the management of tetanus.

  8. Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display.

    PubMed

    Dooley, Helen; Flajnik, Martin F; Porter, Andrew J

    2003-09-01

    The novel immunoglobulin isotype novel antigen receptor (IgNAR) is found in cartilaginous fish and is composed of a heavy-chain homodimer that does not associate with light chains. The variable regions of IgNAR function as independent domains similar to those found in the heavy-chain immunoglobulins of Camelids. Here, we describe the successful cloning and generation of a phage-displayed, single-domain library based upon the variable domain of IgNAR. Selection of such a library generated from nurse sharks (Ginglymostoma cirratum) immunized with the model antigen hen egg-white lysozyme (HEL) enabled the successful isolation of intact antigen-specific binders matured in vivo. The selected variable domains were shown to be functionally expressed in Escherichia coli, extremely stable, and bind to antigen specifically with an affinity in the nanomolar range. This approach can therefore be considered as an alternative route for the isolation of minimal antigen-binding fragments with favorable characteristics.

  9. Arrayed antibody library technology for therapeutic biologic discovery.

    PubMed

    Bentley, Cornelia A; Bazirgan, Omar A; Graziano, James J; Holmes, Evan M; Smider, Vaughn V

    2013-03-15

    Traditional immunization and display antibody discovery methods rely on competitive selection amongst a pool of antibodies to identify a lead. While this approach has led to many successful therapeutic antibodies, targets have been limited to proteins which are easily purified. In addition, selection driven discovery has produced a narrow range of antibody functionalities focused on high affinity antagonism. We review the current progress in developing arrayed protein libraries for screening-based, rather than selection-based, discovery. These single molecule per microtiter well libraries have been screened in multiplex formats against both purified antigens and directly against targets expressed on the cell surface. This facilitates the discovery of antibodies against therapeutically interesting targets (GPCRs, ion channels, and other multispanning membrane proteins) and epitopes that have been considered poorly accessible to conventional discovery methods. Copyright © 2013. Published by Elsevier Inc.

  10. Gene Expression Differences in Infected and Noninfected Middle Ear Complementary DNA Libraries

    PubMed Central

    Kerschner, Joseph E.; Horsey, Edward; Ahmed, Azad; Erbe, Christy; Khampang, Pawjai; Cioffi, Joseph; Hu, Fen Ze; Post, James Christopher; Ehrlich, Garth D.

    2010-01-01

    Objectives To investigate genetic differences in middle ear mucosa (MEM) with nontypeable Haemophilus influenzae (NTHi) infection. Genetic upregulation and downregulation occurs in MEM during otitis media (OM) pathogenesis. A comprehensive assessment of these genetic differences using the techniques of complementary DNA (cDNA) library creation has not been performed. Design The cDNA libraries were constructed from NTHi-infected and noninfected chinchilla MEM. Random clones were picked, sequenced bidirectionally, and submitted to the National Center for Biotechnology Information (NCBI) Expressed Sequence Tags database, where they were assigned accession numbers. These numbers were used with the basic local alignment search tool (BLAST) to align clones against the nonredundant nucleotide database at NCBI. Results Analysis with the Web-based statistical program FatiGO identified several biological processes with significant differences in numbers of represented genes. Processes involved in immune, stress, and wound responses were more prevalent in the NTHi-infected library. S100 calcium-binding protein A9 (S100A9); secretory leukoprotease inhibitor (SLPI); β2-microglobulin (B2M); ferritin, heavy-chain polypeptide 1 (FTH1); and S100 calcium-binding protein A8 (S100A8) were expressed at significantly higher levels in the NTHi-infected library. Calcium-binding proteins S100A9 and S100A8 serve as markers for inflammation and have antibacterial effects. Secretory leukoprotease inhibitor is an antibacterial protein that inhibits stimuli-induced MUC1, MUC2, and MUC5AC production. Conclusions A number of genes demonstrate changes during the pathogenesis of OM, including SLPI, which has an impact on mucin gene expression; this expression is known to be an important regulator in OM. The techniques described herein provide a framework for future investigations to more thoroughly understand molecular changes in the middle ear, which will likely be important in developing new therapeutic and intervention strategies. PMID:19153305

  11. The miiuy croaker microRNA transcriptome and microRNA regulation of RIG-I like receptor signaling pathway after poly(I:C) stimulation.

    PubMed

    Han, Jingjing; Xu, Guoliang; Xu, Tianjun

    2016-07-01

    MicroRNAs (miRNAs) as endogenous small non-coding RNAs play key regulatory roles in diverse biological processes via degrading the target mRNAs or inhibiting protein translation. Previously many researchers have reported the identification, characteristic of miRNAs and the interaction with its target gene. But, the study on the regulation of miRNAs to biological processes via regulatory the key signaling pathway was still limited. In order to comprehend the regulatory mechanism of miRNAs, two small RNA libraries from the spleen of miiuy croaker individuals with or without poly(I:C) infection were constructed. The 197 conserved miRNAs and 75 novel miRNAs were identified, and 14 conserved and 8 novel miRNAs appeared significant variations. Those differently expressed miRNAs relate to immune regulation of miiuy croaker. Furthermore, expressions of four differently expressed miRNAs were validated by qRT-PCR, and the result was consistent with sequencing data. The target genes of the differently expressed miRNAs in the two libraries were predicted, and some candidate target genes were involved in the RIG-I-like receptor (RLR) signaling pathway. The negative regulation of miRNAs to target genes were confirmed by comparing the expression pattern of miRNAs and their target genes. The results of regulating target genes were that firstly directly or indirectly activating the downstream signaling cascades and subsequent inducting the type I interferon, inflammatory cytokines and apoptosis. These studies could help us to deeper understand the roles of miRNAs played in the fish immune system, and provide a new way to investigate the defense mechanism of fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers

    PubMed Central

    Bernstein, Steven L; Guo, Yan; Peterson, Katherine; Wistow, Graeme

    2009-01-01

    Background The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON. Results Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed. Conclusion We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview of gene expression patterns in this tissue. The data provide clues for tissue-specific and species-specific properties of human ON that will help in design of therapeutic models. PMID:19778450

  13. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity.

    PubMed

    Kim, Sang Hee; Son, Geon Hui; Bhattacharjee, Saikat; Kim, Hye Jin; Nam, Ji Chul; Nguyen, Phuong Dung T; Hong, Jong Chan; Gassmann, Walter

    2014-06-01

    The plant immune system must be tightly controlled both positively and negatively to maintain normal plant growth and health. We previously identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator specifically of effector-triggered immunity. SRFR1 is localized in both a cytoplasmic microsomal compartment and in the nucleus. Its TPR domain has sequence similarity to TPR domains of transcriptional repressors in other organisms, suggesting that SRFR1 may negatively regulate effector-triggered immunity via transcriptional control. We show here that excluding SRFR1 from the nucleus prevented complementation of the srfr1 phenotype. To identify transcription factors that interact with SRFR1, we screened an Arabidopsis transcription factor prey library by yeast two-hybrid assay and isolated six class I members of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor family. Specific interactions were verified in planta. Although single or double T-DNA mutant tcp8, tcp14 or tcp15 lines were not more susceptible to bacteria expressing AvrRps4, the triple tcp8 tcp14 tcp15 mutant displayed decreased effector-triggered immunity mediated by the resistance genes RPS2, RPS4, RPS6 and RPM1. In addition, expression of PATHOGENESIS-RELATED PROTEIN2 was attenuated in srfr1-4 tcp8-1 tcp14-5 tcp15-3 plants compared to srfr1-4 plants. To date, TCP transcription factors have been implicated mostly in developmental processes. Our data indicate that one function of a subset of TCP proteins is to regulate defense gene expression in antagonism to SRFR1, and suggest a mechanism for an intimate connection between plant development and immunity. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. Production of a novel camel single-domain antibody specific for the type III mutant EGFR.

    PubMed

    Omidfar, K; Rasaee, M J; Modjtahedi, H; Forouzandeh, M; Taghikhani, M; Golmakani, N

    2004-01-01

    Camelids have a unique immune system capable of producing single-domain heavy-chain antibodies. The antigen-specific domain of these heavy-chain IgGs (VHH) are the smallest binding units produced by the immune system. In this study, we report the isolation and characterization of several binders against the epidermal growth factor receptor (EGFR) vIII retrieved from immune library of camels (Camelus bactrianus and Camelus dromedarius). The EGFRvIII is a ligand-independent, constitutively active, mutated form of the wild-type EGFR. The expression of EGFRvIII has been demonstrated in a wide range of human malignancies, including gliomas, and breast, prostate, ovarian and lung cancer. Camels were immunized with a synthetic peptide corresponding to a mutated sequence and tissue homogenates. Single-domain antibodies (VHH) were directly selected by panning a phage display library on successively decreasing amounts of synthetic peptide immobilized on magnetic beads. The anti-EGFRvIII camel single-domain antibodies selectively bound to the EGFRvIII peptide and reacted specifically with the immunoaffinity-purified antigen from a non-small cell lung cancer patient. These antibodies with affinities in the nanomolar range recognized the EGFRvIII peptide and affinity-purified mutated receptor. We concluded that using the phage display technique, antigen-specific VHH antibody fragments are readily accessible from the camelids. These antibodies may be good candidates for tumor-diagnostic and therapeutic applications. Copyright 2004 S. Karger AG, Basel.

  15. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries.

    PubMed

    Tullila, Antti; Nevanen, Tarja K

    2017-05-31

    Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library.

  16. Utilization of Multi-Immunization and Multiple Selection Strategies for Isolation of Hapten-Specific Antibodies from Recombinant Antibody Phage Display Libraries

    PubMed Central

    Tullila, Antti; Nevanen, Tarja K.

    2017-01-01

    Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library. PMID:28561803

  17. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids.

    PubMed

    Blanc, Landry; Gilleron, Martine; Prandi, Jacques; Song, Ok-Ryul; Jang, Mi-Seon; Gicquel, Brigitte; Drocourt, Daniel; Neyrolles, Olivier; Brodin, Priscille; Tiraby, Gérard; Vercellone, Alain; Nigou, Jérôme

    2017-10-17

    Mycobacterium tuberculosis is a major human pathogen that is able to survive inside host cells and resist immune clearance. Most particularly, it inhibits several arms of the innate immune response, including phagosome maturation or cytokine production. To better understand the molecular mechanisms by which M. tuberculosis circumvents host immune defenses, we used a transposon mutant library generated in a virulent clinical isolate of M. tuberculosis of the W/Beijing family to infect human macrophages, utilizing a cell line derivative of THP-1 cells expressing a reporter system for activation of the transcription factor NF-κB, a key regulator of innate immunity. We identified several M. tuberculosis mutants inducing a NF-κB activation stronger than that of the wild-type strain. One of these mutants was found to be deficient for the synthesis of cell envelope glycolipids, namely sulfoglycolipids, suggesting that the latter can interfere with innate immune responses. Using natural and synthetic molecular variants, we determined that sulfoglycolipids inhibit NF-κB activation and subsequent cytokine production or costimulatory molecule expression by acting as competitive antagonists of Toll-like receptor 2, thereby inhibiting the recognition of M. tuberculosis by this receptor. Our study reveals that producing glycolipid antagonists of pattern recognition receptors is a strategy used by M. tuberculosis to undermine innate immune defense. Sulfoglycolipids are major and specific lipids of M. tuberculosis , considered for decades as virulence factors of the bacilli. Our study uncovers a mechanism by which they may contribute to M. tuberculosis virulence.

  18. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies

    PubMed Central

    Avril, Arnaud; Miethe, Sebastian; Derman, Yagmur; Selby, Katja; Thullier, Philippe; Pelat, Thibaut; Urbain, Remi; Korkeala, Hannu; Sesardic, Dorothea; Popoff, Michel R.

    2017-01-01

    The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT) A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC) of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies). For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs). The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans. PMID:28974033

  19. Transcriptome Sequencing and Characterization of Japanese Scallop Patinopecten yessoensis from Different Shell Color Lines

    PubMed Central

    Chang, Yaqing; Zhao, Wenming; Du, Zhenlin; Hao, Zhenlin

    2015-01-01

    Shell color is an important trait that is used in breeding the Japanese scallop Patinopecten yessoensis, the most economically important scallop species in China. We constructed four transcriptome libraries from different shell color lines of P. yessoensis: the left and right shell mantles of ordinary strains of P. yessoensis and the left shell mantles of the ‘Ivory’ and ‘Maple’ strains. These four libraries were paired-end sequenced using the Illumina HiSeq 2000 platform and contained 54,802,692 sequences, 40,798,962 sequences, 74,019,262 sequences, and 44,466,166 sequences, respectively. A total of 214,087,082 expressed sequence tags were assembled into 73,522 unigenes with an average size of 1,163 bp. When the data were compared against the public Nr and Swiss-Prot databases using BlastX, nearly 30.55% (22,458) of the unigenes were significantly matched to known unique proteins. Gene Ontology annotation and pathway mapping analysis using the Kyoto Encyclopedia of Genes and Genomes categorized unigenes according to their diverse biological functions and processes and identified candidate genes that were potentially involved in growth, pigmentation, metal transcription, and immunity. Expression profile analysis was performed on all four libraries and many differentially expressed genes were identified. In addition, 5,772 simple sequence repeats were obtained from the P. yessoensis transcriptomes, and 464,197, 395,646, and 310,649 single nucleotide polymorphisms were revealed in the ordinary strains, the ‘Ivory’ strain, and the ‘Maple’ strain, respectively. These results provide valuable information for future genomic studies on P. yessoensis and improve our understanding of the molecular mechanisms involved in the growth, immunity, shell coloring, and shell biomineralization of this species. These resources also may be used in a variety of applications, such as trait mapping, marker-assisted breeding, studies of population genetics and genomics, and work on functional genomics. PMID:25680107

  20. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    PubMed

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. De novo transcriptome assembly and analysis of differential gene expression following peptidoglycan (PGN) challenge in Antheraea pernyi.

    PubMed

    Liu, Yu; Xin, Zhao-Zhe; Zhang, Dai-Zhen; Zhu, Xiao-Yu; Wang, Ying; Chen, Li; Tang, Bo-Ping; Zhou, Chun-Lin; Chai, Xin-Yue; Tian, Ji-Wu; Liu, Qiu-Ning

    2018-06-01

    Antheraea pernyi is not only an important economic insect, it is increasingly employed as a model organism due to a variety of advantages, including ease of rearing and experimental manipulation compared with other Lepidoptera. Peptidoglycan (PGN) is a major component of the bacterial cell wall, and interactions between PGN and A. pernyi cause a series of physiological changes in the insect. In the present study, we constructed cDNA libraries from a A. pernyi PGN-infected group and a control group stimulated with phosphate-buffered saline (PBS). The transcriptome was de novo assembled using the Trinity platform, and 1698 differentially expressed genes (DEGs) were identified, comprising 894 up-regulated and 804 down-regulated genes. To further investigate immune-related DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. GO analysis identified major immune-related GO terms and KEGG enrichment indicated gene responses to three pathways related to the insect immune system. Several homologous genes related to the immune response of the A. pernyi fat body post-PGN infection were identified and categorised. Taken together, the results provide insight into the complex molecular mechanisms of the responses to bacterial infection at the transcriptional level. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.

    PubMed

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-08-29

    Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  3. Construction of an Immunized Rabbit Phage Display Library for Selecting High Activity against Bacillus thuringiensis Cry1F Toxin Single-Chain Antibodies.

    PubMed

    Xu, Chongxin; Zhang, Cunzheng; Zhong, Jianfeng; Hu, Hui; Luo, Shimin; Liu, Xiaoqin; Zhang, Xiao; Liu, Yuan; Liu, Xianjin

    2017-07-26

    In the present study, a Cry1F-immunized rabbit phage display library (6.96 × 10 8 cfu/mL) was constructed for selecting high activity of anti-Cry1F toxin single-chain antibody (a single-chain variable fragment, scFv) by biopanning. A total of 16 positive monoclonal phage scFv's were obtained after 4 rounds of panning, which were identified by enzyme-linked immunosorbent assay (ELISA), polymerized chain reaction, and DNA sequencing. The most positive phage scFv (named RF4) was expressed in Escherichia coli HB2151, and a soluble protein of approximately 30 kDa was purified with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An indirect competitive ELISA (IC-ELISA) was established on the basis of purified soluble RF4-scFv for Cry1F toxin. It indicated the 50% inhibition of the control (IC 50 ) was 11.56 ng/mL and the detection limit (IC 10 ) was 0.18 ng/mL and showed weak cross-reactivities for Cry1Ab (2.8%), Cry1Ac (1.3%), and Cry1B, Cry1C, Cry1Ie, and Cry2A (less than 0.1%). It was found that IC-ELISA detected Cry1F toxin spiked in rice, wheat, corn, and soil samples with good accuracy, stability, and repeatability. The recoveries were in the range of 80.2-99.6%, and the coefficients of variation were in the range of 2.5-10.0%. These results showed that IC-ELISA based on scFv from the immunized rabbit phage display library was promising for specific detection of Cry1F toxin in agroproducts and environmental samples.

  4. Construction of cDNA library and preliminary analysis of expressed sequence tags from Siberian tiger

    PubMed Central

    Liu, Chang-Qing; Lu, Tao-Feng; Feng, Bao-Gang; Liu, Dan; Guan, Wei-Jun; Ma, Yue-Hui

    2010-01-01

    In this study we successfully constructed a full-length cDNA library from Siberian tiger, Panthera tigris altaica, the most well-known wild Animal. Total RNA was extracted from cultured Siberian tiger fibroblasts in vitro. The titers of primary and amplified libraries were 1.30×106 pfu/ml and 1.62×109 pfu/ml respectively. The proportion of recombinants from unamplified library was 90.5% and average length of exogenous inserts was 1.13 kb. A total of 282 individual ESTs with sizes ranging from 328 to 1,142bps were then analyzed the BLASTX score revealed that 53.9% of the sequences were classified as strong match, 38.6% as nominal and 7.4% as weak match. 28.0% of them were found to be related to enzyme/catalytic protein, 20.9% ESTs to metabolism, 13.1% ESTs to transport, 12.1% ESTs to signal transducer/cell communication, 9.9% ESTs to structure protein, 3.9% ESTs to immunity protein/defense metabolism, 3.2% ESTs to cell cycle, and 8.9 ESTs classified as novel genes. These results demonstrated that the reliability and representativeness of the cDNA library attained to the requirements of a standard cDNA library. This library provided a useful platform for the functional genomic research of Siberian tigers. PMID:20941376

  5. Multiple Rice MicroRNAs Are Involved in Immunity against the Blast Fungus Magnaporthe oryzae1[C][W][OPEN

    PubMed Central

    Li, Yan; Lu, Yuan-Gen; Shi, Yi; Wu, Liang; Xu, Yong-Ju; Huang, Fu; Guo, Xiao-Yi; Zhang, Yong; Fan, Jing; Zhao, Ji-Qun; Zhang, Hong-Yu; Xu, Pei-Zhou; Zhou, Jian-Min; Wu, Xian-Jun; Wang, Ping-Rong; Wang, Wen-Ming

    2014-01-01

    MicroRNAs (miRNAs) are indispensable regulators for development and defense in eukaryotes. However, the miRNA species have not been explored for rice (Oryza sativa) immunity against the blast fungus Magnaporthe oryzae, the most devastating fungal pathogen in rice production worldwide. Here, by deep sequencing small RNA libraries from susceptible and resistant lines in normal conditions and upon M. oryzae infection, we identified a group of known rice miRNAs that were differentially expressed upon M. oryzae infection. They were further classified into three classes based on their expression patterns in the susceptible japonica line Lijiangxin Tuan Hegu and in the resistant line International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake that contains a single resistance gene locus, Pyricularia-Kanto 51-m (Pikm), within the Lijiangxin Tuan Hegu background. RNA-blot assay of nine of them confirmed sequencing results. Real-time reverse transcription-polymerase chain reaction assay showed that the expression of some target genes was negatively correlated with the expression of miRNAs. Moreover, transgenic rice plants overexpressing miR160a and miR398b displayed enhanced resistance to M. oryzae, as demonstrated by decreased fungal growth, increased hydrogen peroxide accumulation at the infection site, and up-regulated expression of defense-related genes. Taken together, our data indicate that miRNAs are involved in rice immunity against M. oryzae and that overexpression of miR160a or miR398b can enhance rice resistance to the disease. PMID:24335508

  6. Using llama derived single domain antibodies to target botulinum neurotoxins

    NASA Astrophysics Data System (ADS)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  7. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection.

  8. Vaccination with Lentiviral Vector Expressing the nfa1 Gene Confers a Protective Immune Response to Mice Infected with Naegleria fowleri

    PubMed Central

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun

    2013-01-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection. PMID:23677321

  9. Tandem alternative polyadenylation events of genes in non-eosinophilic nasal polyp tissue identified by high-throughput sequencing analysis

    PubMed Central

    TIAN, PENG; LI, JIE; LIU, XIANG; LI, YUXI; CHEN, MEIHENG; MA, YUN; ZHENG, YI QING; FU, YONGGUI; ZOU, HUA

    2014-01-01

    Nasal polyps (NP) is highly associated with the disorder of immune cells. Alternative polyadenylation (APA) produces mRNA isoforms with different length of 3′-untranslated region (UTR) and regulates gene expression. It has been proven that this APA-mediated regulation of 3′UTR length is an immune-associated phenomenon. The aim of this study was to investigate the genome-wide alternative tandem 3′UTR length switching events in non-eosinophilic nasal polyp tissue. Thirteen patients diagnosed as having non-eosinophilic nasal polyps were included in this study. Nasal polyp tissue and control mucosa were collected during surgery. The 3′ end library of cDNA was constructed. The recovered libraries were sequenced with second sequencing technology, and the sequencing data were analyzed by an in-house bioinformatics pipeline. Tandem 3′UTR length switching between samples was detected by a test of linear trend alternative to independence. We found a significant alteration in the tandem 3′UTR length in 1,920 genes in nasal polyp samples. Functional annotation results showed that several gene ontology (GO) terms were enriched in the list of genes with switched APA sites, including regulation of transcription, macromolecule catabolic localization and mRNA processing. The results suggested that APA-mediated alternative 3′UTR regulation plays an important role in the post-transcriptional regulation of gene expression in non-eosinophilic nasal polyps. PMID:24715051

  10. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    PubMed

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  11. An insight into the sialome of Glossina morsitans morsitans

    PubMed Central

    2010-01-01

    Background Blood feeding evolved independently in worms, arthropods and mammals. Among the adaptations to this peculiar diet, these animals developed an armament of salivary molecules that disarm their host's anti-bleeding defenses (hemostasis), inflammatory and immune reactions. Recent sialotranscriptome analyses (from the Greek sialo = saliva) of blood feeding insects and ticks have revealed that the saliva contains hundreds of polypeptides, many unique to their genus or family. Adult tsetse flies feed exclusively on vertebrate blood and are important vectors of human and animal diseases. Thus far, only limited information exists regarding the Glossina sialome, or any other fly belonging to the Hippoboscidae. Results As part of the effort to sequence the genome of Glossina morsitans morsitans, several organ specific, high quality normalized cDNA libraries have been constructed, from which over 20,000 ESTs from an adult salivary gland library were sequenced. These ESTs have been assembled using previously described ESTs from the fat body and midgut libraries of the same fly, thus totaling 62,251 ESTs, which have been assembled into 16,743 clusters (8,506 of which had one or more EST from the salivary gland library). Coding sequences were obtained for 2,509 novel proteins, 1,792 of which had at least one EST expressed in the salivary glands. Despite library normalization, 59 transcripts were overrepresented in the salivary library indicating high levels of expression. This work presents a detailed analysis of the salivary protein families identified. Protein expression was confirmed by 2D gel electrophoresis, enzymatic digestion and mass spectrometry. Concurrently, an initial attempt to determine the immunogenic properties of selected salivary proteins was undertaken. Conclusions The sialome of G. m. morsitans contains over 250 proteins that are possibly associated with blood feeding. This set includes alleles of previously described gene products, reveals new evidence that several salivary proteins are multigenic and identifies at least seven new polypeptide families unique to Glossina. Most of these proteins have no known function and thus, provide a discovery platform for the identification of novel pharmacologically active compounds, innovative vector-based vaccine targets, and immunological markers of vector exposure. PMID:20353571

  12. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    PubMed

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Primer sets for cloning the human repertoire of T cell Receptor Variable regions

    PubMed Central

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-01-01

    Background Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets. PMID:18759974

  14. Molecular profile of the unique species of traditional Chinese medicine, Chinese seahorse (Hippocampus kuda Bleeker).

    PubMed

    Zhang, Ning; Xu, Bin; Mou, Chunyan; Yang, Wenli; Wei, Jianwen; Lu, Liang; Zhu, Junjie; Du, Jingchun; Wu, Xiaokun; Ye, Lanting; Fu, Zhiyan; Lu, Yang; Lin, Jianghai; Sun, Zizi; Su, Jing; Dong, Meiling; Xu, Anlong

    2003-08-28

    A cDNA library of male Chinese seahorse (Hippocampus kuda Bleeker) was constructed to investigate the molecular profile of seahorse as one of the most famous traditional Chinese medicine materials, and to reveal immunological and physiological mechanisms of seahorse as one of the most primitive vertebrates at molecular level. A total of 3372 expressed sequence tags (ESTs) consisting of 1911 unique genes (345 clusters and 1566 singletons) were examined in the present study. Identification of the genes related to immune system, paternal brooding and physiological regulation provides not only valuable insights into the molecular mechanism of immune system in teleost fish but also plausible explanations for pharmacological activities of Chinese seahorse. Furthermore, the occurrence of high prevalent C-type lectins suggested that a lectin-complement pathway might exert a more dominant function in the innate immune system of teleost than mammal. Carbohydrate recognition domain (CRD) without a collagen-like region in the lectins of seahorse was likely an ancient characteristic of lectins similar to invertebrates.

  15. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid

    PubMed Central

    Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways. PMID:23050089

  16. ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid.

    PubMed

    Noutoshi, Yoshiteru; Jikumaru, Yusuke; Kamiya, Yuji; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that protect crops from pathogens. They confer durable resistance to a broad range of diseases by activating intrinsic immune mechanisms in plants. To obtain leads regarding useful compounds, we have screened a chemical library using an established method that allows selective identification of immune-priming compounds. Here, we report the characterisation of one of the isolated chemicals, imprimatinC1, and its structural derivative imprimatinC2. ImprimatinC1 functions as a weak analogue of salicylic acid (SA) and activates the expression of defence-related genes. However, it lacks antagonistic activity toward jasmonic acid. Structure-activity relationship analysis suggests that imprimatinC1 and C2 can be metabolised to 4-chlorobenzoic acid and 3,4-chlorobenzoic acid, respectively, to function in Arabidopsis. We also found that imprimatinC1 and C2 and their potential functional metabolites acted as partial agonists of SA. Thus, imprimatinC compounds could be useful tools for dissecting SA-dependent signal transduction pathways.

  17. The comprehensive immunomodulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation.

    PubMed

    Chen, Hao; Wang, Lingling; Zhou, Zhi; Hou, Zhanhui; Liu, Zhaoqun; Wang, Weilin; Gao, Dahai; Gao, Qiang; Wang, Mengqiang; Song, Linsheng

    2015-11-14

    Neural-endocrine-immune (NEI) system is a major modulation network among the nervous, endocrine and immune system and weights greatly in maintaining homeostasis of organisms during stress and infection. Some microRNAs are found interacting with NEI system (designated NeurimmiRs), addressing swift modulations on immune system. The oyster Crassostrea gigas, as an intertidal bivalve, has evolved a primary NEI system. However, the knowledge about NeurimmiRs in oysters remains largely unknown. Six small RNA libraries from haemocytes of oysters stimulated with acetylcholine (ACh) and norepinephrine (NE) were sequenced to identify neurotransmitter-responsive miRNAs and survey their immunomodulation roles. A total of 331 miRNAs (132 identified in the present study plus 199 identified previously) were subjected to expression analysis, and twenty-one and sixteen of them were found ACh- or NE-responsive, respectively (FDR < 0.05). Meanwhile, 21 miRNAs exhibited different expression pattern after ACh or NE stimulation. Consequently, 355 genes were predicted as putative targets of these neurotransmitter-responsive miRNAs in oyster. Through gene onthology analysis, multiple genes involved in death, immune system process and response to stimulus were annotated to be modulated by NeurimmiRs. Besides, a significant decrease in haemocyte phagocytosis and late-apoptosis or necrosis rate was observed after ACh and NE stimulation (p < 0.05) while early-apoptosis rate remained unchanged. A comprehensive immune-related network involving PRRs, intracellular receptors, signaling transducers and immune effectors was proposed to be modulated by ACh- and NE-responsive NeurimmiRs, which would be indispensable for oyster haemocytes to respond against stress and infection. Characterization of the NeurimmiRs would be an essential step to understand the NEI system of invertebrate and the adaptation mechanism of oyster.

  18. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 PMID:26701602

  19. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies.

    PubMed

    Dostálová, Anna; Votýpka, Jan; Favreau, Amanda J; Barbian, Kent D; Volf, Petr; Valenzuela, Jesus G; Jochim, Ryan C

    2011-05-10

    Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that L. infantum infection can reduce the transcript abundance of trypsin PperTryp3 in the midgut of P. perniciosus.

  20. Marrow-Derived Antibody Library for Treatment of Neuroblastoma

    DTIC Science & Technology

    2013-09-01

    to capture the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this...project is to use NB patient-derived materials to create NB cell lines, xenograft models, NB specific phage display libraries and to identify and...the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this project is to

  1. Naïve Human Antibody Libraries for Infectious Diseases.

    PubMed

    Chan, Soo Khim; Rahumatullah, Anizah; Lai, Jing Yi; Lim, Theam Soon

    2017-01-01

    Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.

  2. A variety of human monoclonal antibodies against epidermal growth factor receptor isolated from a phage antibody library.

    PubMed

    Kurosawa, Gene; Kondo, Mariko; Kurosawa, Yoshikazu

    2016-11-04

    When the technology for constructing human antibody (Ab) libraries using a phage-display system was developed, many researchers in Ab-related fields anticipated that it would be widely applied to the development of pharmaceutical drugs against various diseases, including cancers. However, successful examples of such applications are very limited. Moreover, researchers who utilize phage-display technology now show divergent ways of thinking about phage Ab libraries. For example, there is debate about what should be the source of V H and V L genes for the construction of libraries to cover the whole repertoire of Abs present in the human body. In the immune system, the introduction of mutations into V genes followed by selection based on binding activity, termed Ab maturation, is required for the production of Abs exhibiting high affinity to the antigen (Ag). Therefore, introduction of mutations and selection are required for isolation of Abs with high affinity after isolation of clones from phage Ab libraries. We constructed a large human Ab library termed AIMS, developed a screening method termed ICOS, and succeeded in isolating many human monoclonal Abs (mAbs) that specifically and strongly bind to various tumor-associated Ags. Eight anti-EGFR mAbs were included, which we characterized. These mAbs showed various different activities against EGFR-expressing cancer cells. In this paper, we describe these data and discuss the possibility and necessity that the mAbs isolated from the AIMS library might be developed as therapeutic drugs against cancers without introduction of mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. AIDS: A Selective Bibliography.

    ERIC Educational Resources Information Center

    Candaras, Barbara J.

    Intended for use primarily by the general adult public, this pathfinder lists selected information sources on the Acquired Immune Deficiency Syndrome (AIDS) that are in the collections of the State University of New York (SUNY) at Buffalo Health Sciences Library, the Central Library-Buffalo, and the Erie County Public Library. A broad range of…

  4. Production of recombinant scFv against p24 of human immunodeficiency virus type 1 by phage display technology.

    PubMed

    Mohammadzadeh, Sara; Rajabibazl, Masoumeh; Fourozandeh, Mehdi; Rasaee, Mohammad Javad; Rahbarizadeh, Fatemeh; Mohammadi, Mohammad

    2014-02-01

    Phage display has a fundamental role in protein isolation and engineering. Isolated proteins produced with this method can be modified for specific binding and affinity. P24 is the most produced protein during human immune deficiency virus (HIV) replication; especially in the early steps of HIV-1 infection, its evaluation may have diagnostic values. To test the HIV-1 infection, p24 antigen assay appears to be a very promising alternative to RNA assays. In this study, we have generated a recombinant mouse single chain antibody fragment against p24 of the HIV-1 with the use of phage display technology. After isolation of antibody variable-region (V) gene of B cells extracted from the spleen of an immunized mouse, a library of single chain Fv fragments (scFv) was constructed. The library was used in a series of bio-panning processes against recombinant p24 protein expressed from Escherichia coli. The isolated scFv antibody specifically recognizes the HIV-1 capsid protein p24. The affinity constant of the isolated scFv antibody (MF85) was found to be 2×10(-9) M. Our studies showed that the MF85 scFV antibody has similar properties as that of monoclonal antibodies produced by the hybridoma technology.

  5. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection.

    PubMed

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection.

  6. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection

    PubMed Central

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It’s therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection. PMID:27088873

  7. Effects of exposure to Streptococcus iniae on microRNA expression in the head kidney of genetically improved farmed tilapia (Oreochromis niloticus).

    PubMed

    Qiang, Jun; Tao, Fanyi; He, Jie; Sun, Lanyi; Xu, Pao; Bao, Wenjin

    2017-02-20

    Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) are susceptible to infection by Streptococcus iniae when maintained in modern intensive culture systems. GIFT are commercially important fishes that are cultured widely in southern China. The role of microRNAs (miRNAs) in the regulatory response of GIFT to S. iniae infection has been underestimated and has not yet been well studied. Head kidney has an important immune function in teleost fishes. The main aim of this study was to determine the possible function of miRNAs in head kidney of S. iniae-infected GIFT. MiRNAs are small, non-coding RNAs that regulate gene expression by binding to the 3'-untranslated regions of their target mRNAs. MiRNAs are known to regulate immune-regulated signaling and inflammatory response pathways. High-throughput deep sequencing of two libraries (control group [CO] and infected group [IN]) of RNA extracted from GIFT head kidney tissues generated 12,089,630 (CO) and 12,624,975 (IN) clean reads. Bioinformatics analysis identified 1736 and 1729 conserved miRNAs and 164 and 165 novel miRNAs in the CO and IN libraries, respectively. Three miRNAs (miR-310-3p, miR-92, and miR-127) were found to be up-regulated and four miRNAs (miR-92d-3p, miR-375-5p, miR-146-3p, and miR-694) were found to be down-regulated in the S. iniae-infected GIFT. The expressions of these miRNAs were verified by quantitative real-time PCR. RNAhybrid and TargetScan were used to identify complementary miRNA and mRNA target sites, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to annotate and predict potential downstream regulation of biological pathways. Seven target genes, which encode immune-related proteins (complement C3, cytidine deaminase, regulator of G-protein Rgs22, mitogen-activated protein kinase Mapk1, metabotropic glutamate receptorm GluR8, calcium-sensing receptor CaSR, and microtubule-associated protein Map1S) were predicted to play crucial roles in the GIFT response to S. iniae infection. S. iniae outbreaks have hindered the development of the tilapia industry in China. Understanding the miRNA transcriptome of S. iniae-infected GIFT is important for exploring the immune responses regulated by miRNAs as well as for studying novel regulated networks to prevent and treat S. iniae infections in the future.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SLACK, JEFFREY, M.

    Wood is a potential source for biofuels such as ethanol if it can be digested into sugars and fermented by yeast. Biomass derived from wood is a challenging substrate for ethanol production since it is made of lignin and cellulose which cannot be broken down easily into fermentable sugars. Some insects, and termites in particular, are specialized at using enzymes in their guts to digest wood into sugars. If termite gut enzymes could be made abundantly by a recombinant protein expression vector system, they could be applied to an industrial process to make biofuels from wood. In this study, amore » large cDNA library of relevant termite genes was made using termites fed a normal diet, or a diet with added lignin. A subtracted library yielded genes that were overexpressed in the presence of lignin. Termite gut enzyme genes were identified and cloned into recombinant insect viruses called baculoviruses. Using our PERLXpress system for protein expression, these termite gene recombinant baculoviruses were prepared and used to infect insect larvae, which then expressed abundant recombinant termite enzymes. Many of these expressed enzymes were prepared to very high purity, and the activities were studied in conjunction with collaborators at Purdue University. Recombinant termite enzymes expressed in caterpillars were shown to be able to release sugars from wood. Mixing different combinations of these enzymes increased the amount of sugars released from a model woody biomass substrate. The most economical, fastest and energy conserving way to prepare termite enzymes expressed by recombinant baculoviruses in caterpillars was by making crude liquid homogenates. Making enzymes stable in homogenates therefore was a priority. During the course of these studies, improvements were made to the recombinant baculovirus expression platform so that caterpillar-derived homogenates containing expressed termite enzymes would be more stable. These improvements in the baculoviruses included significantly reducing proteases and preventing blackening immune reactions that occur when caterpillars are homogenized. Proteases may degrade enzymes and immune reaction blackening may inactivate enzymes thus compromising the ability of these crude recombinant expressed termite enzyme preparations to release sugars. Commercial preparations of fungal enzymes currently are used to digest wood for ethanol production. We demonstrated in this study that termite enzymes could improve the efficiency of fungal enzyme cocktails. Although the economic feasibility of using caterpillar expressed termite enzymes alone to treat wood was not proven, this work points to the potential to combine C-PERLXpressed insect enzymes with industrial enzyme cocktails to boost their efficiency at treating wood for biofuels.« less

  9. Expression library immunization can confer protection against lethal challenge with African swine fever virus.

    PubMed

    Lacasta, Anna; Ballester, María; Monteagudo, Paula L; Rodríguez, Javier M; Salas, María L; Accensi, Francesc; Pina-Pedrero, Sonia; Bensaid, Albert; Argilaguet, Jordi; López-Soria, Sergio; Hutet, Evelyne; Le Potier, Marie Frédérique; Rodríguez, Fernando

    2014-11-01

    African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood. Aiming to demonstrate the presence of additional CD8(+) T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 10(4) hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protective potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations containing more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine formulation it is just a matter of time, investment, and willingness. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor.

    PubMed Central

    Munday, J; Kerr, S; Ni, J; Cornish, A L; Zhang, J Q; Nicoll, G; Floyd, H; Mattei, M G; Moore, P; Liu, D; Crocker, P R

    2001-01-01

    Here we characterize Siglec-10 as a new member of the Siglec family of sialic acid-binding Ig-like lectins. A full-length cDNA was isolated from a human spleen library and the corresponding gene identified. Siglec-10 is predicted to contain five extracellular Ig-like domains and a cytoplasmic tail containing three putative tyrosine-based signalling motifs. Siglec-10 exhibited a high degree of sequence similarity to CD33-related Siglecs and mapped to the same region, on chromosome 19q13.3. The expressed protein was able to mediate sialic acid-dependent binding to human erythrocytes and soluble sialoglycoconjugates. Using specific antibodies, Siglec-10 was detected on subsets of human leucocytes including eosinophils, monocytes and a minor population of natural killer-like cells. The molecular properties and expression pattern suggest that Siglec-10 may function as an inhibitory receptor within the innate immune system. PMID:11284738

  11. Two distinct CXC chemokine receptors (CXCR3 and CXCR4) from the big-belly seahorse Hippocampus abdominalis: Molecular perspectives and immune defensive role upon pathogenic stress.

    PubMed

    Priyathilaka, Thanthrige Thiunuwan; Oh, Minyoung; Bathige, S D N K; De Zoysa, Mahanama; Lee, Jehee

    2017-06-01

    CXC chemokine receptor 3 (CXCR3) and 4 (CXCR4) are members of the seven transmembrane G protein coupled receptor family, involved in pivotal physiological functions. In this study, seahorse CXCR3 and CXCR4 (designated as HaCXCR3 and HaCXCR4) cDNA sequences were identified from the transcriptome library and subsequently molecularly characterized. HaCXCR3 and HaCXCR4 encoded 363 and 373 amino acid long polypeptides, respectively. The HaCXCR3 and HaCXCR4 deduced proteins have typical structural features of chemokine receptors, including seven transmembrane domains and a G protein coupled receptors family 1 profile with characteristic DRY motifs. Amino acid sequence comparison and phylogenetic analysis of these two CXC chemokine receptors revealed a close relationship to their corresponding teleost counterparts. Quantitative real time PCR analysis revealed that HaCXCR3 and HaCXCR4 were ubiquitously expressed in all the tested tissues, with highest expression levels in blood cells. The seahorse blood cells and kidney HaCXCR3 and HaCXCR4 mRNA expressions were differently modulated when challenged with Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide, and polyinosinic:polycytidylic acid, confirming their involvement in post immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Avian influenza rapidly induces antiviral genes in duck lung and intestine

    PubMed Central

    Vanderven, Hillary A.; Petkau, Kristina; Ryan-Jean, Kieran E. E.; Aldridge, Jerry R.; Webster, Robert G.; Magor, Katharine E.

    2012-01-01

    Ducks are the natural reservoir of influenza A and survive infection by most strains. To characterize the duck immune response to influenza, we sought to identify innate immune genes expressed early in an infection. We used suppressive subtractive hybridization (SSH) to construct 3 libraries enriched in differentially expressed genes from lung RNA of a duck infected with highly pathogenic avian influenza virus A/Vietnam/1203/04 (H5N1), or lung and intestine RNA of a duck infected with low pathogenic avian influenza A/mallard/BC/500/05 (H5N2) compared to a mock-infected duck. Sequencing of 1687 clones identified a transcription profile enriched in genes involved in antiviral defense and other cellular processes. Major histocompatibility complex class I (MHC I), interferon induced protein with tricopeptide repeats 5 (IFIT5), and 2′–5′oligoadenylate synthetase-like gene (OASL) were increased more than 1000-fold in relative transcript abundance in duck lung at 1 dpi with highly pathogenic VN1203. These genes were induced much less in lung or intestine following infection with low pathogenic BC500. The expression of these genes following infection suggests that ducks initiate an immediate and robust response to a potentially lethal influenza strain, and a minimal response a low pathogenic strain. PMID:22534314

  13. Transcriptome Analysis of the Innate Immunity-Related Complement System in Spleen Tissue of Ctenopharyngodon idella Infected with Aeromonas hydrophila

    PubMed Central

    Dang, Yunfei; Xu, Xiaoyan; Shen, Yubang; Hu, Moyan; Zhang, Meng; Li, Lisen; Lv, Liqun; Li, Jiale

    2016-01-01

    The grass carp (Ctenopharyngodon idella) is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs). 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens. PMID:27383749

  14. Sheep polyclonal antibody to map Haemonchus contortus mimotopes using phage display library.

    PubMed

    Buzatti, Andréia; Fernandez, Arnielis Diaz; Arenal, Amilcar; Pereira, Erlán; Monteiro, Alda Lucia Gomes; Molento, Marcelo Beltrão

    2018-05-24

    The aim of this study was to evaluate phage display technology for mapping Haemonchus contortus mimotopes. We screened the PhD-7 Phage Display Peptide Library Kit with a sheep polyclonal antibody against H. contortus. After four rounds of selection, 50 phage peptide clones were selected by biopanning and sequenced. Two clones displaying peptide mimotopes of H. contortus proteins were chosen for sheep immunization: clone 6 - mimotope of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and clone 17 - mimotope of a disorganized muscle family member (Dim 1). Twelve sheep were allocated into 3 groups of 4 animals as follow: G1: control group; G2/GAPDH: immunized with clone 6; and G3/Dim1: immunized with clone 17. Four immunizations were performed at intervals of seven days (0, 7, 14, and 21 days). On day 28 post initial vaccination, all groups were orally challenged with 2500 H. contortus infective larvae. The mimotope peptides selected by phage display were recognized by IgG from sheep naturaly infected with H. contortus. The immunization protocol showed an increasein IgG anti-M13 phage titers, but no effect was observed in IgG-specific for the anti-mimotope peptides. This is the first report of successful use of a phage display library for the identification of mimotopes of H. contortus proteins.

  15. Transferring the Characteristics of Naturally Occurring and Biased Antibody Repertoires to Human Antibody Libraries by Trapping CDRH3 Sequences

    PubMed Central

    Venet, Sophie; Ravn, Ulla; Buatois, Vanessa; Gueneau, Franck; Calloud, Sébastien; Kosco-Vilbois, Marie; Fischer, Nicolas

    2012-01-01

    Antibody repertoires are characterized by diversity as they vary not only amongst individuals and post antigen exposure but also differ significantly between vertebrate species. Such plasticity can be exploited to generate human antibody libraries featuring hallmarks of these diverse repertoires. In this study, the focus was to capture CDRH3 sequences, as this region generally accounts for most of the interaction energy with antigen. Sequences from human as well as non-human sources were successfully integrated into human antibody libraries. Next generation sequencing of these libraries proved that the CDRH3 lengths and amino acid composition corresponded to the species of origin. Specific CDRH3 sequences, biased towards the recognition of a model antigen either by immunizing mice or by selecting with phage display, were then integrated into another set of libraries. From these antigen biased libraries, highly potent antibodies were more frequently isolated, indicating that the characteristics of an immune repertoire is transferrable via CDRH3 sequences into a human antibody library. Taken together, these data demonstrate that the properties of naturally or experimentally biased repertoires can be effectively harnessed for the generation of targeted human antibody libraries, substantially increasing the probability of isolating antibodies suitable for therapeutic and diagnostic applications. PMID:22937053

  16. Characterization of Spleen Transcriptome of Schizothorax prenanti during Aeromonas hydrophila Infection.

    PubMed

    Ye, Hua; Xiao, Shijun; Wang, Xiaoqing; Wang, Zhiyong; Zhang, Zhengshi; Zhu, Chengke; Hu, Bingjie; Lv, Changhuan; Zheng, Shuming; Luo, Hui

    2018-04-01

    Schizothorax prenanti (S. prenanti) is an indigenous fish species and is popularly cultured in southwestern China. In recent years, intensive farming of S. prenanti and water quality deterioration has increased the susceptibility of this fish to various pathogens, including Aeromonas hydrophila (A. hydrophila), which has caused severe damage to S. prenanti production. However, the understanding of molecular immune response of S. prenanti to A. hydrophila infection is still lacking. In order to better comprehend the S. prenanti time series immune response process against A. hydrophila, we conducted the first transcriptomic comparison in S. prenanti spleen at 4, 24, and 48 h after the infection challenge of A. hydrophila against their control counterparts. In total, 628 million clean reads were obtained from 18 libraries and assembled into 262,745 transcripts. After eliminating sequence redundancy, 69,373 unigenes with an average length of 1476 bp were obtained. Comparative analysis revealed 1890 unigenes with significantly differential expression, including 172, 455, 589 upregulated and 27, 676, 551 unigenes downregulated genes for 4, 24, and 48 h post-infection, respectively. Differentially expressed genes (DEGs) were validated using qPCR for 15 randomly selected genes. Enrichment and pathway analysis of DEGs was carried out to understand the functions of the immune-related genes. Our results revealed that many important functional genes relating to complement and coagulation cascades, chemokine signaling pathway, toll-like receptor signaling pathway, NOD-like receptor signaling pathway and leukocyte transendothelial migration were regulated during the infection of A. hydrophila, and the expression of those genes reflected the transcriptome profiles during the challenging stages.

  17. Synthetic antibodies: concepts, potential and practical considerations.

    PubMed

    Miersch, S; Sidhu, S S

    2012-08-01

    The last 100 years of enquiry into the fundamental basis of humoral immunity has resulted in the identification of antibodies as key molecular sentinels responsible for the in vivo surveillance, neutralization and clearance of foreign substances. Intense efforts aimed at understanding and exploiting their exquisite molecular specificity have positioned antibodies as a cornerstone supporting basic research, diagnostics and therapeutic applications [1]. More recently, efforts have aimed to circumvent the limitations of developing antibodies in animals by developing wholly in vitro techniques for designing antibodies of tailored specificity. This has been realized with the advent of synthetic antibody libraries that possess diversity outside the scope of natural immune repertoires and are thus capable of yielding specificities not otherwise attainable. This review examines the convergence of technologies that have contributed to the development of combinatorial phage-displayed antibody libraries. It further explores the practical concepts that underlie phage display, antibody diversity and the methods used in the generation of and selection from phage-displayed synthetic antibody libraries, highlighting specific applications in which design approaches gave rise to specificities that could not easily be obtained with libraries based upon natural immune repertories. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines.

    PubMed

    Tscharke, David C; Karupiah, Gunasegaran; Zhou, Jie; Palmore, Tara; Irvine, Kari R; Haeryfar, S M Mansour; Williams, Shanicka; Sidney, John; Sette, Alessandro; Bennink, Jack R; Yewdell, Jonathan W

    2005-01-03

    The large size of poxvirus genomes has stymied attempts to identify determinants recognized by CD8+ T cells and greatly impeded development of mouse smallpox vaccination models. Here, we use a vaccinia virus (VACV) expression library containing each of the predicted 258 open reading frames to identify five peptide determinants that account for approximately half of the VACV-specific CD8+ T cell response in C57BL/6 mice. We show that the primary immunodominance hierarchy is greatly affected by the route of VACV infection and the poxvirus strain used. Modified vaccinia virus ankara (MVA), a candidate replacement smallpox vaccine, failed to induce responses to two of the defined determinants. This could not be predicted by genomic comparison of viruses and is not due strictly to limited MVA replication in mice. Several determinants are immunogenic in cowpox and ectromelia (mousepox) virus infections, and immunization with the immunodominant determinant provided significant protection against lethal mousepox. These findings have important implications for understanding poxvirus immunity in animal models and bench-marking immune responses to poxvirus vaccines in humans.

  19. [Characterization and transcriptional analysis of a new CC chemokine associated with innate imimune response in cobia (Rachycentron canadum)].

    PubMed

    Su, Y; Feng, J; Sun, X; Guo, Z; Xu, L; Jiang, J

    2013-01-01

    Chemokines are small, secreted cytokine peptides, known principally for their ability to induce migration and activation of leukocyte populations under both pathological and physiological conditions. On the basis of previously constructed express sequence tags (ESTs) of the head kidney and spleen cDNA library of the perciform marine fish Rachycentron canadum (common name cobia). We used bi-directional rapid amplification of cDNA ends (RACE) and obtained a full-length cDNA of a new CC chemokine gene (designated RcCC3). The RcCC3 putative peptide exhibits sequence similarity to the group of CCL19/21/25 CC chemokines. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used in transcript expression studies of RcCC3. We examined the constitutive expression of the transcripts in 12 tissues of non-stressed cobia; RcCC3 transcripts were detected in all tissues examined, with the highest expression in gill and liver, following by head kidney, kidney, spleen, skin, intestine, muscle, stomach, heart, blood and brain. Transcript expression of RcCC3 was examined in immune-related organs, including head kidney, spleen and liver, following intraperitoneal injection of phosphate-buffered saline control, polyriboinosinic polyribocytidylic acid (poly(I:C)) and formalin-killed Vibrio carchariae (bacterial vaccine). The transcripts in these tissues were quickly up-regulated by the injection of poly(I:C) and bacterial vaccine at early time points, although with different expression profiles. These results indicate RcCC3 represents an important component of innate immunity in cobia.

  20. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

    PubMed

    Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E

    2017-06-27

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

  1. Construction of naïve camelids VHH repertoire in phage display-based library.

    PubMed

    Sabir, Jamal S M; Atef, Ahmed; El-Domyati, Fotouh M; Edris, Sherif; Hajrah, Nahid; Alzohairy, Ahmed M; Bahieldin, Ahmed

    2014-04-01

    Camelids have unique antibodies, namely HCAbs (VHH) or commercially named Nanobodies(®) (Nb) that are composed only of a heavy-chain homodimer. As libraries based on immunized camelids are time-consuming, costly and likely redundant for certain antigens, we describe the construction of a naïve camelid VHHs library from blood serum of non-immunized camelids with affinity in the subnanomolar range and suitable for standard immune applications. This approach is rapid and recovers VHH repertoire with the advantages of being more diverse, non-specific and devoid of subpopulations of specific antibodies, which allows the identification of binders for any potential antigen (or pathogen). RNAs from a number of camelids from Saudi Arabia were isolated and cDNAs of the diverse vhh gene were amplified; the resulting amplicons were cloned in the phage display pSEX81 vector. The size of the library was found to be within the required range (10(7)) suitable for subsequent applications in disease diagnosis and treatment. Two hundred clones were randomly selected and the inserted gene library was either estimated for redundancy or sequenced and aligned to the reference camelid vhh gene (acc. No. ADE99145). Results indicated complete non-specificity of this small library in which no single event of redundancy was detected. These results indicate the efficacy of following this approach in order to yield a large and diverse enough gene library to secure the presence of the required version encoding the required antibodies for any target antigen. This work is a first step towards the construction of phage display-based biosensors useful in disease (e.g., TB or tuberculosis) diagnosis and treatment. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system.

    PubMed

    Li, Jingquan; Xu, Yongping; Wang, Xitao; Li, Yuan; Wang, Lili; Li, Xiaoyu

    2016-06-01

    The purpose of this study was to construct a single-chain variable fragment (scFv) antibody from chicken egg yolk immunoglobulin (IgY) by means of genetic engineering and subsequent panning for a specific antibody against Staphylococcus aureus. We amplified the scFv using blood and spleen obtained from 100-day-old Roman chickens immunized with inactivated S. aureus and subsequently constructed a T7 phage display antibody library using phage display technology. Four non-repeated blood scFv and 6 spleen scFv were obtained following 3 rounds of panning of the T7 phage display antibody library, enzyme-linked immunosorbent assay and sequencing. These 10 scFv were cloned into the prokaryotic expression vector pCold I with expression induced at a low temperature. Four soluble proteins were obtained. Among them, soluble protein SFV6 derived from the spleen showed good reactivity against S. aureus using indirect ELISA and produced a particularly strong antibacterial effect in vitro. We were successful in isolating a highly specific scFv antibody against S. aureus from the spleen phage display library. This study provides a simple and rapid method for the quick preparation of a large number of antibodies against S. aureus and provides the foundation for the positioning of antibodies in the organism and the study of the antibacterial mechanism through which the antibody functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen.

