Bösmüller, Hans; Pfefferle, Vanessa; Bittar, Zeid; Scheble, Veit; Horger, Marius; Sipos, Bence; Fend, Falko
2018-06-19
Microvessel density is an indicator of tumor-driven neoangiogenesis. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) have distinct vascular patterns, which are also reflected in their imaging characteristics. Since a significant proportion of HCC are treated without biopsy confirmation, it is essential to discriminate HCC and ICC radiologically. The aim of our study was therefore to compare microvessel density and expression of VEGFR-2 in HCC and ICC, since these data may ultimately help us to better understand their imaging characteristics. Whereas CD31 documents vessel density, VEGFR-2 expression is an indicator of tumor-related neoangiogenesis. CD31 and VEGFR-2 expressing microvessels were quantified on tissue microarrays of 95 resection specimens of HCC and 47 cases of ICC. Microvessel density was evaluated by counting immuno-reactive vascular structures both within the tumor and adjacent liver control tissue, respectively. Further 16 cases of ICC were immunostained for CD31 and VEGFR-2 on full sections. The frequency of VEGFR-2 (46.2/HPF; range 0-150) and CD31 (61.2/HPF; range 2.6-140) expressing vascular structures was significantly increased in HCC compared to adjacent liver parenchyma (VEGFR-2 33.3/HPF, range 0-87, CD31 21.4/HPF, range 0-78, both p < 0,001). ICC revealed significantly less VEGFR2-positive microvessels (15.4/HPF; range 2-77) compared to matched control tissue (42.3/HPF; range 4.6-109), whereas microvessel density with CD31 was comparable between ICC and adjacent liver (32.1/HPF; range 5.3-78 versus 28.0/HPF; range 5.3-57; p = 0.89). In ICC, the tumor-to-normal microvessel density ratio was 0.38 for VEGFR-2 and 1.24 for CD31. These ratios were nearly identical (VEGFR: 0.38; CD31: 0,97) for the 16 cases of ICC studied on whole sections, confirming the validity of the TMA approach. In contrast, ratios of VEGFR-2 and CD31 in HCC vs. adjacent liver were significantly higher (VEGFR: 2.23; CD31: 6.57). Expression of VEGFR-2 by tumor cells was not observed in any of the cases. HCC and ICC differ significantly in their microvessel density, confirming the hypovascular nature of ICC as compared to the hypervascularity of HCC. Of note, inverse tumor-to-normal ratios of microvascular VEGFR-2 expression between the two neoplasms indicate distinct features of neoangiogenesis. Whether these differences can be exploited for improvements in imaging of hepatic tumors and may play a role for anti-angiogenic treatment strategies requires further studies. Copyright © 2018 Elsevier GmbH. All rights reserved.
Hoshina, Seigo; Takayanagi, Toshiaki; Tominaga, Takeshi
1994-01-01
Angiogenesis is an independent prognostic indicator in breast cancer. In this report, the relationship between expression of vascular endothclial growth factor (VEGF; a selective mitogen for endothelial cells) and the microvessel density was examined in 103 primary breast cancers. The expression of VEGF was evaluated by immunocytochemical staining using anti‐VEGF antibody. The microvessel density, which was determined by immunostaining for factor VIII antigen, in VEGF‐rich tumors was clearly higher than that in VEGF‐poor tumors (P<0.01). There was a good correlation between VEGF expression and the increment of microvessel density. Furthermore, postoperative survey demonstrated that the relapse‐free survival rate of VEGF‐rich tumors was significantly worse than that of VEGF‐poor tumors. It was suggested that the expression of VEGF is closely associated with the promotion of angiogenesis and with early relapse in primary breast cancer. PMID:7525523
Hu, Jian Ming; Liu, Kai; Liu, Ji Hong; Jiang, Xian Li; Wang, Xue Li; Chen, Yun Zhao; Li, Shu Gang; Zou, Hong; Pang, Li Juan; Liu, Chun Xia; Cui, Xiao Bin; Yang, Lan; Zhao, Jin; Shen, Xi Hua; Jiang, Jin Fang; Liang, Wei Hua; Yuan, Xiang Lin; Li, Feng
2017-03-28
M2 macrophages was domesticated by tumor microenvironment to produce some angiogenic molecules and protease, facilitating angiogenesis and matrix breakdown, promoting tumor invasive and metastasis. However, The function of M2 macrophages to progression of eophageal carcinoma, especially Kazakh esophageal carcinoma is still dimness. This study aims to investigate M2 macrophages correlated with matrix metalloproteinase-9 (MMP9) and microvessel density, and the role in the progression of Kazakh esophageal squamous cell carcinoma. CD163 and CD34 as the marker of M2 macrophages and endothelial cells, were used to identify the M2 macrophages density and microvessel density, respectively. Immunohistochemistry staining was evaluated the expression of MMP9. The number of infiltrated CD163-positive M2 macrophages in tumor islets and stroma was significantly higher than in cancer adjacent normal tissues. The increased of M2 macrophages and microvessel density were significantly correlated with more malignant phenotypes including lymph node metastasis and clinical stage progression. Meanwhile, the expression of MMP9 showed much higher level in esophageal squamous cell carcinoma than that in cancer adjacent normal tissues, and high expression of MMP9 in Kazakh esophageal squamous cell carcinoma was significantly associated with age, depth of tumor invasion, lymph node metastasis, and tumor clinical stage. The quantity of M2 macrophages in tumor stroma was positively associated with microvessel density and the expression of MMP9, and as an independent poorly prognostic factor for overall survival time of Kazakh esophageal squamous cell carcinoma. These findings suggest the increased number of M2 macrophages correlated with high expression of MMP9 and high microvessel density may contribute to the tumor aggressiveness and angiogenesis, promoting the progression of Kazakh esophageal squamous cell carcinoma.
Cardesa-Salzmann, Teresa M.; Colomo, Luis; Gutierrez, Gonzalo; Chan, Wing C.; Weisenburger, Dennis; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Arenillas, Leonor; Serrano, Sergio; Tubbs, Ray; Delabie, Jan; Gascoyne, Randy D.; Connors, Joseph M; Mate, Jose L.; Rimsza, Lisa; Braziel, Rita; Rosenwald, Andreas; Lenz, Georg; Wright, George; Jaffe, Elaine S.; Staudt, Louis; Jares, Pedro; López-Guillermo, Armando; Campo, Elias
2011-01-01
Background Diffuse large B-cell lymphoma is a clinically and molecularly heterogeneous disease. Gene expression profiling studies have shown that the tumor microenvironment affects survival and that the angiogenesis-related signature is prognostically unfavorable. The contribution of histopathological microvessel density to survival in diffuse large B-cell lymphomas treated with immunochemotherapy remains unknown. The purpose of this study is to assess the prognostic impact of histopathological microvessel density in two independent series of patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Design and Methods One hundred and forty-seven patients from the Leukemia Lymphoma Molecular Profiling Project (training series) and 118 patients from the Catalan Lymphoma-Study group-GELCAB (validation cohort) were included in the study. Microvessels were immunostained with CD31 and quantified with a computerized image analysis system. The stromal scores previously defined in 110 Leukemia Lymphoma Molecular Profiling Project cases were used to analyze correlations with microvessel density data. Results Microvessel density significantly correlated with the stromal score (r=0.3209; P<0.001). Patients with high microvessel density showed significantly poorer overall survival than those with low microvessel density both in the training series (4-year OS 54% vs. 78%; P=0.004) and in the validation cohort (57% vs. 81%; P=0.006). In multivariate analysis, in both groups high microvessel density was a statistically significant unfavorable prognostic factor independent of international prognostic index [training series: international prognostic index (relative risk 2.7; P=0.003); microvessel density (relative risk 1.96; P=0.002); validation cohort: international prognostic index (relative risk 4.74; P<0.001); microvessel density (relative risk 2.4; P=0.016)]. Conclusions These findings highlight the impact of angiogenesis in the outcome of patients with diffuse large B-cell lymphoma and the interest of evaluating antiangiogenic drugs in clinical trials. PMID:21546504
Şener, Ebru; Şipal, Sare; Gündoğdu, Cemal
2016-01-01
Angiogenesis plays a key role in tumor growth and metastasis. Determination of microvessel density is the most common technique used to evaluate the amount of the intratumoral angiogenesis in breast cancer. We have aimed to investigate the relationship with tumor angiogenesis and prognostic parameters in breast invasive ductal carcinomas. In this study, a total of 100 invasive ductal carcinoma patients, who were diagnosed at the Department of Pathology, Ataturk University Faculty of Medicine between the years 2003-2008, were re-evaluated. Patient characteristics and clinicopathological findings were obtained from archival records. In the present study, microvessel density was determined by immunohistochemical staining by using anti-CD34 monoclonal antibody in the paraffin blocks. First, the most vascular area was selected in the tumor under a low magnification (40x) by a light microscope and then microvessels were counted under a higher magnification (200x). Patients were classified as low and high microvessel density depending on their microvessel counts. Chi-square test and multivariate linear regression analysis were used for statistical analysis (p≤0.05). We have determined that microvessel density increases as tumor size increases (p=0.001). Microvessel density was higher in patients with at least 10 lymph node metastases compared to those with no metastasis (p=0.05). However, there was no statistically significant difference between microvessel density and other prognostic factors such as histological grade, nuclear grade, patient age, vascular invasion, estrogen, progesterone receptor status, HER2/neu expression. In our study, we have found that microvessel density is associated with tumor size and lymph node metastasis in patients with invasive ductal carcinoma.
TROP2 correlates with microvessel density and poor prognosis in hilar cholangiocarcinoma.
Ning, Shanglei; Guo, Sen; Xie, Jianjun; Xu, Yunfei; Lu, Xiaofei; Chen, Yuxin
2013-02-01
Trophoblast cell surface antigen 2 (TROP2) was found to be associated with tumor progression and poor prognosis in a variety of epithelial carcinomas. The aim of the study was to investigate TROP2 expression and its prognostic impact in hilar cholangiocarcinoma. Immunohistochemistry and quantitative real-time PCR were used to determine TROP2 expression in surgical specimens from 70 hilar cholangiocarcinoma patients receiving radical resection. The relationship between TROP2 expression and microvessel density was investigated and standard statistical analysis was used to evaluate TROP2 prognosis significance in hilar cholangiocarcinoma. High TROP2 expression by immunohistochemistry was found in 43 (61.4 %) of the 70 tumor specimens. Quantitative real-time PCR confirmed that TROP2 level in tumor was significantly higher than in non-tumoral biliary tissues (P = 0.001). Significant correlations were found between TROP2 expression and histological differentiation (P = 0.016) and tumor T stage (P = 0.031) in hilar cholangiocarcinoma. TROP2 expression correlated with microvessel density in hilar cholangiocarcinoma (P = 0.026). High TROP2 expression patients had a significantly poorer overall survival rate than those with low TROP2 expression (30 vs. 68.5 %, P = 0.001), and multivariate Cox regression analysis indicated TROP2 as an independent prognostic factor for hilar cholangiocarcinoma (P = 0.004). TROP2 expression correlates with microvessel density significantly and is an independent prognostic factor in human hilar cholangiocarcinoma.
Kumar, Varsha Vimal; Krishanappa, Savita Jangal; Prakash, Smitha Gowdra; Channabasaviah, Girish Hemdal; Murgod, Sanjay; Pujari, Ravikumar; Kamat, Mamata Sharad
2016-03-01
Angiogenesis is a fundamental process that affects physiologic reactions and pathological processes such as tumour development and metastasis. It is the process of formation of new microvessel from the preexisting vessels. The purpose of this study was to evaluate angiogenesis, macrophage index and correlate the impact of macrophages on angiogenesis in the central and peripheral giant cell granulomas by evaluating immunohistochemically microvessel density, microvessel perimeter and macrophage index. Immunohistochemical analysis was carried on 20 cases of central and peripheral giant cell granulomas each for CD34 and CD68 proteins expression. Inferential statistical analysis was performed using Independent student t-test to assess the microvessel density, microvessel perimeter and macrophage index on continuous scale between Group I and Group II. Level of significance was determined at 5%. Further bivariate analysis using Pearson correlation test was carried out to see the relationship between microvessel density and macrophage index in each group. Microvessel density, micro vessel perimeter and macrophage index was higher in central giant cell granuloma compared to that of peripheral giant cell granuloma. Correlation between microvessel density and macrophage index among these two lesions was statistically insignificant. Angiogenesis as well as the number of macrophages appeared to increase in Central Giant Cell Granuloma in present study. These findings suggest that macrophages may up regulate the angiogenesis in these giant cell granulomas and angiogenesis do have a role in clinical behaviour. However, we could not establish a positive correlation between microvessel density and macrophage index as the values were statistically insignificant. This insignificance may be presumed due to fewer samples taken for study.
Mahzouni, Parvin; Mohammadizadeh, Fereshteh; Mougouei, Kourosh; Moghaddam, Noushin Afshar; Chehrei, Ali; Mesbah, Alireza
2010-01-01
Astrocytic brain tumors are the most common primary central nervous system tumors, which are classified into four grades. One of the most important pathologic criteria for the diagnosis of higher-grade astrocytomas (especially glioblastoma multiforme) is microvessel proliferation, particularly in the form of glomeruloid complex. Because tumor angiogenesis is a necessary factor for growth and invasiveness of malignancies, microvessel density (MVD) and intensity of angiogenesis may be used to determine the grade of astrocytomas and plan therapy accordingly. We have planned this study to evaluate the relationship between vwf expression in microvessels and different grades of astrocytoma. Sixty-four formalin-fixed and paraffin-embedded blocks of surgical specimens with diagnosis of astrocytoma (grades I to IV, each of them 16 blocks) were selected in a simple-nonrandom sampling. Thin sections of tissue blocks underwent immunohistochemical staining for vwf. The stained slides were examined using a light microscope at low (100) and high (400) magnifications. MVD was estimated by calculating the mean number of stained microvessels in three areas of highest vascularization in the high-power field (400). The intensity of staining was determined based on a 3 scale model, in which scores 0, 1, 2, and 3 mean no detectable stain, trace staining, moderate amount of diffuse stain, and strong diffuse staining, respectively. Thirty-six (56%) patients were male and 28 (44%) were female. Scores 0 and 1 of microvessel staining intensity were not observed in any grades studied, but severe staining intensity (score 3) was observed in 18.8%, 37.5%, 56.3%, and 87.5% of grades I, II, III, and IV astrocytomas, respectively. "Vwf vessel index" (MVD staining intensity of microvessels) was 23.84, 25.62, 31.62, and 62.43 in grades I, II, III, and IV astrocytomas, respectively. We found a significant relationship between staining intensity of vwf in microvessels and different grades of astrocytomas. The intensity of microvessel stain increases in parallel with increasing tumor grade. Regarding "microvessel density" and "vwf vessel index," the difference is predominantly between grade IV and all other grades. However, there is no other statistically meaningful difference between grades I, II and III.
Wang, Jing-Jing; Sun, Xi-Cai; Hu, Li; Liu, Zhuo-Fu; Yu, Hua-Peng; Li, Han; Wang, Shu-Yi; Wang, De-Hui
2013-12-01
The purpose of this study was to examine endoglin (CD105) expression on microvessel endothelial cells (ECs) in juvenile nasopharyngeal angiofibroma (JNA) and its relationship with recurrence. Immunohistochemistry was performed to detect CD105 expression in a tissue microarray from 70 patients with JNA. Correlation between CD105 expression on microvessel ECs and clinicopathological features, as well as tumor recurrence, were analyzed. Immunohistochemistry revealed CD105 expression on ECs but not in stroma of patients with JNA. Chi-square analysis indicated CD105-based microvessel density (MVD) was correlated with JNA recurrence (p = .013). Univariate and multivariate analyses determined that MVD was a significant predictor of time to recurrence (p = .009). The CD105-based MVD was better for predicting disease recurrence (AUROC: 0.673; p = .036) than other clinicopathological features. MVD is a useful predictor for poor prognosis of patients with JNA after curative resection. Angiogenesis, which may play an important role in the occurrence and development of JNA, is therefore a potential therapeutic target for JNA. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.
Shi, Jiankuan; Zhao, Yuanlin; Yuan, Yuan; Wang, Chao; Xie, Zhonglin; Gao, Xing; Xiao, Liming; Ye, Jing
2016-03-01
To explore the correlations of the expression of mutant isocitrate dehydrogenase (IDH1) (R132H) protein with angiogenesis and cell proliferation in glioma. We performed polymerase chain reaction-based IDH gene mutation screening in 385 glioma samples, and the subcellular localization and expression levels of IDH1 (R132H) was examined by immunohistochemistry (IHC). Ki-67 labeling index was introduced to determine the proliferation of glioma cells, and the microvessel density was measured through CD34 staining. Statistical analyses were performed to show the correlations of IDH1 mutation with cell proliferation and microvessel density. The mutant rates of IDH1 were about 50%-60% in grade II-III gliomas and secondary glioblastomas, which were significantly higher than those in pilocytic astrocytoma (grade I) and primary glioblastoma (grade IV). Moreover, the level of IDH1 (R132H) protein was positively correlated with Ki-67 labeling index and microvessel density. IDH mutation was common in grade II-III glioma and secondary glioblastoma, and the mutant IDH1 (R132H) might play a critical role in the cell proliferation and angiogenesis of glioma.
Defining the Phosphodiesterase Superfamily Members in Rat Brain Microvessels
2011-01-01
Eleven phosphodiesterase (PDE) families are known, each having several different isoforms and splice variants. Recent evidence indicates that expression of individual PDE family members is tissue-specific. Little is known concerning detailed PDE component expression in brain microvessels where the blood-brain-barrier and the local cerebral blood flow are thought to be regulated by PDEs. The present study attempted to identify PDE family members that are expressed in brain microvessels. Adult male F344 rats were sacrificed and blocks of the cerebral cortex and infratentorial areas were dissected. Microvessels were isolated using a filtration method, and total RNA was extracted. RNA quality and quantity were determined using an Agilent bioanalyzer. The isolated cortical and infratentorial microvessel total RNA amounts were 2720 ± 750 ng (n = 2) and 250 ± 40 ng (n = 2), respectively. Microarrays with 22 000 transcripts demonstrated that there were 16 PDE transcripts in the PDE superfamily, exhibiting quantifiable density in the microvessels. An additional immunofluorescent study verified that PDE4D (cAMP-specific) and PDE5A (cGMP-specific) were colocalized with RECA-1 (an endothelial marker) in the cerebral cortex using both F344 rats and Sprague–Dawley rats (n = 3–6/strain). In addition, PDE4D and PDE5A were found to be colocalized with alpha-smooth muscle actin which delineates cerebral arteries and arterioles as well as pericytes. In conclusion, a filtration method followed by microarray analyses allows PDE components to be identified in brain microvessels, and confirmed that PDE4D and PDE5A are the primary forms expressed in rat brain microvessels. PMID:22860158
Yan, Weiwei; Zhu, Zhenyu; Pan, Fei; Huang, Ang; Dai, Guang-Hai
2018-01-01
To explore new biomarkers for indicating the recurrence and prognosis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients after tumor resection, we investigated the expression and prognostic value of c-kit(CD117) in HBV-related HCC. Immunohistochemistry was used to estimate the expression of c-kit(CD117) and CD34 in the liver cancer tissues. The correlations between the expression of these biomarkers and the clinicopathologic characteristics were analyzed. The positive rate of c-kit(CD117) expression in 206 HCC cases was 48.1%, and c-kit expression was significantly related with CD34-positive microvessel density. CD34-microvessel density numbers were much higher in c-kit(+) HCC tissues than in c-kit(-) HCC tissues (44.13±17.01 vs 26.87±13.16, P =0.003). The expression of c-kit was significantly higher in patients with Edmondson grade III-IV ( P <0.001) and TNM stage III ( P <0.001). Moreover, Kaplan-Meier survival analysis showed that c-kit ( P <0.001) expression was correlated with reduced disease-free survival (DFS). Multivariate analysis identified c-kit as an independent poor prognostic factor of DFS in HCC patients ( P <0.001). Increased c-kit expression could be considered as an independent unfavorable prognostic factor for predicting DFS in HBV-related HCC patients after surgery. These results could be used to identify patients at a higher risk of early tumor recurrence and poor prognosis.
Zhang, Jinguo; Zhang, Lingyun; Lin, Qunbo; Ren, Weimin; Xu, Guoxiong
2018-01-01
Background Endoglin (ENG, CD105), an auxiliary receptor for several TGF-β superfamily ligands, is constitutively expressed in tumor microvessels. The prognostic value of ENG-assessed microvessel density (MVD) has not been systemically analyzed. This meta-analysis reviews and evaluates the association between ENG expression and prognosis in cancer patients. Materials and Methods Thirty published studies involving in 3613 patients were included after searching of PubMed, Web of Science, and EMBASE. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) for overall survival (OS), disease-free survival (DFS), and cancer-specific survival (CSS) were calculated using random-effects models. The publication bias was detected by a Begg’s test and Egger’s test. The outcome stability was verified by sensitivity analysis. Results The high ENG-assessed MVD was significantly associated with poor OS (HR = 2.14, 95% CI 1.62–2.81; P < 0.001), DFS (HR = 3.23, 95% CI 2.10–4.95; P < 0.001), CSS (HR = 3.33, 95% CI 1.32–8.37; P < 0.001). Furthermore, subgroup analysis revealed that the association between the overexpression of ENG in tumor microvessels and the outcome endpoints (OS or DFS) were also significant in the Asians and Caucasians patients with different cancer types. Conclusions ENG of tumor microvessels is a predictor of poor OS, DFS and CSS and may be a prognostic marker of patients with cancer. PMID:29484142
Zhang, Q L; Li, J P; Li, Y M; Chang, Q; Chen, Y; Jiang, H Z; Zhao, Z H; Guo, D
2013-12-10
Vascular endothelial growth factors (VEGFs) play important roles in neovascularization, tissue development, and angiogenesis. In this study, changes in VEGF expression patterns and microvessel density (MVD), and their correlations, were investigated during hair follicle development in epidermal appendages of Liaoning cashmere goats. Polyclonal antibodies to VEGF and microvessels were used for monthly immunohistochemical examinations of normal skin specimens from adult female goats for one year. VEGF was expressed in the hair bulb of primary and secondary hair follicles, the outer and inner root sheaths, sebaceous glands (ductal and secretory portions), eccrine sweat glands (ductal and secretory portions), and the epidermis. Abundant expression of VEGF was observed in the follicular basement membrane zone surrounding the bulb matrix and in ductal and secretory portions of eccrine sweat glands. The change in VEGFs in primary hair follicles showed a bimodal pattern, with the first peak observed from March to May, and the second in August. Maximal expression in secondary hair follicles occurred in May and August. Therefore, VEGF expression in primary and secondary hair follicles is synchronized throughout the year, and is correlated to hair development. In the later telogen and anagen phases, VEGF expression was higher in the secondary, compared to the primary, hair follicle. Changes in MVD also showed a bimodal pattern with peaks in May and August. VEGF expression and MVD showed moderate and strongly positive correlation in the primary and secondary hair follicles, respectively. Therefore, MVD and VEGF are closely related to the processes involved in hair cycle regulation.
Kouhsoltani, Maryam; Halimi, Monireh; Dibazar, Sana
2015-06-01
In this study, we compared mast cell tryptase and CD31 expression between odontogenic tumors with the aim of predicting the clinical behavior of these lesions at the time of initial biopsy. We also evaluated the correlation between mast cell tryptase and CD31 expression to clarify the role of mast cells (MCs) in the growth of odontogenic tumors. Immunohistochemical staining with anti-MC tryptase and anti-CD31 antibodies was performed on 48 cases of odontogenic tumors including solid ameloblastoma (SAM), unicystic ameloblastoma (UAM), odontogenic myxoma (OM), cystic calcifying odontogenic tumor (CCOT) and adenomatoid odontogenic tumor (AOT). Ten high power fields were analyzed for each sample. Total MC count was significantly increased in SAM compared to other odontogenic tumors (p<0.05). Microvessel density was statistically higher in SAM and AOT compared to remaining odontogenic tumors (p<0.05). A significant correlation was observed between MCs and microvessels in odontogenic tumors (p=0.018, r=0.34). Our findings suggest a role for MCs in aggressive clinical behavior of odontogenic tumors. The significant correlation found between MC count and microvessel density in odontogenic tumors is in agreement with the theory of participation of MCs in tumor progression. Targeting MC activity may represent an important nonsurgical therapeutic approach, especially for aggressive odontogenic tumors.
Nguyen, T B; Cron, G O; Bezzina, K; Perdrizet, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Thornhill, R E; Zanette, B; Cameron, I G
2016-12-01
Tumor CBV is a prognostic and predictive marker for patients with gliomas. Tumor CBV can be measured noninvasively with different MR imaging techniques; however, it is not clear which of these techniques most closely reflects histologically-measured tumor CBV. Our aim was to investigate the correlations between dynamic contrast-enhanced and DSC-MR imaging parameters and immunohistochemistry in patients with gliomas. Forty-three patients with a new diagnosis of glioma underwent a preoperative MR imaging examination with dynamic contrast-enhanced and DSC sequences. Unnormalized and normalized cerebral blood volume was obtained from DSC MR imaging. Two sets of plasma volume and volume transfer constant maps were obtained from dynamic contrast-enhanced MR imaging. Plasma volume obtained from the phase-derived vascular input function and bookend T1 mapping (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function and bookend T1 mapping (K trans _Φ) were determined. Plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K trans _SI) were acquired, without T1 mapping. Using CD34 staining, we measured microvessel density and microvessel area within 3 representative areas of the resected tumor specimen. The Mann-Whitney U test was used to test for differences according to grade and degree of enhancement. The Spearman correlation was performed to determine the relationship between dynamic contrast-enhanced and DSC parameters and histopathologic measurements. Microvessel area, microvessel density, dynamic contrast-enhanced, and DSC-MR imaging parameters varied according to the grade and degree of enhancement (P < .05). A strong correlation was found between microvessel area and Vp_Φ and between microvessel area and unnormalized blood volume (r s ≥ 0.61). A moderate correlation was found between microvessel area and normalized blood volume, microvessel area and Vp_SI, microvessel area and K trans _Φ, microvessel area and K trans _SI, microvessel density and Vp_Φ, microvessel density and unnormalized blood volume, and microvessel density and normalized blood volume (0.44 ≤ r s ≤ 0.57). A weaker correlation was found between microvessel density and K trans _Φ and between microvessel density and K trans _SI (r s ≤ 0.41). With dynamic contrast-enhanced MR imaging, use of a phase-derived vascular input function and bookend T1 mapping improves the correlation between immunohistochemistry and plasma volume, but not between immunohistochemistry and the volume transfer constant. With DSC-MR imaging, normalization of tumor CBV could decrease the correlation with microvessel area. © 2016 by American Journal of Neuroradiology.
Park, Seung Min; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Park, Chan Woo; Cho, Jun Hwi; Lee, Hui Young
2016-01-01
Objective(s): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cerebral ischemia was developed by 5-min occlusion of both common carotid arteries. Neuronal damage was examined by cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining and changes in GLUT-1 expression was carried out by immunohistochemistry. Results: About 90% of pyramidal neurons only in the adult CA1 region were damaged after ischemia/reperfusion; in the young, about 53 % of pyramidal neurons were damaged from 7 days after ischemia/reperfusion. The density of GLUT-1-immunoreactive microvessels was significantly higher in the young sham-group than that in the adult sham-group. In the ischemia-operated-groups, the density of GLUT-1-immunoreactive microvessels was significantly decreased in the adult and young at 1 and 4 days post-ischemia, respectively, thereafter, the density of GLUT-1-immunoreactive microvessels was gradually increased in both groups after ischemia/reperfusion. Conclusion: CA1 pyramidal neurons of the young gerbil were damaged much later than that in the adult and that GLUT-1-immunoreactive microvessels were significantly decreased later in the young. These data indicate that GLUT-1 might differently contribute to neuronal damage according to age after ischemic insults. PMID:27403259
Fonseca-Silva, T; Santos, C C O; Alves, L R; Dias, L C; Brito, M; De Paula, A M B; Guimarães, A L S
2012-09-01
To identify and quantify mast cell (MC), vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in human periapical cysts and granulomas. Archived samples of cysts (n = 40) and granulomas (n = 28) were sectioned and stained with toluidine blue. MCs were identified and counted. Immunohistochemical reactions were employed to evaluate the tissue expression of VEGF and vessels. MVD was estimated by determining the areas of tissue labelled with CD31 antibody. The data were analysed using the Mann-Whitney test (P < 0.05). MCs were observed in the peripheral regions of both lesion types, whilst VEGF and MVD were distributed in the stroma. The presence of MCs was higher in cysts than in granulomas (P < 0.05). VEGF and MVD expression were similar in these lesions. The highest number of MCs was observed in cysts. Moreover, the identification of VEGF and MVD was consistent with the immune mechanisms involved in the lesions. © 2012 International Endodontic Journal.
[Inhibitory effect of taspine on mouse S180 sarcoma and its mechanism].
Zhang, Yan-Min; He, Lang-Chong; Wang, Hong-Ying
2007-05-01
To study the inhibition effect of taspine on mouse S180 sarcoma and its mechanism. The mouse S180 sarcoma model was established and used to observe the antitumor activity of taspine. The microvessel density and protein expressing of the VEGF, bFGF, Bcl-2 and Bax in the tumor were measured by immunohistochemistry. Taspine showed antitumor activity on the mouse S180 sarcoma in a good dose-dependent manner. The inhibition rates on tumor of taspine at low, middle and high concentrations were 39.08% , 43.99% and 48.60%, respectively. The microvessel density and protein expressing of the VEGF, bFGF, Bcl-2 and Bax in the tumor were decreased compared with the negative control. The ratio of Bax to Bcl-2 was increased. Taspine has antitumor effect on the S180 sarcoma, and the mechanism may be through the way of decreasing the expressing of the VEGF, bFGF, Bcl-2 and Bax and inducing the vascular endothelial cell apoptosis.
Tumor microvessel density–associated mast cells in canine nodal lymphoma
Mann, Elizabeth; Whittington, Lisa
2014-01-01
Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752
Martinez, Leandro Marcelo; Labovsky, Vivian; Calcagno, María de Luján; Davies, Kevin Mauro; Rivello, Hernán Garcia; Wernicke, Alejandra; Calvo, Juan Carlos; Chasseing, Norma Alejandra
2016-04-01
Angiogenesis is a key process for metastatic progression. While it has been established that the evaluation of breast tumoral microvessel density by CD105 marker is a potential prognostic parameter, its evaluation by CD146 marker has been poorly studied. The purpose of this study was to compare the prognostic value of intra-tumoral microvessel density assayed by CD105 and CD146 in early breast cancer patients. 42 women with breast infiltrative ductal carcinoma (I and II-stages) were retrospectively reviewed. Intra-tumoral microvessel density was immunohistochemically examined using antibodies anti-CD105 and CD146 in paraffin-embedded tissues, and their association with classical prognostic-markers, metastatic recurrence, metastasis-free survival and overall survival was analyzed. High microvessel density assessed by CD146 was significantly associated with a higher risk of developing metastasis (p=0.0310) and a shorter metastasis-free survival (p=0.0197). In contrast, when we used the CD105-antibody, we did not find any significant association. Finally, CD146 showed to be an independent predictive indicator for metastasis-free survival (p=0.0055). Our data suggest that the intra-tumoral microvessel density evaluated by CD146 may be a more suitable predictor of metastatic development than that evaluated by CD105 in early breast cancer. Copyright © 2016 Elsevier GmbH. All rights reserved.
Martano, Manuela; Restucci, Brunella; Ceccarelli, Dora Maria; Lo Muzio, Lorenzo; Maiolino, Paola
2016-01-01
Angiogenesis is crucial for the growth and metastasis of malignant tumours, and various proangiogenic factors promote this process. One of these factors is vascular endothelial growth factor (VEGF), which appears to play a key role in tumour angiogenesis. The aim of the present study was to assess whether VEGF expression is associated with angiogenesis, disease progression and neoplastic proliferation in canine oral squamous cell carcinoma (OSCC) tissue. VEGF immunoreactivity was quantified by immunohistochemistry in 30 specimens, including normal oral mucosa and OSCC tissues graded as well, moderately or poorly differentiated. VEGF expression was correlated with tumour cell proliferation, as assessed using the proliferating cell nuclear antigen (PCNA) marker and microvessel density (data already published). The present results revealed that VEGF and PCNA expression increased significantly between normal oral tissue and neoplastic tissue, and between well and moderately/poorly differentiated tumours. In addition, VEGF expression was strongly correlated with PCNA expression and microvessel density. It was concluded that VEGF may promote angiogenesis through a paracrine pathway, stimulating endothelial cell proliferation and, similarly, may induce tumour cell proliferation through an autocrine pathway. The present results suggest that the evaluation of VEGF may be a useful additional criterion for estimating malignancy and growth potential in canine OSCCs.
Ferreira, Stephany Vasco; Xavier, Flávia Caló Aquino; Freitas, Maria da Conceição Andrade de; Nunes, Fábio Daumas; Gurgel, Clarissa Araújo; Cangussu, Maria Cristina Teixeira; Martins, Manoela Domingues; Freitas, Valéria Souza; Dos Santos, Jean Nunes
2016-09-01
In view of the similarity of clinicopathological features between reactive lesions of the oral cavity, the objective of the present study was to investigate the density of MCs (mast cells) and microvessels in a series of these lesions. Thirty-seven cases of reactive lesions including fibrous hyperplasia (FH, n=10), inflammatory fibrous hyperplasia (IFH, n=10), peripheral giant cell lesion (PGCL, n=10) and lobular capillary hemangioma (LCH, n=7) were investigated using immunohistochemistry for mast cell tryptase and CD34. For comparative purposes, central giant cell lesions (CGCL, n=5) were included. A higher MC density was observed in LCH (37.01), while CGCL exhibited the lowest density (n=8.14). There was a significant difference in MC density when all reactive lesions were compared to CGCL (p=0.001). The largest mean density of microvessels was observed in LCH (n=21.69). The smallest number was observed in CGCL (n=6.24). There was a significant difference in microvessel density when the reactive lesions were compared to CGCL (p=0.003). There was a significant and direct correlation between the density of MCs and microvessels only for IFH (p=0.048) and CGCL (p=0.005). A significant and direct correlation between the mean density of MCs and microvessels was observed when the reactive lesions were analyzed as a whole (p=0.005). Our results suggest that mast cells contribute to the connective tissue framework and angiogenic function, as well as the development, of reactive lesions of the oral cavity, including FH, IFH, LCH and PGCL. Copyright © 2016 Elsevier GmbH. All rights reserved.
Huang, Chongbiao; Li, Zengxun; Li, Na; Li, Yang; Chang, Antao; Zhao, Tiansuo; Wang, Xiuchao; Wang, Hongwei; Gao, Song; Yang, Shengyu; Hao, Jihui; Ren, He
2018-02-01
Cells of the monocyte lineage contribute to tumor angiogenesis. Interleukin 35 (IL35) is a member of the IL12 family produced by regulatory, but not effector, T cells. IL35 is a dimer comprising the IL12 alpha and IL27 beta chains, encoded by IL12A and EBI3, respectively. Expression of IL35 is increased in pancreatic ductal adenocarcinomas (PDACs) compared with normal pancreatic tissues, and promotes metastasis. We investigated the role of IL35 in monocyte-induced angiogenesis of PDAC in mice. We measured levels of IL35 protein, microvessel density, and numbers of monocytes in 123 sequential PDAC tissues from patients who underwent surgery in China in 2010. We performed studies with the human PDAC cell lines CFPAC-1, BxPC-3, Panc-1, MIA-PaCa-2, and mouse PDAC cell line Pan02. Monocyte subsets were isolated by flow cytometry from human peripheral blood mononuclear cells. Fused human or mouse IL12A and EBI3 genes were overexpressed in PDAC cells or knocked down using small hairpin RNAs. Cells were grown as xenograft tumors in SCID mice; some mice were given injections of an IL35-neutralizing antibody and tumor growth was monitored. We performed chemotaxis assays to measure the ability of IL35 to recruit monocytes. We analyzed mRNA sequences of 179 PDACs in the Cancer Genome Atlas to identify correlations between expression of IL12A and EBI3 and monocyte markers. Monocytes incubated with IL35 or PDAC cell supernatants were analyzed in tube formation and endothelial migration assays. In PDAC samples from patients, levels of IL35 mRNA and protein correlated with microvessel density and infiltration of monocyte lineage cells. In cells and mice with xenograft tumors, IL35 increased recruitment of monocytes into PDAC tumors, which required CCL5. Upon exposure to IL35, monocytes increased expression of genes whose products promote angiogenesis (CXCL1 and CXCL8). IL35 activated transcription of CCL5, CXCL1, and CXCL8 by inducing GP130 signaling, via IL12RB2 and phosphorylation of STAT1 and STAT4. A combination of a neutralizing antibody against IL35 and gemcitabine significantly decreased monocyte infiltration, microvessel density, and volume of xenograft tumors grown from PDAC cells in mice. PDAC cells produce IL35 to recruit monocytes via CCL5 and induce macrophage to promote angiogenesis via expression of CXCL1 and CXCL8. IL35 signaling promotes angiogenesis and growth of xenograft tumors from PDAC cells in mice. IL35 might serve as a therapeutic target for patients with pancreatic cancer. Copyright © 2018. Published by Elsevier Inc.
Histopathological vascular investigation of the peritumoral brain zone of glioblastomas.
Tamura, Ryota; Ohara, Kentaro; Sasaki, Hikaru; Morimoto, Yukina; Yoshida, Kazunari; Toda, Masahiro
2018-01-01
To date, no histopathological vascular investigation focusing on peritumoral brain zone (PBZ) has been reported for glioblastoma. We analyzed 10 newly diagnosed cases of glioblastomas. For these PBZs, histopathological investigation was performed by hematoxylin-eosin (H&E) staining and immunohistochemistry was analyzed for CD31, CD34, Factor VIII, VEGF, VEGFR-1/2, Ki67, p53 and nestin. Although it was difficult to identify PBZ by H&E, Ki67 and p53 staining, there were apparent differences in nestin staining among PBZ, tumor core (TC), and normal zone (NZ). Therefore, in this study, we divided PBZ from TC and NZ by nestin staining. Differences in histological features, microvessel density, expression of VEGF and its receptors were assessed for PBZ, TC and NZ. The microvessel density, as determined by counting CD31, CD34 and VEGF receptors, and VEGF-A expression were lower in PBZ than TC. The expression patterns for CD31, CD34 and VEGF receptors in vessels show dissociation in PBZ. In addition, the vascular characteristics of the PBZ may correlate with findings of radiographic imaging. We provide the first clinicopathological evidence that PBZ exhibits unique angiogenic characteristics. These in situ observations will help to elucidate the mechanisms of tumor recurrence.
Carpenter, Richard L; Paw, Ivy; Zhu, Hu; Sirkisoon, Sherona; Xing, Fei; Watabe, Kounosuke; Debinski, Waldemar; Lo, Hui-Wen
2015-09-08
We recently discovered that truncated glioma-associated oncogene homolog 1 (TGLI1) is highly expressed in glioblastoma (GBM) and linked to increased GBM vascularity. The mechanisms underlying TGLI1-mediated angiogenesis are unclear. In this study, we compared TGLI1- with GLI1-expressing GBM xenografts for the expression profile of 84 angiogenesis-associated genes. The results showed that expression of six genes were upregulated and five were down-regulated in TGLI1-carrying tumors compared to those with GLI1. Vascular endothelial growth factor-C (VEGF-C) and tumor endothelial marker 7 (TEM7) were selected for further investigations because of their significant correlations with high vascularity in 135 patient GBMs. TGLI1 bound to both VEGF-C and TEM7 gene promoters. Conditioned medium from TGLI1-expressing GBM cells strongly induced tubule formation of brain microvascular endothelial cells, and the induction was prevented by VEGF-C/TEM7 knockdown. Immunohistochemical analysis of 122 gliomas showed that TGLI1 expression was positively correlated with VEGF-C, TEM7 and microvessel density. Analysis of NCBI Gene Expression Omnibus datasets with 161 malignant gliomas showed an inverse relationship between tumoral VEGF-C, TEM7 or microvessel density and patient survival. Together, our findings support an important role that TGLI1 plays in GBM angiogenesis and identify VEGF-C and TEM7 as novel TGLI1 target genes of importance to GBM vascularity.
Clinicopathologic and prognostic implications of progranulin in breast carcinoma.
Li, Li-qin; Huang, Hui-lian; Ping, Jin-liang; Wang, Xiao-hong; Zhong, Jing; Dai, Li-cheng
2011-07-05
Progranulin is a newly discovered 88-kDa glycoprotein originally purified from the highly tumorigenic mouse teratoma-derived cell line PC. Its expression is closely correlated with the development and metastasis of several cancers. However, no immunohistochemical evidence currently exists to correlate progranulin expression with clinicopathologic features in breast carcinoma biopsies, and the role of progranulin as a new marker of metastatic risk and prognosis in breast cancer has not yet been studied. The aim of this study was to investigate the clinicopathologic and prognostic implications of progranulin expression in breast carcinoma and its correlation with tumor angiogenesis. Progranulin expression was determined immunohistochemically in 183 surgical specimens from patients with breast cancer and 20 tissue samples from breast fibroadenomas. The tumor angiogenesis-related biomarker, vascular endothelial growth factor was assayed and microvessel density was assessed by counting vascular endothelial cells in tumor tissues labeled with endoglin antibody. The relationship between progranulin expression and the clinicopathologic data were analyzed. Progranulin proteins were overexpressed in breast cancer. The level of progranulin expression was significantly correlated with tumor size (P = 0.004), lymph node metastasis (P < 0.001) and TNM staging (P < 0.001). High progranulin expression was associated with higher tumor angiogenesis, reflected by increased vascular endothelial growth factor expression (P < 0.001) and higher microvessel density (P = 0.002). Progranulin may be a valuable marker for assessing the metastasis and prognosis of breast cancer, and could provide the basis for new combination regimens with antiangiogenic activity.
Han, Wei; Wang, Zhen-jun; Zhao, Bo; Yang, Xin-qing; Wang, Dong; Wang, Jian-pin; Tang, Xiu-ying; Zhao, Fa; Hung, Yan-ting
2005-01-01
To investigate the pathological variations in internal hemorrhoid and evaluate the expression of nitric- oxide synthase(NOS),vascular endothelial growth factor(VEGF),matrix metalloproteinase- 2(MMP2) and MMP9. Normal anal cushion and internal hemorrhoids tissue samples were obtained from 24 patients with iii degree hemorrhoids after procedure for prolapse and hemorrhoids(PPH) procedure. The expression of NOS, VEGF, MMP2, MMP9 and CD34 were detected by immunohistochemical staining; the microvessel density (MVD) was counted by anti- CD34 antibody; the elastic fibers were detected by orcein staining. There were statistically significant differences in the expression of MVD, VEGF, MMP9 between internal hemorrhoid tissue and normal anal cushions(P< 0.05). iNOS was significantly increased in hemorrhoid tissue, but no significant difference between normal anal cushions and hemorrhoid tissue. Morphological abnormalities such as breaking, distortion, mortality, hyaline degeneration were found in elastic fibers of internal hemorrhoid tissue, but not in normal anal cushions. Angiogenesis is evident in hemorrhoid tissue, suggesting the possible mechanism in the pathogenesis of hemorrhoids. The direct degeneration effect of MMP9 on supporting structure elastic fibers in anal cushion is another important mechanism. The high expression of iNOS suggests the inflammatory factors involve in the pathogenesis of hemorrhoids, and NO may be involve in pathological effect on hemorrhoids.
Koyama, Tomiyasu; Taka, Akira; Togashi, Hiroko
2009-01-01
The dry fruits of Hippophae rhamnoides (so-called "Saji" or "Sea buckthorn") are used in China as a herbal medicine. The present work studied the effects on microvessels in the left ventricular wall, hematological parameters, cardiovascular performance and plasma constituents in spontaneously hypertensive stroke-prone rats (SHRSP/EZO) treated with Hippophae for 60 days. Analyses showed that the powder made of dry Hippophae fruits contains the vitamins C, B1, B2 and E, provitamin A, rutin, serotonin, cytosterol, selenium and zinc, among other constituents. The experimental rats were fed ad libitum with blocks of rat chow supplemented with Hippophae powder at a concentration of 0.7 g/kg in rat powder chow, while control rats were unsupplemented chow. The mean arterial blood pressure, heart rate, total plasma cholesterol, triglycerides, and glycated hemoglobin were significantly decreased by the Hippophae treatment. The arteriolar capillary portions of microvessels expressing alkaline phosphatase decreased, but there was a trend for an increase in the total capillary density. It was concluded that Hippophae fruits improved the metabolic processes accompanied by reduction of hypertensive stress on the ventricular microvessels.
ALK1 expression in oral lichen planus: a possible relation to microvessel density.
Hazzaa, Hala H A; El-Wakeel, Naglaa M; Attia, Enas A S; Abo Hager, Eman A
2016-05-01
To assess the expression of activin receptor-like kinase 1 (ALK1) and investigate its possible relationship with microvessel density (MVD) in different forms of oral lichen planus (OLP) compared to controls' biopsies. Biopsies from 20 reticular/papular OLP (R/PLP), 20 atrophic/erosive OLP (A/ELP) patients, and 20 healthy subjects were immunohistochemically analyzed and statistically compared and correlated for ALK1 expression and MVD as assessed by CD34 expression. All OLP specimens revealed the presence of positive cytoplasmic CD34 immunostaining in endothelial cells, with statistically high significant MVD in each of R/PLP (Median; M = 4.40) and A/ELP (M = 7.69) compared to controls (M = 1.16) (P < 0.001). Statistically significant MVD was found in A/ELP compared to R/PLP (P < 0.001). All control specimens revealed negative ALK1 immunostaining of the few inflammatory cells found, while 85% of A/ELP cases and 70% of R/PLP cases showed positively immunostained sections for ALK-1, with statistically significant higher ALK1 expression In A/ELP (M = 1.95) compared to R/PLP (M = 0.86) (P = 0.005). No significant correlation between CD34 and ALK1 was detected in R/PLP (r = 0.081), while a barely moderate positive correlation was found in A/ELP (r = 0.396). ALK1 expression and MVD are increased in OLP, particularly in A/ELP type. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Honjo, Soichiro; Kase, Satoru; Osaki, Mitsuhiko; Ardyanto, Tonang Dwi; Kaibara, Nobuaki; Ito, Hisao
2004-01-01
Cyclooxygenase (COX)-2 plays an important role in carcinogenesis in various human malignancies. This study examined the relationship among COX-2 expression, angiogenesis and apoptosis in human gastric adenoma and carcinoma. We examined the expression of COX-2 in 30 tubular adenomas and 11 carcinomas, comparing it with intratumoral microvessel density (IMVD) and apoptotic index (AI) by immunohistochemistry and the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxygenin nick-end labeling (TUNEL) procedure. Immunohistochemistry demonstrated positive expression of COX-2 in 15 (50.0%) adenomas and in 50 (53.1%) carcinomas, respectively. The frequency of COX-2 expression was significantly higher in intestinal-type carcinomas than in diffuse-type, regardless of the tumor stage. The IMVD was significantly higher in the early and advanced carcinomas than in the adenomas and also higher in the COX-2-positive adenomas and carcinomas than in the negative ones. The AI was significantly higher in the adenomas than in the carcinomas and also in the COX-2-negative adenomas and intestinal-type early carcinomas than in their positive counterparts, respectively (p < 0.05). The IMVD and AI showed significant inverse correlation in both the adenomas (p=0.02, r=-0.64) and carcinomas (p=0.04, r=-0.18). COX-2 expression might be an early event in gastric tumorigenesis and provide a preferential advantage for tumor cell proliferation because of its vascular-rich microenvironment and escape from tumor cell apoptosis, especially in intestinal-type gastric carcinomas.
Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H
2012-01-01
The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tao, Yiming; Hu, Kuan; Tan, Fengbo; Zhang, Sai; Zhou, Ming; Luo, Jia; Wang, Zhiming
2016-01-01
SH3-domain binding protein-1 (SH3BP1) specifically inactivating Rac1 and its target WAVE2 is required for cell motility. The present study shows SH3BP1 expression patterns in human HCC tissues and cell lines were examined. The regulation of SH3BP1 on HCC cell migration and invasion related to Rac1-WAVE2 signaling was characterized using in vitro and in vivo models. SH3BP1 overexpressed in HCC tissues and highly metastatic HCC cells was significantly associated vascular invasion (VI). SH3BP1 promoted VEGF secretion via Rac1-WAVE2 signaling, so as to exert an augmentation on cell invasion and microvessel formation. In three study cohorts with a total of 516 HCC patients, high SH3BP1 expression combined with high microvessel density (MVD) was confirmed as a powerful independent predictor of HCC prognosis in both training cohorts and validation cohort. Being an important angiogenic factor of HCC through Rac1-WAVE2 signaling, SH3BP1 promotes tumor invasion and microvessel formation contributing to HCC metastasis and recurrence. SH3BP1 is a novel WAVE2 regulator, a prognostic marker and a potential therapeutic target of HCC. PMID:26933917
Tao, Yiming; Hu, Kuan; Tan, Fengbo; Zhang, Sai; Zhou, Ming; Luo, Jia; Wang, Zhiming
2016-04-05
SH3-domain binding protein-1 (SH3BP1) specifically inactivating Rac1 and its target WAVE2 is required for cell motility. The present study shows SH3BP1 expression patterns in human HCC tissues and cell lines were examined. The regulation of SH3BP1 on HCC cell migration and invasion related to Rac1-WAVE2 signaling was characterized using in vitro and in vivo models. SH3BP1 overexpressed in HCC tissues and highly metastatic HCC cells was significantly associated vascular invasion (VI). SH3BP1 promoted VEGF secretion via Rac1-WAVE2 signaling, so as to exert an augmentation on cell invasion and microvessel formation. In three study cohorts with a total of 516 HCC patients, high SH3BP1 expression combined with high microvessel density (MVD) was confirmed as a powerful independent predictor of HCC prognosis in both training cohorts and validation cohort. Being an important angiogenic factor of HCC through Rac1-WAVE2 signaling, SH3BP1 promotes tumor invasion and microvessel formation contributing to HCC metastasis and recurrence. SH3BP1 is a novel WAVE2 regulator, a prognostic marker and a potential therapeutic target of HCC.
The 15-LO-1/15-HETE system promotes angiogenesis by upregulating VEGF in ischemic brains.
Chen, Li; Zhu, Yan-Mei; Li, Yu-Nong; Li, Peng-Yan; Wang, Di; Liu, Yu; Qu, You-Yang; Zhu, Da-Ling; Zhu, Yu-Lan
2017-09-01
Angiogenesis promotes neurobehavioral recovery after cerebral ischemic stroke. 15(S)-hydroxyeicosatetraenoic acid (15-HETE) is one of the major metabolites of arachidonic acid by 15-lipoxygenase (15-LO) and stimulates the production of vascular endothelial growth factor (VEGF), thus, inducing autocrine-mediated angiogenesis. The present study aimed to investigate the role of 15-LO/15-HETE system on VEGF expression and angiogenesis in brain ischemia. Rat cerebral arterial vascular endothelial cells were used to set up a cell injury model of oxygen-glucose deprivation and reoxygenation (OGD/R), mimicking a condition of brain ischemia. A mouse model of middle cerebral artery occlusion (MCAO) was established. Oxygen-glucose deprivation increased cellular expression of 15-LO-1 and VEGF. Transfection of 15-LO-1 siRNA depleted cells of 15-LO-1, and sequentially induced downregulation of VEGF expression; while, incubation of 15-HETE increased the expression of VEGF. Incubation of 15-HETE attenuated the reduction in cell viability induced by oxygen-glucose deprivation, and promoted cell migration, while transfection of 15-LO-1 siRNA showed an opposite effect. In animal experiments, the density of microvessels in hypoxic regions of brains was significantly increased after MCAO, while intracerebroventricular delivery of 15-LO-1 siRNA significantly reduced the density of microvessels, and downregulates VEGF expression. The results indicate that the 15-LO-1/15-HETE system promotes angiogenesis in ischemic brains by upregulation of VEGF, representing a potential target for improving neurobehavioral recovery after cerebral ischemic stroke.
Phase II Study of Neoadjuvant Bevacizumab and Radiotherapy for Resectable Soft Tissue Sarcomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Sam S., E-mail: syoon@partners.org; Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA; Duda, Dan G.
Purpose: Numerous preclinical studies have demonstrated that angiogenesis inhibitors can increase the efficacy of radiotherapy (RT). We sought to examine the safety and efficacy of bevacizumab (BV) and RT in soft tissue sarcomas and explore biomarkers to help determine the treatment response. Methods and Materials: Patients with {>=}5 cm, intermediate- or high-grade soft tissue sarcomas at significant risk of local recurrence received neoadjuvant BV alone followed by BV plus RT before surgical resection. Correlative science studies included analysis of the serial blood and tumor samples and serial perfusion computed tomography scans. Results: The 20 patients had a median tumor sizemore » of 8.25 cm, with 13 extremity, 1 trunk, and 6 retroperitoneal/pelvis tumors. The neoadjuvant treatment was well tolerated, with only 4 patients having Grade 3 toxicities (hypertension, liver function test elevation). BV plus RT resulted in {>=}80% pathologic necrosis in 9 (45%) of 20 tumors, more than double the historical rate seen with RT alone. Three patients had a complete pathologic response. The median microvessel density decreased 53% after BV alone (p <.05). After combination therapy, the median tumor cell proliferation decreased by 73%, apoptosis increased 10.4-fold, and the blood flow, blood volume, and permeability surface area decreased by 62-72% (p <.05). Analysis of gene expression microarrays of untreated tumors identified a 24-gene signature for treatment response. The microvessel density and circulating progenitor cells at baseline and the reduction in microvessel density and plasma soluble c-KIT with BV therapy also correlated with a good pathologic response (p <.05). After a median follow-up of 20 months, only 1 patient had developed local recurrence. Conclusions: The results from the present exploratory study indicated that BV increases the efficacy of RT against soft tissue sarcomas and might reduce the incidence of local recurrence. Thus, this regimen warrants additional investigation. Gene expression profiles and other tissue and circulating biomarkers showed promising correlations with treatment response.« less
Cathcart, Mary Clare; Gately, Kathy; Cummins, Robert; Drakeford, Clive; Kay, Elaine W; O'Byrne, Kenneth J; Pidgeon, Graham P
2014-05-01
Thromboxane synthase (TXS) metabolizes prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with angiogenesis and poor outcome. TXS has been identified as a potential therapeutic target in NSCLC. This study examines a link between TXS expression, angiogenesis, and survival in NSCLC. TXS and VEGF metabolite levels were measured in NSCLC serum samples (n=46) by EIA. TXB2 levels were correlated with VEGF. A 204-patient TMA was stained for TXS, VEGF, and CD-31 expression. Expression was correlated with a range of clinical parameters, including overall survival. TXS expression was correlated with VEGF and CD-31. Stable TXS clones were generated and the effect of overexpression on tumor growth and angiogenesis markers was examined in-vitro and in-vivo (xenograft mouse model). Serum TXB2 levels were correlated with VEGF (p<0.05). TXS and VEGF were expressed to a varying degree in NSCLC tissue. TXS was associated with VEGF (p<0.0001) and microvessel density (CD-31; p<0.05). TXS and VEGF expression levels were higher in adenocarcinoma (p<0.0001) and female patients (p<0.05). Stable overexpression of TXS increased VEGF secretion in-vitro. While no significant association with patient survival was observed for either TXS or VEGF in our patient cohort, TXS overexpression significantly (p<0.05) increased tumor growth in-vivo. TXS overexpression was also associated with higher levels of VEGF, microvessel density, and reduced apoptosis in xenograft tumors. TXS promotes tumor growth in-vivo in NSCLC, an effect which is at least partly mediated through increased tumor angiogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Karschnia, P; Scheuer, C; Heß, A; Später, T; Menger, M D; Laschke, M W
2018-05-09
The seeding of tissue constructs with adipose tissue-derived microvascular fragments (ad-MVF) is an emerging pre-vascularisation strategy. Ad-MVF rapidly reassemble into new microvascular networks after in vivo implantation. Herein it was analysed whether this process was improved by erythropoietin (EPO). Ad-MVF were isolated from green fluorescent protein (GFP)+ as well as wild-type C57BL/6 mice and cultivated for 24 h in medium supplemented with EPO (20 IU/mL) or vehicle. Freshly isolated, non-cultivated ad-MVF served as controls. Protein expression, cell viability and proliferation of ad-MVF were assessed by proteome profiler array and fluorescence microscopy. GFP+ ad-MVF were seeded on collagen-glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of C57BL/6 mice, to analyse their vascularisation over 14 d by intravital fluorescence microscopy, histology and immunohistochemistry. Cultivation up-regulated the expression of pro- and anti-angiogenic factors within both vehicle- and EPO-treated ad-MVF when compared with non-cultivated controls. Moreover, EPO treatment suppressed cultivation-associated apoptosis and significantly increased the number of proliferating endothelial cells in ad-MVF when compared with vehicle-treated and non-cultivated ad-MVF. Accordingly, implanted matrices seeded with EPO-treated ad-MVF exhibited an improved vascularisation, as indicated by a significantly higher functional microvessel density. The matrices of the three groups contained a comparably large fraction of GFP+ microvessels originating from the ad-MVF, whereas the tissue surrounding the matrices seeded with EPO-treated ad-MVF exhibited a significantly increased microvessel density when compared with the other two groups. These findings indicated that EPO represents a promising cytokine to further boost the excellent vascularisation properties of ad-MVF in tissue-engineering applications.
Prognostic relevance of microvessel density in colorectal tumours.
Abdalla, S A; Behzad, F; Bsharah, S; Kumar, S; Amini, S K; O'Dwyer, S T; Haboubi, N Y
1999-01-01
The importance of angiogenesis as a prognostic marker has been examined in 111 colorectal cancer patients with a minimum follow-up of 5 years. Tumour sections were immunostained with pan-endothelial antibody to CD31. Microvessels were identified and counted in 5 separate areas of highest vascularity (
Mohammed, Dareen A; Helal, Duaa S
2017-03-01
Caveolin-1 may play a role in cancer development and progression. The aim was to record the expression and localization of caveolin-1 in benign prostatic hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN) and prostatic carcinoma (PCa). Microvessel density was evaluated with CD34 immunostain. Correlations with known prognostic factors of PCa were recorded. Immunohistochemical expression of caveolin-1 and the MVD was evaluated in 65 cases; BPH (25), HGPIN (20) and PCa (20). Stromal caveolin-1expression was significantly higher in BPH than HGPIN and PCca. There was significant inverse relation between stromal caveolin-1 expression and extension to lymph node and seminal vesicle in carcinoma cases. Epithelial caveolin-1 was significantly higher in carcinomas than in BPH and HGPIN. Epithelial expression in carcinoma was significantly associated with preoperative PSA, Gleason score and lymph node extension. MVD was significantly higher in PCa than in BPH and HGPIN. There were significant relations between MVD and preoperative PSA, Gleason score, lymph node and seminal vesicle extension. Stromal caveolin-1 was associated with low MVD while epithelial caveolin-1 with high MVD. Caveolin-1 plays an important role in prostatic carcinogenesis and metastasis. Stromal expression of caveolin-1 in PCa is lowered in relation to BPH and HGPIN. In PCa; stromal caveolin-1 was associated with good prognostic parameters. Epithelial caveolin-1 is significantly increased in PCa than BPH and HGPIN. It is associated with clinically aggressive disease. Caveolin-1 may play a role in angiogenesis. Copyright © 2017 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
Hemmerlein, B; Galuschka, L; Putzer, N; Zischkau, S; Heuser, M
2004-12-01
Cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are frequently up-regulated in malignant tumours and play a role in proliferation, apoptosis, angiogenesis and tumour invasion. In the present study, the expression of COX-2 and VEGF in renal cell carcinoma (RCC) was analysed and correlated with the microvessel density (MVD). COX-2 and VEGF were analysed by realtime reverse transcriptase-polymerase chain reaction and immunohistochemistry. The MVD was assessed by CD31 immunohistochemistry. The expression of COX-2 and VEGF was determined in the RCC cell lines A498 and Caki-1 under short-term hypoxia and in multicellular tumour cell aggregates. COX-2 was expressed in RCC by tumour epithelia, endothelia and macrophages in areas of cystic tumour regression and tumour necrosis. COX-2 protein in RCC was not altered in comparison with normal renal tissue. VEGF mRNA was up-regulated in RCC and positively correlated with MVD. RCC with high up-regulation of VEGF mRNA showed weak intracytoplasmic expression of VEGF in tumour cells. Intracytoplasmic VEGF protein expression was negatively correlated with MVD. In RCC with necrosis the MVD was reduced in comparison with RCC without necrosis. A498 RCC cells down-regulated COX-2 and up-regulated VEGF under conditions of hypoxia. In Caki-1 cells COX-2 expression remained stable, whereas VEGF was significantly up-regulated. In multicellular A498 cell aggregates COX-2 and VEGF were up-regulated centrally, whereas no gradient was found in Caki-1 cells. COX-2 and VEGF are potential therapeutic targets because COX-2 and VEGF are expressed in RCC and associated cell populations such as endothelia and monocytes/macrophages.
Costa, C; Soares, R; Reis-Filho, J S; Leitão, D; Amendoeira, I; Schmitt, F C
2002-06-01
Cyclo-oxygenases 1 and 2 (COX-1 and COX-2) are key enzymes in prostaglandin biosynthesis. COX-2 is induced by a wide variety of stimuli, and present during inflammation. COX-2 overexpression has been observed in colon, head and neck, lung, prostate, stomach, and breast cancer. In colon and gastric cancer, COX-2 expression was associated with angiogenesis. The aim of this study was to determine the relation between COX-2 expression and angiogenesis in breast cancer, and to correlate the expression of this enzyme with classic clinicopathological parameters. COX-2 expression was investigated by immunohistochemistry and western blotting analysis. The expression of COX-2 was then related to age, histological grade, nodal status, oestrogen receptor status, p53 expression,c-erb-B2 overexpression, mitotic counts, MIB-1 labelling index, apoptotic index, sialyl-Tn expression, transforming growth factor alpha expression, microvessel density, and disease free survival in 46 patients with invasive ductal breast carcinoma. By means of immunohistochemistry, COX-2 expression was detected in eight of the 46 carcinomas studied. Western blotting showed COX-2 protein expression in the same breast tumours, but not in normal adjacent tissues. The density of microvessels immunostained with anti-F-VIII related antigen was significantly higher in patients with COX-2 expression than in those without expression (p = 0.03). In addition, COX-2 was significantly associated with the presence of sialyl-Tn expression (p = 0.02), lymph node metastasis (p = 0.03), a high apoptotic index (p = 0.03), and a short disease free survival (p = 0.03) in univariate analyses. These data suggest that COX-2 expression is associated with angiogenesis, lymph node metastasis, and apoptosis in human breast cancer. Moreover, these results warrant further studies with larger series of patients to confirm the association with short disease free survival in patients with breast cancer.
Xiong, Zeng; Zhou, Hui; Liu, Jin-Kang; Hu, Cheng-Ping; Zhou, Mo-Ling; Xia, Yu; Zhou, Jian-Hua
2009-11-01
To investigate the structural characteristics and clinical significance of two-dimensional tumor microvascular architecture phenotype (2D-TMAP) in non-small cell lung cancer (NSCLC). Thirty surgical specimens of NSCLC were collected. The sections of the tumor tissues corresponding to the slice of CT perfusion imaging were selected to construct the 2D-TMAP expression. Spearman correlation analysis was used to examine the relation between the 2D-TMAP expression and the clinicopathological features of NSCLC. A heterogeneity was noted in the 2D-TMAP expression of NSCLC. The microvascular density (MVD) in the area surrounding the tumor was higher than that in the central area, but the difference was not statistically significant. The density of the microvessels without intact lumen was significantly greater in the surrounding area than in the central area (P=0.030). The total MVD was not correlated to tumor differentiation (r=0.042, P=0.831). The density of the microvessels without intact lumen in the surrounding area was positively correlated to degree of tumor differentiation and lymph node metastasis (r=0.528 and 0.533, P=0.041 and 0.028, respectively), and also to the expressions of vascular endothelial growth factor (VEGF), ephrinB2, EphB4, and proliferating cell nuclear antigen (PCNA) (r=0.504, 0.549, 0.549, and 0.370; P=0.005, 0.002, 0.002, and 0.048, respectively). The degree of tumor differentiation was positively correlated to PCNA and VEGF expression (r=0.604 and 0.370, P=0.001 and 0.048, respectively), but inversely to the integrity of microvascular basement membrane (r=-0.531, P=0.033). The 2D-TMAP suggests the overall state of the micro-environment for tumor growth. The 2D-TMAP of NSCLC regulates angiogenesis and tumor cell proliferation through a mesh-like structure, and better understanding of the characteristics and possible mechanism of 2D-TMAP expression can be of great clinical importance.
Piao, Yuji; Park, Soon Young; Henry, Verlene; Smith, Bryan D.; Tiao, Ningyi; Flynn, Daniel L.
2016-01-01
Background Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. Methods We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. Results In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. Conclusions Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma. PMID:26965451
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.
Yi, Faliu; Yang, Lin; Wang, Shidan; Guo, Lei; Huang, Chenglong; Xie, Yang; Xiao, Guanghua
2018-02-27
Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated microvessel-detection algorithms in H&E stained pathology images for clinical association analysis. In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images. Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes. This is the first study to develop an algorithm for automated microvessel detection in H&E stained pathology images.
Li, Zhi; Bian, Li-Juan; Li, Yang; Liang, Ying-Jie; Liang, Hui-Zhen
2009-01-01
We aimed at determining whether the expression of protease-activated receptor 2 (PAR-2) is involved in the progression of nasopharyngeal carcinoma (NPC) and correlated with latent membrane protein 1 (LMP-1), matrix metalloproteinases-9 (MMP9), and angiogenesis of tumor. PAR-2, LMP-1, and MMP9 expressions were detected in 57 biopsies of primary NPC by immunohistochemistry. The presence of Epstein-Barr virus (EBV) was determined using EBER in situ hybridization, and intratumoral microvessels were highlighted by staining endothelial cells for anti-CD34. The correlations with immunostainings and clinicopathological factors, as well as the follow-up data of patients, were analyzed statistically. Strong expression of PAR-2 in 61.4% (35/57) of the biopsies was correlated with extensive lymph node metastasis and advanced stage of NPC. The patients with PAR-2/LMP-1 or PAR-2/MMP9 dual high-expression tumors had a significant worse prognosis than those with single protein high expression and dual low or negative expression tumors (P=0.013 and 0.004, respectively). Angiogenesis in the tumor is related to overall survival of NPC patients (P=0.001), and exhibits strong PAR-2 expression or LMP-1 expression in tumors associated with increased intratumoral microvessel density (P=0.026 and 0.006, respectively). PAR-2 is a possible mediator cooperating with LMP-1 and MMP9 to influence the progression of NPC by inducing angiogenesis and promoting lymph node metastasis.
Li, Jian-sheng; Liu, Ke; Liu, Jing-xia; Wang, Ming-hang; Zhao, Yue-wu; Liu, Zheng-guo
2008-11-01
To study the relationship of cerebro-microvessel basement membrane injury and gelatinase system after cerebral ischemia/reperfusion (I/R) in aged rats. Cerebral I/R injury model was reproduced by intraluminal silk ligature thrombosis of the middle cerebral artery occlusion (MCAO). Rats were divided randomly into sham control and I/R groups in young rats [ischemia 3 hours (I 3 h) and reperfusion 6 hours (I/R 6 h), 12 hours (I/R 12 h), 24 hours (I/R 24 h), 3 days (I/R 3 d), 6 days (I/R 6 d)], and sham control group and I/R group in aged rats (I 3 h and I/R 6 h, I/R 12 h, I/R 24 h , I/R 3 d, I/R 6 d). The change in cerebro-cortex microvessel basement membrane structure, basement membrane type IV collagen (Col IV) and laminin (LN) contents, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression in every group were determined with immunohistochemical method and zymogram analysis. With the increase in age, Col IV and LN contents of the microvessel basement membrane were increased, and MMP-2 and MMP-9 expressions were stronger. With prolongation of I/R, the degradation of microvessel basement membrane components (Col IV and LN) was positively correlated with the duration of cerebral I/R. MMP-2 expression was increased gradually, and MMP-9 and TIMP-1 expression increased at the beginning and decreased subsequently. Col IV(I 3 h, I/R 6 h , I/R 12 h), LN (I 3 h, I/R 6-24 h), MMP-2 (I 3 h, I/R 6 h-6 d) and MMP-9 (I 3 h, I/R 6-24 h) expression level in aged rats with I/R injury were higher, and TIMP-1 (I/R 24 h) expression was lower than those in young rats (P<0.05 or P<0.01). In addition, changes in MMP-2 and MMP-9 contents as determined by zymogram analysis method coincided with their immunoexpression. With the increase of age, alteration in membrane components of cerebro-microvessel basement membrane in rats is related with MMPs and TIMP. Cerebro-microvessel basement membrane injury is more serious in aged rats than that of young rats. Changes in cerebro-microvessel basement membrane injury in aged rats is related with gelatinase system change.
Mydlo, J H; Kral, J G; Volpe, M; Axotis, C; Macchia, R J; Pertschuk, L P
1998-01-01
To investigate relationships between microvessel density (MVD), androgen receptors (AR), mutant p53 and HER-2/neu expression and Gleason score (GS) to further understand the tumor biology of prostate cancer (CAP). Slides of CAP from patients who underwent radical prostatectomy or channel transurethral resection of the prostate (TURP) were tested for androgen receptors by immunocytochemical assay and MVD was analyzed by staining with antibodies to the endothelial cell membrane molecule PECAM-1/CD-31. The p53 monoclonal antibody D07 and HER-2 9G6 mouse monoclonal antibody were used to assess p53 and HER-2/neu expression, respectively. The results were correlated with GS and clinical stage by multivariate analysis. We found a fourfold greater expression of MVD in prostate cancer specimens compared to neighboring normal prostate tissue. We observed a greater concentration of MVD in the higher Gleason scores (r = 0.40, p = 0. 06), and a correlation of Gleason score with mutant p53 expression (r = 0.57, p <0.05). We did not observe any associations between AR or HER-2/neu to Gleason score. More than half of the patients with specimens with 50% or greater expression of mutant p53 were in stage D2 (T4NxM1b) at the time of biopsy. We observed a correlation between mutant p53 and GS, and a greater concentration of MVD in the higher GS. Since the neovascularity of prostate tumors can be attenuated by radiation and hormones, while mutant p53 may confer resistance to such treatment, it appears that p53 expression may also play an important role in addition to angiogenesis in the virulence of prostate cancer. These data may aid in allocating patients to different treatment modalities.
Gao, Dan; Zhao, Zhan-Zheng; Liang, Xian-Hui; Li, Yan; Cao, Ying; Liu, Zhang-Suo
2011-11-01
The aim of this study is to investigate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endostatin (ES) in human peritoneum and investigate the relationship between them and peritoneum neoangiogensis in the patients with uraemia and peritoneal dialysis (PD). Peritoneal biopsies were obtained from normal subjects (n = 8), uraemic predialysis patients (n = 12) and PD patients (n = 10). The mRNA expression of VEGF, bFGF and ES in peritoneal tissues were measured through real-time polymerase chain reaction. The protein expression of VEGF, bFGF and ES in peritoneal tissues were determined through western blot. Microvessel density (MVD) of peritoneal tissue was assessed using immunohistochemistry with CD34 monoclonal antibody. The mRNA and protein of VEGF, bFGF and ES were expressed in all peritoneal samples. Compared with the normal control group, the mRNA and protein expression of VEGF and bFGF in peritoneal tissues were all significantly upregulated in the uraemic predialysis and PD group (all P < 0.05). Compared with the normal control group, the protein expression of ES were significantly upregulated in the uraemic predialysis and PD group (all (P < 0.05), but the mRNA expression of ES did not have obvious differences in the uraemic predialysis and PD group as compared to the normal control group (P > 0.05). MVD of peritoneal tissue were increased in the uraemic predialysis and PD group compared with the normal group (all P < 0.05). A significant positive correlation was found between VEGF mRNA expression and MVD, bFGF mRNA expression and MVD. The mRNA expression of VEGF and bFGF, the protein expression of VEGF, bFGF, and ES and microvessel density (MVD) are increased both in the uraemic predialysis and PD patients. These results show that uraemia circumstances and non-physiological compatibility of peritoneal dialysis solution might increase VEGF, bFGF and ES expression and MVD, which might participate in the increment of the peritoneum neoangiogensis and ultrafiltration failure in PD patients. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.
Li, Zhan-Chun; Tang, Lu-Min; Shao, Jiang; Li, He
2017-01-01
In this study, to investigate the effects of naringin on vascular endothelial cell (VEC) function, proliferation, apoptosis, and angiogenesis, rat VECs were cultured in vitro and randomly divided into four groups: control, serum-starved, low-concentration naringin treatment, and high-concentration naringin treatment. MTT assay was used to detect cell proliferation while Hoechst 33258 staining and flow cytometry were used to detect apoptosis. Changes in the expression of apoptosis-associated proteins [GRP78, CHOP, caspase-12, and cytochrome c (Cyt.c)] were detected using western blotting. JC-1 staining was employed to detect changes in mitochondrial membrane potential. Intracellular caspase-3, -8, and -9 activity was determined by spectrophotometry. ELISA was used to detect endothelin (ET), and a Griess assay was used to detect changes in the expression of nitric oxide (NO) in culture medium. The study further divided an ovariectomized (OVX) rat model of osteoporosis randomly into four groups: OVX, sham-operated, low-concentration naringin treatment (100 mg/kg), and high-concentration naringin treatment (200 mg/kg). After 3 months of treatment, changes in serum ET and NO expression, bone mineral density (BMD), and microvessel density of the distal femur (using CD34 labeling of VECs) were determined. At each concentration, naringin promoted VEC proliferation in a time- and dose-dependent manner. Naringin also significantly reduced serum starvation-induced apoptosis in endothelial cells, inhibited the expression of GRP78, CHOP, caspase-12, and Cyt.c proteins, and reduced mitochondrial membrane potential as well as reduced the activities of caspase-3 and -9. Furthermore, naringin suppressed ET in vitro and in vivo while enhancing NO synthesis. Distal femoral microvascular density assessment showed that the naringin treatment groups had a significantly higher number of microvessels than the OVX group, and that microvascular density was positively correlated with BMD. In summary, naringin inhibits apoptosis in VECs by blocking the endoplasmic reticulum (ER) stress- and mitochondrial-mediated pathways. Naringin also regulates endothelial cell function and promotes angiogenesis to exert its anti-osteoporotic effect. PMID:29039439
Shangguan, Wen-Ji; Zhang, Yue-Hui; Li, Zhan-Chun; Tang, Lu-Min; Shao, Jiang; Li, He
2017-12-01
In this study, to investigate the effects of naringin on vascular endothelial cell (VEC) function, proliferation, apoptosis, and angiogenesis, rat VECs were cultured in vitro and randomly divided into four groups: control, serum‑starved, low‑concentration naringin treatment, and high‑concentration naringin treatment. MTT assay was used to detect cell proliferation while Hoechst 33258 staining and flow cytometry were used to detect apoptosis. Changes in the expression of apoptosis‑associated proteins [GRP78, CHOP, caspase‑12, and cytochrome c (Cyt.c)] were detected using western blotting. JC‑1 staining was employed to detect changes in mitochondrial membrane potential. Intracellular caspase‑3, ‑8, and ‑9 activity was determined by spectrophotometry. ELISA was used to detect endothelin (ET), and a Griess assay was used to detect changes in the expression of nitric oxide (NO) in culture medium. The study further divided an ovariectomized (OVX) rat model of osteoporosis randomly into four groups: OVX, sham‑operated, low‑concentration naringin treatment (100 mg/kg), and high‑concentration naringin treatment (200 mg/kg). After 3 months of treatment, changes in serum ET and NO expression, bone mineral density (BMD), and microvessel density of the distal femur (using CD34 labeling of VECs) were determined. At each concentration, naringin promoted VEC proliferation in a time‑ and dose‑dependent manner. Naringin also significantly reduced serum starvation‑induced apoptosis in endothelial cells, inhibited the expression of GRP78, CHOP, caspase‑12, and Cyt.c proteins, and reduced mitochondrial membrane potential as well as reduced the activities of caspase‑3 and ‑9. Furthermore, naringin suppressed ET in vitro and in vivo while enhancing NO synthesis. Distal femoral microvascular density assessment showed that the naringin treatment groups had a significantly higher number of microvessels than the OVX group, and that microvascular density was positively correlated with BMD. In summary, naringin inhibits apoptosis in VECs by blocking the endoplasmic reticulum (ER) stress‑ and mitochondrial‑mediated pathways. Naringin also regulates endothelial cell function and promotes angiogenesis to exert its anti‑osteoporotic effect.
Kohlberger, P D; Obermair, A; Sliutz, G; Heinzl, H; Koelbl, H; Breitenecker, G; Gitsch, G; Kainz, C
1996-06-01
Microvessel density in the area of the most intense neovascularization in invasive breast carcinoma is reported to be an independent prognostic factor. The established method of enumeration of microvessel density is to count the vessels using an ocular raster (counted microvessel density [CMVD]). The vessels were detected by staining endothelial cells using Factor VIII-related antigen. The aim of the study was to compare the CMVD results with the percentage of factor VIII-related antigen-stained area using computer-assisted image analysis. A true color red-green-blue (RGB) image analyzer based on a morphologically reduced instruction set computer processor was used to evaluate the area of stained endothelial cells. Sixty invasive breast carcinomas were included in the analysis. There was no significant correlation between the CMVD and the percentage of factor VIII-related antigen-stained area (Spearman correlation coefficient = 0.24, confidence interval = 0.02-0.46). Although high CMVD was significantly correlated with poorer recurrence free survival (P = .024), percentage of factor VIII-related antigen-stained area showed no prognostic value. Counted microvessel density and percentage of factor VIII-related antigen-stained area showed a highly significant correlation with vessel invasion (P = .0001 and P = .02, respectively). There was no correlation between CMVD and percentage of factor VIII-related antigen-stained area with other prognostic factors. In contrast to the CMVD within malignant tissue, the percentage of factor VIII-related antigen-stained area is not suitable as an indicator of prognosis in breast cancer patients.
Niemiec, Joanna; Adamczyk, Agnieszka; Ambicka, Aleksandra; Mucha-Małecka, Anna; Wysocki, Wojciech; Mituś, Jerzy; Ryś, Janusz
2012-11-01
Lymphangiogenesis is a potential indicator of cancer patients' survival. However, there is no standardisation of methodologies applied to the assessment of lymphatic vessel density. In 156 invasive ductal breast cancers (T 1/N+/M0), lymphatic and blood vessels were visualised using podoplanin and CD34, respectively. Based on these markers expression, four parameters were assessed: (i) distribution of podoplanin-stained vessels (DPV) - the percentage of fields with at least one lymphatic vessel (a simple method proposed by us), (ii) lymphatic vessel density (LVD), (iii) LVD to microvessel density ratio (LVD/MVD) and (iv) the expression of podoplanin in cancer-associated fibroblasts. Next, we estimated relations between the above-mentioned parameters and: (i) breast cancer subtype, (ii) tumour grade, and (iii) basal markers expression. We found that intensive lymphangiogenesis, assessed using all studied methods, is positively related to high tumour grade, triple negative or HER2 subtype and expression of basal markers. Whereas, the absence of podoplanin expression in fibroblasts of cancer stroma is related to luminal A subtype, low tumour grade or lack of basal markers expression. Distribution of podoplanin-stained vessels, assessed by a simple method proposed by us (indicating the percentage of fields with at least one lymphatic vessel), might be used instead of the "hot-spot" method.
Baeten, Coen I M; Castermans, Karolien; Lammering, Guido; Hillen, Femke; Wouters, Bradly G; Hillen, Harry F P; Griffioen, Arjan W; Baeten, Cornelius G M I
2006-11-15
We and others have shown that angiogenesis and leukocyte infiltration are important prognostic factors in rectal cancer. However, little is known about its possible changes in response to radiotherapy (RTX), which is frequently given to rectal tumors as a neoadjuvant treatment to improve the prognosis. We therefore investigated the biologic effects of RTX on these parameters using fresh-frozen biopsy samples of tumor and normal mucosa tissue before and after RTX. Biopsy samples were taken from a total of 34 patients before and after either a short course or long course of RTX combined with chemotherapy. The following parameters were analyzed by immunohistochemistry, flow cytometry, or quantitative real-time polymerase chain reaction: Microvessel density, leukocyte infiltration, proliferating epithelial and tumor cells, proliferating endothelial cells, adhesion molecule expression on endothelial cells, and the angiogenic mRNA profile. The tumor biopsy samples taken after RTX treatment demonstrated a significant decrease in microvessel density and the number of proliferating tumor cells and proliferating endothelial cells (p < 0.001). In contrast, the leukocyte infiltration, the levels of basic fibroblast growth factor in carcinoma tissue, and the adhesion molecule expression on endothelial cells in normal as well as carcinoma tissue increased significantly (p < 0.05). Our data show that together with an overall decrease in tumor cell and endothelial cell proliferation, RTX results in an increase in the expression of adhesion molecules that stimulate leukocyte infiltration. This suggests the possibility that, in addition to its direct cytotoxic effect, radiation may also stimulate an immunologic tumor response that could contribute to the documented improvement in local tumor control and distal failure rate of rectal cancers.
Aberrant expression of decoy receptor 3 in human breast cancer: relevance to lymphangiogenesis.
Wu, Qiuwan; Zheng, Yahong; Chen, Donghan; Li, Xiaohong; Lu, Chuanhui; Zhang, Zhiming
2014-05-15
Decoy receptor 3 (DcR3), a decoy receptor against Fas ligand belonging to the tumor necrosis factor receptor superfamily, is overexpressed in some forms of cancer. It was recently reported that DcR3 could protect endothelial cells from apoptosis, implying a potential role in the development of vessels, whereas its role in the lymphangiogenesis remains unclear. In the present study, we studied the DcR3 expression and its relationship with the lymphatic microvessel density (LMVD) to investigate if it played a role in the lymph metastasis of human breast cancer. Real-time polymerase chain reaction and immunohistochemistry were performed to measure the messenger RNA and protein expression of DcR3 in the breast cancer tissues, noncancerous counterparts, and axillary lymph node from 63 patients. LMVD in these specimens was assessed by counting the D2-40 labeled-microvessels. Furthermore, the correlations between DcR3 expression and LMVD and other clinicopathologic parameters were analyzed. DcR3 was overexpressed in the breast cancer tissue of 58 patients (92.1%) and was also expressed in vascular endothelial cells and tumor cells in the lymph nodes. LMVD in cancer tissue and lymph nodes were both positively correlated to the aberrant expression of DcR3. The relevance between DcR3 overexpression and LMVD revealed the existence of possible links between DcR3 and lymphangiogenesis. Based on these findings, it is important to further explore the regulation of lymphangiogenesis operated by the reverse tumor necrosis factor signaling of DcR3. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Kouhsoltani, Maryam; Moradzadeh Khiavi, Monir; Jamali, Golshan; Farnia, Samira
2015-01-01
Purpose: The aim of this study was to verify the density of mast cells (MCs) and microvessels in odontogenic cysts. Furthermore, the correlation between MCs and microvessels was evaluated to assess the contribution of MCs to angiogenesis and growth of odontogenic cysts. This approach may be a basis for the development of future pharmaceuticals addressed to MCs performance to manage odontogenic cysts. To our knowledge, no study investigating the correlation between MCs and microvessels has been performed to date. Methods: 60 cases of odontogenic cysts consisting of 20 radicular cysts (RCs), 20 odontogenic keratocysts (OKCs) and 20 dentigerous cysts (DCs) were included in this study. Five high power fields in superficial connective tissue and five high power fields in deep connective tissue were counted for each sample. Moreover, a total mean of ten fields was calculated. Results: RC showed the highest mean numbers of MCs and microvessels (p<0.05). The subepithelial zones of all cysts contained more MCs and microvessels compared to the deeper zones. A statistically significant correlation between the numbers of MCs and microvessels was not observed (r=0.00, p=0.49). Conclusion: Although the number of MCs was not significantly associated with microvessels, these cells may be related to the growth of odontogenic lesions, particularly RCs. Further studies on the in vivo functions of MCs will make the concept more clear. PMID:26793609
Kouhsoltani, Maryam; Moradzadeh Khiavi, Monir; Jamali, Golshan; Farnia, Samira
2015-12-01
The aim of this study was to verify the density of mast cells (MCs) and microvessels in odontogenic cysts. Furthermore, the correlation between MCs and microvessels was evaluated to assess the contribution of MCs to angiogenesis and growth of odontogenic cysts. This approach may be a basis for the development of future pharmaceuticals addressed to MCs performance to manage odontogenic cysts. To our knowledge, no study investigating the correlation between MCs and microvessels has been performed to date. 60 cases of odontogenic cysts consisting of 20 radicular cysts (RCs), 20 odontogenic keratocysts (OKCs) and 20 dentigerous cysts (DCs) were included in this study. Five high power fields in superficial connective tissue and five high power fields in deep connective tissue were counted for each sample. Moreover, a total mean of ten fields was calculated. RC showed the highest mean numbers of MCs and microvessels (p<0.05). The subepithelial zones of all cysts contained more MCs and microvessels compared to the deeper zones. A statistically significant correlation between the numbers of MCs and microvessels was not observed (r=0.00, p=0.49). Although the number of MCs was not significantly associated with microvessels, these cells may be related to the growth of odontogenic lesions, particularly RCs. Further studies on the in vivo functions of MCs will make the concept more clear.