    PubMed

    Byrne, Guerard W; Du, Zeji; Stalboerger, Paul; Kogelberg, Heide; McGregor, Christopher G A

    2014-01-01

    Xenograft rejection of pigs organs with an engineered mutation in the GGTA-1 gene (GTKO) remains a predominantly antibody mediated process which is directed to a variety of non-Gal protein and carbohydrate antigens. We previously used an expression library screening strategy to identify six porcine endothelial cell cDNAs which encode pig antigens that bind to IgG induced after pig-to-primate cardiac xenotransplantation. One of these gene products was a glycosyltransferase with homology to the bovine β1,4 N-acetylgalactosaminyltransferase (B4GALNT2). We now characterize the porcine B4GALNT2 gene sequence, genomic organization, expression, and functional significance. The porcine B4GALNT2 cDNA was recovered from the original library isolate, subcloned, sequenced, and used to identify a bacterial artificial chromosome (BAC) containing the entire B4GALNT2 locus from the Children's Hospital Oakland Research Institute BACPAC Resource Centre (#AC173453). PCR primers were designed to map the intron/exon genomic organization in the BAC clone. A stable human embryonic kidney (HEK) cell line expressing porcine B4GALNT2 (HEK-B4T) was produced. Expression of porcine B4GALNT2 in HEK-B4T cells was characterized by immune staining and siRNA transfection. The effects of B4GALNT2 expression in HEK-B4T cells was measured by flow cytometry and complement mediated lysis. Antibody binding to HEK and HEK-B4T cells was used to detect an induced antibody response to the B4GALNT2 produced glycan and the results were compared to GTKO PAEC specific non-Gal antibody induction. Expression of porcine B4GALNT2 in pig cells and tissues was measured by qualitative and quantitative real time reverse transcriptase PCR and by Dolichos biflorus agglutinin (DBA) tissue staining. The porcine B4GALNT2 gene shares a conserved genomic organization and encodes an open reading frame with 76 and 70% amino acid identity to the human and murine B4GALNT2 genes, respectively. The B4GALNT2 gene is expressed in porcine endothelial cells and shows a broadly distributed expression pattern. Expression of porcine B4GALNT2 in human HEK cells (HEK-B4T) results in increased binding of antibody to the B4GALNT2 enzyme, and increased reactivity with anti-Sd(a) and DBA. HEK-B4T cells show increased sensitivity to complement mediated lysis when challenged with serum from primates after pig to primate cardiac xenotransplantation. In GTKO and GTKO:CD55 cardiac xenotransplantation recipients there is a significant correlation between the induction of a non-Gal antibody, measured using GTKO PAECs, and the induction of antibodies which preferentially bind to HEK-B4T cells. The functional isolation of the porcine B4GALNT2 gene from a PAEC expression library, the pattern of B4GALNT2 gene expression and its sensitization of HEK-B4T cells to antibody binding and complement mediated lysis indicates that the enzymatic activity of porcine B4GALNT2 produces a new immunogenic non-Gal glycan which contributes in part to the non-Gal immune response detected after pig-to-baboon cardiac xenotransplantation. © 2014 The Authors. Xenotransplantation Published by John Wiley & Sons Ltd.

  4. Burkholderia Hep_Hap autotransporter (BuHA) proteins elicit a strong antibody response during experimental glanders but not human melioidosis

    PubMed Central

    Tiyawisutsri, Rachaneeporn; Holden, Matthew TG; Tumapa, Sarinna; Rengpipat, Sirirat; Clarke, Simon R; Foster, Simon J; Nierman, William C; Day, Nicholas PJ; Peacock, Sharon J

    2007-01-01

    Background The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei. Results Using bacteriophage-mediated immunoscreening we identified genes expressed in vivo during experimental equine glanders infection. A family of immunodominant antigens were identified that share protein domain architectures with hemagglutinins and invasins. These have been designated Burkholderia Hep_Hag autotransporter (BuHA) proteins. A total of 110/207 positive clones (53%) of a B. mallei expression library screened with sera from two infected horses belonged to this family. This contrasted with 6/189 positive clones (3%) of a B. pseudomallei expression library screened with serum from 21 patients with culture-proven melioidosis. Conclusion Members of the BuHA proteins are found in other Gram-negative bacteria and have been shown to have important roles related to virulence. Compared with other bacterial species, the genomes of both B. mallei and B. pseudomallei contain a relative abundance of this family of proteins. The domain structures of these proteins suggest that they function as multimeric surface proteins that modulate interactions of the cell with the host and environment. Their effect on the cellular immune response to B. mallei and their potential as diagnostics for glanders requires further study. PMID:17362501

  5. Burkholderia Hep_Hag autotransporter (BuHA) proteins elicit a strong antibody response during experimental glanders but not human melioidosis.

    PubMed

    Tiyawisutsri, Rachaneeporn; Holden, Matthew T G; Tumapa, Sarinna; Rengpipat, Sirirat; Clarke, Simon R; Foster, Simon J; Nierman, William C; Day, Nicholas P J; Peacock, Sharon J

    2007-03-15

    The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei. Using bacteriophage-mediated immunoscreening we identified genes expressed in vivo during experimental equine glanders infection. A family of immunodominant antigens were identified that share protein domain architectures with hemagglutinins and invasins. These have been designated Burkholderia Hep_Hag autotransporter (BuHA) proteins. A total of 110/207 positive clones (53%) of a B. mallei expression library screened with sera from two infected horses belonged to this family. This contrasted with 6/189 positive clones (3%) of a B. pseudomallei expression library screened with serum from 21 patients with culture-proven melioidosis. Members of the BuHA proteins are found in other Gram-negative bacteria and have been shown to have important roles related to virulence. Compared with other bacterial species, the genomes of both B. mallei and B. pseudomallei contain a relative abundance of this family of proteins. The domain structures of these proteins suggest that they function as multimeric surface proteins that modulate interactions of the cell with the host and environment. Their effect on the cellular immune response to B. mallei and their potential as diagnostics for glanders requires further study.

  6. The Use of EST Expression Matrixes for the Quality Control of Gene Expression Data

    PubMed Central

    Milnthorpe, Andrew T.; Soloviev, Mikhail

    2012-01-01

    EST expression profiling provides an attractive tool for studying differential gene expression, but cDNA libraries' origins and EST data quality are not always known or reported. Libraries may originate from pooled or mixed tissues; EST clustering, EST counts, library annotations and analysis algorithms may contain errors. Traditional data analysis methods, including research into tissue-specific gene expression, assume EST counts to be correct and libraries to be correctly annotated, which is not always the case. Therefore, a method capable of assessing the quality of expression data based on that data alone would be invaluable for assessing the quality of EST data and determining their suitability for mRNA expression analysis. Here we report an approach to the selection of a small generic subset of 244 UniGene clusters suitable for identification of the tissue of origin for EST libraries and quality control of the expression data using EST expression information alone. We created a small expression matrix of UniGene IDs using two rounds of selection followed by two rounds of optimisation. Our selection procedures differ from traditional approaches to finding “tissue-specific” genes and our matrix yields consistency high positive correlation values for libraries with confirmed tissues of origin and can be applied for tissue typing and quality control of libraries as small as just a few hundred total ESTs. Furthermore, we can pick up tissue correlations between related tissues e.g. brain and peripheral nervous tissue, heart and muscle tissues and identify tissue origins for a few libraries of uncharacterised tissue identity. It was possible to confirm tissue identity for some libraries which have been derived from cancer tissues or have been normalised. Tissue matching is affected strongly by cancer progression or library normalisation and our approach may potentially be applied for elucidating the stage of normalisation in normalised libraries or for cancer staging. PMID:22412959

  7. Expressed sequence tags (ESTs) from immune tissues of turbot (Scophthalmus maximus) challenged with pathogens

    PubMed Central

    Pardo, Belén G; Fernández, Carlos; Millán, Adrián; Bouza, Carmen; Vázquez-López, Araceli; Vera, Manuel; Alvarez-Dios, José A; Calaza, Manuel; Gómez-Tato, Antonio; Vázquez, María; Cabaleiro, Santiago; Magariños, Beatriz; Lemos, Manuel L; Leiro, José M; Martínez, Paulino

    2008-01-01

    Background The turbot (Scophthalmus maximus; Scophthalmidae; Pleuronectiformes) is a flatfish species of great relevance for marine aquaculture in Europe. In contrast to other cultured flatfish, very few genomic resources are available in this species. Aeromonas salmonicida and Philasterides dicentrarchi are two pathogens that affect turbot culture causing serious economic losses to the turbot industry. Little is known about the molecular mechanisms for disease resistance and host-pathogen interactions in this species. In this work, thousands of ESTs for functional genomic studies and potential markers linked to ESTs for mapping (microsatellites and single nucleotide polymorphisms (SNPs)) are provided. This information enabled us to obtain a preliminary view of regulated genes in response to these pathogens and it constitutes the basis for subsequent and more accurate microarray analysis. Results A total of 12584 cDNAs partially sequenced from three different cDNA libraries of turbot (Scophthalmus maximus) infected with Aeromonas salmonicida, Philasterides dicentrarchi and from healthy fish were analyzed. Three immune-relevant tissues (liver, spleen and head kidney) were sampled at several time points in the infection process for library construction. The sequences were processed into 9256 high-quality sequences, which constituted the source for the turbot EST database. Clustering and assembly of these sequences, revealed 3482 different putative transcripts, 1073 contigs and 2409 singletons. BLAST searches with public databases detected significant similarity (e-value ≤ 1e-5) in 1766 (50.7%) sequences and 816 of them (23.4%) could be functionally annotated. Two hundred three of these genes (24.9%), encoding for defence/immune-related proteins, were mostly identified for the first time in turbot. Some ESTs showed significant differences in the number of transcripts when comparing the three libraries, suggesting regulation in response to these pathogens. A total of 191 microsatellites, with 104 having sufficient flanking sequences for primer design, and 1158 putative SNPs were identified from these EST resources in turbot. Conclusion A collection of 9256 high-quality ESTs was generated representing 3482 unique turbot sequences. A large proportion of defence/immune-related genes were identified, many of them regulated in response to specific pathogens. Putative microsatellites and SNPs were identified. These genome resources constitute the basis to develop a microarray for functional genomics studies and marker validation for genetic linkage and QTL analysis in turbot. PMID:18817567

  8. Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression.

    PubMed

    Jin, Erqing; Wong, Lynn; Jiao, Yun; Engel, Jake; Holdridge, Benjamin; Xu, Peng

    2017-12-01

    Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements. The reported method allows for rapid construction of promoter, 5'UTR, terminator and trans -activating RNA libraries. Synthetic overlapping oligos with high portion of degenerate nucleotides flanking the regulatory element could be efficiently assembled to a vector expressing fluorescence reporter. This approach combines high mutation rate of the synthetic DNA with the high assembly efficiency of Gibson Mix. Our constructed library demonstrates broad range of transcriptional or translational gene expression dynamics. Specifically, both the promoter library and 5'UTR library exhibits gene expression dynamics spanning across three order of magnitude. The terminator library and trans -activating RNA library displays relatively narrowed gene expression pattern. The reported study provides a versatile toolbox for rapidly constructing a large family of prokaryotic regulatory elements. These libraries also facilitate the implementation of combinatorial pathway engineering principles and the engineering of more efficient microbial cell factory for various biomanufacturing applications.

  9. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    PubMed

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  10. Humoral and cellular immune responses to Yersinia pestis Pla antigen in humans immunized with live plague vaccine.

    PubMed

    Feodorova, Valentina A; Lyapina, Anna M; Khizhnyakova, Maria A; Zaitsev, Sergey S; Sayapina, Lidiya V; Arseneva, Tatiana E; Trukhachev, Alexey L; Lebedeva, Svetlana A; Telepnev, Maxim V; Ulianova, Onega V; Lyapina, Elena P; Ulyanov, Sergey S; Motin, Vladimir L

    2018-06-01

    To establish correlates of human immunity to the live plague vaccine (LPV), we analyzed parameters of cellular and antibody response to the plasminogen activator Pla of Y. pestis. This outer membrane protease is an essential virulence factor that is steadily expressed by Y. pestis. PBMCs and sera were obtained from a cohort of naïve (n = 17) and LPV-vaccinated (n = 34) donors. Anti-Pla antibodies of different classes and IgG subclasses were determined by ELISA and immunoblotting. The analysis of antibody response was complicated with a strong reactivity of Pla with normal human sera. The linear Pla B-cell epitopes were mapped using a library of 15-mer overlapping peptides. Twelve peptides that reacted specifically with sera of vaccinated donors were found together with a major cross-reacting peptide IPNISPDSFTVAAST located at the N-terminus. PBMCs were stimulated with recombinant Pla followed by proliferative analysis and cytokine profiling. The T-cell recall response was pronounced in vaccinees less than a year post-immunization, and became Th17-polarized over time after many rounds of vaccination. The Pla protein can serve as a biomarker of successful vaccination with LPV. The diagnostic use of Pla will require elimination of cross-reactive parts of the antigen.

  11. Differences in Brain Transcriptomes of Closely Related Baikal Coregonid Species

    PubMed Central

    Bychenko, Oksana S.; Sukhanova, Lyubov V.; Azhikina, Tatyana L.; Skvortsov, Timofey A.; Belomestnykh, Tuyana V.; Sverdlov, Eugene D.

    2014-01-01

    The aim of this work was to get deeper insight into genetic factors involved in the adaptive divergence of closely related species, specifically two representatives of Baikal coregonids—Baikal whitefish (Coregonus baicalensis Dybowski) and Baikal omul (Coregonus migratorius Georgi)—that diverged from a common ancestor as recently as 10–20 thousand years ago. Using the Serial Analysis of Gene Expression method, we obtained libraries of short representative cDNA sequences (tags) from the brains of Baikal whitefish and omul. A comparative analysis of the libraries revealed quantitative differences among ~4% tags of the fishes under study. Based on the similarity of these tags with cDNA of known organisms, we identified candidate genes taking part in adaptive divergence. The most important candidate genes related to the adaptation of Baikal whitefish and Baikal omul, identified in this work, belong to the genes of cell metabolism, nervous and immune systems, protein synthesis, and regulatory genes as well as to DTSsa4 Tc1-like transposons which are widespread among fishes. PMID:24719892

  12. [Construction of a phage antibody library and screening of anti-epidermal growth factor receptor variant III single chain antibody].

    PubMed

    Han, Dong-gang; Duan, Xiao-yi; Guo, You-min; Zhou, Qi; Wang, Quan-ying; Yang, Guang-xiao

    2010-01-01

    To obtain specific anti-epidermal growth factor receptor variant III (EGFRvIII) single chain antibody (ScFv) by phage antibody library display system. The total RNA was extracted from the spleen B cells of BALB/c mice immunized with pep-3-OVA protein, and the first-strand cDNA was synthesized by reverse transcription. Antibody VH and VL gene fragments were amplified and joined to a ScFv gene with the linker. The ScFv gene was ligated into the phagemid vector pCANTAB5E, which was transformed into competent E. coli TG1. The transformed cells were then infected with M13KO7 helper phage to yield the recombinant phage to construct the phage ScFv library. Pep-3-BSA protein was used to screen the phage antibody library and ELISA carried out to characterize the activity of the antibody. The VH and VL gene fragments of the antibody were about 350 bp and 320 bp in length as analyzed by agarose gel electrophoresis. The ScFv gene was 780 bp, consistent with the expected length. The recombinant phagemid with ScFv gene insert was rescued, and an immune phage ScFv library with the content of 5.0x10(6) was constructed. The recombinant ScFv phage had a titer of 3.0x10(4) cfu/ml, and the fourth phage harvest yielded 56 times as much as that of the first one. SDS-PAGE demonstrated a molecular mass of the soluble ScFv of about 28 kD. ELISA results indicated good specificity of the ScFv to bind EGFRvIII. An immune phage ScFv library is successfully constructed, and the ScFv antibody fragment is capable of specific binding to EGFRvIII.

  13. Modification and identification of a vector for making a large phage antibody library.

    PubMed

    Zhang, Guo-min; Chen, Yü-ping; Guan, Yuan-zhi; Wang, Yan; An, Yun-qing

    2007-11-20

    The large phage antibody library is used to obtain high-affinity human antibody, and the Loxp/cre site-specific recombination system is a potential method for constructing a large phage antibody library. In the present study, a phage antibody library vector pDF was reconstructed to construct diabody more quickly and conveniently without injury to homologous recombination and the expression function of the vector and thus to integrate construction of the large phage antibody library with the preparation of diabodies. scFv was obtained by overlap polymerase chain reaction (PCR) amplification with the newly designed VL and VH extension primers. loxp511 was flanked by VL and VH and the endonuclease ACC III encoding sequences were introduced on both sides of loxp511. scFv was cloned into the vector pDF to obtain the vector pDscFv. The vector expression function was identified and the feasibility of diabody preparation was evaluated. A large phage antibody library was constructed in pDscFv. Several antigens were used to screen the antibody library and the quality of the antibody library was evaluated. The phage antibody library expression vector pDscFv was successfully constructed and confirmed to express functional scFv. The large phage antibody library constructed using this vector was of high diversity. Screening of the library on 6 antigens confirmed the generation of specific antibodies to these antigens. Two antibodies were subjected to enzymatic digestion and were prepared into diabody with functional expression. The reconstructed vector pDscFv retains its recombination capability and expression function and can be used to construct large phage antibody libraries. It can be used as a convenient and quick method for preparing diabodies after simple enzymatic digestion, which facilitates clinical trials and application of antibody therapy.

  14. Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands.

    PubMed

    Loukas, A; Doedens, A; Hintz, M; Maizels, R M

    2000-11-01

    Infective larvae of the dog roundworm Toxocara canis survive in the tissues of their hosts for extended periods in a state of developmental arrest, successfully evading immune destruction. This survival strategy is thought to be mediated by T. canis excretory/secretory (TES) products which downregulate or divert the immune response. We purified one of the major TES products, TES-70 and gained amino acid sequence from 4 tryptic peptides. These peptides were matched to a predicted protein from a cDNA that was isolated by expression screening a T. canis cDNA library with mouse anti-TES serum. The predicted protein (Tc-CTL-4) is similar to, but larger than, Tc-CTL-1, a 32-kDa C-type lectin secreted by T. canis larvae. Tc-CTL-4 has a signal peptide, 2 Cys-rich domains and a C-terminal calcium-dependent C-type lectin domain that shares sequence similarity with host immune cell receptors such as macrophage mannose receptor and CD23. The lectin domain was expressed in bacteria and antiserum to the purified recombinant protein was used to confirm that Tc-ctl-4 did encode the native TES-70 glycoprotein. TES-70 selectively bound to ligands on the surface of Madin-Darby Canine Kidney cells in vitro in a calcium-dependent manner, inhibitable by mammalian serum, indicating that a host glycan is the native ligand for this new parasite lectin.

  15. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation.

    PubMed

    Maglinao, Maha; Eriksson, Magdalena; Schlegel, Mark K; Zimmermann, Stephanie; Johannssen, Timo; Götze, Sebastian; Seeberger, Peter H; Lepenies, Bernd

    2014-02-10

    Myeloid C-type lectin receptors (CLRs) in innate immunity represent a superfamily of pattern recognition receptors that recognize carbohydrate structures on pathogens and self-antigens. The primary interaction of an antigen-presenting cell and a pathogen shapes the following immune response. Therefore, the identification of CLR ligands that can either enhance or modulate the immune response is of interest. We have developed a screening platform based on glycan arrays to identify immune modulatory carbohydrate ligands of CLRs. A comprehensive library of CLRs was expressed by fusing the extracellular part of each respective CLR, the part containing the carbohydrate-recognition domain (CRD), to the Fc fragment of human IgG1 molecules. CLR-Fc fusion proteins display the CRD in a dimeric form, are properly glycosylated, and can be detected by a secondary antibody with a conjugated fluorophore. Thus, they are valuable tools for high-throughput screening. We were able to identify novel carbohydrate binders of CLRs using the glycan array technology. These CLR-binding carbohydrates were then covalently attached to the model antigen ovalbumin. The ovalbumin neoglycoconjugates were used in a dendritic cell/T cell co-culture assay to stimulate transgenic T cells in vitro. In addition, mice were immunized with these conjugates to analyze the immune modulatory properties of the CLR ligands in vivo. The CLR ligands induced an increased Th1 cytokine production in vitro and modulated the humoral response in vivo. The platform described here allows for the identification of CLR ligands, as well as the evaluation of each ligand's cell-specific targeting and immune modulatory properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Analysis and functional annotation of expressed sequence tags from the fall armyworm Spodoptera frugiperda

    PubMed Central

    Deng, Youping; Dong, Yinghua; Thodima, Venkata; Clem, Rollie J; Passarelli, A Lorena

    2006-01-01

    Background Little is known about the genome sequences of lepidopteran insects, although this group of insects has been studied extensively in the fields of endocrinology, development, immunity, and pathogen-host interactions. In addition, cell lines derived from Spodoptera frugiperda and other lepidopteran insects are routinely used for baculovirus foreign gene expression. This study reports the results of an expressed sequence tag (EST) sequencing project in cells from the lepidopteran insect S. frugiperda, the fall armyworm. Results We have constructed an EST database using two cDNA libraries from the S. frugiperda-derived cell line, SF-21. The database consists of 2,367 ESTs which were assembled into 244 contigs and 951 singlets for a total of 1,195 unique sequences. Conclusion S. frugiperda is an agriculturally important pest insect and genomic information will be instrumental for establishing initial transcriptional profiling and gene function studies, and for obtaining information about genes manipulated during infections by insect pathogens such as baculoviruses. PMID:17052344

  17. Production and Characterization of Novel Camel Single Domain Antibody Targeting Mouse Vascular Endothelial Growth Factor.

    PubMed

    Kazemi-Lomedasht, Fatemeh; Behdani, Mahdi; Habibi-Anbouhi, Mahdi; Shahbazzadeh, Delavar

    2016-06-01

    Camel single domain antibody known as Nanobody™ refers to a novel class of monoclonal antibodies with appropriate pharmacological properties. Nanobody is an antigen-binding site of camel heavy chain antibody also known as VHH. Expression in a microbial system, stability in difficult conditions and extremes of PH, and nanomolar affinity to target an appropriate drug format makes Nanobody a potential for drug discovery. Needs for Nanobody function evaluation in animal models turned our interest to develop anti-mouse vascular endothelial growth factor (mVEGF) Nanobodies using phage display as a potent technique in the isolation of antibodies. Isolation of anti-mVEGF Nanobodies was performed on Camelus dromedarius immune library through four consecutive rounds of biopanning on immobilized mVEGF. Enrichment of the Nanobody library was monitored by polyclonal phage-ELISA, and specific Nanobodies were selected using periplasmic extract-ELISA. Selected Nanobodies were expressed in WK6 Escherichia coli cells and purified using immobilized metal affinity chromatography. Specificity and affinity of selected Nanobodies were evaluated on immobilized mVEGF. Results demonstrated the successful enrichment of the Nanobody library. Two clones named Nb5 and Nb10 were selected through screening procedures according to their signal value in periplasmic extract-ELISA. Selected Nanobodies specifically reacted to mVEGF, but cross-reactivity with other antigens was not observed. Evaluated affinity for the Nanobodies was in nanomolar range. Taken together, according to the results, the selected Nanobodies promise to be a novel tool in research and for further development of diagnostic or therapeutic purposes in pharmaceutical science.

  18. The construction of cDNA library and the screening of related antigen of ascitic tumor cells of ovarian cancer.

    PubMed

    Hou, Q; Chen, K; Shan, Z

    2015-01-01

    To construct the cDNA library of the ascites tumor cells of ovarian cancer, which can be used to screen the related antigen for the early diagnosis of ovarian cancer and therapeutic targets of immune treatment. Four cases of ovarian serous cystadenocarcinoma, two cases of ovarian mucinous cystadenocarcinoma, and two cases of ovarian endometrial carcinoma in patients with ascitic tumor cells which were used to construct the cDNA library. To screen the ovarian cancer antigen gene, evaluate the enzyme, and analyze nucleotide sequence, serological analysis of recombinant tumor cDNA expression libraries (SEREX) and suppression subtractive hybridization technique (SSH) techniques were utilized. The detection method of recombinant expression-based serological mini-arrays (SMARTA) was used to detect the ovarian cancer antigen and the positive reaction of 105 cases of ovarian cancer patients and 105 normal women's autoantibodies correspondingly in serum. After two rounds of serologic screening and glycosides sequencing analysis, 59 candidates of ovarian cancer antigen gene fragments were finally identified, which corresponded to 50 genes. They were then divided into six categories: (1) the homologous genes which related to the known ovarian cancer genes, such as BARD 1 gene, etc; (2) the homologous genes which were associated with other tumors, such as TM4SFI gene, etc; (3) the genes which were expressed in a special organization, such as ILF3, FXR1 gene, etc; (4) the genes which were the same with some protein genes of special function, such as TIZ, ClD gene; (5) the homologous genes which possessed the same source with embryonic genes, such as PKHD1 gene, etc; (6) the remaining genes were the unknown genes without the homologous sequence in the gene pool, such as OV-189 genes. SEREX technology combined with SSH method is an effective research strategy which can filter tumor antigen with high specific character; the corresponding autoantibodies of TM4SFl, ClD, TIZ, BARDI, FXRI, and OV-189 gene's recombinant antigen in serum can be regarded as the biomarkers which are used to diagnose ovarian cancer. The combination of multiple antigen detection can improve diagnostic efficiency.

  19. Analysis of 10,000 ESTs from lymphocytes of the cynomolgus monkey to improve our understanding of its immune system

    PubMed Central

    Chen, Wei-Hua; Wang, Xue-Xia; Lin, Wei; He, Xiao-Wei; Wu, Zhen-Qiang; Lin, Ying; Hu, Song-Nian; Wang, Xiao-Ning

    2006-01-01

    Background The cynomolgus monkey (Macaca fascicularis) is one of the most widely used surrogate animal models for an increasing number of human diseases and vaccines, especially immune-system-related ones. Towards a better understanding of the gene expression background upon its immunogenetics, we constructed a cDNA library from Epstein-Barr virus (EBV)-transformed B lymphocytes of a cynomolgus monkey and sequenced 10,000 randomly picked clones. Results After processing, 8,312 high-quality expressed sequence tags (ESTs) were generated and assembled into 3,728 unigenes. Annotations of these uniquely expressed transcripts demonstrated that out of the 2,524 open reading frame (ORF) positive unigenes (mitochondrial and ribosomal sequences were not included), 98.8% shared significant similarities (E-value less than 1e-10) with the NCBI nucleotide (nt) database, while only 67.7% (E-value less than 1e-5) did so with the NCBI non-redundant protein (nr) database. Further analysis revealed that 90.0% of the unigenes that shared no similarities to the nr database could be assigned to human chromosomes, in which 75 did not match significantly to any cynomolgus monkey and human ESTs. The mapping regions to known human genes on the human genome were described in detail. The protein family and domain analysis revealed that the first, second and fourth of the most abundantly expressed protein families were all assigned to immunoglobulin and major histocompatibility complex (MHC)-related proteins. The expression profiles of these genes were compared with that of homologous genes in human blood, lymph nodes and a RAMOS cell line, which demonstrated expression changes after transformation with EBV. The degree of sequence similarity of the MHC class I and II genes to the human reference sequences was evaluated. The results indicated that class I molecules showed weak amino acid identities (<90%), while class II showed slightly higher ones. Conclusion These results indicated that the genes expressed in the cynomolgus monkey could be used to identify novel protein-coding genes and revise those incomplete or incorrect annotations in the human genome by comparative methods, since the old world monkeys and humans share high similarities at the molecular level, especially within coding regions. The identification of multiple genes involved in the immune response, their sequence variations to the human homologues, and their responses to EBV infection could provide useful information to improve our understanding of the cynomolgus monkey immune system. PMID:16618371

  20. Immunotoxicology of titanium dioxide and hydroxylated fullerenes engineered nanoparticles in fish models

    NASA Astrophysics Data System (ADS)

    Jovanovic, Boris

    2011-12-01

    Nanoparticles have the potential to cause adverse effects on the fish health, but the understanding of the underlying mechanisms is limited. Major task of this dissertation was to connect gaps in current knowledge with a comprehensive sequence of molecular, cellular and organismal responses toward environmentally relevant concentrations of engineered nanoparticles (titanium dioxide -- TiO2 and hydroxylated fullerenes), outlining the interaction with the innate immune system of fish. The research was divided into following steps: 1) create cDNA libraries for the species of fathead minnow (Pimephales promelas); 2) evaluate whether, and how can nanoparticles modulate neutrophil function in P. promelas; 3) determine the changes in expression of standard biomarker genes as a result of nanoparticle treatment; 4) expose the P. promelas to nanoparticles and appraise their survival rate in a bacterial challenge study; 5) assess the impact of nanoparticles on neuro-immunological interface during the early embryogenesis of zebrafish (Danio rerio). It was hypothesized that engineered nanoparticles can cause measurable changes in fish transcriptome, immune response, and disease resistance. The results of this dissertation are: 1) application of environmentally relevant concentration of nanoparticles changed function of fish neutrophils; 2) fish exposed to nano-TiO2 had significantly increased expression of interleukin 11, macrophage stimulating factor 1, and neutrophil cytosolic factor 2, while expression of interleukin 11 and myeloperoxidase was significantly increased and expression of elastase 2 was significantly decreased in fish exposed to hydroxylated fullerenes; 3) exposure to environmental estimated concentration of nano-TiO2 significantly increased fish mortality during Aeromonas hydrophila challenge. Analysis of nano-TiO 2 distribution in fish organism outlined that the nano-TiO2 is concentrating in the fish kidney and spleen; 4) during the early embryogenesis of D. rerio exposure to nanoparticles caused shifts in gene regulation response patterns. Significant effects on gene regulation were observed on genes involved in circadian rhythm, kinase activity, vesicular transport and immune response.

  1. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

    PubMed

    Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco

    2018-01-25

    Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Isolation and characterization of lymphocyte-like cells from a lamprey

    PubMed Central

    Mayer, Werner E.; Uinuk-ool, Tatiana; Tichy, Herbert; Gartland, Lanier A.; Klein, Jan; Cooper, Max D.

    2002-01-01

    Lymphocyte-like cells in the intestine of the sea lamprey, Petromyzon marinus, were isolated by flow cytometry under light-scatter conditions used for the purification of mouse intestinal lymphocytes. The purified lamprey cells were morphologically indistinguishable from mammalian lymphocytes. A cDNA library was prepared from the lamprey lymphocyte-like cells, and more than 8,000 randomly selected clones were sequenced. Homology searches comparing these ESTs with sequences deposited in the databases led to the identification of numerous genes homologous to those predominantly or characteristically expressed in mammalian lymphocytes, which included genes controlling lymphopoiesis, intracellular signaling, proliferation, migration, and involvement of lymphocytes in innate immune responses. Genes closely related to those that in gnathostomes control antigen processing and transport of antigenic peptides could be ascertained, although no sequences with significant similarity to MHC, T cell receptor, or Ig genes were found. The data suggest that the evolution of lymphocytes in the lamprey has reached a stage poised for the emergence of adaptive immunity. PMID:12388781

  3. CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response.

    PubMed

    Liu, Zhaoqun; Zhou, Zhi; Wang, Lingling; Qiu, Limei; Zhang, Huan; Wang, Hao; Song, Linsheng

    2016-11-01

    We have now cloned an alpha-1 adrenergic receptor (A1AR) from the cDNA library of oyster Crassostrea gigas, designating as CgA1AR-1. The full length of CgA1AR-1 was 1149 bp and it encodes a protein of 382 amino acids containing a 7 transmembrane domain, whose putative topology was similar to the A1ARs in higher organisms and shared similarity of 19% with mammalian A1ARs according to the phylogenic analysis. After cell transfection of CgA1AR-1 into HEK293T cells and the incubation with its specific agonist norepinephrine (NE), the concentration of second messenger Ca 2+ increased significantly (p < 0.05). But, this increasing of Ca 2+ could be inhibited by adding A1AR antagonist DOX. Tissue distribution assays using qRT-PCR suggested that CgA1AR-1 mRNA was ubiquitously expressed in all the major tissues of oyster. LPS stimulation could induce the up-regulation of CgA1AR-1 mRNA in haemocytes from 12 h to 24 h post stimulation. Moreover, the blocking of CgA1AR-1 by DOX before LPS stimulation affected the mRNA expression of oyster TNF (CGI_10005109 and CGI_10006440) in haemocytes, resulting in the rise of haemocyte phagocytic rate and apoptosis index. In addition to cellular immunity, CgA1AR-1 was also involved in humoral immunity of oyster. Inhibition of CgA1AR-1 with DOX could repress the up-regulation of LZY and SOD activities caused by LPS stimulation. These results suggested that CgA1AR-1 acted as an α-1 adrenergic receptor in cetacholaminergic neuroendocrine-immune network mediating both cellular and humoral immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Immune cell screening of a nanoparticle library improves atherosclerosis therapy

    PubMed Central

    Baxter, Samantha; Menon, Arjun; Alaarg, Amr; Sanchez-Gaytan, Brenda L.; Fay, Francois; Zhao, Yiming; Ouimet, Mireille; Braza, Mounia S.; Longo, Valerie A.; Abdel-Atti, Dalya; Duivenvoorden, Raphael; Calcagno, Claudia; Storm, Gert; Tsimikas, Sotirios; Moore, Kathryn J.; Swirski, Filip K.; Nahrendorf, Matthias; Fisher, Edward A.; Pérez-Medina, Carlos; Fayad, Zahi A.; Reiner, Thomas; Mulder, Willem J. M.

    2016-01-01

    Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library’s nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe−/−) mouse model of atherosclerosis, we quantitatively evaluated the library’s immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases. PMID:27791119

  5. Activation or suppression of the immune response mediators in biliary tract cancer (BTC) patients: a systematic review and meta-analysis

    PubMed Central

    Wang, Ying; Ding, Min; Zhang, Qian; Wang, Jinghan; Yang, Xijing; Zhou, Fuping; Li, Linfang; Yuan, Zhengang; Jin, Huajun; Qian, Qijun

    2017-01-01

    Background: Infiltration of immune cells and immune microenvironment determine the proliferative activity of the tumor and metastasis. The aim of this study was to analyze the influence of activation or suppression of the immune response mediators on the prognosis of biliary tract cancer (BTC). Methods: We searched Pubmed, Web of Science, Embase and The Cochrane Library for relevant literatures until June 2016. The quality of studies was assessed by QUADAS-2 and NOS tools. Forest and funnel plots and all statistical analyses were generated by using Review Manager 5.3. The bias of included studies was estimated by Egger's test using Meta R package. Results: A total of 2339 patients from 12 studies were finally enrolled in this meta-analysis. Patients with high expression of immune active factors, intraepithelial tumor-infiltrating CD4+ , CD8+, and Foxp3+ T lymphocytes, MHC I, NKG2D, showed a better overall survival (OS) than those with low expression (HR=0.52, 95% CI=0.41-0.67, P<0.00001). On the contrary, the high expression of immune suppressive factors (CD66b+ neutrophils, Neutrophil-lymphocyte ratio, Intratumoral IL-17+ cells and PD-1+/CD8+ TILs) was significantly associated with poor OS (HR=1.79, 95% CI=1.44-2.22, P<0.00001). A further analysis of therapies targeting tumor microenvironment modulation showed that the median progression free survival (PFS) for BTC patients who received adjuvant immunotherapy was longer than those who received surgery or chemotherapy alone, and the estimated pooled mean difference demonstrated a highly significant improvement (MD =2.33; 95% CI: 0.63-4.02, P=0.007). The total effect of PFS and OS was statistically longer in experimental group, compared to patients in control groups, respectively (PFS: RR=1.25; 95% CI: 1.08-1.46, P=0.004; OS: RR=1.16; 95% CI: 1.07-1.27, P=0.0006). In subgroup meta-analysis of studies on 6-, 12- and 18-month PFS and OS, it showed that adjuvant immunotherapy could improve the 6-month PFS (RR=1.23; 95% CI: 1.05-1.44, P=0.009), and 6-month OS (RR=1.17; 95% CI: 1.06-1.30, P=0.002). Conclusions: So given the above issue, our meta-analysis confirmed that the level of immune mediators could be a predicative factor for prognosis of BTC patients, and immunotherapy regimens by modulating the tumor microenvironment was superior for enhancing median PFS, 6-month PFS and OS. PMID:28123600

  6. Activation or suppression of the immune response mediators in biliary tract cancer (BTC) patients: a systematic review and meta-analysis.

    PubMed

    Wang, Ying; Ding, Min; Zhang, Qian; Wang, Jinghan; Yang, Xijing; Zhou, Fuping; Li, Linfang; Yuan, Zhengang; Jin, Huajun; Qian, Qijun

    2017-01-01

    Background: Infiltration of immune cells and immune microenvironment determine the proliferative activity of the tumor and metastasis. The aim of this study was to analyze the influence of activation or suppression of the immune response mediators on the prognosis of biliary tract cancer (BTC). Methods: We searched Pubmed, Web of Science, Embase and The Cochrane Library for relevant literatures until June 2016. The quality of studies was assessed by QUADAS-2 and NOS tools. Forest and funnel plots and all statistical analyses were generated by using Review Manager 5.3. The bias of included studies was estimated by Egger's test using Meta R package. Results: A total of 2339 patients from 12 studies were finally enrolled in this meta-analysis. Patients with high expression of immune active factors, intraepithelial tumor-infiltrating CD4+ , CD8+, and Foxp3+ T lymphocytes, MHC I, NKG2D, showed a better overall survival (OS) than those with low expression (HR=0.52, 95% CI=0.41-0.67, P<0.00001). On the contrary, the high expression of immune suppressive factors (CD66b+ neutrophils, Neutrophil-lymphocyte ratio, Intratumoral IL-17+ cells and PD-1+/CD8+ TILs) was significantly associated with poor OS (HR=1.79, 95% CI=1.44-2.22, P<0.00001). A further analysis of therapies targeting tumor microenvironment modulation showed that the median progression free survival (PFS) for BTC patients who received adjuvant immunotherapy was longer than those who received surgery or chemotherapy alone, and the estimated pooled mean difference demonstrated a highly significant improvement (MD =2.33; 95% CI: 0.63-4.02, P=0.007). The total effect of PFS and OS was statistically longer in experimental group, compared to patients in control groups, respectively (PFS: RR=1.25; 95% CI: 1.08-1.46, P=0.004; OS: RR=1.16; 95% CI: 1.07-1.27, P=0.0006). In subgroup meta-analysis of studies on 6-, 12- and 18-month PFS and OS, it showed that adjuvant immunotherapy could improve the 6-month PFS (RR=1.23; 95% CI: 1.05-1.44, P=0.009), and 6-month OS (RR=1.17; 95% CI: 1.06-1.30, P=0.002). Conclusions: So given the above issue, our meta-analysis confirmed that the level of immune mediators could be a predicative factor for prognosis of BTC patients, and immunotherapy regimens by modulating the tumor microenvironment was superior for enhancing median PFS, 6-month PFS and OS.

  7. Identification of Abundantly Expressed Novel and Conserved Genes from the Infective Larval Stage of Toxocara canis by an Expressed Sequence Tag Strategy

    PubMed Central

    Tetteh, Kevin K. A.; Loukas, Alex; Tripp, Cindy; Maizels, Rick M.

    1999-01-01

    Larvae of Toxocara canis, a nematode parasite of dogs, infect humans, causing visceral and ocular larva migrans. In noncanid hosts, larvae neither grow nor differentiate but endure in a state of arrested development. Reasoning that parasite protein production is orientated to immune evasion, we undertook a random sequencing project from a larval cDNA library to characterize the most highly expressed transcripts. In all, 266 clones were sequenced, most from both 3′ and 5′ ends, and similarity searches against GenBank protein and dbEST nucleotide databases were conducted. Cluster analyses showed that 128 distinct gene products had been found, all but 3 of which represented newly identified genes. Ninety-five genes were represented by a single clone, but seven transcripts were present at high frequencies, each composing >2% of all clones sequenced. These high-abundance transcripts include a mucin and a C-type lectin, which are both major excretory-secretory antigens released by parasites. Four highly expressed novel gene transcripts, termed ant (abundant novel transcript) genes, were found. Together, these four genes comprised 18% of all cDNA clones isolated, but no similar sequences occur in the Caenorhabditis elegans genome. While the coding regions of the four genes are dissimilar, their 3′ untranslated tracts have significant homology in nucleotide sequence. The discovery of these abundant, parasite-specific genes of newly identified lectins and mucins, as well as a range of conserved and novel proteins, provides defined candidates for future analysis of the molecular basis of immune evasion by T. canis. PMID:10456930

  8. Sequencing and Characterization of the Invasive Sycamore Lace Bug Corythucha ciliata (Hemiptera: Tingidae) Transcriptome

    PubMed Central

    Qu, Cheng; Fu, Ningning; Xu, Yihua

    2016-01-01

    The sycamore lace bug, Corythucha ciliata (Hemiptera: Tingidae), is an invasive forestry pest rapidly expanding in many countries. This pest poses a considerable threat to the urban forestry ecosystem, especially to Platanus spp. However, its molecular biology and biochemistry are poorly understood. This study reports the first C. ciliata transcriptome, encompassing three different life stages (Nymphs, adults female (AF) and adults male (AM)). In total, 26.53 GB of clean data and 60,879 unigenes were obtained from three RNA-seq libraries. These unigenes were annotated and classified by Nr (NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), Pfam (Protein family), KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (A manually annotated and reviewed protein sequence database), and KO (KEGG Ortholog database). After all pairwise comparisons between these three different samples, a large number of differentially expressed genes were revealed. The dramatic differences in global gene expression profiles were found between distinct life stages (nymphs and AF, nymphs and AM) and sex difference (AF and AM), with some of the significantly differentially expressed genes (DEGs) being related to metamorphosis, digestion, immune and sex difference. The different express of unigenes were validated through quantitative Real-Time PCR (qRT-PCR) for 16 randomly selected unigenes. In addition, 17,462 potential simple sequence repeat molecular markers were identified in these transcriptome resources. These comprehensive C. ciliata transcriptomic information can be utilized to promote the development of environmentally friendly methodologies to disrupt the processes of metamorphosis, digestion, immune and sex differences. PMID:27494615

  9. Herpes Simplex Virus 1 Inhibits TANK-Binding Kinase 1 through Formation of the Us11-Hsp90 Complex.

    PubMed

    Liu, Xing; Main, David; Ma, Yijie; He, Bin

    2018-05-09

    The Us11 protein of herpes simplex virus 1 (HSV-1) is an accessory factor with multiple functions. In virus-infected cells, it inhibits double-stranded RNA dependent protein kinase PKR, 2',5'-oligoadenylate synthetase, RIG-I and MDA-5. However, its precise role is incompletely defined. By screening human cDNA library, we show that the Us11 protein targets heat shock protein 90 (Hsp90), which inactivates TANK binding kinase 1 (TBK1) and antiviral immunity. When ectopically expressed, HSV-1 Us11 precludes the access of TBK1 to Hsp90 and IFN promoter activation. Consistently, upon HSV infection the Us11 protein suppresses the expression of IFN-β, RANTES, and interferon stimulated genes. This is mirrored by a blockade in the phosphorylation of interferon regulatory factor 3. Mechanistically, the Us11 protein associates with endogenous Hsp90 to disrupt the Hsp90-TBK1 complex. Furthermore, Us11 induces destabilization of TBK1 through a proteasome dependent pathway. Accordingly, Us11 expression facilitates HSV growth. Conversely, TBK1 expression restricts viral replication. These results suggest that control of TBK1 by Us11 promotes HSV-1 infection. IMPORTANCE TANK binding kinase 1 plays a key role in antiviral immunity. Although multiple factors are thought to participate in this process, the picture is obscure in herpes simplex virus infection. We demonstrate that the Us11 protein of HSV-1 forms a complex with heat shock protein 90, which inactivates TANK binding kinase 1 and IFN induction. As a result, expression of the Us11 protein promotes HSV replication. These experimental data provide a new insight into the molecular network of virus-host interactions. Copyright © 2018 American Society for Microbiology.

  10. Expression mapping using a retroviral vector for CD8+ T cell epitopes: definition of a Mycobacterium tuberculosis peptide presented by H2-Dd.

    PubMed

    Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio

    2005-03-01

    Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.

  11. Identification of genes differentially expressed in association with acquired cisplatin resistance

    PubMed Central

    Johnsson, A; Zeelenberg, I; Min, Y; Hilinski, J; Berry, C; Howell, S B; Los, G

    2000-01-01

    The goal of this study was to identify genes whose mRNA levels are differentially expressed in human cells with acquired cisplatin (cDDP) resistance. Using the parental UMSCC10b head and neck carcinoma cell line and the 5.9-fold cDDP-resistant subline, UMSCC10b/Pt-S15, two suppressive subtraction hybridization (SSH) cDNA libraries were prepared. One library represented mRNAs whose levels were increased in the cDDP resistant variant (the UP library), the other one represented mRNAs whose levels were decreased in the resistant cells (the DOWN library). Arrays constructed with inserts recovered from these libraries were hybridized with SSH products to identify truly differentially expressed elements. A total of 51 cDNA fragments present in the UP library and 16 in the DOWN library met the criteria established for differential expression. The sequences of 87% of these cDNA fragments were identified in Genbank. Among the mRNAs in the UP library that were frequently isolated and that showed high levels of differential expression were cytochrome oxidase I, ribosomal protein 28S, elongation factor 1α, α-enolase, stathmin, and HSP70. The approach taken in this study permitted identification of many genes never before linked to the cDDP-resistant phenotype. © 2000 Cancer Research Campaign PMID:10993653

  12. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range.

    PubMed

    Massa, Sónia I; Pearson, Gareth A; Aires, Tânia; Kube, Michael; Olsen, Jeanine L; Reinhardt, Richard; Serrão, Ester A; Arnaud-Haond, Sophie

    2011-09-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30min, 2h, 4h and 24h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as 'molecular chaperones' and were over-expressed following heat-shock, while 12 (23.5%) were 'photosynthesis TUGs' generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30min AHS library, followed by a slow decrease during further recovery. In contrast, 'photosynthesis TUGs' were under-expressed 30min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related inflammation.

    PubMed

    Liu, Yang; Cao, Zhi-Ting; Xu, Cong-Fei; Lu, Zi-Dong; Luo, Ying-Li; Wang, Jun

    2018-07-01

    Inflammation is closely related to the development of many diseases and is commonly characterized by abnormal infiltration of immune cells, especially neutrophils. The current therapeutics of inflammatory diseases give little attention to direct modulation of these diseases with respect to immune cells. Nanoparticles are applied for efficient drug delivery into the disease-related immune cells, but their performance is significantly affected by their surface properties. In this study, to optimize the properties of nanoparticles for modulating neutrophils-related inflammation, we prepared a library of poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-b-PLGA)-based cationic lipid-assisted nanoparticles (CLANs) with different surface PEG density and surface charge. Optimized CLANs for neutrophils targeting were screened in high-fat diet (HFD)-induced type 2 diabetes (T2D) mice. Then, a CRISPR-Cas9 plasmid expressing a guide RNA (gRNA) targeting neutrophil elastase (NE) was encapsulated into the optimized CLAN and denoted as CLAN pCas9/gNE . After intravenous injection, CLAN pCas9/gNE successfully disrupted the NE gene of neutrophils and mitigated the insulin resistance of T2D mice via reducing the inflammation in epididymal white adipose tissue (eWAT) and in the liver. This strategy provides an example of abating the inflammatory microenvironment by directly modulating immune cells with nanoparticles carrying genome editing tools. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE

    PubMed Central

    Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.

    2010-01-01

    Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258

  15. Selection of Single Domain Antibodies from Immune Libraries Displayed on the Surface of E. coli Cells with Two β-Domains of Opposite Topologies

    PubMed Central

    Martínez-Arteaga, Rocio; Ruano-Gallego, David; Fraile, Sofía; Margolles, Yago; Teira, Xema; Gutierrez, Carlos; Bodelón, Gustavo; Fernández, Luis Ángel

    2013-01-01

    Screening of antibody (Ab) libraries by direct display on the surface of E. coli cells is hampered by the presence of the outer membrane (OM). In this work we demonstrate that the native β-domains of EhaA autotransporter and intimin, two proteins from enterohemorrhagic E. coli O157:H7 (EHEC) with opposite topologies in the OM, are effective systems for the display of immune libraries of single domain Abs (sdAbs) from camelids (nanobodies or VHH) on the surface of E. coli K-12 cells and for the selection of high affinity sdAbs using magnetic cell sorting (MACS). We analyzed the capacity of EhaA and intimin β-domains to display individual sdAbs and sdAb libraries obtained after immunization with the extracellular domain of the translocated intimin receptor from EHEC (TirMEHEC). We demonstrated that both systems displayed functional sdAbs on the surface of E. coli cells with little proteolysis and cellular toxicity, although E. coli cells displaying sdAbs with the β-domain of intimin showed higher antigen-binding capacity. Both E. coli display libraries were screened for TirMEHEC binding clones by MACS. High affinity binders were selected by both display systems, although more efficiently with the intimin β-domain. The specificity of the selected clones against TirMEHEC was demonstrated by flow cytometry of E. coli cells, along with ELISA and surface plasmon resonance with purified sdAbs. Finally, we employed the E. coli cell display systems to provide an estimation of the affinity of the selected sdAb by flow cytometry analysis under equilibrium conditions. PMID:24086454

  16. An SSH library responsive to azadirachtin A constructed in Spodoptera litura Fabricius cell lines.

    PubMed

    Yan, Chao; Zhang, Zhi-Xiang; Xu, Han-Hong

    2012-05-31

    The present study revealed differentially expressed genes responsive to azadirachtin A (Aza) in Spodoptera litura cell line through suppression subtractive hybridization. In the Aza-responsive SSH library, approximately 270 sequences represent 53 different identified genes encoding proteins with various predicted functions, and the percentages of the gene clusters were 26.09% (genetic information processing), 11.41% (cell growth and death), 7.07% (metabolism), 6.52% (signal transduction/transport) and 2.72% (immunity), respectively. Eleven clones homologous to identified genes were selected to be confirmed through quantitative real time polymerase chain reaction. Among the eleven clones validated, all but one transcript of lipase showed an increase in SL cell line collected from ETA, whereas the transcripts of other genes were lower in the SL cell line collected from ETA compared with that of UETA. These genes were considered to be related to the response of SL cell line to Aza. These will provide a new clue to uncover the molecular mechanisms of Aza acting on SL cell line. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Errors in CGAP xProfiler and cDNA DGED: the importance of library parsing and gene selection algorithms.

    PubMed

    Milnthorpe, Andrew T; Soloviev, Mikhail

    2011-04-15

    The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used.

  18. Errors in CGAP xProfiler and cDNA DGED: the importance of library parsing and gene selection algorithms

    PubMed Central

    2011-01-01

    Background The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. Results We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Conclusion Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used. PMID:21496233

  19. Seeking the New Normal: Periodicals Price Survey 2010

    ERIC Educational Resources Information Center

    Henderson, Kittie S.; Bosch, Stephen

    2010-01-01

    The year 2009 will be remembered as one of angst, with the economy dominating news around the world. Few libraries were immune to the extraordinary financial pressures. The library marketplace by year's end was in a weakened position, with prospects of a long recovery at best. Concern persists that even deeper budget cuts will come when federal…

  20. Joining the in vitro immunization of alpaca lymphocytes and phage display: rapid and cost effective pipeline for sdAb synthesis.

    PubMed

    Comor, Lubos; Dolinska, Saskia; Bhide, Katarina; Pulzova, Lucia; Jiménez-Munguía, Irene; Bencurova, Elena; Flachbartova, Zuzana; Potocnakova, Lenka; Kanova, Evelina; Bhide, Mangesh

    2017-01-23

    Camelids possess unique functional heavy chain antibodies, which can be produced and modified in vitro as a single domain antibody (sdAb or nanobody) with full antigen binding ability. Production of sdAb in conventional manner requires active immunization of Camelidae animal, which is laborious, time consuming, costly and in many cases not feasible (e.g. in case of highly toxic or infectious antigens). In this study, we describe an alternative pipeline that includes in vitro stimulation of naïve alpaca B-lymphocytes by antigen of interest (in this case endothelial cell binding domain of OspA of Borrelia) in the presence of recombinant alpaca interleukins 2 and 4, construction of sdAb phage library, selection of antigen specific sdAb expressed on phages (biopanning) and confirmation of binding ability of sdAb to the antigen. By joining the in vitro immunization and the phage display ten unique phage clones carrying sdAb were selected. Out of ten, seven sdAb showed strong antigen binding ability in phage ELISA. Furthermore, two soluble forms of sdAb were produced and their differential antigen binding affinity was measured with bio-layer interferometry. A proposed pipeline has potential to reduce the cost substantially required for maintenance of camelid herd for active immunization. Furthermore, in vitro immunization can be achieved within a week to enrich mRNA copies encoding antigen-specific sdAbs in B cell. This rapid and cost effective pipeline can help researchers to develop efficiently sdAb for diagnostic and therapeutic purposes.

  1. Cloning, sequencing, and expression of the apa gene coding for the Mycobacterium tuberculosis 45/47-kilodalton secreted antigen complex.

    PubMed

    Laqueyrerie, A; Militzer, P; Romain, F; Eiglmeier, K; Cole, S; Marchal, G

    1995-10-01

    Effective protection against a virulent challenge with Mycobacterium tuberculosis is induced mainly by previous immunization with living attenuated mycobacteria, and it has been hypothesized that secreted proteins serve as major targets in the specific immune response. To identify and purify molecules present in culture medium filtrate which are dominant antigens during effective vaccination, a two-step selection procedure was used to select antigens able to interact with T lymphocytes and/or antibodies induced by immunization with living bacteria and to counterselect antigens interacting with the immune effectors induced by immunization with dead bacteria. A Mycobacterium bovis BCG 45/47-kDa antigen complex, present in BCG culture filtrate, has been previously identified and isolated (F. Romain, A. Laqueyrerie, P. Militzer, P. Pescher, P. Chavarot, M. Lagranderie, G. Auregan, M. Gheorghiu, and G. Marchal, Infect. Immun. 61:742-750, 1993). Since the cognate antibodies recognize the very same antigens present in M. tuberculosis culture medium filtrates, a project was undertaken to clone, express, and sequence the corresponding gene of M. tuberculosis. An M. tuberculosis shuttle cosmid library was transferred in Mycobacterium smegmatis and screened with a competitive enzyme-linked immunosorbent assay to detect the clones expressing the proteins. A clone containing a 40-kb DNA insert was selected, and by means of subcloning in Escherichia coli, a 2-kb fragment that coded for the molecules was identified. An open reading frame in the 2,061-nucleotide sequence codes for a secreted protein with a consensus signal peptide of 39 amino acids and a predicted molecular mass of 28,779 Da. The gene was referred to as apa because of the high percentages of proline (21.7%) and alanine (19%) in the purified protein. Southern hybridization analysis of digested total genomic DNA from M. tuberculosis (reference strains H37Rv and H37Ra) indicated that the apa gene was present as a single copy on the genome. The N-terminal identity or homology of the M. tuberculosis and M. bovis BCG purified molecules and their similar global and deduced amino acid compositions demonstrated the perfect correspondence between the molecular and chemical analyses. The presence of a high percentage of proline (21.7%) was confirmed and explained the apparent higher molecular mass (45/47 kDa) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis resulting from the increased rigidity of molecules due to proline residues.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Identification and expression analysis of a novel R-type lectin from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Kim, Dong Hyun; Patnaik, Bharat Bhusan; Seo, Gi Won; Kang, Seong Min; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2013-11-01

    We have identified novel ricin-type (R-type) lectin by sequencing of random clones from cDNA library of the coleopteran beetle, Tenebrio molitor. The cDNA sequence is comprised of 495 bp encoding a protein of 164 amino acid residues and shows 49% identity with galectin of Tribolium castaneum. Bioinformatics analysis shows that the amino acid residues from 35 to 162 belong to ricin-type beta-trefoil structure. The transcript was significantly upregulated after early hours of injection with peptidoglycans derived from Gram (+) and Gram (-) bacteria, beta-1, 3 glucan from fungi and an intracellular pathogen, Listeria monocytogenes suggesting putative function in innate immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Cloning and expression of Bartonella henselae sucB gene encoding an immunogenic dihydrolipoamide succinyltransferase homologous protein.

    PubMed

    Kabeya, Hidenori; Maruyama, Soichi; Hirano, Kouji; Mikami, Takeshi

    2003-01-01

    Immunoscreening of a ZAP genomic library of Bartonella henselae strain Houston-1 expressed in Escherichia coli resulted in the isolation of a clone containing 3.5 kb BamHI genomic DNA fragment. This 3.5 kb DNA fragment was found to contain a sequence of a gene encoding a protein with significant homology to the dihydrolipoamide succinyltransferase of Brucella melitensis (sucB). Subsequent cloning and DNA sequence analysis revealed that the deduced amino acid sequence from the cloned gene showed 66.5% identity to SucB protein of B. melitensis, and 43.4 and 47.2% identities to those of Coxiella burnetii and E. coli, respectively. The gene was expressed as a His-Nus A-tagged fusion protein. The recombinant SucB protein (rSucB) was shown to be an immunoreactive protein of about 115 kDa by Western blot analysis with sera from B. henselae-immunized mice. Therefore the rSucB may be a candidate antigen for a specific serological diagnosis of B. henselae infection.

  4. Characterization of defensin gene from abalone Haliotis discus hannai and its deduced protein

    NASA Astrophysics Data System (ADS)

    Hong, Xuguang; Sun, Xiuqin; Zheng, Minggang; Qu, Lingyun; Zan, Jindong; Zhang, Jinxing

    2008-11-01

    Defensin is one of preserved ancient host defensive materials formed in biological evolution. As a regulator and effector molecule, it is very important in animals’ acquired immune system. This paper reports the defensin gene from the mixed liver and kidney cDNA library of abalone Haliotis discus hannai Ino. Sequence analysis shows that the gene sequence of full-length cDNA encodes 42 mature peptides (including six Cys), molecular weight of 4 323 Da, and pI of 8.02. Amino acid sequence homology analysis shows that the peptides are highly similar (70% in common) to other insects defensin. Because of a typical insect-defensin structural character of mature peptide in the secondary structure, the polypeptide named Haliotis discus defensin (hd-def), a novel of antimicrobial peptides, belongs to insects defensin subfamily. The RT-PCR result of Haliotis discus defensin shows that the gene can be expressed only in the hepatopancreas by Gram-negative and positive bacteria stimulation, which is ascribed to inducible expression. Therefore, it is revealed that the Haliotis discus defensin gene expression was related to the antibacterial infection of Haliotis discus hannai Ino.

  5. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z.R.

    1988-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that are not expressed in mature tissues -- the embryogenic genes. In order to isolate these genes, we immunized a rabbit with total extracts of somatic embryos of carrot, and enriched the anti-embryo antiserum for antibodies reacting with extracts of carrot somatic embryos. Using this enriched antiserum, we screened a lambda gt11 cDNA library constructed from embryo poly A{sup +} RNA, and isolated 10 cDNA clones that detect embryogenic mRNAs. Monospecific antibodies have beenmore » purified for proteins corresponding to each cDNA sequence. Four cDNA clones were further characterized in terms of the expression of their corresponding mRNA and protein in somatic embryos of carrot. In some cases, comparable gene sequences or products have been detected in somatic and zygotic embryos of other plant species. The characteristics of these 4 cDNA clones -- clone Nos. 8, 59, and 66 -- are described in this report. 3 figs.« less

  6. KP-CoT-23 (CCDC83) is a novel immunogenic cancer/testis antigen in colon cancer.

    PubMed

    Song, Myung-Ha; Ha, Jin-Mok; Shin, Dong-Hoon; Lee, Chang-Hun; Old, Lloyd; Lee, Sang-Yull

    2012-11-01

    Cancer/testis (CT) antigens are considered target molecules for cancer immunotherapy. To identify novel CT antigens, immunoscreening of a testicular cDNA library was performed using serum obtained from a colon cancer patient who was immunized with a new dendritic cell vaccine. We isolated 64 positive cDNA clones comprised of 40 different genes, designated KP-CoT-1 through KP-CoT-40. Three of these putative antigens, including KP-CoT-23 (CCDC83), had testis-specific expression profiles in the Unigene database. RT-PCR analysis showed that the expression of 2 KP-Cot-23 variants was restricted to the testis in normal adult tissues. In addition, KP-CoT-23 variants were frequently expressed in a variety of tumors and cancer cell lines, including colon cancer. A serological western blot assay showed IgG antibodies to the KP-CoT-23 protein in 26 of 37 colon cancer patients and in 4 of 21 healthy patients. These data suggest that KP-CoT-23 is a novel CT antigen that may be useful for the diagnosis and immunotherapy of cancer.

  7. Genome-Wide Profiling of Plutella xylostella Immunity-Related miRNAs after Isaria fumosorosea Infection.

    PubMed

    Xu, Jin; Xu, Xiaoxia; Li, Shuzhong; Wang, Shuang; Xu, Xiaojing; Zhou, Xianqiang; Yu, Jialin; Yu, Xiaoqiang; Shakeel, Muhammad; Jin, Fengliang

    2017-01-01

    The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level.

  8. Genome-Wide Profiling of Plutella xylostella Immunity-Related miRNAs after Isaria fumosorosea Infection

    PubMed Central

    Xu, Jin; Xu, Xiaoxia; Li, Shuzhong; Wang, Shuang; Xu, Xiaojing; Zhou, Xianqiang; Yu, Jialin; Yu, Xiaoqiang; Shakeel, Muhammad; Jin, Fengliang

    2017-01-01

    The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level. PMID:29311981

  9. [Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].

    PubMed

    Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua

    2013-02-01

    To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.

  10. Library Law Handbook: State Laws Relating to Michigan Libraries. 1993 Edition.

    ERIC Educational Resources Information Center

    Michigan Library, Lansing.

    This document is a compilation of state laws relating to Michigan libraries, intended as a tool for library managers and as an expression of continued commitment to strengthening library services throughout the state. It reprints legislation directly related to libraries of all levels, including: library networks; regional libraries: district…

  11. A Novel Malaria Vaccine Candidate Antigen Expressed in Tetrahymena thermophila

    PubMed Central

    Eleni-Muus, Janna; Aldag, Ingo; Samuel, Kay; Creasey, Alison M.; Hartmann, Marcus W. W.; Cavanagh, David R.

    2014-01-01

    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens. PMID:24489871

  12. Pollen Lipidomics: Lipid Profiling Exposes a Notable Diversity in 22 Allergenic Pollen and Potential Biomarkers of the Allergic Immune Response

    PubMed Central

    Bashir, Mohamed Elfatih H.; Lui, Jan Hsi; Palnivelu, Ravishankar; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    Background/Aim Pollen grains are the male gametophytes that deliver sperm cells to female gametophytes during sexual reproduction of higher plants. Pollen is a major source of aeroallergens and environmental antigens. The pollen coat harbors a plethora of lipids that are required for pollen hydration, germination, and penetration of the stigma by pollen tubes. In addition to proteins, pollen displays a wide array of lipids that interact with the human immune system. Prior searches for pollen allergens have focused on the identification of intracellular allergenic proteins, but have largely overlooked much of the extracellular pollen matrix, a region where the majority of lipid molecules reside. Lipid antigens have attracted attention for their potent immunoregulatory effects. By being in close proximity to allergenic proteins on the pollen surface when they interact with host cells, lipids could modify the antigenic properties of proteins. Methodology/Principal Findings We performed a comparative pollen lipid profiling of 22 commonly allergenic plant species by the use of gas chromatography-mass spectroscopy, followed by detailed data mining and statistical analysis. Three experiments compared pollen lipid profiles. We built a database library of the pollen lipids by matching acquired pollen-lipid mass spectra and retention times with the NIST/EPA/NIH mass-spectral library. We detected, identified, and relatively quantified more than 106 lipid molecular species including fatty acids, n-alkanes, fatty alcohols, and sterols. Pollen-derived lipids stimulation up-regulate cytokines expression of dendritic and natural killer T cells co-culture. Conclusions/Significance Here we report on a lipidomic analysis of pollen lipids that can serve as a database for identifying potential lipid antigens and/or novel candidate molecules involved in allergy. The database provides a resource that facilitates studies on the role of lipids in the immunopathogenesis of allergy. Pollen lipids vary greatly among allergenic species and contain many molecules that have stimulatory or regulatory effects on immune responses. PMID:23469025

  13. Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses

    PubMed Central

    ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.

    2009-01-01

    Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605

  14. Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    PubMed Central

    Schwarz, Jodi A; Brokstein, Peter B; Voolstra, Christian; Terry, Astrid Y; Miller, David J; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica

    2008-01-01

    Background Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Results We generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. Conclusion Partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies. PMID:18298846

  15. Coral Life History and Symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    DOE PAGES

    Schwarz, Jodi A.; Brokstein, Peter B.; Voolstra, Christian R.; ...

    2008-02-25

    Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Here we generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembledmore » into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. In conclusion, partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.« less

  16. Coral Life History and Symbiosis: functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Jodi A.; Brokstein, Peter B.; Voolstra, Christian R.

    Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Here we generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembledmore » into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. In conclusion, partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.« less

  17. Molecular cloning and preliminary expression analysis of banded dogfish (Triakis scyllia) TNF decoy receptor 3 (TNFRSF6B).

    PubMed

    Inoue, Yuuki; Morinaga, Akihiro; Takizawa, Fumio; Saito, Tsubasa; Endo, Mariko; Haruta, Chiaki; Nakai, Takeshi; Moritomo, Tadaaki; Nakanishi, Teruyuki

    2008-03-01

    Decoy receptor 3 (DcR3), a member of TNF receptor superfamily, is a soluble receptor without death domain and cytoplasmic domain, and secreted by cells and binds with FasL, LIGHT and TL1A. The principal function of DcR3 is the inhibition of apoptosis by the binding cytotoxic ligands. Expression of DcR3 has been reported in a wide array of normal human tissues as well as tumors and tumor cell lines. Recently, DcR3 was reported to modulate a variety of immune responses in mammals. TNFR or DcR3 has been identified in some teleost fishes. However, DcR3 is not reported in cartilaginous fish which is the lowest vertebrate possessing the adaptive immune system. Here we identified DcR3 cDNA in shark (Trsc-DcR3) from an SSH library prepared from peripheral white blood cells stimulated with PMA. Four cysteine-rich domains (CRDs) in common with TNF receptor family members are present in the Trsc-DcR3 sequence. The deduced amino acid sequence of Trsc-DcR3 showed highest identity with the chicken (50.4%), followed by human (46.8%) and rainbow trout (36.5%) DcR3. In a phylogenetic tree of known TNFRSF sequences, the Trsc-DcR3 grouped with the chicken and human DcR3. Trsc-DcR3 mRNA was detected strongly in the gill, moderately in the brain, and weakly in the kidney, thymus and leydig. These data strongly suggest that the gene encoding Trsc-DcR3 in banded dogfish is a homolog of the human gene. mRNA expression of Trsc-DcR3 in the thymus and leydig suggests that DcR3 may act as a modulator in the immune system even at the phylogenetic level of cartilaginous fish.

  18. [Construction of dengue virus-specific full-length fully human antibody libraries by mammalian display technology].

    PubMed

    Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen

    2013-06-01

    To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).

  19. Construction of human antibody gene libraries and selection of antibodies by phage display.

    PubMed

    Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael

    2014-01-01

    Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.

  20. Molecular and Immunogenic Properties of Apyrase SP01B and D7-Related SP04 Recombinant Salivary Proteins of Phlebotomus perniciosus from Madrid, Spain

    PubMed Central

    Martín-Martín, Inés

    2013-01-01

    Sand fly salivary proteins are on the spotlight to become vaccine candidates against leishmaniasis and to markers of exposure to sand fly bites due to the host immune responses they elicit. Working with the whole salivary homogenate entails serious drawbacks such as the need for maintaining sand fly colonies and the laborious task of glands dissection. In order to overcome these difficulties, producing recombinant proteins of different vectors has become a major task. In this study, a cDNA library was constructed with the salivary glands of Phlebotomus perniciosus from Madrid, Spain, the most widespread vector of Leishmania infantum in the Mediterranean basin. Analysis of the cDNA sequences showed several polymorphisms among the previously described salivary transcripts. The apyrase SP01B and the D7-related protein SP04 were successfully cloned, expressed in Escherichia coli, and purified. Besides, recombinant proteins were recognized by sera of hamsters and mice previously immunized with saliva through the exposure to uninfected sand fly bites. These results suggest that these two recombinant proteins conserved their immunogenic properties after expression in a prokaryote system. Therefore, this work contributes to expand the knowledge of P. perniciosus saliva that would be eventually used for the development of tools for vector control programs. PMID:24171166

  1. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis

    PubMed Central

    Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.

    1999-01-01

    With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933

  2. Developing recombinant antibodies for biomarker detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune librariesmore » provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.« less

  3. Modular Construction of Large Non-Immune Human Antibody Phage-Display Libraries from Variable Heavy and Light Chain Gene Cassettes.

    PubMed

    Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin

    2018-01-01

    Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.

  4. cDNA microarray analyses reveal candidate marker genes for the detection of ascidian disease in Korea.

    PubMed

    Azumi, Kaoru; Usami, Takeshi; Kamimura, Akiko; Sabau, Sorin V; Miki, Yasufumi; Fujie, Manabu; Jung, Sung-Ju; Kitamura, Shin-Ichi; Suzuki, Satoru; Yokosawa, Hideyoshi

    2007-12-01

    A serious disease of the ascidian Halocynthia roretzi has been spread extensively among Korean aquaculture sites. To reveal the cause of the disease and establish a monitoring system for it, we constructed a cDNA microarray spotted with 2,688 cDNAs derived from H. roretzi hemocyte cDNA libraries to detect genes differentially expressed in hemocytes between diseased and non-diseased ascidians. We detected 21 genes showing increased expression and 16 genes showing decreased expression in hemocytes from diseased ascidians compared with those from non-diseased ascidians. RT-PCR analyses confirmed that the expression levels of genes encoding astacin, lysozyme, ribosomal protein PO, and ubiquitin-ribosomal protein L40e fusion protein were increased in hemocytes from diseased ascidians, while those of genes encoding HSP40, HSP70, fibronectin, carboxypeptidase and lactate dehydrogenase were decreased. These genes were expressed not only in hemocytes but also in various other tissues in ascidians. Furthermore, the expression of glutathione-S transferase omega, which is known to be up-regulated in H. roretzi hemocytes during inflammatory responses, was strongly increased in hemocytes from diseased ascidians. These gene expression profiles suggest that immune and inflammatory reactions occur in the hemocytes of diseased ascidians. These genes will be good markers for detecting and monitoring this disease of ascidians in Korean aquaculture sites.

  5. Identification of novel kynurenine production-inhibiting benzenesulfonamide derivatives in cancer cells.

    PubMed

    Nakano, Shintaro; Takai, Kazushige; Isaka, Yoshinobu; Takahashi, Susumu; Unno, Yuka; Ogo, Naohisa; Matsuno, Kenji; Takikawa, Osamu; Asai, Akira

    2012-03-16

    Kynurenine (Kyn), a metabolite of tryptophan (Trp), is known to be a key regulator of human immune responses including cancer immune tolerance. Therefore, abrogation of Kyn production from cancer cells by small molecules may be a promising approach to anticancer therapy. Indeed, several small molecule inhibitors of indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme in the catabolism of Trp to Kyn, exert antitumor effects in animal models. We screened our chemical libraries using a cell-based Kyn production assay to identify a new type of small molecules that regulate Kyn production, and for the first time identified a benzenesulfonamide derivative (compound 1) as a hit with the ability to inhibit Kyn production in interferon-γ (IFN-γ)-stimulated A431 and HeLa cells. Unlike the previously identified S-benzylisothiourea derivative, compound 2, compound 1 had little effect on the enzymatic activity of recombinant human IDO in vitro but suppressed the expression of IDO at the mRNA level in cells. Furthermore, compound 1 suppressed STAT1-dependent transcriptional activity and DNA binding, whereas no decrement in either the expression or phosphorylation level of STAT1 was observed. The inhibition of IDO expression by several benzenesulfonamide derivatives is associated with the suppression of STAT1. Thus, compound 1 and its analogs might be useful for analyzing the regulation of IDO activation, and STAT1-targeting could be an alternative to the IDO-directed approach for the regulation of Kyn levels by small molecules in the tumor microenvironment. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Transcriptome analysis of olive flounder (Paralichthys olivaceus) head kidney infected with moderate and high virulent strains of infectious viral hemorrhagic septicaemia virus (VHSV).

    PubMed

    Hwang, Jee Youn; Markkandan, Kesavan; Kwon, Mun Gyeong; Seo, Jung Soo; Yoo, Seung-Il; Hwang, Seong Don; Son, Maeng-Hyun; Park, Junhyung

    2018-05-01

    Olive flounder (Paralichthys olivaceus) is one of the most valuable marine aquatic species in South Korea and faces tremendous exposure to the viral hemorrhagic septicemia virus (VHSV). Given the growing importance of flounder, it is therefore essential to understand the host defense of P. olivaceus against VHSV infection, but studies on its immune mechanism are hindered by the lack of genomic resources. In this study, the P. olivaceus was infected with disease-causing VHSV isolates, ADC-VHS2012-11 and ADC-VHS2014-5 which showed moderate virulent (20% mortality) and high virulent (65% mortality), in order to investigate the effect of difference in pathogenicity in head kidney during 1, 3, 7 days of post-infection using Illumina sequencing. After removing low-quality sequences, we obtained 144,933,160 high quality reads from thirty-six libraries which were further assembled into 53,384 unigenes with an average length of 563 bp with a range of 200 to 9605 bp. Transcriptome annotation revealed that 30,475 unigenes with a cut-off e-value of 10 -5 were functionally annotated. In total, 10,046 unigenes were clustered into 26 functional categories by searching against the eggNOG database, and 22,233 unigenes to 52 GO terms. In addition, 12,985 unigenes were grouped into 387 KEGG pathways. Among the 13,270 differently expressed genes, 6578 and 6692 were differentially expressed only in moderate and high virulent, respectively. Based on our sequence analysis, many candidate genes with fundamental roles in innate immune system including, pattern recognition receptors (TLRs & RLRs), Mx, complement proteins, lectins, and cytokines (chemokines, IFN, IRF, IL, TRF) were differentially expressed. Furthermore, GO enrichment analysis for these genes revealed gene response to defense response to virus, apoptotic process and transcription factor activity. In summary, this study identifies several putative immune pathways and candidate genes deserving further investigation in the context of novel gene discovery, gene expression and regulation studies and lays the foundation for fish immunology especially in P. olivaceus against VHSV. Copyright © 2018. Published by Elsevier Ltd.

  7. High-level expression of Camelid nanobodies in Nicotiana benthamiana.

    PubMed

    Teh, Yi-Hui Audrey; Kavanagh, Tony A

    2010-08-01

    Nanobodies (or VHHs) are single-domain antigen-binding fragments derived from Camelid heavy chain-only antibodies. Their small size, monomeric behaviour, high stability and solubility, and ability to bind epitopes not accessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. Here we describe high-level expression, in Nicotiana benthamiana, of three versions of an anti-hen egg white lysozyme (HEWL) nanobody which include the original VHH from an immunized library (cAbLys3), a codon-optimized derivative, and a codon-optimized hybrid nanobody comprising the CDRs of cAbLys3 grafted onto an alternative 'universal' nanobody framework. His6- and StrepII-tagged derivatives of each nanobody were targeted for accumulation in the cytoplasm, chloroplast and apoplast using different pre-sequences. When targeted to the apoplast, intact functional nanobodies accumulated at an exceptionally high level (up to 30% total leaf protein), demonstrating the great potential of plants as a nanobody production system.

  8. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins.

    PubMed

    Rosenfeld, M R; Eichen, J G; Wade, D F; Posner, J B; Dalmau, J

    2001-09-01

    Antibodies to Ma1 and Ma2 proteins identify a paraneoplastic disorder that affects the limbic system, brain stem, and cerebellum. Preliminary studies suggested the existence of other Ma proteins and different patterns of immune response associated with distinct neurologic symptoms and cancers. In this study, our aim was to isolate the full-length sequence of Ma2 and new family members, identify the major autoantigen of the disorder, and extend the dinical-immunological analysis to 29 patients. Sera from selected patients were used to probe a brainstem cDNA library and isolate the entire Ma2 gene and a new family member, Ma3. Ma3 mRNA is ubiquitously expressed in brain, testis, and several systemic tissues. The variable cellular expression of Ma proteins and analysis of protein motifs suggest that these proteins play roles in the biogenesis of mRNA. Immunoblot studies identify Ma2 as the major autoantigen with unique epitopes recognized by all patients' sera. Eighteen patients had antibodies limited to Ma2: they developed limbic, hypothalamic, and brainstem encephalitis, and 78% had germ-cell tumors of the testis. Eleven patients had antibodies to Ma2 and additional antibodies to Ma1 and/or Ma3; they usually developed additional cerebellar symptoms and more intense brainstem dysfunction, and 82% of these patients had tumors other than germ-cell neoplasms. Overall, 17 of 24 patients (71%) with brain magnetic resonance imaging studies had abnormalities within or outside the temporal lobes, some as contrast-enhancing nodular lesions. A remarkable finding of immunity to Ma proteins is that neurologic symptoms may improve or resolve. This improvement segregated to a group of patients with antibodies limited to Ma2.

  9. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) hepatopancreas in response to Taura syndrome Virus (TSV) experimental infection.

    PubMed

    Zeng, Digang; Chen, Xiuli; Xie, Daxiang; Zhao, Yongzhen; Yang, Chunling; Li, Yongmei; Ma, Ning; Peng, Min; Yang, Qiong; Liao, Zhenping; Wang, Hui; Chen, Xiaohan

    2013-01-01

    The Pacific white shrimp, Litopenaeus vannamei, is a worldwide cultured crustacean species with important commercial value. Over the last two decades, Taura syndrome virus (TSV) has seriously threatened the shrimp aquaculture industry in the Western Hemisphere. To better understand the interaction between shrimp immune and TSV, we performed a transcriptome analysis in the hepatopancreas of L. vannamei challenged with TSV, using the 454 pyrosequencing (Roche) technology. We obtained 126919 and 102181 high-quality reads from TSV-infected and non-infected (control) L. vannamei cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 15004 unigenes, with an average length of 507 bp. Based on BLASTX search (E-value <10-5) against NR, Swissprot, GO, COG and KEGG databases, 10425 unigenes (69.50% of all unigenes) were annotated with gene descriptions, gene ontology terms, or metabolic pathways. In addition, we identified 770 microsatellites and designed 497 sets of primers. Comparative genomic analysis revealed that 1311 genes differentially expressed in the infected shrimp compared to the controls, including 559 up- and 752 down- regulated genes. Among the differentially expressed genes, several are involved in various animal immune functions, such as antiviral, antimicrobial, proteases, protease inhibitors, signal transduction, transcriptional control, cell death and cell adhesion. This study provides valuable information on shrimp gene activities against TSV infection. Results can contribute to the in-depth study of candidate genes in shrimp immunity, and improves our current understanding of this host-virus interaction. In addition, the large amount of transcripts reported in this study provide a rich source for identification of novel genes in shrimp.

  10. Toward functional genomics in bacteria: Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus

    PubMed Central

    Rondon, Michelle R.; Raffel, Sandra J.; Goodman, Robert M.; Handelsman, Jo

    1999-01-01

    As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes. PMID:10339608

  11. A part toolbox to tune genetic expression in Bacillus subtilis

    PubMed Central

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-01-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  12. Genome-Wide Analysis of Differentially Expressed Genes Relevant to Rhizome Formation in Lotus Root (Nelumbo nucifera Gaertn)

    PubMed Central

    Yin, Jingjing; Li, Liangjun; Chen, Xuehao

    2013-01-01

    Lotus root is a popular wetland vegetable which produces edible rhizome. At the molecular level, the regulation of rhizome formation is very complex, which has not been sufficiently addressed in research. In this study, to identify differentially expressed genes (DEGs) in lotus root, four libraries (L1 library: stolon stage, L2 library: initial swelling stage, L3 library: middle swelling stage, L4: later swelling stage) were constructed from the rhizome development stages. High-throughput tag-sequencing technique was used which is based on Solexa Genome Analyzer Platform. Approximately 5.0 million tags were sequenced, and 4542104, 4474755, 4777919, and 4750348 clean tags including 151282, 137476, 215872, and 166005 distinct tags were obtained after removal of low quality tags from each library respectively. More than 43% distinct tags were unambiguous tags mapping to the reference genes, and 40% were unambiguous tag-mapped genes. From L1, L2, L3, and L4, total 20471, 18785, 23448, and 21778 genes were annotated, after mapping their functions in existing databases. Profiling of gene expression in L1/L2, L2/L3, and L3/L4 libraries were different among most of the selected 20 DEGs. Most of the DEGs in L1/L2 libraries were relevant to fiber development and stress response, while in L2/L3 and L3/L4 libraries, major of the DEGs were involved in metabolism of energy and storage. All up-regulated transcriptional factors in four libraries and 14 important rhizome formation-related genes in four libraries were also identified. In addition, the expression of 9 genes from identified DEGs was performed by qRT-PCR method. In a summary, this study provides a comprehensive understanding of gene expression during the rhizome formation in lotus root. PMID:23840598

  13. Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer.

    PubMed

    Bennett, M W; O'connell, J; O'sullivan, G C; Roche, D; Brady, C; Kelly, J; Collins, J K; Shanahan, F

    1999-02-01

    Despite being immunogenic, gastric cancers overcome antitumour immune responses by mechanisms that have yet to be fully elucidated. Fas ligand (FasL) is a molecule that induces Fas receptor mediated apoptosis of activated immunocytes, thereby mediating normal immune downregulatory roles including immune response termination, tolerance acquisition, and immune privilege. Colon cancer cell lines have previously been shown to express FasL and kill lymphoid cells by Fas mediated apoptosis in vitro. Many diverse tumours have since been found to express FasL suggesting that a "Fas counterattack" against antitumour immune effector cells may contribute to tumour immune escape. To ascertain if human gastric tumours express FasL in vivo, as a potential mediator of immune escape in stomach cancer. Thirty paraffin wax embedded human gastric adenocarcinomas. FasL protein was detected in gastric tumours using immunohistochemistry; FasL mRNA was detected in the tumours using in situ hybridisation. Cell death was detected in situ in tumour infiltrating lymphocytes using terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL). Prevalent expression of FasL was detected in all 30 resected gastric adenocarcinomas examined. In the tumours, FasL protein and mRNA were co-localised to neoplastic gastric epithelial cells, confirming expression by the tumour cells. FasL expression was independent of tumour stage, suggesting that it may be expressed throughout gastric cancer progression. TUNEL staining disclosed a high level of cell death among lymphocytes infiltrating FasL positive areas of tumour. Human gastric adenocarcinomas express the immune downregulatory molecule, FasL. The results suggest that FasL is a prevalent mediator of immune privilege in stomach cancer.

  14. The Human EST Ontology Explorer: a tissue-oriented visualization system for ontologies distribution in human EST collections.

    PubMed

    Merelli, Ivan; Caprera, Andrea; Stella, Alessandra; Del Corvo, Marcello; Milanesi, Luciano; Lazzari, Barbara

    2009-10-15

    The NCBI dbEST currently contains more than eight million human Expressed Sequenced Tags (ESTs). This wide collection represents an important source of information for gene expression studies, provided it can be inspected according to biologically relevant criteria. EST data can be browsed using different dedicated web resources, which allow to investigate library specific gene expression levels and to make comparisons among libraries, highlighting significant differences in gene expression. Nonetheless, no tool is available to examine distributions of quantitative EST collections in Gene Ontology (GO) categories, nor to retrieve information concerning library-dependent EST involvement in metabolic pathways. In this work we present the Human EST Ontology Explorer (HEOE) http://www.itb.cnr.it/ptp/human_est_explorer, a web facility for comparison of expression levels among libraries from several healthy and diseased tissues. The HEOE provides library-dependent statistics on the distribution of sequences in the GO Direct Acyclic Graph (DAG) that can be browsed at each GO hierarchical level. The tool is based on large-scale BLAST annotation of EST sequences. Due to the huge number of input sequences, this BLAST analysis was performed with the aid of grid computing technology, which is particularly suitable to address data parallel task. Relying on the achieved annotation, library-specific distributions of ESTs in the GO Graph were inferred. A pathway-based search interface was also implemented, for a quick evaluation of the representation of libraries in metabolic pathways. EST processing steps were integrated in a semi-automatic procedure that relies on Perl scripts and stores results in a MySQL database. A PHP-based web interface offers the possibility to simultaneously visualize, retrieve and compare data from the different libraries. Statistically significant differences in GO categories among user selected libraries can also be computed. The HEOE provides an alternative and complementary way to inspect EST expression levels with respect to approaches currently offered by other resources. Furthermore, BLAST computation on the whole human EST dataset was a suitable test of grid scalability in the context of large-scale bioinformatics analysis. The HEOE currently comprises sequence analysis from 70 non-normalized libraries, representing a comprehensive overview on healthy and unhealthy tissues. As the analysis procedure can be easily applied to other libraries, the number of represented tissues is intended to increase.

  15. Combining yeast display and competitive FACS to select rare hapten-specific clones from recombinant antibody libraries

    DOE PAGES

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew; ...

    2016-08-29

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10 6 ) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used firstmore » to enrich the library between 20- and 100- fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. Furthermore, this selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.« less

  16. Combining yeast display and competitive FACS to select rare hapten-specific clones from recombinant antibody libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Ban, Bhupal; Bradbury, Andrew

    The development of antibodies to low molecular weight haptens remains challenging due to both the low immunogenicity of many haptens and the cross-reactivity of the protein carriers used to generate the immune response. Recombinant antibodies and novel display technologies have greatly advanced antibody development; however, new techniques are still required to select rare hapten-specific antibodies from large recombinant libraries. In the present study, we used a combination of phage and yeast display to screen an immune antibody library (size, 4.4 × 10 6 ) against hapten markers for petroleum contamination (phenanthrene and methylphenanthrenes). Selection via phage display was used firstmore » to enrich the library between 20- and 100- fold for clones that bound to phenanthrene-protein conjugates. The enriched libraries were subsequently transferred to a yeast display system and a newly developed competitive FACS procedure was employed to select rare hapten-specific clones. Competitive FACS increased the frequency of hapten-specific scFvs in our yeast-displayed scFvs from 0.025 to 0.005% in the original library to between 13 and 35% in selected pools. The presence of hapten-specific scFvs was confirmed by competitive ELISA using periplasmic protein. Three distinct antibody clones that recognize phenanthrene and methylphenanthrenes were selected, and their distinctive binding properties were characterized. To our knowledge, these are first antibodies that can distinguish between methylated (petrogenic) versus unmethylated (pyrogenic) phenanthrenes; such antibodies will be useful in detecting the sources of environmental contamination. Furthermore, this selection method could be generally adopted in the selection of other hapten-specific recombinant antibodies.« less

  17. Development of VHH antibodies against dengue virus type 2 NS1 and comparison with monoclonal antibodies for use in immunological diagnosis.

    PubMed

    Fatima, Aneela; Wang, Haiying; Kang, Keren; Xia, Liliang; Wang, Ying; Ye, Wei; Wang, Jufang; Wang, Xiaoning

    2014-01-01

    The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection.

  18. Development of VHH Antibodies against Dengue Virus Type 2 NS1 and Comparison with Monoclonal Antibodies for Use in Immunological Diagnosis

    PubMed Central

    Fatima, Aneela; Wang, Haiying; Kang, Keren; Xia, Liliang; Wang, Ying; Ye, Wei; Wang, Jufang; Wang, Xiaoning

    2014-01-01

    The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection. PMID:24751715

  19. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.

    PubMed

    Gardyan, Adriane; Osen, Wolfram; Zörnig, Inka; Podola, Lilli; Agarwal, Maria; Aulmann, Sebastian; Ruggiero, Eliana; Schmidt, Manfred; Halama, Niels; Leuchs, Barbara; von Kalle, Christof; Beckhove, Philipp; Schneeweiss, Andreas; Jäger, Dirk; Eichmüller, Stefan B

    2015-06-01

    Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 UICC.

  20. A Novel Sphingomyelinase-Like Enzyme in Ixodes scapularis Tick Saliva Drives Host CD4+ T cells to Express IL-4

    PubMed Central

    Alarcon-Chaidez, F. J.; Boppana, V. D.; Hagymasi, A.T.; Adler, A. J.; Wikel, S. K.

    2009-01-01

    Tick feeding modulates host immune responses. Tick-induced skewing of host CD4+ T cells towards a Th2 cytokine profile facilitates transmission of tick-borne pathogens that would otherwise be neutralized by Th1 cytokines. Tick-derived factors that drive this Th2 response have not previously been characterized. In the current study, we examined an I. scapularis cDNA library prepared at 18-24 hours of feeding and identified and expressed a tick gene with homology to Loxosceles spider venom proteins with sphingomyelinase activity. This I. scapularis sphingomyelinase-like (IsSMase) protein is a Mg+2-dependent, neutral (pH 7.4) form of sphingomyelinase. Significantly, in an in vivo TCR transgenic adoptive transfer assay IsSMase programmed host CD4+ T cells to express the hallmark Th2 effector cytokine IL-4. IsSMase appears to directly program host CD4 T cell IL-4 expression (as opposed to its metabolic by-products) because induced IL-4 expression was not altered when enzymatic activity was neutralized. TCR transgenic CD4 T cell proliferation (CFSE-dilution) was also significantly increased by IsSMase. Furthermore, a Th2 response is superimposed onto a virally-primed Th1 response by IsSMase. Thus, IsSMase is the first identified tick molecule capable of programming host CD4+ T cells to express IL-4. PMID:19292772

  1. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.

    PubMed

    Woestmann, L; Kvist, J; Saastamoinen, M

    2017-03-01

    Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats. © 2016 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on behalf of European Society for Evolutionary Biology.

  2. Genomic characterization and expression profiles upon bacterial infection of a novel cystatin B homologue from disk abalone (Haliotis discus discus).

    PubMed

    Premachandra, H K A; Wan, Qiang; Elvitigala, Don Anushka Sandaruwan; De Zoysa, Mahanama; Choi, Cheol Young; Whang, Ilson; Lee, Jehee

    2012-12-01

    Cystatins are a large family of cysteine proteinase inhibitors which are involved in diverse biological and pathological processes. In the present study, we identified a gene related to cystatin superfamily, AbCyt B, from disk abalone Haliotis discus discus by expressed sequence tag (EST) analysis and BAC library screening. The complete cDNA sequence of AbCyt B is comprised of 1967 nucleotides with a 306 bp open reading frame (ORF) encoding for 101 amino acids. The amino acid sequence consists of a single cystatin-like domain, which has a cysteine proteinase inhibitor signature, a conserved Gly in N-terminal region, QVVAG motif and a variant of PW motif. No signal peptide, disulfide bonds or carbohydrate side chains were identified. Analysis of deduced amino acid sequence revealed that AbCyt B shares up to 44.7% identity and 65.7% similarity with the cystatin B genes from other organisms. The genomic sequence of AbCyt B is approximately 8.4 Kb, consisting of three exons and two introns. Phylogenetic tree analysis showed that AbCyt B was closely related to the cystatin B from pacific oyster (Crassostrea gigas) under the family 1.Functional analysis of recombinant AbCyt B protein exhibited inhibitory activity against the papain, with almost 84% inhibition at a concentration of 3.5 μmol/L. In tissue expression analysis, AbCyt B transcripts were expressed abundantly in the hemocyte, gill, mantle, and digestive tract, while weakly in muscle, testis, and hepatopancreas. After the immune challenge with Vibrio parahemolyticus, the AbCyt B showed significant (P<0.05) up-regulation of relative mRNA expression in gill and hemocytes at 24 and 6 h of post infection, respectively. These results collectively suggest that AbCyst B is a potent inhibitor of cysteine proteinases and is also potentially involved in immune responses against invading bacterial pathogens in abalone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Compositional Bias in Naïve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing.

    PubMed

    He, Bifang; Tjhung, Katrina F; Bennett, Nicholas J; Chou, Ying; Rau, Andrea; Huang, Jian; Derda, Ratmir

    2018-01-19

    Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.

  4. Sorghum Expressed Sequence Tags Identify Signature Genes for Drought, Pathogenesis, and Skotomorphogenesis from a Milestone Set of 16,801 Unique Transcripts1[w

    PubMed Central

    Pratt, Lee H.; Liang, Chun; Shah, Manish; Sun, Feng; Wang, Haiming; Reid, St. Patrick; Gingle, Alan R.; Paterson, Andrew H.; Wing, Rod; Dean, Ralph; Klein, Robert; Nguyen, Henry T.; Ma, Hong-mei; Zhao, Xin; Morishige, Daryl T.; Mullet, John E.; Cordonnier-Pratt, Marie-Michèle

    2005-01-01

    Improved knowledge of the sorghum transcriptome will enhance basic understanding of how plants respond to stresses and serve as a source of genes of value to agriculture. Toward this goal, Sorghum bicolor L. Moench cDNA libraries were prepared from light- and dark-grown seedlings, drought-stressed plants, Colletotrichum-infected seedlings and plants, ovaries, embryos, and immature panicles. Other libraries were prepared with meristems from Sorghum propinquum (Kunth) Hitchc. that had been photoperiodically induced to flower, and with rhizomes from S. propinquum and johnsongrass (Sorghum halepense L. Pers.). A total of 117,682 expressed sequence tags (ESTs) were obtained representing both 3′ and 5′ sequences from about half that number of cDNA clones. A total of 16,801 unique transcripts, representing tentative UniScripts (TUs), were identified from 55,783 3′ ESTs. Of these TUs, 9,032 are represented by two or more ESTs. Collectively, these libraries were predicted to contain a total of approximately 31,000 TUs. Individual libraries, however, were predicted to contain no more than about 6,000 to 9,000, with the exception of light-grown seedlings, which yielded an estimate of close to 13,000. In addition, each library exhibits about the same level of complexity with respect to both the number of TUs preferentially expressed in that library and the frequency with which two or more ESTs is found in only that library. These results indicate that the sorghum genome is expressed in highly selective fashion in the individual organs and in response to the environmental conditions surveyed here. Close to 2,000 differentially expressed TUs were identified among the cDNA libraries examined, of which 775 were differentially expressed at a confidence level of 98%. From these 775 TUs, signature genes were identified defining drought, Colletotrichum infection, skotomorphogenesis (etiolation), ovary, immature panicle, and embryo. PMID:16169961

  5. Functional Categorization of Transcriptome in the Species Symphysodon aequifasciatus Pellegrin 1904 (Perciformes: Cichlidae) Exposed to Benzo[a]pyrene and Phenanthrene

    PubMed Central

    Lemgruber, Renato de Souza Pinto; Marshall, Nislanha Ana dos Anjos; Ghelfi, Andrea; Fagundes, Daniel Barros; Val, Adalberto Luis

    2013-01-01

    This study aims to evaluate the transcriptome alterations, through cDNA libraries, associated with the combined effects of two PAHs, benzo[a]pyrene (0.5 µg/L) and phenanthrene (50 µg/L), present in crude oil, on specimens of Symphysodon aequifasciatus (discus fish) after 48 h of exposure. The cDNA libraries were constructed according to the SOLiD™ SAGE™ protocol for sequencing in the SOLiD v.3 Plus sequencer. The results were analyzed by bioinformatics and differentially expressed genes were categorized using the gene ontology program. The functional categories (terms) found in the gene ontology and the gene network generated using STRING software were used to predict the adverse effects of benzo[a]pyrene and phenanthrene in the liver. In the present study, 27,127 genes (compared to Danio rerio database) were identified. Considering only those genes with a p-value less than or equal to 0.05 and greater than or equal to two-fold change in expression across libraries, we found 804 genes, 438 down-regulated (54%) and 366 up-regulated (46%), in the experimental group compared to the control. Out of this total, 327 genes were successfully categorized, 174 down-regulated and 153 up-regulated, using gene ontology. Using String, the gene network was composed by 199 nodes, 124 of them resulting in 274 interactions. The results showed that even an acute exposure of 48 h caused metabolic change in response to environmental contaminants, resulting in changes of cell integrity, in oxidation-reduction processes, in the immune response and disturbances of intracellular signaling of discus fish. Also the gene network has showed no central interplay cluster, exhibiting instead interconnected clusters interactions and connected sub-networks. These findings highlight that even an acute sublethal exposure of PAHs can cause metabolism changes that may affect survival of discus. Our findings using SOLiD coupled with SAGE-method resulted in a powerful and reliable means for gene expression analysis in discus, a non-model Amazonian fish. PMID:24312524

  6. Immunological thresholds in neurological gene therapy: highly efficient elimination of transduced cells might be related to the specific formation of immunological synapses between T cells and virus-infected brain cells

    PubMed Central

    Barcia, Carlos; Gerdes, Christian; Xiong, Wei-Dong; Thomas, Clare E.; Liu, Chunyan; Kroeger, Kurt M.; Castro, Maria G.; Lowenstein, Pedro R.

    2007-01-01

    First-generation adenovirus can be engineered with powerful promoters to drive expression of therapeutic transgenes. Numerous clinical trials for glioblastoma multiforme using first generation adenoviral vectors have either been performed or are ongoing, including an ongoing, Phase III, multicenter trial in Europe and Israel (Ark Therapeutics, Inc.). Although in the absence of anti-adenovirus immune responses expression in the brain lasts 6–18 months, systemic infection with adenovirus induces immune responses that inhibit dramatically therapeutic transgene expression from first generation adenoviral vectors, thus, potentially compromising therapeutic efficacy. Here, we show evidence of an immunization threshold for the dose that generates an immune response strong enough to eliminate transgene expression from the CNS. For the systemic immunization to eliminate transgene expression from the brain, ≥1 × 107 infectious units (iu) of adenovirus need to be used as immunogen. Furthermore, this immune response eliminates >90% of transgene expression from 1 × 107–1 × 10³ iu of vector injected into the striatum 60 days earlier. Importantly, elimination of transgene expression is independent of the nature of the promoter that drives transgene expression and is accompanied by brain infiltration of CD8+ T cells and macrophages. In conclusion, once the threshold for systemic immunization (i.e. 1 × 107 iu) is crossed, the immune response eliminates transgene expression by >90% even from brains that receive as little as 1000 iu of adenoviral vectors, independently of the type of promoter that drives expression. PMID:18084640

  7. Library Systems: Current Developments and Future Directions.

    ERIC Educational Resources Information Center

    Healy, Leigh Watson

    This report was commissioned in response to concerns expressed about the gap between institutional digital library initiatives and the products offered by library systems vendors. The study analyzes from the perspective of libraries the strategies, visions, and products that vendors of integrated library systems are offering as solutions. Case…

  8. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    PubMed Central

    2013-01-01

    Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. Conclusions The two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer. PMID:23374247

  9. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags

    PubMed Central

    Gorodkin, Jan; Cirera, Susanna; Hedegaard, Jakob; Gilchrist, Michael J; Panitz, Frank; Jørgensen, Claus; Scheibye-Knudsen, Karsten; Arvin, Troels; Lumholdt, Steen; Sawera, Milena; Green, Trine; Nielsen, Bente J; Havgaard, Jakob H; Rosenkilde, Carina; Wang, Jun; Li, Heng; Li, Ruiqiang; Liu, Bin; Hu, Songnian; Dong, Wei; Li, Wei; Yu, Jun; Wang, Jian; Stærfeldt, Hans-Henrik; Wernersson, Rasmus; Madsen, Lone B; Thomsen, Bo; Hornshøj, Henrik; Bujie, Zhan; Wang, Xuegang; Wang, Xuefei; Bolund, Lars; Brunak, Søren; Yang, Huanming; Bendixen, Christian; Fredholm, Merete

    2007-01-01

    Background Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages. Results Using the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which approximately 25% have a high confidence match to UniProt. Approximately 6,000 new porcine gene clusters were identified. Expression analysis based on the non-normalized libraries resulted in the following findings. The distribution of cluster sizes is scaling invariant. Brain and testes are among the tissues with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential expression of genes between different tissues, in particular brain/spinal cord, and found patterns of correlation between genes that share expression in pairs of libraries. Finally, there was remarkable agreement in expression between specialized tissues according to Gene Ontology categories. Conclusion This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies. PMID:17407547

  10. Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein-142 (MSP-142) using synthetic peptide library and phage display library.

    PubMed

    Cheong, Fei Wen; Fong, Mun Yik; Lau, Yee Ling

    2016-02-01

    Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Epirubicin, Identified Using a Novel Luciferase Reporter Assay for Foxp3 Inhibitors, Inhibits Regulatory T Cell Activity.

    PubMed

    Kashima, Hajime; Momose, Fumiyasu; Umehara, Hiroshi; Miyoshi, Nao; Ogo, Naohisa; Muraoka, Daisuke; Shiku, Hiroshi; Harada, Naozumi; Asai, Akira

    2016-01-01

    Forkhead box protein p3 (Foxp3) is crucial to the development and suppressor function of regulatory T cells (Tregs) that have a significant role in tumor-associated immune suppression. Development of small molecule inhibitors of Foxp3 function is therefore considered a promising strategy to enhance anti-tumor immunity. In this study, we developed a novel cell-based assay system in which the NF-κB luciferase reporter signal is suppressed by the co-expressed Foxp3 protein. Using this system, we screened our chemical library consisting of approximately 2,100 compounds and discovered that a cancer chemotherapeutic drug epirubicin restored the Foxp3-inhibited NF-κB activity in a concentration-dependent manner without influencing cell viability. Using immunoprecipitation assay in a Treg-like cell line Karpas-299, we found that epirubicin inhibited the interaction between Foxp3 and p65. In addition, epirubicin inhibited the suppressor function of murine Tregs and thereby improved effector T cell stimulation in vitro. Administration of low dose epirubicin into tumor-bearing mice modulated the function of immune cells at the tumor site and promoted their IFN-γ production without direct cytotoxicity. In summary, we identified the novel action of epirubicin as a Foxp3 inhibitor using a newly established luciferase-based cellular screen. Our work also demonstrated our screen system is useful in accelerating discovery of Foxp3 inhibitors.

  12. Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals.

    PubMed

    Fuess, Lauren E; Pinzόn C, Jorge H; Weil, Ernesto; Mydlarz, Laura D

    2016-09-01

    Disease outbreaks in marine ecosystems have driven worldwide declines of numerous taxa, including corals. Some corals, such as Orbicella faveolata, are particularly susceptible to disease. To explore the mechanisms contributing to susceptibility, colonies of O. faveolata were exposed to immune challenge with lipopolysaccharides. RNA sequencing and protein activity assays were used to characterize the response of corals to immune challenge. Differential expression analyses identified 17 immune-related transcripts that varied in expression post-immune challenge. Network analyses revealed several groups of transcripts correlated to immune protein activity. Several transcripts, which were annotated as positive regulators of immunity were included in these groups, and some were downregulated following immune challenge. Correlations between expression of these transcripts and protein activity results further supported the role of these transcripts in positive regulation of immunity. The observed pattern of gene expression and protein activity may elucidate the processes contributing to the disease susceptibility of species like O. faveolata. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage-display

    PubMed Central

    Pershad, Kritika; Wypisniak, Karolina; Kay, Brian K.

    2012-01-01

    While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious and time consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13, the N-terminal Forkhead-associated domain (FHA1) of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be non-functional due to misfolding in the bacterial periplasm. To overcome this limitation, a library of FHA1 variants was constructed by mutagenic PCR and functional variants were isolated after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1-strand was discovered to be essential for phage-display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermal stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20–25 mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage-display. PMID:22985966

  14. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage display.

    PubMed

    Pershad, Kritika; Wypisniak, Karolina; Kay, Brian K

    2012-11-23

    While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Tonsillitis: MedlinePlus Health Topic

    MedlinePlus

    ... Library of Medicine) Article: The debate continues: a prospective, randomised, single-blind study comparing Coblation... Article: Overnight in-hospital observation following tonsillectomy: retrospective study of post-operative intervention. Article: Immune thrombocytopenia ...

  16. Signatures from Tissue-specific MPSS Libraries Identify Transcripts Preferentially Expressed in the Mouse Inner Ear

    PubMed Central

    Peters, Linda M.; Belyantseva, Inna A.; Lagziel, Ayala; Battey, James F.; Friedman, Thomas B.; Morell, Robert J.

    2007-01-01

    Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome. PMID:17049805

  17. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni

    PubMed Central

    Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S

    2008-01-01

    Background Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. Results We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1α and EF-2. Conclusion Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination. PMID:19114004

  18. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni.

    PubMed

    Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S

    2008-12-29

    Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1alpha and EF-2. Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination.

  19. FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression.

    PubMed

    Chen, Lingling; Qiu, Xiangting; Wang, Xinhua; He, Jian

    2017-05-20

    Immune checkpoint blockades that significantly prolonged survival of melanoma patients have been less effective on colorectal cancer (CRC) patients. Growing evidence suggested that fibroblast activation protein-alpha (FAP) on cancer associate fibroblasts (CAFs) has critical roles in regulating antitumor immune response by inducing tumor-promoting inflammation. In this study, we explored the roles of FAP in regulating the tumor immunity and immune checkpoint blockades resistance in CRC experimental systems. We found that CAFs with high FAP expression could induce immune checkpoint blockade resistance in CRC mouse model. Mechanistically, CAFs with high FAP expression promoted immunosuppression in the CRC tumor immune microenvironment by up-regulating CCL2 secretion, recruiting myeloid cells, and decreasing T-cell activity. In human CRC samples, FAP expression was proportional to myeloid cells number, but inversely related to T-cell number. High FAP expression also predicted poor survival of CRC patients. Taken together, our study suggested that high FAP expression in CAFs is one reason leading to immune checkpoint blockades resistance in CRC patients and FAP is an optional target for reversing immune checkpoint blockades resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus

    PubMed Central

    Brinkmann, Ulrich; Vasmatzis, George; Lee, Byungkook; Yerushalmi, Noga; Essand, Magnus; Pastan, Ira

    1998-01-01

    We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus. PMID:9724777

  1. PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus.

    PubMed

    Brinkmann, U; Vasmatzis, G; Lee, B; Yerushalmi, N; Essand, M; Pastan, I

    1998-09-01

    We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus.

  2. Enlarged leukocyte referent libraries can explain additional variance in blood-based epigenome-wide association studies.

    PubMed

    Kim, Stephanie; Eliot, Melissa; Koestler, Devin C; Houseman, Eugene A; Wetmur, James G; Wiencke, John K; Kelsey, Karl T

    2016-09-01

    We examined whether variation in blood-based epigenome-wide association studies could be more completely explained by augmenting existing reference DNA methylation libraries. We compared existing and enhanced libraries in predicting variability in three publicly available 450K methylation datasets that collected whole-blood samples. Models were fit separately to each CpG site and used to estimate the additional variability when adjustments for cell composition were made with each library. Calculation of the mean difference in the CpG-specific residual sums of squares error between models for an arthritis, aging and metabolic syndrome dataset, indicated that an enhanced library explained significantly more variation across all three datasets (p < 10(-3)). Pathologically important immune cell subtypes can explain important variability in epigenome-wide association studies done in blood.

  3. Identification of differentially expressed genes in the oviduct of two rabbit lines divergently selected for uterine capacity using suppression subtractive hybridization.

    PubMed

    Ballester, M; Castelló, A; Peiró, R; Argente, M J; Santacreu, M A; Folch, J M

    2013-06-01

    Suppressive subtractive hybridization libraries from oviduct at 62 h post-mating of two lines of rabbits divergently selected for uterine capacity were generated to identify differentially expressed genes. A total of 438 singletons and 126 contigs were obtained by cluster assembly and sequence alignment of 704 expressed sequence tags (ESTs), of which 54% showed homology to known proteins of the non-redundant NCBI databases. Differential screening by dot blot validated 71 ESTs, of which 47 showed similarity to known genes. Transcripts of genes were functionally annotated in the molecular function and the biological process gene ontology categories using the BLAST2GO software and were assigned to reproductive developmental process, immune response, amino acid metabolism and degradation, response to stress and apoptosis terms. Finally, three interesting genes, PGR, HSD17B4 and ERO1L, were identified as overexpressed in the low line using RT-qPCR. Our study provides a list of candidate genes that can be useful to understanding the molecular mechanisms underlying the phenotypic differences observed in early embryo survival and development traits. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  4. Identification and Characterization of Pathogen-Response Genes (repat) in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    PubMed

    Machado, Vilmar; Serrano, Jose; Galián, Jose

    2016-01-01

    The fall armyworm (Spodoptera frugiperda, Noctuidae, Lepidoptera) is one of the most important crop pests in the Americas, causing significant damage to maize, rice and sorghum. The mechanisms that determine its defences against pathogens are particularly relevant for the development of management and control strategies. We used an in silico approach to identify and characterize pathogen response genes (repat) present in different tissue libraries of S. fugiperda. The analyses revealed complete cDNA for nine repat genes; of these, repat15 and repat39 were found in libraries from a specific tissue--the midgut of larvae fed with xenobiotic substances. High expression levels of some genes were found in different libraries: 39 hits in repat30 in challenged hemocytes, 16 hits in repat31 in fat body, 10 hits in repat32 in fat body and 10 in challenged hemocytes, and 10 hits in repat38 in midgut of non-treated larvae and midgut of larvae fed with natural and xenobiotic substances. The genes corresponded to two ontology categories, stress response and immune response, and their phylogenetic relationships, nucleotide similarity, number of amino acid residues and molecular weights agree with what has been described for repat genes. It is noteworthy that proteins encoded by the repat genes of S. frugiperda have important defence functions in other tissues beyond midgut and that their functional categories are likely diverse, as they are related to cell envelope structure, energy metabolism, transport and binding.