Lindsberg, P J; Sirén, A L; Hallenbeck, J M
1997-01-01
Controversy exists about the effect of tissue edema on cerebral microcirculation. High spatial resolution is required for observation of extravasation and microcirculation during focal vasogenic edema formation. To study the relationship between tissue edema and perfusion, we developed a technique for simultaneous visualization of extravasation and microvessel perfusion in rats. Focal intracortical microvascular injury was generated with a 1-sec Nd-YAG laser pulse. Evans blue albumin (EBA) was infused 30 min before decapitation to study extravasation and FITC-dextran was injected 30 sec prior to decapitation to examine microvessel perfusion. Computerized scanning laser-excited fluorescence microscopy followed by high resolution image analysis permitted quantitative assessment of both parameters on single fresh-frozen brain sections. Studied at 30 min (3.66 +/- 0.15 mm), 2 hr (4.14 +/- 0.08 mm, P < .05), and 8 hr (4.69 +/- 0.18 mm, P < .01) after injury, the diameter of the circular, sharply demarcated zone of EBA-extravasation increased progressively. At 30 min, microvessels at a zone surrounding the area of EBA-extravasation contained 69 +/- 14% (P < .05) more fluorescent FITC-filling than in the control hemisphere, but the density of perfused microvessels was unchanged. At 2 hr, secondary tissue changes had already occurred in a zone surrounding the initial laser lesion. While severe reduction in the density (-76 +/- 13%, P < .05) of perfused microvessels was observed within 400 to 240 microm inside the border of EBA extravasation, perfusion indexes were normal despite the presence of extravasated plasma constituents within 0-80 microm from the border. In a narrow zone (80 microm) outside the border of extravasation, individual microvessels contained 34 +/- 9% (P < .01) less FITC-fluorescence than those in a homologous area of the uninjured contralateral hemisphere. This report demonstrates the feasibility of simultaneous measurement and high-resolution mapping of indices of microvascular perfusion (density, filling) and extravasated plasma constituents in damaged and intact brain areas. In this model, the presence of extravasated plasma constituents the size of proteins did not immediately influence indices of cortical microcirculation. However, microvascular perfusion may be perturbed surrounding such an area of advancing vasogenic edema formation.
Brant, Luisa C. C.; Hamburg, Naomi M.; Barreto, Sandhi M.; Benjamin, Emelia J.; Ribeiro, Antonio L. P.
2014-01-01
Background Vascular dysfunction is an early expression of atherosclerosis and predicts cardiovascular (CV) events. Peripheral arterial tonometry (PAT) evaluates basal pulse amplitude (BPA), endothelial function (PAT ratio), and wave reflection (PAT‐AIx) in the digital microvessels. In Brazilian adults, we investigated the correlations of PAT responses to CV risk factors and to carotid‐femoral pulse wave velocity (PWV), a measure of arterial stiffness. Methods and Results In a cross‐sectional study, 1535 participants of the ELSA‐Brasil cohort underwent PAT testing (52±9 years; 44% women). In multivariable analyses, more‐impaired BPA and PAT ratios were associated with male sex, higher body mass index (BMI), and total cholesterol/high‐density lipoprotein. Higher age and triglycerides were related to higher BPA, whereas lower systolic blood pressure, hypertension (HTN) treatment, and prevalent CV disease (CVD) were associated with lower PAT ratio. PAT‐AIx correlated positively with female sex, advancing age, systolic and diastolic blood pressures, and smoking and inversely to heart rate, height, BMI, and prevalent CVD. Black race was associated with lower BPA, higher PAT ratio, and PAT‐AIx. Microvessel vasodilator function was not associated with PWV. Higher PAT‐AIx was modestly correlated to higher PWV and PAT ratio and inversely correlated to BPA. Conclusion Metabolic risk factors are related to impaired microvessel vasodilator function in Brazil. However, in contrast to studies from the United States, black race was not associated with an impaired microvessel vasodilator response, implying that vascular function may vary by race across populations. PAT‐AIx relates to HTN, may be a valid measure of wave reflection, and provides distinct information from arterial stiffness. PMID:25510401
Prenatal alcohol exposure affects vasculature development in the neonatal brain.
Jégou, Sylvie; El Ghazi, Faiza; de Lendeu, Pamela Kwetieu; Marret, Stéphane; Laudenbach, Vincent; Uguen, Arnaud; Marcorelles, Pascale; Roy, Vincent; Laquerrière, Annie; Gonzalez, Bruno José
2012-12-01
In humans, antenatal alcohol exposure elicits various developmental disorders, in particular in the brain. Numerous studies focus on the deleterious effects of alcohol on neural cells. Although recent studies suggest that alcohol can affect angiogenesis in adults, the impact of prenatal alcohol exposure on brain microvasculature remains poorly understood. We used a mouse model to investigate effects of prenatal alcohol exposure on the cortical microvascular network in vivo and ex vivo and the action of alcohol, glutamate, and vascular endothelial growth factor A (VEGF) on activity, plasticity, and survival of microvessels. We used quantitative reverse transcriptase polymerase chain reaction, Western blot, immunohistochemistry, calcimetry, and videomicroscopy. We characterized the effect of prenatal alcohol exposure on the cortical microvascular network in human controls and fetal alcohol syndrome (FAS)/partial FAS (pFAS) patients at different developmental stages. In mice, prenatal alcohol exposure induced a reduction of cortical vascular density, loss of the radial orientation of microvessels, and altered expression of VEGF receptors. Time-lapse experiments performed on brain slices revealed that ethanol inhibited glutamate-induced calcium mobilization in endothelial cells, affected plasticity, and promoted death of microvessels. These effects were prevented by VEGF. In humans, we evidenced a stage-dependent alteration of the vascular network in the cortices of fetuses with pFAS/FAS. Whereas no modification was observed from gestational week 20 (WG20) to WG22, the radial organization of cortical microvessels was clearly altered in pFAS/FAS patients from WG30 to WG38. Prenatal alcohol exposure affects cortical angiogenesis both in mice and in pFAS/FAS patients, suggesting that vascular defects contribute to alcohol-induced brain abnormalities. Copyright © 2012 American Neurological Association.
NADPH Oxidase-Mediated ROS Production Determines Insulin's Action on the Retinal Microvasculature.
Kida, Teruyo; Oku, Hidehiro; Horie, Taeko; Matsuo, Junko; Kobayashi, Takatoshi; Fukumoto, Masanori; Ikeda, Tsunehiko
2015-10-01
To determine whether insulin induces nitric oxide (NO) formation in retinal microvessels and to examine the effects of high glucose on the formation of NO. Freshly isolated rat retinal microvessels were incubated in normal (5.5 mM) or high (20 mM) glucose with or without insulin (100 nM). The levels of insulin-induced NO and reactive oxygen species (ROS) in the retinal microvessels were determined semiquantitatively using fluorescent probes, 4,5-diaminofluorescein diacetate, and hydroethidine, respectively, and a laser scanning confocal microscope. The insulin-induced changes of NO in rat retinal endothelial cells and pericytes cultured at different glucose concentrations (5.5 and 25 mM) were determined using flow cytometry. Nitric oxide synthase (NOS) protein levels were determined by Western blot analysis; intracellular levels of ROS were determined using fluorescence-activated cell sorting (FACS) analysis of ethidium fluorescence; and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RNA expression was quantified using real-time PCR. Exposure of microvessels to insulin under normal glucose conditions led to a significant increase in NO levels; however, this increase was significantly suppressed when the microvessels were incubated under high glucose conditions. Intracellular levels of ROS were significantly increased in both retinal microvessels and cultured microvascular cells under high glucose conditions. The expression of NOS and NADPH oxidase were significantly increased in endothelial cells and pericytes under high glucose conditions. The increased formation of NO by insulin and its suppression by high glucose conditions suggests that ROS production mediated by NADPH oxidase is important by insulin's effect on the retinal microvasculature.
Saetta, Angelica A; Levidou, Georgia; El-Habr, Elias A; Panayotidis, Ioannis; Samaras, Vassilis; Thymara, Irene; Sakellariou, Stratigoula; Boviatsis, Efstathios; Patsouris, Efstratios; Korkolopoulou, Penelope
2011-06-01
Although pERK and pAKT are reportedly activated in various neoplasms, little information is available about their significance in astrocytomas. Paraffin-embedded tissue from 82 patients with diffuse infiltrating astrocytomas (grades II to IV) was investigated for the association of pERK and pAKT activation with clinicopathological features, vascular endothelial growth factor (VEGF), isocitrate dehydrogenase 1 and microvascular parameters. Nuclear pERK labelling index (LI) increased with increasing cytoplasmic pERK LI and nuclear and cytoplasmic pAKT LI (p = 0.0019, p = 0.0260 and p = 0.0012, respectively). Accordingly, cytoplasmic pERK increased with increasing levels of nuclear (p = 0.0001) and marginally with cytoplasmic pAKT LI (p = 0.0526). Nuclear and cytoplasmic pERK LI and nuclear pAKT LI were positively correlated with tumour histological grade (p = 0.0040, p = 0.0238 for pERK and p = 0.0004 for pAKT, respectively). VEGF expression was correlated with nuclear pERK (p = 0.0099) and nuclear pAKT LI (p = 0.0002). Interestingly, pERK cytoplasmic LI increased with microvessel calibre (p = 0.0287), whereas pAKT nuclear LI was marginally related to microvessel density (p = 0.0685). The presence of IDH1-R132H was related only to histological grade and lower microvessel calibre. Multivariate survival analysis in the entire cohort selected cytoplasmic pAKT LI (p = 0.045), histological grade, microvessel calibre (p = 0.028), patients' age, gender and surgical excision as independent predictors of survival. Moreover, in glioblastomas, pERK nuclear LI emerged as a favourable prognosticator in the presence of IDH1-R132H. pERK and pAKT in astrocytomas are interrelated and associated with tumour grade and angiogenesis. Moreover, the importance of cytoplasmic pAKT immunoexpression in patients' prognosis and nuclear pERK immunoexpression in glioblastomas is confirmed.
Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi
2007-11-01
Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.
Ikeguchi, M; Cai, J; Fukuda, K; Oka, S; Katano, K; Tsujitani, S; Maeta, M; Kaibara, N
2001-06-01
The aim of this study was to investigate whether angiogenic factors influence the occurrence of spontaneous apoptosis in advanced gastric cancer. The apoptotic indices (AIs) of 97 tumors from 97 patients with advanced gastric cancer (pT3, pN0, pM0, Stage II) were analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. Intratumoral microvessel densities (IMVDs) of tumors stained with anti-CD34 monoclonal antibody were quantified under x 200 magnification using computer-assisted image analysis. The expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF), thymidine phosphorylase (dThdPase), transforming growth factor-alpha (TGF-alpha), and p53 were analyzed immunohistochemically and compared with IMVDs and AIs. The mean IMVD of the 97 tumors was 365/mm2 (range 147-990/mm2). The mean AI of tumors was 2.1% (range 0-11.3%). A significant inverse correlation between the AIs and the IMVDs was shown (p = -0.278, P = 0.0064). The mean IMVDs of tumors with high expressions of dThdPase, TGF-alpha, or p53 were significantly higher than those of tumors with low expressions of these factors. The mean AI of tumors with high expressions of dThdPase was significantly lower than that of tumors with low expressions of dThdPase (P = 0.023). However, no significant correlations were detected between AIs and the expression levels of VEGF, TGF-alpha, or p53. In gastric cancer, dThdPase may play an important role in tumor progression by increasing microvessels and by suppressing apoptosis of cancer cells.
Szubert, Sebastian; Moszynski, Rafal; Michalak, Slawomir; Nowicki, Michal; Sajdak, Stefan; Szpurek, Dariusz
2016-09-01
To investigate whether serum levels of VEGF, bFGF and endoglin correlate with tumor VEGF and bFGF expression or microvessel density (MVD) in ovarian cancer. Forty five patients with epithelial ovarian cancers (EOCs) and 38 patients with benign ovarian tumors (BOTs) were included into the study. Serum levels of VEGF, bFGF and endoglin were assessed using ELISA. The expression of VEGF and bFGF in tumor samples were evaluated using ELISA of supernatants obtained from tumor homogenization. MVD was analyzed using immunohistochemistry with antibodies against CD31, CD34 and CD105. Serum VEGF levels were significantly higher in EOCs than in BOTs (436.6pg/ml [19.67-2860] vs 295.5pg/ml [123-539], P=0.025). Serum endoglin levels were lowered in the group EOCs when compared to BOTs (33,720g/ml [12,220-73,940] vs 42,390pg/ml [19,380-56,910], P=0.015). There were no differences in bFGF levels between studied groups. EOCs have significantly higher CD105 MVD (25 vessels/mm2 [0-57] vs 6 vessels/mm2 [0-70], P<0.001) and tumor VEGF (405.9pg/mg protein [0-3000] vs 2.225 [0-634.7], P<0.001) expression than BOTs, while, bFGF expression was higher in BOTs than in EOCs (2076pg/mg protein [668.1-8718] vs 847.3pg/mg protein [188.9-8333], P=0.003). In patients with EOCs we have observed negative correlation between serum VEGF concentration and its tissue expression (r Spearman=-0.571, P=0.0261), and serum VEGF concentration correlated positively with CD34-MVD (r Spearman=0.545, P=0.0289). In a multiple regression analysis we have observed only the negative correlation between serum VEGF and CD105-MVD (r=-0.5288, P=0.0427). Serum VEGF is a useful marker for prediction of ovarian cancer MVD and tumor VEGF expression. Copyright © 2016 Elsevier Inc. All rights reserved.
Freyre-Fonseca, Verónica; Medina-Reyes, Estefany I; Téllez-Medina, Darío I; Paniagua-Contreras, Gloria L; Monroy-Pérez, Eric; Vaca-Paniagua, Felipe; Delgado-Buenrostro, Norma L; Flores-Flores, José O; López-Villegas, Edgar O; Gutiérrez-López, Gustavo F; Chirino, Yolanda I
2018-02-01
Titanium dioxide nanoparticles (TiO 2 NPs) production has been used for pigment, food and cosmetic industry and more recently, shaped as belts for treatment of contaminated water, self-cleaning windows and biomedical applications. However, the toxicological data have demonstrated that TiO 2 NPs inhalation induce inflammation in in vivo models and in vitro exposure leads to cytotoxicity and DNA damage. Dermal exposure has limited adverse effects and the possible risks for implants used for tissue regeneration is still under research. Then, it has been difficult to establish a straight statement about TiO 2 NPs toxicity since route of exposure and shapes of nanoparticles play an important role in the effects. In this study we aimed to investigate the effect of three different types of TiO 2 NPs (industrial, food-grade and belts) dispersed in fetal bovine serum (FBS) and saline solution (SS) on microvessel network, angiogenesis gene expression and femur ossification using a chick embryo model after an acute exposure of NPs on the day 7 after eggs fertilization. Microvascular density of chorioallantoic membrane (CAM) was analyzed after 7days of NPs injection and vehicles induced biological effects per se. NPs dispersed in FBS or SS have slight differences in microvascular density, mainly opposite effect on angiogenesis gene expression and no effects on femur ossification for NPs dispersed in SS. Interestingly, NPs shaped as belts dramatically prevented the alterations in ossification induced by FBS used as vehicle. Copyright © 2017 Elsevier B.V. All rights reserved.
Potus, François; Ruffenach, Grégoire; Dahou, Abdellaziz; Thebault, Christophe; Breuils-Bonnet, Sandra; Tremblay, Ève; Nadeau, Valérie; Paradis, Renée; Graydon, Colin; Wong, Ryan; Johnson, Ian; Paulin, Roxane; Lajoie, Annie C; Perron, Jean; Charbonneau, Eric; Joubert, Philippe; Pibarot, Philippe; Michelakis, Evangelos D; Provencher, Steeve; Bonnet, Sébastien
2015-09-08
Right ventricular (RV) failure is the most important factor of both morbidity and mortality in pulmonary arterial hypertension (PAH). However, the underlying mechanisms resulting in the failed RV in PAH remain unknown. There is growing evidence that angiogenesis and microRNAs are involved in PAH-associated RV failure. We hypothesized that microRNA-126 (miR-126) downregulation decreases microvessel density and promotes the transition from a compensated to a decompensated RV in PAH. We studied RV free wall tissues from humans with normal RV (n=17), those with compensated RV hypertrophy (n=8), and patients with PAH with decompensated RV failure (n=14). Compared with RV tissues from patients with compensated RV hypertrophy, patients with decompensated RV failure had decreased miR-126 expression (quantitative reverse transcription-polymerase chain reaction; P<0.01) and capillary density (CD31(+) immunofluorescence; P<0.001), whereas left ventricular tissues were not affected. miR-126 downregulation was associated with increased Sprouty-related EVH1 domain-containing protein 1 (SPRED-1), leading to decreased activation of RAF (phosphorylated RAF/RAF) and mitogen-activated protein kinase (MAPK); (phosphorylated MAPK/MAPK), thus inhibiting the vascular endothelial growth factor pathway. In vitro, Matrigel assay showed that miR-126 upregulation increased angiogenesis of primary cultured endothelial cells from patients with decompensated RV failure. Furthermore, in vivo miR-126 upregulation (mimic intravenous injection) improved cardiac vascular density and function of monocrotaline-induced PAH animals. RV failure in PAH is associated with a specific molecular signature within the RV, contributing to a decrease in RV vascular density and promoting the progression to RV failure. More importantly, miR-126 upregulation in the RV improves microvessel density and RV function in experimental PAH. © 2015 American Heart Association, Inc.
Tc17 cells in patients with uterine cervical cancer.
Zhang, Yan; Hou, Fei; Liu, Xin; Ma, Daoxin; Zhang, Youzhong; Kong, Beihua; Cui, Baoxia
2014-01-01
The existence of Tc17 cells was recently shown in several types of infectious and autoimmune diseases, but their distribution and functions in uterine cervical cancer (UCC) have not been fully elucidated. The frequency of Tc17 cells in peripheral blood samples obtained from UCC patients, cervical intraepithelial neoplasia (CIN) patients and healthy controls was determined by flow cytometry. Besides, the prevalence of Tc17 cells and their relationships to Th17 cells and Foxp3-expressing T cells as well as microvessels in tissue samples of the patients were assessed by immunohistochemistry staining. Compared to controls, patients with UCC or CIN had a higher proportion of Tc17 cells in both peripheral blood and cervical tissues, but the level of Tc17 cells in UCC tissues was significantly higher than that in CIN tissues. Besides, the increased level of Tc17 in UCC patients was associated with the status of pelvic lymph node metastases and increased microvessel density. Finally, significant correlations of infiltration between Tc17 cells and Th17 cells or Foxp3-expressing T cells were observed in UCC and CIN tissues. This study indicates that Tc17 cell infiltration in cervical cancers is associated with cancer progression accompanied by increased infiltrations of Th17 cells and regulatory T cells as well as promoted tumor vasculogenesis.
Variability in sublingual microvessel density and flow measurements in healthy volunteers.
Hubble, Sheena M A; Kyte, Hayley L; Gooding, Kim; Shore, Angela C
2009-02-01
As sublingual microvascular indices are increasingly heralded as new resuscitation end-points, better population data are required to power clinical studies. This paper describes improved methods to quantify sublingual microvessel flow and density in images obtained by sidestream dark field (SDF) technology in healthy volunteers, including vessels under 10 microm in diameter. Measurements of sublingual capillary density and flow were obtained by recording three 15-second images in 20 healthy volunteers over three days. Two independent observers quantified capillary density by using two methods: total vessel length (mm/mm2) and counting (number/mm). Both intraoral and temporal variabilities within subject and observer reproducibilities were determined by using coefficients of variability and reproducibility indices. For small (1-10 microm), medium (11-20 microm), and large (21-50 microm) diameter, mean vessel density with standard deviations (SDs) in volunteers was 21.3(+/- 4.9), 5.2 (+/- 1.2), and 2.7 (+/- 0.9) mm/mm2, respectively. Also, 94.0 +/- 1.4% of small vessels, 94.5 +/- 1.4% of medium vessels, and 94.5+/- 4.0% of large vessels had continuous perfusion. Within subjects, the means of all measurements over three days varied less than 13, 22, and 35% in small, medium, and large vessels, respectively. Interobserver reproducibility was good, especially for capillary (1-10 microm) density and flow measurements. Our methods of microvessel flow and density quantification have low observer variability and confirm the stability of microcirculatory measurements over time. These results facilitate the development of SDF-acquired sublingual microvascular indices as feasible microperfusion markers in shock resuscitation.
Takada, Shigeki; Hojo, Masato; Takebe, Noriyoshi; Tanigaki, Kenji; Miyamoto, Susumu
2018-06-07
Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs. Ten central nervous system HBs were immunohistochemically investigated. CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. This is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs. Copyright © 2018 Elsevier Inc. All rights reserved.
Yodavudh, Sirisanpang; Tangjitgamol, Siriwan; Puangsa-art, Supalarp
2008-05-01
Angiogenesis has been found to be a reliable prognostic indicator for several types of malignancies. In colorectal cancer, however there has been controversy as to whether there is a correlation between this feature and the tumors' behavior. Determine the correlation between microvessel density (MVD) and mast cell density (MCD) in order to evaluate these factors in terms of their prognostic relevance for primary colorectal carcinoma in Thai patients. One hundred and thirty colorectal carcinoma patients diagnosed between January 2002 and December 2004 were identified. Eleven patients were excluded from the present study due to recurrence of colorectal carcinoma in eight cases whereas pathologic blocks were not found in three cases. One hundred and nineteen patients met all inclusion criteria and were included in the present study. Representative paraffin sections obtained by the tissue micro-array technique (9 x 5 arrays per slide) from areas of highest vascular density (hot spots) were prepared. Sections were immuno-stained by monoclonal anti CD 31 for microvessel and antibody mast cell tryptase for mast cell detections, respectively. Three readings at different periods of time under a microscopic examination of high power magnification were examined by a pathologist who was blinded to clinical data. The highest microvessel and mast cell counts were recorded as MVD and MCD. Patients were then divided into groups of high and low MVD and high and low MCD by median values (20.5 and 14.5, respectively). Overall survival of the patients in each group was estimated by the Kaplan-Meier Method while a multivariate Cox regression backward stepwise analysis was employed to find out independent prognostic factors. Significant positive correlation was found to exist between MVD and MCD in the hot spots (R = 0.697, p < 0.0001). Regarding their prognostic role, patients with tumors of low MVD (hypovascular) and low MCD (low mast cell counts) had significantly longer survival rates than those with hypervascular and high mast cell counts (p < 0.0001). The Multivariate Cox hazard showed that MVD and distance metastasis of cancer were independent poor prognostic factors to survival (p = 0.036 and p = 0.024, respectively). The patients with high MVD (hypervascular) tumors and with presence of distant metastasis had 1.9 and 2.5 times higher death rates than the corresponding hypovascular and non-metastatic groups, respectively during the period from January 2002 to September 2007. Assessment of microvessel density in the invasive front of primary colorectal carcinoma could serve as useful prognosis tool of primary colorectal carcinoma in Thai patients.
NASA Astrophysics Data System (ADS)
Kozlov, Valentine I.; Skobelkin, Oleg K.; Fatkullin, Ildar; Terman, Oleg A.; Chizhov, Gennadii; Gabidullina, Rushania
1994-12-01
To study the possibility of using Nd:YAG laser to weld the tissues of the uterus experiments in rats and dogs have been conducted. With the biomicroscopy and the laser Doppler flowmetry we have evaluated the microcirculation in the uterus wall under traditional suture and laser welding suture. As a model of the wound, the dissection of serosa and muscles of the organ wall have been used. In laser welding suture we have welded the zone of tissue about 1 mm3 with the laser (power density 270 W/cm2). Histological control has been fulfilled on various phases of the healing process. The investigation of the uterus wall demonstrates that there are zones of microcirculation disorders in tissues: (1) the zone of coagulation of microvessels and adjacent tissues (about 100 micrometers ); (2) the zone of stasis (150 - 200 micrometers ); (3) the zone of reactive-destructive changes of microvessels (300 micrometers ), (4) the zone of malfunctional microcirculatory changes (600 micrometers ). The coagulation of microvessels changes the character of inflammation and the healing process, decreases the exudation phase and the leucocyte infiltration of tissues, and accelerates the capillary growth. In contrast with traditional suture, in the case of laser welding suture the edema and hemorrhagic signs are less expressed. The complete restoration of microcirculation under laser welding suture has been observed by the fourteenth day of the healing process. Under the traditional suture method normalization of tissue nutritious blood flow has been achieved by 21 days.
Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix
NASA Astrophysics Data System (ADS)
Chang, Vivide Tuan-Chyan; Bean, Sarah M.; Cartwright, Peter S.; Ramanujam, Nirmala
2010-09-01
Neovascularization in cervical intraepithelial neoplasia (CIN) is studied because it is the precursor to the third most common female cancer worldwide. Diffuse reflectance from 450-600 nm was collected from 46 patients (76 sites) undergoing colposcopy at Duke University Medical Center. Total hemoglobin, derived using an inverse Monte Carlo model, significantly increased in CIN 2+ (N=12) versus CIN 1 (N=16) and normal tissues (N=48) combined with P<0.004. Immunohistochemistry using monoclonal anti-CD34 was used to quantify microvessel density to validate the increased hemoglobin content. Biopsies from 51 sites were stained, and up to three hot spots per slide were selected for microvessel quantification by two observers. Similar to the optical study results, microvessel density was significantly increased in CIN 2+ (N=16) versus CIN 1 (N=21) and normal tissue (N=14) combined with P<0.007. Total vessel density, however, was not significantly associated with dysplastic grade. Hence, our quantitative optical spectroscopy system is primarily sensitive to dysplastic neovascularization immediately beneath the basement membrane, with minimal confounding from vascularity inherent in the normal stromal environment. This tool could have potential for in vivo applications in screening for cervical cancer, prognostics, and monitoring of antiangiogenic effects in chemoprevention therapies.
Suhasini, Avvaru N.; Lin, An-Ping; Bhatnagar, Harshita; Kim, Sang-Woo; Moritz, August W.; Aguiar, Ricardo C. T.
2015-01-01
Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to down-modulate VEGF secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher microvessel density. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL. PMID:26503641
Microvessel density in head and neck squamous cell carcinoma.
Szafarowski, Tomasz; Sierdzinski, Janusz; Szczepanski, Miroslaw J; Whiteside, Theresa L; Ludwig, Nils; Krzeski, Antoni
2018-05-10
Microvessel density (MVD) corresponds to the intensity of neo-angiogenesis. MVD assessments are based on the expression levels of the vascular endothelium markers such as, e.g., CD34 or CD105. The goal of this study was to assess MVD among patients with head and neck squamous cell carcinoma (HNSCC), and to evaluate the predictive value of MVD in head and neck cancers. The study included 49 patients treated for HNSCC and 11 patients with dysplasia of the upper respiratory tract epithelium. Control tissues consisted of 12 normal mucous membranes of the throat. Expression levels of MVD markers were assessed by immunohistochemistry (IHC) using tissue microarrays (TMA). Clinicopathological factors and patients' survival over the 5-year follow-up period were analyzed. The MVD/CD34 values were found to be significantly elevated in the HNSCCs compared to the non-malignant control tissues (p = 0.001) and to dysplastic tissues. (p = 0.02). Significantly higher MVD/CD105 values were also seen in the tumor compared to the control tissues (p = 0.001) or the dysplastic tissues (p = 0.001). Unexpectedly, significantly lower MVD/CD34 values were seen in the tumor tissues of patients with the T3-T4 tumors compared to those with T1-T2 tumors (p = 0.01). HNSCCs have statistically higher MVD values compared to dysplasia of the upper respiratory tract epithelium. However, the MVD/CD34 values did not correlate with local invasiveness (the T feature) of HNSCCs. This counterintuitive observation suggests that assessments of MVD as performed on TMA by IHC using anti-CD34 or anti-CD105 antibodies considered to be specific for endothelial cell markers might underestimate the extent of the tumor vascularity in HNSCC.
Sato, K; Li, J; Metais, C; Bianchi, C; Sellke, F
2000-05-15
Pulmonary vascular resistance is frequently elevated after cardiopulmonary bypass (CPB). We examined if altered pulmonary microvascular reactivity to serotonin (5-HT) is due to altered expression of isoforms of nitric oxide synthase (NOS) or cyclooxygenase (COX). Pigs (n = 8) were heparinized and placed on total CPB for 90 min and then perfused off CPB for 90 min. Noninstrumented pigs (n = 6) served as controls for vascular studies. Relaxation responses (% of precontraction) of microvessels (60-150 microm in diameter) were examined in vitro in a pressurized (20 mm Hg) no-flow state with video microscopic imaging. Expression of eNOS, iNOS, and inducible (COX-2) and constitutive (COX-1) cyclooxygenase was examined with Western blotting and reverse transcription polymerase chain reaction. Pulmonary vascular resistance (PVR) increased from 316 +/- 39 mm Hg x s/cm(5) at baseline to 495 +/- 53 at 60 min and 565 +/- 62 at 90 min after termination of CPB. 5-HT elicited a relaxation response (46.8 +/- 11. 8%) in precontracted control microvessels. This response was not affected by the NOS inhibitor N(G)-nitro-l-arginine. After CPB, pulmonary microvessels contracted significantly to 5-HT (-29 +/- 27%, P < 0.05 vs control). This response was partially inhibited (7 +/- 20%, P = 0.06) in the presence of the COX-2 inhibitor NS398, but was unaffected by the thromboxane synthase inhibitor U63557A (-20 +/- 19%). Expression of iNOS or COX-1 was not changed after CPB. Protein and mRNA expressions of COX-2 both increased significantly after CPB, while that of eNOS decreased by approximately 50%. PVR increased after CPB. This was associated with a hypercontractile response of isolated pulmonary microvessels to 5-HT that was in part mediated by the release of prostaglandins (but not thromboxane) and associated with increased expression of COX-2 and with decreased expression of eNOS. Copyright 2000 Academic Press.
Retinal Microvascular Network and Microcirculation Assessments in High Myopia.
Li, Min; Yang, Ye; Jiang, Hong; Gregori, Giovanni; Roisman, Luiz; Zheng, Fang; Ke, Bilian; Qu, Dongyi; Wang, Jianhua
2017-02-01
To investigate the changes of the retinal microvascular network and microcirculation in high myopia. A cross-sectional, matched, comparative clinical study. Twenty eyes of 20 subjects with nonpathological high myopia (28 ± 5 years of age) with a refractive error of -6.31 ± 1.23 D (mean ± SD) and 20 eyes of 20 age- and sex-matched control subjects (30 ± 6 years of age) with a refractive error of -1.40 ± 1.00 D were recruited. Optical coherence tomography angiography (OCTA) was used to image the retinal microvascular network, which was later quantified by fractal analysis (box counting [D box ], representing vessel density) in both superficial and deep vascular plexuses. The Retinal Function Imager was used to image the retinal microvessel blood flow velocity (BFV). The BFV and microvascular density in the myopia group were corrected for ocular magnification using Bennett's formula. The density of both superficial and deep microvascular plexuses was significantly decreased in the myopia group in comparison to the controls (P < .05). The decrease of the microvessel density of the annular zone (0.6-2.5 mm), measured as D box , was 2.1% and 2.9% in the superficial and deep vascular plexuses, respectively. Microvessel density reached a plateau from 0.5 mm to 1.25 mm from the fovea in both groups, but that in the myopic group was about 3% lower than the control group. No significant differences were detected between the groups in retinal microvascular BFV in either arterioles or venules (P > .05). Microvascular densities in both superficial (r = -0.45, P = .047) and deep (r = -0.54, P = .01) vascular plexuses were negatively correlated with the axial lengths in the myopic eye. No correlations were observed between BFV and vessel density (P > .05). Retinal microvascular decrease was observed in the high myopia subjects, whereas the retinal microvessel BFV remained unchanged. The retinal microvascular network alteration may be attributed to ocular elongation that occurs with the progression of myopia. The novel quantitative analyses of the retinal microvasculature may help to characterize the underlying pathophysiology of myopia and enable early detection and prevention of myopic retinopathy. Copyright © 2016 Elsevier Inc. All rights reserved.
Cardioprotective effects of red wine and vodka in a model of endothelial dysfunction
Lassaletta, Antonio D; Chu, Louis M; Elmadhun, Nassrene Y; Burgess, Thomas A; Feng, Jun; Robich, Michael P; Sellke, Frank W
2012-01-01
Background Moderate alcohol consumption is largely believed to be cardioprotective, while red wine is hypothesized to offer benefit in part due to the pro-angiogenic and antioxidant properties of polyphenols. We investigated the cardiovascular effects of both red wine and vodka in a swine model of endothelial dysfunction. Methods Twenty-seven male Yorkshire swine fed a high-fat/cholesterol diet were divided into three groups and received either no alcohol (Control), red wine, or vodka. After seven weeks, myocardial perfusion was measured, and ventricular tissue was analyzed for microvascular reactivity, and immunohistochemical studies. Results There were no differences in myocardial perfusion, in arteriolar or capillary density, or in VEGF expression among groups. Total protein oxidation as well as expression of superoxide dismutase-1 and -2 (SOD1, SOD2) and NADPH-oxidase (NOX2) was decreased in both treatment groups compared to controls. Endothelium-dependent microvessel relaxation, however, was significantly improved only in the red wine-supplemented group. Conclusions Supplementation with both red wine and vodka decreased oxidative stress by several measures, implicating the effects of ethanol in reducing oxidative stress in the myocardium. However, it was only in the red wine-supplemented group that an improvement in microvessel function was observed. This suggests that a component of red wine, independent of ethanol, possibly a polyphenol such as resveratrol, may confer cardioprotection by normalizing endothelial dysfunction induced by an atherogenic diet. PMID:22748601
Ozer, Erdener; Sarialioglu, Faik; Cetingoz, Riza; Yüceer, Nurullah; Cakmakci, Handan; Ozkal, Sermin; Olgun, Nur; Uysal, Kamer; Corapcioglu, Funda; Canda, Serefettin
2004-01-01
The purpose of this study was to investigate whether quantitative assessment of cytologic anaplasia and angiogenesis may predict the clinical prognosis in medulloblastoma and stratify the patients to avoid both undertreatment and overtreatment. Medulloblastomas from 23 patients belonging to the Pediatric Oncology Group were evaluated with respect to some prognostic variables, including histologic assessment of nodularity and desmoplasia, grading of anaplasia, measurement of nuclear size, mitotic cell count, quantification of angiogenesis, including vascular surface density (VSD) and microvessel number (NVES), and immunohistochemical scoring of vascular endothelial growth factor (VEGF) expression. Univariate and multivariate analyses for prognostic indicators for survival were performed. Univariate analysis revealed that extensive nodularity was a significant favorable prognostic factor, whereas the presence of anaplasia, increased nuclear size, mitotic rate, VSD, and NVES were significant unfavorable prognostic factors. Using multivariate analysis, increased nuclear size was found to be an independent unfavorable prognostic factor for survival. Neither the presence of desmoplasia nor VEGF expression was significantly related to patient survival. Although care must be taken not to overstate the importance of the results of this single-institution preliminary report, pathologic grading of medulloblastomas with respect to grading of anaplasia and quantification of nodularity, nuclear size, and microvessel profiles may be clinically useful for the treatment of medulloblastomas. Further validation of the independent prognostic significance of nuclear size in stratifying patients is required.
Tc17 Cells in Patients with Uterine Cervical Cancer
Zhang, Yan; Hou, Fei; Liu, Xin; Ma, Daoxin; Zhang, Youzhong; Kong, Beihua; Cui, Baoxia
2014-01-01
Background The existence of Tc17 cells was recently shown in several types of infectious and autoimmune diseases, but their distribution and functions in uterine cervical cancer (UCC) have not been fully elucidated. Methods The frequency of Tc17 cells in peripheral blood samples obtained from UCC patients, cervical intraepithelial neoplasia (CIN) patients and healthy controls was determined by flow cytometry. Besides, the prevalence of Tc17 cells and their relationships to Th17 cells and Foxp3-expressing T cells as well as microvessels in tissue samples of the patients were assessed by immunohistochemistry staining. Results Compared to controls, patients with UCC or CIN had a higher proportion of Tc17 cells in both peripheral blood and cervical tissues, but the level of Tc17 cells in UCC tissues was significantly higher than that in CIN tissues. Besides, the increased level of Tc17 in UCC patients was associated with the status of pelvic lymph node metastases and increased microvessel density. Finally, significant correlations of infiltration between Tc17 cells and Th17 cells or Foxp3-expressing T cells were observed in UCC and CIN tissues. Conclusions This study indicates that Tc17 cell infiltration in cervical cancers is associated with cancer progression accompanied by increased infiltrations of Th17 cells and regulatory T cells as well as promoted tumor vasculogenesis. PMID:24523865
Polívka, Jiří; Pešta, Martin; Pitule, Pavel; Hes, Ondřej; Holubec, Luboš; Polívka, Jiří; Kubíková, Tereza; Tonar, Zbyněk
2018-01-01
Introduction Glioblastoma multiforme (GBM) represents the most malignant primary brain tumor characterized by pathological vascularization. Mutations in isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) were observed in GBM. We aimed to assess the intra-tumor hypoxia, angiogenesis and microvessel formation in GBM and to find their associations with IDH1 mutation status and patients prognosis. Methods 52 patients with a diagnosis of GBM were included into the study. IDH1 R132H mutation was assessed by RT-PCR from FFPE tumor samples obtained during surgery. The expression of markers of hypoxia (HIF2α), angiogenesis (VEGF), tumor microvascularity (CD31, CD34, vWF, CD105), and proliferation (Ki-67) were assessed immunohistochemically (IHC). IDH1 mutation and IHC markers were correlated with the patient survival. Results 20 from 52 GBM tumor samples comprised IDH1 R132H mutation (38.5%). The majority of mutated tumors were classified as secondary glioblastomas (89.9%). Patients with IDH1 mutated tumors experienced better progression-free survival (P = 0.037) as well as overall survival (P = 0.035) compared with wild type tumors. The significantly lower expression of VEGF was observed in GBM with IDH1 mutation than in wild type tumors (P = 0.01). No such association was found for microvascular markers. The increased expression of newly-formed microvessels (ratio CD105/CD31) in tumor samples was associated with worse patient’s progression-free survival (P = 0.026). Summary No increase in HIF/VEGF-mediated angiogenesis was observed in IDH1-mutated GBM compared with IDH1 wild type tumors. The histological assessment of the portion of newly-formed microvessels in tumor tissue can be used for the prediction of GBM patient’s prognosis. PMID:29662659
Koessinger, Dominik; Albrecht, Valerie; Faber, Florian; Jaehnert, Irene; Schichor, Christian
2018-06-01
Tumor cells infiltrating the brain are a typical hallmark of glioblastoma. Invasiveness of glioma cells has been associated with ETS proto-oncogene 1 (ETS-1). In non-glial tumors, ETS-1 expression has been linked to hypoxia. However, it is not known whether hypoxia regulates ETS-1 expression in glioblastoma. The spatial distribution of ETS-1 expression in primary glioblastoma was assessed using immunohistochemistry. ETS-1 expression in glioblastoma-derived mesenchymal stem-like cells (gbMSLCs) was determined using immunocytochemistry. The effect of hypoxia on ETS-1 expression of gbMSLCs, glioma cell lines and glioblastoma-derived endothelial cells was assessed using polymerase chain reaction and immunoblotting. Our immunohistochemical studies revealed ETS-1 expression in stromal and endothelial glioblastoma cells. Stromal ETS-1 expression in glioblastoma correlated with microvessel density. gbMSLCs were found to express ETS-1. In all examined cell lines, ETS-1 transcription and expression were independent of hypoxia. In glioblastoma, ETS-1-expression is not dependent on hypoxia, but correlates with tumor vascularization. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Li, Bai-Ling; Zhang, Guan-Xin; Hou, Xiao-Lei; Tan, Meng-Wei; Yuan, Yang; Liu, Xiao-Hong; Gong, De-Jun; Huang, Sheng-Dong
2009-03-01
To study the inhibition of angiogenin (ANG) expression in human lung squamous cancer cell strain-A549 through adeno-associated virus (AAV)-mediated RNA-interference, and therefore to observe its effect on the growth of cancer cells and tumor formation. Recombinant AAV expressing H1-promoter-induced small-interference- RNA (siRNA) targeting ANG (AAV-shANG) was constructed, and then transfected into A549 cells. A549 cells and cells transfected with AAV-Null were used as the control groups. The effects of the reduced expression of ANG by RNAi from AAV-shANG on the growth, formation, reproduction, apoptosis, and microvessel-density of the carcinoma were observed. In vitro experiment showed that AAV-shANG was constructed successfully, There was an significant decrease in the expression of ANG protein 72 h after transfection, compared with the normal A459 cells and AAV-Null cells (P < 0.01). Cell cycle analysis showed that the proliferation index (PI) of normal A549 cells, AAV-Null cells and AAVshANG cells were 0.32 +/- 0.29, 0.35 +/- 0.38 and 0.31 +/- 0.43, respectively. There was no statistic difference in the PIs among the 3 groups (P > 0.05). In vivo experiment using thymus-defect mice showed that, there was an remarkable reduction in the mass and volume of tumors in AAV-shANG transfected group, compared to the control groups. Microvessel-density was 9.4 +/- 1.5, 9.8 +/- 2.1 and 5.7 +/- 1.9, respectively in the 3 groups, a statistic difference among the AAV-shANG-transfected group, the normal A549 group and the AAV-Null transfected group. The percentages of apoptotic cells in each group were (7.7 +/- 3.1)%, (8.5 +/- 5.4)%, (17.1 +/- 8.6)%, respectively, the experimental group being higher than those of the control groups. Positive rates of PCNA were (84.8 +/- 9.7)%, (85.8 +/- 9.8)%, and (70.4 +/- 10.1)%, respectively, the AAV-shANG transfected cancer cells showing a lower PCNA index than the control groups. AAV-mediated expression of siRNA could reduce the expression of ANG in cancer cells, significantly enough to inhibit cell proliferation, promote cell apoptosis and inhibit tumor growth.