  5. Selection and identification of single-domain antibody fragment against capsid protein of porcine circovirus type 2 (PCV2) from C. bactrianus.

    PubMed

    Yang, Shunli; Shang, Youjun; Yin, Shuanghui; Tian, Hong; Chen, Yan; Sun, Shiqi; Jin, Ye; Liu, Xiangtao

    2014-07-15

    Single-domain variable heavy chain (VHH) antibody fragments are derived from heavy-chain antibodies of Camelids. Their comparatively small size, solubility, high affinity and specificity to the targets antigen make them suitable for many biotechnological applications. In this study, a VHH library was constructed from porcine circovirus type 2 (PCV2) vaccine immunized C. bactrianus and three VHH fragments specific to the capsid protein of PCV2 (PCV2 Cap) were selected and characterized. The selected VHH clones (VHH-c1/c3/c4) were stably expressed as soluble protein in E. coli, and were specific to PCV2 Cap except VHH-c3 which shows binding activity with both PCV1 and PCV2 Cap by ELISA. All the VHH-cs show high association rate constant and dissociation rate constant, which was 1.84 × 10(5)M(-1)s(-1), 9.00 × 10(-3)s(-1) for VHH-c1, 5.49 × 10(4)M(-1)s(-1), 9.91 × 10(-3)s(-1) and 1.46 × 10(5)M(-1)s(-1), 1.18 × 10(-3)s(-1) for VHH-c3 and VHH-c4 assessed by surface plasmon resonance (SPR). Additionally, the selected three VHH-cs can bind to different epitopes of PCV2 Cap that was determined by additive ELISA. Our study confirmed that VHHs with high affinity and specificity to PCV2 Cap can be selected from an immune VHH library, and have the potential application for effective and fast diagnostic development of PCV2. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Isolation of a high-affinity Bet v 1-specific IgG-derived ScFv from a subject vaccinated with hypoallergenic Bet v 1 fragments.

    PubMed

    Gadermaier, E; Marth, K; Lupinek, C; Campana, R; Hofer, G; Blatt, K; Smiljkovic, D; Roder, U; Focke-Tejkl, M; Vrtala, S; Keller, W; Valent, P; Valenta, R; Flicker, S

    2018-01-09

    Recombinant hypoallergenic allergen derivatives have been used in clinical immunotherapy studies, and clinical efficacy seems to be related to the induction of blocking IgG antibodies recognizing the wild-type allergens. However, so far no treatment-induced IgG antibodies have been characterized. To clone, express, and characterize IgG antibodies induced by vaccination with two hypoallergenic recombinant fragments of the major birch pollen allergen, Bet v 1 in a nonallergic subject. A phage-displayed combinatorial single-chain fragment (ScFv) library was constructed from blood of the immunized subject and screened for Bet v 1-reactive antibody fragments. ScFvs were tested for specificity and cross-reactivity to native Bet v 1 and related pollen and food allergens, and epitope mapping was performed. Germline ancestor genes of the antibody were analyzed with the ImMunoGeneTics (IMGT) database. The affinity to Bet v 1 and cross-reactive allergens was determined by surface plasmon resonance measurements. The ability to inhibit patients' IgE binding to ELISA plate-bound allergens and allergen-induced basophil activation was assessed. A combinatorial ScFv library was obtained from the vaccinated donor after three injections with the Bet v 1 fragments. Despite being almost in germline configuration, ScFv (clone H3-1) reacted with high affinity to native Bet v 1 and homologous allergens, inhibited allergic patients' polyclonal IgE binding to Bet v 1, and partially suppressed allergen-induced basophil activation. Immunization with unfolded hypoallergenic allergen derivatives induces high-affinity antibodies even in nonallergic subjects which recognize the folded wild-type allergens and inhibit polyclonal IgE binding of allergic patients. © 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.

  7. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    PubMed

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes.

    PubMed

    Trauer-Kizilelma, Ute; Hilker, Monika

    2015-09-01

    Insect parents that experienced an immune challenge are known to prepare (prime) the immune activity of their offspring for improved defence. This phenomenon has intensively been studied by analysing especially immunity-related proteins. However, it is unknown how transgenerational immune priming affects transcript levels of immune-relevant genes of the offspring upon an actual threat. Here, we investigated how an immune challenge of Manduca sexta parents affects the expression of immune-related genes in their eggs that are attacked by parasitoids. Furthermore, we addressed the question whether the transgenerational immune priming of expression of genes in the eggs is still traceable in adult offspring. Our study revealed that a parental immune challenge did not affect the expression of immune-related genes in unparasitised eggs. However, immune-related genes in parasitised eggs of immune-challenged parents were upregulated to a higher level than those in parasitised eggs of unchallenged parents. Hence, this transgenerational immune priming of the eggs was detected only "on demand", i.e. upon parasitoid attack. The priming effects were also traceable in adult female progeny of immune-challenged parents which showed higher transcript levels of several immune-related genes in their ovaries than non-primed progeny. Some of the primed genes showed enhanced expression even when the progeny was left unchallenged, whereas other genes were upregulated to a greater extent in primed female progeny than non-primed ones only when the progeny itself was immune-challenged. Thus, the detection of transgenerational immune priming strongly depends on the analysed genes and the presence or absence of an actual threat for the offspring. We suggest that M. sexta eggs laid by immune-challenged parents "afford" to upregulate the transcription of immunity-related genes only upon attack, because they have the chance to be endowed by parentally directly transferred protective proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Patron Behavior Policies in the Public Library: "Kreimer v. Morristown" Revisited.

    ERIC Educational Resources Information Center

    Geiszler, Robert W.

    1998-01-01

    The case of an indigent library patron recovering a judgment against a public library is used as a backdrop for discussing patron behavior policies in the public library. Highlights include First Amendment rights, the public library as an expressive forum, government rules, policy lessons from the case, and acceptable policies. (AEF)

  10. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus

    PubMed Central

    Kobayashi, Kazuya; Matsuura, Kenji

    2017-01-01

    Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial strategies in eusocial insects, and of sexual roles in insect societies as a whole. PMID:28410430

  11. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus.

    PubMed

    Mitaka, Yuki; Kobayashi, Kazuya; Matsuura, Kenji

    2017-01-01

    Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial strategies in eusocial insects, and of sexual roles in insect societies as a whole.

  12. Comparison of two serpins of Clonorchis sinensis by bioinformatics, expression, and localization in metacercaria

    PubMed Central

    Yang, Yabo; Hu, Dong; Wang, Lexun; Liang, Chi; Hu, Xuchu; Xu, Jin; Huang, Yan; Yu, Xinbing

    2014-01-01

    Clonorchiasis, which has been an important public health problem in China, is caused by ingestion of raw or undercooked fish contaminated by live metacercaria. Therefore, preventing fish from infecting is of great significance for controlling the disease. SERPINs (serine protease inhibitors) are well known as negative regulators of hemostasis, thrombolysis, and innate immune responses. In the present study, two full-length sequences encoding SERPIN were identified from metacercaria cDNA library of Clonorchis sinensis (C. sinensis) and were denominated as CsSERPIN and CsSERPIN3, respectively. Bioinformatics analysis showed that the two sequences shares 35.9% identity to each other. Both of the sequences have SERPIN domain and the greatest difference between the two domains is the reactive centre loop. Transmembrane region was found in CsSERPIN3 while not in CsSERPIN. The expression of the two CsSERPINs was significantly higher at the life stage of metacercaria than that of adult. The transcription levels of CsSERPIN and CsSERPIN3 at metacercaria stage were 3.249- and 11.314-fold of that at adult stage, respectively. Furthermore, the expression of CsSERPIN was 4.32-fold of that of CsSERPIN3 at metacercaria stage. Immunobiochemistry revealed that CsERPIN was dispersed at subtegument and oral sucker of metacercaria, while CsSERPIN3 localized intensely in the tegument of metacercaria of C. sinensis inside of the cyst wall. All these indicated that the CsSERPINs play important roles at metacercaria stage of the parasite. CsSERPIN may take part in regulation of endogenous serine proteinase and CsSERPIN3 may be involved in immune evasion and be a potential candidate for vaccine and drug target for clonorchiasis. PMID:24831344

  13. Comparison of two serpins of Clonorchis sinensis by bioinformatics, expression, and localization in metacercaria.

    PubMed

    Yang, Yabo; Hu, Dong; Wang, Lexun; Liang, Chi; Hu, Xuchu; Xu, Jin; Huang, Yan; Yu, Xinbing

    2014-06-01

    Clonorchiasis, which has been an important public health problem in China, is caused by ingestion of raw or undercooked fish contaminated by live metacercaria. Therefore, preventing fish from infecting is of great significance for controlling the disease. SERPINs (serine protease inhibitors) are well known as negative regulators of hemostasis, thrombolysis, and innate immune responses. In the present study, two full-length sequences encoding SERPIN were identified from metacercaria cDNA library of Clonorchis sinensis (C. sinensis) and were denominated as CsSERPIN and CsSERPIN3, respectively. Bioinformatics analysis showed that the two sequences shares 35.9% identity to each other. Both of the sequences have SERPIN domain and the greatest difference between the two domains is the reactive centre loop. Transmembrane region was found in CsSERPIN3 while not in CsSERPIN. The expression of the two CsSERPINs was significantly higher at the life stage of metacercaria than that of adult. The transcription levels of CsSERPIN and CsSERPIN3 at metacercaria stage were 3.249- and 11.314-fold of that at adult stage, respectively. Furthermore, the expression of CsSERPIN was 4.32-fold of that of CsSERPIN3 at metacercaria stage. Immunobiochemistry revealed that CsERPIN was dispersed at subtegument and oral sucker of metacercaria, while CsSERPIN3 localized intensely in the tegument of metacercaria of C. sinensis inside of the cyst wall. All these indicated that the CsSERPINs play important roles at metacercaria stage of the parasite. CsSERPIN may take part in regulation of endogenous serine proteinase and CsSERPIN3 may be involved in immune evasion and be a potential candidate for vaccine and drug target for clonorchiasis.

  14. Characterization of protoberberine analogs employed as novel human P2X{sub 7} receptor antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ga Eun; Lee, Won-Gil; Lee, Song-Yi

    The P2X{sub 7} receptor (P2X{sub 7}R), a member of the ATP-gated ion channel family, is regarded as a promising target for therapy of immune-related diseases including rheumatoid arthritis and chronic pain. A group of novel protoberberine analogs (compounds 3-5), discovered by screening of chemical libraries, was here investigated with respect to their function as P2X{sub 7}R antagonists. Compounds 3-5 non-competitively inhibited BzATP-induced ethidium ion influx into hP2X{sub 7}-expressing HEK293 cells, with IC{sub 50} values of 100-300 nM. This antagonistic action on the channel further confirmed that both BzATP-induced inward currents and Ca{sup 2+} influx were strongly inhibited by compounds 3-5more » in patch-clamp and Ca{sup 2+} influx assays. The antagonists also effectively suppressed downstream signaling of P2X{sub 7} receptors including IL-1{beta} release and phosphorylation of ERK1/2 and p38 proteins in hP2X{sub 7}-expressing HEK293 cells or in differentiated human monocytes (THP-1 cells). Moreover, IL-2 secretion from CD3/CD28-stimulated Jurkat T cell was also dramatically inhibited by the antagonist. These results imply that novel protoberberine analogs may modulate P2X{sub 7} receptor-mediated immune responses by allosteric inhibition of the receptor. - Graphical abstract: Display Omitted« less

  15. Polio Pictures

    MedlinePlus

    ... dimensional representation of poliovirus. A few examples from public health professionals Child in Nigeria with a leg partly ... for these sites, which offer more images/photos. Public Health Image Library (PHIL) Immunization Action Coalition Polio Eradication ...

  16. Dynamics of Immune System Gene Expression upon Bacterial Challenge and Wounding in a Social Insect (Bombus terrestris)

    PubMed Central

    Erler, Silvio; Popp, Mario; Lattorff, H. Michael G.

    2011-01-01

    The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge. Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment. Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription factor relish, which is necessary for effector gene expression. PMID:21479237

  17. Wide screening of phage-displayed libraries identifies immune targets in planta.

    PubMed

    Rioja, Cristina; Van Wees, Saskia C; Charlton, Keith A; Pieterse, Corné M J; Lorenzo, Oscar; García-Sánchez, Susana

    2013-01-01

    Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 2 × 10(7) different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.

  18. Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin.

    PubMed

    Guzmán-Rodríguez, Jaquelina J; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Ochoa-Zarzosa, Alejandra; Suárez-Rodríguez, Luis María; Rodríguez-Zapata, Luis C; Salgado-Garciglia, Rafael; Jimenez-Moraila, Beatriz; López-Meza, Joel E; López-Gómez, Rodolfo

    2013-09-01

    Avocado is one of the most important fruits in the world. Avocado "native mexicano" (Persea americana var. drymifolia) seeds are widely used in the propagation of this plant and are the primary source of rootstocks globally for a variety of avocado cultivars, such as the Hass avocado. Here, we report the isolation of 5005 ESTs from the 5' ends of P. americana var. drymifolia seed cDNA clones representing 1584 possible unigenes. These avocado seed ESTs were compared with the avocado flower EST library, and we detected several genes that are expressed either in both tissues or only in the seed. The snakin gene, which encodes an element of the innate immune response in plants, was one of those most frequently found among the seed ESTs, and this suggests that it is abundantly expressed in the avocado seed. We expressed the snakin gene in a heterologous system, namely the bovine endothelial cell line BVE-E6E7. Conditioned media from transfected BVE-E6E7 cells showed antimicrobial activity against strains of Escherichia coli and Staphylococcus aureus. This is the first study of the function of the snakin gene in plant seed tissue, and our observations suggest that this gene might play a protective role in the avocado seed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    PubMed

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development. Copyright © 2016 Song et al.

  20. Effects of APC De-targeting and GAr modification on the duration of luciferase expression from plasmid DNA delivered to skeletal muscle.

    PubMed

    Subang, Maria C; Fatah, Rewas; Wu, Ying; Hannaman, Drew; Rice, Jason; Evans, Claire F; Chernajovsky, Yuti; Gould, David

    2015-01-01

    Immune responses to expressed foreign transgenes continue to hamper progress of gene therapy development. Translated foreign proteins with intracellular location are generally less accessible to the immune system, nevertheless they can be presented to the immune system through both MHC Class I and Class II pathways. When the foreign protein luciferase was expressed following intramuscular delivery of plasmid DNA in outbred mice, expression rapidly declined over 4 weeks. Through modifications to the expression plasmid and the luciferase transgene we examined the effect of detargeting expression away from antigen-presenting cells (APCs), targeting expression to skeletal muscle and fusion with glycine-alanine repeats (GAr) that block MHC-Class I presentation on the duration of luciferase expression. De-targeting expression from APCs with miR142-3p target sequences incorporated into the luciferase 3'UTR reduced the humoral immune response to both native and luciferase modified with a short GAr sequence but did not prolong the duration of expression. When a skeletal muscle specific promoter was combined with the miR target sequences the humoral immune response was dampened and luciferase expression persisted at higher levels for longer. Interestingly, fusion of luciferase with a longer GAr sequence promoted the decline in luciferase expression and increased the humoral immune response to luciferase. These studies demonstrate that expression elements and transgene modifications can alter the duration of transgene expression but other factors will need to overcome before foreign transgenes expressed in skeletal muscle are immunologically silent.

  1. Dominant genetics using a yeast genomic library under the control of a strong inducible promoter.

    PubMed

    Ramer, S W; Elledge, S J; Davis, R W

    1992-12-01

    In Saccharomyces cerevisiae, numerous genes have been identified by selection from high-copy-number libraries based on "multicopy suppression" or other phenotypic consequences of overexpression. Although fruitful, this approach suffers from two major drawbacks. First, high copy number alone may not permit high-level expression of tightly regulated genes. Conversely, other genes expressed in proportion to dosage cannot be identified if their products are toxic at elevated levels. This work reports construction of a genomic DNA expression library for S. cerevisiae that circumvents both limitations by fusing randomly sheared genomic DNA to the strong, inducible yeast GAL1 promoter, which can be regulated by carbon source. The library obtained contains 5 x 10(7) independent recombinants, representing a breakpoint at every base in the yeast genome. This library was used to examine aberrant gene expression in S. cerevisiae. A screen for dominant activators of yeast mating response identified eight genes that activate the pathway in the absence of exogenous mating pheromone, including one previously unidentified gene. One activator was a truncated STE11 gene lacking approximately 1000 base pairs of amino-terminal coding sequence. In two different clones, the same GAL1 promoter-proximal ATG is in-frame with the coding sequence of STE11, suggesting that internal initiation of translation there results in production of a biologically active, truncated STE11 protein. Thus this library allows isolation based on dominant phenotypes of genes that might have been difficult or impossible to isolate from high-copy-number libraries.

  2. Secretory Overexpression of Bacillus thermocatenulatus Lipase in Saccharomyces cerevisiae Using Combinatorial Library Strategy.

    PubMed

    Kajiwara, Shota; Yamada, Ryosuke; Ogino, Hiroyasu

    2018-04-10

    Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy is used to improve the secretory expression of lipase from Bacillus thermocatenulatus (BTL2) in the culture supernatant of Saccharomyces cerevisiae. A plasmid library including expression cassettes composed of sequences encoding one of each 15 promoters, 15 secretion signals, and 15 terminators derived from yeast species, S. cerevisiae, Pichia pastoris, and Hansenula polymorpha, is constructed. The S. cerevisiae transformant YPH499/D4, comprising H. polymorpha GAP promoter, S. cerevisiae SAG1 secretion signal, and P. pastoris AOX1 terminator, is selected by high-throughput screening. This transformant expresses BTL2 extra-cellularly with a 130-fold higher than the control strain, comprising S. cerevisiae PGK1 promoter, S. cerevisiae α-factor secretion signal, and S. cerevisiae PGK1 terminator, after cultivation for 72 h. This combinatorial library strategy holds promising potential for application in the optimization of the secretory expression of proteins in yeast. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools.

    PubMed

    Akeroyd, Michiel; Olsthoorn, Maurien; Gerritsma, Jort; Gutker-Vermaas, Diana; Ekkelkamp, Laurens; van Rij, Tjeerd; Klaassen, Paul; Plugge, Wim; Smit, Ed; Strupat, Kerstin; Wenzel, Thibaut; van Tilborg, Marcel; van der Hoeven, Rob

    2013-03-10

    In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Colonic Immune Stimulation by Targeted Oral Vaccine

    PubMed Central

    Kathania, Mahesh; Zadeh, Mojgan; Lightfoot, Yaíma L.; Roman, Robert M.; Sahay, Bikash; Abbott, Jeffrey R.; Mohamadzadeh, Mansour

    2013-01-01

    Background Currently, sufficient data exist to support the use of lactobacilli as candidates for the development of new oral targeted vaccines. To this end, we have previously shown that Lactobacillus gasseri expressing the protective antigen (PA) component of anthrax toxin genetically fused to a dendritic cell (DC)-binding peptide (DCpep) induced efficacious humoral and T cell-mediated immune responses against Bacillus anthracis Sterne challenge. Methodology/Principal Finding In the present study, we investigated the effects of a dose dependent treatment of mice with L. gasseri expressing the PA-DCpep fusion protein on intestinal and systemic immune responses and confirmed its safety. Treatment of mice with different doses of L. gasseri expressing PA-DCpep stimulated colonic immune responses, resulting in the activation of innate immune cells, including dendritic cells, which induced robust Th1, Th17, CD4+Foxp3+ and CD8+Foxp3+ T cell immune responses. Notably, high doses of L. gasseri expressing PA-DCpep (1012 CFU) were not toxic to the mice. Treatment of mice with L. gasseri expressing PA-DCpep triggered phenotypic maturation and the release of proinflammatory cytokines by dendritic cells and macrophages. Moreover, treatment of mice with L. gasseri expressing PA-DCpep enhanced antibody immune responses, including IgA, IgG1, IgG2b, IgG2c and IgG3. L. gasseri expressing PA-DCpep also increased the gene expression of numerous pattern recognition receptors, including Toll-like receptors, C-type lectin receptors and NOD-like receptors. Conclusion/Significance These findings suggest that L. gasseri expressing PA-DCpep has substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration and may be used as a safe oral vaccine against anthrax challenge. PMID:23383086

  5. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  6. Co-expression of Interleukin-15 Enhances the Protective Immune Responses Induced by Immunization with a Murine Malaria MVA-Based Vaccine Encoding the Circumsporozoite Protein.

    PubMed

    Parra, Marcela; Liu, Xia; Derrick, Steven C; Yang, Amy; Molina-Cruz, Alvaro; Barillas-Mury, Carolina; Zheng, Hong; Thao Pham, Phuong; Sedegah, Martha; Belmonte, Arnel; Litilit, Dianne D; Waldmann, Thomas A; Kumar, Sanjai; Morris, Sheldon L; Perera, Liyanage P

    2015-01-01

    Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)-based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.

  7. Effects of date palm fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry.

    PubMed

    Hoseinifar, Seyed Hossein; Khalili, Mohsen; Rufchaei, Rudabeh; Raeisi, Mojtaba; Attar, Marzieh; Cordero, Héctor; Esteban, M Ángeles

    2015-12-01

    The aim of this study was to investigate the effects of date palm fruit extracts (DPFE) on skin mucosal immunity, immune related genes expression and growth performance of fry common carp (Cyprinus carpio). One hundred and twenty specimens (4.06 ± 0.13 g) were supplied and allocated into six aquaria; specimens in three aquaria were fed non-supplemented diet (control) while the fish in the other 3 aquaria were fed with DPFE at 200 ml kg(-1). At the end of feeding trial (8 weeks) skin mucus immune parameters (total immunoglobulins, lysozyme, protease and alkaline phosphatase activity) and immune related gene expression (tumor necrosis factor α [tnfa], lysozyme [ly] and interleukin-1-beta, [il1b]) in the head-kidney were studied. The results revealed that feeding carp fry with 200 ml kg(-1) DPFE remarkably elevated the three skin mucus immune parameters tested (P < 0.05). However, evaluation of immune related gene expression demonstrated that the expression of tnfa and il1b was considerably decreased (P < 0.05) in fish fed DPFE diet, while the expression of ly remained similar (P > 0.05) compared to control fish (fed control diet). Furthermore, growth performance parameters were significantly improved in fry fed DPFE (P < 0.05). More studies are needed to understand different aspects of DPFE administration in fry mucosal immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    PubMed

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-09-11

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  9. A Language for Specifying Compiler Optimizations for Generic Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcock, Jeremiah J.

    2007-01-01

    Compiler optimization is important to software performance, and modern processor architectures make optimization even more critical. However, many modern software applications use libraries providing high levels of abstraction. Such libraries often hinder effective optimization — the libraries are difficult to analyze using current compiler technology. For example, high-level libraries often use dynamic memory allocation and indirectly expressed control structures, such as iteratorbased loops. Programs using these libraries often cannot achieve an optimal level of performance. On the other hand, software libraries have also been recognized as potentially aiding in program optimization. One proposed implementation of library-based optimization is to allowmore » the library author, or a library user, to define custom analyses and optimizations. Only limited systems have been created to take advantage of this potential, however. One problem in creating a framework for defining new optimizations and analyses is how users are to specify them: implementing them by hand inside a compiler is difficult and prone to errors. Thus, a domain-specific language for librarybased compiler optimizations would be beneficial. Many optimization specification languages have appeared in the literature, but they tend to be either limited in power or unnecessarily difficult to use. Therefore, I have designed, implemented, and evaluated the Pavilion language for specifying program analyses and optimizations, designed for library authors and users. These analyses and optimizations can be based on the implementation of a particular library, its use in a specific program, or on the properties of a broad range of types, expressed through concepts. The new system is intended to provide a high level of expressiveness, even though the intended users are unlikely to be compiler experts.« less

  10. Display of a maize cDNA library on baculovirus infected insect cells.

    PubMed

    Meller Harel, Helene Y; Fontaine, Veronique; Chen, Hongying; Jones, Ian M; Millner, Paul A

    2008-08-12

    Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

  11. [Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production].

    PubMed

    Dai, Guanping; Sun, Tao; Miao, Liangtian; Li, Qingyan; Xiao, Dongguang; Zhang, Xueli

    2014-08-01

    β-carotene belongs to carotenoids family, widely applied in pharmaceuticals, neutraceuticals, cosmetics and food industries. In this study, three key genes (dxs, idi, and crt operon) within β-carotene synthetic pathway in recombinant Escherichia coli strain CAR005 were modulated with RBS Library to improve β-carotene production. There were 7%, 11% and 17% increase of β-carotene yield respectively after modulating dxs, idi and crt operon genes with RBS Library, demonstrating that modulating gene expression with regulatory parts libraries would have more opportunities to obtain optimal production of target compound. Combined modulation of crt operon, dxs and idi genes led to 35% increase of β-carotene yield compared to parent strain CAR005. The optimal gene expression strength identified in single gene modulation would not be the optimal strength when used in combined modulation. Our study provides a new strategy for improving production of target compound through modulation of gene expression.

  12. Library Programs for Teens: Mystery Theater. VOYA Guides

    ERIC Educational Resources Information Center

    Siwak, Karen J.

    2010-01-01

    It's no mystery that fun and exciting programs bring teens into the library. Theater programs provide a venue for teens to express themselves creatively, encourage their participation in library programming, and offer them the opportunity for lively interaction with peers and adults. In "Library Programs for Teens: Mystery Theater," Karen Siwak…

  13. Cell-free immunology: construction and in vitro expression of a PCR-based library encoding a single-chain antibody repertoire.

    PubMed

    Makeyev, E V; Kolb, V A; Spirin, A S

    1999-02-12

    A novel cloning-independent strategy has been developed to generate a combinatorial library of PCR fragments encoding a murine single-chain antibody repertoire and express it directly in a cell-free system. The new approach provides an effective alternative to the techniques involving in vivo procedures of preparation and handling large libraries of antibodies. The possible use of the described strategy in the ribosome display is discussed.

  14. CXCR6 is a marker for protective antigen-specific cells in the lungs after intranasal immunization against Mycobacterium tuberculosis.

    PubMed

    Lee, Lian Ni; Ronan, Edward O; de Lara, Catherine; Franken, Kees L M C; Ottenhoff, Tom H M; Tchilian, Elma Z; Beverley, Peter C L

    2011-08-01

    Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT6(1-20) peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment.

  15. CXCR6 Is a Marker for Protective Antigen-Specific Cells in the Lungs after Intranasal Immunization against Mycobacterium tuberculosis▿

    PubMed Central

    Lee, Lian Ni; Ronan, Edward O.; de Lara, Catherine; Franken, Kees L. M. C.; Ottenhoff, Tom H. M.; Tchilian, Elma Z.; Beverley, Peter C. L.

    2011-01-01

    Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT61–20 peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment. PMID:21628524

  16. Gene Expression Signatures Characterized by Longitudinal Stability and Interindividual Variability Delineate Baseline Phenotypic Groups with Distinct Responses to Immune Stimulation.

    PubMed

    Scheid, Adam D; Van Keulen, Virginia P; Felts, Sara J; Neier, Steven C; Middha, Sumit; Nair, Asha A; Techentin, Robert W; Gilbert, Barry K; Jen, Jin; Neuhauser, Claudia; Zhang, Yuji; Pease, Larry R

    2018-03-01

    Human immunity exhibits remarkable heterogeneity among individuals, which engenders variable responses to immune perturbations in human populations. Population studies reveal that, in addition to interindividual heterogeneity, systemic immune signatures display longitudinal stability within individuals, and these signatures may reliably dictate how given individuals respond to immune perturbations. We hypothesize that analyzing relationships among these signatures at the population level may uncover baseline immune phenotypes that correspond with response outcomes to immune stimuli. To test this, we quantified global gene expression in peripheral blood CD4 + cells from healthy individuals at baseline and following CD3/CD28 stimulation at two time points 1 mo apart. Systemic CD4 + cell baseline and poststimulation molecular immune response signatures (MIRS) were defined by identifying genes expressed at levels that were stable between time points within individuals and differential among individuals in each state. Iterative differential gene expression analyses between all possible phenotypic groupings of at least three individuals using the baseline and stimulated MIRS gene sets revealed shared baseline and response phenotypic groupings, indicating the baseline MIRS contained determinants of immune responsiveness. Furthermore, significant numbers of shared phenotype-defining sets of determinants were identified in baseline data across independent healthy cohorts. Combining the cohorts and repeating the analyses resulted in identification of over 6000 baseline immune phenotypic groups, implying that the MIRS concept may be useful in many immune perturbation contexts. These findings demonstrate that patterns in complex gene expression variability can be used to define immune phenotypes and discover determinants of immune responsiveness. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. Molecular characterization of a novel proto-type antimicrobial protein galectin-1 from striped murrel.

    PubMed

    Arasu, Abirami; Kumaresan, Venkatesh; Sathyamoorthi, Akila; Chaurasia, Mukesh Kumar; Bhatt, Prasanth; Gnanam, Annie J; Palanisamy, Rajesh; Marimuthu, Kasi; Pasupuleti, Mukesh; Arockiaraj, Jesu

    2014-11-01

    In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. De novo transcriptome sequencing of the Octopus vulgaris hemocytes using Illumina RNA-Seq technology: response to the infection by the gastrointestinal parasite Aggregata octopiana.

    PubMed

    Castellanos-Martínez, Sheila; Arteta, David; Catarino, Susana; Gestal, Camino

    2014-01-01

    Octopus vulgaris is a highly valuable species of great commercial interest and excellent candidate for aquaculture diversification; however, the octopus' well-being is impaired by pathogens, of which the gastrointestinal coccidian parasite Aggregata octopiana is one of the most important. The knowledge of the molecular mechanisms of the immune response in cephalopods, especially in octopus is scarce. The transcriptome of the hemocytes of O. vulgaris was de novo sequenced using the high-throughput paired-end Illumina technology to identify genes involved in immune defense and to understand the molecular basis of octopus tolerance/resistance to coccidiosis. A bi-directional mRNA library was constructed from hemocytes of two groups of octopus according to the infection by A. octopiana, sick octopus, suffering coccidiosis, and healthy octopus, and reads were de novo assembled together. The differential expression of transcripts was analysed using the general assembly as a reference for mapping the reads from each condition. After sequencing, a total of 75,571,280 high quality reads were obtained from the sick octopus group and 74,731,646 from the healthy group. The general transcriptome of the O. vulgaris hemocytes was assembled in 254,506 contigs. A total of 48,225 contigs were successfully identified, and 538 transcripts exhibited differential expression between groups of infection. The general transcriptome revealed genes involved in pathways like NF-kB, TLR and Complement. Differential expression of TLR-2, PGRP, C1q and PRDX genes due to infection was validated using RT-qPCR. In sick octopuses, only TLR-2 was up-regulated in hemocytes, but all of them were up-regulated in caecum and gills. The transcriptome reported here de novo establishes the first molecular clues to understand how the octopus immune system works and interacts with a highly pathogenic coccidian. The data provided here will contribute to identification of biomarkers for octopus resistance against pathogens, which could improve octopus farming in the near future.

  19. De Novo Transcriptome Sequencing of the Octopus vulgaris Hemocytes Using Illumina RNA-Seq Technology: Response to the Infection by the Gastrointestinal Parasite Aggregata octopiana

    PubMed Central

    Castellanos-Martínez, Sheila; Arteta, David; Catarino, Susana; Gestal, Camino

    2014-01-01

    Background Octopus vulgaris is a highly valuable species of great commercial interest and excellent candidate for aquaculture diversification; however, the octopus’ well-being is impaired by pathogens, of which the gastrointestinal coccidian parasite Aggregata octopiana is one of the most important. The knowledge of the molecular mechanisms of the immune response in cephalopods, especially in octopus is scarce. The transcriptome of the hemocytes of O. vulgaris was de novo sequenced using the high-throughput paired-end Illumina technology to identify genes involved in immune defense and to understand the molecular basis of octopus tolerance/resistance to coccidiosis. Results A bi-directional mRNA library was constructed from hemocytes of two groups of octopus according to the infection by A. octopiana, sick octopus, suffering coccidiosis, and healthy octopus, and reads were de novo assembled together. The differential expression of transcripts was analysed using the general assembly as a reference for mapping the reads from each condition. After sequencing, a total of 75,571,280 high quality reads were obtained from the sick octopus group and 74,731,646 from the healthy group. The general transcriptome of the O. vulgaris hemocytes was assembled in 254,506 contigs. A total of 48,225 contigs were successfully identified, and 538 transcripts exhibited differential expression between groups of infection. The general transcriptome revealed genes involved in pathways like NF-kB, TLR and Complement. Differential expression of TLR-2, PGRP, C1q and PRDX genes due to infection was validated using RT-qPCR. In sick octopuses, only TLR-2 was up-regulated in hemocytes, but all of them were up-regulated in caecum and gills. Conclusion The transcriptome reported here de novo establishes the first molecular clues to understand how the octopus immune system works and interacts with a highly pathogenic coccidian. The data provided here will contribute to identification of biomarkers for octopus resistance against pathogens, which could improve octopus farming in the near future. PMID:25329466

  20. Ribosome Display of Combinatorial Antibody Libraries Derived from Mice Immunized with Heat-Killed Xylella fastidiosa and the Selection of MopB-Specific Single-Chain Antibodies

    PubMed Central

    Azizi, Armaghan; Arora, Arinder; Markiv, Anatoliy; Lampe, David J.; Miller, Thomas A.

    2012-01-01

    Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules. PMID:22327580

  1. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection

    PubMed Central

    Sena, Angela A. S.; Glavan, Tiffany; Jiang, Guochun; Sankaran-Walters, Sumathi; Grishina, Irina; Dandekar, Satya; Goulart, Luiz R.

    2016-01-01

    HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection. PMID:27484833

  2. Screening differentially expressed genes in an amphipod (Hyalella azteca) exposed to fungicide vinclozolin by suppression subtractive hybridization.

    PubMed

    Wu, Yun H; Wu, Tsung M; Hong, Chwan Y; Wang, Yei S; Yen, Jui H

    2014-01-01

    Vinclozolin, a dicarboximide fungicide, is an endocrine disrupting chemical that competes with an androgenic endocrine disruptor compound. Most research has focused on the epigenetic effect of vinclozolin in humans. In terms of ecotoxicology, understanding the effect of vinclozolin on non-target organisms is important. The expression profile of a comprehensive set of genes in the amphipod Hyalella azteca exposed to vinclozolin was examined. The expressed sequence tags in low-dose vinclozolin-treated and -untreated amphipods were isolated and identified by suppression subtractive hybridization. DNA dot blotting was used to confirm the results and establish a subtracted cDNA library for comparing all differentially expressed sequences with and without vinclozolin treatment. In total, 494 differentially expressed genes, including hemocyanin, heatshock protein, cytochrome, cytochrome oxidase and NADH dehydrogenase were detected. Hemocyanin was the most abundant gene. DNA dot blotting revealed 55 genes with significant differential expression. These genes included larval serum protein 1 alpha, E3 ubiquitin-protein ligase, mitochondrial cytochrome c oxidase, mitochondrial protein, proteasome inhibitor, hemocyanin, zinc-finger-containing protein, mitochondrial NADH-ubiquinone oxidoreductase and epididymal sperm-binding protein. Vinclozolin appears to upregulate stress-related genes and hemocyanin, related to immunity. Moreover, vinclozolin downregulated NADH dehydrogenase, related to respiration. Thus, even a non-lethal concentration of vinclozolin still has an effect at the genetic level in H. azteca and presents a potential risk, especially as it would affect non-target organism hormone metabolism.

  3. Molecular characterisation and expression analysis of the cathepsin H gene from rock bream (Oplegnathus fasciatus).

    PubMed

    Kim, Ju-Won; Park, Chan-Il; Hwang, Seong Don; Jeong, Ji-Min; Kim, Ki-Hyuk; Kim, Do-Hyung; Shim, Sang Hee

    2013-07-01

    Cathepsins are lysosomal cysteine proteases belonging to the papain family, whose members play important roles in normal metabolism for the maintenance of cellular homeostasis. Rock bream (Oplegnathus fasciatus) cathepsin H (RbCTSH) cDNAs were identified by expressed sequence tag analysis of a lipopolysaccharide-stimulated rock bream liver cDNA library. The full-length RbCTSH cDNA (1326 bp) contained an open reading frame of 978 bp encoding 325 amino acids. The presence of an ERFNIN-like motif was predicted in the propeptide region of RbCTSH. Furthermore, multiple alignments showed that the EPQNCSAT region was well conserved among other cathepsin H sequences. Phylogenetic analysis revealed that RbCTSH is most closely related to Nile tilapia cathepsin H. RbCTSH was expressed significantly in the intestine, spleen, head kidney and stomach. RbCTSH mRNA expression was also examined in several tissues under conditions of bacterial and viral challenge. All examined tissues of fish infected with Edwardsiella tarda, Streptococcus iniae and red sea bream iridovirus (RSIV) showed significant increases in RbCTSH expression compared to the control. In the kidney and spleen, RbCTSH mRNA expression was upregulated markedly following infection with bacterial pathogens. These findings indicate that RbCTSH plays an important role in the innate immune response of rock bream. Furthermore, these results provide important information for the identification of other cathepsin H genes in various fish species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Heterogeneity in Immune Marker Expression after Acquisition of Resistance to EGFR Kinase Inhibitors: Analysis of a Case with Small Cell Lung Cancer Transformation.

    PubMed

    Suda, Kenichi; Murakami, Isao; Yu, Hui; Kim, Jihye; Ellison, Kim; Rivard, Christopher J; Mitsudomi, Tetsuya; Hirsch, Fred R

    2017-06-01

    Expression of immune markers is of scientific interest because of their potential roles as predictive biomarkers for immunotherapy. Although the microenvironment of metastatic tumors and/or therapy-inducible histological transformation may affect the expression of these immune markers, there are few data regarding this context. A 76-year-old never-smoking female with EGFR-mutated lung adenocarcinoma (AC) acquired resistance to gefitinib. After her death, an autopsy revealed SCLC transformation and EGFR T790M secondary mutation (T790M) as mutually exclusive resistance mechanisms occurring differently in different metastases; two liver metastases (SCLC versus AC with T790M) and two lymph node metastases (SCLC versus AC with T790M) were analyzed to compare the expression status of immune markers by immunohistochemistry and by an immune oncology gene expression panel. Programmed death ligand 1 (PD-L1) protein was partially expressed in tumor cells with AC lesions (T790M) but not in tumor cells with SCLC transformation. The liver metastasis with SCLC transformation showed no stromal PD-L1 expression and scant tumor-infiltrating lymphocytes, whereas the other lesions demonstrated stromal PD-L1 staining and infiltration of CD8-positive T cells. Data generated using an immuno-oncology gene expression panel indicated a higher level of T-cell costimulatory molecules and lower expression of type I interferon-regulated genes in lesions with SCLC transformation. These data highlight the heterogeneity of expression of immune markers depending on the metastatic sites and histological transformation and indicate that the biopsy specimen from one lesion may not be representative of immune marker status for all lesions. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  5. Activation of cellular immunity and marked inhibition of liver cancer in a mouse model following gene therapy and tumor expression of GM-SCF, IL-21, and Rae-1.

    PubMed

    Cheng, Mingrong; Zhi, Kangkang; Gao, Xiaoyan; He, Bing; Li, Yingchun; Han, Jiang; Zhang, Zhiping; Wu, Yan

    2013-12-18

    Cancer is both a systemic and a genetic disease. The pathogenesis of cancer might be related to dampened immunity. Host immunity recognizes nascent malignant cells - a process referred to as immune surveillance. Augmenting immune surveillance and suppressing immune escape are crucial in tumor immunotherapy. A recombinant plasmid capable of co-expressing granulocyte-macrophage colony- stimulating factor (GM-SCF), interleukin-21 (IL-21), and retinoic acid early transcription factor-1 (Rae-1) was constructed, and its effects determined in a mouse model of subcutaneous liver cancer. Serum specimens were assayed for IL-2 and INF-γ by ELISA. Liver cancer specimens were isolated for Rae-1 expression by RT-PCR and Western blot, and splenocytes were analyzed by flow cytometry. The recombinant plasmid inhibited the growth of liver cancer and prolonged survival of tumor-loaded mice. Activation of host immunity might have contributed to this effect by promoting increased numbers and cytotoxicity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL) following expression of GM-SCF, IL-21, and Rae-1. By contrast, the frequency of regulatory T cells was decreased, Consequently, activated CTL and NK cells enhanced their secretion of INF-γ, which promoted cytotoxicity of NK cells and CTL. Moreover, active CTL showed dramatic secretion of IL-2, which stimulates CTL. The recombinant expression plasmid also augmented Rae-1 expression by liver cancer cells. Rae-1 receptor expressing CTL and NK cells removed liver cancer. The recombinant expression plasmid inhibited liver cancer by a mechanism that involved activation of cell-mediated immunity and Rae-1 in liver cancer.

  6. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    PubMed

    Kast, Alene; Voges, Raphael; Schroth, Michael; Schaffrath, Raffael; Klassen, Roland; Meinhardt, Friedhelm

    2015-05-01

    Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.

  7. Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.

    PubMed

    Wistow, Graeme; Bernstein, Steven L; Wyatt, M Keith; Behal, Amita; Touchman, Jeffrey W; Bouffard, Gerald; Smith, Don; Peterson, Katherine

    2002-06-15

    To explore the expression profile of the human lens and to provide a resource for microarray studies, expressed sequence tag (EST) analysis has been performed on cDNA libraries from adult lenses. A cDNA library was constructed from two adult (40 year old) human lenses. Over two thousand clones were sequenced from the unamplified, un-normalized library. The library was then normalized and a further 2200 sequences were obtained. All the data were analyzed using GRIST (GRouping and Identification of Sequence Tags), a procedure for gene identification and clustering. The lens library (by) contains a low percentage of non-mRNA contaminants and a high fraction (over 75%) of apparently full length cDNA clones. Approximately 2000 reads from the unamplified library yields 810 clusters, potentially representing individual genes expressed in the lens. After normalization, the content of crystallins and other abundant cDNAs is markedly reduced and a similar number of reads from this library (fs) yields 1455 unique groups of which only two thirds correspond to named genes in GenBank. Among the most abundant cDNAs is one for a novel gene related to glutamine synthetase, which was designated "lengsin" (LGS). Analyses of ESTs also reveal examples of alternative transcripts, including a major alternative splice form for the lens specific membrane protein MP19. Variant forms for other transcripts, including those encoding the apoptosis inhibitor Livin and the armadillo repeat protein ARVCF, are also described. The lens cDNA libraries are a resource for gene discovery, full length cDNAs for functional studies and microarrays. The discovery of an abundant, novel transcript, lengsin, and a major novel splice form of MP19 reflect the utility of unamplified libraries constructed from dissected tissue. Many novel transcripts and splice forms are represented, some of which may be candidates for genetic diseases.

  8. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system.

    PubMed

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto

    2015-01-01

    During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.

  9. Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins.

    PubMed

    Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B

    2014-01-01

    Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

  10. Access to Electronic Information, Services, and Networks: An Interpretation of the Library Bill of Rights.

    ERIC Educational Resources Information Center

    American Library Association, Chicago, IL. Office of Intellectual Freedom.

    The American Library Association (ALA) expresses the basic principles of librarianship in its "Code of Ethics" and in the "Library Bill of Rights" and its interpretations. All library system and network policies, procedures or regulations relating to electronic resources and services should be scrutinized for potential…

  11. The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity.

    PubMed

    Caddell, Daniel F; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C

    2015-05-05

    Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21 , recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas , and confers robust resistance to X. oryzae pv. oryzae ( Xoo ). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21 . Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression.

  12. The Use of a Dexamethasone-inducible System to Synchronize Xa21 Expression to Study Rice Immunity

    PubMed Central

    Caddell, Daniel F.; Wei, Tong; Park, Chang-Jin; Ronald, Pamela C.

    2016-01-01

    Inducible gene expression systems offer researchers the opportunity to synchronize target gene expression at particular developmental stages and in particular tissues. The glucocorticoid receptor (GR), a vertebrate steroid receptor, has been well adopted for this purpose in plants. To generate steroid-inducible plants, a construct of GAL4-binding domain-VP16 activation domain-GR fusion (GVG) with the target gene under the control of upstream activation sequence (UAS) has been developed and extensively used in plant research. Immune receptors perceive conserved molecular patterns secreted by pathogens and initiate robust immune responses. The rice immune receptor, XA21, recognizes a molecular pattern highly conserved in all sequenced genomes of Xanthomonas, and confers robust resistance to X. oryzae pv. oryzae (Xoo). However, identifying genes downstream of XA21 has been hindered because of the restrained lesion and thus limited defense response region in the plants expressing Xa21. Inducible expression allows for a synchronized immune response across a large amount of rice tissue, well suited for studying XA21-mediated immunity by genome-wide approaches such as transcriptomics and proteomics. In this protocol, we describe the use of this GVG system to synchronize Xa21 expression. PMID:27525297

  13. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.

    PubMed

    Rus, Florentina; Flatt, Thomas; Tong, Mei; Aggarwal, Kamna; Okuda, Kendi; Kleino, Anni; Yates, Elisabeth; Tatar, Marc; Silverman, Neal

    2013-05-29

    Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.

  14. Expression and regulation of proton-coupled oligopeptide transporters in colonic tissue and immune cells of mice.

    PubMed

    Wang, Yuqing; Hu, Yongjun; Li, Ping; Weng, Yayun; Kamada, Nobuhiko; Jiang, Huidi; Smith, David E

    2018-02-01

    A number of studies have implicated proton-coupled oligopeptide transporters (POTs) in the initiation and/or progression of inflammatory bowel disease and immune cell signaling. With this in mind, the aim of this study was to delineate the expression of POTs in mouse colonic tissues and immune cells, and characterize the potential role of these transporters in nucleotide-binding oligomerization domain (NOD) signaling. Using a dextran sodium sulfate (DSS)-induced colitis mouse model, we found that DSS down regulated Pht1 gene expression and up regulated Pht2 gene expression in colonic tissue and immune cells. In contrast, PEPT1 protein was absent from the colonic tissue and immune cells of normal and DSS-treated mice. NOD ligands, muramyl dipeptide (MDP) and l-Ala-γ-d-Glu-meso-diaminopimelic acid (tri-DAP), were shown to be substrates of PHT2 in MDCK-hPHT2 19,20AA cells. Subsequent studies revealed that the immune response of lamina propia mononuclear cells may be regulated by PHT1 and PHT2, and that PHT2 facilitated the NOD-dependent immune response in RAW264.7 macrophages. These results clarified the expression of POTs in mouse colonic segments, cells and subtypes, and the role of increased Pht2 expression during chemically-induced colitis in facilitating NOD-dependent immune response. The findings further suggest that intestinal PHT2 may serve as a therapeutic target for IBD therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Synthetic Biology Toolbox for Controlling Gene Expression in the Cyanobacterium Synechococcus sp. strain PCC 7002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markley, Andrew L.; Begemann, Matthew B.; Clarke, Ryan E.

    The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system hadmore » a 48-fold dynamic range and was shown to out-perform P trc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002.« less

  16. Synthetic Biology Toolbox for Controlling Gene Expression in the Cyanobacterium Synechococcus sp. strain PCC 7002

    DOE PAGES

    Markley, Andrew L.; Begemann, Matthew B.; Clarke, Ryan E.; ...

    2014-09-12

    The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system hadmore » a 48-fold dynamic range and was shown to out-perform P trc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002.« less

  17. SAGE analysis of early oogenesis in the silkworm, Bombyx mori.

    PubMed

    Funaguma, Shunsuke; Hashimoto, Shin-ichi; Suzuki, Yutaka; Omuro, Naoko; Sugano, Sumio; Mita, Kazuei; Katsuma, Susumu; Shimada, Toru

    2007-02-01

    To identify genes involved in the differentiation of Bombyx cystoblast, we constructed two 3' long serial analysis of gene expression (Long SAGE) libraries from stage 1-3 or stage 2-3 egg chambers and compared their gene expression profiles. In both libraries, the most frequent tags were derived from the same novel transcript. The transcript does not have any open reading frame capable of encoding a protein with over 100 amino acids in length. RNA blot analysis revealed that this transcript is specifically and abundantly expressed in the Bombyx ovary, mainly the germ line cells in the ovarioles. These results suggest that Bombyx oogenesis may be regulated by a previously unidentified non-coding RNA. Comparison of the gene expression profiles between the stage 1-3 and stage 2-3 egg chamber libraries revealed that 272 tags were significantly more abundant in stage 1-3 egg chambers (p<0.05 and at least two-fold change) than in library 2. Among the differentially expressed transcripts were the sequences that correspond to ATP synthase subunit d (3.1-fold enriched) and ATP synthase coupling factor 6 (9.1-fold enriched), suggesting that they are involved in regulation of cell cycle of cystocytes.

  18. Two novel male-associated peroxinectin genes are downregulated by exposure to delousing drugs in Caligus rogercresseyi.

    PubMed

    Núñez-Acuña, Gustavo; Gallardo-Escárate, Cristian

    2015-02-15

    Peroxinectin (PX) is a protein involved in cell adhesion, peroxidase activities, and the encapsulation of invaders in diverse species, including parasitic copepods. Recently, a transcript denoted peroxinectin-like was identified in the salmon louse Lepeophtheirus salmonis, and this was significantly correlated with the immune response of host fish. Thus, the PX gene is a potential candidate to evaluate host-parasite interactions, as well as to analyze responses to delousing drugs used in the salmon aquaculture industry worldwide. The objective of this study was to identify Peroxinectin transcripts in the Chilean salmon louse Caligus rogercresseyi, and to determine expression levels after exposition to the antiparasitics deltamethrin and azamethiphos. Two novel transcript homologs to peroxinectins were identified from a transcriptomic library of C. rogercresseyi. Moreover, in silico gene transcription levels were evaluated through RNA-seq analyses based on unique gene read levels in transcriptomic libraries that were constructed from sea lice exposed to delousing drugs. The identified transcripts were named Peroxinectin-Cr1 and Peroxinectin-Cr2, which, respectively, had lengths of 2543 and 2555 base pairs. Both PX transcripts were highly associated with male adults, and transcription levels were significantly reduced by deltamethrin and azamethiphos. This result suggests a modulation of peroxinectin in response to delousing drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. piRNA Profiling of Dengue Virus Type 2-Infected Asian Tiger Mosquito and Midgut Tissues

    PubMed Central

    Wang, Yanhai; Jin, Binbin; Liu, Peiwen; Li, Jing; Chen, Xiaoguang; Gu, Jinbao

    2018-01-01

    The Asian tiger mosquito, Aedes albopictus, is a competent vector for the majority of arboviruses. The mosquito innate immune response is a primary determinant for arthropod-borne virus transmission, and the midgut is the first barrier to pathogen transmission. Mosquito antiviral immunity is primarily mediated by the small interfering RNA pathway. However, the roles that the P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway play in antiviral immunity in Ae. albopictus and its midgut still need further exploration. This study aimed to explore the profiles of both viral-derived and host-originated piRNAs in the whole body and midgut infected with Dengue virus 2 (DENV-2) in Ae. albopictus, and to elucidate gene expression profile differences of the PIWI protein family between adult females and their midguts. A deep sequencing-based method was used to identify and analyze small non-coding RNAs, especially the piRNA profiles in DENV-2-infected Ae. albopictus and its midgut. The top-ranked, differentially-expressed piRNAs were further validated using Stem-loop qRT-PCR. Bioinformatics analyses and reverse-transcription PCR (RT-PCR) methods were used to detect PIWI protein family members, and their expression profiles. DENV-2 derived piRNAs (vpiRNA, 24–30 nts) were observed in both infected Ae. albopictus and its midgut; however, only vpiRNA in the whole-body library had a weak preference for adenine at position 10 (10A) in the sense molecules as a feature of secondary piRNA. These vpiRNAs were not equally distributed, instead they were derived from a few specific regions of the genome, especially several hot spots, and displayed an obvious positive strand bias. We refer to the differentially expressed host piRNAs after DENV infection as virus-induced host endogenous piRNAs (vepiRNAs). However, we found that vepiRNAs were abundant in mosquito whole-body tissue, but deficient in the midgut. A total of eleven PIWI family genes were identified in Ae. albopictus; however, only AalPiwi5–7 and AalAgo3(1–2) were readily detected in the midgut. The characteristics of piRNAs in DENV-2-infected Ae. albopictus adult females were similar to those previously described for flavivirus infections but were not observed in the midgut. The reduced levels of vepiRNAs and incomplete expression of PIWI pathway genes in midgut samples from DENV-2-infected Ae. albopictus suggests that viral regulation of host piRNAs may not be an important factor in the midgut. PMID:29690553

  20. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling

    PubMed Central

    Sadekuzzaman, Md.