Singh, Alok R.; Joshi, Shweta; Vega, Francisco M.; Guo, Pinzheng; Xu, Jingying; Groshen, Susan; Ye, Wei; Millard, Melissa; Campan, Mihaela; Morales, Guillermo; Garlich, Joseph R.; Laird, Peter W.; Seeger, Robert C.; Shimada, Hiroyuki
2017-01-01
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Our previous studies showed that the angiogenic integrin αvβ3 was increased in high-risk metastatic (stage 4) NB compared with localized neuroblastomas. Herein, we show that integrin αvβ3 was expressed on 68% of microvessels in MYCN-amplified stage 3 neuroblastomas, but only on 34% (means) in MYCN-non-amplified tumors (p < 0.001; n = 54). PTEN, a tumor suppressor involved in αvβ3 signaling, was expressed in neuroblastomas either diffusely, focally or not at all (immunohistochemistry). Integrin αvβ3 was expressed on 60% of tumor microvessels when PTEN was negative or focal, as compared to 32% of microvessels in tumors with diffuse PTEN expression (p < 0.001). In a MYCN transgenic mouse model, loss of one allele of PTEN promoted tumor growth, illustrating the potential role of PTEN in neuroblastoma pathogenesis. Interestingly, we report the novel dual PI-3K/BRD4 activity of SF1126 (originally developed as an RGD-conjugated pan PI3K inhibitor). SF1126 inhibits BRD4 bromodomain binding to acetylated lysine residues with histone H3 as well as PI3K activity in the MYCN amplified neuroblastoma cell line IMR-32. Moreover, SF1126 suppressed MYCN expression and MYCN associated transcriptional activity in IMR-32 and CHLA136, resulting in overall decrease in neuroblastoma cell viability. Finally, treatment of neuroblastoma tumors with SF1126 inhibited neuroblastoma growth in vivo. These data suggest integrin αvβ3, MYCN/BRD4 and PTEN/PI3K/AKT signaling as biomarkers and hence therapeutic targets in neuroblastoma and support testing of the RGD integrin αvβ3-targeted PI-3K/BRD4 inhibitor, SF1126 as a therapeutic strategy in this specific subgroup of high risk neuroblastoma. PMID:28881723
Ohtsuki, Sumio; Ikeda, Chiemi; Uchida, Yasuo; Sakamoto, Yumi; Miller, Florence; Glacial, Fabienne; Decleves, Xavier; Scherrmann, Jean-Michel; Couraud, Pierre-Olivier; Kubo, Yoshiyuki; Tachikawa, Masanori; Terasaki, Tetsuya
2013-01-07
Human cerebral microvascular endothelial cell line hCMEC/D3 is an established model of the human blood-brain barrier (BBB). The purpose of the present study was to determine, by means of quantitative targeted absolute proteomics, the protein expression levels in hCMEC/D3 cells of multiple transporters, receptors and junction proteins for comparison with our previously reported findings in isolated human brain microvessels. Among 91 target molecules, 12 transporters, 2 receptors, 1 junction protein and 1 membrane marker were present at quantifiable levels in plasma membrane fraction of hCMEC/D3 cells. ABCA2, MDR1, MRP4, BCRP, GLUT1, 4F2hc, MCT1, ENT1, transferrin and insulin receptors and claudin-5 were detected in both hCMEC/D3 cells and human brain microvessels. After normalization based on Na(+)/K(+) ATPase expression, the differences in protein expression levels between hCMEC/D3 cells and human brain microvessels were within 4-fold for these proteins, with the exceptions of ENT1, transferrin receptor and claudin-5. ABCA8, LAT1, LRP1 and γ-GTP were below the limit of quantification in the cells, but were found in human brain microvessels. ABCA3, ABCA6, MRP1 and ATA1 were found only in hCMEC/D3 cells. Furthermore, compared with human umbilical vein endothelial cells (HUVECs) as reference nonbrain endothelial cells, MDR1 was found only in hCMEC/D3 cells, and GLUT1 expression was 15-fold higher in hCMEC/D3 cells than in HUVECs. In conclusion, this is the first study to examine the suitability and limitations of the hCMEC/D3 cell line as a BBB functional model in terms of quantitative expression levels of transporters, receptors and tight junction proteins.
Brzica, Hrvoje; Abdullahi, Wazir; Reilly, Bianca G; Ronaldson, Patrick T
2018-05-07
The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.
Evaluation of mast cell counts and microvessel density in reactive lesions of the oral cavity.
Kouhsoltani, Maryam; Moradzadeh Khiavi, Monir; Tahamtan, Shabnam
2016-01-01
Background. Reliable immunohistochemical assays to assess the definitive role of mast cells (MCs) and angiogenesis in the pathogenesis of oral reactive lesions are generally not available. The aim of the present study was to evaluate mast cell counts (MCC) and microvessel density (MVD) in oral reactive lesions and determine the correlation between MCC and MVD. Methods. Seventy-five cases of reactive lesions of the oral cavity, including pyogenic granuloma, fibroma, peripheral giant cell granuloma, inflammatory fibrous hyperplasia, peripheral ossifying fibroma (15 for each category) were immunohisto-chemically stained with MC tryptase and CD31. Fifteen cases of normal gingival tissue were considered as the control group. The mean MCC and MVD in superficial and deep connective tissues were assessed and total MCC and MVD was computed for each lesion. Results . Statistically significant differences were observed in MCC and MVD between the study groups (P < 0.001). MC tryptase and CD31 expression increased in the superficial connective tissue of each lesion in comparison to the deep con-nective tissue. A significant negative correlation was not found between MCC and MVD in oral reactive lesions (P < 0.001, r = -0.458). Conclusion. Although MCs were present in the reactive lesions of the oral cavity, a direct correlation between MCC and MVD was not found in these lesions. Therefore, a significant interaction between MCs and endothelial cells and an active role for MCs in the growth of oral reactive lesions was not found in this study.
Shimizu, Akira; Kaira, Kyoichi; Yasuda, Masahito; Asao, Takayuki; Ishikawa, Osamu
2016-02-01
Class III β-tubulin (TUBB3) has been recognized as being associated with resistance to taxane-based regimens in several cancers. However, little is known about the clinicopathological significance of TUBB3 expression in patients with cutaneous malignant melanoma. The aim of this study was to examine the prognostic significance of TUBB3 expression in cutaneous malignant melanoma. A total of 106 patients with surgically resected cutaneous malignant melanoma were assessed. Tumour sections were immunohistochemically stained for TUBB3, Ki-67 and microvessel density with CD34. TUBB3 was highly expressed in 80% (85/106) of patients. No statistically significant relationship was observed between the high expression of TUBB3 and any variables. On univariate analysis, ulceration, disease stage, TUBB3 and CD34 revealed a significant relationship with overall survival and progression-free survival. Multivariate analysis confirmed that a low TUBB3 expression was an independent prognostic factor for poor prognosis of cutaneous malignant melanoma. The decreased expression of TUBB3 could be a significant marker for predicting unfavourable prognosis in patients with cutaneous malignant melanoma.
Faucheux, B A; Nillesse, N; Damier, P; Spik, G; Mouatt-Prigent, A; Pierce, A; Leveugle, B; Kubis, N; Hauw, J J; Agid, Y
1995-01-01
The degeneration of nigral dopaminergic neurons in Parkinson disease is believed to be associated with oxidative stress. Since iron levels are increased in the substantia nigra of parkinsonian patients and this metal catalyzes the formation of free radicals, it may be involved in the mechanisms of nerve cell death. The cause of nigral iron increase is not understood. Iron acquisition by neurons may occur from iron-transferrin complexes with a direct interaction with specific membrane receptors, but recent results have shown a low density of transferrin receptors in the substantia nigra. To investigate whether neuronal death in Parkinson disease may be associated with changes in a pathway supplementary to that of transferrin, lactoferrin (lactotransferrin) receptor expression was studied in the mesencephalon. In this report we present evidence from immunohistochemical staining of postmortem human brain tissue that lactoferrin receptors are localized on neurons (perikarya, dendrites, axons), cerebral microvasculature, and, in some cases, glial cells. In parkinsonian patients, lactoferrin receptor immunoreactivity on neurons and microvessels was increased and more pronounced in those regions of the mesencephalon where the loss of dopaminergic neurons is severe. Moreover, in the substantia nigra, the intensity of immunoreactivity on neurons and microvessels was higher for patients with higher nigral dopaminergic loss. These data suggest that lactoferrin receptors on vulnerable neurons may increase intraneuronal iron levels and contribute to the degeneration of nigral dopaminergic neurons in Parkinson disease. Images Fig. 1 Fig. 2 PMID:7568181
Kashiwagi, Satoshi; Kajimura, Mayumi; Yoshimura, Yasunori; Suematsu, Makoto
2002-12-13
This study aimed to examine topographic distribution of microvascular NO generation in vivo. To this end, nitrosonium ion (NO+)-sensitive diaminofluorescein diacetate was superfused continuously on the rat mesentery and the fluorescence was visualized in the microvessels through laser confocal microfluorography. Two major sites exhibited a time-dependent elevation of the fluorescence: microvascular endothelia and mast cells. As judged by the fluorescence sensitivity to local application of different inhibitors of NO synthase (NOS), NO availability in arteriolar endothelium and mast cells appeared to be maintained mainly by NOS1, whereas that in venular endothelium greatly depends on NOS3. In venules, the magnitude of inhibitory responses elicited by the inhibitors was positively correlated with the density of leukocyte adhesion. NOS inhibitors significantly reduced, but did not eliminate, the NO+-associated fluorescence in arterioles, capillaries, and venules, suggesting alternative sources of NO in circulation for these microvessels. Immunohistochemistry for NOS isozymes revealed that NOS1 occurred not only in nerve fibers innervated to arterioles but also abundantly in mast cells. Laser flow cytometry of peritoneal cells in vitro revealed abundant expression of NOS1 in mast cells. Interestingly, NOS3 occurred in endothelia of capillaries and venules but not in those of distal arterioles with comparable diameters. These results suggest that the arterioles receive NO from nonendothelial origins involving NOS1 present in nerve terminals and mast cells, whereas venules depend on the endothelial NOS as a major source. Furthermore, nonenzymatic sources of NO from circulating reservoirs constitute a notable fraction throughout different classes of microvessels. The full text of this article is available at http://www.circresaha.org.
Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo.
Cathcart, Mary-Clare; Useckaite, Zivile; Drakeford, Clive; Semik, Vikki; Lysaght, Joanne; Gately, Kathy; O'Byrne, Kenneth J; Pidgeon, Graham P
2016-09-01
Baicalein is a widely used Chinese herbal medicine derived from Scutellaria baicalenesis, which has been traditionally used as anti-inflammatory and anti-cancer therapy. In this study we examined the anti-tumour pathways activated following baicalein treatment in non-small cell lung cancer (NSCLC), both in-vitro and in-vivo. The effect of baicalein treatment on H-460 cells in-vitro was assessed using both BrdU assay (cell proliferation) and High Content Screening (multi-parameter apoptosis assay). A xenograft nude mouse model was subsequently established using these cells and the effect of baicalein on tumour growth and survival assessed in-vivo. Tumours were harvested from these mice and histological tissue analysis carried out. VEGF, 12-lipoxygenase and microvessel density (CD-31) were assessed by immunohistochemistry (IHC), while H and E staining was carried out to assess mitotic index. Gene expression profiling was carried out on corresponding RNA samples using Human Cancer Pathway Finder Arrays and qRT-PCR, with further gene expression analysis carried out using qRT-PCR. Baicalein significantly decreased lung cancer proliferation in H-460 cells in a dose dependent manner. At the functional level, a dose-dependent induction in apoptosis associated with decreased cellular f-actin content, an increase in nuclear condensation and an increase in mitochondrial mass potential was observed. Orthotopic treatment of experimental H-460 tumours in athymic nude mice with baicalein significantly (p < 0.05) reduced tumour growth and prolonged survival. Histological analysis of resulting tumour xenografts demonstrated reduced expression of both 12-lipoxygenase and VEGF proteins in baicalein-treated tumours, relative to untreated. A significant (p < 0.01) reduction in both mitotic index and micro-vessel density was observed following baicalein treatment. Gene expression profiling revealed a reduction (p < 0.01) in both VEGF and FGFR-2 following baicalein treatment, with a corresponding increase (p < 0.001) in RB-1. This study is the first to demonstrate efficacy of baicalein both in-vitro and in-vivo in NSCLC. These effects may be mediated in part through a reduction in both cell cycle progression and angiogenesis. At the molecular level, alterations in expression of VEGF, FGFR-2, and RB-1 have been implicated, suggesting a molecular mechanism underlying this in-vivo effect.
Raica, Marius; Cimpean, Anca Maria; Nico, Beatrice; Guidolin, Diego; Ribatti, Domenico
2010-02-01
Mast cells (MCs) are widely distributed in human and animal tissues and have been shown to play an important role in angiogenesis in normal and pathological conditions. Few data are available about the relationship between MCs and blood vessels in the normal human thymus, and there are virtually no data about their distribution and significance in thymoma. The aim of this study was to analyse the spatial distribution of MCs and microvessels in the normal foetal and adult thymus and thymoma. Twenty biopsy specimens of human thymus, including foetal and adult normal thymus and thymoma were analysed. Double staining with CD34 and mast cell tryptase was used to count both mast cells and microvessels in the same fields. Computer-assisted image analysis was performed to characterize the spatial distribution of MCs and blood vessels in selected specimens. Results demonstrated that MCs were localized exclusively to the medulla. Their number was significantly higher in thymoma specimens as compared with adult and foetal normal specimens respectively. In contrast the microvessel area was unchanged. The analysis of the spatial distribution and relationship between MCs and microvessels revealed that only in the thymoma specimens was there a significant spatial association between MCs and microvessels. Overall, these data suggest that MCs do not contribute significantly to the development of the vascular network in foetal and adult thymus, whereas in thymoma they show a close relationship to blood vessels. This could be an expression of their involvement not only in endothelial cells but also in tumour cell proliferation.
Jin, Wen; Lin, Zhiwu; Zhang, Xiaorong; Kong, Lingying; Yang, Li
2015-08-01
This study aimed to explore the effects of recombinant human erythropoietin (rhEPO) on the growth of human breast cancer MDA-MB-231 cells in nude mice, and investigate its functions in regulating tumor growth, angiogenesis and apoptosis. A tumor-bearing nude mice model was established by subcutaneous injection of human breast cancer MDA-MB-231 cells. Two weeks later, the mice were randomly divided into four groups (n=6 for each group): negative control group, rhEPO group, EPO antibody group and EPO+EPO antibody group. Drugs were administered to the corresponding mice once every 3 days for five times. The size and weight of tumors were measured after the mice were sacrificed by cervical dislocation. The expression levels of EPO/EPOR, TNF-α, IL-10, and Bcl-2 in the tumor tissues were determined using RT-PCR and Western blot. The microvessel density (MVD) and expression of VEGF in the tumors were detected using immunohistochemistry. TUNEL assay was used to determine apoptosis in tumors. Results show that rhEPO significantly promoted the growth of MDA-MB-231 cells in nude mice (P<0.05). Compared with the negative control group, the expression levels of EPO, EPOR, TNF-α, IL-10, and VEGF, as well as the MVD values, were significantly elevated in the rhEPO group. However, the apoptotic index was significantly reduced (P<0.05). The ability of rhEPO to promote tumor growth may be associated with its functions in promoting microvessel formation and inhibiting tumor cell apoptosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Salehi, Pezhman; Gundimeda, Usha; Lael Cantu, Homero; Lavinsky, Joel; Myint, Anthony; Wang, Juemei; Abdala, Carolina; Ohyama, Takahiro; Coate, Thomas Matthew
2017-01-01
Neuropilin-1 (Nrp1) encodes the transmembrane cellular receptor neuropilin-1, which is associated with cardiovascular and neuronal development and was within the peak SNP interval on chromosome 8 in our prior GWAS study on age-related hearing loss (ARHL) in mice. In this study, we generated and characterized an inner ear-specific Nrp1 conditional knockout (CKO) mouse line because Nrp1 constitutive knockouts are embryonic lethal. In situ hybridization demonstrated weak Nrp1 mRNA expression late in embryonic cochlear development, but increased expression in early postnatal stages when cochlear hair cell innervation patterns have been shown to mature. At postnatal day 5, Nrp1 CKO mice showed disorganized outer spiral bundles and enlarged microvessels of the stria vascularis (SV) but normal spiral ganglion cell (SGN) density and presynaptic ribbon body counts; however, we observed enlarged SV microvessels, reduced SGN density, and a reduction of presynaptic ribbons in the outer hair cell region of 4-month-old Nrp1 CKO mice. In addition, we demonstrated elevated hearing thresholds of the 2-month-old and 4-month-old Nrp1 CKO mice at frequencies ranging from 4 to 32kHz when compared to 2-month-old mice. These data suggest that conditional loss of Nrp1 in the inner ear leads to progressive hearing loss in mice. We also demonstrated that mice with a truncated variant of Nrp1 show cochlear axon guidance defects and that exogenous semaphorin-3A, a known neuropilin-1 receptor agonist, repels SGN axons in vitro. These data suggest that Neuropilin-1/Semaphorin-3A signaling may also serve a role in neuronal pathfinding in the developing cochlea. In summary, our results here support a model whereby Neuropilin-1/Semaphorin-3A signaling is critical for the functional and morphological integrity of the cochlea and that Nrp1 may play a role in ARHL. PMID:29059194
[Suppression of COX-2 protein to cell apoptosis in non-small cell lung cancer].
Sun, Limei; Zhao, Yue; Wang, Lujian; Song, Min; Song, Jiye
2007-06-20
One of mechanisms of carcinogenesis is suppression of cell apoptosis which leads to accumulation of aberrant cells. The aim of this study is to investigate cell apoptosis and COX-2 protein expression in non-small cell lung cancer (NSCLC). Cell apoptosis, expression of COX-2 and microvessel density (MVD) were detcted in 111 NSCLC samples by TdT-mediated dUTP nick end labeling (TUNEL) technique and immunohistochemical staining. The positive rate of COX-2 protein expression was 67.6% (75/111), and there were 53 patients with high level cell apoptosis (47.7%). Expression of COX-2 protien was significantly related to TNM stages (P=0.025) and lymph node metastasis (P=0.018). The MVD in NSCLC tissues with positive COX-2 expression was significantly higher than that in negative expression ones (P=0.000). COX model showed that lymph node metastasis (P=0.006) and positive expression of COX-2 protein (P=0.000) were independent prognostic factors of NSCLC. The expression of COX-2 protein may suppress cell apoptosis of tumor, and it may serve as a potential marker of prognosis for NSCLC.
Willmann, Jürgen K; Chen, Kai; Wang, Hui; Paulmurugan, Ramasamy; Rollins, Mark; Cai, Weibo; Wang, David S; Chen, Ian Y; Gheysens, Olivier; Rodriguez-Porcel, Martin; Chen, Xiaoyuan; Gambhir, Sanjiv S
2008-02-19
Vascular endothelial growth factor-121 (VEGF121), an angiogenic protein secreted in response to hypoxic stress, binds to VEGF receptors (VEGFRs) overexpressed on vessels of ischemic tissue. The purpose of this study was to evaluate 64Cu-VEGF121 positron emission tomography for noninvasive spatial, temporal, and quantitative monitoring of VEGFR2 expression in a murine model of hindlimb ischemia with and without treadmill exercise training. 64Cu-labeled VEGF121 and a VEGF mutant were tested for VEGFR2 binding specificity in cell culture. Mice (n=58) underwent unilateral ligation of the femoral artery, and postoperative tissue ischemia was assessed with laser Doppler imaging. Longitudinal VEGFR2 expression in exercised and nonexercised mice was quantified with 64Cu-VEGF121 positron emission tomography at postoperative day 8, 15, 22, and 29 and correlated with postmortem gamma-counting. Hindlimbs were excised for immunohistochemistry, Western blotting, and microvessel density measurements. Compared with the VEGF mutant, VEGF121 showed specific binding to VEGFR2. Perfusion in ischemic hindlimbs fell to 9% of contralateral hindlimb on postoperative day 1 and recovered to 82% on day 29. 64Cu-VEGF121 uptake in ischemic hindlimbs increased significantly (P < 0.001) from a control level of 0.61+/-0.17% ID/g (percentage of injected dose per gram) to 1.62+/-0.35% ID/g at postoperative day 8, gradually decreased over the following 3 weeks (0.59+/-0.14% ID/g at day 29), and correlated with gamma-counting (R2 = 0.99). Compared with nonexercised mice, 64Cu-VEGF121 uptake was increased significantly (P < or = 0.0001) in exercised mice (at day 15, 22, and 29) and correlated with VEGFR2 levels as obtained by Western blotting (R2 = 0.76). Ischemic hindlimb tissue stained positively for VEGFR2. In exercised mice, microvessel density was increased significantly (P<0.001) compared with nonexercised mice. 64Cu-VEGF121 positron emission tomography allows longitudinal spatial and quantitative monitoring of VEGFR2 expression in murine hindlimb ischemia and indirectly visualizes enhanced angiogenesis stimulated by treadmill exercise training.
Mu, Ying; Xu, Zhaohui; Zhou, Xuanxuan; Zhang, Huinan; Yang, Qian; Zhang, Yunlong; Xie, Yanhua; Kang, Juan; Li, Feng; Wang, Siwang
2017-05-01
Cerebral ischemia can cause brain infarcts, which are difficult to recover due to poor angiogenesis. 2,3,5,4'-Tetrahydroxystilbene-2-O- β -D-glucoside is a natural polyphenol, has antioxidant and anti-inflammatory activity, and can protect from ischemic neuronal injury. However, little is known about the effect of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside on brain microcirculation after stroke. This study aimed at investigating the influence of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside on brain lesions and angiogenesis after stroke. Sprague-Dawley rats were subjected to right middle cerebral artery occlusion and treated with vehicle, nimodipine, or different doses of 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside daily beginning at 6 h post-middle cerebral artery occlusion for 14 days. The volume of cerebral infarcts, degree of neurological dysfunction, and level of microvessel density were determined longitudinally. The levels of vascular endothelial growth factor, angiopoietin 1, and angiopoietin receptor-2 expression in the brain lesions were characterized by immunohistochemistry and Western blot assays at 14 days post-middle cerebral artery occlusion. We found that 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly promoted postoperative recovery in rats by minimizing the volume of cerebral infarcts and improving neurological dysfunction in a dose- and time-dependent manner. Additionally, 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly increased the microvessel density in the brain and upregulated CD31 expression in ischemic penumbra, relative to that in the control. Finally, treatment with 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside significantly upregulated the relative levels of vascular endothelial growth factor, angiopoietin 1, and angiopoietin receptor-2 expression in the brain lesions of rats. Therefore, these data indicated that 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside treatment promoted angiogenesis and recovery from ischemia/reperfusion-induced brain injury in rats. Georg Thieme Verlag KG Stuttgart · New York.
Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis.
Qi, Cuiling; Lan, Haimei; Ye, Jie; Li, Weidong; Wei, Ping; Yang, Yang; Guo, Simei; Lan, Tian; Li, Jiangchao; Zhang, Qianqian; He, Xiaodong; Wang, Lijing
2014-07-01
Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous cell carcinoma, along with loss of basement membrane, by upregulation of MMP2 expression.
Kurabayashi, Atsushi; Inoue, Keiji; Fukuhara, Hideo; Karashima, Takashi; Fukata, Satoshi; Kawada, Chiaki; Shuin, Taro; Furihata, Mutsuo
2015-08-01
The aim of this study was to investigate whether the third-generation nitrogen-containing bisphosphonate (YM529) can inhibit the progression of established bone renal cell carcinoma (RCC) and to elucidate its mechanism. Antiproliferative effect and apoptosis induction of RCC cells and mouse osteoclasts by YM529 and/or interferon-alpha (IFN-α) were evaluated in vitro using cell counting and in vivo using soft X-ray, the TUNEL method and tartrate-resistant acid phosphatase stain. For the in vivo study, male athymic BALB/cA Jc1-nu nude mice bearing human RCC cell line RBM1-IT4 cells were treated with YM529 and/or IFN-α. The biological activity of osteoclasts was evaluated using the pit formation assay. The antiangiogenetic effect by YM529 and/or IFN-α was analyzed using micro-vessel density and in situ mRNA hybridization. Osteoclast number in bone tumors was decreased in YM529-treated mouse. YM529 also inhibited osteoclast activity and proliferation in vitro, whereas basic fibroblast growth factor expressions and micro-vessel density within tumors were inhibited by IFN-α. Neither YM529 nor IFN-α alone significantly inhibited the growth of established bone metastatic tumors. Combined treatment with YM529 and IFN-α may be beneficial in patients with human RCC bone metastasis. Their effects are mediated by osteoclast recruitment inhibition and inactivation by YM529 and antiangiogenesis by IFN-α. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Yu, Z; Wang, T; Luan, X
1997-06-01
Sixty-one laryngeal and hypopharyngeal squamous cell, carcinoma (LC, HPC) tissue slides were immunochemically stained using LSAB method to study epithelium cells. The results demonstrated that (1) intratumor microvessel density (ITMD) in LC and HPC group was higher than that of the benign group (P < 0.05). ITMD was higher in the subgroup of LC and HPC with positive lymph node positive than that with negative lymph nodes. This result suggest that ITMD is relevant not only to the nature of the tumor, but also to lymph node metastasis. The level of ITMD is an important predictive sign of metastasis. (2) The relationship between ITMD and the clinical staging had no statistic significance (P > 0.05). (3) The analysis on the relationship between ITMD and pathologic differentiation indicated that the level of ITMD raised gradually with the lowering of the pathologic differentiation.
A mathematical model for filtration and macromolecule transport across capillary walls.
Facchini, L; Bellin, A; Toro, E F
2014-07-01
Metabolic substrates, such as oxygen and glucose, are rapidly delivered to the cells of large organisms through filtration across microvessels walls. Modelling this important process is complicated by the strong coupling between flow and transport equations, which are linked through the osmotic pressure induced by the colloidal plasma proteins. The microvessel wall is a composite media with the internal glycocalyx layer exerting a strong sieving effect on macromolecules, with respect to the external layer composed by the endothelial cells. The physiological structure of the microvessel is represented as the superimposition of two membranes with different properties; the inner membrane represents the glycocalyx, while the outer membrane represents the surrounding endothelial cells. Application of the mass conservation principle and thermodynamic considerations lead to a model composed of two coupled second-order ordinary differential equations for the hydrostatic and osmotic pressures, one, expressing volumetric mass conservation and the other, which is non-linear in the unknown osmotic pressure, expressing macromolecules mass conservation. Despite the complexity of the system, the assumption that the properties of the layers are piece-wise constant allows us to obtain analytical solutions for the two pressures. This solution is in agreement with experimental observations, which contrary to common belief, show that flow reversal cannot occur in steady-state conditions unless the hydrostatic pressure in the lumen drops below physiologically plausible values. The observed variations of the volumetric flux and the solute mass flux in case of a significant reduction of the hydrostatic pressure at the lumen are in qualitative agreement with observed variations during detailed experiments reported in the literature. On the other hand, homogenising the microvessel wall into a single-layer membrane with equivalent properties leads to a very different distribution of pressure across the microvessel walls, not consistent with observations. Copyright © 2014 Elsevier Inc. All rights reserved.
Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Adur, Malavika K; Utterback, Chet W; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S
2015-01-01
Limited resolution of transvaginal ultrasound (TVUS) scanning is a significant barrier to early detection of ovarian cancer (OVCA). Contrast agents have been suggested to improve the resolution of TVUS scanning. Emerging evidence suggests that expression of interleukin 16 (IL-16) by the tumor epithelium and microvessels increases in association with OVCA development and offers a potential target for early OVCA detection. The goal of this study was to examine the feasibility of IL-16-targeted contrast agents in enhancing the intensity of ultrasound imaging from ovarian tumors in hens, a model of spontaneous OVCA. Contrast agents were developed by conjugating biotinylated anti-IL-16 antibodies with streptavidin coated microbubbles. Enhancement of ultrasound signal intensity was determined before and after injection of contrast agents. Following scanning, ovarian tissues were processed for the detection of IL-16 expressing cells and microvessels. Compared with precontrast, contrast imaging enhanced ultrasound signal intensity significantly in OVCA hens at early (P < 0.05) and late stages (P < 0.001). Higher intensities of ultrasound signals in OVCA hens were associated with increased frequencies of IL-16 expressing cells and microvessels. These results suggest that IL-16-targeted contrast agents improve the visualization of ovarian tumors. The laying hen may be a suitable model to test new imaging agents and develop targeted anti-OVCA therapeutics.
Prognostic significance of thymidylate synthase (TS) expression in cutaneous malignant melanoma.
Shimizu, A; Kaira, K; Yasuda, M; Asao, T; Ishikawa, O
2016-01-01
Thymidylate synthase (TS) plays an essential role in the pathogenesis and development of cancer, and TS-targeting agents have been widely used against different types of cancers. However, it remains still unclear whether or not TS is expressed in malignant melanoma. We conducted the clinicopathological study to investigate the prognostic significance of TS expression in cutaneous malignant melanoma. Ninety-nine patients with surgically resected cutaneous malignant melanoma were assessed. Tumor sections were stained by immunohistochemistry for TS, Ki-67, and microvessel density (MVD) determined by CD34. TS was positively expressed in 26% (26 out of 99). The expression of TS was significantly associated with T factor, cell proliferation (Ki-67) and MVD (CD34). By Spearman's rank test, TS expression was significantly correlated with Ki67 and CD34. By univariate analysis, ulceration, disease stage, TS, Ki-67 and CD34 had a significant relationship with survival. Multivariate analysis confirmed that TS was an independent prognostic factor for poor prognosis of cutaneous malignant melanoma. The positive expression of TS could be a useful marker for predicting poor prognosis in patients with cutaneous malignant melanoma, and TS-targeting agents may be worth trying for the treatment of this dismal disease.
Santhanam, Anantha Vijay R.; d’Uscio, Livius V.; He, Tongrong; Katusic, Zvonimir S.
2012-01-01
Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH4) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH4-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH4 and increased the ratio of BH4 to 7,8-BH2 (P<0.05, n=6–9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6–9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6–9) and catalase (P<0.05, n=6–8). PPARδ activation increased the total nitrite and nitrate (NO2 + NO3) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH4-deficient cerebral circulation. PMID:22982594
Santhanam, Anantha Vijay R; d'Uscio, Livius V; He, Tongrong; Katusic, Zvonimir S
2012-11-05
Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH₄) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH₄-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH₄ and increased the ratio of BH₄ to 7,8-BH₂ (P<0.05, n=6-9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6-9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6-9) and catalase (P<0.05, n=6-8). PPARδ activation increased the total nitrite and nitrate (NO₂+NO₃) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH₄-deficient cerebral circulation. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.
1995-07-01
Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.
Lozeron, Pierre; Mantsounga, Chris S; Broqueres-You, Dong; Dohan, Anthony; Polivka, Marc; Deroide, Nicolas; Silvestre, Jean-Sébastien; Kubis, Nathalie; Lévy, Bernard I
2015-09-01
Neuropathy is the most common complication of the peripheral nervous system during the progression of diabetes. The pathophysiology is unclear but may involve microangiopathy, reduced endoneurial blood flow, and tissue ischemia. We used a mouse model of type 1 diabetes to study parallel alterations of nerves and microvessels following tissue ischemia. We designed an easily reproducible model of ischemic neuropathy induced by irreversible ligation of the femoral artery. We studied the evolution of behavioral function, epineurial and endoneurial vessel impairment, and large nerve myelinated fiber as well as small cutaneous unmyelinated fiber impairment for 1 month following the onset of ischemia. We observed a more severe hindlimb dysfunction and delayed recovery in diabetic animals. This was associated with reduced density of large arteries in the hindlimb and reduced sciatic nerve epineurial blood flow. A reduction in sciatic nerve endoneurial capillary density was also observed, associated with a reduction in small unmyelinated epidermal fiber number and large myelinated sciatic nerve fiber dysfunction. Moreover, vascular recovery was delayed, and nerve dysfunction was still present in diabetic animals at day 28. This easily reproducible model provides clear insight into the evolution over time of the impact of ischemia on nerve and microvessel homeostasis in the setting of diabetes. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
The expression of pigment epithelium-derived factor in bladder transitional cell carcinoma.
Jang, Tae Jung; Kim, Sung Woo; Lee, Kyung Seop
2012-06-01
Pigment epithelium-derived factor (PEDF) is an anti-angiogenic factor. The purpose of this study is to examine the involvement of PEDF in the angiogenesis and biological behavior of bladder transitional cell carcinoma (TCC). We examined the expression of PEDF in 99 bladder TCCs and ten non-neoplastic tissues, and evaluated microvessel density (MVD). The positive immunoreactivity for PEDF was seen in normal urothelium in 60% (6/10) and TCC in 13% (13/99). The PEDF expression had a significant correlation with MVD, i.e., a low MVD in 42% (5/12), a middle MVD in 11% (8/76) and a high MVD 0% (0/11) of tumors. The PEDF expression was not significantly correlated with the differentiation and invasion of TCC, but the degree of MVD was significantly higher in both high grade TCC and the pT2 tumors. The degree of PEDF expression is significantly higher in normal bladder urothelium than bladder TCC; it is inversely correlated with the angiogenesis; and it is not related to the differentiation and progression of TCC. It can therefore be concluded that bladder TCC would initially occur if there is a lack of the PEDF expression.
The Expression of Pigment Epithelium-Derived Factor in Bladder Transitional Cell Carcinoma
Kim, Sung Woo; Lee, Kyung Seop
2012-01-01
Background Pigment epithelium-derived factor (PEDF) is an anti-angiogenic factor. The purpose of this study is to examine the involvement of PEDF in the angiogenesis and biological behavior of bladder transitional cell carcinoma (TCC). Methods We examined the expression of PEDF in 99 bladder TCCs and ten non-neoplastic tissues, and evaluated microvessel density (MVD). Results The positive immunoreactivity for PEDF was seen in normal urothelium in 60% (6/10) and TCC in 13% (13/99). The PEDF expression had a significant correlation with MVD, i.e., a low MVD in 42% (5/12), a middle MVD in 11% (8/76) and a high MVD 0% (0/11) of tumors. The PEDF expression was not significantly correlated with the differentiation and invasion of TCC, but the degree of MVD was significantly higher in both high grade TCC and the pT2 tumors. Conclusions The degree of PEDF expression is significantly higher in normal bladder urothelium than bladder TCC; it is inversely correlated with the angiogenesis; and it is not related to the differentiation and progression of TCC. It can therefore be concluded that bladder TCC would initially occur if there is a lack of the PEDF expression. PMID:23110012
Bowers, D T; Chhabra, P; Langman, L; Botchwey, E A; Brayman, K L
2011-11-01
Nanofiber scaffolds could improve islet transplant success by physically mimicking the shape of extracellular matrix and by acting as a drug-delivery vehicle. Scaffolds implanted in alternate transplant sites must be prevascularized or very quickly vascularized following transplantation to prevent hypoxia-induced islet necrosis. The local release of the S1P prodrug FTY720 induces diameter enlargement and increases in length density. The objective of this preliminary study was to evaluate length and diameter differences between diabetic and nondiabetic animals implanted with FTY720-containing electrospun scaffolds using intravital imaging of dorsal skinfold window chambers. Electrospun mats of randomly oriented fibers we created from polymer solutions of PLAGA (50:50 LA:GA) with and without FTY720 loaded at a ratio of 1:200 (FTY720:PLAGA by wt). The implanted fiber mats were 4 mm in diameter and ∼0.2 mm thick. Increases in length density and vessel diameter were assessed by automated analysis of images over 7 days in RAVE, a Matlab program. Image analysis of repeated measures of microvessel metrics demonstrated a significant increase in the length density from day 0 to day 7 in the moderately diabetic animals of this preliminary study (P < .05). Furthermore, significant differences in length density at day 0 and day 3 were found between recently STZ-induced moderately diabetic and nondiabetic animals in response to FTY720 local release (P < .05, Student t test). Driving the islet revascularization process using local release of factors, such as FTY720, from biodegradable polymers makes an attractive system for the improvement of islet transplant success. Preliminary study results suggest that a recently induced moderately diabetic state may potentiate the mechanism by which local release of FTY720 from polymer fibers increases length density of microvessels. Therefore, local release of S1P receptor-targeted drugs is under further investigation for improvement of transplanted islet function. Copyright © 2011. Published by Elsevier Inc.
Interleukin-8 is a prognostic indicator in human hilar cholangiocarcinoma
Sun, Qi; Li, Fanni; Sun, Fengkai; Niu, Jun
2015-01-01
Interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9) and neovascularization have been implicated to be associated with biological processes, especially cancer progression. However, few studies have investigated the role of IL-8 in human hilar cholangiocarcinoma. In this study we detected the expression of IL-8 combined with MMP-9 and microvessel density (MVD) in hilar cholangiocarcinoma to evaluate their clinicopathological significance and prognostic value. A total of 62 patients with hilar cholangiocarcinoma who underwent curative surgery were enrolled in this study. The expression of IL-8, MMP-9 and MVD were examined immunohistochemically. The correlation of IL-8 with MMP-9 expression, MVD, clinicopathological features and survival time of patients were then analyzed. Expression of IL-8 was observed in 56.5% tumors, which was related to advanced TNM stage (P = 0.026) and tumor recurrence (P = 0.018). IL-8 had a positive correlation with MMP-9 expression and MVD. Furthermore, patients with high IL-8 expression had a significantly shorter overall survival than those with low IL-8 expression (P = 0.01). Multivariate analysis confirmed IL-8 as an independent prognostic factor (P = 0.005). In conclusion, IL-8 expression significantly correlated with MMP-9 expression and MVD, and IL-8 was a valuable prognostic factor for human hilar cholangiocarcinoma. PMID:26339407
Pig but not Human Interferon-γ Initiates Human Cell-Mediated Rejection of Pig Tissue in vivo
NASA Astrophysics Data System (ADS)
Sultan, Parvez; Murray, Allan G.; McNiff, Jennifer M.; Lorber, Marc I.; Askenase, Philip W.; Bothwell, Alfred L. M.; Pober, Jordan S.
1997-08-01
Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ ) induced human CD4+ and CD8+ T cells and macrophages to more extensively infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.
EMMPRIN as a novel target for pancreatic cancer therapy
Kim, Hyunki; Zhai, Guihua; Liu, Zhiyong; Samuel, Sharon; Shah, Nemil; Helman, Emily E.; Knowles, Joseph A.; Stockard, Cecil R.; Fineberg, Naomi S.; Grizzle, William E.; Zhou, Tong; Zinn, Kurt R.; Rosenthal, Eben L.
2013-01-01
The objective of this study was to evaluate extracelluar matrix metalloproteinase (EMMPRIN) as a novel target in orthotopic pancreatic-cancer murine models. MIA PaCa-2 human pancreatic tumor cells were implanted in groups 1 and 3-7, while MIA PaCa-2 EMMPRIN knockdown cells were implanted in group 2. Dosing with anti-EMMPRIN antibody started immediately after implantation for groups 1-3 (residual tumor model) and at 21 days after cell implantation for groups 4-7 (established tumor model). Groups 3, 5, and 7 were treated with anti-EMMRPIN antibody (0.2-1.0 mg) twice weekly for 2-3 weeks, while the other groups served as the control. In residual tumor model, tumor growth of anti-EMMPRIN treated group was successfully arrested for 21 days (15±4 mm3), significantly lower than that of EMMPRIN knockdown group (80±15 mm3; p=0.001) or control group (240±41 mm3; p<0.001). In established tumor model, anti-EMMPRIN therapy lowered tumor-volume increase about 40% compared with control regardless of dose amount. Ki67-expressed cell densities of group 5 was 939±150 mm−2, significantly lower than that of group 4 (1709±145 mm−2; p=0.006). Microvessel density of group 5 (30±6 mm−2) was also significantly lower than that of group 4 (53±5 mm−2; p=0.014), while the microvessel size of group 5 (191±22 μm2) was significantly larger than that of group 4 (113±26 μm2; p=0.049). These data show the high potential of anti-EMMPRIN therapy for pancreatic cancer, and support its clinical translation. PMID:21730821
Efficacy of Sunitinib and Radiotherapy in Genetically Engineered Mouse Model of Soft-Tissue Sarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Sam S.; Stangenberg, Lars; Lee, Yoon-Jin
Purpose: Sunitinib (SU) is a multitargeted receptor tyrosine kinase inhibitor of the vascular endothelial growth factor and platelet-derived growth factor receptors. The present study examined SU and radiotherapy (RT) in a genetically engineered mouse model of soft tissue sarcoma (STS). Methods and Materials: Primary extremity STSs were generated in genetically engineered mice. The mice were randomized to treatment with SU, RT (10 Gy x 2), or both (SU+RT). Changes in the tumor vasculature before and after treatment were assessed in vivo using fluorescence-mediated tomography. The control and treated tumors were harvested and extensively analyzed. Results: The mean fluorescence in themore » tumors was not decreased by RT but decreased 38-44% in tumors treated with SU or SU+RT. The control tumors grew to a mean of 1378 mm{sup 3} after 12 days. SU alone or RT alone delayed tumor growth by 56% and 41%, respectively, but maximal growth inhibition (71%) was observed with the combination therapy. SU target effects were confirmed by loss of target receptor phosphorylation and alterations in SU-related gene expression. Cancer cell proliferation was decreased and apoptosis increased in the SU and RT groups, with a synergistic effect on apoptosis observed in the SU+RT group. RT had a minimal effect on the tumor microvessel density and endothelial cell-specific apoptosis, but SU alone or SU+RT decreased the microvessel density by >66% and induced significant endothelial cell apoptosis. Conclusion: SU inhibited STS growth by effects on both cancer cells and tumor vasculature. SU also augmented the efficacy of RT, suggesting that this combination strategy could improve local control of STS.« less
Prognostic significance of XRCC4 expression in hepatocellular carcinoma
Huang, Xiao-Ying; Yao, Jin-Guang; Wang, Chao; Wei, Zhong-Hong; Ma, Yun; Wu, Xue-Min; Luo, Chun-Ying; Xia, Qiang; Long, Xi-Dai
2017-01-01
Background Our previous investigations have shown that the variants of X-ray repair complementing 4 (XRCC4) may be involved in hepatocellular carcinoma (hepatocarcinoma) tumorigenesis. This study aimed to investigate the possible prognostic significance of XRCC4 expression for hepatocarcinoma patients and possible value for the selection of transarterial chemoembolization (TACE) treatment. Materials and Methods We conducted a hospital-based retrospective analysis (including 421 hepatocarcinoma cases) to analyze the effects of XRCC4 on hepatocarcinoma prognosis and TACE. The levels of XRCC4 expression were tested using immunohistochemistry. The sensitivity of cancer cells to anti-cancer drug doxorubicin was evaluated using the half-maximal inhibitory concentration (IC50). Results XRCC4 expression was significantly correlated with pathological features including tumor stage, liver cirrhosis, and micro-vessel density. XRCC4 expression was an independent prognostic factor of hepatocarcinoma, and TACE treatments had no effects on prognosis of hepatocarcinoma patients with high XRCC4 expression. More intriguingly, TACE improved the prognosis of hepatocarcinoma patients with low XRCC4 expression. Functionally, XRCC4 overexpression increased while XRCC4 knockdown reduced the IC50 of cancer cells to doxorubicin. Conclusions These results suggest that XRCC4 may be an independent prognostic factor for hepatocarcinoma patients, and that decreasing XRCC4 expression may be beneficial for post-operative adjuvant TACE treatment in hepatocarcinoma. PMID:29152133
Debbage, P L; Sölder, E; Seidl, S; Hutzler, P; Hugl, B; Ofner, D; Kreczy, A
2001-10-01
We previously applied intravital lectin perfusion in mouse models to elucidate mechanisms underlying vascular permeability. The present work transfers this technique to human models, analysing vascular permeability in macro- and microvessels. Human vascular endothelial surface carbohydrate biochemistry differs significantly from its murine counterpart, lacking alpha-galactosyl epitopes and expressing the L-fucose moiety in the glycocalyx; the poly-N-lactosamine glycan backbone is common to all mammals. We examined extensively lectin binding specificities in sections and in vivo, and then applied the poly-N-lactosamine-specific lectin LEA and the L-fucose-specific lectin UEA-I in human intravital perfusions. Transendothelial transport differed in macrovessels and microvessels. In microvessels of adult human fat tissue, rectal wall and rectal carcinomas, slow transendothelial transport by vesicles was followed by significant retention at the subendothelial basement membrane; paracellular passage was not observed. Passage time exceeded 1 h. Thus we found barrier mechanisms resembling those we described previously in murine tissues. In both adult and fetal macrovessels, the vena saphena magna and the umbilical vein, respectively, rapid passage across the endothelial lining was observed, the tracer localising completely in the subendothelial tissues within 15 min; vesicular transport was more rapid than in microvessels, and retention at the subendothelial basement membrane briefer.
Zhang, Yan; Schuetz, John D; Elmquist, William F; Miller, Donald W
2004-11-01
Several multidrug resistance-associated protein (MRP) homologs are expressed in brain microvessel endothelial cells forming the blood-brain barrier (BBB). The influence of these MRP transporters on BBB permeability will be dependent on their localization within the brain microvessel endothelial cells. Using two different and complementary approaches, the localization of various MPR homologs (MRP1, MRP4, and MRP5) was examined in primary cultured bovine brain microvessel endothelial cells (BBMECs). The first approach involved centrifugal separation of apical and basolateral plasma membranes of cultured BBMECs. The membrane fractions were then subjected to Western blot analysis for MRPs. The second approach used confocal laser scanning microscopy to determine membrane localization of MRPs in BBMECs. Results show a predominantly apical plasma membrane distribution for MRP1 and MRP5, and an almost equal distribution of MRP4 on the apical and basolateral plasma membrane of BBMECs. These studies provide the first demonstration of the localization of MRP1, MRP4, and MRP5 homologs in brain microvessel endothelial cells. The present studies also indicate that the localization of MRPs in the endothelial cells forming the BBB is different from that observed in polarized epithelial cells and thus may contribute to the reduced entry and enhanced elimination of organic anions and nucleotides in the brain.
Li, Ting; Liao, Qinping; Zhang, Hong; Gao, Xuelian; Li, Xueying; Zhang, Miao
2014-01-01
The presence of the G-spot (an assumed erotic sensitive area in the anterior wall of the vagina) remains controversial. We explored the histomorphological basis of the G-spot. Biopsies were drawn from a 12 o'clock direction in the distal- and proximal-third areas of the anterior vagina of 32 Chinese subjects. The total number of protein gene product 9.5-immunoreactive nerves and smooth muscle actin-immunoreactive blood vessels in each specimen was quantified using the avidin-biotin-peroxidase assay. Vaginal innervation was observed in the lamina propria and muscle layer of the anterior vaginal wall. The distal-third of the anterior vaginal wall had significantly richer small-nerve-fiber innervation in the lamina propria than the proximal-third (p = 0.000) and in the vaginal muscle layer (p = 0.006). There were abundant microvessels in the lamina propria and muscle layer, but no small vessels in the lamina propria and few in the muscle layer. Significant differences were noted in the number of microvessels when comparing the distal- with proximal-third parts in the lamina propria (p = 0.046) and muscle layer (p = 0.002). Significantly increased density of nerves and microvessels in the distal-third of the anterior vaginal wall could be the histomorphological basis of the G-spot. Distal anterior vaginal repair could disrupt the normal anatomy, neurovascular supply and function of the G-spot, and cause sexual dysfunction.
Qiu, Lian-bo; Ding, Gui-rong; Zhang, Ya-mei; Zhou, Yan; Wang, Xiao-wu; Li, Kang-chu; Xu, Sheng-long; Tan, Juan; Zhou, Jia-xing; Guo, Guo-zhen
2009-09-01
To study the effect of electromagnetic pulse (EMP) on the permeability of blood-brain barrier, tight junction (TJ)-associated protein expression and localization in rats. 66 male SD rats, weighing (200 approximately 250) g, were sham or whole-body exposed to EMP at 200 kV/m for 200 pulses. The repetition rate was 1 Hz. The permeability of the blood-brain barrier in rats was assessed by albumin immunohistochemistry. The expression of typical tight junction protein ZO-1 and occludin in both cerebral cortex homogenate and cerebral cortex microvessel homogenate was analyzed by the Western blotting and the distribution of ZO-1 and occludin was examined by immunofluorescence microscopy. In the sham exposure rats, no brain capillaries showed albumin leakage, at 0.5 h after 200 kV/m EMP exposure for 200 pulses; a few brain capillaries with extravasated serum albumin was found, with the time extended, the number of brain capillaries with extravasated serum albumin increased, and reached the peak at 3 h, then began to recover at 6 h. In addition, no change in the distribution of the occludin was found after EMP exposure. Total occludin expression had no significant change compared with the control. However, the expression level of ZO-1 significantly decreased at 1 h and 3 h after EMP exposure in both cerebral cortex homogenate and cerebral cortex microvessel homogenate. Furthermore, immunofluorescence studies also showed alterations in ZO-1 protein localization in cerebral cortex microvessel. The EMP exposure (200 kV/m, 200 pulses) could increase blood-brain barrier permeability in rat, and this change is associated with specific alterations in tight junction protein ZO-1.
Alomar, Fadhel; Singh, Jaipaul; Jang, Hee‐Seong; Rozanzki, George J; Shao, Chun Hong; Padanilam, Babu J; Mayhan, William G
2016-01-01
Background and Purpose Endothelial cell‐mediated vasodilatation of cerebral arterioles is impaired in individuals with Type 1 diabetes (T1D). This defect compromises haemodynamics and can lead to hypoxia, microbleeds, inflammation and exaggerated ischaemia‐reperfusion injuries. The molecular causes for dysregulation of cerebral microvascular endothelial cells (cECs) in T1D remains poorly defined. This study tests the hypothesis that cECs dysregulation in T1D is triggered by increased generation of the mitochondrial toxin, methylglyoxal, by smooth muscle cells in cerebral arterioles (cSMCs). Experimental Approach Endothelial cell‐mediated vasodilatation, vascular transcytosis inflammation, hypoxia and ischaemia‐reperfusion injury were assessed in brains of male Sprague‐Dawley rats with streptozotocin‐induced diabetes and compared with those in diabetic rats with increased expression of methylglyoxal‐degrading enzyme glyoxalase‐I (Glo‐I) in cSMCs. Key Results After 7–8 weeks of T1D, endothelial cell‐mediated vasodilatation of cerebral arterioles was impaired. Microvascular leakage, gliosis, macrophage/neutrophil infiltration, NF‐κB activity and TNF‐α levels were increased, and density of perfused microvessels was reduced. Transient occlusion of a mid‐cerebral artery exacerbated ischaemia‐reperfusion injury. In cSMCs, Glo‐I protein was decreased, and the methylglyoxal‐synthesizing enzyme, vascular adhesion protein 1 (VAP‐1) and methylglyoxal were increased. Restoring Glo‐I protein in cSMCs of diabetic rats to control levels via gene transfer, blunted VAP‐1 and methylglyoxal increases, cECs dysfunction, microvascular leakage, inflammation, ischaemia‐reperfusion injury and increased microvessel perfusion. Conclusions and Implications Methylglyoxal generated by cSMCs induced cECs dysfunction, inflammation, hypoxia and exaggerated ischaemia‐reperfusion injury in diabetic rats. Lowering methylglyoxal produced by cSMCs may be a viable therapeutic strategy to preserve cECs function and blunt deleterious downstream consequences in T1D. PMID:27611446
Sun, Yanmei; Che, Xuan; Zhu, Libo; Zhao, Mengdan; Fu, Guofang; Huang, Xiufeng; Xu, Hong; Hu, Fuqiang; Zhang, Xinmei
2012-01-01
Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF) is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF) expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis.
Park, Sung-Jin; Kim, Myung-Jin; Kim, Yu-Kyoung; Kim, Soung-Min; Park, Ju-Yong; Myoung, Hoon
2010-06-01
The purpose of this study was to evaluate the potency of EGFR pathway inhibition achieved by combining cetuximab, an anti-EGFR monoclonal antibody, and genistein, a tyrosine kinase inhibitor, which target extracellular and intracellular domains of the receptor, respectively, in oral squamous cell carcinoma (OSCC) in vitro and in vivo. Two OSCC cell lines, HSC3 and KB, were treated with cetuximab (C, 0-400mug/ml), genistein (G, 0-80muM), or a combination of both at a range of concentrations. Downstream protein expression of EGFR, p-EGFR, and p-Akt were evaluated by Western blot. Cell proliferation and apoptosis indices were calculated to assess anti-cancer effects in vitro. The in vivo effects of cetuximab and genistein on tumor cell growth were examined using an OSCC xenografted nude mouse model and immunohistochemical analyses of proliferation (PCNA) and microvessel density (CD31). Treatment of cells with dual anti-EGFR agents reduced the expressions of p-EGFR, and p-Akt in HSC3 cell line, but there was no significant difference in downregulation between cetuximab alone and in combination with genistein in KB cells. Both HSC3 and KB cells showed a dose-dependent decrease in cell proliferation significantly with single agent treatment and combination (p<0.05). In low concentration, combined cetuximab and genistein therapy resulted in additive growth inhibition and more apoptosis compared to that achieved with single-agent exposure in both cell lines. A combination of cetuximab and genistein significantly inhibited tumor growth and caused a substantial growth delay in in vivo models of both cell lines while each single-agent exposure caused no delay of tumor growth. Immunohistochemical staining with PCNA revealed that the group receiving combined cetuximab and genistein exhibited the lowest number of proliferating cells and microvessel density (p<0.05). Combined therapy with genistein and cetuximab can add the potency of EGFR signaling inhibition. Because not all OSCC cell types appear to respond uniformly, however, selective targeting of distinct molecular pathways is required for effective clinical response. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Vascular endothelial cells express isoforms of protein kinase A inhibitor.
Lum, Hazel; Hao, Zengping; Gayle, Dave; Kumar, Priyadarsini; Patterson, Carolyn E; Uhler, Michael D
2002-01-01
The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.
Vacca, A; Ribatti, D; Ruco, L; Giacchetta, F; Nico, B; Quondamatteo, F; Ria, R; Iurlaro, M; Dammacco, F
1999-01-01
Node biopsies of 30 benign lymphadenopathies and 71 B-cell non-Hodgkin's lymphomas (B-NHLs) were investigated for microvessel and macrophage counts using immunohistochemistry and morphometric analysis. Both counts were significantly higher in B-NHL. Moreover, when these were grouped into low-grade and high-grade lymphomas, according to the Kiel classification and Working Formulation (WF), statistically significant higher counts were found in the high-grade tumours. Immunohistochemistry and electron microscopy revealed a close spatial association between microvessels and macrophages. Overall, the results suggest that, in analogy to what has already been shown in solid tumours, angiogenesis occurring in B-NHLs increases with tumour progression, and that macrophages promote the induction of angiogenesis via the release of their angiogenic factors. © 1999 Cancer Research Campaign PMID:10070898
Structural and functional bases of laser-microvessels interaction
NASA Astrophysics Data System (ADS)
Kozlov, Valentine I.; Terman, Oleg A.; Builin, Vitalij; Lebedeva, Natalia A.; Samoilov, Nickolai
1993-07-01
Structural and functional microcirculatory changes in tissues and organs (muscles, liver, derma, epinephros, brain cortex) under various dosages and powers of laser irradiation in the red (633 nm) and near infrared (890 nm) spectrum regions have been studied in experiments and clinic. In case of nonsensitized tissues the `photoactivation' range of power densities and doses of laser irradiation has been established. We have identified a short-term reaction of microvessels and a long-term reaction (adaptation). The former consists of intensification of microcirculation and metabolism rise in parenchymatous cells; the latter is connected with neoangiogenesis acceleration. The intensification of the blood microcirculation includes a dilation of microvessels of all orders, an amplification of arteriolar vasomotions and an opening of `reserved' capillaries. Data on the structural reconstruction of myocytes and endotheliocytes have shown that the high differential parenchymatous cells and its membrane structures are sensitive to low energy laser irradiation and, on the other hand, under low energy laser irradiation there is an activation of synthetic processes in the cells. Thus, during the laser-tissue interaction in such complex system as human organism the microcirculation plays the key role among the other systems.
Angiogenesis Markers in Gynecological Tumors and Patents for Anti-Angiogenic Approach: Review.
Abdalla, Douglas R; Simoens, Cindy; Bogers, John-Paul; Murta, Eddie F C; Michelin, Marcia A
2015-01-01
The formation of a tumor-associated vascular network is an important step in understanding the stages of tumor progression. This review aims to highlight the main markers of induction, proliferation and inhibition of angiogenesis, as well as the quantification of microvessel density, correlated with preclinical and clinical research in gynecologic cancers and also discussed related patents. Studies show that in the most advanced cases of gynecological cancers, biomarkers such as VEGF (Vascular Endothelial Growth Factor), MMP (Matrix Metalloproteinase), CD105 (Endoglin), TIMP (tissue inhibitors of metalloproteinases) and VASH (Vasohibin) are more expressed compared to healthy individuals. Continuous evaluation of these biomarkers in cancer cases could serve in the future as a basis for development of new therapeutic approaches, leading to a good response to cancer treatment, and thus increase survival of cancer patients.
Feng, Chen-Chen; Wang, Pao-Hsun; Ding, Qiang; Guan, Ming; Zhang, Yuan-Fang; Jiang, Hao-Wen; Wen, Hui; Wu, Zhong
2013-02-01
Angiogenesis is a pivotal process on which solid tumor growth is substantially dependent. Pigment epithelium-derived factor (PEDF) is the most potent natural anti-angiogenic factor, which has seldom been studied in bladder tumor, and whose functioning pathway remains unclear. We have thus investigated PEDF expression in relation to tumor necrosis factor-α (TNF-α) and microvessel density (MVD) with immunohistochemistry. Antibodies of PEDF and TNF-α were examined by Western blotting before immunohistochemistry. Sixty-four urothelial tumor sections and 23 normal controls were stained and expression of PEDF, TNF-α, and MVD were studied. Decreased PEDF expression and increased TNF-α expression was noticed in tumorous tissue compared with healthy urothelium. Lower PEDF expression was related to higher tumor grade but stage. Increased TNF-α expression was noticed in recurrent, larger tumors as well as in tumors with progression in grade and stage. Expression of PEDF and TNF-α was correlated in bladder tumor. PEDF or TNF-α was correlated with MVD negatively or positively, respectively, in cancerous tissue and tumorous grouping without correlation in papillary urothelial neoplasm of low malignant potential. Expressional change of PEDF and TNF-α is in relation to angiogenesis of bladder tumor, especially in bladder cancer development. Copyright © 2013 Elsevier Inc. All rights reserved.
Wu, Qiu-Wan; Yang, Qing-Mo; Huang, Yu-Fan; She, Hong-Qiang; Liang, Jing; Yang, Qiao-Lu; Zhang, Zhi-Ming
2014-01-01
Matrix metalloproteinase 9 (MMP-9) is a type-IV collagenase that is highly expressed in breast cancer, but its exact role in tumor progression and metastasis is unclear. MMP-9 mRNA and protein expression was examined by real-time reverse transcriptase PCR and immunohistochemical staining, respectively, in 41 breast cancer specimens with matched peritumoral benign breast epithelial tissue and suspicious metastatic axillary lymph nodes. Lymph vessels were labeled with D2-40 and lymphatic microvessel density (LMVD) was calculated. Correlation of MMP-9 protein expression with clinicopathological parameters and LMVD was also evaluated. MMP-9(+) staining in breast cancer specimens (35/41, 85.4%) was higher than in matched epithelium (21/41, 51.2%; P<0.05) and lymph nodes (13/41, 31.7%; P<0.001). Higher MMP-9 mRNA expression was also detected in tumor specimens compared with matched epithelial tissues and lymph nodes (P<0.05). Elevated MMP-9 expression was correlated with lymph node metastasis and LMVD (P<0.05). MMP-9 was overexpressed in breast cancer specimens compared with peritumoral benign breast epithelium and lymph nodes. Moreover, its expression in the matched epithelium and lymph nodes was positively associated with lymph node metastasis, and its expression in lymph nodes was positively associated with lymphangiogenesis in breast cancer. Thus, MMP-9 is a potential marker for breast cancer progression.
Chen, H; Liu, R; Liu, J; Tang, J
2012-01-01
This study investigated the antitumour effects of intermediate frequency alternating electric fields (IF-AEF) in a murine melanoma cell line (B16F10) and a mouse tumour model. IF-AEF was applied at 100 kHz. Proliferation of B16F10 cells in vitro was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. IF-AEF was applied in vivo to mice bearing B16F10 tumours. Terminal deoxy nucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay for apoptosis, and immunohistochemical detection of CD34 and vascular endothelial growth factor (VEGF), were performed. IF-AEF inhibited the proliferation of B16F10 cells in an electrical intensity and time-dependent manner. Treatment with IF-AEF for 7 days significantly inhibited the growth of tumours compared with untreated controls. IF-AEF induced apoptosis in vivo and reduced CD34-positive cell numbers; CD34 is a special marker of microvessel density. IF-AEF reduced microvessel density related to tumour growth and may serve as a therapeutic strategy for cancer treatment.
Elhusseiny, A; Cohen, Z; Olivier, A; Stanimirović, D B; Hamel, E
1999-07-01
Acetylcholine is an important regulator of local cerebral blood flow. There is, however, limited information available on the possible sites of action of this neurotransmitter on brain intraparenchymal microvessels. In this study, a combination of molecular and functional approaches was used to identify which of the five muscarinic acetylcholine receptors (mAChR) are present in human brain microvessels and their intimately associated astroglial cells. Microvessel and capillary fractions isolated from human cerebral cortex were found by reverse transcriptase-polymerase chain reaction to express m2, m3, and, occasionally, m1 and m5 receptor subtypes. To localize these receptors to a specific cellular compartment of the vessel wall, cultures of human brain microvascular endothelial and smooth muscle cells were used, together with cultured human brain astrocytes. Endothelial cells invariably expressed m2 and m5 receptors, and occasionally the m1 receptor; smooth muscle cells exhibited messages for all except the m4 mAChR subtypes, whereas messages for all five muscarinic receptors were identified in astrocytes. In all three cell types studied, acetylcholine induced a pirenzepine-sensitive increase (62% to 176%, P<0.05 to 0.01) in inositol trisphosphate, suggesting functional coupling of m1, m3, or m5 mAChR to a phospholipase C signaling cascade. Similarly, coupling of m2 or m4 mAChR to adenylate cyclase inhibition in endothelial cells and astrocytes, but not in smooth muscle cells, was demonstrated by the ability of carbachol to significantly reduce (44% to 50%, P<0.05 to 0.01) the forskolin-stimulated increase in cAMP levels. This effect was reversed by the mAChR antagonist AFDX 384. The results indicate that microvessels are able to respond to neurally released acetylcholine and that mAChR, distributed in different vascular and astroglial compartments, could regulate cortical perfusion and, possibly, blood-brain barrier permeability, functions that could become jeopardized in neurodegenerative disorders such as Alzheimer's disease.
Dapsone protects brain microvascular integrity from high-fat diet induced LDL oxidation.
Zhan, Rui; Zhao, Mingming; Zhou, Ting; Chen, Yue; Yu, Weiwei; Zhao, Lei; Zhang, Tao; Wang, Hecheng; Yang, Huan; Jin, Yinglan; He, Qihua; Yang, Xiaoda; Guo, Xiangyang; Willard, Belinda; Pan, Bing; Huang, Yining; Chen, Yingyu; Chui, Dehua; Zheng, Lemin
2018-06-07
Atherosclerosis was considered to induce many vascular-related complications, such as acute myocardial infarction and stroke. Abnormal lipid metabolism and its peroxidation inducing blood-brain barrier (BBB) leakage were associated with the pre-clinical stage of stroke. Dapsone (DDS), an anti-inflammation and anti-oxidation drug, has been found to have protective effects on vascular. However, whether DDS has a protective role on brain microvessels during lipid oxidation had yet to be elucidated. We investigated brain microvascular integrity in a high-fat diet (HFD) mouse model. We designed this study to explore whether DDS had protective effects on brain microvessels under lipid oxidation and tried to explain the underlying mechanism. In our live optical study, we found that DDS significantly attenuated brain microvascular leakage through reducing serum oxidized low-density lipoprotein (oxLDL) in HFD mice (p < 0.001), and DDS significantly inhibited LDL oxidation in vitro (p < 0.001). Our study showed that DDS protected tight junction proteins: ZO-1 (p < 0.001), occludin (p < 0.01), claudin-5 (p < 0.05) of microvascular endothelial cells in vivo and in vitro. DDS reversed LAMP1 aggregation in cytoplasm, and decreased the destruction of tight junction protein: ZO-1 in vitro. We first revealed that DDS had a protective role on cerebral microvessels through preventing tight junction ZO-1 from abnormal degradation by autophagy and reducing lysosome accumulation. Our findings suggested the significance of DDS in protecting brain microvessels under lipid metabolic disorders, which revealed a novel potential therapeutic strategy in brain microvascular-related diseases.
Horger, Marius; Fallier-Becker, Petra; Thaiss, Wolfgang M; Sauter, Alexander; Bösmüller, Hans; Martella, Manuela; Preibsch, Heike; Fritz, Jan; Nikolaou, Konstantin; Kloth, Christopher
2018-05-03
This study aimed to test the hypothesis that ultrastructural wall abnormalities of lymphoma vessels correlate with perfusion computed tomography (PCT) kinetics. Our local institutional review board approved this prospective study. Between February 2013 and June 2016, we included 23 consecutive subjects with newly diagnosed lymphoma, who were referred for computed tomography-guided biopsy (6 women, 17 men; mean age, 60.61 ± 12.43 years; range, 28-74 years) and additionally agreed to undergo PCT of the target lymphoma tissues. PCT was obtained for 40 seconds using 80 kV, 120 mAs, 64 × 0.6-mm collimation, 6.9-cm z-axis coverage, and 26 volume measurements. Mean and maximum k-trans (mL/100 mL/min), blood flow (BF; mL/100 mL/min) and blood volume (BV) were quantified using the deconvolution and the maximum slope + Patlak calculation models. Immunohistochemical staining was performed for microvessel density quantification (vessels/m 2 ), and electron microscopy was used to determine the presence or absence of tight junctions, endothelial fenestration, basement membrane, and pericytes, and to measure extracellular matrix thickness. Extracellular matrix thickness as well as the presence or absence of tight junctions, basal lamina, and pericytes did not correlate with computed tomography perfusion parameters. Endothelial fenestrations correlated significantly with mean BF deconvolution (P = .047, r = 0.418) and additionally was significantly associated with higher mean BV deconvolution (P < .005). Mean k-trans Patlak correlated strongly with mean k-trans deconvolution (r = 0.939, P = .001), and both correlated with mean BF deconvolution (P = .001, r = 0.748), max BF deconvolution (P = .028, r = 0.564), mean BV deconvolution (P = .001, r = 0.752), and max BV deconvolution (P = .001, r = 0.771). Microvessel density correlated with max k-trans deconvolution (r = 0.564, P = .023). Vascular endothelial growth factor receptor-3 expression (receptor specific for lymphatics) correlated significantly with max k-trans Patlak (P = .041, r = 0.686) and mean BF deconvolution (P = .038, r = 0.695). k-Trans values of PCT do not correlate with ultrastructural microvessel features, whereas endothelial fenestrations correlate with increased intra-tumoral BVs. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Sun, Yanmei; Che, Xuan; Zhu, Libo; Zhao, Mengdan; Fu, Guofang; Huang, Xiufeng; Xu, Hong; Hu, Fuqiang; Zhang, Xinmei
2012-01-01
Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF) is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF) expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis. PMID:23028859
Szubert, Sebastian; Szpurek, Dariusz; Moszynski, Rafal; Nowicki, Michal; Frankowski, Andrzej; Sajdak, Stefan; Michalak, Slawomir
2014-03-01
The primary aim of this paper was to evaluate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its relationship with proangiogenic factors and microvessel density (MVD) in ovarian cancer. The study group included 58 epithelial ovarian cancers (EOCs), 35 benign ovarian tumors, and 21 normal ovaries. The expression of EMMPRIN, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) was assessed by ELISA of tissue homogenates. Antibodies against CD105, CD31, and CD34 were used to immunohistochemically assess MVD. We have found significantly higher EMMPRIN expression in EOC than in benign ovarian tumors and normal ovaries. Similarly, the VEGF expression was higher in EOC than in benign ovarian tumors and normal ovaries. By contrast, bFGF expression was lower in EOC than in benign ovarian tumors and ovary samples. EMMPRIN expression in EOC was directly correlated with VEGF expression and CD105-MVD, but inversely correlated with bFGF expression. Grade 2/3 ovarian cancers had increased expression of EMMPRIN and VEGF, increased CD105-MVD, and lowered expression of bFGF compared to grade 1 ovarian cancers. Moreover, EMMPRIN expression was higher in advanced (FIGO III and IV) ovarian cancer. The upregulation of EMMPRIN and VEGF expression is correlated with increased CD105-MVD and silenced bFGF, which suggests early and/or reactivated angiogenesis in ovarian cancer. Aggressive EOC is characterized by the following: high expression of EMMPRIN and VEGF, high CD105-MVD, and low expression of bFGF.
Kim, Hyun Ah; Lim, Soyeon; Moon, Hyung-Ho; Kim, Sung Wan; Hwang, Ki-Chul; Lee, Minhyung; Kim, Sun Hwa; Choi, Donghoon
2010-10-01
A hypoxia-inducible VEGF expression system with the oxygen-dependent degradation (ODD) domain was constructed and tested to be used in gene therapy for ischemic myocardial disease. Luciferase and VEGF expression vector systems were constructed with or without the ODD domain: pEpo-SV-Luc (or pEpo-SV-VEGF) and pEpo-SV-Luc-ODD (or pEpo-SV-VEGF-ODD). In vitro gene expression efficiency of each vector type was evaluated in HEK 293 cells under both hypoxic and normoxic conditions. The amount of VEGF protein was estimated by ELISA. The VEGF expression vectors with or without the ODD domain were injected into ischemic rat myocardium. Fibrosis, neovascularization, and cardiomyocyte apoptosis were assessed using Masson's trichrome staining, α-smooth muscle actin (α-SMA) immunostaining, and the TUNEL assay, respectively. The plasmid vectors containing ODD significantly improved the expression level of VEGF protein in hypoxic conditions. The enhancement of VEGF protein production was attributed to increased protein stability due to oxygen deficiency. In a rat model of myocardial ischemia, the pEpo-SV-VEGF-ODD group exhibited less myocardial fibrosis, higher microvessel density, and less cardiomyocyte apoptosis compared to the control groups (saline and pEpo-SV-VEGF treatments). An ODD-mediated VEGF expression system that facilitates VEGF-production under hypoxia may be useful in the treatment of ischemic heart disease.
Shimizu, Akira; Kaira, Kyoichi; Yasuda, Masahito; Asao, Takayuki; Ishikawa, Osamu
2017-01-01
Glucose-regulated protein of 78 kD (GRP78) also referred to as immunoglobulin heavy chain binding protein (BiP/GRP78) plays an important role in the endoplasmic reticulum (ER) stress. The level of BiP/GRP78 is highly elevated in various human cancers. The purpose of this study is to examine the prognostic significance of BiP/GRP78 expression in patients with malignant melanoma. A total of 133 malignant melanoma patients were analyzed, and tumor specimens were stained by immunohistochemistry for BiP/GRP78, PKR-like endoplasmic reticulum kinase (PERK), Ki-67, p53 and microvessel density (MVD) determined by CD34. BiP/GRP78 and PERK were highly expressed in 40 % (53/133) and 78 % (104/133), respectively. BiP/GRP78 disclosed a significant relationship with PERK expression, thickness, T factor, N factor, disease staging, cell proliferation (Ki-67) and MVD (CD34). By multivariate analysis, the high expression of BiP/GRP78 was identified as an independent prognostic factor for predicting poor survival against malignant melanoma. The increased BiP/GRP78 expression was clarified as an independent prognostic marker for predicting worse outcome. ER stress marker, BiP/GRP78 could be a powerful molecular target for the treatment of malignant melanoma.
Kayamori, Kou; Katsube, Ken-Ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira
2016-01-01
Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs.
Kayamori, Kou; Katsube, Ken-ichi; Sakamoto, Kei; Ohyama, Yoshio; Hirai, Hideaki; Yukimori, Akane; Ohata, Yae; Akashi, Takumi; Saitoh, Masao; Harada, Kiyoshi; Harada, Hiroyuki; Yamaguchi, Akira
2016-01-01
Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs. PMID:27124156
Cruz-Bastida, Juan P; Rosado-Méndez, Iván M; Villaseñor-Navarro, Yolanda; Pérez-Ponce, Héctor; Galván, Héctor A; Trujillo-Zamudio, Flavio E; Sánchez-Suárez, Patricia; Benítez-Bribiesca, Luis
2016-01-01
Objective: To correlate image parameters in contrast-enhanced digital mammography (CEDM) with blood and lymphatic microvessel density (MVD). Methods: 18 Breast Imaging-Reporting and Data System (BI-RADS)-4 to BI-RADS-5 patients were subjected to CEDM. Craniocaudal views were acquired, two views (low and high energy) before iodine contrast medium (CM) injection and four views (high energy) 1–5 min afterwards. Processing included registration and two subtraction modalities, traditional single-energy temporal (high-energy) and “dual-energy temporal with a matrix”, proposed to improve lesion conspicuity. Images were calibrated into iodine thickness, and iodine uptake, contrast, time–intensity and time–contrast kinetic curves were quantified. Image indicators were compared with MVD evaluated by anti-CD105 and anti-podoplanin (D2-40) immunohistochemistry. Results: 11 lesions were cancerous and 7 were benign. CEDM subtraction strongly increased conspicuity of lesions enhanced by iodine uptake. A strong correlation was observed between lymphatic vessels and blood vessels; all benign lesions had <30 blood microvessels per field, and all cancers had more than this value. MVD showed no correlation with iodine uptake, nor with contrast. The most frequent curve was early uptake followed by plateau for uptake and contrast in benign and malignant lesions. The positive-predictive value of uptake dynamics was 73% and that of contrast was 64%. Conclusion: CEDM increased lesion visibility and showed additional features compared with conventional mammography. Lack of correlation between image parameters and MVD is probably due to tumour tissue heterogeneity, mammography projective nature and/or dependence of extracellular iodine irrigation on tissue composition. Advances in knowledge: Quantitative analysis of CEDM images was performed. Image parameters and MVD showed no correlation. Probably, this is indication of the complex dependence of CM perfusion on tumour microenvironment. PMID:27376457
Miyake, Makito; Anai, Satoshi; Fujimoto, Kiyohide; Ohnishi, Sayuri; Kuwada, Masaomi; Nakai, Yasushi; Inoue, Takeshi; Tomioka, Atsushi; Tanaka, Nobumichi; Hirao, Yoshihiko
2012-06-01
Sorafenib and sunitinib are multi-kinase inhibitors with antitumor activity in patients with advanced renal cell carcinoma (RCC). Several studies have evaluated the effect of sorafenib/sunitinib in combination with chemotherapeutic agents in different types of tumor. However, few studies have addressed the activity of fluorinated pyrimidine in combination with sorafenib/sunitinib. In this study, we examined the potential of combination therapy with 5FU and sorafenib/sunitinib in human RCC cell lines. Three human RCC cell lines, ACHN, Caki-1 and Caki-2, were used to assess sensitivity to 5-fluorouracil (5FU), sorafenib and sunitinib alone or in combination using an in vitro cell survival assay. Caki-2 cells demonstrated significantly higher resistance to 5FU and sorafenib as compared to ACHN and Caki-1. Additive antitumor effects of the combination therapy were observed in the in vitro study. There was a tendency for a positive correlation between the sensitivity to sunitinib and platelet-derived growth factor β (PDGFR-β) expression levels, which were examined by reverse transcription polymerase chain reaction. Caki-1 xenograft models were prepared by inoculating cells subcutaneously into nude mice, which were divided randomly into six groups: control, 5FU (8 mg/kg/day, intraperitoneally), sorafenib (15 mg/kg/day, orally), sunitinib (20 mg/kg/day, orally), and 5FU with sorafenib or sunitinib. The treatments were administered on 5 days each week, and tumor growth was monitored for 42 days following inoculation of cells. Synergistic antitumor effects of the combination therapy were observed in an in vivo study. The resected tumors were evaluated using the Ki-67 labeling index and microvessel density. Both the Ki-67 labeling index and microvessel density were decreased in tumors treated with the combination therapy compared to those treated with sorafenib/sunitinib alone. These findings suggest that the combination therapy of 5FU with sorafenib/sunitinib may be an effective therapeutic modality for advanced RCC patients.
Molecular Disruption of Breast Tumor Angiogenesis
2004-07-01
human breast cancer . During the period of this grant, we carried out studies to confirm that targeted ablation of PAI- 1 gene expression resulted in a...microvessel endothelial cells. Breast cancer -derived factors (TGF-P, EGF)were found to be important contributors of continued PAI-I expression and long...various culture model systems implicated both urokinase plasminogen activator (uPA) and its fast-acting type-i inhibitor (PAl-l) as necessary to achieve
The Characteristics of Incidental Pituitary Microadenomas in 120 Korean Forensic Autopsy Cases
Kim, Jang-Hee; Seo, Jung-Seok; Lee, Bong-Woo; Lee, Sang-Young; Jeon, Seok-Hoon
2007-01-01
To investigate the characteristics of incidental pituitary microadenomas, we examined 120 pituitary glands from Korean forensic autopsy cases, from which eight tumors were identified (incidence 6.7%). The average age of the affected subjects was 50 yr (range: 33-96 yr) with a female predominance. The maximum diameters of the tumors ranged from 0.4 to 5.4 mm (mean: 2.8 mm). Immunohistochemical analysis of pituitary hormones revealed three growth hormone-secreting adenomas, one prolactin-producing adenoma, one gonadotropin-producing adenoma, one plurihormonal adenoma, and two null cell adenomas. MIB-1 staining for Ki-67 antigen showed no positive expression. The microvessel density (MVD) of the pituitary microadenomas ranged from 2.3 to 11.6% (mean: 5.3%) and was significantly lower than that of nonneoplastic pituitary glands (11.9-20.1%, mean: 14.8%). Our study provides reference data on incidental pituitary microadenomas in the Korean population. PMID:17923757
IL-17 Promotes Angiogenic Factors IL-6, IL-8, and Vegf Production via Stat1 in Lung Adenocarcinoma.
Huang, Qi; Duan, Limin; Qian, Xin; Fan, Jinshuo; Lv, Zhilei; Zhang, Xiuxiu; Han, Jieli; Wu, Feng; Guo, Mengfei; Hu, Guorong; Du, Jiao; Chen, Caiyun; Jin, Yang
2016-11-07
Inflammation and angiogenesis are two hallmarks of carcinoma. The proinflammatory cytokine interleukin-17 (IL-17) facilitates angiogenesis in lung cancer; however, the underlying mechanism is not fully understood. In this study, tumour microvessel density (MVD) was positively associated with IL-17, interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial cell growth factor (VEGF) expression in human lung adenocarcinoma tissues, and it was increased in tumour tissues of A549-IL-17 cell-bearing nude mice. Importantly, positive correlations were also detected between IL-17 expression and IL-6, IL-8 and VEGF expression in human lung adenocarcinoma tissues. Furthermore, IL-6, IL-8 and VEGF production, as well as STAT1 phosphorylation, were increased in tumour tissues of A549-IL-17 cell-bearing nude mice in vivo and in A549 and H292 cells following IL-17 stimulation in vitro. In addition, STAT1 knockdown using an inhibitor and siRNA attenuated the IL-17-mediated increases in IL-6, IL-8 and VEGF expression in A549 and H292 cells. In conclusion, IL-17 may promote the production of the angiogenic inducers IL-6, IL-8 and VEGF via STAT1 signalling in lung adenocarcinoma.
Dai, Xing-Ping; Li, Jia-Bang; Liu, Zhao-Qian; Ding, Xiang; Huang, Cheng-Hui; Zhou, Bing
2005-09-21
To investigate the effect of Jianweiyuyang (JWYY) granule on gastric ulcer recurrence and its mechanism in the treatment of gastric ulcer in rats. Gastric ulcer in rats was induced according to Okeba's method with minor modification and the recurrence model was induced by IL-1beta. The expression of vascular endothelial growth factor mRNA (VEGF mRNA) was examined by reverse transcription polymerase chain reaction in gastric ulcer and microvessel density (MVD) adjacent to the ulcer margin was examined by immunohistochemistry. MVD was higher in the JWYY treatment group (14.0+/-2.62) compared with the normal, model and ranitidine treatment groups (2.2+/-0.84, 8.8+/-0.97, 10.4+/-0.97) in rats (P<0.01). The expression level of VEGF mRNA in gastric tissues during the healing process of JWYY treatment group rats significantly increased compared with other groups (normal group: 0.190+/-0.019, model group: 0.642+/-0.034, ranitidine group: 0.790+/-0.037, P<0.01). JWYY granules can stimulate angiogenesis and enhance the expression of VEGF mRNA in gastric ulcer rats. This might be the mechanism for JWYY accelerating the ulcer healing, and preventing the recurrence of gastric ulcer.
Liu, Huihui; Lin, Shaohui; Xiao, Dan; Zheng, Xiao; Gu, Yan; Guo, Shanyu
2013-01-01
Resina Draconis (RD) is a type of dragon's blood resin obtained from Dracaena cochinchinensis (Lour.) S.C. Chen (Yunnan, China). It has been used as a medicine since ancient times by many cultures. The ethanolic extract of Resina Draconis (RDEE) was evaluated for its wound-healing activity using excision and incision wound models in rats. Group I, the control group, was treated with ointment base. Group II, which served as a reference standard, was treated with moist exposed burn ointment (MEBO). Group III was treated with RDEE. The parameters observed were percentage of wound contraction, epithelialization period, tensile strength, histopathological studies, microvessel density (MVD), and the expression of vascular endothelial growth factor (VEGF) and transforming growth factor- β 1 (TGF- β 1). The group treated with RDEE showed significantly better wound contraction and better skin-breaking strength as compared with the control group. The results of histopathological examination, MVD, and the expression levels of growth factors supported the outcome of the wound models as well. The present study provided a scientific rationale for the traditional use of RD in the management of wounds.