    2018-01-01

    Nitric oxide (NO) mediates both cellular and humoral immune responses in insects. Its mediation of cellular immune responses uses eicosanoids as a downstream signal. However, the cross-talk with two immune mediators was not known in humoral immune responses. This study focuses on cross-talk between two immune mediators in inducing gene expression of anti-microbial peptides (AMPs) of a lepidopteran insect, Spodoptera exigua. Up-regulation of eight AMPs was observed in S. exigua against bacterial challenge. However, the AMP induction was suppressed by injection of an NO synthase inhibitor, L-NAME, while little expressional change was observed on injecting its enantiomer, D-NAME. The functional association between NO biosynthesis and AMP gene expression was further supported by RNA interference (RNAi) against NO synthase (SeNOS), which suppressed AMP gene expression under the immune challenge. The AMP induction was also mimicked by NO alone because injecting an NO analog, SNAP, without bacterial challenge significantly induced the AMP gene expression. Interestingly, an eicosanoid biosynthesis inhibitor, dexamethasone (DEX), suppressed the NO induction of AMP expression. The inhibitory activity of DEX was reversed by the addition of arachidonic acid, a precursor of eicosanoid biosynthesis. AMP expression of S. exigua was also controlled by the Toll/IMD signal pathway. The RNAi of Toll receptors or Relish suppressed AMP gene expression by suppressing NO levels and subsequently reducing PLA2 enzyme activity. These results suggest that eicosanoids are a downstream signal of NO mediation of AMP expression against bacterial challenge. PMID:29466449

  1. Effects of prebiotics on immune system and cytokine expression.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  2. Toward Abstracting the Communication Intent in Applications to Improve Portability and Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintz, Tiffany M; Hernandez, Oscar R; Kartsaklis, Christos

    Programming with communication libraries such as the Message Passing Interface (MPI) obscures the high-level intent of the communication in an application and makes static communication analysis difficult to do. Compilers are unaware of communication libraries specifics, leading to the exclusion of communication patterns from any automated analysis and optimizations. To overcome this, communication patterns can be expressed at higher-levels of abstraction and incrementally added to existing MPI applications. In this paper, we propose the use of directives to clearly express the communication intent of an application in a way that is not specific to a given communication library. Our communicationmore » directives allow programmers to express communication among processes in a portable way, giving hints to the compiler on regions of computations that can be overlapped with communication and relaxing communication constraints on the ordering, completion and synchronization of the communication imposed by specific libraries such as MPI. The directives can then be translated by the compiler into message passing calls that efficiently implement the intended pattern and be targeted to multiple communication libraries. Thus far, we have used the directives to express point-to-point communication patterns in C, C++ and Fortran applications, and have translated them to MPI and SHMEM.« less

  3. Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity.

    PubMed

    Whitfield, A E; Rotenberg, D; Aritua, V; Hogenhout, S A

    2011-04-01

    The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate defence response pathways to rhabdovirus infection. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  4. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters.

    PubMed

    Kanno, Alex I; Goulart, Cibelly; Rofatto, Henrique K; Oliveira, Sergio C; Leite, Luciana C C; McFadden, Johnjoe

    2016-04-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovisBCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response. Copyright © 2016 Kanno et al.

  5. A transposase strategy for creating libraries of circularly permuted proteins.

    PubMed

    Mehta, Manan M; Liu, Shirley; Silberg, Jonathan J

    2012-05-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.

  6. A transposase strategy for creating libraries of circularly permuted proteins

    PubMed Central

    Mehta, Manan M.; Liu, Shirley; Silberg, Jonathan J.

    2012-01-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions. PMID:22319214

  7. Lower Selenoprotein T Expression and Immune Response in the Immune Organs of Broilers with Exudative Diathesis Due to Selenium Deficiency.

    PubMed

    Pan, Tingru; Liu, Tianqi; Tan, Siran; Wan, Na; Zhang, Yiming; Li, Shu

    2018-04-01

    The objective of the present study was to investigate whether dietary selenium (Se) deficiency would affect the expression of selenoprotein T (SelT) and immune response in the immune organs of broilers. Changes in expression of inflammatory cytokines and oxidative stress response caused by Se deficiency can lead to organism damage, which in turn leads to immune response. Sixty (1-day-old) broilers were divided into the control group and Se-deficiency group. Animal models with exudative diathesis were duplicated in the broilers by feeding them Se-deficient diet for 20 days. After the Se-deficient group exhibited symptoms of exudative diathesis, all the broilers were euthanized, and their immune organs were taken for analysis. The tissues including spleen, bursa of Fabricius, and thymus were treated to determine the pathological changes (including microscopic and ultramicroscopic), the messenger RNA (mRNA) expression levels of SelT and its synthetase (SecS and SPS1), cytokine mRNA expression levels, and antioxidant status. The microscopic and ultramicroscopic analyses showed that immune tissues were obviously injured in the Se-deficient group. The mRNA expression of SelT was decreased compared with that in the control group. Meanwhile, the mRNA expression levels of SecS and SPS1 were downregulated. In the Se-deficient group, the mRNA expression levels of IL-1R and IL-1β were higher than those of three control organs. Additionally, the IL-2 and INF-γ mRNA expression levels were lower than those of the control group. The activity of CAT was decreased, and the contents of H 2 O 2 and •OH were increased due to Se deficiency. Pearson method analysis showed that the expression of SelT had a positive correlation with IL-2, INF-γ, SecS, and SPS1 and a negative correlation with IL-1R and IL-1β. In summary, these data indicated that Se-deficient diet decreased the SelT expression and its regulation of oxidative stress, and it inhibited a pleiotropic mechanism of the immune response.

  8. A Utilitarian Case for Intellectual Freedom in Libraries.

    ERIC Educational Resources Information Center

    Doyle, Tony

    2001-01-01

    Outlines the history of censorship and intellectual and expressive freedom in American libraries; discusses the two main types of ethical theory, utilitarianism and deontology; and maintains that libraries have a special role to play in promoting unconditional intellectual freedom. (Author/LRW)

  9. The placental immune milieu is characterized by a Th2- and anti-inflammatory transcription profile, regardless of maternal allergy, and associates with neonatal immunity.

    PubMed

    Abelius, Martina S; Janefjord, Camilla; Ernerudh, Jan; Berg, Göran; Matthiesen, Leif; Duchén, Karel; Nilsson, Lennart J; Jenmalm, Maria C

    2015-05-01

    How maternal allergy affects the systemic and local immunological environment during pregnancy and the immune development of the offspring is unclear. Expression of 40 genes was quantified by PCR arrays in placenta, peripheral blood mononuclear cells (PBMC), and cord blood mononuclear cells (CBMC) from 7 allergic and 12 non-allergic women and their offspring. Placental gene expression was dominated by a Th2-/anti-inflammatory profile, irrespectively of maternal allergy, as compared to gene expression in PBMC. p35 expression in placenta correlated with fetal Tbx21 (ρ = -0.88, P < 0.001) and IL-5 expression in PBMC with fetal galectin1 (ρ = 0.91, P < 0.001). Increased expression of Th2-associated CCL22 in CBMC preceded allergy development. Gene expression locally and systemically during pregnancy was partly associated with the offspring's gene expression, possibly indicating that the immunological milieu is important for fetal immune development. Maternal allergy was not associated with an enhanced Th2 immunity in placenta or PBMC, while a marked prenatal Th2 skewing, shown as increased CCL22 mRNA expression, might contribute to postnatal allergy development. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Global analysis of differential gene expression related to long-term sperm storage in oviduct of Chinese Soft-Shelled Turtle Pelodiscus sinensis

    PubMed Central

    Liu, Tengfei; Yang, Ping; Chen, Hong; Huang, Yufei; Liu, Yi; Waqas, Yasir; Ahmed, Nisar; Chu, Xiaoya; Chen, Qiusheng

    2016-01-01

    Important evolutionary and ecological consequences arise from the ability of female turtles to store viable spermatozoa for an extended period. Although previous morphological studies have observed the localization of spermatozoa in Pelodiscus sinensis oviduct, no systematic study on the identification of genes that are involved in long-term sperm storage has been performed. In this study, the oviduct of P. sinensis at different phases (reproductive and hibernation seasons) was prepared for RNA-Seq and gene expression profiling. In total, 2,662 differentially expressed genes (DEGs) including 1,224 up- and 1,438 down-regulated genes were identified from two cDNA libraries. Functional enrichment analysis indicated that many genes were predominantly involved in the immune response, apoptosis pathway and regulation of autophagy. RT-qPCR, ELISA, western blot and IHC analyses showed that the expression profiles of mRNA and protein in selected DEGs were in consistent with results from RNA-Seq analysis. Remarkably, TUNEL analysis revealed the reduced number of apoptotic cells during sperm storage. IHC and TEM analyses found that autophagy occurred in the oviduct epithelial cells, where the spermatozoa were closely attached. The outcomes of this study provide fundamental insights into the complex sperm storage regulatory process and facilitate elucidating the mechanism of sperm storage in P. sinensis. PMID:27628424

  11. Evaluation of anonymous and expressed sequence tag derived polymorphic microsatellite markers in the tobacco budworm Heliothis virescens (Lepidoptera: noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...

  12. Antigenic Fingerprinting of Antibody Response in Humans following Exposure to Highly Pathogenic H7N7 Avian Influenza Virus: Evidence for Anti-PA-X Antibodies.

    PubMed

    Khurana, Surender; Chung, Ka Yan; Coyle, Elizabeth M; Meijer, Adam; Golding, Hana

    2016-10-15

    Infections with H7 highly pathogenic avian influenza (HPAI) viruses remain a major public health concern. Adaptation of low-pathogenic H7N7 to highly pathogenic H7N7 in Europe in 2015 raised further alarm for a potential pandemic. An in-depth understanding of antibody responses to HPAI H7 virus following infection in humans could provide important insight into virus gene expression as well as define key protective and serodiagnostic targets. Here we used whole-genome gene fragment phage display libraries (GFPDLs) expressing peptides of 15 to 350 amino acids across the complete genome of the HPAI H7N7 A/Netherlands/33/03 virus. The hemagglutinin (HA) antibody epitope repertoires of 15 H7N7-exposed humans identified clear differences between individuals with no hemagglutination inhibition (HI) titers (<1:10) and those with HI titers of >1:40. Several potentially protective H7N7 epitopes close to the HA receptor binding domain (RBD) and neuraminidase (NA) catalytic site were identified. Surface plasmon resonance (SPR) analysis identified a strong correlation between HA1 (but not HA2) binding antibodies and H7N7 HI titers. A proportion of HA1 binding in plasma was contributed by IgA antibodies. Antibodies against the N7 neuraminidase were less frequent but targeted sites close to the sialic acid binding site. Importantly, we identified strong antibody reactivity against PA-X, a putative virulence factor, in most H7N7-exposed individuals, providing the first evidence for in vivo expression of PA-X and its recognition by the immune system during human influenza A virus infection. This knowledge can help inform the development and selection of the most effective countermeasures for prophylactic as well as therapeutic treatments of HPAI H7N7 avian influenza virus. An outbreak of pathogenic H7N7 virus occurred in poultry farms in The Netherlands in 2003. Severe outcome included conjunctivitis, influenza-like illness, and one lethal infection. In this study, we investigated convalescent-phase sera from H7N7-exposed individuals by using a whole-genome phage display library (H7N7-GFPDL) to explore the complete repertoire of post-H7N7-exposure antibodies. PA-X is a recently identified influenza virus virulence protein generated by ribosomal frameshifting in segment 3 of influenza virus coding for PA. However, PA-X expression during influenza virus infection in humans is unknown. We identified strong antibody reactivity against PA-X in most H7N7-exposed individuals (but not in unexposed adults), providing the first evidence for in vivo expression of PA-X and its recognition by the immune system during human infection with pathogenic H7N7 avian influenza virus. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Evolutionary Analysis and Expression Profiling of Zebra Finch Immune Genes

    PubMed Central

    Ekblom, Robert; French, Lisa; Slate, Jon; Burke, Terry

    2010-01-01

    Genes of the immune system are generally considered to evolve rapidly due to host–parasite coevolution. They are therefore of great interest in evolutionary biology and molecular ecology. In this study, we manually annotated 144 avian immune genes from the zebra finch (Taeniopygia guttata) genome and conducted evolutionary analyses of these by comparing them with their orthologs in the chicken (Gallus gallus). Genes classified as immune receptors showed elevated dN/dS ratios compared with other classes of immune genes. Immune genes in general also appear to be evolving more rapidly than other genes, as inferred from a higher dN/dS ratio compared with the rest of the genome. Furthermore, ten genes (of 27) for which sequence data were available from at least three bird species showed evidence of positive selection acting on specific codons. From transcriptome data of eight different tissues, we found evidence for expression of 106 of the studied immune genes, with primary expression of most of these in bursa, blood, and spleen. These immune-related genes showed a more tissue-specific expression pattern than other genes in the zebra finch genome. Several of the avian immune genes investigated here provide strong candidates for in-depth studies of molecular adaptation in birds. PMID:20884724

  14. De novo transcriptome assembly and identification of genes associated with feed conversion ratio and breast muscle yield in domestic ducks.

    PubMed

    Zhu, Feng; Yuan, Jian-Ming; Zhang, Zhen-He; Hao, Jin-Ping; Yang, Yu-Ze; Hu, Shen-Qiang; Yang, Fang-Xi; Qu, Lu-Jiang; Hou, Zhuo-Cheng

    2015-12-01

    Breast muscle yield and feed conversion efficiency are the major breeding aims in duck breeding. Understanding the role of specific transcripts in the muscle and small intestine might lead to the elucidation of interrelated biological processes. In this study, we obtained jejunum and breast muscle samples from two strains of Peking ducks that were sorted by feed conversion ratio (FCR) and breast muscle percentage into two-tailed populations. Ten RNA-Seq libraries were developed from the pooled samples and sequenced using the Hiseq2000 platform. We created a reference duck transcript database using de novo assembly methods, which included 16 663 irredundant contigs with an N50 length of 1530 bp. This new duck reference cDNA dataset significantly improved the mapping rate for RNA-Seq data, from 50% to 70%. Mapping and annotation were followed by Gene Ontology analysis, which showed that numerous genes were differentially expressed between the low and high FCR groups. The differentially expressed genes in the jejunum were enriched in biological processes related to immune response and immune response activation, whereas those in the breast muscle were significantly enriched in biological processes related to muscle cell differentiation and organ development. We identified new candidate genes, that is, PCK1, for improving the FCR and breast muscle yield of ducks and obtained much better reference duck transcripts. This study suggested that de novo assembly is essential when applying transcriptome analysis to a species with an incomplete genome. © 2015 Stichting International Foundation for Animal Genetics.

  15. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana.

    PubMed

    Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon

    2017-01-01

    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium -mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa , Psa -NZ V13 and Psa -NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana . Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium -mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1 , NDR1 , or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana . In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta .

  16. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana

    PubMed Central

    Choi, Sera; Jayaraman, Jay; Segonzac, Cécile; Park, Hye-Jee; Park, Hanbi; Han, Sang-Wook; Sohn, Kee Hoon

    2017-01-01

    Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta. PMID:29326748

  17. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response.

    PubMed

    Sandhu, J S; Krasnyanski, S F; Domier, L L; Korban, S S; Osadjan, M D; Buetow, D E

    2000-04-01

    Respiratory syncytial virus (RSV) is one of the most important pathogens of infancy and early childhood. Here a fruit-based edible subunit vaccine against RSV was developed by expressing the RSV fusion (F) protein gene in transgenic tomato plants. The F-gene was expressed in ripening tomato fruit under the control of the fruit-specific E8 promoter. Oral immunization of mice with ripe transgenic tomato fruits led to the induction of both serum and mucosal RSV-F specific antibodies. The ratio of immunoglobulin subclasses produced in response to immunization suggested that a type 1 T-helper cell immune response was preferentially induced. Serum antibodies showed an increased titer when the immunized mice were exposed to inactivated RSV antigen.

  18. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System.

    PubMed

    Díaz-Muñoz, Manuel D; Turner, Martin

    2018-01-01

    Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.

  19. Molecular cloning and characterization of a HSP70 gene from Schistosoma japonicum.

    PubMed

    Yang, Jie; Yang, Linlin; Lv, Zhiyue; Wang, Juan; Zhang, Qixian; Zheng, Huanqin; Wu, Zhongdao

    2012-05-01

    Schistosoma japonicum is the pathogen responsible for schistosomiasis japonica, one of the major infectious diseases targeted for prevention nationally in China. Expression of heat shock proteins (HSPs) following stress plays a very important biological role in many organisms including S. japonicum. Among the HSP family, the 70-kDa HSPs are most responsible for intracellular chaperone and extracellular immunoregulatory functions. Based on the published sequences in GenBank/EMBL (AF044412.1), open reading frame belonging to HSP70 protein corresponds to a full-length cDNA containing an open reading frame of 1,947 bp encoded of 648 amino acids was identified as HSP70 from schistosome. In this study, the coding region that we named rSj648/hsp70 was amplified from S. japonicum adult worm cDNA library, and the recombinant protein was expressed in vector pET32a(+) and purified using a Ni-NTA purification system. The target protein rSj648/hsp70 was determined by matrix-assisted laser desorption/ionization mass spectrometer after thrombin digestion and dialysis. Reverse transcriptase polymerase chain reaction and Western blotting analysis confirmed that Sj648/hsp70 could be expressed in the eggs, normal cercariae, ultraviolet-attenuated cercariae (UVAC), and adult worms of S. japonicum. Real-time quantitative PCR analysis indicated that Sj648/hsp70 was expressed significantly higher in eggs than that in cercariae and adult worms, and the expression in UVAC was higher than that in normal cercariae. A thermotolerance assay showed that rSj648/hsp70 could protect Escherichia coli cells from heat damage. The detection of specific antibody levels by indirect enzyme-linked immunosorbent assay demonstrated that mice immunized with rSj648/hsp70 induced higher level of specific anti-rSj648/hsp70 IgG1 compared with those vaccinated with adjuvant alone, indicating that rSj648/hsp70 was able to elicit Th2-type bias immune response. Our results suggest that Sj648/hsp70 might be an important molecule in parasite-host interaction and display potential roles in mice immunoregulation system.

  20. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures

    PubMed Central

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2014-01-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process. PMID:24074584

  1. CD47 expression in Epstein-Barr virus-associated gastric carcinoma: coexistence with tumor immunity lowering the ratio of CD8+/Foxp3+ T cells.

    PubMed

    Abe, Hiroyuki; Saito, Ruri; Ichimura, Takashi; Iwasaki, Akiko; Yamazawa, Sho; Shinozaki-Ushiku, Aya; Morikawa, Teppei; Ushiku, Tetsuo; Yamashita, Hiroharu; Seto, Yasuyuki; Fukayama, Masashi

    2018-04-01

    Epstein-Barr virus-associated gastric carcinoma (EBVaGC) frequently harbors dense lymphocytic infiltration, suggesting a specific microenvironment allowing coexistence with tumor immunity. CD47, which mediates the "do not eat me" signal in innate immunity, is also important in adaptive anti-tumor immunity. We investigated the significance of CD47 in EBVaGC compared with EBV-negative gastric cancer and the correlation with various immune cells. By immunohistochemistry of CD47, high, low, and negative expression was observed in 24, 63, and 12% of EBVaGC (n = 41), while 11, 49, and 39% of EBV-negative gastric cancer (n = 262), respectively, indicating that high expression of CD47 in cancer cells was significantly frequent and increased in EBVaGC (P = 0.043). In contrast to EBV-negative gastric carcinoma in which no significant correlation was observed between CD47 and survival, high expression of CD47 correlated significantly with worse disease-specific survival (P = 0.011) and overall survival (P = 0.013) in EBVaGC. To further clarify the role of CD47 expression in EBVaGC, digital image analysis of immune cell infiltration revealed that high CD47 expression was correlated with a lower ratio of CD8 + /Foxp3 + T cells (P = 0.021), a sensitive indicator of tumor immunity. Thus, CD47 lowers anti-tumor immunity in EBVaGC by finely tuning profile of infiltrating T cells, suggesting that CD47 is an additional target for cancer immunotherapy against this virus-driven gastric cancer.

  2. Toll immune signal activates cellular immune response via eicosanoids.

    PubMed

    Shafeeq, Tahir; Ahmed, Shabbir; Kim, Yonggyun

    2018-07-01

    Upon immune challenge, insects recognize nonself. The recognition signal will propagate to nearby immune effectors. It is well-known that Toll signal pathway induces antimicrobial peptide (AMP) gene expression. Eicosanoids play crucial roles in mediating the recognition signal to immune effectors by enhancing humoral immune response through activation of AMP synthesis as well as cellular immune responses, suggesting a functional cross-talk between Toll and eicosanoid signals. This study tested a cross-talk between these two signals. Two signal transducing factors (MyD88 and Pelle) of Toll immune pathway were identified in Spodoptera exigua. RNA interference (RNAi) of either SeMyD88 or SePelle expression interfered with the expression of AMP genes under Toll signal pathway. Bacterial challenge induced PLA 2 enzyme activity. However, RNAi of these two immune factors significantly suppressed the induction of PLA 2 enzyme activity. Furthermore, RNAi treatment prevented gene expression of cellular PLA 2 . Inhibition of PLA 2 activity reduced phenoloxidase activity and subsequent suppression in cellular immune response measured by hemocyte nodule formation. However, immunosuppression induced by RNAi of Toll signal molecules was significantly reversed by addition of arachidonic acid (AA), a catalytic product of PLA 2 . The addition also significantly reduced the enhanced fungal susceptibility of S. exigua treated by RNAi against two Toll signal molecules. These results indicate that there is a cross-talk between Toll and eicosanoid signals in insect immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment.

    PubMed

    Hablützel, Pascal I; Brown, Martha; Friberg, Ida M; Jackson, Joseph A

    2016-09-01

    The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments.

  4. PD-L1 Expression of Tumor Cells, Macrophages, and Immune Cells in Non-Small Cell Lung Cancer Patients with Malignant Pleural Effusion.

    PubMed

    Tseng, Yen-Han; Ho, Hsiang-Ling; Lai, Chiung-Ru; Luo, Yung-Hung; Tseng, Yen-Chiang; Whang-Peng, Jacqueline; Lin, Yi-Hsuan; Chou, Teh-Ying; Chen, Yuh-Min

    2018-03-01

    Whether immunohistochemical staining of programmed death ligand 1 (PD-L1) on cells of pleural effusion could be used to predict response to immunotherapy treatment has not been reported. We retrospectively enrolled patients who had undergone malignant pleural effusion drainage and had effusion cell block specimens from 2014 to 2016. Immunohistochemical staining for PD-L1 was performed with tumor cells, immune cells, and macrophages of all cell block specimens. Immunoactivity was scored as 0 for absence of staining and 1+ for faint, 2+ for moderate, and 3+ for intense membranous staining. Patients' clinicopathological characteristics were also collected. PD-L1 expression of pleural effusion tumor cells was associated with the PD-L1 expression of macrophages (p = 0.003) and immune cells (p < 0.001). However, the PD-L1 expression of immune cells was not associated with that of macrophages. The PD-L1 expression of tumor cells was correlated with sex (p = 0.012), smoking status (p = 0.032), and Eastern Cooperative Oncology Group performance status (p = 0.017). The PD-L1 expression of immune cells was associated with the overall survival of patients (p = 0.004). These results suggest that there might be an immune interaction between pleural effusion tumor cells and macrophages. The low intensity of PD-L1 expression in immune cells is associated with the poor survival of patients with lung cancer with malignant pleural effusion. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  5. Library on the Go: A Focus Group Study of the Mobile Web and the Academic Library

    ERIC Educational Resources Information Center

    Seeholzer, Jamie; Salem, Joseph A., Jr.

    2011-01-01

    This study explores student use of the mobile Web in general and expectations for an academic library's mobile Web site in particular through focus groups with students at Kent State University. Participants expressed more interest in using their mobile Web device to interact with library resources and services than anticipated. Results showed an…

  6. Dynamic miRNA-mRNA regulations are essential for maintaining Drosophila immune homeostasis during Micrococcus luteus infection.

    PubMed

    Wei, Guanyun; Sun, Lianjie; Li, Ruimin; Li, Lei; Xu, Jiao; Ma, Fei

    2018-04-01

    Pathogen bacteria infections can lead to dynamic changes of microRNA (miRNA) and mRNA expression profiles, which may control synergistically the outcome of immune responses. To reveal the role of dynamic miRNA-mRNA regulation in Drosophila innate immune responses, we have detailedly analyzed the paired miRNA and mRNA expression profiles at three time points during Drosophila adult males with Micrococcus luteus (M. luteus) infection using RNA- and small RNA-seq data. Our results demonstrate that differentially expressed miRNAs and mRNAs represent extensively dynamic changes over three time points during Drosophila with M. luteus infection. The pathway enrichment analysis indicates that differentially expressed genes are involved in diverse signaling pathways, including Toll and Imd as well as orther signaling pathways at three time points during Drosophila with M. luteus infection. Remarkably, the dynamic change of miRNA expression is delayed by compared to mRNA expression change over three time points, implying that the "time" parameter should be considered when the function of miRNA/mRNA is further studied. In particular, the dynamic miRNA-mRNA regulatory networks have shown that miRNAs may synergistically regulate gene expressions of different signaling pathways to promote or inhibit innate immune responses and maintain homeostasis in Drosophila, and some new regulators involved in Drosophila innate immune response have been identified. Our findings strongly suggest that miRNA regulation is a key mechanism involved in fine-tuning cooperatively gene expressions of diverse signaling pathways to maintain innate immune response and homeostasis in Drosophila. Taken together, the present study reveals a novel role of dynamic miRNA-mRNA regulation in immune response to bacteria infection, and provides a new insight into the underlying molecular regulatory mechanism of Drosophila innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Information-seeking behavior of basic science researchers: implications for library services.

    PubMed

    Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A

    2010-01-01

    This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.

  8. Information-seeking behavior of basic science researchers: implications for library services

    PubMed Central

    Haines, Laura L.; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A.

    2010-01-01

    Objectives: This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. Methods: A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. Results: The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Conclusions: Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository. PMID:20098658

  9. Interaction between sleep and the immune response in Drosophila: a role for the NFkappaB relish.

    PubMed

    Williams, Julie A; Sathyanarayanan, Sriram; Hendricks, Joan C; Sehgal, Amita

    2007-04-01

    The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFkappaB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response.

  10. Interaction Between Sleep and the Immune Response in Drosophila: A Role for the NFκB Relish

    PubMed Central

    Williams, Julie A.; Sathyanarayanan, Sriram; Hendricks, Joan C.; Sehgal, Amita

    2010-01-01

    Study Objectives The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. Design We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. Results A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFκB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. Conclusion These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response. PMID:17520783

  11. Digital gene expression analysis in hemocytes of the white shrimp Litopenaeus vannamei in response to low salinity stress.

    PubMed

    Zhao, Qun; Pan, Luqing; Ren, Qin; Hu, Dongxu

    2015-02-01

    The white shrimp Litopenaeus vannamei has been greatly impacted by low salinity stress. To gain knowledge on the immune response in L. vannamei under such stress, we investigated digital gene expression (DEG) in L. vannamei hemocytes using the deep-sequencing platform Illumina HiSeq 2000. In total, 38,155 high quality unigenes with average length 770 bp were generated; 145 and 79 genes were identified up- or down-regulated, respectively. Functional categorization and pathways of the differentially expressed genes revealed that immune signaling pathways, cellular immunity, humoral immunity, apoptosis, cellular protein synthesis, lipid transport and energy metabolism were the differentially regulated processes occurring during low salinity stress. These results will provide a resource for subsequent gene expression studies regarding environmental stress and a valuable gene information for a better understanding of immune mechanisms of L. vannamei under low salinity stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Reduced Expression of SARM in Mouse Spleen during Polymicrobial Sepsis.

    PubMed

    Gong, Yu; Zou, Lin; Cen, Dongzhi; Chao, Wei; Chen, Dunjin

    2016-12-01

    Objective Immune dysfunction, including prominent apoptosis of immune cells and decreased functioning of the remaining immune cells, plays a central role in the pathogenesis of sepsis. Sterile α and HEAT/armadillo motif-containing protein (SARM) is implicated in the regulation of immune cell apoptosis. This study aimed to elucidate SARM contributes to sepsis-induced immune cell death and immunosuppression. Methods A mouse model of polymicrobial sepsis was generated by cecum ligation and puncture (CLP). SARM gene and protein expression, caspase 3 cleavage and intracellular ATP production were measured in the mouse spleens. Results CLP-induced polymicrobial sepsis specifically attenuated both the gene and protein expression of SARM in the spleens. Moreover, the attenuation of SARM expression synchronized with splenocyte apoptosis, as evidenced by increased caspase 3 cleavage and ATP depletion. Conclusions These findings suggest that SARM is a potential regulator of sepsis-induced splenocyte apoptosis.

  13. The Transcriptional Response of Drosophila melanogaster to Infection with the Sigma Virus (Rhabdoviridae)

    PubMed Central

    Baines, John F.; Roller, Julia; Saminadin-Peter, Sarah S.; Parsch, John; Jiggins, Francis M.

    2009-01-01

    Background Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. Principal Findings We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. Conclusions These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus. PMID:19718442

  14. The transcriptional response of Drosophila melanogaster to infection with the sigma virus (Rhabdoviridae).

    PubMed

    Carpenter, Jennifer; Hutter, Stephan; Baines, John F; Roller, Julia; Saminadin-Peter, Sarah S; Parsch, John; Jiggins, Francis M

    2009-08-31

    Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.

  15. Gene Expression Profiling in the Thiamethoxam Resistant and Susceptible B-biotype Sweetpotato Whitefly, Bemisia tabaci

    PubMed Central

    Xie, Wen; Yang, Xin; Wang, Shao-Ii; Wu, Qing-jun; Yang, Ni-na; Li, Ru-mei; Jiao, Xiaoguo; Pan, Hui-peng; Liu, Bai-ming; Feng, Yun-tao; Xu, Bao-yun; Zhou, Xu-guo; Zhang, You-jun

    2012-01-01

    Thiamethoxam has been used as a major insecticide to control the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Due to its excessive use, a high level of resistance to thiamethoxam has developed worldwide over the past several years. To better understand the molecular mechanisms underlying this resistance in B. tabaci, gene profiles between the thiamethoxam-resistant and thiamethoxam-susceptible strains were investigated using the suppression subtractive hybridization (SSH) library approach. A total of 72 and 52 upand down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These expressed sequence tags (ESTs) belong to several functional categories based on their gene ontology annotation. Some categories such as cell communication, response to abiotic stimulus, lipid particle, and nuclear envelope were identified only in the forward library of thiamethoxam-resistant strains. In contrast, categories such as behavior, cell proliferation, nutrient reservoir activity, sequence-specific DNA binding transcription factor activity, and signal transducer activity were identified solely in the reverse library. To study the validity of the SSH method, 16 differentially expressed genes from both forward and reverse SSH libraries were selected randomly for further analyses using quantitative realtime PCR (qRT-PCR). The qRT-PCR results were fairly consistent with the SSH results; however, only 50% of the genes showed significantly different expression profiles between the thiamethoxam-resistant and thiamethoxam-susceptible whiteflies. Among these genes, a putative NAD-dependent methanol dehydrogenase was substantially over-expressed in the thiamethoxamresistant adults compared to their susceptible counterparts. The distributed profiles show that it was highly expressed during the egg stage, and was most abundant in the abdomen of adult females. PMID:22957505

  16. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    PubMed Central

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  17. Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE.

    PubMed

    Bowes Rickman, Catherine; Ebright, Jessica N; Zavodni, Zachary J; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P; Wistow, Graeme; Boon, Kathy; Hauser, Michael A

    2006-06-01

    To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. The EyeSAGE database, combining three different gene-profiling platforms including the authors' multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions.

  18. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System

    PubMed Central

    Díaz-Muñoz, Manuel D.; Turner, Martin

    2018-01-01

    Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome. PMID:29875770

  19. (Neuro)transmitter systems in circulating immune cells: a target of immunopharmacological interventions?

    PubMed

    Tayebati, Seyed Khosrow; Amenta, Francesco

    2008-01-01

    Increasing evidence indicates the existence of an association between nervous and immune systems. The two systems communicate with each-other to maintain immune homeostasis. Activated immune cells secrete cytokines that influence central nervous system activity. Nervous system, through its peripheral and/or autonomic divisions activates output regulating levels of immune cell activity and the subsequent magnitude of an immune response. On the other hand, neurotransmitters, which represent the main substances involved in nerve cell communications, can influence immune function. Immune organs and circulating immune cells express several (neuro)transmitter systems that can be involved in regulating their activity. The expression of neurotransmitter systems by different subsets of circulating immune cells was reviewed. The regulatory role of different families of (neuro)transmitters (catecholamines, 5-hydroxytryptamine, acetylcholine, histamine and neuropeptides) in modulating levels of immune mediators or specific immune responses is discussed.

  20. Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human VH/VL Single-Domain Antibodies from In Vitro Display Libraries

    PubMed Central

    Henry, Kevin A.; Kim, Dae Young; Kandalaft, Hiba; Lowden, Michael J.; Yang, Qingling; Schrag, Joseph D.; Hussack, Greg; MacKenzie, C. Roger; Tanha, Jamshid

    2017-01-01

    Human autonomous VH/VL single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged VH/VL domains. Here, we describe the design and characterization of three novel human VH/VL sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential VH/VL sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three VH/VL sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three VH/VL libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 VHs and 7 VLs in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2–3 µM), but had highly variable expression yields (range: 0.1–19 mg/L). Despite our efforts to identify the most stable VH/VL scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing VH/VL sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some VH/VL sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous VH/VL immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries. PMID:29375542

  1. Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment.

    PubMed

    Ladenson, Ruth C; Crimmins, Dan L; Landt, Yvonne; Ladenson, Jack H

    2006-07-01

    We have isolated and characterized a caffeine-specific, heavy-chain-only antibody fragment (V(HH)) from llama that is capable of being utilized to analyze caffeine in hot and cold beverages. Camelid species (llama and camel) were selected for immunization because of their potential to make heat-stable, heavy-chain-only antibodies. Llamas and camels were immunized with caffeine covalently linked to keyhole limpet hemocyanin, and recombinant antibody techniques were used to create phage displayed libraries of variable region fragments of the heavy-chain antibodies. Caffeine-specific V(HH) fragments were selected by their ability to bind to caffeine/bovine serum albumin (BSA) and confirmed by a positive reaction in a caffeine enzyme-linked immunosorbent assay (caffeine ELISA). One of these V(HH) fragments (VSA2) was expressed as a soluble protein and shown to recover its reactivity after exposure to temperatures up to 90 degrees C. In addition, VSA2 was able to bind caffeine at 70 degrees C. A competition caffeine ELISA was developed for the measurement of caffeine in beverages, and concentrations of caffeine obtained for coffee, Coca-Cola Classic, and Diet Coke agreed well with high performance liquid chromatography (HPLC) determination and literature values. VSA2 showed minimal cross reactivity with structurally related methylxanthines.

  2. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation.

    PubMed

    van de Weijer, Michael L; Schuren, Anouk B C; van den Boomen, Dick J H; Mulder, Arend; Claas, Frans H J; Lehner, Paul J; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2017-09-01

    Misfolded endoplasmic reticulum (ER) proteins are dislocated towards the cytosol and degraded by the ubiquitin-proteasome system in a process called ER-associated protein degradation (ERAD). During infection with human cytomegalovirus (HCMV), the viral US2 protein targets HLA class I molecules (HLA-I) for degradation via ERAD to avoid elimination by the immune system. US2-mediated degradation of HLA-I serves as a paradigm of ERAD and has facilitated the identification of TRC8 (also known as RNF139) as an E3 ubiquitin ligase. No specific E2 enzymes had previously been described for cooperation with TRC8. In this study, we used a lentiviral CRISPR/Cas9 library targeting all known human E2 enzymes to assess their involvement in US2-mediated HLA-I downregulation. We identified multiple E2 enzymes involved in this process, of which UBE2G2 was crucial for the degradation of various immunoreceptors. UBE2J2, on the other hand, counteracted US2-induced ERAD by downregulating TRC8 expression. These findings indicate the complexity of cellular quality control mechanisms, which are elegantly exploited by HCMV to elude the immune system. © 2017. Published by The Company of Biologists Ltd.

  3. Generation of a total of 6483 expressed sequence tags from 60 day-old bovine whole fetus and fetal placenta.

    PubMed

    Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y

    2004-05-01

    Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.

  4. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.

    PubMed

    Latimer, Luke N; Dueber, John E

    2017-06-01

    A common challenge in metabolic engineering is rapidly identifying rate-controlling enzymes in heterologous pathways for subsequent production improvement. We demonstrate a workflow to address this challenge and apply it to improving xylose utilization in Saccharomyces cerevisiae. For eight reactions required for conversion of xylose to ethanol, we screened enzymes for functional expression in S. cerevisiae, followed by a combinatorial expression analysis to achieve pathway flux balancing and identification of limiting enzymatic activities. In the next round of strain engineering, we increased the copy number of these limiting enzymes and again tested the eight-enzyme combinatorial expression library in this new background. This workflow yielded a strain that has a ∼70% increase in biomass yield and ∼240% increase in xylose utilization. Finally, we chromosomally integrated the expression library. This library enriched for strains with multiple integrations of the pathway, which likely were the result of tandem integrations mediated by promoter homology. Biotechnol. Bioeng. 2017;114: 1301-1309. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Dendritic cell expression of the signaling molecule TRAF6 is required for immune tolerance in the lung

    PubMed Central

    Han, Daehee; Walsh, Matthew C; Kim, Kwang Soon; Hong, Sung-Wook; Lee, Junyoung; Yi, Jaeu; Rivas, Gloriany; Choi, Yongwon; Surh, Charles D

    2017-01-01

    Abstract Immune tolerance in the lung is important for preventing hypersensitivity, such as allergic asthma. Maintenance of tolerance in the lung is established by coordinated activities of poorly understood cellular and molecular mechanisms, including participation of dendritic cells (DCs). We have previously identified DC expression of the signaling molecule TRAF6 as a non-redundant requirement for the maintenance of immune tolerance in the small intestine of mice. Because mucosal tissues share similarities in how they interact with exogenous antigens, we examined the role of DC-expressed TRAF6 in the lung. As with the intestine, we found that the absence TRAF6 expression by DCs led to spontaneous generation of Th2-associated immune responses and increased susceptibility to model antigen-induced asthma. To examine the role of commensal microbiota, mice deficient in TRAF6 in DCs were treated with broad-spectrum antibiotics and/or re-derived on a germ-free (GF) background. Interestingly, we found that antibiotics-treated specific pathogen-free, but not GF, mice showed restored immune tolerance in the absence of DC-expressed TRAF6. We further found that antibiotics mediate microbiota-independent effects on lung T cells to promote immune tolerance in the lung. This work provides both a novel tool for studying immune tolerance in the lung and an advance in our conceptual understanding of potentially common molecular mechanisms of immune tolerance in both the intestine and the lung. PMID:28338920

  6. Selection of specific interactors from phage display library based on sea lamprey variable lymphocyte receptor sequences.

    PubMed

    Wezner-Ptasinska, Magdalena; Otlewski, Jacek

    2015-12-01

    Variable lymphocyte receptors (VLRs) are non-immunoglobulin components of adaptive immunity in jawless vertebrates. These proteins composed of leucine-rich repeat modules offer some advantages over antibodies in target binding and therefore are attractive candidates for biotechnological applications. In this paper we report the design and characterization of a phage display library based on a previously proposed dVLR scaffold containing six LRR modules [Wezner-Ptasinska et al., 2011]. Our library was designed based on a consensus approach in which the randomization scheme reflects the frequencies of amino acids naturally occurring in respective positions responsible for antigen recognition. We demonstrate general applicability of the scaffold by selecting dVLRs specific for lysozyme and S100A7 protein with KD values in the micromolar range. The dVLR library could be used as a convenient alternative to antibodies for effective isolation of high affinity binders.

  7. A simplified immune suppression scheme leads to persistent micro-dystrophin expression in Duchenne muscular dystrophy dogs.

    PubMed

    Shin, Jin-Hong; Yue, Yongping; Srivastava, Arun; Smith, Bruce; Lai, Yi; Duan, Dongsheng

    2012-02-01

    Highly abbreviated micro-dystrophin genes have been intensively studied for Duchenne muscular dystrophy (DMD) gene therapy. Following adeno-associated virus (AAV) gene transfer, robust microgene expression is achieved in murine DMD models in the absence of immune suppression. Interestingly, a recent study suggests that AAV gene transfer in dystrophic dogs may require up to 18 weeks' immune suppression using a combination of three different immune-suppressive drugs (cyclosporine, mycophenolate mofetil, and anti-dog thymocyte globulin). Continued immune suppression is not only costly but also may cause untoward reactions. Further, some of the drugs (such as anti-dog thymocyte globulin) are not readily available. To overcome these limitations, we developed a novel 5-week immune suppression scheme using only cyclosporine and mycophenolate mofetil. AAV vectors (either AV.RSV.AP that expresses the heat-resistant human alkaline phosphatase gene, or AV.CMV.μDys that expresses the canine R16-17/H3/ΔC microgene) at 2.85×10(12) vg particles were injected into adult dystrophic dog limb muscles under the new immune suppression protocol. Sustained transduction was observed for nearly half year (the end of the study). The simplified immune suppression strategy described here may facilitate preclinical studies in the dog model.

  8. Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses

    PubMed Central

    Lee, Jinhwa; Yu, Hai; Li, Yonghai; Ma, Jingjiao; Lang, Yuekun; Duff, Michael; Henningson, Jamie; Liu, Qinfang; Li, Yuhao; Nagy, Abdou; Bawa, Bhupinder; Li, Zejun; Tong, Guangzhi; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Although several studies have investigated the functions of influenza PA-X, the impact of different expressions of PA-X protein including full-length, truncated or PA-X deficient forms on virus replication, pathogenicity and host response remains unclear. Herein, we generated two mutated viruses expressing a full-length or deficient PA-X protein based on the A/California/04/2009 (H1N1) virus that expresses a truncated PA-X to understand three different expressions of PA-X protein on virus replication, pathogenicity and host immune responses. The results showed that expression of either full-length or truncated PA-X protein enhanced viral replication and pathogenicity as well as reduced host innate immune response in mice by host shutoff activity when compared to the virus expressing the deficient PA-X form. Furthermore, the full-length PA-X expression exhibited a greater effect on virus pathogenicity than the truncated PA-X form. Our results provide novel insights of PA-X on viral replication, pathogenicity and host immune responses. PMID:28142079

  9. [Construction of fetal mesenchymal stem cell cDNA subtractive library].

    PubMed

    Yang, Li; Wang, Dong-Mei; Li, Liang; Bai, Ci-Xian; Cao, Hua; Li, Ting-Yu; Pei, Xue-Tao

    2002-04-01

    To identify differentially expressed genes between fetal mesenchymal stem cell (MSC) and adult MSC, especially specified genes expressed in fetal MSC, a cDNA subtractive library of fetal MSC was constructed using suppression subtractive hybridization (SSH) technique. At first, total RNA was isolated from fetal and adult MSC. Using SMART PCR synthesis method, single-strand and double-strand cDNAs were synthesized. After Rsa I digestion, fetal MSC cDNAs were divided into two groups and ligated to adaptor 1 and adaptor 2 respectively. Results showed that the amplified library contains 890 clones. Analysis of 890 clones with PCR demonstrated that 768 clones were positive. The positive rate is 86.3%. The size of inserted fragments in these positive clones was between 0.2 - 1 kb, with an average of 400 - 600 bp. SSH is a convenient and effective method for screening differentially expressed genes. The constructed cDNA subtractive library of fetal MSC cDNA lays solid foundation for screening and cloning new and specific function related genes of fetal MSC.

  10. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  11. Analysis and functional annotation of expressed sequence tags from in vitro cell lines of elasmobranchs: spiny dogfish shark (Squalus acanthias) and little skate (Leucoraja erinacea)

    PubMed Central

    Parton, Angela; Bayne, Christopher J.; Barnes, David W.

    2010-01-01

    Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories “envelope” and “oxidoreductase activity” but the SAE transcripts did not. GO analysis of SAE transcripts identified the category “anatomical structure formation” that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. PMID:20471924

  12. Analysis and functional annotation of expressed sequence tags from in vitro cell lines of elasmobranchs: Spiny dogfish shark (Squalus acanthias) and little skate (Leucoraja erinacea).

    PubMed

    Parton, Angela; Bayne, Christopher J; Barnes, David W

    2010-09-01

    Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories "envelope" and "oxidoreductase activity" but the SAE transcripts did not. GO analysis of SAE transcripts identified the category "anatomical structure formation" that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. Copyright 2010 Elsevier Inc. All rights reserved.

  13. miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila

    PubMed Central

    Xiong, Xiao-Peng; Chang, Kung-Yen; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M.; Zhou, Rui

    2016-01-01

    microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity. PMID:27893816

  14. miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila.

    PubMed

    Xiong, Xiao-Peng; Kurthkoti, Krishna; Chang, Kung-Yen; Li, Jian-Liang; Ren, Xingjie; Ni, Jian-Quan; Rana, Tariq M; Zhou, Rui

    2016-11-01

    microRNAs are endogenous small regulatory RNAs that modulate myriad biological processes by repressing target gene expression in a sequence-specific manner. Here we show that the conserved miRNA miR-34 regulates innate immunity and ecdysone signaling in Drosophila. miR-34 over-expression activates antibacterial innate immunity signaling both in cultured cells and in vivo, and flies over-expressing miR-34 display improved survival and pathogen clearance upon Gram-negative bacterial infection; whereas miR-34 knockout animals are defective in antibacterial defense. In particular, miR-34 achieves its immune-stimulatory function, at least in part, by repressing the two novel target genes Dlg1 and Eip75B. In addition, our study reveals a mutual repression between miR-34 expression and ecdysone signaling, and identifies miR-34 as a node in the intricate interplay between ecdysone signaling and innate immunity. Lastly, we identify cis-regulatory genomic elements and trans-acting transcription factors required for optimal ecdysone-mediated repression of miR-34. Taken together, our study enriches the repertoire of immune-modulating miRNAs in animals, and provides new insights into the interplay between steroid hormone signaling and innate immunity.

  15. Are Public Libraries Developers of Social Capital? A Review of Their Contribution and Attempts to Demonstrate It

    ERIC Educational Resources Information Center

    Ferguson, Stuart

    2012-01-01

    This paper examines the idea, commonly expressed in the Library and Information Services (LIS) literature, that public libraries have a growing role as developers of social capital, and brings to bear some of the growing body of research into public libraries and social capital. It reviews definitions of social capital by writers outside the LIS…

  16. Transcriptional analysis of immune genes in Epstein-Barr virus-associated gastric cancer and association with clinical outcomes.

    PubMed

    Sundar, Raghav; Qamra, Aditi; Tan, Angie Lay Keng; Zhang, Shenli; Ng, Cedric Chuan Young; Teh, Bin Tean; Lee, Jeeyun; Kim, Kyoung-Mee; Tan, Patrick

    2018-06-18

    Epstein-Barr virus-associated gastric cancer (EBVaGC) has traditionally been associated with high expression of PD-L1 and immune infiltration. Correlations between PD-L1 and other immune-related gene (IRG) expressions in EBVaGC have not been previously described. We performed NanoString ® transcriptomic profiling and PD-L1 immunohistochemistry (IHC) (using the FDA approved Dako PD-L1 IHC 22C3) on EBVaGC samples from gastric cancer patients undergoing primary tumor resections at Samsung Medical Centre, South Korea. For controls, EBV-negative samples from the previously reported Asian Cancer Research Group (EBVnegACRG) cohort were used. Genes tested included PD-L1 and other IRGs related to intra-tumoral cytolytic activity, cytokines and immune checkpoints. Samples with PD-L1 expression > 34th percentile were defined as PD-L1 high and the remaining as PD-L1 low . We identified 71 cases of EBVaGC and 193 EBV-negative ACRG samples as controls. EBVaGC showed higher expression of all queried immune genes compared to EBVnegACRG samples (p < 0.01). PD-L1 immunohistochemistry expression correlated with PD-L1 transcript expression (r = 0.63, p < 0.001). Tumor-infiltrating lymphocyte patterns were also found to be different between PD-L1 low and PD-L1 high groups. PD-L1 low EBVaGC samples (n = 24, 34%) had consistently decreased expression of all other immune genes, such as CD8A, GZMA and PRF1 and PD-1 (p < 0.001). PD-L1 low EBVaGC samples were also associated with worse disease-free survival (HR 5.03, p = 0.032) compared to PD-L1 high EBVaGC samples. A substantial proportion of EBVaGC does not express high levels of PD-L1 and other immune genes. EBVaGCs which have lower transcriptomic expression of PD-L1 tend to have a similarly low expression of other immune genes, IHC scores and a poorer prognosis.

  17. Immune Checkpoint Molecules on Tumor-Infiltrating Lymphocytes and Their Association with Tertiary Lymphoid Structures in Human Breast Cancer

    PubMed Central

    Solinas, Cinzia; Garaud, Soizic; De Silva, Pushpamali; Boisson, Anaïs; Van den Eynden, Gert; de Wind, Alexandre; Risso, Paolo; Rodrigues Vitória, Joel; Richard, François; Migliori, Edoardo; Noël, Grégory; Duvillier, Hugues; Craciun, Ligia; Veys, Isabelle; Awada, Ahmad; Detours, Vincent; Larsimont, Denis; Piccart-Gebhart, Martine; Willard-Gallo, Karen

    2017-01-01

    There is an exponentially growing interest in targeting immune checkpoint molecules in breast cancer (BC), particularly in the triple-negative subtype where unmet treatment needs remain. This study was designed to analyze the expression, localization, and prognostic role of PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM3 in primary BC. Gene expression analysis using the METABRIC microarray dataset found that all six immune checkpoint molecules are highly expressed in basal-like and HER2-enriched compared to the other BC molecular subtypes. Flow cytometric analysis of fresh tissue homogenates from untreated primary tumors show that PD-1 is principally expressed on CD4+ or CD8+ T cells and CTLA-4 is expressed on CD4+ T cells. The global proportion of PD-L1+, PD-L2+, LAG3+, and TIM3+ tumor-infiltrating lymphocytes (TIL) was low and detectable in only a small number of tumors. Immunohistochemically staining fixed tissues from the same tumors was employed to score TIL and tertiary lymphoid structures (TLS). PD-L1+, PD-L2+, LAG3+, and TIM3+ cells were detected in some TLS in a pattern that resembles secondary lymphoid organs. This observation suggests that TLS are important sites of immune activation and regulation, particularly in tumors with extensive baseline immune infiltration. Significantly improved overall survival was correlated with PD-1 expression in the HER2-enriched and PD-L1 or CTLA-4 expression in basal-like BC. PD-1 and CTLA-4 proteins were most frequently detected on TIL, which supports the correlations observed between their gene expression and improved long-term outcome in basal-like and HER2-enriched BC. PD-L1 expression by tumor or immune cells is uncommon in BC. Overall, the data presented here distinguish PD-1 as a marker of T cell activity in both the T and B cell areas of BC associated TLS. We found that immune checkpoint molecule expression parallels the extent of TIL and TLS, although there is a noteworthy amount of heterogeneity between tumors even within the same molecular subtype. These data indicate that assessing the levels of immune checkpoint molecule expression in an individual patient has important implications for the success of therapeutically targeting them in BC. PMID:29163490

  18. Cell-free translational screening of an expression sequence tag library of Clonorchis sinensis for novel antigen discovery.

    PubMed

    Kasi, Devi; Catherine, Christy; Lee, Seung-Won; Lee, Kyung-Ho; Kim, Yu Jung; Ro Lee, Myeong; Ju, Jung Won; Kim, Dong-Myung

    2017-05-01

    The rapidly evolving cloning and sequencing technologies have enabled understanding of genomic structure of parasite genomes, opening up new ways of combatting parasite-related diseases. To make the most of the exponentially accumulating genomic data, however, it is crucial to analyze the proteins encoded by these genomic sequences. In this study, we adopted an engineered cell-free protein synthesis system for large-scale expression screening of an expression sequence tag (EST) library of Clonorchis sinensis to identify potential antigens that can be used for diagnosis and treatment of clonorchiasis. To allow high-throughput expression and identification of individual genes comprising the library, a cell-free synthesis reaction was designed such that both the template DNA and the expressed proteins were co-immobilized on the same microbeads, leading to microbead-based linkage of the genotype and phenotype. This reaction configuration allowed streamlined expression, recovery, and analysis of proteins. This approach enabled us to identify 21 antigenic proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:832-837, 2017. © 2017 American Institute of Chemical Engineers.

  19. Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: Insights from zebrafish model.

    PubMed

    Hoseinifar, Seyed Hossein; Safari, Roghieh; Dadar, Maryam

    2017-03-01

    Propionate is a short-chain fatty acid (SCFA) that improves physiological and pathophysiological properties. However, there is limited information available about the effects of SCFAs on mucosal immune parameters as well as growth and appetite related genes expression. The aim of the present study was to evaluate the effect of sodium propionate (SP) intake on the mucosal immune parameters, growth and appetite related genes expression using zebrafish (Danio rerio) as model organism. Zebrafish fed control or diet supplemented with different levels (0.5, 1 and 2%) of SP for 8weeks. At the end of feeding trial, the expression of the key genes related to growth and appetite (GH, IGF1, MYSTN and Ghrl) was evaluated. Also, mucosal immune parameters (Total Ig, lysozyme and protease activity) were studied in skin mucus of zebrafish. The results showed that dietary administration of SP significantly (P<0.05) up-regulated the expression of GH, IGF1 and down-regulated MYSTN gene. Also, feeding zebrafish with SP supplemented diet significantly increased appetite related gene expression (P<0.05) with a more pronounced effect in higher inclusion levels. Compared with control group, the expression of appetite related gene (Ghrl) was remarkably (P<0.05) higher in SP fed zebrafish. Also, elevated mucosal immune parameters was observed in zebrafish fed SP supplemented diet. The present results revealed beneficial effects of dietary SP on mucosal immune response and growth and appetite related genes expression. These results also highlighted the potential use of SP as additive in human diets. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Interleukin-6 promotes systemic lupus erythematosus progression with Treg suppression approach in a murine systemic lupus erythematosus model.