Gu, Yan
2013-01-01
Resina Draconis (RD) is a type of dragon's blood resin obtained from Dracaena cochinchinensis (Lour.) S.C. Chen (Yunnan, China). It has been used as a medicine since ancient times by many cultures. The ethanolic extract of Resina Draconis (RDEE) was evaluated for its wound-healing activity using excision and incision wound models in rats. Group I, the control group, was treated with ointment base. Group II, which served as a reference standard, was treated with moist exposed burn ointment (MEBO). Group III was treated with RDEE. The parameters observed were percentage of wound contraction, epithelialization period, tensile strength, histopathological studies, microvessel density (MVD), and the expression of vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). The group treated with RDEE showed significantly better wound contraction and better skin-breaking strength as compared with the control group. The results of histopathological examination, MVD, and the expression levels of growth factors supported the outcome of the wound models as well. The present study provided a scientific rationale for the traditional use of RD in the management of wounds. PMID:23762154
Gerritsen, M E; Cheli, C D
1983-01-01
Isolated microvessels and isolated and cultured microvessel endothelial cells were prepared from rabbit cardiac muscle. Pathways of arachidonic acid metabolism were determined by measurement of exogenous substrate utilization [( 1-14C]arachidonic acid incorporation and release from intact tissue and cells; [1-14C]prostaglandin H2 (PGH2) metabolism by broken cell preparations) and by quantification of endogenous products (immunoreactive 6-keto-prostaglandin F1 alpha (PGF1 alpha) and prostaglandin E (PGE) release) by selective radioimmunoassay. Rabbit coronary microvessels and derived microvascular endothelial cells (RCME cells) synthesized two major products of the cyclooxygenase pathway: 6-keto-PGF1 alpha (hydrolytic product of prostaglandin I2) and PGE2. A reduced glutathione requiring PGH-E isomerase was demonstrated in coronary microvessels and RCME cells, but not in rabbit circumflex coronary artery or aorta. In addition, a minor amount of a compound exhibiting similar characteristics to 6-keto-PGE1 was found to be produced by microvessels and RCME cells. Measurement of endogenously released prostaglandins indicated that under basal and stimulated conditions, PGE release exceeded that of 6-keto-PGF1 alpha. Microvessels and microvessel endothelial cells derived from cardiac muscle of rabbit exhibit pathways of arachidonate metabolism that are different from those of many large blood vessels and derived endothelial cells. Images PMID:6415116
Xie, Wen; Su, Wei; Zhang, Lijuan; Shang, Qingkun; Su, Bing
2017-09-02
Metastasis remains the primary cause of prostate cancer related death. Cancer cells need to contact endothelial cells and disrupt endothelial junctions to cross the endothelium for invasion and metastasis. The suppression of heterotypic repulsion between cancer and endothelial cells allows cancer cells to invade into the surrounding tissue. Here, we demonstrate that SSeCKS/AKAP12 induced repulsion between human prostate cancer and microvessel endothelial cells, which was mediated by an angiogenesis inhibitor Semaphorin 3F. Moreover, we examined AKAP12 and Semaphorin 3F mRNA expression in 42 prostate cancer and 30 benign prostatic hyperplasia tissue samples, and found that the expression of AKAP12 and Semaphorin 3F mRNA was inversely associated with the degree of aggressiveness of prostate cancer cells and tissues. An ordinal logistic regression analysis indicates that there is a positive association between the expression of AKAP12 and Semaphorin 3F in prostate cancer, suggesting that the activation of Semaphorin 3F by SSeCKS/AKAP12 may be involved in prostate cancer progression and metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.
Slevin, Mark; Matou-Nasri, Sabine; Turu, Marta; Luque, Ana; Rovira, Norma; Badimon, Lina; Boluda, Susana; Potempa, Lawrence; Sanfeliu, Coral; de Vera, Nuria; Krupinski, Jerzy
2010-01-01
Native C-reactive protein (nCRP) is a pentameric oligo-protein and an acute phase reactant whose serum expression is increased in patients with inflammatory disease. We have identified by immunohistochemistry, significant expression of a tissue-binding insoluble modified version or monomeric form of CRP (mCRP) associated with angiogenic microvessels in peri-infarcted regions of patients studied with acute ischaemic stroke. mCRP, but not nCRP was expressed in the cytoplasm and nucleus of damaged neurons. mCRP co-localized with CD105, a marker of angiogenesis in regions of revascularisation. In vitro investigations demonstrated that mCRP was preferentially expressed in human brain microvessel endothelial cells following oxygen-glucose deprivation and mCRP (but not column purified nCRP) associated with the endothelial cell surface, and was angiogenic to vascular endothelial cells, stimulating migration and tube formation in matrigel more strongly than fibroblast growth factor-2. The mechanism of signal transduction was not through the CD16 receptor. Western blotting showed that mCRP stimulated phosphorylation of the key down-stream mitogenic signalling protein ERK1/2. Pharmacological inhibition of ERK1/2 phosphorylation blocked the angiogenic effects of mCRP. We propose that mCRP may contribute to the neovascularization process and because of its abundant presence, be important in modulating angiogenesis in both acute stroke and later during neuro-recovery.
Potential role of leptin expression in hepatocellular carcinoma
Wang, S‐N; Yeh, Y‐T; Yang, S‐F; Chai, C‐Y; Lee, K‐T
2006-01-01
Background Obesity is associated with hepatocellular carcinoma (HCC). The association may result from the aberrant expression of adipokines. Aim To explore the potential biological effect and prognostic value of leptin, one of the adipokines, in HCC. Methods Immunohistochemistry was used to evaluate the expression of leptin in 68 patients with HCC. The expression of Ki‐67 and microvessel density (MVD) of tumorous lesions in HCC were also analysed. The result of leptin expression was further correlated with Ki‐67 expression, intratumour MVD, clinicopathological characteristics, overall survival and the postoperative use of medroxyprogesterone acetate (MPA). Results High leptin expression was seen in 60.3% of patients with HCC and was significantly correlated with intratumour MVD (high v low; 59.2 (standard deviation 3.2) v 44.2 (19.5), p = 0.004), but not with Ki‐67 expression. No marked correlation was seen between leptin expression and clinicopathological characteristics. However, using a multivariate Cox's proportional hazards model, leptin expression was a predictor for improved overall survival of patients with HCC (odds ratio 0.16; 95% confidence interval 0.03 to 0.87; p = 0.033). In addition, the Kaplan–Meier survival curve showed that high leptin expression was associated with a better survival in patients with HCC, treated postoperatively with MPA (p = 0.008, log rank test). Conclusion High leptin expression was associated with an increased intratumour MVD and thus may be associated with HCC development. In addition, high leptin expression was a predictor for improved survival of patients with HCC, treated postoperatively with MPA. PMID:16565221
EASApprox® skin-stretching system: A secure and effective method to achieve wound closure.
Song, Mingzhi; Zhang, Zhen; Liu, Tao; Liu, Song; Li, Gang; Liu, Zhaochang; Huang, Jingyang; Chen, Song; Li, Linan; Guo, Li; Qiu, Yang; Wan, Jiajia; Liu, Yuejian; Wu, Tao; Wang, Xiaoyong; Lu, Ming; Wang, Shouyu
2017-07-01
Large skin defects are commonly observed in the clinic and have attracted much attention recently. Therefore, finding an effective solution for large skin defects is a global problem. The objective of the present study was to assess the effectiveness of the EASApprox ® skin-stretching system for closing large skin defects. Skin defects (5×5 cm) were created on the forearms of 9 Bama miniature pigs, which were randomly divided into the following three groups: Direct suture, the new EASApprox ® skin-stretching device and Kirschner wires. Microcirculation was assessed before surgery and after wound closure. Following the different treatments, the defects were sutured, and wound healing was assessed based on a clinical score. Furthermore, microscopic and ultramicroscopic structures were evaluated, including collagen, elastic fibers and the microvessel density. Significant differences in the clinical score and microvessel density were observed among the groups. Additionally, the mean length obtained for elastic fibers was larger than that obtained for the other two groups. Finally, the new EASApprox ® skin-stretching device resulted in successful wound management and with only minor side effects on skin histology and microcirculation. Therefore, this method has the potential to be used for healing large skin defects.
IFATS Collection: Adipose-Derived Stromal Cells Improve the Foreign Body Response
Prichard, Heather L.; Reichert, William; Klitzman, Bruce
2015-01-01
Many implanted devices fail due to the formation of an avascular capsule surrounding the device. Additionally, fat has long been known to promote healing and vascularization. The goals of this study were to identify potential mechanisms of the provascular actions of adipose-derived stromal cells (ASCs) and to improve implant biocompatibility. First, adult ASCs and fibroblasts from rats were attached to polyurethane and polystyrene in vitro and their cytokine secretion profile was analyzed. Secretion of vascular endothelial growth factor (VEGF) from ASCs was 10 –70 times higher than fibroblasts after 3 and 6 days. Next, polyurethane, bare and with cellular coatings, was implanted subcutaneously in rats. The fibrous capsule surrounding bare polyurethane implants was 17%–32% thicker and the amount of collagen was 27% greater than the capsule surrounding ASC-coated implants. Finally, the microvessel density adjacent to ASC-coated polyurethane was approximately 50%–80% higher than bare polyurethane. In summary, ASCs attached to polyurethane have a dramatically increased VEGF production compared with fibroblasts in vitro, and these cells also produce an increased microvessel density in the surrounding tissue when implanted subcutaneously in rats. PMID:18436858
Huang, Hai-wen; Chen, Ping; Li, Bing-zong; Fu, Jin-xiang; Li, Jun; Zhang, Xiao-hui; Liu, Rui; Fan, Yin-yin; Zhang, Hong; Chow, Howard C H; Leung, Anska Y H; Liang, Raymond
2012-09-01
To observe the effect of rosiglitazone (RGZ) and all-trans-retinoic acid (ATRA) on the growth of myeloma xenograft in nude mice and to explore the influence of RGZ and ATRA on VEGF expression and angiogenesis in the tumor. VEGF gene expression in myeloma cell line U266 cells was analyzed by semi-quantitative RT-PCR after incubation with RGZ, ATRA, or RGZ + ATRA for 24 h. Myeloma xenograft was established by subcutaneous injection of 10(7) U266 cells in the scapula area of 4-week old nude mice. 7 days later, the nude mice were administered with RGZ, ATRA or RGZ + ATRA, respectively, by intraperitoneal injection once every day for 21 days. The control mice were given equal volume of normal saline instead of the drug. On the 21(st) day of treatment, the mice were sacrificed and the tumors were taken off, and the tumor volume and weight were measured. The tumors were examined by histopathology with HE staining, and microvessel density (MVD), CD34 and VEGF expression in the tumors were analyzed by immunohistochemical staining. VEGF mRNA was highly expressed in U266 cells and was decreased in a dose-dependent manner after incubation with RGZ. The VEGF mRNA level was further more decreased after RGZ + ATRA treatment. Xenografts of U266 cells were developed in all nude mice. The volume and weight of xenografts in the RGZ group were (785 ± 262) mm(3) and (1748 ± 365) mg, respectively, significantly lower than those of the control group (both P < 0.01). More significant inhibition was in the RGZ + ATRA group, (154 ± 89) mm(3) and (626 ± 102) mg, respectively, both were P < 0.05 vs. the RGZ group. RGZ inhibited the angiogenesis in U266 xenografts and immunohistochemical staining showed that the tumor MVD and VEGF expression were significantly decreased by RGZ treatment, and further more inhibited in the RGZ + ATRA group. VEGF protein was expressed in all xenografts in the nude mice. Its immunohistochemical staining intensity was 2.20 ± 0.40 in the control group, significantly higher than that of 1.48 ± 0.37 in the RGZ group (P < 0.01), and that of RGZ + ATRA group was 0.58 ± 0.26, further significantly lower than that of the RGZ group (P < 0.01). CD34 was expressed in all xenografts, most highly in the control group and lowest in the RGZ + ATRA group. The microvessel density (MVD) was highest in the control group (56.4 ± 15.2), significantly lower in the RGZ group (44.6 ± 11.2) (P < 0.05), and lowest in the RGZ + ATRA group (21.5 ± 8.6, P < 0.01). The growth of myeloma cells can also be inhibited by RGZ and ATRA in nude mice in vivo. In addition to differentiation and apoptosis induction, RGZ can inhibit the formation of myeloma xenograft probably also through the downregulation of VEGF expression and subsequent angiogenesis.
Yang, Yu; Bai, Wenkun; Chen, Yini; Nan, Shuliang; Lin, Yanduan; Ying, Tao; Hu, Bing
2016-01-01
The aim of the present study was to investigate whether low-frequency ultrasound (US)-mediated microvessel disruption combined with docetaxel (DTX) can be used as a novel type of chemoembolization. Mice were assigned to four groups: i) The USMB group, treated with low-frequency US combined with microbubbles (USMB); ii) the DTX group, treated with DTX; iii) the USMB + DTX group, treated with combined therapy; and iv) the control group, which was untreated. Immediately after the first treatment, the average peak intensity (API) on contrast-enhanced US was calculated, and tumors were excised for hematoxylin and eosin (HE) staining. At 2 weeks post-treatment, the tumor volumes and wet weights were calculated, and tumors were excised for immunohistochemistry to calculate apoptotic index (AI), proliferative index (PI) and microvessel density (MVD) values. Immediately after the first treatment, in the DTX and control groups, the tumors demonstrated abundant perfusion enhancement, while in the USMB + DTX and USMB groups, blood perfusion of the tumors was interrupted. Compared with that of the control group, the API was significantly lower in the USMB + DTX USMB groups (all P<0.001). HE staining showed that tumor microvasculature was disrupted into flaky hematomas and severely dilated microvessels in the USMB + DTX and USMB groups. In the DTX and control groups, there was no distinct evidence of the disruption and dilation of blood microvessels. At the end of the treatment, the mean tumor inhibition ratio was 73.33, 46.67 and 33.33% for the USMB + DTX, DTX and USMB groups, respectively. The USMB + DTX group had the highest AI, and the lowest PI and MVD compared with the other groups, although the difference between the USMB + DTX and DTX groups with regard to PI and MVD was not significant (USMB + DTX vs. DTX group, P=0.345 and P=0.059, respectively). In conclusion, as a novel type of chemoembolization, USMB combined with DTX is more effective than USMB or DTX alone in inhibiting tumor growth via the enhancement of apoptosis, and the suppression of proliferation and angiogenesis. PMID:27446386
Noise Equalization for Ultrafast Plane Wave Microvessel Imaging.
Song, Pengfei; Manduca, Armando; Trzasko, Joshua D; Chen, Shigao
2017-11-01
Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enable more robust clutter filtering based on singular value decomposition. However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This paper was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation induced) and microvessel blood flow signal and 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality.
Kawanami, Daiji; Mahabeleshwar, Ganapati H; Lin, Zhiyong; Atkins, G Brandon; Hamik, Anne; Haldar, Saptarsi M; Maemura, Koji; Lamanna, Joseph C; Jain, Mukesh K
2009-07-31
Hypoxia-inducible factor 1 (HIF-1) is a central regulator of the hypoxic response in many cell types. In endothelial cells, HIF-1 induces the expression of key proangiogenic factors to promote angiogenesis. Recent studies have identified Kruppel-like factor 2 (KLF2) as a potent inhibitor of angiogenesis. However, the role of KLF2 in regulating HIF-1 expression and function has not been evaluated. KLF2 expression was induced acutely by hypoxia in endothelial cells. Adenoviral overexpression of KLF2 inhibited hypoxia-induced expression of HIF-1alpha and its target genes such as interleukin 8, angiopoietin-2, and vascular endothelial growth factor in endothelial cells. Conversely, knockdown of KLF2 increased expression of HIF-1alpha and its targets. Furthermore, KLF2 inhibited hypoxia-induced endothelial tube formation, whereas endothelial cells from mice with haploinsufficiency of KLF2 showed increased tube formation in response to hypoxia. Consistent with this ex vivo observation, KLF2 heterozygous mice showed increased microvessel density in the brain. Mechanistically, KLF2 promoted HIF-1alpha degradation in a von Hippel-Lindau protein-independent but proteasome-dependent manner. Finally, KLF2 disrupted the interaction between HIF-1alpha and its chaperone Hsp90, suggesting that KLF2 promotes degradation of HIF-1alpha by affecting its folding and maturation. These observations identify KLF2 as a novel inhibitor of HIF-1alpha expression and function. Therefore, KLF2 may be a target for modulating the angiogenic response in disease states.
de Souza, Lélia Batista; de Oliveira, Lucileide Castro; Nonaka, Cassiano Francisco Weege; Lopes, Maria Luiza Diniz de Sousa; Pinto, Leão Pereira; Queiroz, Lélia Maria Guedes
2017-06-01
This study aimed to evaluate and compare the immunoexpression of glucose transporter-1 (GLUT-1) and angiogenic index between pleomorphic adenomas (PAs), adenoid cystic carcinomas (ACCs), and mucoepidermoid carcinomas (MECs) of the salivary glands, and establish associations with the respective subtype/histological grade. Twenty PAs, 20 ACCs, and 10 MECs were submitted to morphological and immunohistochemical analysis. GLUT-1 expression was semi-quantitatively evaluated and angiogenic index was assessed by microvessel counts using anti-CD34 antibody. Higher GLUT-1 immunoexpression was observed in the MECs compared to PAs and ACCs (p = 0.022). Mean number of microvessels was 66.5 in MECs, 40.4 in PAs, and 21.2 in ACCs (p < 0.001). GLUT-1 expression and angiogenic index showed no significant correlation in the tumors studied. Results suggest that differences in biological behavior of the studied tumors are related to GLUT-1. Benign and malignant salivary gland tumors differ in the angiogenic index; however, angiogenesis may be independent of the tumor cell's metabolic demand.
Letters: Noise Equalization for Ultrafast Plane Wave Microvessel Imaging
Song, Pengfei; Manduca, Armando; Trzasko, Joshua D.
2017-01-01
Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enables more robust clutter filtering based on singular value decomposition (SVD). However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This study was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation-induced) and microvessel blood flow signal; 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality. PMID:28880169
Lymphangiogenesis and angiogenesis in oral cavity and lower lip squamous cell carcinoma.
Alaeddini, Mojgan; Etemad-Moghadam, Shahroo
2016-01-01
Tumors of the lip and oral cavity differ in various aspects; therefore a clarification of the distinctions among these sites may help to better understand the biologic behavior of neoplasms occurring in these locations. Considering that angiogenesis and lymphangiogenesis are two major elements that can influence various aspects of tumor biology, we aimed to compare these factors between squamous cell carcinoma of the lower lip and oral cavity. A total of 84 primary squamous cell carcinomas including 45 oral and 39 lower lip tumors were selected and immunohistochemically stained with monoclonal antibody against D2-40 and CD105. Mean microvessel density was assessed in tumoral tissue, while lymphatic vessel density was calculated in both neoplastic tissue and invasion front. Data were statistically analyzed using t-test and p-values of <0.05 were considered significant. We found a mean microvessel density±standard deviation of 31.94±18.9 in oral cavity and 27.54±20.8 in lower lip squamous cell carcinomas, with no significant difference (p=0.32). Mean lymphatic vessel density±standard deviation was 13.05±8.2 and 16.57±10.79 in of oral cavity and lower lip neoplastic tissue, respectively. The corresponding values were 9.94±5.59 and 12.50±7.8 in the invasive front. Significant differences were not observed in either of the lymphatic vessel density variables between the two sites. According to our results, it seems that the search for additional factors other than those related to the vasculature should continue, to help clarify the differences in biologic behavior between lower lip and oral cavity squamous cell carcinomas. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Jyothsna, M; Rammanohar, M; Kumar, Kiran
2017-01-01
Mast cells have been implicated in promoting angiogenesis in malignant tumors of lung, oesophagus and breast, but there are few studies on Oral Squamous Cell Carcinomas (OSCC). Most oral squamous cell carcinomas arise from pre-existing precancerous lesions exhibiting epithelial dysplasia. The present pilot study attempts to compare Mast Cell Density (MCD), Microvessel Density (MVD), Microvessel Area (MVA) histomorphometrically between normal buccal mucosa, severe epithelial dysplasia and OSCC and to correlate the role of mast cells and angiogenesis in tumor progression. The retrospective study was conducted on eight cases of OSCC, eight cases of severe epithelial dysplasia and five cases of normal buccal mucosa. Immunohistochemical staining with anti CD-31, to demonstrate angiogenesis and toluidine blue staining for mast cells were employed. MVA, MVD and MCD were calculated using the measurement tools of the image analysis software and compared between the groups. One way ANOVA (Analysis of Variance) was used for comparing the parameter for multiple groups followed by Games Howell test. To assess the relationship between micro vessel density and mast cell density, Karl Pearson's correlation was used. MCD and MVD increased with disease progression and were statistically higher in OSCC than in severe epithelial dysplasia and normal buccal mucosa (p<0.001). MVA increased from normal to severe dysplasia and decreased from dysplasia to OSCC, may be due to revascularization of tumor tissue. A positive correlation was observed between MCD and MVD in OSCC and dysplasia, though were not statistically significant. These findings suggest that mast cells may up regulate angiogenesis in OSCC. MCD and MVD may be used as indicators for disease progression.
Ahn, Jungho; Cho, Chong-Su; Cho, Seong Woo; Kang, Joo H; Kim, Sung-Yon; Min, Dal-Hee; Song, Joon Myong; Park, Tae-Eun; Jeon, Noo Li
2018-05-25
Vascular networks are the first sites exposed to cationic polymer nanoparticles (NPs) administered intravenously, and thus function as a barrier for NPs reaching the target organ. While cationic polymer NPs have been intensively studied as non-viral delivery systems, their biological effects in human microvessels have been poorly investigated due to a lack of appropriate in vitro systems. Here, we employed a three-dimensional microvessel on a chip, which accurately models in vivo conditions. An open and perfused microvessel surrounded by pericytes was shown to reproduce the important features of living vasculature, including barrier function and biomarkers. Using this microvessel chip, we observed contraction of the microvascular lumen induced by perfused polyethylenimine (PEI)/DNA NPs. We demonstrated that the oxidative stress present when microvessels were exposed to PEI NPs led to rearrangement of microtubules resulting in microvessel contraction. Furthermore, the transcytotic behavior of PEI NPs was analyzed in the microvessel by monitoring the escape of PEI NPs from the microvascular lumen into the perivascular region, which was not possible in two-dimensional culture systems. With our new understanding of the different behaviors of cationic polymer NPs depending on their transcytotic route, we suggest that caveolae-mediated transcytosis is a powerful route for efficient extravascular transport. Microvascular networks are not only biological system constituting largest surface area in the body and but also first site exposed to nanoparticle in vivo. While cationic polymer NPs have been intensively studied as non-viral delivery systems, its biological effects in human microvessel have been poorly investigated due to lack of appropriate in vitro systems. Here, we microengineered an open and perfused 3D pericyte incorporated microvessel model which possesses same morphological characteristic of in vivo. Using the microengineered model, this study represents the first report of transcytotic behavior of NPs in 3D microvessel, and its effect on extravasation efficiency. Our study lays the groundwork for the integration of innovative technologies to examine blood vessel-nanoparticle interaction, which a critical but ill-defined phenomenon. Copyright © 2018. Published by Elsevier Ltd.
Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M
1998-03-01
To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.
Lange, Franziska; Kaemmerer, Daniel; Behnke-Mursch, Julianne; Brück, Wolfgang; Schulz, Stefan; Lupp, Amelie
2018-04-25
Glioblastomas represent the most common primary malignant tumor of the nervous system and the most frequent type of astrocytic tumors. Despite improved therapeutic options, prognosis has remained exceptionally poor over the last two decades. Therefore, new treatment approaches are urgently needed. An overexpression of somatostatin (SST) as well as chemokine CXCR4 and endothelin A (ETA) receptors has been shown for many types of cancer. Respective expression data for astrocytic brain tumors, however, are scarce and contradictory. SST subtype, CXCR4 and ETA expression was comparatively evaluated in a total of 57 grade I-IV astrocytic tumor samples by immunohistochemistry using well-characterized monoclonal antibodies. Overall, receptor expression on the tumor cells was only very low. SST5 was the most prominently expressed receptor, followed by SST3, ETA, SST2 and CXCR4. In contrast, tumor capillaries displayed strong SST2, SST3, SST5, CXCR4 and ETA expression. Presence of SST5, CXCR4 and ETA on tumor cells and of SST3, CXCR4 and ETA on microvessels gradually increased from grade II to grade IV tumors. Ki-67 values correlated significantly with CXCR4 expression on tumor cells and with vascular SST3, CXCR4 or ETA positivity. SST5 or CXCR4 positivity of tumor cells and vascular SST3 or CXCR4 expression negatively correlated with patient outcome. Though having some prognostic value, SST, CXCR4 or ETA expression on astrocytic tumor cells is clearly of no therapeutic relevance. Indirect targeting of these highly vascularized tumors via SST3, SST5, CXCR4 or ETA on the microvessels, in contrast, may represent a promising additional therapeutic strategy.
Song, Xiaole; Yang, Chenhe; Zhang, Huankang; Wang, Jingjing; Sun, Xicai; Hu, Li; Liu, Zhuofu; Wang, Dehui
2018-06-01
To examine the expression of hypoxia-inducible factor-1α (HIF-1α) and its related molecules (cellular repressor of E1A-stimulated genes [CREG], osteopontin [OPN], proto-oncogene tyrosine-protein kinase Src [c-Src], and vascular endothelial growth factor [VEGF]) in juvenile nasopharyngeal angiofibroma (JNA) and explore the correlation between clinical prognosis and HIF-1α expression. The study performed a retrospective review of the clinical records of patients with JNA treated between 2003 and 2007. Specimens were analyzed by immunohistochemistry for HIF-1α, CREG, OPN, c-Src, and VEGF expression, and microvessel density (MVD) was assessed by tissue microarray. The correlation between expression levels and clinicopathological features including age, tumor stage, intraoperative blood loss, and recurrence was analyzed. HIF-1α, CREG, OPN, c-Src, and VEGF were upregulated in endothelial cells (ECs) of patients with JNA, and strong correlations in the expression of these molecules were observed. HIF-1α expression was higher in young patients ( P = .032) and in recurrent cases ( P = .01). Survival analysis showed that low HIF-1α levels in ECs predicted longer time to recurrence (log rank test P = .006). Receiver operating characteristic curve analysis showed that HIF-1α was a prognostic factor for recurrence (area under the curve = 0.690, P = .019). No correlation was found between the expression of molecules and Radkowski stage or intraoperative blood loss. In cases of JNA treated surgically, HIF-1α expression in ECs is a useful prognostic factor for tumor recurrence.
Chen, Cong; He, Zhi-Cheng; Shi, Yu; Zhou, Wenchao; Zhang, Xia; Xiao, Hua-Liang; Wu, Hai-Bo; Yao, Xiao-Hong; Luo, Wan-Chun; Cui, You-Hong; Bao, Shideng; Kung, Hsiang-Fu; Bian, Xiu-Wu; Ping, Yi-Fang
2018-05-15
The microvascular profile has been included in the WHO glioma grading criteria. Nevertheless, microvessels in gliomas of the same WHO grade, e.g., WHO IV glioblastoma (GBM), exhibit heterogeneous and polymorphic morphology, whose possible clinical significance remains to be determined. In this study, we employed a fractal geometry-derived parameter, microvascular fractal dimension (mvFD), to quantify microvessel complexity and developed a home-made macro in Image J software to automatically determine mvFD from the microvessel-stained immunohistochemical images of GBM. We found that mvFD effectively quantified the morphological complexity of GBM microvasculature. Furthermore, high mvFD favored the survival of GBM patients as an independent prognostic indicator and predicted a better response to chemotherapy of GBM patients. When investigating the underlying relations between mvFD and tumor growth by deploying Ki67/mvFD as an index for microvasculature-normalized tumor proliferation, we discovered an inverse correlation between mvFD and Ki67/mvFD. Furthermore, mvFD inversely correlated with the expressions of a glycolytic marker, LDHA, which indicated poor prognosis of GBM patients. Conclusively, we developed an automatic approach for mvFD measurement, and demonstrated that mvFD could predict the prognosis and response to chemotherapy of GBM patients.
Errede, Mariella; Girolamo, Francesco; Rizzi, Marco; Bertossi, Mirella; Roncali, Luisa; Virgintino, Daniela
2014-01-01
This study was conducted on human developing brain by laser confocal and transmission electron microscopy (TEM) to make a detailed analysis of important features of blood-brain barrier (BBB) microvessels and possible control mechanisms of vessel growth and differentiation during cerebral cortex vascularization. The BBB status of cortex microvessels was examined at a defined stage of cortex development, at the end of neuroblast waves of migration, and before cortex lamination, with BBB-endothelial cell markers, namely tight junction (TJ) proteins (occludin and claudin-5) and influx and efflux transporters (Glut-1 and P-glycoprotein), the latter supporting evidence for functional effectiveness of the fetal BBB. According to the well-known roles of astroglia cells on microvessel growth and differentiation, the early composition of astroglia/endothelial cell relationships was analyzed by detecting the appropriate astroglia, endothelial, and pericyte markers. GFAP, chemokine CXCL12, and connexin 43 (Cx43) were utilized as markers of radial glia cells, CD105 (endoglin) as a marker of angiogenically activated endothelial cells (ECs), and proteoglycan NG2 as a marker of immature pericytes. Immunolabeling for CXCL12 showed the highest level of the ligand in radial glial (RG) fibers in contact with the growing cortex microvessels. These specialized contacts, recognizable on both perforating radial vessels and growing collaterals, appeared as CXCL12-reactive en passant, symmetrical and asymmetrical, vessel-specific RG fiber swellings. At the highest confocal resolution, these RG varicosities showed a CXCL12-reactive dot-like content whose microvesicular nature was confirmed by ultrastructural observations. A further analysis of RG varicosities reveals colocalization of CXCL12 with Cx43, which is possibly implicated in vessel-specific chemokine signaling. PMID:25360079
Huang, Qi-Fang; Wei, Fang-Fei; Zhang, Zhen-Yu; Raaijmakers, Anke; Asayama, Kei; Thijs, Lutgarde; Yang, Wen-Yi; Mujaj, Blerim; Allegaert, Karel; Verhamme, Peter; Struijker-Boudier, Harry A J; Li, Yan; Staessen, Jan A
2018-03-10
Retinal microvascular traits predict adverse health outcomes. The Singapore I Vessel Assessment (SIVA) software improved automated postprocessing of retinal photographs. In addition to microvessel caliber, it generates measures of arteriolar and venular geometry. Few studies addressed the reproducibility of SIVA measurements across a wide age range. In the current study, 2 blinded graders read images obtained by nonmydriatic retinal photography twice in 20 11-year-old children, born prematurely (n = 10) or at term (n = 10) and in 60 adults (age range, 18.9-86.1 years). Former preterm compared with term children had lower microvessel diameter and disorganized vessel geometry with no differences in intraobserver and interobserver variability. Among adults, microvessel caliber decreased with age and blood pressure and arteriolar geometry was inversely correlated with female sex and age. Intraobserver differences estimated by the Bland-Altman method did not reach significance for any measurement. Across measurements, median reproducibility (RM) expressed as percent of the average trait value was 8.8% in children (median intraclass correlation coefficient [ICC], 0.94) and 8.0% (0.97) in adults. Likewise, interobserver differences did not reach significance with RM (ICC) of 10.6% (0.85) in children and 10.4% (0.93) in adults. Reproducibility was best for microvessel caliber (intraobserver/interobserver RM, 4.7%/6.0%; ICC, 0.98/0.96), worst for venular geometry (17.0%/18.8%; 0.93/0.84), and intermediate for arteriolar geometry (10.9%/14.9%; 0.95/0.86). SIVA produces repeatable measures of the retinal microvasculature in former preterm and term children and in adults, thereby proving its usability from childhood to old age.
Lee, Bo-Ram; Joo, Kyung-Il; Choi, Eun Sook; Jahng, Junghoon; Kim, Hyunmin
2017-01-01
We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS) microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB) dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature. PMID:29049299
Panteli, Katerina; Bai, Maria; Hatzimichael, Eleftheria; Zagorianakou, Nektaria; Agnantis, Niki John; Bourantas, Konstantinos
2007-12-01
Current data suggest that angiogenesis plays a significant role in the pathogenesis and progression of chronic myeloproliferative diseases (cMPDs). In the present study, we evaluated serum levels of vascular endothelial growth factor (VEGF) in 83 patients with cMPDs [myelofibrosis with myeloid metaplasia (MMM, n = 25), essential thrombocythaemia (ET, n = 40), polycythaemia vera (PV, n = 8) and chronic myeloid leukemia (CML, n = 10)] and in 27 healthy individuals. Serum VEGF levels were significantly increased in patients with cMPDs compared to healthy individuals (all p values were < or = 0.05) and were significantly correlated with bone marrow microvessel density (MVD) (p = 0.0013). In addition, the immunohistochemical expression of VEGF protein in bone marrow biopsy specimens were analyzed in 61 patients with cMPDs, (ET, n = 36 and MMM, n = 25) and in 27 healthy individuals. The cellular distribution of VEGF expression was similar in bone marrow specimens of patients and healthy individuals. VEGF protein was detected mainly in erythroid cells, whereas myeloid cells and megakaryocytes exhibited a variable expression of the protein. The percentage of bone marrow VEGF positive cells was positively correlated with serum levels of VEGF (p = 0.001). The results of the present study suggest that, VEGF is a major angiogenetic factor in patients with cMPDs and contributes to the pathogenesis of these diseases.
Predictive values of FAP and HGF for tumor angiogenesis and metastasis in colorectal cancer.
Ma, T H; Gao, C C; Xie, R; Yang, X Z; Dai, W J; Zhang, J L; Yan, W; Wu, S N
2017-01-01
This study aims to explore the correlation of hepatocyte growth factor (HGF) and fibroblast activation protein (FAP) expressions with the angiogenesis and metastasis in colorectal cancer (CRC). The immunohistochemical SABC method was used to detect HGF and FAP expressions in 127 CRC tissues, 51 colorectal polyp tissues and 28 normal tissues. HGF and FAP expressions in liver metastasis were detected using western blot to analyze the correlation of their expressions with lymph node metastasis and liver metastasis. Micro-vessel density (MVD) and clinic-pathologic information of CRC patients were recorded and analyzed. In CRC group, HGF and FAP expressions were greatly higher than those in normal group and colorectal polyps group (P < 0.05). Moreover, the positive rates of HGF and FAP expressions in lymph node metastasis were evidently higher than those in non-lymph node metastasis (P < 0.05). In liver metastasis group, HGF and FAP expressions were obviously higher than non-liver metastasis group (P < 0.05). CRC group had much more MVD in comparison with normal group and colorectal polyps group (P < 0.05).When compared with negative group, MVD was significantly higher than that in CRC tissue with positive HGF and FAP (P < 0.05). Spearman rank correlation analysis showed that HGF and FAP were in positive correlation with MVD (r = 0.542, P < 0.001; r = 0.753, P < 0.001). These results indicate that FAP and HGF play an important role in CRC angiogenesis, and their expression levels are valuable to predict CRC liver metastasis and lymph node metastasis.
2007-03-01
Photomicrographs show typical images. Scale bar, 50 µm. Data are the mean ± SE and are representative of ≥ 3 independent experiments. P values represent the...not affect ICAM-1 expression in normal islets of RIP-Tag5 pancreas. Photomicrographs show typical images. Scale bar, 50 µm. 2 We have identified the...WBH-treated mice. Thermal upregulation of vascular ICAM-1 expression was abolished in IL-6 KO mice. Photomicrographs show typical images. Scale bar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yao; Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang Key Laboratory of Diabetes, No.1 Qianjing Road, Xihu District, Nanchang 330009, Jiangxi Province; Cai, Wei
Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation ofmore » breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo.« less
Kather, Jakob Nikolas; Marx, Alexander; Reyes-Aldasoro, Constantino Carlos; Schad, Lothar R; Zöllner, Frank Gerrit; Weis, Cleo-Aron
2015-08-07
Blood vessels in solid tumors are not randomly distributed, but are clustered in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots correlates with patient survival and is widely used both in diagnostic routine and in clinical trials. Still, these hotspots are usually subjectively defined. There is no unbiased, continuous and explicit representation of tumor vessel distribution in histological whole slide images. This shortcoming distorts angiogenesis measurements and may account for ambiguous results in the literature. In the present study, we describe and evaluate a new method that eliminates this bias and makes angiogenesis quantification more objective and more efficient. Our approach involves automatic slide scanning, automatic image analysis and spatial statistical analysis. By comparing a continuous MVD function of the actual sample to random point patterns, we introduce an objective criterion for hotspot detection: An angiogenic hotspot is defined as a clustering of blood vessels that is very unlikely to occur randomly. We evaluate the proposed method in N=11 images of human colorectal carcinoma samples and compare the results to a blinded human observer. For the first time, we demonstrate the existence of statistically significant hotspots in tumor images and provide a tool to accurately detect these hotspots.
Apoptosis and microvessel density in gastric cancer: correlation with tumor stage and prognosis.
Aurello, Paolo; Bellagamba, Riccardo; Rossi Del Monte, Simone; D'Angelo, Francesco; Nigri, Giuseppe; Cicchini, Claudia; Ravaioli, Matteo; Ramacciato, Giovanni
2009-12-01
Gastric cancer remains one of the most common human malignancies with a poor prognosis. Apoptosis is known to be a programmed cell death and its inhibition is involved in the unregulated cellular growth that leads to neoplasms. Microvessel density (MVD) has been investigated as a promoting factor for angiogenesis with conflicting results about its relation to survival. The aim of our study was to search a correlation between these factors and some clinicopathological features and prognosis. Identification of apoptotic cells was performed applying the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique and recorded as apoptotic index (A.I.), whereas monoclonal antibodies were used for the study of MVD. A significant correlation was found between low and high A.I. and the subgroup of patients in Stages I and II (P < 0.02); 20 per cent of patients with a low A.I. showed an overall survival longer than 5 years versus 44 per cent of patients with an high A.I. (P = 0.041). High MVD was significantly related to the T stage (P = 0.036) and to a poorer 5-year overall survival (P < 0.05). Further studies are required to confirm the role of apoptosis and MVD in the development and progression of gastric cancer.
Wu, Xu-Dong; Wang, Chen; Zhang, Zhen-Ying; Fu, Yan; Liu, Feng-Ying; Liu, Xiu-Hua
2014-01-01
Puerariae Lobatae Radix (Gegen in Chinese) is the dried root of Pueraria lobata, a semiwoody, perennial, and leguminous vine native to China. Puerarin is one of the effective components of isoflavones isolated from the root of Pueraria lobata. Previous studies showed that extracts derived from the root of Pueraria lobata possessed antihypertensive effect. Our study is to investigate whether puerarin contributes to prevention of stroke by improving cerebral microcirculation in rats. Materials and Methods. Video microscopy and laser Doppler perfusion imaging on the pia mater were used to measure the diameter of microvessel and blood perfusion in 12-week old spontaneously hypertensive rats (SHRs) and age-matched normotensive WKY rats. Histological alterations were observed by hematoxylin and eosin staining, and microvessel density in cerebral tissue was measured by immunohistochemical analysis with anti-Factor VIII antibody. Cell proliferation was detected by [3H]-TdR incorporation, and activities of p42/44 mitogen activated protein kinases (p42/44 MAPKs) were detected by western blot analysis in cultured cerebral microvascular endothelial cells (MECs). Results. Intravenous injection of puerarin relaxed arterioles and increased the blood flow perfusion in the pia mater in SHRs. Puerarin treatment for 14 days reduced the blood pressure to a normal level in SHRs (P < 0.05) and increased the arteriole diameter in the pia mater significantly as compared with vehicle treatment. Arteriole remodeling, edema, and ischemia in cerebral tissue were attenuated in puerarin-treated SHRs. Microvessel density in cerebral tissue was greater with puerarin than with vehicle treatment. Puerarin-treated MECs showed greater proliferation and p42/44 MAPKs activities than vehicle treatment. Conclusions. Puerarin possesses effects of antihypertension and stroke prevention by improved microcirculation in SHRs, which results from the increase in cerebral blood perfusion both by arteriole relaxation and p42/44 MAPKs-mediated angiogenesis. PMID:24715930
Ríos-Navarro, César; Hueso, Luisa; Miñana, Gema; Núñez, Julio; Ruiz-Saurí, Amparo; Sanz, María Jesús; Cànoves, Joaquin; Chorro, Francisco J; Piqueras, Laura; Bodí, Vicente
2018-06-01
Microvascular obstruction (MVO) exerts deleterious effects following acute myocardial infarction (AMI). We investigated coronary angiogenesis induced by coronary serum and the role of hypoxia-inducible factor-1A (HIF-1A) in MVO repair. Myocardial infarction was induced in swine by transitory 90-minute coronary occlusion. The pigs were divided into a control group and 4 AMI groups: no reperfusion, 1minute, 1 week and 1 month after reperfusion. Microvascular obstruction and microvessel density were quantified. The proangiogenic effect of coronary serum drawn from coronary sinus on endothelial cells was evaluated using an in vitro tubulogenesis assay. Circulating and myocardial HIF-1A levels and the effect of in vitro blockade of HIF-1A was assessed. Compared with control myocardium, microvessel density decreased at 90-minute ischemia, and MVO first occurred at 1minute after reperfusion. Both peaked at 1 week and almost completely resolved at 1 month. Coronary serum exerted a neoangiogenic effect on coronary endothelial cells in vitro, peaking at ischemia and 1minute postreperfusion (32 ± 4 and 41 ± 9 tubes vs control: 3 ± 3 tubes; P < .01). Hypoxia-inducible factor-1A increased in serum during ischemia (5-minute ischemia: 273 ± 52 pg/mL vs control: 148 ± 48 pg/mL; P < .01) being present on microvessels of all AMI groups (no reperfusion: 67% ± 5% vs control: 15% ± 17%; P < .01). In vitro blockade of HIF-1A reduced the angiogenic response induced by serum. Coronary serum represents a potent neoangiogenic stimulus even before reperfusion; HIF-1A might be crucial. Coronary neoangiogenesis induced by coronary serum can contribute to understanding the pathophysiology of AMI. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Pratheeshkumar, Poyil; Son, Young-Ok; Budhraja, Amit; Wang, Xin; Ding, Songze; Wang, Lei; Hitron, Andrew; Lee, Jeong-Chae; Kim, Donghern; Divya, Sasidharan Padmaja; Chen, Gang; Zhang, Zhuo; Luo, Jia; Shi, Xianglin
2012-01-01
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PMID:23300633
Wang, Dan Min; Lin, Ling; Peng, Jian Hua; Gong, Yao; Hou, Zhi Duo; Chen, Su Biao; Xiao, Zheng Yu
2018-06-08
The pathogenesis of sacroiliitis is unclear; therefore, we aimed to systematically study the immunopathology of sacroiliitis in patients with axial spondyloarthritis (axSpA), and explore the relationship between pannus formation, inflammation, and the structural damage caused by sacroiliitis. Fine needle aspiration biopsy of the sacroiliac joint (SIJ) was performed in 193 patients with axSpA. Clinical, laboratory, and imaging data were collected at baseline and during the follow up. Immunohistochemistry analysis was performed to detect CD34+ microvessels, CD68+ osteoclasts/macrophages, vascular endothelial growth factor (VEGF), metalloproteinase-3 (MMP-3), tumor necrosis factor-α (TNF-α), and caspase-3. Autopsy subjects were used as controls. In early sacroiliitis (grade 0-1) all pathological features could be observed, with the most common being subchondral pannus formation. Among the 193 patients, 98 were followed up for 1-13 years (mean 3.6 years); 63.3% had radiological progression at the endpoint. Multiple regression analysis showed that cartilage pannus invasion (OR 2.99, P = 0.010) and endochondral ossification (OR 3.97, P = 0.049) at baseline were risk factors for radiological structural damage. Compared to SIJ controls, the subchondral microvessel density, number of CD68+ multinuclear osteoclasts, and the levels of VEGF, caspase-3, MMP-3, and TNF-α expressed at the interface of the bone and cartilage were significantly higher in patients with sacroiliitis. Subchondral fibrovascular tissue formation is the most important pathological feature in early sacroiliitis. The existence of cartilage pannus invasion or endochondral ossification at baseline can predict radiological structural damage during the follow up.