    PubMed

    Mao, Xiaoli; Wu, Yunyun; Diao, Huitian; Hao, Jianlei; Tian, Gaofei; Jia, Zhenghu; Li, Zheng; Xiong, Sidong; Wu, Zhenzhou; Wang, Puyue; Zhao, Liqing; Yin, Zhinan

    2014-11-01

    Our aim is to reveal the role of interleukin 6 (IL-6) in the pathogenesis of systemic lupus erythematosus (SLE) in a murine model of SLE. Normal female C57BL/6 mice were immunized with syngeneic-activated lymphocyte-derived DNA (ALD-DNA) to induce SLE. Non-immunized mice were used as control. SLE-associated markers, including anti-double-stranded DNA (anti-dsDNA) Abs, urine protein, and kidney histopathology, were assayed to ensure the induction of the disease. Compared with control mice, ALD-DNA immunized mice exhibited high levels of anti-dsDNA Abs, IL-6 expression in vivo and in vitro. We also found that IL-6 knockout (IL-6KO) mice were resistant to ALD-DNA-induced SLE. The activation of CD4(+) T cells in immunized IL-6KO mice was lower than in immunized wild-type (Wt) mice. Intracellular cytokine staining showed that Foxp3 expression in immunized IL-6KO mice was higher than in immunized Wt mice, which might be associated with the disease severity. We further discovered that ALD-DNA-stimulated dendritic cells supernatants could result in higher IL-6 and TNF-α expression and could suppress Foxp3 expression. In addition, blocking IL-6 could up-regulate Foxp3 expression. Therefore, our findings show that IL-6 promotes the progression of SLE via suppressing Treg differentiation.

  1. Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE)

    PubMed Central

    Sharon, Dror; Blackshaw, Seth; Cepko, Constance L.; Dryja, Thaddeus P.

    2002-01-01

    We used the serial analysis of gene expression (SAGE) technique to catalogue and measure the relative levels of expression of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium (RPE) from one or both of two humans, aged 88 and 44 years. The cone photoreceptor contribution to all transcription in the retina was found to be similar in the macula versus the retinal periphery, whereas the rod contribution was greater in the periphery versus the macula. Genes encoding structural proteins for axons were found to be expressed at higher levels in the macula versus the retinal periphery, probably reflecting the large proportion of ganglion cells in the central retina. In comparison with the younger eye, the peripheral retina of the older eye had a substantially higher proportion of mRNAs from genes encoding proteins involved in iron metabolism or protection against oxidative damage and a substantially lower proportion of mRNAs from genes encoding proteins involved in rod phototransduction. These differences may reflect the difference in age between the two donors or merely interindividual variation. The RPE library had numerous previously unencountered tags, suggesting that this cell type has a large, idiosyncratic repertoire of expressed genes. Comparison of these libraries with 100 reported nonocular SAGE libraries revealed 89 retina-specific or enriched genes expressed at substantial levels, of which 14 are known to cause a retinal disease and 53 are RPE-specific genes. We expect that these libraries will serve as a resource for understanding the relative expression levels of genes in the retina and the RPE and for identifying additional disease genes. PMID:11756676

  2. Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima

    PubMed Central

    Rojas-Cartagena, Carmencita; Ortíz-Pineda, Pablo; Ramírez-Gómez, Francisco; Suárez-Castillo, Edna C.; Matos-Cruz, Vanessa; Rodríguez, Carlos; Ortíz-Zuazaga, Humberto; García-Arrarás, José E.

    2010-01-01

    Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression. PMID:17579180

  3. Improving RNA-Seq expression estimates by correcting for fragment bias

    PubMed Central

    2011-01-01

    The biochemistry of RNA-Seq library preparation results in cDNA fragments that are not uniformly distributed within the transcripts they represent. This non-uniformity must be accounted for when estimating expression levels, and we show how to perform the needed corrections using a likelihood based approach. We find improvements in expression estimates as measured by correlation with independently performed qRT-PCR and show that correction of bias leads to improved replicability of results across libraries and sequencing technologies. PMID:21410973

  4. Designing Authentic Learning Tasks for Online Library Instruction

    ERIC Educational Resources Information Center

    Finch, Jannette L.; Jefferson, Renee N.

    2013-01-01

    This empirical study explores whether authentic tasks designed specifically for deliberately grouped students have an effect on student perception of teaching presence and student cognitive gains. In one library research class offered in an express session online, the instructor grouped students randomly. In a second online library research class,…

  5. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke.

    PubMed

    Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E; Pawlak, Erica A; Glista-Baker, Ellen; Benowitz, Neal L; Fry, Rebecca C; Jaspers, Ilona

    2016-07-01

    Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa. Copyright © 2016 the American Physiological Society.

  6. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    PubMed

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  7. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  8. The role of transient receptor potential vanilloid type-2 ion channels in innate and adaptive immune responses

    PubMed Central

    Santoni, Giorgio; Farfariello, Valerio; Liberati, Sonia; Morelli, Maria B.; Nabissi, Massimo; Santoni, Matteo; Amantini, Consuelo

    2013-01-01

    The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34+ hematopoietic stem cells, where its cytosolic Ca2+ activity is crucial for stem/progenitor cell cycle progression, growth, and differentiation. In innate immune cells, TRPV2 is expressed in granulocytes, macrophages, and monocytes where it stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis, and lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production. In mast cells, activation of TRPV2 allows intracellular Ca2+ ions flux, thus stimulating protein kinase A-dependent degranulation. In addition, TRPV2 is highly expressed in CD56+ natural killer cells. TRPV2 orchestrates Ca2+ signal in T cell activation, proliferation, and effector functions. Moreover, messenger RNA for TRPV2 are expressed in CD4+ and CD8+ T lymphocytes. Finally, TRPV2 is expressed in CD19+ B lymphocytes where it regulates Ca2+ release during B cell development and activation. Overall, the specific expression of TRPV2 in immune cells suggests a role in immune-mediated diseases and offers new potential targets for immunomodulation. PMID:23420671

  9. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  10. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis.

    PubMed

    Honarpisheh, Mohsen; Köhler, Paulina; von Rauchhaupt, Ekaterina; Lech, Maciej

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.

  11. The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis

    PubMed Central

    Köhler, Paulina; von Rauchhaupt, Ekaterina

    2018-01-01

    Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN. PMID:29854836

  12. Thoracic and cutaneous sarcoid-like reaction associated with anti-PD-1 therapy: longitudinal monitoring of PD-1 and PD-L1 expression after stopping treatment.

    PubMed

    Paolini, Léa; Poli, Caroline; Blanchard, Simon; Urban, Thierry; Croué, Anne; Rousselet, Marie-Christine; Le Roux, Sarah; Labarrière, Nathalie; Jeannin, Pascale; Hureaux, José

    2018-06-13

    Immune checkpoint inhibitors (ICI) target T cell inhibitory pathways that are responsible for cancer tolerance by down-modulating immune functions. ICI have revolutionized patients care with lung cancer. Nevertheless, restoring endogenous antitumor T-cell responses can induce immune related adverse events, such as sarcoidosis. We report here the first case of a thoracic and cutaneous sarcoid-like reaction in a patient with a relapsing unresectable non-small cell lung cancer (NSCLC) treated with nivolumab, an anti-PD-1 mAb. The expression of PD-1 and its ligands, PD-L1 and PD-L2, was assessed by flow cytometry on peripheral blood mononuclear cells (PBMC) and compared to patients who had discontinued nivolumab therapy without having developed any immune related adverse events. PD-L1 expression was transiently increased on B cells, T cells and monocytes, whereas PD-L2 expression was not modulated. PD-1 was transiently undetectable when PD-L1 was maximal, before returning to basal level. Sarcoidosis spontaneously resolved, without corticotherapy. This case sheds the light on a complex regulation of PD-L1 expression in vivo on PBMC after nivolumab arrest and triggers the question of monitoring the expression of immune checkpoint on immune cells during and after treatment with ICI.

  13. Analysis of immune-relevant genes expressed in spleen of Capra hircus kids fed with trivalent chromium.

    PubMed

    Sadeghi, Mostafa; Najafpanah, Mohammad Javad

    2013-12-01

    Chromium is a biologically important element for humans and laboratory animals. Although the favorable effects of trivalent chromiumon immune responses of studied animals have been well documented, the precise mechanisms by which the chromium acts on immune system is relatively poor studied. In this study, real-time qPCR technique was employed to evaluate the expression profiles of four immune-related genes (B2M, MHCA, MHCB, and Rap2A) in spleens of the domestic goats, Capra hircus, feeding on four different levels of supplemental chromium (0, 0.5, 1, and 1.5 mg/day) as chromium– methionine. The results showed that 1.5 mg/day of supplemental chromium significantly increased the expression of the four studied genes (P <0.01). Since the studied genes play important roles in development, activation, and migration of lymphocytes, their increased expression seems to be an unknown mechanism by which chromium impose reinforcing effects on immune system. Therefore, supplemental chromium can be potentially used to improve immune responses especially in animals experiencing any type of stress such as invasion by a pathogen.

  14. PD-L1 expression on immune cells is a favorable prognostic factor for vulvar squamous cell carcinoma patients.

    PubMed

    Sznurkowski, Jacek J; Żawrocki, Anton; Sznurkowska, Katarzyna; Pęksa, Rafał; Biernat, Wojciech

    2017-10-27

    Anti-immune programmed death-ligand 1 (PD-L1) pathway is used by the tumor to overcome immune system and serves as immunotherapy target in various malignancies. To investigate the expression of PD-L1 in vulvar squamous cell carcinoma (vSCC) and to assess it's clinicopathological and prognostic significance. Immunohistochemical PD-L1 expression was evaluated in 84 vSCCs with previously defined status of p16 and DNA-HPV, infiltration of immune cells: CD8+, CD4+, FOXP3+, CD56+, CD68+, and GZB+ cells. PD-L1 positivity was defined as ≥5% of PD-L1-positive cells. Survival analyses included the Kaplan-Meier method, log-rank test and Cox proportional hazards model. PD-L1 expression was detected on cancer and peritumoral immune cells. PD-L1-positivity of cancer nests (27/84, 32.1%) was correlated with higher infiltration of CD4+ (p=0.037), CD8+ (p=0.02), FOXP3+ (p=0.007), CD68+ (p=0.021) cells, while PD-L1 positivity of peritumoral immune cells (51/84, 60.7%) was correlated with higher infiltration of intraepithelial FOXP3+ cells only (p=0.037).PD-L1-positivity of cancer cells but not immune cells, was more frequently observed in p16-negative tumors (p=0.004). High-risk HPV-status did not correlate with the PD-L1 status of cancer and immune cells (p=1.000) and (p=1.000) respectively). Median follow up was 89.20 months (range 1.7-189.5). PD-L1 positivity of peritumoral immune cells was found to be an independent favorable prognostic factor for OS. Conclusion: This study highlights the importance of comprehensive PD-L1 assessment in both cancer and immune cells. PD-L1 expression on peritumoral immune cells seems to be an additional prognostic factor in vSCC patients and may influence the results by anti-PD-L1 treatment.

  15. Immunity to community: what can immune pathways tell us about disease patterns in corals?

    NASA Astrophysics Data System (ADS)

    Mydlarz, L. D.; Fuess, L.; Pinzon, J. C.; Weil, E.

    2016-02-01

    Predicting species composition and abundances is one of the most fundamental questions in ecology. This question is even more pressing in marine ecology and coral reefs since communities are changing at a rapid pace due to climate-related changes. Increases in disease prevalence and severity are just some of the consequences of these environmental changes. Particularly in coral reef ecosystems, diseases are increasing and driving region-wide population collapses. It has become clear, however, that not all reefs or coral species are affected by disease equally. In fact, the Caribbean is a concentrated area for diseases. The patterns in which disease manifests itself on an individual reef are also proving interesting, as not all coral species are affected by disease equally. Some species are host to different diseases, but seem to successfully fight them reducing mortality. Other species are disproportionately infected on any given reef and experience high mortality due to disease. We are interested in the role immunity can play in directing these patterns and are evaluating coral immunity using several novel approaches. We exposed 4 species of corals with different disease susceptibilities to immune stimulators and quantified of coral immunity using a combination of full transcriptome sequencing and protein activity assays for gene to phenotype analysis. We also mapped gene expression changes onto immune pathways (i.e. melanin-cascade, antimicrobial peptide synthesis, complement cascade, lectin-opsonization) to evaluate expression of immune pathways between species. In our preliminary data we found many immune genes in the disease susceptible Orbicella faveolata underwent changes in gene expression opposite of the predictions and may disply `dysfunctional' patterns of expression. We will present expression data for 4 species of coral and assess how these transcriptional and protein immune responses are related to disease susceptibility in nature, thus scaling up from immune pathway to natural patterns of disease.

  16. ER stress upregulated PGE2/IFNγ-induced IL-6 expression and down-regulated iNOS expression in glial cells

    NASA Astrophysics Data System (ADS)

    Hosoi, Toru; Honda, Miya; Oba, Tatsuya; Ozawa, Koichiro

    2013-12-01

    The disruption of endoplasmic reticulum (ER) function can lead to neurodegenerative disorders, in which inflammation has also been implicated. We investigated the possible correlation between ER stress and immune function using glial cells. We demonstrated that ER stress synergistically enhanced prostaglandin (PG) E2 + interferon (IFN) γ-induced interleukin (IL)-6 production. This effect was mediated through cAMP. Immune-activated glial cells produced inducible nitric oxide synthase (iNOS). Interestingly, ER stress inhibited PGE2 + IFNγ-induced iNOS expression. Similar results were obtained when cells were treated with dbcAMP + IFNγ. Thus, cAMP has a dual effect on immune reactions; cAMP up-regulated IL-6 expression, but down-regulated iNOS expression under ER stress. Therefore, our results suggest a link between ER stress and immune reactions in neurodegenerative diseases.

  17. A highly functional synthetic phage display library containing over 40 billion human antibody clones.

    PubMed

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics.

  18. A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

    PubMed Central

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200

  19. The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens

    PubMed Central

    2013-01-01

    Background The brown planthopper (Nilaparvata lugens) is one of the most serious rice plant pests in Asia. N. lugens causes extensive rice damage by sucking rice phloem sap, which results in stunted plant growth and the transmission of plant viruses. Despite the importance of this insect pest, little is known about the immunological mechanisms occurring in this hemimetabolous insect species. Results In this study, we performed a genome- and transcriptome-wide analysis aiming at the immune-related genes. The transcriptome datasets include the N. lugens intestine, the developmental stage, wing formation, and sex-specific expression information that provided useful gene expression sequence data for the genome-wide analysis. As a result, we identified a large number of genes encoding N. lugens pattern recognition proteins, modulation proteins in the prophenoloxidase (proPO) activating cascade, immune effectors, and the signal transduction molecules involved in the immune pathways, including the Toll, Immune deficiency (Imd) and Janus kinase signal transducers and activators of transcription (JAK-STAT) pathways. The genome scale analysis revealed detailed information of the gene structure, distribution and transcription orientations in scaffolds. A comparison of the genome-available hemimetabolous and metabolous insect species indicate the differences in the immune-related gene constitution. We investigated the gene expression profiles with regards to how they responded to bacterial infections and tissue, as well as development and sex expression specificity. Conclusions The genome- and transcriptome-wide analysis of immune-related genes including pattern recognition and modulation molecules, immune effectors, and the signal transduction molecules involved in the immune pathways is an important step in determining the overall architecture and functional network of the immune components in N. lugens. Our findings provide the comprehensive gene sequence resource and expression profiles of the immune-related genes of N. lugens, which could facilitate the understanding of the innate immune mechanisms in the hemimetabolous insect species. These data give insight into clarifying the potential functional roles of the immune-related genes involved in the biological processes of development, reproduction, and virus transmission in N. lugens. PMID:23497397

  20. Spontaneous T-cell responses against the immune check point programmed-death-ligand 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response.

    PubMed

    Holmström, Morten Orebo; Riley, Caroline Hasselbalch; Skov, Vibe; Svane, Inge Marie; Hasselbalch, Hans Carl; Andersen, Mads Hald

    2018-01-01

    The Chronic Myeloproliferative Neoplasms (MPN) are cancers characterized by hyperinflammation and immune deregulation. Concurrently, the expression of the immune check point programmed death ligand 1 (PD-L1) is induced by inflammation. In this study we report on the occurrence of spontaneous T cell responses against a PD-L1 derived epitope in patients with MPN. We show that 71% of patients display a significant immune response against PD-L1, and patients with advanced MPN have significantly fewer and weaker PD-L1 specific immune responses compared to patients with non-advanced MPN. The PD-L1 specific T cell responses are CD4 + T cell responses, and by gene expression analysis we show that expression of PD-L1 is enhanced in patients with MPN. This could imply that the tumor specific immune response in MPN could be enhanced by vaccination with PD-L1 derived epitopes by boosting the anti-regulatory immune response hereby allowing tumor specific T cell to exert anti-tumor immunity.

  1. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach

    PubMed Central

    Beger, Carmela; Pierce, Leigh N.; Krüger, Martin; Marcusson, Eric G.; Robbins, Joan M.; Welcsh, Piri; Welch, Peter J.; Welte, Karl; King, Mary-Claire; Barber, Jack R.; Wong-Staal, Flossie

    2001-01-01

    Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an “inverse genomics” approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression. A ribozyme gene library with randomized target recognition sequences was introduced into human ovarian cancer-derived cells stably expressing a selectable marker [enhanced green fluorescence protein (EGFP)] under the control of the BRCA1 promoter. Cells in which BRCA1 expression was upregulated by particular ribozymes were selected through their concomitant increase in EGFP expression. The cellular target gene of one ribozyme was identified to be the dominant negative transcriptional regulator Id4. Modulation of Id4 expression resulted in inversely regulated expression of BRCA1. In addition, increase in Id4 expression was associated with the ability of cells to exhibit anchorage-independent growth, demonstrating the biological relevance of this gene. Our data suggest that Id4 is a crucial gene regulating BRCA1 expression and might therefore be important for the BRCA1 regulatory pathway involved in the pathogenesis of sporadic breast and ovarian cancer. PMID:11136250

  2. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs.

    PubMed

    Vincke, Cécile; Gutiérrez, Carlos; Wernery, Ulrich; Devoogdt, Nick; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge

    2012-01-01

    Immunizing a camelid (camels and llamas) with soluble, properly folded proteins raises an affinity-matured immune response in the unique camelid heavy-chain only antibodies (HCAbs). The peripheral blood lymphocytes of the immunized animal are used to clone the antigen-binding antibody fragment from the HCAbs in a phage display vector. A representative aliquot of the library of these antigen-binding fragments is used to retrieve single domain antigen-specific binders by successive rounds of panning. These single domain antibody fragments are cloned in tandem to generate manifold constructs (bivalent, biparatopic or bispecific constructs) to increase their functional affinity, to increase specificity, or to connect two independent antigen molecules.

  3. The Progression of Cell Death Affects the Rejection of Allogeneic Tumors in Immune-Competent Mice – Implications for Cancer Therapy

    PubMed Central

    Chaurio, Ricardo A.; Muñoz, Luis E.; Maueröder, Christian; Janko, Christina; Harrer, Thomas; Fürnrohr, Barbara G.; Niederweis, Michael; Bilyy, Rostyslav; Schett, Georg; Herrmann, Martin; Berens, Christian

    2014-01-01

    Large amounts of dead and dying cells are produced during cancer therapy and allograft rejection. Depending on the death pathway and stimuli involved, dying cells exhibit diverse features, resulting in defined physiological consequences for the host. It is not fully understood how dying and dead cells modulate the immune response of the host. To address this problem, different death stimuli were studied in B16F10 melanoma cells by regulated inducible transgene expression of the pro-apoptotic active forms of caspase-3 (revCasp-3), Bid (tBid), and the Mycobacterium tuberculosis-necrosis inducing toxin (CpnTCTD). The immune outcome elicited for each death stimulus was assessed by evaluating the allograft rejection of melanoma tumors implanted subcutaneously in BALB/c mice immunized with dying cells. Expression of all proteins efficiently killed cells in vitro (>90%) and displayed distinctive morphological and physiological features as assessed by multiparametric flow cytometry analysis. BALB/c mice immunized with allogeneic dying melanoma cells expressing revCasp-3 or CpnTCTD showed strong rejection of the allogeneic challenge. In contrast, mice immunized with cells dying either after expression of tBid or irradiation with UVB did not, suggesting an immunologically silent cell death. Surprisingly, immunogenic cell death induced by expression of revCasp-3 or CpnTCTD correlated with elevated intracellular reactive oxygen species (ROS) levels at the time point of immunization. Conversely, early mitochondrial dysfunction induced by tBid expression or UVB irradiation accounted for the absence of intracellular ROS accumulation at the time point of immunization. Although ROS inhibition in vitro was not sufficient to abrogate the immunogenicity in our allo-immunization model, we suggest that the point of ROS generation and its intracellular accumulation may be an important factor for its role as damage associated molecular pattern in the development of allogeneic responses. PMID:25426116

  4. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees

    PubMed Central

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358

  5. Immunology of intraocular tumors.

    PubMed

    Niederkorn, Jerry Y; Wang, Shixuan

    2005-02-01

    The immune surveillance hypothesis was introduced over 30 years ago and proposed that neoplasms express novel antigens that subjected them to immune detection and elimination. In order for immune surveillance to be effective in controlling neoplasms, two requirements must be satisfied: 1) the tumor must arise in a body site that permits the induction the full array of immune responses and 2) the immune elements generated must have unfettered access to the tumor and be able to express their entire range of effector functions at the tumor site. The unique immunologic and anatomic features of the eye prevent the induction and expression of conventional immunity--a phenomenon known as 'immune privilege'. Although ocular immune privilege represents a theoretical obstacle to immune surveillance, some highly immunogenic intraocular tumors can circumvent immune privilege and undergo immune rejection. Uveal melanoma is the most common intraocular malignancy in adults, yet it occurs with a frequency that is no higher than neoplasms arising in conventional bodies. The presence of either tumor-infiltrating lymphocytes (TIL) or tumor-infiltrating macrophages (TIM) is associated with poor prognosis in uveal melanoma patients and suggests that some immune responses to intraocular tumors might exacerbate, rather than mitigate, tumor progression. Although counterintuitive, this proposition is consistent with the 'immune stimulation' hypothesis of tumor progression offered by Richmond Prehn over thirty years ago. It remains to be ascertained if immune stimulation affects the malignancy of ocular tumors, but it represents an intriguing explanation for the paradoxes of uveal melanoma.

  6. [HLA-G: from feto-maternal tolerance to organ acceptance].

    PubMed

    Carosella, Edgardo D

    2014-01-01

    HLA-G is a nonclassical class I molecule that differs from classical antigens by its restricted expression, very low polymorphism, expression of 7 different protein isoforms, and immune tolerance-inducing activity. HLA-G plays a key role in feto-maternal tolerance. Its interaction with three specific receptors expressed on immune cells (T, B, natural killer and antigen-presenting cells) allows it to act at all levels of the immune response. HLA-G can also be expressed by tumor cells and their microenvironment, endowing them with significant local tolerance. The same is true in some inflammatory and viral diseases.

  7. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Casanova-Nakayama, Ayako; Wernicke von Siebenthal, Elena; Kropf, Christian; Oldenberg, Elisabeth; Segner, Helmut

    2018-03-21

    Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss , and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs-head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the liver and gonads. The correlation between ER gene transcript numbers and serum E2 concentrations was only moderate to low. In conclusion, the low mRNA numbers of nuclear ER in the trout immune system, together with their limited estrogen-responsiveness, suggest that the known estrogen actions on trout immunity may be not primarily mediated through genomic actions, but may involve other mechanisms, such as non-genomic pathways or indirect effects.

  8. Maternal Immunization with Chimpanzee Adenovirus Expressing RSV Fusion Protein Protects Against Neonatal RSV Pulmonary Infection

    PubMed Central

    Sharma, Anurag; Wendland, Rebecca; Sung, Biin; Wu, Wendy; Grunwald, Thomas; Worgall, Stefan

    2014-01-01

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease with high morbidity and mortality in young infants and children. Despite numerous efforts, a licensed vaccine against RSV remains elusive. Since young infants form the primary target group of RSV disease, maternal immunization to boost the protection in neonates is an attractive strategy. In this study we tested the efficacy of maternal immunization with a chimpanzee adenovirus expressing codon-optimized RSV fusion protein (AdC7-Fsyn) to protect infants against RSV infection. Single intranasal immunization of mice by AdC7-Fsyn induced robust anti-RSV systemic and mucosal immunity that protected against RSV without causing vaccine-enhanced RSV disease. RSV humoral immunity was transferred to pups born to immunized mothers that provided protection against RSV. Immunization with AdC7-Fsyn was effective even in the presence of Ad5 preimmunity. The maternally derived immunity was durable with the half-life of 14.63 days that reduced the viral replication up to 15 weeks of age. Notably, the passively immunized mice could be actively re-immunized with AdC7-Fsyn to boost and extend the protection. This substantiates maternal immunization with an AdC7-based vaccine expressing RSV F as feasible approach to protect against RSV early in life. PMID:25171847

  9. Functional Transcriptomics of Wild-Caught Lutzomyia intermedia Salivary Glands: Identification of a Protective Salivary Protein against Leishmania braziliensis Infection

    PubMed Central

    Carneiro, Marcia W.; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M. C.; Valenzuela, Jesus G.; de Oliveira, Camila I.

    2013-01-01

    Background Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. Methods and Findings A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11—coding for a 4.5-kDa protein—induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. Conclusions We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis. PMID:23717705

  10. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection.

    PubMed

    de Moura, Tatiana R; Oliveira, Fabiano; Carneiro, Marcia W; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M C; Valenzuela, Jesus G; de Oliveira, Camila I

    2013-01-01

    Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11--coding for a 4.5-kDa protein--induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis.

  11. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    PubMed

    Schmöle, Anne-Caroline; Lundt, Ramona; Gennequin, Benjamin; Schrage, Hanna; Beins, Eva; Krämer, Alexandra; Zimmer, Till; Limmer, Andreas; Zimmer, Andreas; Otte, David-Marian

    2015-01-01

    The endocannabinoid system (ECS) is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2). As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg) to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  12. In ovo trace element supplementation enhances expression of growth genes in embryo and immune genes in post-hatch broiler chickens.

    PubMed

    Goel, Akshat; Bhanja, Subrat K; Mehra, Manish; Mandal, Asitbaran; Pande, Veena

    2016-06-01

    Differential expression of growth- and immunity-related genes and post-hatch performances were evaluated in in ovo zinc (Zn), iodine (I) or selenium (Se) supplemented chicken embryos. There was about 9-18% reduction in hatchability of Zn, I or Se supplemented eggs. In ovo trace element supplementation did not improve post-hatch growth. Two-way analysis of data revealed significant effect (P > 0.01) of period, trace elements and their interactions. Expression of hepatic somatotropin, insulin-like growth factor-II and mucin gene was highest at 20(th) embryonic day but decreased during post-hatch periods. In ovo Zn or I supplemented embryos had higher expression of growth-related genes compared to the Se or un-injected control group. Expression of interleukin-6 was higher (P < 0.01) in in ovo I supplemented chicks (2.5-fold) but lower in the Zn and Se groups than in the un-injected control group. However, Zn and Se supplemented chicks had higher cellular immune gene expression. In vivo response to mitogen phytohaemaglutinin was also higher (P < 0.01) in Zn or Se supplemented chicks In ovo supplementation of Zn, I and Se did not improve the post-hatch growth, but increased growth-related gene expression. Iodine improved humoral immune gene expression whereas Zn and Se enhanced cell-mediated immune gene expression in broiler chickens. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Natural products that reduce rotavirus infectivity identified by a cell-based moderate-throughput screening assay.

    PubMed

    Shaneyfelt, Mark E; Burke, Anna D; Graff, Joel W; Jutila, Mark A; Hardy, Michele E

    2006-09-01

    There is widespread interest in the use of innate immune modulators as a defense strategy against infectious pathogens. Using rotavirus as a model system, we developed a cell-based, moderate-throughput screening (MTS) assay to identify compounds that reduce rotavirus infectivity in vitro, toward a long-term goal of discovering immunomodulatory agents that enhance innate responses to viral infection. A natural product library consisting of 280 compounds was screened in the assay and 15 compounds that significantly reduced infectivity without cytotoxicity were identified. Time course analysis of four compounds with previously characterized effects on inflammatory gene expression inhibited replication with pre-treatment times as minimal as 2 hours. Two of these four compounds, alpha-mangostin and 18-beta-glycyrrhetinic acid, activated NFkappaB and induced IL-8 secretion. The assay is adaptable to other virus systems, and amenable to full automation and adaptation to a high-throughput format. Identification of several compounds with known effects on inflammatory and antiviral gene expression that confer resistance to rotavirus infection in vitro suggests the assay is an appropriate platform for discovery of compounds with potential to amplify innate antiviral responses.

  14. A DNA fragment of Leptospira interrogans encodes a protein which shares epitopes with equine cornea.

    PubMed

    Lucchesi, P M; Parma, A E

    1999-11-30

    Horses infected with Leptospira interrogans present several clinical disorders, one of them being recurrent uveitis. An antigenic relationship between this bacterium and equine cornea has been described in previous studies. With the aim to make progress on defining the molecular basis and pathogenesis of equine recurrent uveitis, here we describe the cloning of one DNA fragment from a Leptospira interrogans serovar pomona genomic lambda gt11 library. Although there are references of transcription of leptospiral genes in E. coli from their own leptospiral promoters, in this recombinant construction the leptospiral DNA was located under the control of lacZ promoter since no expression could be detected in the absence of IPTG. This clone, isolated by expression screening with polyclonal serum raised against equine corneal proteins, encodes a 90 kDa protein of L. interrogans which crossreacts with equine cornea as proved Western-blotting. Antibodies directed against this leptospiral protein strongly recognised a 66 kDa equine corneal protein, one of those recognised by an anti-equine cornea serum. Our findings suggest that an immune response to 90 kDa protein participates in pathogenesis of equine uveitis.

  15. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine.

    PubMed

    Gorantala, Jyotsna; Grover, Sonam; Rahi, Amit; Chaudhary, Prerna; Rajwanshi, Ravi; Sarin, Neera Bhalla; Bhatnagar, Rakesh

    2014-04-20

    In concern with frequent recurrence of anthrax in endemic areas and inadvertent use of its spores as biological weapon, the development of an effective anthrax vaccine suitable for both human and veterinary needs is highly desirable. A simple oral delivery through expression in plant system could offer promising alternative to the current methods that rely on injectable vaccines extracted from bacterial sources. In the present study, we have expressed protective antigen (PA) gene in Indian mustard by Agrobacterium-mediated transformation and in tobacco by plastid transformation. Putative transgenic lines were verified for the presence of transgene and its expression by molecular analysis. PA expressed in transgenic lines was biologically active as evidenced by macrophage lysis assay. Intraperitoneal (i.p.) and oral immunization with plant PA in murine model indicated high serum PA specific IgG and IgA antibody titers. PA specific mucosal immune response was noted in orally immunized groups. Further, antibodies indicated lethal toxin neutralizing potential in-vitro and conferred protection against in-vivo toxin challenge. Oral immunization experiments demonstrated generation of immunoprotective response in mice. Thus, our study examines the feasibility of oral PA vaccine expressed in an edible plant system against anthrax. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility.

    PubMed

    Chu, Edward P F; Elso, Colleen M; Pollock, Abigail H; Alsayb, May A; Mackin, Leanne; Thomas, Helen E; Kay, Thomas W H; Silveira, Pablo A; Mansell, Ashley S; Gaus, Katharina; Brodnicki, Thomas C

    2017-02-01

    During immune cell activation, serine-derived lipids such as phosphatidylserine and sphingolipids contribute to the formation of protein signaling complexes within the plasma membrane. Altering lipid composition in the cell membrane can subsequently affect immune cell function and the development of autoimmune disease. Serine incorporator 1 (SERINC1) is a putative carrier protein that facilitates synthesis of serine-derived lipids. To determine if SERINC1 has a role in immune cell function and the development of autoimmunity, we characterized a mouse strain in which a retroviral insertion abolishes expression of the Serinc1 transcript. Expression analyses indicated that the Serinc1 transcript is readily detectable and expressed at relatively high levels in wildtype macrophages and lymphocytes. The ablation of Serinc1 expression in these immune cells, however, did not significantly alter serine-derived lipid composition or affect macrophage function and lymphocyte proliferation. Analyses of Serinc1-deficient mice also indicated that systemic ablation of Serinc1 expression did not affect viability, fertility or autoimmune disease susceptibility. These results suggest that Serinc1 is dispensable for certain immune cell functions and does not contribute to previously reported links between lipid composition in immune cells and autoimmunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Integrated analysis of HPV-mediated immune alterations in cervical cancer.

    PubMed

    Chen, Long; Luan, Shaohong; Xia, Baoguo; Liu, Yansheng; Gao, Yuan; Yu, Hongyan; Mu, Qingling; Zhang, Ping; Zhang, Weina; Zhang, Shengmiao; Wei, Guopeng; Yang, Min; Li, Ke

    2018-05-01

    Human papillomavirus (HPV) infection is the primary cause of cervical cancer. HPV-mediated immune alterations are known to play crucial roles in determining viral persistence and host cell transformation. We sought to thoroughly understand HPV-directed immune alterations in cervical cancer by exploring publically available datasets. 130 HPV positive and 7 HPV negative cervical cancer cases from The Cancer Genome Atlas were compared for differences in gene expression levels and functional enrichment. Analyses for copy number variation (CNV) and genetic mutation were conducted for differentially expressed immune genes. Kaplan-Meier analysis was performed to assess survival and relapse differences across cases with or without alterations of the identified immune signature genes. Genes up-regulated in HPV positive cervical cancer were enriched for various gene ontology terms of immune processes (P=1.05E-14~1.00E-05). Integrated analysis of the differentially expressed immune genes identified 9 genes that displayed either CNV, genetic mutation and/or gene expression changes in at least 10% of the cases of HPV positive cervical cancer. Genomic amplification may cause elevated levels of these genes in some HPV positive cases. Finally, patients with alterations in at least one of the nine signature genes overall had earlier relapse compared to those without any alterations. The altered expression of either TFRC or MMP13 may indicate poor survival for a subset of cervical cancer patients (P=1.07E-07). We identified a novel immune gene signature for HPV positive cervical cancer that is potentially associated with early relapse of cervical cancer. Copyright © 2018. Published by Elsevier Inc.

  18. Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.

    PubMed

    Wu, Jiao; Zhang, Yali; Yin, Ling; Qu, Junjie; Lu, Jiang

    2014-12-01

    Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'.

  19. [Construction and screening of phage antibody libraries against epidermal growth factor receptor and soluble expression of single chain Fv].

    PubMed

    Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su

    2009-06-01

    Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.

  20. Genomic resources for songbird research and their use in characterizing gene expression during brain development

    PubMed Central

    Li, XiaoChing; Wang, Xiu-Jie; Tannenhauser, Jonathan; Podell, Sheila; Mukherjee, Piali; Hertel, Moritz; Biane, Jeremy; Masuda, Shoko; Nottebohm, Fernando; Gaasterland, Terry

    2007-01-01

    Vocal learning and neuronal replacement have been studied extensively in songbirds, but until recently, few molecular and genomic tools for songbird research existed. Here we describe new molecular/genomic resources developed in our laboratory. We made cDNA libraries from zebra finch (Taeniopygia guttata) brains at different developmental stages. A total of 11,000 cDNA clones from these libraries, representing 5,866 unique gene transcripts, were randomly picked and sequenced from the 3′ ends. A web-based database was established for clone tracking, sequence analysis, and functional annotations. Our cDNA libraries were not normalized. Sequencing ESTs without normalization produced many developmental stage-specific sequences, yielding insights into patterns of gene expression at different stages of brain development. In particular, the cDNA library made from brains at posthatching day 30–50, corresponding to the period of rapid song system development and song learning, has the most diverse and richest set of genes expressed. We also identified five microRNAs whose sequences are highly conserved between zebra finch and other species. We printed cDNA microarrays and profiled gene expression in the high vocal center of both adult male zebra finches and canaries (Serinus canaria). Genes differentially expressed in the high vocal center were identified from the microarray hybridization results. Selected genes were validated by in situ hybridization. Networks among the regulated genes were also identified. These resources provide songbird biologists with tools for genome annotation, comparative genomics, and microarray gene expression analysis. PMID:17426146

  1. Molecular and clinical characterization of IDH associated immune signature in lower-grade gliomas.

    PubMed

    Qian, Zenghui; Li, Yiming; Fan, Xing; Zhang, Chuanbao; Wang, Yinyan; Jiang, Tao; Liu, Xing

    2018-01-01

    Background : Mutations in isocitrate dehydrogenase (IDH) affect the development and prognosis of gliomas. We investigated the role of IDH mutations in the regulation of immune phenotype in lower-grade gliomas (LGGs). Method and patients : A total of 1,008 cases with clinical and IDH mutation data from five cohorts were enrolled. Samples with RNA sequencing data from the Chinese Glioma Genome Atlas (CGGA) were used as training set, whereas RNA data from the Cancer Genome Atlas, Repository for Molecular Brain Neoplasia, GSE16011, and CGGA microarray databases were used for validation. R language tools and bioinformatics analysis were used for gene signature construction and biological function annotation. Results : We found that IDH mutations caused down-regulation of local immune response as among 332 immune system-related genes, 196(59.0%) were differentially expressed according to IDH mutation status. Nearly 70% of those differentially expressed genes exhibited prognostic value in LGGs. An immune response-based gene signature was constructed that distinguished cases with high- or low-risk of unfavorable prognosis and remained an independent prognostic factor in multivariate analyses in both training and validation cohorts. Samples from high-risk cases exhibited elevated expression of genes involved in immune response and NF-κB pathway activation. Furthermore, we found a strong correlation between the risk score and T cells, macrophage-related immune response, and expression of several prominent immune checkpoints. Conclusion : Our results indicated that mutant IDH is highly associated with the regulation of the immune microenvironment in LGGs. The observed immune system gene signature, which was sensitive to IDH mutation status, efficiently predicted patient survival.

  2. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format.

    PubMed

    Xiao, Xiaodong; Chen, Yan; Mugabe, Sheila; Gao, Changshou; Tkaczyk, Christine; Mazor, Yariv; Pavlik, Peter; Wu, Herren; Dall'Acqua, William; Chowdhury, Partha Sarathi

    2015-01-01

    High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.

  3. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance.

    PubMed

    Martin, A M; Nirschl, T R; Nirschl, C J; Francica, B J; Kochel, C M; van Bokhoven, A; Meeker, A K; Lucia, M S; Anders, R A; DeMarzo, A M; Drake, C G

    2015-12-01

    Primary prostate cancers are infiltrated with programmed death-1 (PD-1) expressing CD8+ T-cells. However, in early clinical trials, men with metastatic castrate-resistant prostate cancer did not respond to PD-1 blockade as a monotherapy. One explanation for this unresponsiveness could be that prostate tumors generally do not express programmed death ligand-1 (PD-L1), the primary ligand for PD-1. However, lack of PD-L1 expression in prostate cancer would be surprising, given that phosphatase and tensin homolog (PTEN) loss is relatively common in prostate cancer and several studies have shown that PTEN loss correlates with PD-L1 upregulation--constituting a mechanism of innate immune resistance. This study tested whether prostate cancer cells were capable of expressing PD-L1, and whether the rare PD-L1 expression that occurs in human specimens correlates with PTEN loss. Human prostate cancer cell lines were evaluated for PD-L1 expression and loss of PTEN by flow cytometry and western blotting, respectively. Immunohistochemical (IHC) staining for PTEN was correlated with PD-L1 IHC using a series of resected human prostate cancer samples. In vitro, many prostate cancer cell lines upregulated PD-L1 expression in response to inflammatory cytokines, consistent with adaptive immune resistance. In these cell lines, no association between PTEN loss and PD-L1 expression was apparent. In primary prostate tumors, PD-L1 expression was rare, and was not associated with PTEN loss. These studies show that some prostate cancer cell lines are capable of expressing PD-L1. However, in human prostate cancer, PTEN loss is not associated with PD-L1 expression, arguing against innate immune resistance as a mechanism that mitigates antitumor immune responses in this disease.

  4. An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

    PubMed Central

    Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity. PMID:23818851

  5. An extracellular subtilase switch for immune priming in Arabidopsis.

    PubMed

    Ramírez, Vicente; López, Ana; Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

  6. Immune anticipation of mating in Drosophila: Turandot M promotes immunity against sexually transmitted fungal infections.

    PubMed

    Zhong, Weihao; McClure, Colin D; Evans, Cara R; Mlynski, David T; Immonen, Elina; Ritchie, Michael G; Priest, Nicholas K

    2013-12-22

    Although it is well known that mating increases the risk of infection, we do not know how females mitigate the fitness costs of sexually transmitted infections (STIs). It has recently been shown that female fruitflies, Drosophila melanogaster, specifically upregulate two members of the Turandot family of immune and stress response genes, Turandot M and Turandot C (TotM and TotC), when they hear male courtship song. Here, we use the Gal4/UAS RNAi gene knockdown system to test whether the expression of these genes provides fitness benefits for females infected with the entomopathogenic fungus, Metarhizium robertsii under sexual transmission. As a control, we also examined the immunity conferred by Dorsal-related immunity factor (Dif), a central component of the Toll signalling pathway thought to provide immunity against fungal infections. We show that TotM, but not TotC or Dif, provides survival benefits to females following STIs, but not after direct topical infections. We also show that though the expression of TotM provides fecundity benefits for healthy females, it comes at a cost to their survival, which helps to explain why TotM is not constitutively expressed. Together, these results show that the anticipatory expression of TotM promotes specific immunity against fungal STIs and suggest that immune anticipation is more common than currently appreciated.

  7. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    PubMed

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  8. Effects of cortisol and lipopolysaccharide on expression of select growth-, stress- and immune-related genes in rainbow trout liver

    USDA-ARS?s Scientific Manuscript database

    Many studies have shown that stress-induced cortisol levels negatively influence growth and immunity in finfish. Despite this knowledge, few studies have assessed the direct effects of cortisol on liver immune function in finfish. Using real-time PCR, the expression of three cortisol-responsive ge...

  9. YAP is essential for Treg mediated suppression of anti-tumor immunity.

    PubMed

    Ni, Xuhao; Tao, Jinhui; Barbi, Joseph; Chen, Qian; Park, Benjamin V; Li, Zhiguang; Zhang, Nailing; Lebid, Andriana; Ramaswamy, Anjali; Wei, Ping; Zheng, Ying; Zhang, Xuehong; Wu, Xingmei; Vignali, Paolo D A; Yang, Cuiping; Li, Huabin; Pardoll, Drew; Lu, Ling; Pan, Duojia; Pan, Fan

    2018-06-15

    Regulatory T cells (Tregs) are critical for maintaining self-tolerance and immune homeostasis, but their suppressive function can impede effective anti-tumor immune responses. Foxp3 is a transcription factor expressed in Tregs that is required for their function. However, the pathways and microenvironmental cues governing Foxp3 expression and Treg function are not completely understood. Herein, we report that Yes-associated protein (YAP), a co-activator of the Hippo pathway, is highly expressed in Tregs and bolsters Foxp3 expression and Treg function in vitro and in vivo. This potentiation stemmed from YAP-dependent upregulation of Activin signaling which amplifies TGFβ/SMAD activation in Tregs. YAP-deficiency resulted in dysfunctional Tregs unable to suppress anti-tumor immunity or promote tumor growth in mice. Chemical YAP antagonism and knockout or blockade of the YAP-regulated Activin Receptor similarly improved anti-tumor immunity. Thus we identify YAP as an unexpected amplifier of a Treg-reinforcing pathway with significant potential as an anti-cancer immunotherapeutic target. Copyright ©2018, American Association for Cancer Research.

  10. [Regulatory Mechanisms of PD-L1 Expression and Its Role in Immune Evasion].

    PubMed

    Kataoka, Keisuke

    2017-11-01

    Immune checkpoint blockade therapy using anti-PD-1 or anti-PD-L1 antibodies can unleash anti-tumor immunity and induce durable remission in a variety ofhuman cancers. However, the regulatory mechanisms of PD-L1 expression mediating immune evasion ofcancer cells have not been fully elucidated, including the genetic alterations causing PD-L1 overexpression. Recently, we have reported a novel genetic mechanism ofimmune evasion associated with structural variations(SVs)disrupting the 3'-untranslated region(UTR)ofthe PD-L1 gene in various malignancies, such as aggressive lymphomas and gastrointestinal cancers. Despite a heterogenous nature ofthese SVs, they are closely associated with a marked upregulation of PD-L1 expression, which augments tumor growth and escape from anti-tumor immunity. Here we present an overview of the regulatory mechanisms of PD-L1 expression in cancer cells, highlighting the genetic mechanisms of PD-L1 constitutive activation, with specific focus on PD-L1 3'-UTR disruption.

  11. The role of cortistatin in the human immune system.

    PubMed

    van Hagen, P Martin; Dalm, Virgil A; Staal, Frank; Hofland, Leo J

    2008-05-14

    Cortistatin (CST) is a recently described neuropeptide that shares high homology with somatostatin (somatotropin release-inhibiting factor, SRIF) and binds with high affinity to all somatostatin (sst) receptor subtypes. CST is currently known to have a widespread distribution in many human organs including the immune system. The activities specific to CST may be partially attributable to its binding to the growth hormone secretagogue (GHS)-receptor (GHS-R) and the orphan G-protein-coupled receptor MrgX2. Human immune cells produce CST, whereas macrophage lineage and activated endothelium express sst2, and human lymphocytes express sst3. The human thymus expresses sst1, 2, 3, MrgX2 and almost all immune cells express GHS-R. Moreover, at this very moment promising research with CST in experimental animal models is being performed. On the basis of these promising results, studies aiming to further evaluate the possibilities of CST as a therapeutic agent in human immune-mediated inflammatory diseases are warranted.

  12. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    PubMed

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  13. Stop Reinventing the Wheel: Using Wikis for Professional Knowledge Sharing

    ERIC Educational Resources Information Center

    Deitering, Anne-Marie; Bridgewater, Rachel

    2007-01-01

    This article details the development of the Library Instruction Wiki (http://instructionwiki.org): an effort to develop a web-based, knowledge-sharing resource. Though some library instruction is specific to a given institution or class, much of what instruction librarians teach is similar. Library instructors have repeatedly expressed the desire…

  14. Employee Rights Versus the First Amendment.

    ERIC Educational Resources Information Center

    Walker, Lois; Teaster, Gale; Kelley, Gloria

    1998-01-01

    Illustrates a case of a student art exhibit in the Winthrop University, South Carolina Library, where freedom of expression interfered with employee rights in the workplace. The Dean of Libraries stated that the library could not act as a censor, and that they were obligated to defend the First Amendment; the controversial statue remained, but…

  15. Library and Classroom Use of Copyrighted Videotapes and Computer Software.

    ERIC Educational Resources Information Center

    Reed, Mary Hutchings; Stanek, Debra

    Designed to provide guidance for librarians, this publication expresses the opinion of the legal counsel of the American Library Association (ALA) regarding library and classroom use of copyrighted videotapes and computer programs. A discussion of videotapes considers the impact of the Copyright Revision Act of 1976 on in-classroom use, in-library…

  16. 45 CFR 170.207 - Vocabulary standards for representing electronic health information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... health information. 170.207 Section 170.207 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH.... International Health Terminology Standards Development Organization (IHTSDO) Systematized Nomenclature of... States National Library of Medicine. (e) Immunizations. Standard. HL7 Standard Code Set CVX—Vaccines...

  17. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response.

    PubMed

    Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Viveros, Monica; Gevorkian, Goar; Manoutcharian, Karen

    2011-07-18

    The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.

    PubMed

    Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A

    2011-04-08

    To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.

  19. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.)

    PubMed Central

    Xia, Xiaofeng; Yu, Liying; Xue, Minqian; Yu, Xiaoqiang; Vasseur, Liette; Gurr, Geoff M.; Baxter, Simon W.; Lin, Hailan; Lin, Junhan; You, Minsheng

    2015-01-01

    The diamondback moth, Plutella xylostella (L.), is a destructive pest that attacks cruciferous crops worldwide. Immune responses are important for interactions between insects and pathogens and information on these underpins the development of strategies for biocontrol-based pest management. Little, however, is known about immune genes and their regulation patterns in P. xylostella. A total of 149 immune-related genes in 20 gene families were identified through comparison of P. xylostella genome with the genomes of other insects. Complete and conserved Toll, IMD and JAK-STAT signaling pathways were found in P. xylostella. Genes involved in pathogen recognition were expanded and more diversified than genes associated with intracellular signal transduction. Gene expression profiles showed that the IMD pathway may regulate expression of antimicrobial peptide (AMP) genes in the midgut, and be related to an observed down-regulation of AMPs in experimental lines of insecticide-resistant P. xylostella. A bacterial feeding study demonstrated that P. xylostella could activate different AMPs in response to bacterial infection. This study has established a framework of comprehensive expression profiles that highlight cues for immune regulation in a major pest. Our work provides a foundation for further studies on the functions of P. xylostella immune genes and mechanisms of innate immunity. PMID:25943446

  20. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Xia, Xiaofeng; Yu, Liying; Xue, Minqian; Yu, Xiaoqiang; Vasseur, Liette; Gurr, Geoff M; Baxter, Simon W; Lin, Hailan; Lin, Junhan; You, Minsheng

    2015-05-06

    The diamondback moth, Plutella xylostella (L.), is a destructive pest that attacks cruciferous crops worldwide. Immune responses are important for interactions between insects and pathogens and information on these underpins the development of strategies for biocontrol-based pest management. Little, however, is known about immune genes and their regulation patterns in P. xylostella. A total of 149 immune-related genes in 20 gene families were identified through comparison of P. xylostella genome with the genomes of other insects. Complete and conserved Toll, IMD and JAK-STAT signaling pathways were found in P. xylostella. Genes involved in pathogen recognition were expanded and more diversified than genes associated with intracellular signal transduction. Gene expression profiles showed that the IMD pathway may regulate expression of antimicrobial peptide (AMP) genes in the midgut, and be related to an observed down-regulation of AMPs in experimental lines of insecticide-resistant P. xylostella. A bacterial feeding study demonstrated that P. xylostella could activate different AMPs in response to bacterial infection. This study has established a framework of comprehensive expression profiles that highlight cues for immune regulation in a major pest. Our work provides a foundation for further studies on the functions of P. xylostella immune genes and mechanisms of innate immunity.

  1. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells.

    PubMed

    Gardiner, Erin J; Cairns, Murray J; Liu, Bing; Beveridge, Natalie J; Carr, Vaughan; Kelly, Brian; Scott, Rodney J; Tooney, Paul A

    2013-04-01

    Peripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian Schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression.

    PubMed

    Lu, Wanlu; Lu, Libing; Feng, Yun; Chen, Jiao; Li, Yan; Kong, Xiangli; Chen, Sixiu; Li, Xiaoyu; Chen, Qianming; Zhang, Ping

    2013-05-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8 + T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment.

  3. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression

    PubMed Central

    LU, WANLU; LU, LIBING; FENG, YUN; CHEN, JIAO; LI, YAN; KONG, XIANGLI; CHEN, SIXIU; LI, XIAOYU; CHEN, QIANMING; ZHANG, PING

    2013-01-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8+ T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment PMID:23761816

  4. Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis.

    PubMed

    Jin, Jun-Yan; Zhou, Li; Wang, Yang; Li, Zhi; Zhao, Jiu-Gang; Zhang, Qi-Ya; Gui, Jian-Fang

    2010-12-20

    Defensins are a group of cationic peptides that exhibit broad-spectrum antimicrobial activity. In this study, we cloned and characterized a β-defensin from pituitary cDNA library of a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides). Interestingly, the β-defensin was shown to be dominantly expressed in pituitary and testis by RT-PCR and Western blot analysis, and its transcript level is significantly upregulated in reproduction organs from intersexual gonad to testis during the natural and artificial sex reversal. Promoter sequence and the responsible activity region analyses revealed the pituitary-specific POU1F1a transcription binding site and testis-specific SRY responsible site, and demonstrated that the pituitary-specific POU1F1a transcription binding site that locates between -180 and -208 bp is the major responsible region of grouper β-defensin promoter activity. Immunofluorescence localization observed its pituicyte expression in pituitary and spermatogonic cell expression in testis. Moreover, both in vitro antibacterial activity assay of the recombinant β-defensin and in vivo embryo microinjection of the β-defensin mRNA were shown to be effective in killing gram-negative bacteria. And, its antiviral role was also demonstrated in EPC cells transfected with the β-defensin construct. Additionally, the antibacterial activity was sensitive to concentrations of Na(+), K(+), Ca(2+) and Mg(2+). The above intriguing findings strongly suggest that the fish β-defensin might play significant roles in both innate immunity defense and reproduction endocrine regulation.

  5. Analysis of expressed sequence tags from the four main developmental stages of Trypanosoma congolense

    PubMed Central

    Helm, Jared R.; Hertz-Fowler, Christiane; Aslett, Martin; Berriman, Matthew; Sanders, Mandy; Quail, Michael A.; Soares, Marcelo B.; Bonaldo, Maria F.; Sakurai, Tatsuya; Inoue, Noboru; Donelson, John E.

    2009-01-01

    Trypanosoma congolense is one of the most economically important pathogens of livestock in Africa. Culture-derived parasites of each of the three main insect stages of the T. congolense life cycle, i.e., the procyclic, epimastigote and metacyclic stages, and bloodstream stage parasites isolated from infected mice, were used to construct stage-specific cDNA libraries and expressed sequence tags (ESTs or cDNA clones) in each library were sequenced. Thirteen EST clusters encoding different variant surface glycoproteins (VSGs) were detected in the metacyclic library and twenty-six VSG EST clusters were found in the bloodstream library, six of which are shared by the metacyclic library. Rare VSG ESTs are present in the epimastigote library, and none were detected in the procyclic library. ESTs encoding enzymes that catalyze oxidative phosphorylation and amino acid metabolism are about twice as abundant in the procyclic and epimastigote stages as in the metacyclic and bloodstream stages. In contrast, ESTs encoding enzymes involved in glycolysis, the citric acid cycle and nucleotide metabolism are about the same in all four developmental stages. Cysteine proteases, kinases and phosphatases are the most abundant enzyme groups represented by the ESTs. All four libraries contain T. congolense-specific expressed sequences not present in the T. brucei and T. cruzi genomes. Normalized cDNA libraries were constructed from the metacyclic and bloodstream stages, and found to be further enriched for T. congolense-specific ESTs. Given that cultured T. congolense offers an experimental advantage over other African trypanosome species, these ESTs provide a basis for further investigation of the molecular properties of these four developmental stages, especially the epimastigote and metacyclic stages for which it is difficult to obtain large quantities of organisms. The T. congolense EST databases are available at: http://www.sanger.ac.uk/Projects/T_congolense/EST_index.shtml. PMID:19559733

  6. Development of Quantitative Proteomics Using iTRAQ Based on the Immunological Response of Galleria mellonella Larvae Challenged with Fusarium oxysporum Microconidia

    PubMed Central

    Muñoz-Gómez, Amalia; Corredor, Mauricio; Benítez-Páez, Alfonso; Peláez, Carlos

    2014-01-01

    Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at 37°C over expressed many more proteins than other treatments. PMID:25379782

  7. Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection

    PubMed Central

    Rodrigues, Tasson C.; Oliveira, Maria Leonor S.; Soares-Schanoski, Alessandra; Chavez-Rico, Stefanni L.; Figueiredo, Douglas B.; Gonçalves, Viviane M.; Ferreira, Daniela M.; Kunda, Nitesh K.; Saleem, Imran Y.