Caballero, Sergio; Swaney, James; Moreno, Kelli; Afzal, Aqeela; Kielczewski, Jennifer; Stoller, Glenn; Cavalli, Amy; Garland, William; Hansen, Geneviève; Sabbadini, Roger; Grant, Maria B.
2013-01-01
The efficacy of novel monoclonal antibodies that neutralize the pro-angiogenic mediator, sphingosine-1-phosphate (S1P), were tested using in vitro and in vivo angiogenesis models, including choroidal neovascularization (CNV) induced by laser disruption of Bruch’s membrane. S1P receptor levels in human brain choroid plexus endothelial cells (CPEC), human lung microvascular endothelial cells, human retinal vascular endothelial cells, and circulating endothelial progenitor cells were examined by semi-quantitative PCR. The ability of murine or humanized anti-S1P monoclonal antibodies (mAbs) to inhibit S1P-mediated microvessel tube formation by CPEC on Matrigel was evaluated and capillary density in subcutaneous growth factor-loaded Matrigel plugs was determined following anti-S1P treatment. S1P promoted in vitro capillary tube formation in CPEC consistent with the presence of cognate S1P1–5 receptor expression by these cells and the S1P antibody induced a dose-dependent reduction in microvessel tube formation. In a murine model of laser-induced rupture of Bruch’s membrane, S1P was detected in posterior cups of mice receiving laser injury, but not in uninjured controls. Intravitreous injection of anti-S1P mAbs dramatically inhibited CNV formation and sub-retinal collagen deposition in all treatment groups (p < 0.05 compared to controls), thereby identifying S1P as a previously unrecognized mediator of angiogenesis and subretinal fibrosis in this model. These findings suggest that neutralizing S1P with anti-S1P mAbs may be a novel method of treating patients with exudative age-related macular degeneration by reducing angiogenesis and sub-retinal fibrosis, which are responsible for visual acuity loss in this disease. PMID:18723015
NASA Astrophysics Data System (ADS)
Lee, Jennifer; Kozikowski, Raymond; Wankhede, Mamta; Sorg, Brian S.
2011-02-01
Abnormal microvascular function and angiogenesis are key components of various diseases that can contribute to the perpetuation of the disease. Several skin diseases and ophthalmic pathologies are characterized by hypervascularity, and in cancer the microvasculature of tumors is structurally and functionally abnormal. Thus, the microvasculature can be an important target for treatment of diseases characterized by abnormal microvasculature. Motivated largely by cancer research, significant effort has been devoted to research on drugs that target the microvasculature. Several vascular targeting drugs for cancer therapy are in clinical trials and approved for clinical use, and several off-label uses of these drugs have been reported for non-cancer diseases. The ability to image and measure parameters related to microvessel function preclinically in laboratory animals can be useful for development and comparison of vascular targeting drugs. For example, blood supply time measurements give information related to microvessel morphology and can be measured with first-pass fluorescence imaging. Hemoglobin saturation measurements give an indication of microvessel oxygen transport and can be measured with spectral imaging. While each measurement individually gives some information regarding microvessel function, the measurements together may yield even more information since theoretically microvessel morphology can influence microvessel oxygenation, especially in metabolically active tissue like tumors. However, these measurements have not yet been combined. In this study, we report the combination of blood supply time imaging and hemoglobin saturation imaging of microvessel networks in tumors using widefield fluorescence and spectral imaging, respectively. The correlation between the measurements in a mouse mammary tumor is analyzed.
Singanamalli, Asha; Rusu, Mirabela; Sparks, Rachel E; Shih, Natalie N C; Ziober, Amy; Wang, Li-Ping; Tomaszewski, John; Rosen, Mark; Feldman, Michael; Madabhushi, Anant
2016-01-01
To identify computer extracted in vivo dynamic contrast enhanced (DCE) MRI markers associated with quantitative histomorphometric (QH) characteristics of microvessels and Gleason scores (GS) in prostate cancer. This study considered retrospective data from 23 biopsy confirmed prostate cancer patients who underwent 3 Tesla multiparametric MRI before radical prostatectomy (RP). Representative slices from RP specimens were stained with vascular marker CD31. Tumor extent was mapped from RP sections onto DCE MRI using nonlinear registration methods. Seventy-seven microvessel QH features and 18 DCE MRI kinetic features were extracted and evaluated for their ability to distinguish low from intermediate and high GS. The effect of temporal sampling on kinetic features was assessed and correlations between those robust to temporal resolution and microvessel features discriminative of GS were examined. A total of 12 microvessel architectural features were discriminative of low and intermediate/high grade tumors with area under the receiver operating characteristic curve (AUC) > 0.7. These features were most highly correlated with mean washout gradient (WG) (max rho = -0.62). Independent analysis revealed WG to be moderately robust to temporal resolution (intraclass correlation coefficient [ICC] = 0.63) and WG variance, which was poorly correlated with microvessel features, to be predictive of low grade tumors (AUC = 0.77). Enhancement ratio was the most robust (ICC = 0.96) and discriminative (AUC = 0.78) kinetic feature but was moderately correlated with microvessel features (max rho = -0.52). Computer extracted features of prostate DCE MRI appear to be correlated with microvessel architecture and may be discriminative of low versus intermediate and high GS. © 2015 Wiley Periodicals, Inc.
Microvasculature remodeling in the mouse lower gut during inflammaging
Jeong, Jae-Ho; Kim, KwangSoo; Lim, Daejin; Kim, Kun-Hee; Kim, Hyung-Seok; Lee, Sungsu; Song, Joo-Hye; Moon, Byoung-Gon; Choy, Hyon E.; Park, Sang Chul
2017-01-01
Inflammaging is defined as low-grade, chronic, systemic inflammation in aging, in the absence of overt infection. Age-associated deterioration of gastrointestinal function could be ascribed to the inflammaging, although evidence is yet to emerge. Here we show that microvessels in aging mouse intestine were progressively deprived of supportive structures, microvessel-associated pericytes and adherens junction protein vascular endothelial (VE)-cadherin, and became leaky. This alteration was ascribed to up-regulation of angiopoetin-2 in microvascular endothelial cells. Up-regulation of the angiopoietin-2 was by TNF-α, originated from M2-like residential CD206+ macrophages, proportion of which increases as animal ages. It was concluded that antigenic burdens encountered in intestine throughout life create the condition of chronic stage of inflammation, which accumulates M2-like macrophages expressing TNF-α. The TNF-α induces vascular leakage to facilitate recruitment of immune cells into intestine under the chronic inflammatory setting. PMID:28045067
The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer.
Zhu, Qinyi; Tang, Meiling; Wang, Xipeng
2017-04-03
Epithelial ovarian cancer (EOC) is the most common and lethal cancer-related death among females in the world. Asparaginyl endopeptidase (AEP) is a member of C13 family peptidases and expressed in the extracellular matrix and tumor cells. The aim of this article is to explore the function of asparaginyl endopeptidase in epithelial ovarian cancer. The expression of AEP was examined in 20 EOC samples, 3 EOC metastasis samples, 6 fallopian tube metastasis samples, 4 peritoneum metastasis samples and 20 benign ovarian tumor samples by immunohistochemistry. The expression of AEP was also evaluated in serum and ascites of EOC patients by elisa. And we used a lentiviral vector to overexpress AEP in human epithelial ovarian cancer cell lines SKOV3ip and detected the function of AEP-SKOV3ip cells both in vitro and in vivo. The growth of AEP-SKOV3ip cells was observed by MTT, migration and tube formation assays in vitro. Additionally, the subcutaneous mice model was used to identify the tumor growth and metastasis in vivo. Mice tumors were stained for CD31 to determine the microvessel density (MVD). We demonstrated that AEP was highly expressed in the EOC patient tissues and ascites. The AEP transfected SKOV3ip cells could both promote tumor growth in vitro and in vivo. The MVD in AEP-SKOV3ip group was higher than that in NC-SKOV3ip group. Therefore, our results demonstrated that AEP could induce EOC growth and progressionboth in vitro and in vivo.
Ratajczak, Philippe; Leboeuf, Christophe; Wang, Li; Brière, Josette; Loisel-Ferreira, Irmine; Thiéblemont, Catherine; Zhao, Wei-Li; Janin, Anne
2012-06-01
The angiogenic microenvironment has been known to be a component of angioimmunoblastic T-cell lymphoma since its initial characterization. We have shown that angioimmunoblastic T-cell lymphoma endothelial cells produce vascular endothelial growth factor-A (VEGFA), and participate in lymphoma progression. In squamous cell carcinoma, endothelial BCL2 expression induces a crosstalk with tumor cells through VEGFA, a major mediator of tumoral angiogenesis. In the present study, we analyzed BCL2 and VEGFA in 30 angioimmunoblastic T-cell lymphomas, using triple immunofluorescence to identify protein coexpression in well-characterized lymphoma cells and microenvironment neoangiogenic endothelial cells. Using quantitative real-time PCR, we assessed mRNA expression levels in laser-microdissected endothelial and lymphoma cells. In lymphoma cells, as in endothelial cells, BCL2 and VEGFA proteins were coexpressed. BCL2 was expressed only in neoangiogenic CD34(+)CD105(+) endothelial cells. In laser-microdissected cells, mRNA studies showed a significant relationship between BCL2 and VEGFA levels in CD34(+) endothelial cells, but not in CD3(+)CD10(+)lymphoma cells, or in CD34(+) endothelial cells from lymph node hyperplasia. Further study showed that, in AITL, BCL2 mRNA levels in CD34(+)CD105(+) neoangiogenic endothelial cells also correlated with microvessel density, International Prognostic Index, Ann Arbor stage, bone marrow involvement and elevated LDH. BCL2 expression by CD105(+) neoangiogenic endothelial cells is related to tumor progression in angioimmunoblastic T-cell lymphoma.
Tortuous Microvessels Contribute to Wound Healing via Sprouting Angiogenesis.
Chong, Diana C; Yu, Zhixian; Brighton, Hailey E; Bear, James E; Bautch, Victoria L
2017-10-01
Wound healing is accompanied by neoangiogenesis, and new vessels are thought to originate primarily from the microcirculation; however, how these vessels form and resolve during wound healing is poorly understood. Here, we investigated properties of the smallest capillaries during wound healing to determine their spatial organization and the kinetics of formation and resolution. We used intravital imaging and high-resolution microscopy to identify a new type of vessel in wounds, called tortuous microvessels. Longitudinal studies showed that tortuous microvessels increased in frequency after injury, normalized as the wound healed, and were closely associated with the wound site. Tortuous microvessels had aberrant cell shapes, increased permeability, and distinct interactions with circulating microspheres, suggesting altered flow dynamics. Moreover, tortuous microvessels disproportionately contributed to wound angiogenesis by sprouting exuberantly and significantly more frequently than nearby normal capillaries. A new type of transient wound vessel, tortuous microvessels, sprout dynamically and disproportionately contribute to wound-healing neoangiogenesis, likely as a result of altered properties downstream of flow disturbances. These new findings suggest entry points for therapeutic intervention. © 2017 The Authors.
Glucose Transporters are Abundant in Cells with "Occluding" Junctions at the Blood-Eye Barriers
NASA Astrophysics Data System (ADS)
Harik, Sami I.; Kalaria, Rajesh N.; Whitney, Paul M.; Andersson, Lars; Lundahl, Per; Ledbetter, Steven R.; Perry, George
1990-06-01
We studied the distribution of the "erythroid/brain" glucose transporter protein in the human and rat eye by immunocytochemistry with monoclonal and polyclonal antibodies to the C terminus of the human erythrocyte glucose transporter. We found intense immunocytochemical staining in the endothelium of microvessels of the retina, optic nerve, and iris but not in microvessels of the choroid, ciliary body, sclera, and other retro-orbital tissues. In addition, we found marked immunocytochemical staining of retinal pigment epithelium, ciliary body epithelium, and posterior epithelium of the iris. The common feature of all those endothelial and epithelial cells that stained intensely for the glucose transporter is the presence of "occluding" intercellular junctions, which constitute the anatomical bases of the blood-eye barriers. We propose that a high density of the glucose transporter is a biochemical concomitant of epithelial and endothelial cells with barrier characteristics, at least in tissues that have a high metabolic requirement for glucose.
Xu, Yinglei; Wen, Zhengshun; Xu, Zirong
2009-12-01
Chitosan nanoparticles (CNP) have demonstrated anticancer activity in vitro and in vivo by a few recent researches. However, the mechanisms involved in their potential anticancer activity remain to be elucidated. In this study, the effects of CNP on tumor growth were investigated using a model of nude mice xenografted with human hepatocellular carcinoma (HCC) (BEL-7402) cells. The results demonstrated that the treatment of these nude mice with CNP significantly inhibited tumor growth and induced tumor necrosis. Furthermore, microvessel density (MVD) determination by counting immunohistologically stained tumor microvessels suggested that CNP dose-dependent tumor suppression was correlated with the inhibition of tumor angiogenesis. Mechanistically, immunohistochemical and quantitative real-time reverse transcription-polymerase reaction assays provided evidence that CNP-mediated inhibition of tumor angiogenesis was linked to impaired levels of vascular endothelial growth factor receptor 2 (VEGFR2). Due to their low or non-toxicity, CNP and their derivatives may represent a novel class of anti-cancer drug.
Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1
Morland, Cecilie; Andersson, Krister A.; Haugen, Øyvind P.; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E.; Palibrk, Vuk; Diget, Elisabeth H.; Kennedy, Lauritz H.; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H.
2017-01-01
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor. PMID:28534495
Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1.
Morland, Cecilie; Andersson, Krister A; Haugen, Øyvind P; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E; Palibrk, Vuk; Diget, Elisabeth H; Kennedy, Lauritz H; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H
2017-05-23
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.
Zeng, Bin; Ren, Xiaofeng; Lin, Guosheng; Zhu, Chengang; Chen, Honglei; Yin, Jiechao; Jiang, Hong; Yang, Bo; Ding, Danhua
2008-10-01
The aim has been to determine whether the supernatants of mesenchymal stem cells (MSCs) transfected with adenovirus carrying human heme oxygenase-1 (hHO-1) gene protect cardiomyocytes from ischemic injury. We have found that hHO-1 infected MSCs (hHO-1-MSCs) increased expression of hHO-1 protein. Apoptosis of cultured hHO-1-MSCs exposed to hypoxia was suppressed. Several cytokines, including HGF, bFGF, TGF-beta, VEGF and IL-1beta, were produced by hHO-1-MSCs, some being significantly enhanced under hypoxia stimulation. Meanwhile, those cytokines reduced caspase-3 level and activity in cultured adult rat ventricular cardiomyocytes (ARVCs) exposed to hypoxia. Supernatants obtained from hHO-1-MSCs improved left ventricular function, limited myocardial infarct size, increased microvessel density, and inhibited apoptosis of cardiomyocytes in rat myocardial infarction. It can be concluded hHO-1-modified MSCs prevent myocardial cell injury via secretion of paracrine-acting mediators.
Meier, Valeria; Guscetti, Franco; Roos, Malgorzata; Ohlerth, Stefanie; Pruschy, Martin; Rohrer Bley, Carla
2016-01-01
For various types of tumor therapy, it is suggested that co-targeting of tumor microenvironment, mainly tumor vasculature, mediates tumor response mechanisms. Immunohistochemistry for glucose transporter-1 (GLUT-1), carbonic anhydrase-IX (CAIX), Ki-67, and von Willebrand factor VIII for microvessel density (MVD) were performed on formalin-fixed paraffin-embedded samples of canine oral malignant neoplasms. Polarographic oxygen measurements (median pO2) and perfusion data via contrast-enhanced power Doppler ultrasound (median vascularity, median blood volume) provided additional information. Ninety-two samples were analyzed: sarcomas (n = 32), carcinomas (n = 30), and malignant melanomas (n = 30). Polarographic oxygen and perfusion data was available in 22.8% (sarcomas n = 9, carcinomas n = 7, melanomas n = 5), and 27.1% (sarcomas n = 10, carcinomas n = 8, melanomas n = 7) of cases, respectively. GLUT-1 expression was detected in 46.7% of all samples, and was generally weak. CAIX expression was found in 34.8% of all samples. Median Ki-67 score and MVD count was 19% and 17, respectively. The evaluation of the GLUT-1 score and continuous data showed significantly lower GLUT-1 levels in sarcomas (mean 5.1%, SD 6.2) versus carcinomas and melanomas (mean 16.5%/ 19.0%, SD 17.3/ 20.9, p = 0.001). The expression of CAIX correlated mildly positively with GLUT-1 (p = 0.018, rho = 0.250) as well as with Ki-67 (p = 0.014, rho = 0.295). MVD showed a significantly lower level in melanomas (mean 12.6, SD 7.7) versus sarcomas and carcinomas (mean 21.8/ 26.9, SD 13.0/20.4, p = 0.001). Median vascularity and blood volume were significantly lower in sarcomas (mean 10.4%, SD 11.0, and mean 6.3%, SD 6.5, respectively) versus carcinomas (mean 39.2%, SD 16.4 and mean 33.0%, SD 25.6, respectively) and melanomas (mean 36.0%, SD 18.3, and 31.5%, SD 24.5). Between the 3 histological groups, there was neither a significant difference in the GLUT-1 and CAIX score and continuous data, nor the Ki67 score, or polarographic oxygen measurements. GLUT-1 continuous data and Ki-67 (p<0.001, rho = 0.403), as well as Ki-67 and MVD (p = 0.029, rho = 0.228) correlated positively and a mild correlation was found between vascularity and GLUT-1 (p = 0.043, rho = 0.408). GLUT-1, CAIX, proliferative index and MVD levels were established as microenvironmental descriptors with the purpose of creating a baseline in order to follow changes seen in the tumor microenvironment after hypofractionated radiation with high doses. PMID:26906567
NASA Astrophysics Data System (ADS)
Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang
2015-01-01
JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06300g
Non-Invasive Markers of Tumor Growth, Metastases, and Sensitivity to Anti-Neoplastic Therapy
2009-01-01
angiogenic agents. Validation of the results of the treatment studies will be based on tumor growth, metastases, and microvessel density...detectable by NMR. DCE-MRI studies do not suggest differences in vascular parameters between slow and fast growing rat prostate tumors. The R3327AT...Introduction The primary goal of this study is to determine whether non-invasive magnetic resonance (MR) techniques can distinguish between slow and
COX-2 and Prostate Cancer Angiogenesis
2001-03-01
the optimal dosing and timing of a COX-2 inhibitor (NS398) in an animal model of human prostate cancer, (2)and (3) the mechanisms underlying the...cancer tissues (14) and that a COX-2 inhibitor selectively induces apoptosis in a prostate cancer cell line (15). We also demonstrated that treatment of...human prostate tumor-bearing mice with a selective COX-2 inhibitor (NS-398) significantly reduces tumor size, microvessel density and levels of a
Brain vascular image segmentation based on fuzzy local information C-means clustering
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie
2017-02-01
Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.
Angiostatin inhibits experimental liver fibrosis in mice.
Vogten, J Mathys; Drixler, Tamas A; te Velde, Elisabeth A; Schipper, Marguerite E; van Vroonhoven, Theo J M V; Voest, Emile E; Borel Rinkes, Inne H M
2004-07-01
Liver fibrosis is a response to chronic hepatic damage, which ultimately leads to liver failure and necessitates liver transplantation. A characteristic of fibrosis is pathological vessel growth. This type of angiogenesis may contribute to the disturbance of hepatocyte perfusion dynamics and lead to aggravation of disease. We hypothesized that angiostatin can inhibit pathological vessel growth and, consequently, the development of hepatic fibrosis. Hepatic fibrosis was induced by injection of carbon tetrachloride for 5 weeks. Angiostatin mice received carbon tetrachloride for 5 weeks and angiostatin during weeks 4 and 5. After 5 weeks, immunohistochemistry for endothelial cell marker von Willebrand factor and for cell proliferation was performed. Angiogenesis was quantified by counting the number of immunopositive microvessels. Also, the relative fibrotic surface was determined using Sirius Red histostaining and computer image analysis. Immunohistochemistry revealed increased expression for von Willebrand factor in fibrotic livers. Immunopositive microvessels were localized in fibrotic areas surrounding larger vessels and in emerging fibrotic septa. Angiostatin reduced the number of immunopositive microvessels by 69% (p<0.001). In addition, angiostatin reduced the relative fibrotic area in the liver by 63+/-0.1% (p<0.001). Finally, angiostatin treatment was not associated with differences in cell proliferation. Angiostatin inhibits the development of pathological angiogenesis and liver fibrosis in mice. These results warrant further evaluation of angiostatin as an antifibrotic agent, potentially contributing to the deferment of liver transplantation and reduced recurrence of fibrotic disease in the transplanted liver.
Yin, Hao; Frontini, Matthew J.; Arpino, John-Michael; Nong, Zengxuan; O'Neil, Caroline; Xu, Yiwen; Balint, Brittany; Ward, Aaron D.; Chakrabarti, Subrata; Ellis, Christopher G.; Gros, Robert; Pickering, J. Geoffrey
2015-01-01
Tumor vessel normalization has been proposed as a therapeutic paradigm. However, normal microvessels are hierarchical and vasoreactive with single file transit of red blood cells through capillaries. Such a network has not been identified in malignant tumors. We tested whether the chaotic tumor microcirculation could be reconfigured by the mesenchyme-selective growth factor, FGF9. Delivery of FGF9 to renal tumors in mice yielded microvessels that were covered by pericytes, smooth muscle cells, and a collagen-fortified basement membrane. This was associated with reduced pulmonary metastases. Intravital microvascular imaging revealed a haphazard web of channels in control tumors but a network of arterioles, bona fide capillaries, and venules in FGF9-expressing tumors. Moreover, whereas vasoreactivity was absent in control tumors, arterioles in FGF9-expressing tumors could constrict and dilate in response to adrenergic and nitric oxide releasing agents, respectively. These changes were accompanied by reduced hypoxia in the tumor core and reduced expression of the angiogenic factor VEGF-A. FGF9 was found to selectively amplify a population of PDGFRβ-positive stromal cells in the tumor and blocking PDGFRβ prevented microvascular differentiation by FGF9 and also worsened metastases. We conclude that harnessing local mesenchymal stromal cells with FGF9 can differentiate the tumor microvasculature to an extent not observed previously. PMID:26183774
Growth of arterioles in chronically stimulated adult rat skeletal muscle.
Hansen-Smith, F; Egginton, S; Hudlicka, O
1998-01-01
The purpose of this study was to test the hypothesis that capillary growth induced by chronic electrical stimulation of skeletal muscle is accompanied by the growth of small arterioles. Lower limb flexor muscles of Sprague-Dawley rats were stimulated by electrodes implanted in the vicinity of the peroneal nerve at 10 Hz for 8 h/d for 2 and 7 days. Cryostat sections from the proximal, middle, and distal regions of the extensor digitorum longus muscle (EDL) were fluorescently immunolabeled with alpha-smooth muscle actin (alpha SMA) and myosin heavy chain (MHC) to identify mature (alpha SMA and MHC-positive) and immature (alpha SMA-positive, MHC-negative) arterioles. The fluorescent derivative of the lectin Griffonia simplicifolia I (GSI) was used to identify all microvessels, including arterioles, capillaries, and venules. The number of vessels positive for GSI or alpha SMA surrounding muscle fibers was similar in all three muscle regions (proximal, middle, distal). The mean values +/- SEM for GSI-positive vessels from all regions were similar in control (4.3 +/- 0.07) and 2-day stimulated (4.7 +/- 0.08) but higher in 7-day stimulated muscles (6.7 +/- 0.1, p < 0.05), thus confirming the previous findings on capillary growth. A similar increase was found in the number of alpha SMA positive vessels < or = 10 microns outer diameter (1.3 +/- 0.09 versus 0.4 +/- 0.03 around muscle fibers in controls). The density of terminal arterioles (< or = 10 microns) was slightly but not significantly higher after 2 days of stimulation (19.5 +/- 4 versus 15.6 +/- 2 profiles/mm2 in control muscles) and significantly higher after 7 days (33 +/- 7). While a similar increase was observed in the density of preterminal arterioles > 10 microns (17 +/- 3 control, 22 +/- 3 at 2 days and 40 +/- 5 at 7 days), the density of MHC-positive vessels muscles stimulated for 7 days was unchanged. Seven-day stimulated muscle also had a fivefold higher density of microvessel profiles < or = 10 microns that were only partially surrounded by alpha SMA. This considerably exceeds the relative increase in the number of capillaries and thus supports the concept of arteriolar growth by transformation from capillaries. Chronic electrical stimulation results in an early increase in the number of immature (MHG-negative), but not mature (MHC-positive) arterioles, a process that accompanies the increase in capillarization. The great increase in the number of microvessels only partially covered by alpha SMA suggests arteriolization of capillaries as a contributing mechanism in this growth.
Lin, Haotian; Luo, Lixia; Ling, Shiqi; Chen, Wan; Liu, Zhaochuan; Zhong, Xiaojian; Wu, Changrui; Liu, Yizhi
2013-01-01
Purpose To investigate whether lymphatic microvessel density (LMVD) could be used as a predictive marker for the recurrence time of pterygia. Methods This was a prospective case series study. Ninety-six patients with unilateral eye primary nasal pterygia were included. The patients were clinically evaluated to grade the severity of their pterygia (32 were Grade 1, 29 were Grade 2, and 35 were Grade 3) before they underwent bare sclera resection with the use of mitomycin C. Excised tissues from the 96 patients and the ten normal nasal conjunctiva obtained from age-matched donor eyeballs (controls) were immunostained with LYVE-1 and CD31 monoclonal antibodies to evaluate LMVD and blood microvessel density (BMVD). The patients were followed up for three years or until pterygium recurrence was identified, which was defined as fibrovascular regrowth past the limbus in a previously compromised area. The recurrence time (RT) for a pterygium was calculated, and its relationship with LMVD and/or BMVD was statistically analyzed. Results In total, there were 24 cases of pterygium recurrence. The recurrence rate of Grade 1 was 28.1% (9/32), Grade 2 was 24.1% (7/29), and Grade 3 was 22.9% (8/35), as classified in the primary pterygium (p>0.05); the overall recurrence rate was 25% (24/96) for all patients during the three-year follow-up. In the tissue analysis, there were a small number of CD31 (+), LYVE-1(-) BMVD and only a few CD31 (weak), LYVE-1(+) LMVD in the ten normal nasal conjunctiva tissues. BMVD and LMVD increased significantly in the pterygium tissue compared to the control tissue and were significantly correlated with the width and area of pterygium in Grades 1–3 (all p values <0.05). RT was not correlated with BMVD or pterygium grade, but LMVD was significantly and negatively correlated with RT within each group and in the total patient cohort. Furthermore, we determined that an LMVD greater than 20 in the surgical specimens predicted pterygium recurrence. Conclusions The LMVD of surgical specimens is an independent risk factor and a valuable predictive factor for the recurrence time of pterygia. PMID:23378730
NASA Astrophysics Data System (ADS)
Mallidi, Srivalleesha; Mai, Zhiming; Rizvi, Imran; Hempstead, Joshua; Arnason, Stephen; Celli, Jonathan; Hasan, Tayyaba
2015-04-01
In view of the increase in cancer-related mortality rates in low- to middle-income countries (LMIC), there is an urgent need to develop economical therapies that can be utilized at minimal infrastructure institutions. Photodynamic therapy (PDT), a photochemistry-based treatment modality, offers such a possibility provided that low-cost light sources and photosensitizers are available. In this proof-of-principle study, we focus on adapting the PDT light source to a low-resource setting and compare an inexpensive, portable, battery-powered light-emitting diode (LED) light source with a standard, high-cost laser source. The comparison studies were performed in vivo in a xenograft murine model of human squamous cell carcinoma subjected to 5-aminolevulinic acid-induced protoporphyrin IX PDT. We observed virtually identical control of the tumor burden by both the LED source and the standard laser source. Further insights into the biological response were evaluated by biomarker analysis of necrosis, microvessel density, and hypoxia [carbonic anhydrase IX (CAIX) expression] among groups of control, LED-PDT, and laser-PDT treated mice. There is no significant difference in the percent necrotic volume and CAIX expression in tumors that were treated with the two different light sources. These encouraging preliminary results merit further investigations in orthotopic animal models of cancers prevalent in LMICs.
Topical application of substance P promotes wound healing in streptozotocin-induced diabetic rats.
Kant, Vinay; Kumar, Dinesh; Kumar, Dhirendra; Prasad, Raju; Gopal, Anu; Pathak, Nitya N; Kumar, Pawan; Tandan, Surender K
2015-05-01
Substance P (SP) is known to stimulate angiogenesis, fibroblasts proliferation and expressions of cytokines and growth factors involved in wound healing. However, SP level reduces in dermis in diabetics and, hence, it was hypothesized that exogenously applied SP could be helpful in improving wound healing in diabetic rats. Excision skin wound was created on the back of diabetic rats and rats were divided into three groups i.e. (i) saline-, (ii) gel- and (iii) SP-treated. Normal saline, pluronic gel and SP (10(-6)M) in gel were topically applied once daily for 19days. SP treatment significantly increased the wound closure, levels of interleukin-10, and expressions of vascular endothelial growth factor, transforming growth factor-beta1, heme oxygenase-1 and endothelial nitric oxide synthase, whereas it significantly decreased the expression of tumor necrosis factor-alpha, interleukin-1beta and matrix metalloproteinases-9 in the granulation/healing tissue. The inflammatory cells were present for long time in normal saline-treated group. Histological evaluation revealed better extracellular matrix formation with marked fibroblast proliferation and collagen deposition in SP-treated group. Early epithelial layer formation, increased microvessel density and greater growth associated protein-43 positive nerve fibers were also evidenced in SP-treated group. In conclusion, SP treatment markedly accelerated cutaneous wound healing in diabetic rats. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neovascularization and Angiogenic Gene Expression Following Chronic Arsenic Exposure in Mice
Soucy, Nicole V.; Mayka, Debra; Klei, Linda R.; Nemec, Antonia A.; Bauer, John A.; Barchowsky, Aaron
2015-01-01
Exposure to arsenic in drinking water increases incidence of cardiovascular diseases. However, the basic mechanisms and genetic changes that promote these diseases are unknown. This study investigated the effects of chronic arsenic exposure on vessel growth and expression of angiogenic and tissue remodeling genes in cardiac tissues. Male mice were exposed to low to moderately high levels of arsenite (AsIII) for 5, 10, or 20 wk in their drinking water. Vessel growth in Matrigel implants was tested during the last 2 wk of each exposure period. Implant vascularization increased in mice exposed to 5–500 ppb AsIII for 5 wk. Similar increases were seen following exposure to 50–250 ppb of AsIII over 20 wk, but the response to 500 ppb decreased with time. RT-PCR analysis of cardiac mRNA revealed differential expression of angiogenic or tissue remodeling genes, such as vascular endothelial cell growth factor (VEGF), VEGF receptors, plasminogen activator inhibitor-1, endothelin-1, and matrix metalloproteinase-9, which varied with time or amount of exposure. VEGF receptor mRNA and cardiac microvessel density were reduced by exposure to 500 ppb AsIII for 20 wk. These data demonstrate differential concentration and time-dependent effects of chronic arsenic exposure on cardiovascular phenotype and vascular remodeling that may explain the etiology for AsIII-induced disease. PMID:15738583
Angiogenesis in chronic myeloproliferative diseases detected by CD34 expression.
Panteli, K; Zagorianakou, N; Bai, M; Katsaraki, A; Agnantis, N J; Bourantas, K
2004-06-01
Increased bone marrow angiogenesis estimated as bone marrow microvessel density (MVD), or as serum angiogenic factor levels and/or immunohistochemical expression of these factors in bone marrow biopsy has been demonstrated in a variety of hematological disorders including chronic myeloproliferative diseases (MPDs). The aim of this study was to investigate the MVD in 25 cases of myelofibrosis with myeloid metaplasia (MMM). MVD was estimated by CD34 immunohistochemical expression in bone marrow biopsies. A control group of 27 patients without bone marrow disease, eight cases of polycythemia vera (PV), 41 cases of essential thrombocythemia (ET) and nine cases of chronic myeloid leukemia (CML) were also studied. Moreover, in cases with MMM, MVD was correlated with clinical, laboratory, histological parameters and the outcome of the patients. Our study confirmed a significantly higher degree of angiogenesis in MMM, PV, ET and CML compared with controls (P < 0.001, P = 0.0007, P < 0.001 and P = 0.0008, respectively). Angiogenesis was higher in MMM than PV, ET and CML cases (P < 0.001, P < 0.001 and P = 0.008). Increased angiogenesis was correlated with hypercatabolic symptoms in MMM patients (P = 0.009). No correlation with other clinicopathological parameters or clinical outcome was found. However, definitive conclusions regarding the prognostic value of increased angiogenesis may require additional follow-up and a larger group of patients.
Uchida, Yasuo; Ito, Katsuaki; Ohtsuki, Sumio; Kubo, Yoshiyuki; Suzuki, Takashi; Terasaki, Tetsuya
2015-07-01
The purpose of this study was to clarify the expression of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) and its contribution to the supply of biotin and pantothenic acid to the human brain via the blood-brain barrier. DNA microarray and immunohistochemical analyses confirmed that SLC5A6 is expressed in microvessels of human brain. The absolute expression levels of SLC5A6 protein in isolated human and monkey brain microvessels were 1.19 and 0.597 fmol/μg protein, respectively, as determined by a quantitative targeted absolute proteomics technique. Using an antibody-free method established by Kubo et al. (2015), we found that SLC5A6 was preferentially localized at the luminal membrane of brain capillary endothelium. Knock-down analysis using SLC5A6 siRNA showed that SLC5A6 accounts for 88.7% and 98.6% of total [(3) H]biotin and [(3) H]pantothenic acid uptakes, respectively, by human cerebral microvascular endothelial cell line hCMEC/D3. SLC5A6-mediated transport in hCMEC/D3 was markedly inhibited not only by biotin and pantothenic acid, but also by prostaglandin E2, lipoic acid, docosahexaenoic acid, indomethacin, ketoprofen, diclofenac, ibuprofen, phenylbutazone, and flurbiprofen. This study is the first to confirm expression of SLC5A6 in human brain microvessels and to provide evidence that SLC5A6 is a major contributor to luminal uptake of biotin and pantothenic acid at the human blood-brain barrier. In humans, it was unclear (not concluded) about what transport system at the blood-brain barrier (BBB) is responsible for the brain uptakes of two vitamins, biotin and pantothenic acid, which are necessary for brain proper function. This study clarified for the first time that the solute carrier 5A6/Na(+) -dependent multivitamin transporter SLC5A6/SMVT is responsible for the supplies of biotin and pantothenic acid into brain across the BBB in humans. DHA, docosahexaenoic acid; NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2. © 2015 International Society for Neurochemistry.
Mei, Kuo-Ching; Bai, Jie; Lorrio, Silvia; Wang, Julie Tzu-Wen; Al-Jamal, Khuloud T
2016-11-01
Nanocarriers take advantages of the enhanced permeability and retention (EPR) to accumulate passively in solid tumors. Magnetic targeting has shown to further enhance tumor accumulation in response to a magnetic field gradient. It is widely known that passive accumulation of nanocarriers varies hugely in tumor tissues of different tumor vascularization. It is hypothesized that magnetic targeting is likely to be influenced by such factors. In this work, magnetic targeting is assessed in a range of subcutaneously implanted murine tumors, namely, colon (CT26), breast (4T1), lung (Lewis lung carcinoma) cancer and melanoma (B16F10). Passively- and magnetically-driven tumor accumulation of the radiolabeled polymeric magnetic nanocapsules are assessed with gamma counting. The influence of tumor vasculature, namely, the tumor microvessel density, permeability and diameter on passive and magnetic tumor targeting is assessed with the aid of the retrospective design of experiment (DoE) approach. It is clear that the three tumor vascular parameters contribute greatly to both passive and magnetically targeted tumor accumulation but play different roles when nanocarriers are targeted to the tumor with different strategies. It is concluded that tumor permeability is a rate-limiting factor in both targeting modes. Diameter and microvessel density influence passive and magnetic tumor targeting, respectively. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Flow of a circulating tumor cell and red blood cells in microvessels
NASA Astrophysics Data System (ADS)
Takeishi, Naoki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji
2015-12-01
Quantifying the behavior of circulating tumor cells (CTCs) in the blood stream is of fundamental importance for understanding metastasis. Here, we investigate the flow mode and velocity of CTCs interacting with red blood cells (RBCs) in various sized microvessels. The flow of leukocytes in microvessels has been described previously; a leukocyte forms a train with RBCs in small microvessels and exhibits margination in large microvessels. Important differences in the physical properties of leukocytes and CTCs result from size. The dimensions of leukocytes are similar to those of RBCs, but CTCs are significantly larger. We investigate numerically the size effects on the flow mode and the cell velocity, and we identify similarities and differences between leukocytes and CTCs. We find that a transition from train formation to margination occurs when (R -a ) /tR≈1 , where R is the vessel radius, a is the cell radius, and tR is the thickness of RBCs, but that the motion of RBCs differs from the case of leukocytes. Our results also show that the velocities of CTCs and leukocytes are larger than the average blood velocity, but only CTCs move faster than RBCs for microvessels of R /a ≈1.5 -2.0 . These findings are expected to be useful not only for understanding metastasis, but also for developing microfluidic devices.
Wang, Qi; Wang, Shuai; Sun, Si-Qiao; Cheng, Zhi-Hua; Zhang, Yang; Chen, Guang; Gu, Meng; Yao, Hai-Jun; Wang, Zhong; Zhou, Juan; Peng, Yu-Bing; Xu, Ming-Xi; Zhang, Ke; Sun, Xi-Wei
2016-01-01
This study was to explore the effects of RNA interference mediated vascular endothelial growth factor (VEGF) gene silencing on biological behavior of renal cell carcinoma (RCC), transplanted renal tumor and angiogenesis in nude mice. The specific siRNA sequence targeting VEGF were designed and synthesized to construct hVEGF-siRNA plasmid which was transfected into RCC 786-O cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the detection of VEGF gene expression and western blot was adopted for the examination of VEGF protein expression. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell growth as well as cell migration and invasion. The transplanted renal tumor models in nude mice were established, and the growth condition of nude mice, and VEGF protein expression in transplanted tumor slices and the microvessel density (MVD) were detected. The expression level of VEGF mRNA in VEGF-siRNA group was significant lower than that in the control group and negative group, suggesting that establishment of plasmid specifically inhibited the expression of VEGF gene The expression level of VEGF protein in VEGF-siRNA group was significant lower than that in the control group and negative group. VEGF gene silencing has the significant inhibition effects on proliferation, migration and invasion of RCC 786-O cells. The tumor weight, VEGF protein positive rate and MVD in VEGF-siRNA group were significant lower than those in negative group and blank group. The VEGF gene silencing could inhibit the cell proliferation, migration and invasion of RCC 786-O cells; inhibition of VEGF protein expression could prevent transplanted RCC growth and tumor angiogenesis.
Mar, Ai-Chung; Chu, Chun-Ho; Lee, Hui-Ju; Chien, Chia-Wen; Cheng, Jing-Jy; Yang, Shung-Haur; Jiang, Jeng-Kai; Lee, Te-Chang
2015-01-01
Interleukin-1 receptor type 2 (IL1R2) acts as a decoy receptor of exogenous IL-1; however, its intracellular activity is poorly understood. We previously demonstrated that IL1R2 intracellularly activates the expression of several proinflammatory cytokines and affects cell migration. In this study, we found that intracellular IL1R2 expression was increased in human colorectal cancer cells (CRCs) compared with normal colon cells. We also observed that the mRNA levels of IL1R2 were highly correlated with IL-6 in tumor tissues of CRC patients. By modulating its expression in CRC cells, we verified that enhanced IL1R2 expression transcriptionally activated the expression of IL-6 and VEGF-A. Conditioned medium harvested from IL1R2-overexpressing CRC cells contained higher levels of IL-6 and VEGF-A than that from vector control cells and significantly enhanced the proliferation, migration, and tube formation of cultured endothelial cells. We further demonstrated a positive association of intracellular IL1R2 levels with tumor growth and microvessel density in xenograft mouse models. These results revealed that IL1R2 activates the expression of angiogenic factors. Mechanistically, we revealed that IL1R2 complexes with c-Fos and binds to the AP-1 site at the IL-6 and VEGF-A promoters. Together, these results reveal a novel function of intracellular IL1R2 that acts with c-Fos to enhance the transcription of IL-6 and VEGF-A, which promotes angiogenesis in CRC. PMID:26209639
Chen, Yi-Je; Wallace, Breanna K; Yuen, Natalie; Jenkins, David P; Wulff, Heike; O'Donnell, Martha E
2015-01-01
KCa3.1, a calcium-activated potassium channel, regulates ion and fluid secretion in the lung and gastrointestinal tract. It is also expressed on vascular endothelium where it participates in blood pressure regulation. However, the expression and physiological role of KCa3.1 in blood-brain barrier (BBB) endothelium has not been investigated. BBB endothelial cells transport Na(+) and Cl(-) from the blood into the brain transcellularly through the co-operation of multiple cotransporters, exchangers, pumps, and channels. In the early stages of cerebral ischemia, when the BBB is intact, edema formation occurs by processes involving increased BBB transcellular Na(+) transport. This study evaluated whether KCa3.1 is expressed on and participates in BBB ion transport. The expression of KCa3.1 on cultured cerebral microvascular endothelial cells, isolated microvessels, and brain sections was evaluated by Western blot and immunohistochemistry. Activity of KCa3.1 on cerebral microvascular endothelial cells was examined by K(+) flux assays and patch-clamp. Magnetic resonance spectroscopy and MRI were used to measure brain Na(+) uptake and edema formation in rats with focal ischemic stroke after TRAM-34 treatment. KCa3.1 current and channel protein were identified on bovine cerebral microvascular endothelial cells and freshly isolated rat microvessels. In situ KCa3.1 expression on BBB endothelium was confirmed in rat and human brain sections. TRAM-34 treatment significantly reduced Na(+) uptake, and cytotoxic edema in the ischemic brain. BBB endothelial cells exhibit KCa3.1 protein and activity and pharmacological blockade of KCa3.1 seems to provide an effective therapeutic approach for reducing cerebral edema formation in the first 3 hours of ischemic stroke. © 2014 American Heart Association, Inc.