    2018-01-01

    Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles—NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2. PMID:29360883

  8. Immunohistochemical and Image Analysis-Based Study Shows That Several Immune Checkpoints are Co-expressed in Non-Small Cell Lung Carcinoma Tumors.

    PubMed

    Parra, Edwin Roger; Villalobos, Pamela; Zhang, Jiexin; Behrens, Carmen; Mino, Barbara; Swisher, Stephen; Sepesi, Boris; Weissferdt, Annika; Kalhor, Neda; Heymach, John Victor; Moran, Cesar; Zhang, Jianjun; Lee, Jack; Rodriguez-Canales, Jaime; Gibbons, Don; Wistuba, Ignacio I

    2018-06-01

    The understanding of immune checkpoint molecules' co-expression in non-small cell lung carcinoma (NCLC) is important to potentially design combinatorial immunotherapy approaches. We studied 225 formalin-fixed, paraffin-embedded tumor tissues from stage I-III NCLCs - 142 adenocarcinomas (ADCs) and 83 squamous cell carcinomas (SCCs) - placed in tissue microarrays. Nine immune checkpoint markers were evaluated; four (programmed death ligand 1 [PD-L1], B7-H3, B7-H4, and indoleamine 2,3-dioxygenase 1 [IDO-1]) expressed predominantly in malignant cells (MCs) and five (inducible T cell costimulator, V-set immunoregulatory receptor, T-cell immunoglobulin mucin family member 3, lymphocyte activating 3, and OX40) expressed mostly in stromal tumor-associated inflammatory cells (TAICs). All markers were examined using a quantitative image analysis and correlated with clinicopathologic features, TAICs, and molecular characteristics. Using above the median value as positive expression in MCs and high density of TAICs expressing those markers, we identified higher expression of immune checkpoints in SCC than ADC. Common simultaneous expression by MCs was PD-L1 + B7-H3 + IDO-1 in ADC and PD-L1 + B7-H3, or B7-H3 + B7-H4, in SCC. TAICs expressing checkpoint were significantly higher in current smokers than in never smokers. Almost all the immune checkpoint markers showed positive correlation with TAICs expressing inflammatory cell markers. KRAS-mutant ADC specimens showed higher expression of PD-L1 in MCs and of B7-H3, T-cell immunoglobulin mucin family member 3, and IDO-1 in TAICs than wild type. Kaplan-Meier survival curves showed worse prognosis in ADC patients with higher B7-H4 expression by MCs. We found frequent immunohistochemical co-expression of immune checkpoints in surgically resected NCLC tumors and correlated with tumor histology, smoking history, tumor size, and the density of inflammatory cells and tumor mutational status. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  9. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies

    PubMed Central

    Moutel, Sandrine; Bery, Nicolas; Bernard, Virginie; Keller, Laura; Lemesre, Emilie; de Marco, Ario; Ligat, Laetitia; Rain, Jean-Christophe; Favre, Gilles; Olichon, Aurélien; Perez, Franck

    2016-01-01

    In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications. DOI: http://dx.doi.org/10.7554/eLife.16228.001 PMID:27434673

  10. The Immunological Genome Project: networks of gene expression in immune cells.

    PubMed

    Heng, Tracy S P; Painter, Michio W

    2008-10-01

    The Immunological Genome Project combines immunology and computational biology laboratories in an effort to establish a complete 'road map' of gene-expression and regulatory networks in all immune cells.

  11. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis.

    PubMed

    Fang, Yi-Kai; Huang, Kuo-Yang; Huang, Po-Jung; Lin, Rose; Chao, Mei; Tang, Petrus

    2015-12-01

    Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist. Copyright © 2014. Published by Elsevier B.V.

  12. Comprehensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma

    PubMed Central

    Hatogai, Ken; Kitano, Shigehisa; Fujii, Satoshi; Kojima, Takashi; Daiko, Hiroyuki; Nomura, Shogo; Yoshino, Takayuki; Ohtsu, Atsushi; Takiguchi, Yuichi; Doi, Toshihiko; Ochiai, Atsushi

    2016-01-01

    Immunotherapy with anti-PD-1 antibody preliminarily showed promising efficacy for treating esophageal squamous cell carcinoma (ESCC). Herein, we used tissue microarrays and immunohistochemically analyzed PD-L1 and various tumor infiltrating immune cells (TIICs) in specimens from 196 ESCC patients who had undergone curative resection without preoperative therapy. PD-L1 expressions in tumor cells (TCs) and TIICs, as well as infiltration of lymphocytes (CD4+, CD8+, FOXP3+, and PD- 1+) and macrophages (CD68+ and CD204+), were evaluated. PD-L1 was expressed in TCs of 18.4% and in TIICs of 83.3% of these patients. PD-L1 expressions in TCs and TIICs were associated with significant infiltration of various TIIC types, especially CD8+ cells. PD-L1 expressions in both TCs and TIICs were significantly associated with favorable overall survival, and combining their levels enhanced prognostic accuracy. Prognostic impacts of PD-L1 expressions in TCs and TIICs, abundant PD-1+ cell infiltration, a high CD8+/FOXP3+ ratio, and the CD8+/CD204+ ratio remained significant after adjusting for clinicopathological factors. In conclusion, PD-L1 expression reflects anti-tumor immunity, and PD-1/PD-L1 expression and the ratio of infiltrating effector to immune suppressor cells have prognostic value. Therapeutic strategies inhibiting the PD-1/PD-L1 signal and immune suppressor cells are anticipated in ESCC patients. PMID:27322149

  13. Low-dose radiation induces Drosophila innate immunity through Toll pathway activation.

    PubMed

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Park, Joong-Jean; Min, Kyung-Jin; Jin, Young-Woo

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and JNK. These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila.

  14. Cell surface expression of channel catfish leukocyte immune-type receptors (IpLITRs) and recruitment of both Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 and SHP-2.

    PubMed

    Montgomery, Benjamin C S; Mewes, Jacqueline; Davidson, Chelsea; Burshtyn, Deborah N; Stafford, James L

    2009-04-01

    Channel catfish leukocyte immune-type receptors (IpLITRs) are immunoglobulin superfamily (IgSF) members believed to play a role in the control and coordination of cellular immune responses in teleost. Putative stimulatory and inhibitory IpLITRs are co-expressed by different types of catfish immune cells (e.g. NK cells, T cells, B cells, and macrophages) but their signaling potential has not been determined. Following cationic polymer-mediated transfections into human cell lines we examined the surface expression, tyrosine phosphorylation, and phosphatase recruitment potential of two types of putative inhibitory IpLITRs using 'chimeric' expression constructs and an epitope-tagged 'native' IpLITR. We also cloned and expressed the teleost Src homology 2 domain-containing protein tyrosine phosphatases (SHP)-1 and SHP-2 and examined their expression in adult tissues and developing zebrafish embryos. Co-immunoprecipitation experiments support the inhibitory signaling potential of distinct IpLITR-types that bound both SHP-1 and SHP-2 following the phosphorylation of tyrosine residues within their cytoplasmic tail (CYT) regions. Phosphatase recruitment by IpLITRs represents an important first step in understanding their influence on immune cell effector functions and suggests that certain inhibitory signaling pathways are conserved among vertebrates.

  15. Expression of CD154 by a Simian Immunodeficiency Virus Vector Induces Only Transitory Changes in Rhesus Macaques

    PubMed Central

    Hodara, Vida L.; Velasquillo, M. Cristina; Parodi, Laura M.; Giavedoni, Luis D.

    2005-01-01

    Human immunodeficiency virus infection is characterized by dysregulation of antigen-presenting cell function and defects in cell-mediated immunity. Recent evidence suggests that impaired ability of CD4+ T cells to upregulate the costimulatory molecule CD154 is at the core of this dysregulation. To test the hypothesis that increased expression of CD154 on infected CD4+ T cells could modulate immune function, we constructed a replication-competent simian immunodeficiency virus (SIV) vector that expressed CD154. We found that this recombinant vector directed the expression of CD154 on the surface of infected CD4+ T cells and that expression of CD154 resulted in activation of B cells present in the same cultures. Experimental infection of rhesus macaques resulted in very low viral loads for the CD154-expressing virus and the control virus, indicating that expression of CD154 did not result in increased viral replication. Analyses of the anti-SIV immune responses and the phenotype of lymphocytes in blood and lymphoid tissues showed changes that occurred during the acute phase of infection only in animals infected with the CD154-expressing SIV, but that became indistinguishable from those seen in animals infected with the control virus at later time points. We conclude that the level of expression of CD154 in itself is not responsible for affecting the immune response to an attenuated virus. Considering that the CD154-expressing SIV vector and the virus control did not carry an active nef gene, our results suggest that, in CD4+ T cells infected with wild-type virus, Nef is the viral factor that interferes with the immune mechanisms that regulate expression of CD154. PMID:15795254

  16. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.

    PubMed

    Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi

    2017-12-01

    We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.

  17. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    PubMed Central

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  18. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens.

    PubMed

    Zimmermann, Jana; Saalbach, Isolde; Jahn, Doreen; Giersberg, Martin; Haehnel, Sigrun; Wedel, Julia; Macek, Jeanette; Zoufal, Karen; Glünder, Gerhard; Falkenburg, Dieter; Kipriyanov, Sergey M

    2009-09-11

    Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market.

  19. Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis*S⃞

    PubMed Central

    Panchal, Rekha G.; Ulrich, Ricky L.; Bradfute, Steven B.; Lane, Douglas; Ruthel, Gordon; Kenny, Tara A.; Iversen, Patrick L.; Anderson, Arthur O.; Gussio, Rick; Raschke, William C.; Bavari, Sina

    2009-01-01

    The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis. PMID:19269962

  20. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    PubMed

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  1. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens

    PubMed Central

    Zimmermann, Jana; Saalbach, Isolde; Jahn, Doreen; Giersberg, Martin; Haehnel, Sigrun; Wedel, Julia; Macek, Jeanette; Zoufal, Karen; Glünder, Gerhard; Falkenburg, Dieter; Kipriyanov, Sergey M

    2009-01-01

    Background Coccidiosis caused by protozoans of genus Eimeria is a chicken parasitic disease of great economical importance. Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. Alternative solution to prevent and treat coccidiosis could be provided by passive immunization using orally delivered neutralizing antibodies. We investigated the possibility to mitigate the parasitic infection by feeding poultry with antibody expressing transgenic crop seeds. Results Using the phage display antibody library, we generated a panel of anti-Eimeria scFv antibody fragments with high sporozoite-neutralizing activity. These antibodies were expressed either transiently in agrobacteria-infiltrated tobacco leaves or stably in seeds of transgenic pea plants. Comparison of the scFv antibodies purified either from tobacco leaves or from the pea seeds demonstrated no difference in their antigen-binding activity and molecular form compositions. Force-feeding experiments demonstrated that oral delivery of flour prepared from the transgenic pea seeds had higher parasite neutralizing activity in vivo than the purified antibody fragments isolated from tobacco. The pea seed content was found to protect antibodies against degradation by gastrointestinal proteases (>100-fold gain in stability). Ad libitum feeding of chickens demonstrated that the transgenic seeds were well consumed and not shunned. Furthermore, feeding poultry with shred prepared from the antibody expressing pea seeds led to significant mitigation of infection caused both by high and low challenge doses of Eimeria oocysts. Conclusion The results suggest that our strategy offers a general approach to control parasitic infections in production animals using cost-effective antibody expression in crop seeds affordable for the animal health market. PMID:19747368

  2. Microbial modulation of host immunity with the small molecule phosphorylcholine.

    PubMed

    Clark, Sarah E; Weiser, Jeffrey N

    2013-02-01

    All microorganisms dependent on persistence in a host for survival rely on either hiding from or modulating host responses to infection. The small molecule phosphorylcholine, or choline phosphate (ChoP), is used for both of these purposes by a wide array of bacterial and parasitic microbes. While the mechanisms underlying ChoP acquisition and expression are diverse, a unifying theme is the use of ChoP to reduce the immune response to infection, creating an advantage for ChoP-expressing microorganisms. In this minireview, we discuss several benefits of ChoP expression during infection as well as how the immune system fights back against ChoP-expressing pathogens.

  3. Sleep and immune function: glial contributions and consequences of aging

    PubMed Central

    Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.

    2013-01-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941

  4. Oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during Salmonella typhimurium infection.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo

    2012-12-01

    It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.

  5. Sleep and immune function: glial contributions and consequences of aging.

    PubMed

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  6. Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human VH/VL Single-Domain Antibodies from In Vitro Display Libraries.

    PubMed

    Henry, Kevin A; Kim, Dae Young; Kandalaft, Hiba; Lowden, Michael J; Yang, Qingling; Schrag, Joseph D; Hussack, Greg; MacKenzie, C Roger; Tanha, Jamshid

    2017-01-01

    Human autonomous V H /V L single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged V H /V L domains. Here, we describe the design and characterization of three novel human V H /V L sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential V H /V L sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three V H /V L sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three V H /V L libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 V H s and 7 V L s in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2-3 µM), but had highly variable expression yields (range: 0.1-19 mg/L). Despite our efforts to identify the most stable V H /V L scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing V H /V L sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some V H /V L sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous V H /V L immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries.

  7. The interbranchial lymphoid tissue likely contributes to immune tolerance and defense in the gills of Atlantic salmon.

    PubMed

    Aas, Ida Bergva; Austbø, Lars; Falk, Knut; Hordvik, Ivar; Koppang, Erling Olaf

    2017-11-01

    Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sustained IFN-I Expression during Established Persistent Viral Infection: A “Bad Seed” for Protective Immunity

    PubMed Central

    Murira, Armstrong; Laulhé, Xavier; Stäger, Simona; Lamarre, Alain; van Grevenynghe, Julien

    2017-01-01

    Type I interferons (IFN-I) are one of the primary immune defenses against viruses. Similar to all other molecular mechanisms that are central to eliciting protective immune responses, IFN-I expression is subject to homeostatic controls that regulate cytokine levels upon clearing the infection. However, in the case of established persistent viral infection, sustained elevation of IFN-I expression bears deleterious effects to the host and is today considered as the major driver of inflammation and immunosuppression. In fact, numerous emerging studies place sustained IFN-I expression as a common nexus in the pathogenesis of multiple chronic diseases including persistent infections with the human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), as well as the rodent-borne lymphocytic choriomeningitis virus clone 13 (LCMV clone 13). In this review, we highlight recent studies illustrating the molecular dysregulation and resultant cellular dysfunction in both innate and adaptive immune responses driven by sustained IFN-I expression. Here, we place particular emphasis on the efficacy of IFN-I receptor (IFNR) blockade towards improving immune responses against viral infections given the emerging therapeutic approach of blocking IFNR using neutralizing antibodies (Abs) in chronically infected patients. PMID:29301196

  9. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure.

    PubMed

    Barros, Inês; Divya, Baby; Martins, Inês; Vandeperre, Frederic; Santos, Ricardo Serrão; Bettencourt, Raul

    2015-01-01

    Deep-sea hydrothermal vents are extreme habitats that are distributed worldwide in association with volcanic and tectonic events, resulting thus in the establishment of particular environmental conditions, in which high pressure, steep temperature gradients, and potentially toxic concentrations of sulfur, methane and heavy metals constitute driving factors for the foundation of chemosynthetic-based ecosystems. Of all the different macroorganisms found at deep-sea hydrothermal vents, the mussel Bathymodiolus azoricus is the most abundant species inhabiting the vent ecosystems from the Mid-Atlantic Ridge (MAR). In the present study, the effect of long term acclimatization at atmospheric pressure on host-symbiotic associations were studied in light of the ensuing physiological adaptations from which the immune and endosymbiont gene expressions were concomitantly quantified by means of real-time PCR. The expression of immune genes at 0 h, 12 h, 24 h, 36 h, 48 h, 72 h, 1 week and 3 weeks post-capture acclimatization was investigated and their profiles compared across the samples tested. The gene signal distribution for host immune and bacterial genes followed phasic changes in gene expression at 24 h, 1 week and 3 weeks acclimatization when compared to other time points tested during this temporal expression study. Analyses of the bacterial gene expression also suggested that both bacterial density and activity could contribute to shaping the intricate association between endosymbionts and host immune genes whose expression patterns seem to be concomitant at 1 week acclimatization. Fluorescence in situ hybridization was used to assess the distribution and prevalence of endosymbiont bacteria within gill tissues confirming the gradual loss of sulfur-oxidizing (SOX) and methane-oxidizing (MOX) bacteria during acclimatization. The present study addresses the deep-sea vent mussel B. azoricus as a model organism to study how acclimatization in aquaria and the prevalence of symbiotic bacteria are driving the expression of host immune genes. Tight associations, unseen thus far, suggest that host immune and bacterial gene expression patterns reflect distinct physiological responses over the course of acclimatization under aquarium conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Addiction, Adolescence, and Innate Immune Gene Induction

    PubMed Central

    Crews, Fulton T.; Vetreno, Ryan Peter

    2011-01-01

    Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control, and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB) facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g., negative affect-anxiety and loss of frontal–cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy. PMID:21629837

  11. Gay Men's Book Clubs versus Wisconsin's Public Libraries: Political Perceptions in the Absence of Dialogue

    ERIC Educational Resources Information Center

    Pruitt, John

    2010-01-01

    Because of an absence of dialogue, a tense relationship appears to exist between Wisconsin's gay men's book discussion groups and their local public libraries. Public library directors express interest in accommodating these groups if approached but face budget restrictions and local communities that may oppose these gatherings; gay men's book…

  12. Educating for Social Justice: Perspectives from Library and Information Science and Collaboration with K-12 Social Studies Educators

    ERIC Educational Resources Information Center

    Naidoo, Jamie Campbell; Sweeney, Miriam E.

    2015-01-01

    Library and Information Science (LIS) as a discipline is guided by core values that emphasize equal access to information, freedom of expression, democracy, and education. Importantly, diversity and social responsibility are specifically called out as foundations of the profession (American Library Association, 2004). Following from this, there…

  13. Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis.

    PubMed

    Hayhurst, Andrew; Happe, Scott; Mabry, Robert; Koch, Zephyr; Iverson, Brent L; Georgiou, George

    2003-05-01

    Brucella melitensis is a highly infectious animal pathogen able to cause a recurring debilitating disease in humans and is therefore high on the list of biological warfare agents. Immunoglobulin genes from mice immunized with gamma-irradiated B. melitensis strain 16M were used to construct a library that was screened by phage display against similarly prepared bacteria. The selected phage particles afforded a strong enzyme-linked immunosorbent assay (ELISA) signal against gamma-irradiated B. melitensis cells. However, extensive efforts to express the respective single chain antibody variable region fragment (scFv) in soluble form failed due to: (i) poor solubility and (ii) in vivo degradation of the c-myc tag used for the detection of the recombinant antibodies. Both problems could be addressed by: (i) fusing a human kappa light chain constant domain (Ck) chain to the scFv to generate single chain antibody fragment (scAb) antibody fragments and (ii) by co-expression of the periplasmic chaperone Skp. While soluble, functional antibodies could be produced in this manner, phage-displaying scFvs or scAbs were still found to be superior ELISA reagents for immunoassays, due to the large signal amplification afforded by anti-phage antibodies. The isolated phage antibodies were shown to be highly specific to B. melitensis and did not recognize Yersinia pseudotuberculosis in contrast to the existing diagnostic monoclonal YST 9.2.1.

  14. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries

    PubMed Central

    Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P

    2008-01-01

    Background Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. Results We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. Conclusion EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects. PMID:18402700

  15. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries.

    PubMed

    Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P

    2008-04-10

    Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.

  16. Microarray analyses reveal distinct roles for Rel proteins in the Drosophila immune response

    PubMed Central

    Pal, Subhamoy; Wu, Junlin; Wu, Louisa P.

    2007-01-01

    The NF-κB group of transcription factors play an important role in mediating immune responses in organisms as diverse as insects and mammals. The fruit fly Drosophila melanogaster express three closely related NF-κB-like transcription factors: Dorsal, Dif, and Relish. To study their roles in vivo, we used microarrays to determine the effect of null mutations in individual Rel transcription factors on larval immune gene expression. Of the 188 genes that were significantly up-regulated in wildtype larvae upon bacterial challenge, overlapping but distinct groups of genes were affected in the Rel mutants. We also ectopically expressed Dorsal or Dif and used cDNA microarrays to determine the genes that were up-regulated in the presence of these transcription factors. This expression was sufficient to drive expression of some immune genes, suggesting redundancy in the regulation of these genes. Combining this data, we also identified novel genes that may be specific targets of Dif. PMID:17537510

  17. Expression of immune checkpoints in T cells of esophageal cancer patients.

    PubMed

    Xie, Jinhua; Wang, Ji; Cheng, Shouliang; Zheng, Liangfeng; Ji, Feiyue; Yang, Lin; Zhang, Yan; Ji, Haoming

    2016-09-27

    Inhibition of immune checkpoint proteins (checkpoints) has become a promising anti-esophageal cancer strategy. We here tested expressions of immune checkpoints in human esophageal cancers. Our results showed the expressions of many immune checkpoints, including CD28, CD27, CD137L, programmed death 1 (PD-1), T cell immunoglobulin mucin-3 (TIM-3), T cell Ig and ITIM domain (TIGIT), CD160, cytotoxic T lymphocyte antigen 4 (CTLA-4), CD200, CD137 and CD158, were dysregulated in peripheral T cells of esophageal cancer patients. Further, the expressions of PD-1, TIM-3 and TIGIT were upregulated in tumor infiltrating lymphocytes (TILs), which might be associated with TILs exhaustion. Meanwhile, the expressions of PD-1 and TIM-3 on CD4+ T cells were closely associated with clinic pathological features of esophageal cancer patients. These results indicate that co-inhibitory receptors PD-1, TIM-3 and TIGIT may be potential therapeutic oncotargets for esophageal cancer.

  18. The Role of Immune Escape and Immune Cell Infiltration in Breast Cancer.

    PubMed

    Steven, André; Seliger, Barbara

    2018-03-01

    While detailed analysis of aberrant cancer cell signaling pathways and changes in cancer cell DNA has dominated the field of breast cancer biology for years, there now exists increasing evidence that the tumor microenvironment (TME) including tumor-infiltrating immune cells support the growth and development of breast cancer and further facilitate invasion and metastasis formation as well as sensitivity to drug therapy. Furthermore, breast cancer cells have developed different strategies to escape surveillance from the adaptive and innate immune system. These include loss of expression of immunostimulatory molecules, gain of expression of immunoinhibitory molecules such as PD-L1 and HLA-G, and altered expression of components involved in apoptosis. Furthermore, the composition of the TME plays a key role in breast cancer development and treatment response. In this review we will focus on i) the different immune evasion mechanisms used by breast cancer cells, ii) the role of immune cell infiltration in this disease, and (iii) implication for breast cancer-based immunotherapies.

  19. Dual Faces of IFNγ in Cancer Progression: A Role of PD-L1 Induction in the Determination of Pro- and Antitumor Immunity.

    PubMed

    Mandai, Masaki; Hamanishi, Junzo; Abiko, Kaoru; Matsumura, Noriomi; Baba, Tsukasa; Konishi, Ikuo

    2016-05-15

    IFNγ is a cytokine that plays a pivotal role in antitumor host immunity. IFNγ elicits potent antitumor immunity by inducing Th1 polarization, CTL activation, and dendritic cell tumoricidal activity. However, there are significant discrepancies in our understanding of the role of IFNγ as an antitumor cytokine. In certain circumstances, IFNγ obviously acts to induce tumor progression. IFNγ treatment has negatively affected patient outcomes in some clinical trials, while it has favorably affected outcomes in other trials. Several mechanisms, including IFNγ insensitivity and the downregulation of the MHC complex, have been regarded as the reasons for this discrepancy, but they do not fully explain it. We propose IFNγ-induced programmed cell death 1 ligand 1 (PD-L1) expression as a novel mechanism by which IFNγ impairs tumor immunity. When tumor cells encounter CTLs in the local environment, they detect them via the high concentration of IFNγ secreted from CTLs, which induces PD-L1 expression in preparation for an immune attack. Thus, tumor cells acquire the capability to counterattack immune cells. These findings indicate that although IFNγ is thought to be a representative antitumor cytokine, it actually has dual roles: one as a hallmark of antitumor immunity and the other as an inducer of the immune escape phenomenon through various mechanisms, such as PD-L1 expression. In this context, the optimization of immunotherapy according to the local immune environment is important. Anti-PD-1/PD-L1 treatment may be particularly promising when efficient tumor immunity is present, but it is disturbed by PD-L1 expression. Clin Cancer Res; 22(10); 2329-34. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Alterations of immune response of non-small cell lung cancer with Azacytidine

    PubMed Central

    Easwaran, Hariharan; Mohammad, Helai P.; Vendetti, Frank; VanCriekinge, Wim; DeMeyer, Tim; Du, Zhengzong; Parsana, Princy; Rodgers, Kristen; Yen, Ray-Whay; Zahnow, Cynthia A.; Taube, Janis M.; Brahmer, Julie R.; Tykodi, Scott S.; Easton, Keith; Carvajal, Richard D.; Jones, Peter A.; Laird, Peter W.; Weisenberger, Daniel J.; Tsai, Salina; Juergens, Rosalyn A.; Topalian, Suzanne L.; Rudin, Charles M.; Brock, Malcolm V.; Pardoll, Drew; Baylin, Stephen B.

    2013-01-01

    Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA – Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints – in particular the PD-1/PD-L1 pathway – may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade. PMID:24162015

  1. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems.

    PubMed

    Alzaid, Abdullah; Kim, Jin-Hyoung; Devlin, Robert H; Martin, Samuel A M; Macqueen, Daniel J

    2018-04-26

    Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon ( Oncorhynchus kisutch ) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation. © 2018. Published by The Company of Biologists Ltd.

  2. Inducible Defenses Stay Up Late: Temporal Patterns of Immune Gene Expression in Tenebrio molitor

    PubMed Central

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2014-01-01

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. PMID:24318927

  3. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    PubMed

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.

  4. Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora

    PubMed Central

    Puill-Stephan, Eneour; Seneca, François O.; Miller, David J.; van Oppen, Madeleine J. H.; Willis, Bette L.

    2012-01-01

    Background Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Methodology/Principal Findings Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A.millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Conclusions/Significance Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further clarify emerging evidence of a complex innate immunity system in corals. PMID:22792163

  5. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    PubMed

    Puill-Stephan, Eneour; Seneca, François O; Miller, David J; van Oppen, Madeleine J H; Willis, Bette L

    2012-01-01

    Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further clarify emerging evidence of a complex innate immunity system in corals.

  6. Count of splenic stromal precursor cells in mice and expression of cytokine genes in these cells in primary cultures during different periods after immunization of animals with S. typhimurium antigens.

    PubMed

    Gorskaya, Yu F; Danilova, T A; Mezentseva, M V; Shapoval, I M; Narovlyanskii, A N; Nesterenko, V G

    2011-06-01

    Injection of S. typhimurium antigens significantly (9-fold) increased cloning efficiency and, hence, the content of stromal precursor cells in the spleen as soon as after 24 h. These parameters returned to normal by days 6-15 after immunization. Cultured splenocytes collected from immune (but not intact) animals expressed the genes of proinflammatory cytokines IL-1β (on days 1, 6, 15) and IL-6 (on days 1 and 6), TNF-α (on days 6 and 15), and of IFN-α and IL-18 (on days 6 and 15). The expression of IL-4 gene was suppressed on day 6 after immunization, of IL-10 gene on days 1 and 6, of IL-6 gene on day 15. Hence, no signs of immune response suppression by stromal cells were found in this system. The spectrum and dynamics of the expression of pro- and anti-inflammatory cytokine genes in stromal cell cultures from the spleen of immunized mice seemed to correspond to those needed for support of the immune response to S. typhimurium antigens, observed in immunized animals. The results indicate possible involvement of stromal cells in the realization of immune response in vivo. The increase of stromal precursor cells cloning efficiency in response to antigen injection could not be reproduced in vitro: the presence of S. typhimurium antigens in primary cultures of intact mouse bone marrow and spleen throughout the entire period of culturing ≈ 20-fold reduced cloning efficiency in cultures.

  7. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model.

    PubMed

    Cameron, Mark J; Kelvin, Alyson A; Leon, Alberto J; Cameron, Cheryl M; Ran, Longsi; Xu, Luoling; Chu, Yong-Kyu; Danesh, Ali; Fang, Yuan; Li, Qianjun; Anderson, Austin; Couch, Ronald C; Paquette, Stephane G; Fomukong, Ndingsa G; Kistner, Otfried; Lauchart, Manfred; Rowe, Thomas; Harrod, Kevin S; Jonsson, Colleen B; Kelvin, David J

    2012-01-01

    In terms of its highly pathogenic nature, there remains a significant need to further define the immune pathology of SARS-coronavirus (SARS-CoV) infection, as well as identify correlates of immunity to help develop vaccines for severe coronaviral infections. Here we use a SARS-CoV infection-reinfection ferret model and a functional genomics approach to gain insight into SARS immunopathogenesis and to identify correlates of immune protection during SARS-CoV-challenge in ferrets previously infected with SARS-CoV or immunized with a SARS virus vaccine. We identified gene expression signatures in the lungs of ferrets associated with primary immune responses to SARS-CoV infection and in ferrets that received an identical second inoculum. Acute SARS-CoV infection prompted coordinated innate immune responses that were dominated by antiviral IFN response gene (IRG) expression. Reinfected ferrets, however, lacked the integrated expression of IRGs that was prevalent during acute infection. The expression of specific IRGs was also absent upon challenge in ferrets immunized with an inactivated, Al(OH)(3)-adjuvanted whole virus SARS vaccine candidate that protected them against SARS-CoV infection in the lungs. Lack of IFN-mediated immune enhancement in infected ferrets that were previously inoculated with, or vaccinated against, SARS-CoV revealed 9 IRG correlates of protective immunity. This data provides insight into the molecular pathogenesis of SARS-CoV and SARS-like-CoV infections and is an important resource for the development of CoV antiviral therapeutics and vaccines.

  8. An immune-related gene expression atlas of the shrimp digestive system in response to two major pathogens brings insights into the involvement of hemocytes in gut immunity.

    PubMed

    Silveira, Amanda S; Matos, Gabriel M; Falchetti, Marcelo; Ribeiro, Fabio S; Bressan, Albert; Bachère, Evelyne; Perazzolo, Luciane M; Rosa, Rafael D

    2018-02-01

    Much of our current knowledge on shrimp immune system is restricted to the defense reactions mediated by the hemocytes and little is known about gut immunity. Here, we have investigated the transcriptional profile of immune-related genes in different organs of the digestive system of the shrimp Litopenaeus vannamei. First, the tissue distribution of 52 well-known immune-related genes has been assessed by semiquantitative analysis in the gastrointestinal tract (foregut, midgut and hindgut) and in the hepatopancreas and circulating hemocytes of shrimp stimulated or not with heat-killed bacteria. Then, the expression levels of 18 genes from key immune functional categories were quantified by fluorescence-based quantitative PCR in the midgut of animals experimentally infected with the Gram-negative Vibrio harveyi or the White spot syndrome virus (WSSV). Whereas the expression of some genes was induced at 48 h after the bacterial infection, any of the analyzed genes showed to be modulated in response to the virus. Whole-mount immunofluorescence assays confirmed the presence of infiltrating hemocytes in the intestines, indicating that the expression of some immune-related genes in gut is probably due to the migratory behavior of these circulating cells. This evidence suggests the participation of hemocytes in the delivery of antimicrobial molecules into different portions of the digestive system. Taken all together, our results revealed that gut is an important immune organ in L. vannamei with intimate association with hemocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus.

    PubMed

    Kuklin, N A; Rott, L; Darling, J; Campbell, J J; Franco, M; Feng, N; Müller, W; Wagner, N; Altman, J; Butcher, E C; Greenberg, H B

    2000-12-01

    Rotavirus (RV), which replicates exclusively in cells of the small intestine, is the most important cause of severe diarrhea in young children worldwide. Using a mouse model, we show that expression of the intestinal homing integrin alpha(4)ss(7) is not essential for CD8(+) T cells to migrate to the intestine or provide immunity to RV. Mice deficient in ss7 expression (ss7(-/-)) and unable to express alpha(4)ss(7) integrin were found to clear RV as quickly as wild-type (wt) animals. Depletion of CD8(+) T cells in ss7(-/-) animals prolonged viral shedding, and transfer of immune ss7(-/-) CD8(+) T cells into chronically infected Rag-2-deficient mice resolved RV infection as efficiently as wt CD8(+) T cells. Paradoxically, alpha(4)ss(7)(hi) memory CD8(+) T cells purified from wt mice that had been orally immunized cleared RV more efficiently than alpha(4)ss(7)(low) CD8(+) T cells. We explained this apparent contradiction by demonstrating that expression of alpha(4)ss(7) on effector CD8(+) T cells depends upon the site of initial antigen exposure: oral immunization generates RV-specific CD8(+) T cells primarily of an alpha(4)ss(7)(hi) phenotype, but subcutaneous immunization yields both alpha(4)ss(7)(hi) and alpha(4)ss(7)(low) immune CD8(+) T cells with anti-RV effector capabilities. Thus, alpha(4)ss(7) facilitates normal intestinal immune trafficking to the gut, but it is not required for effective CD8(+) T cell immunity.

  10. Involvement of clip-domain serine protease in the anti-Vibrio immune response of abalone (Haliotis discus hannai)-Molecular cloning, characterization and functional analysis.

    PubMed

    Hu, Jian-Jian; Chen, Yu-Lei; Duan, Xue-Kun; Jin, Teng-Chuan; Li, Yue; Zhang, Ling-Jing; Liu, Guang-Ming; Cao, Min-Jie

    2018-01-01

    Vibrio parahemolyticus (V. parahemolyticus) is a major pathogen for abalone, an important economical shellfish in coastal area of China. There is little known about the abalone innate immune system against pathogen infection. Clip-domain serine proteases (cSPs) are increasingly recognized to play important roles in host immune defense in invertebrates. In this study, we cloned a cSP (Hdh-cSP) from abalone (Haliotis discus hannai). We found out that Hdh-cSP was widely expressed in multiple tissues of abalone, with highest level in the immune-like organ, hepatopancreas. V. parahemolyticus infection induced significantly elevated expression of Hdh-cSP in addition to better-characterized innate immune component genes including Rel/NF-κB, allograft inflammatory factor (ALInFa), macrophage expressed protein (MEP) and caspase-8. Importantly, the silencing of Hdh-cSP reduced the expression of these genes, suggesting that Hdh-cSP was an upstream regulatory factor in V. parahemolyticus infection. Further analysis showed that apoptosis of hemocytes was inhibited when the transcription of Hdh-cSP was knocked down, suggesting that Hdh-cSP participated in cell apoptosis by regulation of caspase 8 expression in V. parahemolyticus infection. Therefore, our study established an important role of cSP in the innate immunity against V. parahemolyticus infection in abalone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The green vaccine: A global strategy to combat infectious and autoimmune diseases

    PubMed Central

    Davoodi-Semiromi, Abdoreza; Samson, Nalapalli; Daniell, Henry

    2009-01-01

    Plant derived oral green vaccines eliminate expenses associated with fermenters, purification, cold storage/transportation and sterile delivery. Green vaccines are expressed via the plant nuclear or chloroplast genomes. Chloroplast expression has advantages of hyper-expression of therapeutic proteins (10,000 copies of trans-gene per cell), efficient oral delivery and transgene containment via maternal inheritance. To date, 23 vaccine antigens against 16 different bacterial, viral or protozoan pathogens have been expressed in chloroplasts. Mice subcutaneously immunized with the chloroplast derived anthrax protective antigen conferred 100% protection against lethal doses of the anthrax toxin. Oral immunization (ORV) of F1-V antigens without adjuvant conferred greater protection (88%) against 50-fold lethal dose of aerosolized plague (Yersinia pestis) than subcutaneous (SQV) immunization (33%). Oral immunization of malarial vaccine antigens fused to the cholera antigen (CTB-AMA1/CTB-Msp1) conferred prolonged immunity (50% life span), 100% protection against cholera toxin challenge and inhibited proliferation of the malarial parasite. Protection was correlated with antigen-specific titers of intestinal, serum IgA & IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. High level expression in edible plant chloroplasts ideal for oral delivery and long-term immunity observed should facilitate development of low cost human vaccines for large populations, at times of outbreak. PMID:19430198

  12. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma

    PubMed Central

    Sekar, Divya; Govene, Luisa; del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F.

    2018-01-01

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity. PMID:29518903

  13. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma.

    PubMed

    Sekar, Divya; Govene, Luisa; Del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F; Brüne, Bernhard; Rodriguez-Barbosa, José I; Weigert, Andreas

    2018-03-07

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.

  14. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast.

    PubMed

    Young, Eric M; Zhao, Zheng; Gielesen, Bianca E M; Wu, Liang; Benjamin Gordon, D; Roubos, Johannes A; Voigt, Christopher A

    2018-05-09

    Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the construction of strain libraries from which the maximum information can be extracted without sampling every possible combination. We use Saccharomyces cerevisiae as a host for a novel six-gene pathway to itaconic acid, selected by comparing alternative shunt pathways that bypass the mitochondrial TCA cycle. The pathway is distinctive for the use of acetylating acetaldehyde dehydrogenase to increase cytosolic acetyl-CoA pools, a bacterial enzyme to synthesize citrate in the cytosol, and an itaconic acid exporter. Precise control over the expression of each gene is enabled by a set of promoter-terminator pairs that span a 174-fold range. Two large combinatorial libraries (160 variants, 2.4Mb and 32 variants, 0.6Mb) are designed where the expression levels are selected by statistical methods (I-optimal response surface methodology, full factorial, or Plackett-Burman) with the intent of extracting different types of guiding information after the screen. This is applied to the design of a third library (24 variants, 0.5Mb) intended to alleviate a bottleneck in cis-aconitate decarboxylase (CAD) expression. The top strain produces 815mg/l itaconic acid, a 4-fold improvement over the initial strain achieved by iteratively balancing pathway expression. Including a methylated product in the total, the strain produces 1.3g/l combined itaconic acids. Further, a regression analysis of the libraries reveals the optimal expression level of CAD as well as pairwise interdependencies between genes that result in increased titer and purity of itaconic acid. This work demonstrates adapting algorithmic design strategies to guide automated yeast strain construction and learn information after each iteration. Copyright © 2018. Published by Elsevier Inc.

  15. Neutralized adenovirus-immune complexes can mediate effective gene transfer via an Fc receptor-dependent infection pathway.

    PubMed

    Leopold, Philip L; Wendland, Rebecca L; Vincent, Theresa; Crystal, Ronald G

    2006-10-01

    Neutralization of adenovirus (Ad) by anti-Ad neutralizing antibodies in serum involves formation of Ad-immune complexes that prevent the virus from interacting with target cells. We hypothesized that Ad-immune complexes likely contain viable Ad vectors which, although no longer capable of gaining access to receptors on target cells, may be able to express transgenes in cells bearing Fc receptors for immunoglobulins, i.e., that antibody-based "neutralization" of Ad vectors may be circumvented by the Fc receptor pathway. To test this hypothesis, we expressed the Fcgamma receptor IIA (FcgammaR) in A549 lung epithelial cells or human dermal fibroblasts and evaluated gene transfer in the presence of human neutralizing anti-Ad serum. FcgammaR-expressing cells bound and internalized copious amounts of Ad, with a distinct population of internalized Ad trafficking to the nucleus. The dose-response curves for inhibition of gene transfer revealed that FcgammaR-expressing cells required a more-than-10-fold higher concentration of anti-Ad serum to achieve 50% inhibition of Ad-encoded beta-galactosidase expression compared with non-FcgammaR-expressing cells. The discrepancy between neutralization of Ad during infection of FcgammaR-expressing cells and neutralization of Ad during infection of non-FcgammaR-expressing cells occurred with either heat-inactivated or non-heat-inactivated sera, was blocked by addition of purified Fc domain protein, and did not require the cytoplasmic domain of FcgammaR, suggesting that immune complex internalization proceeded via endocytosis rather than phagocytosis. FcgammaR-mediated infection by Ad-immune complexes did not require expression of the coxsackie virus-Ad receptor (CAR) since similar data were obtained when CAR-deficient human dermal fibroblasts were engineered to express FcgammaR. However, interaction of the Ad penton base with cell surface integrins contributed to the difference in neutralization between FcgammaR-expressing and non-FcgammaR-expressing cells. The data indicate that complexes formed from Ad and anti-Ad neutralizing antibodies, while compromised with respect to infection of non-FcgammaR-expressing target cells, maintain the potential to transfer genes to FcgammaR-expressing cells, with consequent expression of the transgene. The formation of Ad-immune complexes that can target viable virus to antigen-presenting cells may account for the success of Ad-based vaccines administered in the presence of low levels of neutralizing anti-Ad antibody.

  16. PD-L1 expression on immune cells is a favorable prognostic factor for vulvar squamous cell carcinoma patients

    PubMed Central

    Sznurkowski, Jacek J.; Żawrocki, Anton; Sznurkowska, Katarzyna; Pęksa, Rafał; Biernat, Wojciech

    2017-01-01

    Background Anti-immune programmed death-ligand 1 (PD-L1) pathway is used by the tumor to overcome immune system and serves as immunotherapy target in various malignancies. Aim To investigate the expression of PD-L1 in vulvar squamous cell carcinoma (vSCC) and to assess it's clinicopathological and prognostic significance. Methods Immunohistochemical PD-L1 expression was evaluated in 84 vSCCs with previously defined status of p16 and DNA-HPV, infiltration of immune cells: CD8+, CD4+, FOXP3+, CD56+, CD68+, and GZB+ cells. PD-L1 positivity was defined as ≥5% of PD-L1-positive cells. Survival analyses included the Kaplan–Meier method, log-rank test and Cox proportional hazards model. Results PD-L1 expression was detected on cancer and peritumoral immune cells. PD-L1-positivity of cancer nests (27/84, 32.1%) was correlated with higher infiltration of CD4+ (p=0.037), CD8+ (p=0.02), FOXP3+ (p=0.007), CD68+ (p=0.021) cells, while PD-L1 positivity of peritumoral immune cells (51/84, 60.7%) was correlated with higher infiltration of intraepithelial FOXP3+ cells only (p=0.037). PD-L1-positivity of cancer cells but not immune cells, was more frequently observed in p16-negative tumors (p=0.004). High-risk HPV-status did not correlate with the PD-L1 status of cancer and immune cells (p=1.000) and (p=1.000) respectively). Median follow up was 89.20 months (range 1.7-189.5). PD-L1 positivity of peritumoral immune cells was found to be an independent favorable prognostic factor for OS. Conclusion: This study highlights the importance of comprehensive PD-L1 assessment in both cancer and immune cells. PD-L1 expression on peritumoral immune cells seems to be an additional prognostic factor in vSCC patients and may influence the results by anti-PD-L1 treatment. PMID:29163797

  17. Development and Evaluation of Transgenic Nude Mice Expressing Ubiquitous Green Fluorescent Protein.

    PubMed

    Iyer, Srikanth; Arindkar, Shailendra; Mishra, Alaknanda; Manglani, Kapil; Kumar, Jerald Mahesh; Majumdar, Subeer S; Upadhyay, Pramod; Nagarajan, Perumal

    2015-08-01

    Researchers had developed and characterized transgenic green/red fluorescent protein (GFP/RFP) nude mouse with ubiquitous RFP or GFP expression, but none has evaluated the level of immune cells and expression levels of GFP in this model. The nude GFP mice were evaluated by imaging, hematological indices, and flow cytometry to compare the proportion of immune T cells. Quantitative real-time PCR (qRT-PCR) was done for evaluating the relative expression of GFP transcripts in few organs of the nude GFP mice. The hematological and immune cells of nude GFP were within the range of nude mice. However, the gene expression levels were relatively less in various tissues compared with B6 GFP mice. These findings suggest that nude GFP is an ideal model resembling normal nude mice; however, GFP expression in various tissues by fluorescence should be considered, as the expression of GFP differs in various organs.

  18. Bioprospecting for Genes that Confer Biofuel Tolerance to Escherichia Coli Using a Genomic Library Approach

    NASA Astrophysics Data System (ADS)

    Tomko, Timothy

    Microorganisms are capable of producing advanced biofuels that can be used as 'drop-in' alternatives to conventional liquid fuels. However, vital physiological processes and membrane properties are often disrupted by the presence of biofuel and limit the production yields. In order to make microbial biofuels a competitive fuel source, finding mechanisms for improving resistance to the toxic effects of biofuel production is vital. This investigation aims to identify resistance mechanisms from microorganisms that have evolved to withstand hydrocarbon-rich environments, such as those that thrive near natural oil seeps and in oil-polluted waters. First, using genomic DNA from Marinobacter aquaeolei, we constructed a transgenic library that we expressed in Escherichia coli. We exposed cells to inhibitory levels of pinene, a monoterpene that can serve as a jet fuel precursor with chemical properties similar to existing tactical fuels. Using a sequential strategy of a fosmid library followed by a plasmid library, we were able to isolate a region of DNA from the M. aquaeolei genome that conferred pinene tolerance when expressed in E. coli. We determined that a single gene, yceI, was responsible for the tolerance improvements. Overexpression of this gene placed no additional burden on the host. We also tested tolerance to other monoterpenes and showed that yceI selectively improves tolerance. Additionally, we used genomic DNA from Pseudomonas putida KT2440, which has innate solvent-tolerance properties, to create transgenic libraries in an E. coli host. We exposed cells containing the library to pinene, selecting for genes that improved tolerance. Importantly, we found that expressing the sigma factor RpoD from P. putida greatly expanded the diversity of tolerance genes recovered. With low expression of rpoDP. putida, we isolated a single pinene tolerance gene; with increased expression of the sigma factor our selection experiments returned multiple distinct tolerance mechanisms, including some that have been previously documented and also new mechanisms. Interestingly, high levels of rpoDP. putida, induction resulted in decreased diversity. We found that the tolerance levels provided by some genes are highly sensitive to the level of induction of rpoD P. putida,, while others provide tolerance across a wide range of rpoDP. putida, levels. This method for unlocking diversity in tolerance screening using heterologous sigma factor expression was applicable to both plasmid and fosmid-based transgenic libraries. These results suggest that by controlling the expression of appropriate heterologous sigma factors, we can greatly increase the searchable genomic space within transgenic libraries. This dissertation describes a method of effectively screening genomic DNA from multiple organisms for genes to mitigate biofuel stress and shows how tolerance genes can improve bacterial growth in the presence of toxic biofuel compounds. These identified genes can be targeted in future studies as candidates for use in biofuel production strains to increase biofuel yields.

  19. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    PubMed

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  20. TET1 and TET3 are essential in induction of Th2-type immunity partly through regulation of IL-4/13A expression in zebrafish model.

    PubMed

    Yang, Chao; Li, Zhuo; Kang, Wei; Tian, Yu; Yan, Yuzhu; Chen, Wei

    2016-10-10

    It has been considered that epigenetic modulation can affect a diverse array of cellular activities, in which ten eleven translocation (TET) methylcytosine dioxygenase family members refer to a group of fundamental components involved in catalyzation of 5-hydroxymethylcytosine and modification of gene expression. Even though the function of TET proteins has been gradually revealed, their roles in immune regulation are still largely unknown. Recent studies provided clues that TET2 could regulate several innate immune-related inflammatory mediators in mammals. This study sought to explore the function of TET family members in potential T-helper (Th) cell differentiation involved in adaptive immunity by utilizing a zebrafish model. As shown by results, soluble antigens could induce expression of zebrafish IL-4/13A (i.e. a pivotal Th2-type cytokine essential in Th2 cell differentiation and functions), and further trigger the expression of Th1- and Th2-related genes. It is noteworthy that this response was accompanied by the up-regulation of two TET family members (TET1 and TET3) both in immune organs (spleen and kidney) and cells (peripheral lymphocytes). Knocking-down of TET1 and TET3 will give rise to the decreased responses of IL-4/13A induction against exogenous soluble antigen stimulation, and further restrain the expression of Th2-related genes, which indicates a restrained Th2 cell differentiation. Nonetheless, TET2 did not exhibit effect on the modification of Th1/Th2 related gene expression. Hence, these data showed that TET1 and TET3 might be two significant epigenetic regulators involved in Th2 differentiation through regulation of IL-4/13A expression. This is the first report to show that TET family members play indispensable roles in Th2-type immunity, indicating an epigenetic modulation manner involved in adaptive immune regulations and responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Immunodiagnostic Properties of Wucheraria bancrofti SXP-1, a Potential Filarial Diagnostic Candidate Expressed in Tobacco Plant, Nicotiana tabacum.

    PubMed

    Ganapathy, Mathangi; Chakravarthi, M; Charles, S Jason; Harunipriya, P; Jaiganesh, S; Subramonian, N; Kaliraj, P

    2015-08-01

    Transgenic tobacco plants were developed expressing WbSXP-1, a diagnostic antigen isolated from the cDNA library of L3 stage larvae of Wucheraria bancrofti. This antigen produced by recombinant Escherichia coli has been demonstrated by to be successful as potential diagnostic candidate against lymphatic filariasis. A rapid format simple and qualitative flow through immune-filtration diagnostic kit has been developed for the identification of IgG antibodies to the recombinant WbSXP-1 and is being marketed by M/S Span Diagnostics Ltd in India and Africa. Here, we present the results of experiments on the transformation and expression of the same filarial antigen, WbSXP-1, in tobacco plant, Nicotiana tabacum, to produce plant-based diagnostic antigen. It was possible to successfully transform the tobacco plant with WbSXP-1, the integration of the parasite-specific gene in plants was confirmed by PCR amplification and the expression of the filarial protein by Western blotting. The immunoreactivity of the plant-produced WbSXP-1 was assessed based on its reaction with the monoclonal antibodies developed against the E. coli-produced protein. Immunological screening using clinical sera from patients indicates that the plant-produced protein is comparable to E. coli-produced diagnostic antigen. The result demonstrated that plants can be used as suitable expression systems for the production of diagnostic proteins against lymphatic filariasis, a neglected tropical infectious disease which has a negative impact on socioeconomic development. This is the first report of the integration, expression and efficacy of a diagnostic candidate of lymphatic filariasis in plants.Key MessageTransgenic tobacco plants with WbSXP-1, a filarial diagnostic candidate, were developed. The plant-produced protein showed immunoreactivity on par with the E. coli product.

  2. Transcriptome Analysis of Liangshan Pig Muscle Development at the Growth Curve Inflection Point and Asymptotic Stages Using Digital Gene Expression Profiling

    PubMed Central

    Du, Jingjing; Liu, Chendong; Wu, Xiaoqian; Pu, Qiang; Fu, Yuhua; Tang, Qianzi; Liu, Yuanrui; Li, Qiang; Yang, Runlin; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Li, Mingzhou; Zhang, Shunhua; Zhu, Li

    2015-01-01

    Animal growth curves can provide essential information for animal breeders to optimize feeding and management strategies. However, the genetic mechanism underlying the phenotypic differentiation between the inflection point and asymptotic stages of the growth curve is not well characterized. Here, we employed Liangshan pigs in stages of growth at the inflection point (under inflection point: UIP) and the two asymptotic stages (before the inflection point: BIP, after the inflection point: AIP) as models to survey global gene expression in the longissimus dorsi muscle using digital gene expression (DGE) tag profiling. We found Liangshan pigs reached maximum growth rate (UIP) at 163.6 days of age and a weight of 134.6 kg. The DGE libraries generated 117 million reads of 5.89 gigabases in length. 21,331, 20,996 and 20,139 expressed transcripts were identified BIP, UIP and AIP, respectively. Among them, we identified 757 differentially expressed genes (DEGs) between BIP and UIP, and 271 DEGs between AIP and UIP. An enrichment analysis of DEGs proved the immune system was strengthened in the AIP stage. Energy metabolism rate, global transcriptional activity and bone development intensity were highest UIP. Meat from Liangshan pigs had the highest intramuscular fat content and most favorable fatty acid composition in the AIP. Three hundred eighty (27.70%) specific expression genes were highly enriched in QTL regions for growth and meat quality traits. This study completed a comprehensive analysis of diverse genetic mechanisms underlying the inflection point and asymptotic stages of growth. Our findings will serve as an important resource in the understanding of animal growth and development in indigenous pig breeds. PMID:26292092

  3. Transcriptome Analysis of Liangshan Pig Muscle Development at the Growth Curve Inflection Point and Asymptotic Stages Using Digital Gene Expression Profiling.

    PubMed

    Shen, Linyuan; Luo, Jia; Du, Jingjing; Liu, Chendong; Wu, Xiaoqian; Pu, Qiang; Fu, Yuhua; Tang, Qianzi; Liu, Yuanrui; Li, Qiang; Yang, Runlin; Li, Xuewei; Tang, Guoqing; Jiang, Yanzhi; Li, Mingzhou; Zhang, Shunhua; Zhu, Li

    2015-01-01

    Animal growth curves can provide essential information for animal breeders to optimize feeding and management strategies. However, the genetic mechanism underlying the phenotypic differentiation between the inflection point and asymptotic stages of the growth curve is not well characterized. Here, we employed Liangshan pigs in stages of growth at the inflection point (under inflection point: UIP) and the two asymptotic stages (before the inflection point: BIP, after the inflection point: AIP) as models to survey global gene expression in the longissimus dorsi muscle using digital gene expression (DGE) tag profiling. We found Liangshan pigs reached maximum growth rate (UIP) at 163.6 days of age and a weight of 134.6 kg. The DGE libraries generated 117 million reads of 5.89 gigabases in length. 21,331, 20,996 and 20,139 expressed transcripts were identified BIP, UIP and AIP, respectively. Among them, we identified 757 differentially expressed genes (DEGs) between BIP and UIP, and 271 DEGs between AIP and UIP. An enrichment analysis of DEGs proved the immune system was strengthened in the AIP stage. Energy metabolism rate, global transcriptional activity and bone development intensity were highest UIP. Meat from Liangshan pigs had the highest intramuscular fat content and most favorable fatty acid composition in the AIP. Three hundred eighty (27.70%) specific expression genes were highly enriched in QTL regions for growth and meat quality traits. This study completed a comprehensive analysis of diverse genetic mechanisms underlying the inflection point and asymptotic stages of growth. Our findings will serve as an important resource in the understanding of animal growth and development in indigenous pig breeds.

  4. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells.

    PubMed

    Sadeqzadeh, Elham; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J; Parhamifar, Ladan; Moghimi, S Moein

    2011-11-30

    We provide evidence for combining a single domain antibody (nanobody)-based targeting approach with transcriptional targeting as a safe way to deliver lethal transgenes to MUC1 over-expressing cancer cells. From a nanobody immune library, we have isolated an anti-DF3/Mucin1 (MUC1) nanobody with high specificity for the MUC1 antigen, which is an aberrantly glycosylated glycoprotein over-expressed in tumours of epithelial origin. The anti-MUC1 nanobody was covalently linked to the distal end of poly(ethylene glycol)(3500) (PEG(3500)) in PEG(3500)-25kDa polyethylenimine (PEI) conjugates and the resultant macromolecular entity successfully condensed plasmids coding a transcriptionally targeted truncated-Bid (tBid) killer gene under the control of the cancer-specific MUC1 promoter. The engineered polyplexes exhibited favourable physicochemical characteristics for transfection and dramatically elevated the level of Bid/tBid expression in both MUC1 over-expressing caspase 3-deficient (MCF7 cells) and caspase 3-positive (T47D and SKBR3) tumour cell lines and, concomitantly, induced considerable cell death. Neither transgene expression nor cell death occurred when the MUC1 promoter was replaced with the CNS-specific synapsin I promoter. Since PEGylated PEI was only responsible for DNA compaction and played no significant role in direct transfection and cell killing, our attempts overcome previously reported PEI-mediated apoptotic and necrotic cell death, which is advantageous for future in vivo transcriptional targeting as this will minimize (or eliminate) non-targeted cell damage. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics.

    PubMed

    Smolle, Maria A; Calin, Horatiu N; Pichler, Martin; Calin, George A

    2017-07-01

    A major mechanism of tumor development and progression is silencing of the patient's immune response to cancer-specific antigens. Defects in the so-called cancer immunity cycle may occur at any stage of tumor development. Within the tumor microenvironment, aberrant expression of immune checkpoint molecules with activating or inhibitory effects on T lymphocytes induces immune tolerance and cellular immune escape. Targeting immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and its ligand PD-L1 with specific antibodies has proven to be a major advance in the treatment of several types of cancer. Another way to therapeutically influence the tumor microenvironment is by modulating the levels of microRNAs (miRNAs), small noncoding RNAs that shuttle bidirectionally between malignant and tumor microenvironmental cells. These small RNA transcripts have two features: (a) their expression is quite specific to distinct tumors, and (b) they are involved in early regulation of immune responses. Consequently, miRNAs may be ideal molecules for use in cancer therapy. Many miRNAs are aberrantly expressed in human cancer cells, opening new opportunities for cancer therapy, but the exact functions of these miRNAs and their interactions with immune checkpoint molecules have yet to be investigated. This review summarizes recently reported findings about miRNAs as modulators of immune checkpoint molecules and their potential application as cancer therapeutics in clinical practice. © 2017 Federation of European Biochemical Societies.

  6. Transcription profiling using RNA-Seq demonstrates expression differences in the body walls of juvenile albino and normal sea cucumbers Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Ma, Deyou; Yang, Hongsheng; Sun, Lina; Chen, Muyan

    2014-01-01

    Sea cucumbers Apostichopus japonicus are one of the most important aquaculture species in China. Their normal body color is black to fit their surroundings. Wild albinos are rare and hard to breed. To understand the differences between albino and normal (control) sea cucumbers at the transcriptional level, we sequenced the transcriptomes in their body-wall tissues using RNA-Seq high-throughput sequencing. Approximately 4.876 million (M) and 4.884 M 200-nucleotide-long cDNA reads were produced in the cDNA libraries derived from the body walls of albino and control samples, respectively. A total of 9 561 (46.89%) putative genes were identified from among the RNA-Seq reads in both libraries. After filtering, 837 significantly differentially regulated genes were identified in the albino library compared with in the control library, and 3.6% of the differentially expressed genes (DEGs) were found to have changed those more than five-fold. The expression levels of 10 DEGs were checked by real-time PCR and the results were in full accord with the RNA-Seq expression trends, although the amplitude of the differences in expression levels was lower in all cases. A series of pathways were significantly enriched for the DEGs. These pathways were closely related to phagocytosis, the complement and coagulation cascades, apoptosis-related diseases, cytokine-cytokine receptor interaction, and cell adhesion. The differences in gene expression and enriched pathways between the albino and control sea cucumbers offer control targets for cultivating excellent albino A. japonicus strains in the future.

  7. The potential roles of endogenous retroviruses in autoimmunity.

    PubMed

    Nakagawa, K; Harrison, L C

    1996-08-01

    Endogenous retroviruses (ERVs) are estimated to comprise up to 1% of human DNA. While the genome of many ERVs is interrupted by termination codons, deletions or frame shift mutations, some ERVs are transcriptionally active and recent studies reveal protein expression or particle formation by human ERVs. ERVs have been implicated as aetiological agents of autoimmune disease, because of their structural and sequence similarities to exogenous retroviruses associated with immune dysregulation and their tissue-specific or differentiation-dependent expression. In fact, retrovirus-like particles distinct from those of known exogenous retroviruses and immune responses to ERV proteins have been observed in autoimmune disease. Quantitatively or structurally aberrant expression of normally cryptic ERVs, induced by environmental or endogenous factors, could initiate autoimmunity through direct or indirect mechanisms. ERVs may lead to immune dysregulation as insertional mutagens or cis-regulatory elements of cellular genes involved in immune function. ERVs may also encode elements like tax in human T-lymphotrophic virus type I (HTLV-I) or tat in human immunodeficiency virus-I (HIV-I) that are capable of transactivating cellular genes. More directly, human ERV gene products themselves may be immunologically active, by analogy with the superantigen activity in the long terminal repeat (LTR) of mouse mammary tumour viruses (MMTV) and the non-specific immunosuppressive activity in mammalian type C retrovirus env protein. Alternatively, increased expression of an ERV protein, or expression of a novel ERV protein not expressed in the thymus during acquisition of immune tolerance, may lead to its perception as a neoantigen. Paraneoplastic syndromes raise the possibility that novel ERV-encoded epitopes expressed by a tumour elicit immunity to cross-reactive epitopes in normal tissues. Recombination events between different but related ERVs, to whose products the host is immunologically tolerant, may also generate new antigenic determinants. Frequently reported humoral immunity to exogenous retrovirus proteins in autoimmune disease could be elicited by cross-reactive ERV proteins. A review of the evidence implicating ERVs in immune dysfunction leads to the conclusion that direct molecular studies are likely to establish a pathogenic role for ERVs in autoimmune disease.

  8. In vivo monitoring of transfected DNA, gene expression kinetics, and cellular immune responses in mice immunized with a human NIS gene-expressing plasmid.

    PubMed

    Son, Hye-Youn; Jeon, Yong-Hyun; Chung, June-Key; Kim, Chul-Woo

    2016-12-01

    In assessing the effectiveness of DNA vaccines, it is important to monitor: (1) the kinetics of target gene expression in vivo; and (2) the movement of cells that become transfected with the plasmid DNA used in the immunization of a subject. In this study, we used, as a visual imaging marker, expression of the transfected human sodium/iodide symporter (hNIS) gene, which enhances intracellular radio-pertechnetate (TcO4-) accumulation. After intradermal (i.d.) and systemic injection of mice with pcDNA-hNIS and radioactive Technetium-99m (Tc-99m), respectively, whole-body images were obtained by nuclear scintigraphy. The migration of mice cells transfected with the hNIS gene was monitored over a 2-week period by gamma-radioactivity counting of isolated cell populations and was demonstrated in peripheral lymphoid tissues, especially in the draining lymph nodes (dLNs). Beginning at 24 h after DNA inoculation and continuing for the 2-week monitoring period, hNIS-expressing cells were observed specifically in the T-cell-rich zones of the paracortical area of the dLNs. Over the same time period, high levels of INF-γ-secreting CD8 T-cells were found in the dLNs of the pcDNA-hNIS immunized mice. Tumor growth was also significantly retarded in the mice that received hNIS DNA immunization followed by inoculation with CT26 colorectal adenocarcinoma cells that had been transfected with the rat NIS gene (rNIS), which is 93% homologous to the hNIS gene. In conclusion, mouse cells transfected with hNIS DNA after i.d. immunization were found to traffic to the dLNs, and hNIS gene expression in these cells continued for at least 2 weeks post immunization. Furthermore, sequential presentation of NIS DNA to T-cells by migratory antigen presenting cells could induce NIS DNA-specific Th1 immune responses and thus retard the growth of NIS-expressing tumors. © The Author(s) 2016.

  9. PDC expressing CD36, CD61 and IL-10 may contribute to propagation of immune tolerance.

    PubMed

    Parcina, Marijo; Schiller, Martin; Gierschke, Aline; Heeg, Klaus; Bekeredjian-Ding, Isabelle

    2009-05-01

    Human plasmacytoid dendritic cells (PDC) are blood dendritic cell antigen 2 (BDCA2) and blood dendritic cell antigen 4 (BDCA4) positive leukocytes that do not express common lineage markers. They have been described as proinflammatory innate immune cells and are the major source of alphaIFN in the human body. PDC-derived secretion of type I IFNs upon triggering of nucleic acid-sensing toll-like receptors (TLR) primes immune cells to rapidly respond to microbial stimuli and promotes a Th1 response. Here, we report that human PDC express CD36 and CD61 (beta3 integrin), both involved in uptake of apoptotic cells and in induction of tolerance. Freshly isolated PDC and PDC within human blood leukocytes constitutively express IL-10. Thus, PDC may possess a so far neglected role in propagation of immune tolerance.

  10. Reversing Breast Cancer-Induced Immune Suppression

    DTIC Science & Technology

    2013-01-01

    MDSC use to facilitate immune suppression. Nrf2 protects cells against inflammation and is stabilized in response to inflammation , hypoxia, and... inflammation -induced and conventional MDSC transport of cystine. SASP has no effect on tumor growth, metastatic disease, MDSC accumulation, or MDSC...anti-tumor immunity. It has been demonstrated that inflammation enhances xC- expression on MDSC, but higher xC- expression does not enhance the

  11. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.

    PubMed

    Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J

    2014-06-01

    The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.

  12. Cold exposure down-regulates immune response pathways in ferret aortic perivascular adipose tissue.

    PubMed

    Reynés, Bàrbara; van Schothorst, Evert M; García-Ruiz, Estefanía; Keijer, Jaap; Palou, Andreu; Oliver, Paula

    2017-05-03

    Perivascular adipose tissue (PVAT) surrounds blood vessels and releases paracrine factors, such as cytokines, which regulate local inflammation. The inflammatory state of PVAT has an important role in vascular disease; a pro-inflammatory state has been related with atherosclerosis development, whereas an anti-inflammatory one is protective. Cold exposure beneficially affects immune responses and, could thus impact the pathogenesis of cardiovascular diseases. In this study, we investigated the effects of one-week of cold exposure at 4°C of ferrets on aortic PVAT (aPVAT) versus subcutaneous adipose tissue. Ferrets were used because of the similarity of their adipose tissues to those of humans. A ferret-specific Agilent microarray was designed to cover the complete ferret genome and global gene expression analysis was performed. The data showed that cold exposure altered gene expression mainly in aPVAT. Most of the regulated genes were associated with cell cycle, immune response and gene expression regulation, and were mainly down-regulated. Regarding the effects on immune response, cold acclimation decreased the expression of genes involved in antigen recognition and presentation, cytokine signalling and immune system maturation and activation. This immunosuppressive gene expression pattern was depot-specific, as it was not observed in the inguinal subcutaneous depot. Interestingly, this depression in immune response related genes was also evident in peripheral blood mononuclear cells (PBMC). In conclusion, these results reveal that cold acclimation produces an inhibition of immune response-related pathways in aPVAT, reflected in PBMC, indicative of an anti-inflammatory response, which can potentially be exploited for the enhancement or maintenance of cardiovascular health.

  13. Diversification of MIF immune regulators in aphids: link with agonistic and antagonistic interactions.

    PubMed

    Dubreuil, Géraldine; Deleury, Emeline; Crochard, Didier; Simon, Jean-Christophe; Coustau, Christine

    2014-09-05

    The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects. This reduction in antibacterial immune defences is thought to be related to their long-term association with beneficial symbiotic bacteria and to facilitate symbiont maintenance. An additional possibility to avoid elimination of mutualistic symbionts is a fine-tuning of the host immune response. To explore this hypothesis we investigated the existence and potential involvement of immune regulators in aphid agonistic and antagonistic interactions. In contrast to the limited antibacterial arsenal, we showed that the pea aphid Acyrthosiphon pisum expresses 5 members of Macrophage Migration Inhibitory Factors (ApMIF), known to be key regulators of the innate immune response. In silico searches for MIF members in insect genomes followed by phylogenetic reconstruction suggest that evolution of MIF genes in hemipteran species has been shaped both by differential losses and serial duplications, raising the question of the functional importance of these genes in aphid immune responses. Expression analyses of ApMIFs revealed reduced expression levels in the presence, or during the establishment of secondary symbionts. By contrast, ApMIFs expression levels significantly increased upon challenge with a parasitoid or a Gram-negative bacteria. This increased expression in the presence of a pathogen/parasitoid was reduced or missing, in the presence of facultative symbiotic bacteria. This work provides evidence that while aphid's antibacterial arsenal is reduced, other immune genes widely absent from insect genomes are present, diversified and differentially regulated during antagonistic or agonistic interactions.

  14. Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization.

    PubMed

    Yigang, X U; Yijing, L I

    2008-05-01

    Lactobacillus casei ATCC 393 was selected as a bacterial carrier for the development of mucosal vaccine against porcine parvovirus (PPV) infection. The PPV major structural polypeptide VP2 was used as the model parvovirus antigen. Two inducible expression systems, namely pPG611.1 of the cell-surface expression system and pPG612.1 of the secretion expression system based on the xylose operon promoter were used to express the VP2 protein. The immunogenicity of recombinant strains producing VP2 protein in two cellular locations, cell-surface exposed and secreted, was compared to each other by immunizing mice through the intragastric administration. The two types of constructs were able to induce strong specific immune responses against VP2 via intragastric administration and maximum titres of IgA and IgG were attained on days 46 post oral immunization, while the highest antibody levels were obtained with the strain producing the VP2 protein in extracellular milieu. The induced antibodies demonstrated neutralizing effects on PPV infection.

  15. Identification of the immunogenic epitopes of the whole venom component of the Hemiscorpius lepturus scorpion using the phage display peptide library.

    PubMed

    Jahdasani, Roghaye; Jamnani, Fatemeh Rahimi; Behdani, Mahdi; Habibi-Anbouhi, Mahdi; Yardehnavi, Najmeh; Shahbazzadeh, Delavar; Kazemi-Lomedasht, Fatemeh

    2016-12-15

    The venom of the Hemiscorpius lepturus scorpion contains mixtures of bioactive compounds that disturb biochemical and physiological functions of the victims. Hemiscorpius lepturus envenomation is recognized as a serious health concern in tropical regions. So far, there is no preventive procedure, and the main focus is on treatment of victims with an antiserum purified from hyper-immunized horses. Although antisera can neutralize the venom, they, in some cases, lead to anaphylactic shock and even death. Selection of peptides mimicking antigenic and immunogenic epitopes of toxins from random peptide libraries is a novel approach for the development of recombinant toxins and poly-epitopic vaccine. To achieve this aim, a phage display peptide library and three rounds of biopanning were performed on immobilized antibodies (IgGs) purified from the sera of hyper-immunized horses. The results show that the highest binding of the phage to immobilized horse antibodies occurred in the third round of biopanning. Over 125 individual clones carrying mimotopes of Hemiscorpius lepturus toxins were selected and subjected for sequencing. The sequencing results identified unique peptides mimicking the antigenic and immunogenic epitopes of Hemiscorpius lepturus toxins. The results of this study provide a basis for further studies and the development of a putative epitopic vaccine and a recombinant toxin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Novel Protective Antigens Expressed by Trypanosoma cruzi Amastigotes Provide Immunity to Mice Highly Susceptible to Chagas' Disease▿

    PubMed Central

    Silveira, Eduardo L. V.; Claser, Carla; Haolla, Filipe A. B.; Zanella, Luiz G.; Rodrigues, Mauricio M.

    2008-01-01

    Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease. PMID:18579696

  17. Novel protective antigens expressed by Trypanosoma cruzi amastigotes provide immunity to mice highly susceptible to Chagas' disease.

    PubMed

    Silveira, Eduardo L V; Claser, Carla; Haolla, Filipe A B; Zanella, Luiz G; Rodrigues, Mauricio M

    2008-08-01

    Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease.

  18. Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas.

    PubMed

    Filley, Anna; Henriquez, Mario; Bhowmik, Tanmoy; Tewari, Brij Nath; Rao, Xi; Wan, Jun; Miller, Margaret A; Liu, Yunlong; Bentley, R Timothy; Dey, Mahua

    2018-05-01

    Malignant glioma (MG), the most common primary brain tumor in adults, is extremely aggressive and uniformly fatal. Several treatment strategies have shown significant preclinical promise in murine models of glioma; however, none have produced meaningful clinical responses in human patients. We hypothesize that introduction of an additional preclinical animal model better approximating the complexity of human MG, particularly in interactions with host immune responses, will bridge the existing gap between these two stages of testing. Here, we characterize the immunologic landscape and gene expression profiles of spontaneous canine glioma and evaluate its potential for serving as such a translational model. RNA in situ hybridization, flowcytometry, and RNA sequencing were used to evaluate immune cell presence and gene expression in healthy and glioma-bearing canines. Similar to human MGs, canine gliomas demonstrated increased intratumoral immune cell infiltration (CD4+, CD8+ and CD4+Foxp3+ T cells). The peripheral blood of glioma-bearing dogs also contained a relatively greater proportion of CD4+Foxp3+ regulatory T cells and plasmacytoid dendritic cells. Tumors were strongly positive for PD-L1 expression and glioma-bearing animals also possessed a greater proportion of immune cells expressing the immune checkpoint receptors CTLA-4 and PD-1. Analysis of differentially expressed genes in our canine populations revealed several genetic changes paralleling those known to occur in human disease. Naturally occurring canine glioma has many characteristics closely resembling human disease, particularly with respect to genetic dysregulation and host immune responses to tumors, supporting its use as a translational model in the preclinical testing of prospective anti-glioma therapies proven successful in murine studies.

  19. [Cloning, expression and characterization of a novel esterase from marine sediment microbial metagenomic library].

    PubMed

    Xu, Shiqing; Hu, Yongfei; Yuan, Aihua; Zhu, Baoli

    2010-07-01

    To clone, express and characterize a novel esterase from marine sediment microbial metagenomic library. Using esterase segregation agar containing tributyrin, we obtained esterase positive fosmid clone FL10 from marine sediment microbial metagenomic library. This fosmid was partially digested with Sau3A I to construct the sublibrary, from which the esterase positive subclone pFLS10 was obtained. The full length of the esterase gene was amplified and cloned into the expressing vector pET28a, and the recombinant plasmid was transformed into E. coli BL21 cells. We analyse the enzyme activity and study the characterization of the esterase after its expression and purification. An ORF (Open Reading Frame) of 924 bp was identified from the subclone pFLS10. Sequence analysis indicated that it showed 71% amino acid identity to esterase (ADA70030) from a marine sediment metagenomic library. The esterase is a novel low-temperature-active esterase and had highest lipolytic activity to the substrate of 4-nitrophenyl butyrate (C4). The optimum temperature of the esterase was 20 degrees C, the optimum pH was 7.5. The esterase in this study had good thermostability at 20 degrees C and good pH stability at pH8 -10. Significant increase in lipolytic activity was observed with addition of K+ and Mg2+, while decrease with Mn2+ etc. We obtained the novel esterase gene fls10 from the marine sediment microbial metagenomic library. The esterase had good thermostability and high lipolytic activity at low temperature and under basic conditions, which laid a basis for industrial application.

  20. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells.

    PubMed

    Lee, Sang-Im; Min, Kyung-San; Bae, Won-Jung; Lee, Young-Man; Lee, So-Youn; Lee, Eui-Suk; Kim, Eun-Cheol

    2011-11-01

    Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. T cell infiltration into Ewing sarcomas is associated with local expression of immune-inhibitory HLA-G.

    PubMed

    Spurny, Christian; Kailayangiri, Sareetha; Altvater, Bianca; Jamitzky, Silke; Hartmann, Wolfgang; Wardelmann, Eva; Ranft, Andreas; Dirksen, Uta; Amler, Susanne; Hardes, Jendrik; Fluegge, Maike; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Rossig, Claudia

    2018-01-19

    Ewing sarcoma (EwS) is an aggressive mesenchymal cancer of bones or soft tissues. The mechanisms by which this cancer interacts with the host immune system to induce tolerance are not well understood. We hypothesized that the non-classical, immune-inhibitory HLA-molecule HLA-G contributes to immune escape of EwS. While HLA-G pos suppressor T cells were not increased in the peripheral blood of EwS patients, HLA-G was locally expressed on the tumor cells and/or on infiltrating lymphocytes in 16 of 47 pretherapeutic tumor biopsies and in 4 of 12 relapse tumors. HLA-G expression was not associated with risk-related patient variables or response to standard chemotherapy, but with significantly increased numbers of tumor-infiltrating CD3+ T cells compared to HLA-G neg EwS biopsies. In a mouse model, EwS xenografts after adoptive therapy with tumor antigen-specific CAR T cells strongly expressed HLA-G whereas untreated control tumors were HLA-G neg . IFN-γ stimulation of EwS cell lines in vitro induced expression of HLA-G protein. We conclude that EwS cells respond to tumor-infiltrating T cells by upregulation of HLA-G, a candidate mediator of local immune escape. Strategies that modulate HLA-G expression in the tumor microenvironment may enhance the efficacy of cellular immunotherapeutics in this cancer.

  2. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.

  3. Selective expression of inhibitory Fcgamma receptor by metastatic melanoma impairs tumor susceptibility to IgG-dependent cellular response.

    PubMed

    Cassard, Lydie; Cohen-Solal, Joel F G; Fournier, Emilie M; Camilleri-Broët, Sophie; Spatz, Alain; Chouaïb, Salem; Badoual, Cécile; Varin, Audrey; Fisson, Sylvain; Duvillard, Pierre; Boix, Charlotte; Loncar, Shannon M; Sastre-Garau, Xavier; Houghton, Alan N; Avril, Marie-Françoise; Gresser, Ion; Fridman, Wolf H; Sautès-Fridman, Catherine

    2008-12-15

    During melanoma progression, patients develop anti-tumor immunity including the production of anti-tumor antibodies. Although the strategies developed by malignant cells to escape anti-tumor cellular immunity have been extensively investigated, little is known about tumor resistance to humoral immunity. The main effect of IgG antibodies is to activate the immune response by binding to host Fc gamma receptors (FcgammaR) expressed by immune cells. We previously reported in a limited study that some human metastatic melanoma cells ectopically express the FcgammaRIIB1, an inhibitory isoform of FcgammaR. By analyzing a large panel of different types of human primary and metastatic solid tumors, we report herein that expression of FcgammaRIIB is restricted to melanoma and is acquired during tumor progression. We show that FcgammaRIIB expression prevents the lysis of human metastatic melanoma cells by NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) in vitro, independently of the intracytoplasmic region of FcgammaRIIB. Using experimental mouse models, we demonstrate that expression of FcgammaRIIB protects B16F0 melanoma tumors from the ADCC induced by monoclonal and polyclonal anti-tumor IgG in vivo. Thus, our results identify FcgammaRIIB as a marker of human metastatic melanoma that impairs the tumor susceptibility to FcgammaR-dependent innate effector responses. (c) 2008 Wiley-Liss, Inc.

  4. NLRC5/MHC class I transactivator is a target for immune evasion in cancer

    PubMed Central

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B.; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A.; Lizee, Gregory A.; Kobayashi, Koichi S.

    2016-01-01

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as “NLRC5” [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8+ cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  5. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin.

    PubMed

    Perez, Rodney H; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2016-01-15

    A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin

    PubMed Central

    Perez, Rodney H.; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2015-01-01

    ABSTRACT A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. IMPORTANCE In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B applications. PMID:26503847

  7. Modification to the Capsid of the Adenovirus Vector That Enhances Dendritic Cell Infection and Transgene-Specific Cellular Immune Responses

    PubMed Central

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Bruder, Joseph T.; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.

    2004-01-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the β-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing β-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to β-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-β-galactosidase antibody levels following vector administration. However, cellular responses to β-galactosidase were significantly enhanced, with the frequency of CD4+ as well as the CD8+ β-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing β-galactosidase: BALB/c mice implanted with the CT26 syngeneic β-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines. PMID:14963160

  8. Angiogenic cytokines are antibody targets during graft-versus-leukemia reactions

    PubMed Central

    Piesche, Matthias; Ho, Vincent T.; Kim, Haesook; Nakazaki, Yukoh; Nehil, Michael; Yaghi, Nasser; Kolodin, Dmitriy; Weiser, Jeremy; Altevogt, Peter; Kiefel, Helena; Alyea, Edwin P.; Antin, Joseph H.; Cutler, Corey; Koreth, John; Canning, Christine; Ritz, Jerome; Soiffer, Robert J.; Dranoff, Glenn

    2014-01-01

    Purpose The graft-versus-leukemia (GVL) reaction is an important example of immune-mediated tumor destruction. A coordinated humoral and cellular response accomplishes leukemia cell killing, but the specific targets remain largely uncharacterized. To learn more about the antigens that elicit antibodies during GVL reactions, we analyzed advanced myelodysplasia (MDS) and acute myeloid leukemia (AML) patients who received an autologous, granulocyte-macrophage colony stimulating factor (GM-CSF) secreting tumor cell vaccine early after allogeneic hematopoietic stem cell transplantation (HSCT). Experimental Design A combination of tumor-derived cDNA expression library screening, protein microarrays, and antigen-specific ELISAs were employed to characterize sera obtained longitudinally from 15 AML/MDS patients who were vaccinated early after allogeneic HSCT. Results A broad, therapy-induced antibody response was uncovered, which primarily targeted intracellular proteins that function in growth, transcription/translation, metabolism, and homeostasis. Unexpectedly, antibodies were also elicited against eight secreted angiogenic cytokines that play critical roles in leukemogenesis. Antibodies to the angiogenic cytokines were evident early after therapy, and in some patients manifested a diversification in reactivity over time. Patients that developed antibodies to multiple angiogenic cytokines showed prolonged remission and survival. Conclusions These results reveal a potent humoral response during GVL reactions induced with vaccination early after allogeneic HSCT and raise the possibility that antibodies, in conjunction with NK cells and T lymphocytes, may contribute to immune-mediated control of myeloid leukemias. PMID:25538258

  9. Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening.

    PubMed

    Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C

    2011-08-01

    We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Architectural patterns of p16 immunohistochemical expression associated with cancer immunity and prognosis of head and neck squamous cell carcinoma.

    PubMed

    Ryu, Hyang Joo; Kim, Eun Kyung; Heo, Su Jin; Cho, Byoung Chul; Kim, Hye Ryun; Yoon, Sun Och

    2017-11-01

    We evaluated the expression patterns of p16, which is used as a surrogate marker of HPV infection in head and neck squamous cell carcinoma (HNSCC), in regard to their biological and prognostic implications. p16 expression patterns and infiltrated immune cells were analyzed through immunohistochemistry of p16, CD3, CD8, PD-1, FOXP3, and CD163 on surgically resected HNSCCs (n = 393). Patterns of p16 immunoexpression were defined as STRONG (strong, diffuse expression in cytoplasm, and nucleus in >70% of tumor cells), MARGINAL (expression restricted to tumor margins), MOSAIC (ragged, discontinued expression), NUCLEAR (expression in nuclei only), and ABSENT (no expression). The STRONG pattern was more frequent in the oropharynx, and the MARGINAL pattern was noted only in the oral cavity. MOSAIC and NUCLEAR patterns were noted at variable sites. No two patterns of p16 expression showed the same immune cell composition of CD3+ T cells, CD8+ cytotoxic T cells, PD-1+ T cells, FOXP3+ regulatory T cells, and CD163+ macrophages. In overall and disease-free survival analyses, the STRONG pattern showed the most favorable prognosis, while the NUCLEAR pattern had the worst prognosis. HNSCC anatomical sites, tumor-related immune cell components, and patient outcomes were associated with p16 expression patterns. Each architectural pattern of p16 expression may be related to different biological and prognostic phenotypes. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  11. A universal phage display system for the seamless construction of Fab libraries.

    PubMed

    Nelson, Renae S; Valadon, Philippe

    2017-11-01

    The construction of Fab phage libraries requires the cloning of domains from both the light and the heavy chain of antibodies. Despite the advent of powerful strategies such as splicing-by-overlap extension PCR, obtaining high quality libraries with excellent coverage remains challenging. Here, we explored the use of type IIS restriction enzymes for the seamless cloning of Fab libraries. We analyzed human, murine and rabbit germline antibody repertoires and identified combinations of restriction enzymes that exhibit very few or no recognition sites in the antibody sequences. We describe three phagemid vectors, pUP-22Hb, pUP-22Mc and pUP-22Rc, which were employed for cloning the Fab repertoire of these hosts using BsmBI and SapI (human) or SapI alone (mouse and rabbit). Using human serum albumin as a model immunization, we built a mouse/human chimeric Fab library and a mouse Fab library in a single step ligation and successfully panned multiple cognate antibodies. The overall process is highly scalable and faster than PCR-based techniques, with a Fab insertion success rate of around 80%. By using carefully chosen overhangs on each end of the antibody domains, this approach paves the way to the universal, sequence- and vector-independent cloning and reformatting of antibody libraries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion.

    PubMed

    Albacker, Lee A; Wu, Jeremy; Smith, Peter; Warmuth, Markus; Stephens, Philip J; Zhu, Ping; Yu, Lihua; Chmielecki, Juliann

    2017-01-01

    Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.

  13. Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2012-01-01

    Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970

  14. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Jianwei; Faber, Milosz; Papaneri, Amy

    2006-12-20

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virusmore » titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus.« less

  15. Immune Responses Induced by Gene Gun or Intramuscular Injection of DNA Vaccines That Express Immunogenic Regions of the Serine Repeat Antigen from Plasmodium falciparum

    PubMed Central

    Belperron, Alexia A.; Feltquate, David; Fox, Barbara A.; Horii, Toshihiro; Bzik, David J.

    1999-01-01

    The liver- and blood-stage-expressed serine repeat antigen (SERA) of Plasmodium falciparum is a candidate protein for a human malaria vaccine. We compared the immune responses induced in mice immunized with SERA-expressing plasmid DNA vaccines delivered by intramuscular (i.m.) injection or delivered intradermally by Gene Gun immunization. Mice were immunized with a pcdna3 plasmid encoding the entire 47-kDa domain of SERA (amino acids 17 to 382) or the N-terminal domain (amino acids 17 to 110) of SERA. Minimal antibody responses were detected following DNA vaccination with the N-terminal domain of SERA, suggesting that the N-terminal domain alone is not highly immunogenic by this route of vaccine delivery. Immunization of mice by Gene Gun delivery of the 47-kDa domain of SERA elicited a significantly higher serum antibody titer to the antigen than immunization of mice by i.m. injection with the same plasmid did. The predominant isotype subclass of the antibodies elicited to the SERA protein following i.m. and Gene Gun immunizations with SERA plasmid DNA was immunoglobulin G1. Coimmunization of mice with SERA plasmid DNA and a plasmid expressing the hepatitis B surface antigen (pCMV-s) by the i.m. route resulted in higher anti-SERA titers than those generated in mice immunized with the SERA DNA plasmid alone. Vaccination with DNA may provide a viable alternative or may be used in conjunction with protein-based subunit vaccines to maximize the efficacy of a human malaria vaccine that includes immunogenic regions of the SERA protein. PMID:10496891

  16. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    PubMed

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Naegleria fowleri immunization modifies lymphocytes and APC of nasal mucosa.

    PubMed

    Carrasco-Yepez, M M; Campos-Rodríguez, R; Reséndiz-Albor, A A; Peña-Juárez, C; Contis-Montes de Oca, A; Arciniega-Martínez, I M; Bonilla-Lemus, P; Rojas-Hernandez, S

    2018-03-01

    We investigated whether intranasal immunization with amoebic lysates plus cholera toxin modified the populations of T and B lymphocytes, macrophages and dendritic cells by flow cytometry from nose-associated lymphoid tissue (NALT), cervical lymph nodes (CN), nasal passages (NP) and spleen (SP). In all immunized groups, the percentage of CD4 was higher than CD8 cells. CD45 was increased in B cells from mice immunized. We observed IgA antibody-forming cell (IgA-AFC) response, mainly in NALT and NP. Macrophages from NP and CN expressed the highest levels of CD80 and CD86 in N. fowleri lysates with either CT or CT alone immunized mice, whereas dendritic cells expressed high levels of CD80 and CD86 in all compartment from immunized mice. These were lower than those expressed by macrophages. Only in SP from CT-immunized mice, these costimulatory molecules were increased. These results suggest that N. fowleri and CT antigens are taking by APCs, and therefore, protective immunity depends on interactions between APCs and T cells from NP and CN. Consequently, CD4 cells stimulate the differentiation from B lymphocytes to AFC IgA-positive; antibody that we previously found interacting with trophozoites in the nasal lumen avoiding the N. fowleri attachment to nasal epithelium. © 2017 John Wiley & Sons Ltd.

  18. Expression changes and novel interaction partners of talin 1 in effector cells of autoimmune uveitis.

    PubMed

    Degroote, Roxane L; Hauck, Stefanie M; Treutlein, Gudrun; Amann, Barbara; Fröhlich, Kristina J H; Kremmer, Elisabeth; Merl, Juliane; Stangassinger, Manfred; Ueffing, Marius; Deeg, Cornelia A

    2013-12-06

    Autoimmune uveitis is characterized by crossing of blood-retinal barrier (BRB) by autoaggressive immune cells. Equine recurrent uveitis (ERU) is a valuable spontaneous model for autoimmune uveitis and analyses of differentially expressed proteins in ERU unraveled changed protein clusters in target tissues and immune system. Healthy eyes are devoid of leukocytes. In ERU, however, leukocytes enter the inner eye and subsequently destroy it. Molecular mechanisms enabling cell migration through BRB still remain elusive. Previously, we detected decreased talin 1 expression in blood-derived granulocytes of ERU cases, linking the innate immune system to ERU. Because changes in leukocyte protein expression pattern may play a role in pathological abnormalities leading to migration ability, we aimed at identifying interactors of talin 1 in leukocytes with immunoprecipitation, followed by LC-MS/MS for candidate identification. This enabled us to identify CD90 (Thy1) as novel interactor of talin 1 besides several other interactors. In blood-derived granulocytes from healthy individuals, CD90 was highly abundant and significantly reduced in ERU, especially in effector cells. Connection between talin 1 and CD90 and their expression differences in inflammation is an interesting novel finding allowing deeper insight into immune response of innate immune system and granulocyte migration ability in this organ-specific autoimmune disease.

  19. Host-Specific Response to HCV Infection in the Chimeric SCID-beige/Alb-uPA Mouse Model: Role of the Innate Antiviral Immune Response

    PubMed Central

    Thompson, Jill C; Smith, Maria W; Yeh, Matthew M; Proll, Sean; Zhu, Lin-Fu; Gao, T. J; Kneteman, Norman M; Tyrrell, D. Lorne; Katze, Michael G

    2006-01-01

    The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression. PMID:16789836

  20. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    PubMed

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative Analysis of Expressed Genes from Cacao Meristems Infected by Moniliophthora perniciosa

    PubMed Central

    Gesteira, Abelmon S.; Micheli, Fabienne; Carels, Nicolas; Da Silva, Aline C.; Gramacho, Karina P.; Schuster, Ivan; Macêdo, Joci N.; Pereira, Gonçalo A. G.; Cascardo, Júlio C. M.

    2007-01-01

    Background and Aims Witches' broom disease is caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa, and is one of the most important diseases of cacao in the western hemisphere. Because very little is known about the global process of such disease development, expressed sequence tags (ESTs) were used to identify genes expressed during the Theobroma cacao–Moniliophthora perniciosa interaction. Methods Two cDNA libraries corresponding to the resistant (RT) and susceptible (SP) cacao–M. perniciosa interactions were constructed from total RNA, using the DB SMART Creator cDNA library kit (Clontech). Clones were randomly selected, sequenced from the 5′ end and analysed using bioinformatics tools including in silico analysis of the differential gene expression. Key Results A total of 6884 ESTs were generated from the RT and SP cDNA libraries. These ESTs were composed of 2585 singlets and 341 contigs for a total of 2926 non-redundant sequences. The redundancy of the libraries was low and their specificity high when compared with the few other cacao libraries already published. Sequence analysis allowed the assignment of a putative functional category for 54 % of sequences, whereas approx. 22 % of sequences corresponded to unknown function and approx. 24 % of sequences did not show any significant similarity with other proteins present in the database. Despite the similar overall distribution of the sequences in functional categories between the two libraries, qualitative differences were observed. Genes involved during the defence response to pathogen infection or in programmed cell death were identified, such as pathogenesis related-proteins, trypsin inhibitor or oxalate oxidase, and some of them showed an in silico differential expression between the resistant and the susceptible interactions. Conclusions As far as is known this is the first EST resource from the cacao–M. perniciosa interaction and it is believed that it will provide a significant contribution to the understanding of the molecular mechanisms of the resistance and susceptibility of cacao to M. perniciosa, to develop strategies to control witches broom, and as a source of polymorphism for molecular marker development and marker-assisted selection. PMID:17557832

  2. Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.

    PubMed Central

    Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin

    2016-01-01

    ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic from Streptomyces rochei Sal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery. PMID:27451447

  3. The effect of active immunization against vasoactive intestinal peptide (VIP) and inhibin on reproductive performance of aging White Leghorn roosters.

    PubMed

    Avital-Cohen, N; Heiblum, R; Argov, N; Rosenstrauch, A; Chaiseha, Y; Mobarkey, N; Rozenboim, I

    2012-01-01

    Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters increased significantly after immunization against inhibin, even though FSH mRNA gene expression increased, suggesting interference in testicular function in aging roosters.

  4. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus

    PubMed Central

    Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K

    2015-01-01

    The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8+ T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4+ T cells. The level of Gag-specific CD8+ and CD4+ T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins. PMID:25695657

  5. Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.

    PubMed

    Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero

    2003-09-01

    The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.

  6. Gene expression profiling provides insights into the immune mechanism of Plutella xylostella midgut to microbial infection.

    PubMed

    Lin, Junhan; Xia, Xiaofeng; Yu, Xiao-Qiang; Shen, Jinhong; Li, Yong; Lin, Hailan; Tang, Shanshan; Vasseur, Liette; You, Minsheng

    2018-03-20

    Insect gut immunity plays a key role in defense against microorganism infection. The knowledge of insect gut immunity has been obtained mostly from Drosophila melanogaster. Little is known about gut immunity in the diamondback moth, Plutella xylostella (L.), a pest destroying cruciferous crops worldwide. In this study, expressions of the immune-related genes in the midgut of P. xylostella orally infected with Staphylococcus aureus, Escherichia coli and Pichia pastoris were profiled by RNA-seq and qRT-PCR approaches. The results revealed that the Toll, IMD, JNK and JAK-STAT pathways and possibly the prophenoloxidase activation system in P. xylostella could be activated by oral infections, and moricins, gloverins and lysozyme2 might act as important effectors against microorganisms. Subsequent knock-down of IMD showed that this gene was involved in regulating the expression of down-stream genes in the IMD pathway. Our work indicates that the Toll, IMD, JNK and JAK-STAT pathways may synergistically modulate immune responses in the P. xylostella midgut, implying a complex and diverse immune system in the midgut of insects. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity.

    PubMed

    Bao, Katherine; Reinhardt, R Lee

    2015-09-01

    Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems.

    PubMed

    Hughes, A L

    1998-03-01

    Protein phylogenies were used to test the hypothesis that aspects of the innate immune system of vertebrates have been conserved since the last common ancestor of vertebrates and arthropods. The phylogeny of lysozymes showed evidence of conservation of function, but phylogenies of seven other protein families did not. Natural resistance-associated macrophage protein, nitric oxide synthetase, and serine protease families all showed a pattern of gene duplication within vertebrates after their divergence from arthropods, giving rise to immune system-expressed genes in vertebrates. Insect hemolin, a member of the immunoglobulin superfamily, was found not to be closely related to members of that family having an immune system role in vertebrates; rather, it appeared most closely related to both arthropod and vertebrate molecules expressed in the nervous system. Thus, hemolin seems to have evolved its role independently in insects, probably through duplication of a neuroglian-like ancestor. Furthermore, vertebrate immune system-expressed serpins, chitinases, and pentraxins were found to lack orthologous relationships with arthropod members of the same families also functioning in immunity. Therefore members of these families have evolved immune system functions independently in the two phyla. It is now widely recognized that the specific immune system of vertebrates has no counterpart in invertebrates; these phylogenetic analyses suggest that there is a similar evolutionary discontinuity with respect to innate immunity as well.

  9. Subcutaneous or oral immunization of mice with Lactococcus lactis expressing F4 fimbrial adhesin FaeG.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea in neonatal and postweaning piglets. Fimbrial adhesion of ETEC has been considered an important colonization factor with antigenicity. To safely and effectively deliver the F4 (K88) fimbrial adhesin FaeG to the immune system, we have previously constructed the secretory expression vector pNZ8112-faeG, and FaeG was produced in cytoplasmic form in Lactococcus lactis. In this work, BALB/c mice were immunized with recombinant L. lactis to further determine the immunogenicity of recombinant FaeG (rFaeG) via the subcutaneous or oral route. Subcutaneous immunization in mice with recombinant L. lactis induced a significant increase in the F4-specific serum IgG titer and the number of antibody-secreting cells (ASCs) in the spleen. Oral immunization of mice with recombinant L. lactis induced mucosal and systemic F4-specific immune responses and increased the number of ASCs in the spleen, mesenteric lymph nodes and Peyer's patches. High-dose (2.8 × 10(11) CFU) recombinant strains and adjuvant cholera toxin B subunit enhanced specific mucosal immune responses. The results suggest the feasibility of delivering rFaeG expressed in L. lactis to the immune system in order to induce an F4-specific immune response.

  10. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta.

    PubMed

    Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale

    2016-08-01

    Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Exposure to Melan-A/MART-126-35 tumor epitope specific CD8+T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS)

    PubMed Central

    Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M.; Seifert, Ulrike

    2016-01-01

    Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649

  12. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth

    PubMed Central

    Vora, Bianca; Wang, Aolin; Kosti, Idit; Huang, Hongtai; Paranjpe, Ishan; Woodruff, Tracey J.; MacKenzie, Tippi; Sirota, Marina

    2018-01-01

    Preterm birth (PTB) is the leading cause of newborn deaths around the world. Spontaneous preterm birth (sPTB) accounts for two-thirds of all PTBs; however, there remains an unmet need of detecting and preventing sPTB. Although the dysregulation of the immune system has been implicated in various studies, small sizes and irreproducibility of results have limited identification of its role. Here, we present a cross-study meta-analysis to evaluate genome-wide differential gene expression signals in sPTB. A comprehensive search of the NIH genomic database for studies related to sPTB with maternal whole blood samples resulted in data from three separate studies consisting of 339 samples. After aggregating and normalizing these transcriptomic datasets and performing a meta-analysis, we identified 210 genes that were differentially expressed in sPTB relative to term birth. These genes were enriched in immune-related pathways, showing upregulation of innate immunity and downregulation of adaptive immunity in women who delivered preterm. An additional analysis found several of these differentially expressed at mid-gestation, suggesting their potential to be clinically relevant biomarkers. Furthermore, a complementary analysis identified 473 genes differentially expressed in preterm cord blood samples. However, these genes demonstrated downregulation of the innate immune system, a stark contrast to findings using maternal blood samples. These immune-related findings were further confirmed by cell deconvolution as well as upstream transcription and cytokine regulation analyses. Overall, this study identified a strong immune signature related to sPTB as well as several potential biomarkers that could be translated to clinical use.

  13. Feasibilty of in utero DNA vaccination following naked gene transfer into pig fetal muscle: transgene expression, immunity and safety.

    PubMed

    Rinaldi, Monica; Signori, Emanuela; Rosati, Paolo; Cannelli, Giorgio; Parrella, Paola; Iannace, Enrico; Monego, Giovanni; Ciafrè, Silvia Anna; Farace, Maria Giulia; Iurescia, Sandra; Fioretti, Daniela; Rasi, Guido; Fazio, Vito Michele

    2006-05-22

    The high toll of death among first-week infants is due to infections occurring at the end of pregnancy, during birth or by breastfeeding. This problem significantly concerns industrialized countries also. To prevent the typical "first-week infections", a vaccine would be protective as early as at the birth. In utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. We have already published results of a 2-year follow-up showing long-term safety, protective antibody titers at birth and long-term immune memory, following intramuscular in utero anti-HBV DNA immunization in 90-days pig fetuses. We have now analyzed further parameters of short-term safety. Two different reporter genes were injected in the thigh muscles of 90-days fetuses. At 8 days following DNA injection, we found high-level of transgenes expression in all injected fetuses. A step gradient of expression from the area of injection was observed with both reporter genes. CMV promoter/enhancer produced higher levels of expression compared to SV40 promoter/enhancer. Moreover, no evidence of local or systemic flogistic alterations or fetal malformations, mortality or haemorrhage following intramuscular injection were observed. A single anti-HBV s-antigen DNA immunization in 90-days fetuses supported protective antibody levels in all immunized newborns, lasting at least up to 4 months after birth. Our report further sustains safety and efficacy of intramuscular in utero naked gene transfer and immunization. This approach may support therapeutic or prophylactic procedure in many early life-threatening pathologic conditions.

  14. Epstein-Barr Virus DNA Enhances Diptericin Expression and Increases Hemocyte Numbers in Drosophila melanogaster via the Immune Deficiency Pathway.

    PubMed

    Sherri, Nour; Salloum, Noor; Mouawad, Carine; Haidar-Ahmad, Nathaline; Shirinian, Margret; Rahal, Elias A

    2018-01-01

    Infection with the Epstein-Barr virus (EBV) is associated with several malignancies and autoimmune diseases in humans. The following EBV infection and establishment of latency, recurrences frequently occur resulting in potential viral DNA shedding, which may then trigger the activation of immune pathways. We have previously demonstrated that levels of the pro-inflammatory cytokine IL-17, which is associated with several autoimmune diseases, are increased in response to EBV DNA injection in mice. Whether other pro-inflammatory pathways are induced in EBV DNA pathobiology remains to be investigated. The complexity of mammalian immune systems presents a challenge to studying differential activities of their intricate immune pathways in response to a particular immune stimulus. In this study, we used Drosophila melanogaster to identify innate humoral and cellular immune pathways that are activated in response to EBV DNA. Injection of wild-type adult flies with EBV DNA induced the immune deficiency (IMD) pathway resulting in enhanced expression of the antimicrobial peptide diptericin. Furthermore, EBV DNA increased the number of hemocytes in flies. Conditional silencing of the IMD pathway decreased diptericin expression in addition to curbing of hemocyte proliferation in response to challenge with EBV DNA. Comparatively, upon injecting mice with EBV DNA, we detected enhanced expression of tumor necrosis factor-α (TNFα); this enhancement is rather comparable to IMD pathway activation in flies. This study hence indicates that D. melanogaster could possibly be utilized to identify immune mediators that may also play a role in the response to EBV DNA in higher systems.

  15. Immune cell landscape in therapy-naïve squamous cell and adenocarcinomas of the lung.

    PubMed

    Brcic, Luka; Stanzer, Stefanie; Krenbek, Dagmar; Gruber-Moesenbacher, Ulrike; Absenger, Gudrun; Quehenberger, Franz; Valipour, Arschang; Lindenmann, Joerg; Stoeger, Herbert; Al Effah, Mohamed; Fediuk, Melanie; Balic, Marija; Popper, Helmut H

    2018-04-01

    Squamous cell and adenocarcinomas of the lung develop different mechanisms during carcinogenesis to evade attacks of the immune system. Besides the well-known check-point control programmed death 1 and its ligand, many more mechanisms, acting either tumoricidal or in favor of tumor progression, exist. Analysis of the immune cell profiles in resected tissues and bronchoalveolar lavage samples and correlation between them and with overall survival data was performed. In all tumor samples in this study, cells of the immune system expressed a tumor-cooperating phenotype. High numbers of regulatory T cells, or alternatively expression of Vista on lymphocytes was present. Tumoricidal dendritic cells were absent in tumor tissue, and barely present in bronchoalveolar lavage, whereas tumor-friendly monocytoid and plasmocytoid dendritic cells were seen in both. Alveolar macrophages were predominantly differentiated into tumor-cooperating M2 types, whereas tumoricidal M1 macrophages were absent or rare. The expression of PDL1 on tumor cells did not correlate with any other immune cells. Expression of PD1 on lymphocytes was frequently encountered. None of analyzed immune cells showed correlation with overall survival. Immune cells in bronchoalveolar lavage and tissue did not correlate. For the first time, a tissue-based analysis of different immune cells in squamous cell and adenocarcinomas of the lung is provided, trying to explain their potential role in tumor development and progression. Discordant numbers of cells with bronchoalveolar lavage are most probably due to the fact that bronchoalveolar lavage reflects the situation in the whole lung, where chronic obstructive lung disease and other conditions are present.

  16. High-dimensional gene expression profiling studies in high and low responders to primary smallpox vaccination.

    PubMed

    Haralambieva, Iana H; Oberg, Ann L; Dhiman, Neelam; Ovsyannikova, Inna G; Kennedy, Richard B; Grill, Diane E; Jacobson, Robert M; Poland, Gregory A

    2012-11-15

    The mechanisms underlying smallpox vaccine-induced variations in immune responses are not well understood, but are of considerable interest to a deeper understanding of poxvirus immunity and correlates of protection. We assessed transcriptional messenger RNA expression changes in 197 recipients of primary smallpox vaccination representing the extremes of humoral and cellular immune responses. The 20 most significant differentially expressed genes include a tumor necrosis factor-receptor superfamily member, an interferon (IFN) gene, a chemokine gene, zinc finger protein genes, nuclear factors, and histones (P ≤ 1.06E(-20), q ≤ 2.64E(-17)). A pathway analysis identified 4 enriched pathways with cytokine production by the T-helper 17 subset of CD4+ T cells being the most significant pathway (P = 3.42E(-05)). Two pathways (antiviral actions of IFNs, P = 8.95E(-05); and IFN-α/β signaling pathway, P = 2.92E(-04)), integral to innate immunity, were enriched when comparing high with low antibody responders (false discovery rate, < 0.05). Genes related to immune function and transcription (TLR8, P = .0002; DAPP1, P = .0003; LAMP3, P = 9.96E(-05); NR4A2, P ≤ .0002; EGR3, P = 4.52E(-05)), and other genes with a possible impact on immunity (LNPEP, P = 3.72E(-05); CAPRIN1, P = .0001; XRN1, P = .0001), were found to be expressed differentially in high versus low antibody responders. We identified novel and known immunity-related genes and pathways that may account for differences in immune response to smallpox vaccination.

  17. Cloning of the Gene Encoding a 22-Kilodalton Cell Surface Antigen of Mycobacterium bovis BCG and Analysis of Its Potential for DNA Vaccination against Tuberculosis

    PubMed Central

    Lefèvre, Philippe; Denis, Olivier; De Wit, Lucas; Tanghe, Audrey; Vandenbussche, Paul; Content, Jean; Huygen, Kris

    2000-01-01

    Using spleen cells from mice vaccinated with live Mycobacterium bovis BCG, we previously generated three monoclonal antibodies reactive against a 22-kDa protein present in mycobacterial culture filtrate (CF) (K. Huygen et al., Infect. Immun. 61:2687–2693, 1993). These monoclonal antibodies were used to screen an M. bovis BCG genomic library made in phage λgt11. The gene encoding a 233-amino-acid (aa) protein, including a putative 26-aa signal sequence, was isolated, and sequence analysis indicated that the protein was 98% identical with the M. tuberculosis Lppx protein and that it contained a sequence 94% identical with the M. leprae 38-mer polypeptide 13B3 recognized by T cells from killed M. leprae-immunized subjects. Flow cytometry and cell fractionation demonstrated that the 22-kDa CF protein is also highly expressed in the bacterial cell wall and membrane compartment but not in the cytosol. C57BL/6, C3H, and BALB/c mice were vaccinated with plasmid DNA encoding the 22-kDa protein and analyzed for immune response and protection against intravenous M. tuberculosis challenge. Whereas DNA vaccination induced elevated antibody responses in C57BL/6 and particularly in C3H mice, Th1-type cytokine response, as measured by interleukin-2 and gamma interferon secretion, was only modest, and no protection against intravenous M. tuberculosis challenge was observed in any of the three mouse strains tested. Therefore, the 22-kDa antigen seems to have little potential for a DNA vaccine against tuberculosis, but it may be a good candidate for a mycobacterial antigen detection test. PMID:10678905

  18. Sustained AAV9-mediated expression of a non-self protein in the CNS of non-human primates after immunomodulation

    PubMed Central

    Ramsingh, Arlene I.; Gray, Steven J.; Reilly, Andrew; Koday, Michael; Bratt, Debbie; Koday, Merika Treants; Murnane, Robert; Hu, Yuhui; Messer, Anne

    2018-01-01

    A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics. PMID:29874260

  19. Immunological network signatures of cancer progression and survival

    PubMed Central

    2011-01-01

    Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides. PMID:21453479

  20. Pathogen recognition in the innate immune response.

    PubMed

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

Top