Peng, Ningning; Gao, Shuming; Guo, Xu; Wang, Guangya; Cheng, Cai; Li, Min; Liu, Kehun
2016-01-01
Background: Osteosarcoma is a kind of highly malignant tumor and the growth and metastasis is closely related to angiogenesis. Vascular endothelial growth factor (VEGF) is an important angiogenesis-promoting factor. In the current study, we investigated the effects of suppressed VEGF on osteosarcoma and its molecular mechanism provided for a basis by targeting angiogenesis. Material/Methods: We established bearing human osteosarcoma Wistar rats model by subcutaneous inoculation of human SaOS-2 cells and the adenovirus vector Ad-VEGF-siRNA was constructed for further study. We assessed the efficiency of VEGF silencing and its influence on SaOS-2 cells. The expression of mRNA and protein were detected by RT-PCR and western blotting, respectively. Intratumoral microvessel density (MVD), VEGF and CD31 were evaluated by immunohistochemistry. We detected the cell apoptotic rates by flow cytometry. Results: Our results indicated that Ad-VEGF-siRNA could effectively suppressed the expression of VEGF expression, inhibited the proliferation capability and promoted apoptosis of SaOS-2 cells in vitro. Silencing of VEGF expression also suppress osteosarcoma tumor growth and reduce osteosarcoma angiogenesis in the Wistar rats model in vivo. Furthermore, We found that phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) activation were considerably reduced while inhibition VEGF expression in SaOS-2 cells. Conclusion: Our data demonstrated that VEGF silencing could suppress cells proliferation, promote cells apoptosis and reduce osteosarcoma angiogenesis through inactivation of VEGF/PI3K/AKT signaling pathway. PMID:27158386
H pylori status and angiogenesis factors in human gastric carcinoma
Mangia, Anita; Chiriatti, Annalisa; Ranieri, Girolamo; Abbate, Ines; Coviello, Maria; Simone, Giovanni; Zito, Francesco Alfredo; Montemurro, Severino; Rucci, Antonello; Leo, Alfredo Di; Tommasi, Stefania; Berloco, Pasquale; Xu, Jian Ming; Paradiso, Angelo
2006-01-01
AIM: To investigate H pylori expression in gastric cancer patients in relation to primary tumor angiogenic markers, such as microvessel density (MVD), thymidine phosphorylase (TP), vascular endothelial growth factor receptor-1 (VEGF-R1), p53 and circulating VEGF levels. METHODS: Angiogenic markers were analyzed immunohistochemically in 56 primary gastric cancers. H pylori cytotoxin (vacA) and the cytotoxin-associated gene (cagA) amplification were evaluated using PCR assay. Serum H pylori IgG antibodies and serum/plasma circulating VEGF levels were detected in 39 and 38 patients by ELISA, respectively. RESULTS: A total of 69% of patients were positive for circulating IgG antibodies against H pylori. cagA-positive H pylori strains were found in 41% of gastric patients. vacA was found in 50% of patients; s1 strains were more highly expressed among vacA-positive patients. The presence of the s1 strain was significantly associated with cagA (P = 0.0001). MVD was significantly correlated with both tumor VEGF expression (r = 0.361, P = 0.009) and serum VEGF levels (r = -0.347, P = 0.041). Conversely, neither VEGF-R1 expression nor MVD was related to p53 expression. However, H pylori was not related to any angiogenic markers except for the plasma VEGF level (P = 0.026). CONCLUSION: H pylori antigen is related to higher plasma VEGF levels, but not to angiogenic characteristics. It can be hypothesized that the toxic effects of H pylori on angiogenesis occurs in early preclinical disease phase or in long-lasting aggressive infections, but only when high H pylori IgG levels are persistent. PMID:17006982
Li, Qiaoya; Li, Hongyang; He, Chengjun; Jing, Zhouhong; Liu, Changan; Xie, Juan; Ma, Wenwen; Deng, Huisheng
2017-11-21
This study aimed to investigate the therapeutic effects of 5-fluorouracil (5-FU)-loaded nanobubbles irradiated with low-intensity, low-frequency ultrasound in nude mice with hepatocellular carcinoma (HCC). A transplanted tumor model of HCC in nude mice was established in 40 mice, which were then randomly divided equally into four groups: group A (saline), group B (5-FU-loaded nanobubbles), group C (5-FU-loaded nanobubbles with non-low-frequency ultrasound), and group D (5-FU-loaded nanobubbles with low-frequency ultrasound). The tumor size in each mouse was observed via ultrasound before and after the treatments. Inhibition of the tumor growth in each group was compared, and survival curves were generated. Tumor tissues were removed to determine the apoptotic index using the TUNEL method and quantitative analysis. Tumor tissues with CD34-positive microvessels were observed by immunohistochemistry, and the tumor microvessel densities were calculated. The growth rate of the tumor volumes in group D was significantly slower than that in the other groups, while the tumor inhibition rates and apoptotic index in group D were significantly higher than those of the other groups. The number of microvessels staining positive for CD34 was decreased in group D. Therefore, group D presented the most significant inhibitory effects. Therefore, 5-FU-loaded nanobubbles subjected to irradiation with low-frequency ultrasound could further improve drug targeting and effectively inhibit the growth of transplanted tumors, which is expected to become an ideal drug carrier and targeted drug delivery system for the treatment of HCC in the future.
Characterization of atrial natriuretic peptide receptors in brain microvessel endothelial cells
NASA Technical Reports Server (NTRS)
Whitson, P. A.; Huls, M. H.; Sams, C. F.
1991-01-01
Atrial natriuretic peptide (ANP) binding and ANP-induced increases in cyclic guanosine monophosphate (cGMP) levels have been observed in brain microvessels (Chabrier et al., 1987; Steardo and Nathanson, 1987), suggesting that this fluid-regulating hormone may play a role in the fluid homeostasis of the brain. This study was initiated to characterize the ANP receptors in primary cultures of brain microvessel endothelial cells (BMECs). The apparent equilibrium dissociation constant, Kd, for ANP increased from 0.25 nM to 2.5 nM, and the number of ANP binding sites as determined by Scatchard analysis increased from 7,100 to 170,000 sites/cell between 2 and 10 days of culture following monolayer formation. Time- and concentration-dependent studies on the stimulation of cGMP levels by ANP indicated that guanylate cyclase-linked ANP receptors were present in BMECs. The relative abilities of ANP, brain natriuretic peptide (BNP), and a truncated analog of ANP containing amino acids 5-27 (ANP 5-27) to modulate the accumulation of cGMP was found to be ANP greater than BNP much greater than ANP 5-27. Affinity cross-linking with disuccinimidyl suberate and radiolabeled ANP followed by gel electrophoresis under reducing conditions demonstrated a single band corresponding to the 60-70 kD receptor, indicating the presence of the nonguanylate cyclase-linked ANP receptor. Radiolabeled ANP binding was examined in the presence of various concentrations of either ANP, BNP, or ANP 5-27 and suggested that a large proportion of the ANP receptors present in blood-brain barrier endothelial cells bind all of these ligands similarly. These data indicate both guanylate cyclase linked and nonguanylate cyclase linked receptors are present on BMECs and that a higher proportion of the nonguanylate cyclase linked receptors is expressed. This in vitro culture system may provide a valuable tool for the examination of ANP receptor expression and function in blood-brain barrier endothelial cells.
Rusu, M C; Motoc, A G M; Pop, F; Folescu, R
2013-01-01
Five samples of human midterm fetal uterus and fallopian tube (four donor bodies) were used to assess whether or not processes of angiogenesis are guided by endothelial tip cells (ETCs), and if cytokine-receptors, such as CD117/c-kit and PDGFR-α, are expressed in the microenvironment of the endothelial tubes. CD34 labeled microvessels in the uterine wall (myometrium and endometrium) and in the wall of the uterine (fallopian) tube, and accurately identified ETCs in both organs. We conclude that sprouting angiogenesis in the developing human female tract is guided by ETCs. Moreover, CD117/c-kit antibodies labeled mural networks of pericytes, α-SMA-positive and desmin-negative, related to the endometrial (but not myometrial) microvessels, and similar labeling was identified in the wall of the uterine tube. PDGFR-α positive labeling, stromal and pericytary, was also found. Thus, sprouting angiogenesis in human fetal genital organs appears to be guided by tip cells and is influenced by tyrosine kinase receptor signaling.
Herrmann, Edwin; Tiemann, Arne; Eltze, Elke; Bolenz, Christian; Bremer, Christoph; Persigehl, Thorsten; Hertle, Lothar; Wülfing, Christian
2009-10-01
The endothelin axis consists of endothelin-1 (ET-1) and its two receptors, ET(A)- and ET(B)-receptor (ET(A)-R and ET(B)-R). In several tumor entities, the ET(A)-R plays a significant role as a drug target. In our study, we investigated whether inhibition of ET(A)-R with atrasentan leads to an antitumor effect in urinary bladder carcinoma as well. Twenty nude mice with thymic aplasia were subcutaneously administered 2 x 10(6) KU-19-19 bladder cancer cells in the right flank. Starting on the 22nd day after the injection, ten animals were treated with atrasentan (2.5 mg/kg BW intraperitoneally), and another ten animals were treated with placebo. During treatment, absolute tumor growth and relative growth rate over time were determined. After the end of treatment, the mitosis and necrosis rates, microvessel density, and receptor density in the tumor tissue were analyzed by immunohistochemistry. In addition, the expression intensities of ET-1, ET(A)-R, and ET(B)-R were evaluated semiquantitatively and compared between the groups. No significant differences between the active-treatment and placebo groups were detected, either with respect to absolute tumor growth (P = 0.333) or mitosis rate (P = 0.217). In the analysis of the necrosis rate and receptor density for ET(A)-R, a trend toward higher values in the active-treatment group (mean necrosis rate = 63.67%, receptor density: 1.417) than in the placebo group (mean necrosis rate = 46.25%, receptor density: 1.270) was found; however, neither difference was statistically significant (P = 0.08 and 0.219, respectively). ET(A)-R blockade with atrasentan in a bladder cancer xenograft model shows no significant antitumor effect.
Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J
2017-02-01
Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.
Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T
2013-05-01
Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.
Wannenes, Francesca; Ciafré, Silvia Anna; Niola, Francesco; Frajese, Gaetano; Farace, Maria Giulia
2005-12-01
RNA interference technology is emerging as a very potent tool to obtain a cellular knockdown of a desired gene. In this work we used vector-based RNA interference to inhibit vascular endothelial growth factor (VEGF) expression in prostate cancer in vitro and in vivo. We demonstrated that transduction with a plasmid carrying a small interfering RNA targeting all isoforms of VEGF, dramatically impairs the expression of this growth factor in the human prostate cancer cell line PC3. As a consequence, PC3 cells loose their ability to induce one of the fundamental steps of angiogenesis, namely the formation of a tube-like network in vitro. Most importantly, our "therapeutic" vector is able to impair tumor growth rate and vascularization in vivo. We show that a single injection of naked plasmid in developing neoplastic mass significantly decreases microvessel density in an androgen-refractory prostate xenograft and is able to sustain a long-term slowing down of tumor growth. In conclusion, our results confirm the basic role of VEGF in the angiogenic development of prostate carcinoma, and suggest that the use of our vector-based RNA interference approach to inhibit angiogenesis could be an effective tool in view of future gene therapy applications for prostate cancer.
Zhang, Yanmin; He, Langchong; Meng, Liang; Luo, Wenjuan; Xu, Xuemei
2008-04-08
The present study was to demonstrate the effect of taspine isolated from Radix et Rhizoma Leonticis on tumor angiogenesis and its mechanism of action. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model and CAM transplantation tumor model. Taspine exerted inhibitory influence on CAM angiogenesis and the growth and microvessel density (MVD) of CAM transplantation tumor at concentrations of 0.5-2μg/egg. The mechanism was demonstrated through detecting vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) protein secretion by enzyme-linked immunosorbent assay (ELISA), as well as mRNA expression of VEGF, Flt-1 and Flk-1/KDR by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that taspine down-regulated the VEGF and bFGF secretion in human non-small cell lung cancer cell (A549 cell) and human umbilical vein endothelial cell (HUVEC), and the VEGF and Flk-1/KDR mRNA expression in HUVEC. Additionally, the effect of taspine on HUVEC migration was detected with the method of cell scrape. The result indicated that taspine inhibited HUVEC migration in a dose-dependent manner. These findings suggest that taspine might be a promising candidate as angiogenesis inhibitors.
Goodwill, Adam G.; Frisbee, Stephanie J.; Stapleton, Phoebe A.; James, Milinda E.; Frisbee, Jefferson C.
2011-01-01
Object The obese Zucker rat (OZR) model of the metabolic syndrome is partly characterized by moderate hypercholesterolemia in addition to other contributing co-morbidities. Previous results suggest that vascular dysfunction in OZR is associated with chronic reduction in vascular nitric oxide (NO) bioavailability and chronic inflammation, both frequently associated with hypercholesterolemia. As such, we evaluated the impact of chronic cholesterol reducing therapy on the development of impaired skeletal muscle arteriolar reactivity and microvessel density in OZR and its impact on chronic inflammation and NO bioavailability. Materials and Methods Beginning at 7 weeks of age, male OZR were treated with gemfibrozil, probucol, atorvastatin or simvastatin (in chow) for 10 weeks. Subsequently, plasma and vascular samples were collected for biochemical/molecular analyses, while arteriolar reactivity and microvessel network structure were assessed using established methodologies after 3, 6 and 10 weeks of drug therapy Results All interventions were equally effective at reducing total cholesterol, although only the statins also blunted the progressive reductions to vascular NO bioavailability, evidenced by greater maintenance of acetylcholine-induced dilator responses, an attenuation of adrenergic constrictor reactivity, and an improvement in agonist-induced NO production. Comparably, while minimal improvements to arteriolar wall mechanics were identified with any of the interventions, chronic statin treatment reduced the rate of microvessel rarefaction in OZR. Associated with these improvements was a striking statin-induced reduction in inflammation in OZR, such that numerous markers of inflammation were correlated with improved microvascular reactivity and density. However, using multivariate discriminant analyses, plasma RANTES, IL-10, MCP-1 and TNF-α were determined to be the strongest contributors to differences between groups, although their relative importance varied with time. Conclusions While the positive impact of chronic statin treatment on vascular outcomes in the metabolic syndrome are independent of changes to total cholesterol, and are more strongly associated with improvements to vascular NO bioavailability and attenuated inflammation, these results provide both a spatial and temporal framework for targeted investigation into mechanistic determinants of vasculopathy in the metabolic syndrome. PMID:19905967
NASA Astrophysics Data System (ADS)
Kalaria, Rajesh N.; Mitchell, Mary Jo; Harik, Sami I.
1987-05-01
Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans and subhuman primates, but not in rats and many other laboratory animals; mice are intermediate in their susceptibility. Since MPTP causes selective dopaminergic neurotoxicity when infused directly into rat substantia nigra, we hypothesized that systemic MPTP may be metabolized by monoamine oxidase and/or other enzymes in rat brain capillaries and possibly other peripheral organs and thus prevented from reaching its neuronal sites of toxicity. We tested this hypothesis by assessing monoamine oxidase in isolated cerebral microvessels of humans, rats, and mice by measuring the specific binding of [3H]pargyline, an irreversible monoamine oxidase inhibitor, and by estimating the rates of MPTP and benzylamine oxidation. [3H]Pargyline binding to rat cerebral microvessels was about 10-fold higher than to human or mouse microvessels. Also, MPTP oxidation by rat brain microvessels was about 30-fold greater than by human microvessels; mouse microvessels yielded intermediate values. These results may explain, at least in part, the marked species differences in susceptibility to systemic MPTP. They also suggest the potential importance of ``enzyme barriers'' at the blood-brain interface that can metabolize toxins not excluded by structural barriers, and may provide biological bases for developing therapeutic strategies for the prevention of MPTP-induced neurotoxicity and other neurotoxic conditions including, possibly, Parkinson disease.
Cabrera DeBuc, Delia; Somfai, Gabor Mark; Koller, Akos
2017-02-01
Increasing evidence suggests that the conditions of retinal microvessels are indicators to a variety of cerebrovascular, neurodegenerative, psychiatric, and developmental diseases. Thus noninvasive visualization of the human retinal microcirculation offers an exceptional opportunity for the investigation of not only the retinal but also cerebral microvasculature. In this review, we show how the conditions of the retinal microvessels could be used to assess the conditions of brain microvessels because the microvascular network of the retina and brain share, in many aspects, standard features in development, morphology, function, and pathophysiology. Recent techniques and imaging modalities, such as optical coherence tomography (OCT), allow more precise visualization of various layers of the retina and its microcirculation, providing a "microscope" to brain microvessels. We also review the potential role of retinal microvessels in the risk identification of cerebrovascular and neurodegenerative diseases. The association between vision problems and cerebrovascular and neurodegenerative diseases, as well as the possible role of retinal microvascular imaging biomarkers in cerebrovascular and neurodegenerative screening, their potentials, and limitations, are also discussed. Copyright © 2017 the American Physiological Society.
Tian, Shu-Feng; Yang, Han-Hua; Xiao, Dan-Ping; Huang, Yue-Jun; He, Gu-Yu; Ma, Hai-Ran; Xia, Fang; Shi, Xue-Chuan
2013-01-01
This study was designed to investigate the expression profile of CYGB, its potential neuroprotective function, and underlying molecular mechanisms using a model of neonatal hypoxia-ischemia (HI) brain injury. Cygb mRNA and protein expression were evaluated within the first 36 h after the HI model was induced using RT-PCR and Western blotting. Cygb mRNA expression was increased at 18 h in a time-dependent manner, and its level of protein expression increased progressively in 24 h. To verify the neuroprotective effect of CYGB, a gene transfection technique was employed. Cygb cDNA and shRNA delivery adenovirus systems were established (Cygb-cDNA-ADV and Cygb-shRNA-ADV, respectively) and injected into the brains of 3-day-old rats 4 days before they were induced with HI treatment. Rats from different groups were euthanized 24 h post-HI, and brain samples were harvested. 2,3,5-Triphenyltetrazolium chloride, TUNEL, and Nissl staining indicated that an up-regulation of CYGB resulted in reduced acute brain injury. The superoxide dismutase level was found to be dependent on expression of CYGB. The Morris water maze test in 28-day-old rats demonstrated that CYGB expression was associated with improvement of long term cognitive impairment. Studies also demonstrated that CYGB can up-regulate mRNA and protein levels of VEGF and increase both the density and diameter of the microvessels but inhibits activation of caspase-2 and -3. Thus, this is the first in vivo study focusing on the neuroprotective role of CYGB. The reduction of neonatal HI injury by CYGB may be due in part to antioxidant and antiapoptotic mechanisms and by promoting angiogenesis. PMID:23585565
Functional Significance of VEGFR-2 on Ovarian Cancer Cells
Spannuth, Whitney A.; Nick, Alpa M.; Jennings, Nicholas B.; Armaiz-Pena, Guillermo N.; Mangala, Lingegowda S.; Danes, Christopher G.; Lin, Yvonne G.; Merritt, William M.; Thaker, Premal H.; Kamat, Aparna A.; Han, Liz Y.; Tonra, James R.; Coleman, Robert L.; Ellis, Lee M.; Sood, Anil K.
2009-01-01
Vascular endothelial growth factor receptor (VEGFR) has recently been discovered on ovarian cancer cells, but its functional significance is unknown and is the focus of the current study. By protein analysis, A2780-par and HeyA8 ovarian cancer cell lines expressed VEGFR-1 and HeyA8 and SKOV3ip1 expressed VEGFR-2. By in situ hybridization (ISH), 85% of human ovarian cancer specimens showed moderate to high VEGFR-2 expression while only 15% showed moderate to high VEGFR-1 expression. By immunofluorescence, little or no VEGFR-2 was detected in normal ovarian surface epithelial cells, whereas expression was detected in 75% of invasive ovarian cancer specimens. To differentiate between the effects of tumor versus host expression of VEGFR, nude mice were injected with SKOV3ip1 cells and treated with either human VEGFR-2 specific antibody (1121B), murine VEGFR-2 specific antibody (DC101), or the combination. Treatment with 1121B reduced SKOV3ip1 cell migration by 68% (p < 0.01) and invasion by 72% (p < 0.01), but exposure to VEGFR-1 antibody had no effect. Treatment with 1121B effectively blocked VEGF-induced phosphorylation of p130Cas. In vivo, treatment with either DC101 or 1121B significantly reduced tumor growth alone and in combination in the SKOV3ip1 and A2774 models. Decreased tumor burden after treatment with DC101 or 1121B correlated with increased tumor cell apoptosis, decreased proliferative index, and decreased microvessel density. These effects were significantly greater in the combination group (p<0.001). We show functionally active VEGFR-2 is present on most ovarian cancer cells. The observed anti-tumor activity of VEGF-targeted therapies may be mediated by both anti-angiogenic and direct anti-tumor effects. PMID:19058181
A, Yanni; Li, Ying; Zhao, Shuping
2018-01-01
The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (−)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (−), VEGF (+) and TSP-1 (−) groups was significantly increased compared with that of the DPC4 (+), VEGF (−), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4. PMID:29434970
A, Yanni; Li, Ying; Zhao, Shuping
2018-02-01
The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (-)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (-), VEGF (+) and TSP-1 (-) groups was significantly increased compared with that of the DPC4 (+), VEGF (-), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4.
Zhu, Yu; Zhang, Xuebin; Qi, Lisha; Cai, Ying; Yang, Ping; Xuan, Geng; Jiang, Yuan
2016-03-22
Tumor angiogenesis plays a critical role in the tumor progression. Highly upregulated in liver cancer (HULC) is a long noncoding RNA (lncRNA) that acts as an oncogene in gliomas. We found that HULC, vascular endothelial growth factor (VEGF), and ESM-1 (endothelial cell specific molecule 1) expression and microvessel density were positively correlated with grade dependency in glioma patient tissues, and that HULC silencing suppressed angiogenesis by inhibiting glioma cells proliferation and invasion. This process induced anoikis and blocked the cell cycle at G1/S phase via the PI3K/Akt/mTOR signaling pathway, thus regulating the tumor-related genes involved in the above biological behavior in human glioma U87MG and U251 cells. However, these effects were reversed by ESM-1 overexpression, suggesting a mediating role of ESM-1 in the pro-angiogenesis effect of HULC. Our results define the mechanism of the pro-angiogenesis activity of HULC, which shows potential for application as a therapeutic target in glioma.
Monoamine oxidase A (MAO A) inhibitors decrease glioma progression.
Kushal, Swati; Wang, Weijun; Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L; Olenyuk, Bogdan Z; Chen, Thomas C; Hofman, Florence M; Shih, Jean C
2016-03-22
Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis.
Evert, M; Frau, M; Tomasi, M L; Latte, G; Simile, M M; Seddaiu, M A; Zimmermann, A; Ladu, S; Staniscia, T; Brozzetti, S; Solinas, G; Dombrowski, F; Feo, F; Pascale, R M; Calvisi, D F
2013-11-12
The DNA-repair gene DNA-dependent kinase catalytic subunit (DNA-PKcs) favours or inhibits carcinogenesis, depending on the cancer type. Its role in human hepatocellular carcinoma (HCC) is unknown. DNA-dependent protein kinase catalytic subunit, H2A histone family member X (H2AFX) and heat shock transcription factor-1 (HSF1) levels were assessed by immunohistochemistry and/or immunoblotting and qRT-PCR in a collection of human HCC. Rates of proliferation, apoptosis, microvessel density and genomic instability were also determined. Heat shock factor-1 cDNA or DNA-PKcs-specific siRNA were used to explore the role of both genes in HCC. Activator protein 1 (AP-1) binding to DNA-PKcs promoter was evaluated by chromatin immunoprecipitation. Kaplan-Meier curves and multivariate Cox model were used to study the impact on clinical outcome. Total and phosphorylated DNA-PKcs and H2AFX were upregulated in HCC. Activated DNA-PKcs positively correlated with HCC proliferation, genomic instability and microvessel density, and negatively with apoptosis and patient's survival. Proliferation decline and massive apoptosis followed DNA-PKcs silencing in HCC cell lines. Total and phosphorylated HSF1 protein, mRNA and activity were upregulated in HCC. Mechanistically, we demonstrated that HSF1 induces DNA-PKcs upregulation through the activation of the MAPK/JNK/AP-1 axis. DNA-dependent protein kinase catalytic subunit transduces HSF1 effects in HCC cells, and might represent a novel target and prognostic factor in human HCC.
Sublingual microcirculatory alterations in cirrhotic patients.
Gonzalez Ballerga, Esteban; Pozo, Mario O; Rubatto Birri, Paolo N; Kanoore Edul, Vanina Siham; Sorda, Juan A; Daruich, Jorge; Dubin, Arnaldo
2018-05-01
To assess sublingual microcirculation in cirrhotic patients and its relationship to spider angiomas, complications, and outcome. Thirty-one cirrhotic patients were prospectively compared to 31 matched controls. Sublingual microcirculation was evaluated by videomicroscopy. We specifically looked for capillaries with increased RBCV, which was defined as a velocity higher than the percentile 100th of controls. Compared to controls, cirrhotic patients showed decreased total and PVD (14.4 ± 2.2 vs 16.0 ± 1.3 and 14.1 ± 2.3 vs 15.9 ± 1.6 mm/mm 2 , respectively, P < .001 for both) and increased HFI (0.64 ± 0.39 vs 0.36 ± 0.21, P = .001). They also exhibited high RBCV in 2% of the microvessels (P < .0001). Patients with MELD score ≥10 had higher RBCV than patients with score <10 (1414 ± 290 vs 1206 ± 239 μm/s, P < .05). Patients with spider angiomas showed lower vascular densities. Microcirculation did not differ between survivors and nonsurvivors. Cirrhosis is associated with microcirculatory alterations that can be easily monitored in the sublingual mucosa. Alterations included decreased density and PPV and hyperdynamic microvessels. The most striking finding, however, was the microvascular heterogeneity. Patients with spider angiomas had more severe alterations. Larger studies should clarify the relationship between microcirculatory abnormalities and outcome. © 2018 John Wiley & Sons Ltd.
Makarewicz, Roman; Kopczyńska, Ewa; Marszałek, Andrzej; Goralewska, Alina; Kardymowicz, Hanna
2012-01-01
Aim of the study This retrospective study attempts to evaluate the influence of serum vascular endothelial growth factor C (VEGF-C), microvessel density (MVD) and lymphatic vessel density (LMVD) on the result of tumour treatment in women with cervical cancer. Material and methods The research was carried out in a group of 58 patients scheduled for brachytherapy for cervical cancer. All women were patients of the Department and University Hospital of Oncology and Brachytherapy, Collegium Medicum in Bydgoszcz of Nicolaus Copernicus University in Toruń. VEGF-C was determined by means of a quantitative sandwich enzyme immunoassay using a human antibody VEGF-C ELISA produced by Bender MedSystem, enzyme-linked immunosorbent detecting the activity of human VEGF-C in body fluids. The measure for the intensity of angiogenesis and lymphangiogenesis in immunohistochemical reactions is the number of blood vessels within the tumour. Statistical analysis was done using Statistica 6.0 software (StatSoft, Inc. 2001). The Cox proportional hazards model was used for univariate and multivariate analyses. Univariate analysis of overall survival was performed as outlined by Kaplan and Meier. In all statistical analyses p < 0.05 (marked red) was taken as significant. Results In 51 patients who showed up for follow-up examination, the influence of the factors of angiogenesis, lymphangiogenesis, patients’ age and the level of haemoglobin at the end of treatment were assessed. Selected variables, such as patients’ age, lymph vessel density (LMVD), microvessel density (MVD) and the level of haemoglobin (Hb) before treatment were analysed by means of Cox logical regression as potential prognostic factors for lymph node invasion. The observed differences were statistically significant for haemoglobin level before treatment and the platelet number after treatment. The study revealed the following prognostic factors: lymph node status, FIGO stage, and kind of treatment. No statistically significant influence of angiogenic and lymphangiogenic factors on the prognosis was found. Conclusion Angiogenic and lymphangiogenic factors have no value in predicting response to radiotherapy in cervical cancer patients. PMID:23788848
Liu, Xiaobai; Wang, Zhenhua; Wang, Ping; Yu, Bo; Liu, Yunhui; Xue, Yixue
2013-07-21
It has been supposed that green tea polyphenols (GTPs) have neuroprotective effects on brain damage after brain ischemia in animal experiments. Little is known regarding GTPs' protective effects against the blood-brain barrier (BBB) disruption after ischemic stroke. We investigated the effects of GTPs on the expression of claudin-5, occludin, and ZO-1, and the corresponding cellular mechanisms involved in the early stage of cerebral ischemia. Male Wistar rats were subjected to a middle cerebral artery occlusion (MCAO) for 0, 30, 60, and 120 min. GTPs (400 mg/kg/day) or vehicle was administered by intragastric gavage twice a day for 30 days prior to MCAO. At different time points, the expression of claudin-5, occludin, ZO-1, and PKCα signaling pathway in microvessel fragments of cerebral ischemic tissue were evaluated. GTPs reduced BBB permeability at 60 min and 120 min after ischemia as compared with the vehicle group. Transmission electron microscopy also revealed that GTPs could reverse the opening of tight junction (TJ) barrier at 60 min and 120 min after MACO. The decreased mRNA and protein expression levels of claudin-5, occludin, and ZO-1 in microvessel fragments of cerebral ischemic tissue were significantly prevented by treatment with GTPs at the same time points after ischemia in rats. Furthermore, GTPs could attenuate the increase in the expression levels of PKCα mRNA and protein caused by cerebral ischemia. These results demonstrate that GTPs may act as a potential neuroprotective agent against BBB damage at the early stage of focal cerebral ischemia through the regulation of TJ and PKCα signaling.
Suzuki, Kazumi; Morita, Tatsuo; Tokue, Akihiko
2005-02-01
It has been found that expression of vascular endothelial growth factor-C (VEGF-C) in several carcinomas is significantly associated with angiogenesis, lymphangiogenesis and regional lymph node metastasis. However, VEGF-C expression in bladder transitional cell carcinoma (TCC) has not yet been reported. To elucidate the role of VEGF-C in bladder TCC, we examined VEGF-C expression in bladder TCC and pelvic lymph node metastasis specimens obtained from patients who underwent radical cystectomy. Eighty-seven patients who underwent radical cystectomy for clinically organ-confined TCC of the bladder were enrolled in the present study. No neoadjuvant treatments, except transurethral resection of the tumor, were given to these patients. The VEGF-C expressions of 87 bladder tumors and 20 pelvic lymph node metastasis specimens were examined immunohistochemically and the association between VEGF-C expression and clinicopathological factors, including angiogenesis as evaluated by microvessel density (MVD), was also examined. Vascular endothelial growth factor-C expression was found in the cytoplasm of tumor cells, but not in the normal transitional epithelium. Vascular endothelial growth factor-C expression was significantly associated with the pathological T stage (P = 0.0289), pelvic lymph node metastasis (P < 0.0001), lymphatic involvement (P = 0.0008), venous involvement (P = 0.0002) and high MVD (P = 0.0043). The multivariate analysis demonstrated that VEGF-C expression and high MVD in bladder TCC were independent risk factors influencing the pelvic lymph node metastasis. Moreover, the patients with VEGF-C-positive tumors had significantly poorer prognoses than those with the VEGF-C-negative tumors (P = 0.0087) in the univariate analysis. The multivariate analysis based on Cox proportional hazard model showed that the independent prognostic factors were patient age (P = 0.0132) and pelvic lymph node metastasis (P = 0.0333). The present study suggests that VEGF-C expression is an important predictive factor of pelvic lymph node metastasis in bladder cancer patients.
Huang, Ke jian; Wu, Wei dong; Jiang, Tao; Cao, Jun; Feng, Zhen zhong; Qiu, Zheng jun
2011-01-01
Aims Transducer and activator of transcription-3 (STAT3) plays an important role in tumor cell invasion and metastasis. The aim of the present study was to investigate the effects of STAT3 knockdown in nude mouse xenografts of pancreatic cancer cells and underlying gene expression. Methods A STAT3 shRNA lentiviral vector was constructed and infected into SW1990 cells. qRT-PCR and western immunoblot were performed to detect gene expression. Nude mouse xenograft assays were used to assess changes in phenotypes of these stable cells in vivo. HE staining was utilized to evaluate tumor cell invasion and immunohistochemistry was performed to analyze gene expression. Results STAT3 shRNA successfully silenced expression of STAT3 mRNA and protein in SW1990 cells compared to control cells. Growth rate of the STAT3-silenced tumor cells in nude mice was significantly reduced compared to in the control vector tumors and parental cells-generated tumors. Tumor invasion into the vessel and muscle were also suppressed in the STAT3-silenced tumors compared to controls. Collagen IV expression was complete and continuous surrounding the tumors of STAT3-silenced SW1990 cells, whereas collagen IV expression was incomplete and discontinuous surrounding the control tumors. Moreover, microvessel density was significantly lower in STAT3-silenced tumors than parental or control tumors of SW1990 cells. In addition, MMP-7 expression was reduced in STAT3-silenced tumors compared to parental SW1990 xenografts and controls. In contrast, expression of IL-1β and IgT7α was not altered. Conclusion These data clearly demonstrate that STAT3 plays an important role in regulation of tumor growth, invasion, and angiogenesis, which could be act by reducing MMP-7 expression in pancreatic cancer cells. PMID:21991388
Ren, Yi; Law, Simon; Huang, Xin; Lee, Ping Yin; Bacher, Michael; Srivastava, Gopesh; Wong, John
2005-01-01
Objective: The objectives of this study were: 1) to examine the expression of macrophage migration inhibitory factor (MIF) in esophageal squamous cell carcinoma (ESCC); 2) to see if a relationship exists between MIF expression, clinicopathologic features, and long-term prognosis; and 3) to ascertain the possible biologic function of MIF in angiogenesis. Summary Background Data: MIF has been linked to fundamental processes such as those controlling cell proliferation, cell survival, angiogenesis, and tumor progression. Its role in ESCC, and the correlation of MIF expression and tumor pathologic features in patients, has not been elucidated. Methods: The expression of MIF in tumor and nontumor tissues was examined by immunohistochemical staining. Concentrations of MIF, vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) in patients’ sera and in the supernatant of tumor cells culture were examined by ELISA. Correlations with clinicopathologic factors were made. Results: In 72 patients with ESCC, intracellular MIF was overexpressed in esophagectomy specimens. The expression of MIF correlated with both tumor differentiation and lymph node status. The median survival in the low-MIF expression group (<50% positively stained cancer cells on immunohistochemistry) and high expression group (≥50% positively stained cancer cells) was 28.3 months and 15.8 months, respectively (P = 0.03). The 3-year survival rates for the 2 groups were 37.7% and 12.1%, respectively. MIF expression was related to microvessel density; increased MIF serum levels also correlated with higher serum levels of VEGF. In addition, in vitro MIF stimulation of esophageal cancer cell lines induced a dose-dependent increase in VEGF and IL-8 secretion. Conclusions: These results demonstrate, for the first time, that human esophageal carcinomas express and secrete large amounts of MIF. Through its effects on VEGF and IL-8, MIF may serve as an autocrine factor in angiogenesis and thus play an important role in the pathogenesis of ESCC. PMID:15973102
Li, Li-Hua; Guo, Zi-Jian; Yan, Ling-Ling; Yang, Ji-Cheng; Xie, Yu-Feng; Sheng, Wei-Hua; Huang, Zhao-Hui; Wang, Xue-Hao
2007-12-21
To study the effectiveness and mechanisms of anti- human vascular endothelial growth factor (hVEGF) hairpin ribozyme on angiogenesis, oncogenicity and tumor growth in a hepatocarcinoma cell line and a xenografted model. The artificial anti-hVEGF hairpin ribozyme was transfected into hepatocarcinoma cell line SMMC-7,721 and, subsequently, polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR) were performed to confirm the ribozyme gene integration and transcription. To determine the effects of ribozyme ,VEGF expression was detected by semiquantitative RT-PCR and enzyme liked immunosorbent assay (ELISA). MTT assay was carried out to measure the cell proliferation. Furthermore,the transfected and control cells were inoculated into nude mice respectively, the growth of cells in nude mice and angiogenesis were observed. VEGF expression was down-regulated sharply by ribozyme in transfected SMMC-7,721 cells and xenografted tumor. Compared to the control group, the transfected cells grew slower in cell cultures and xenografts, and the xenograft formation was delayed as well. In addition, the microvessel density of the xenografted tumor was obviously declined in the transfected group. As demonstrated by microscopy,reduction of VEGF production induced by ribozyme resulted in a significantly higher cell differentiation and less proliferation vigor in xenografted tumor. Anti-hVEGF hairpin ribozyme can effectively inhibit VEGF expression and growth of hepatocarcinoma in vitro and in vivo. VEGF is functionally related to cell proliferation, differentiation and tumori-genesis in hepatocarcinoma.
Biological basis and pathological relevance of microvascular thrombosis.
Pfeiler, Susanne; Massberg, Steffen; Engelmann, Bernd
2014-05-01
Microvascular thrombosis indicates a pathological occlusion of microvessels by fibrin- and/or platelet-rich thrombi. It is observed during systemic infections, cancer, myocardial infarction, stroke, neurodegenerative diseases and in thrombotic microangiopathies. Microvessel thrombosis can cause greatly differing symptoms that range from limited changes in plasma coagulation markers to severe multi-organ failure. Because microvessel thrombi are difficult to detect and often occur only transiently, their importance for disease development and host biology is likely markedly under-appreciated. Recently, clear indications for a biological basis of microvascular thrombosis have been obtained. During systemic infections microvessel thrombosis can mediate an intravascular innate immune response (immunothrombosis). This biological form of thrombosis is based on the generation of fibrin inside blood vessels and is critically triggered by neutrophils and their interactions with platelets which result in the release of neutrophil extracellular traps (extracellular nucleosomes). Immunothrombosis is critically supported by neutrophil elastase and the activator molecules of blood coagulation tissue factor and factor XII. Identification of the biological driving forces of microvascular thrombosis should help to elucidate the mechanisms promoting pathological vessel occlusions in both microvessels and large vessels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multimodal optical imaging of microvessel network convective oxygen transport dynamics.
Dedeugd, Casey; Wankhede, Mamta; Sorg, Brian S
2009-04-01
Convective oxygen transport by microvessels depends on several parameters, including red blood cell flux and oxygen saturation. We demonstrate the use of intravital microscopy techniques to measure hemoglobin saturations, red blood cell fluxes and velocities, and microvessel cross-sectional areas in regions of microvascular networks containing multiple vessels. With these methods, data can be obtained at high spatial and temporal resolution and correlations between oxygen transport and hemodynamic parameters can be assessed. In vivo data are presented for a mouse mammary adenocarcinoma grown in a dorsal skinfold window chamber model.
Liu, Zhi; Li, Qiang; Cui, Gaoyu; Zhu, Gang; Tang, Weihua; Zhao, Hengli; Zhang, John H.; Chen, Yujie; Feng, Hua
2016-01-01
Previously, it was widely accepted that the delayed ischemic injury and poor clinical outcome following subarachnoid hemorrhage (SAH) was caused by cerebral vasospasm. This classical theory was challenged by a clazosentan clinical trial, which failed to improve patient outcome, despite reversing angiographic vasospasm. One possible explanation for the results of this trial is the changes in microcirculation following SAH, particularly in pericytes, which are the primary cell type controlling microcirculation in the brain parenchyma. However, as a result of technical limitations and the lack of suitable models, there was no direct evidence of microvessel dysfunction following SAH. In the present study, whole-mount retinal microvasculature has been introduced to study microcirculation in the brain following experimental SAH in vitro. Artificial blood-filled cerebrospinal fluid (BSCF) was applied to the retinal microvasculature to test the hypothesis that the presence of subarachnoid blood affects the contractile properties of the pericytes containing cerebral microcirculation during the early phase of SAH. It was observed that BCSF induced retina microvessel contraction and that this contraction could be resolved by BCSF wash-out. Furthermore, BCSF application accelerated pericyte-populated collagen gel contraction and increased the expression of α-smooth muscle actin. In addition, BCSF induced an influx of calcium in cultured retinal pericytes. In conclusion, the present study demonstrates increased contractility of retinal microvessels and pericytes in the presence of BCSF in vitro. These findings suggest that pericyte contraction and microvascular dysfunction is induced following SAH, which could lead to greater susceptibility to SAH-induced ischemia. PMID:27698742
Qiu, Juhui; Lei, Daoxi; Hu, Jianjun; Yin, Tieying; Zhang, Kang; Yu, Donghong
2017-01-01
Abstract Atherosclerotic prone-rupture plaque is mainly localized in the region of the entrance to the stenosis with high shear stress and the reasons are largely unknown. Our hypothesis is that such a distribution of cells in atherosclerotic plaque may depend on the angiogenesis. Silastic collars induced regions of high shear stress (20.68 ± 5.27 dynes/cm2) in the upstream flow and low shear stress (12.25 ± 1.28 dynes/cm2) in the downstream flow in carotid arteries. Compared with the low shear stress region, plaques in the high shear stress region showed more intraplaque haemorrhaging, less collagen and higher apoptotic rates of vascular smooth muscle cells; endothelial cells (ECs) in the high shear stress region were characterized with integrity and high endothelial nitric oxide synthase (eNOS) expression (1570.3 ± 345.5% vs 172.9 ± 49.9%). The number of intraplaque microvessels is very high in the high shear stress region (15 ± 1.8 n/mm2 vs 3.5 ± 0.4 n/mm2), and the microvessels in the plaque show ECs were abnormal, with membrane blebs, intracytoplasmic vacuoles and leukocyte infiltration. Our current study reveals that the integrity of the endothelium and the vulnerability of atherosclerotic plaques are simultaneously localized in high shear stress regions, and we provide evidence for the first time that microvessels in the intraplaque maybe responsible for rupture-prone plaque formation in the high shear stress region. PMID:28798867
Lu, Meng; Wu, Jiao; He, Feng; Wang, Xi-Long; Li, Can; Chen, Zhi-Nan; Bian, Huijie
2015-02-01
Overexpression of CD147/basigin in hepatic cells promotes the progression of hepatocellular carcinoma (HCC). Whether CD147 also expressed in liver non-parenchymal cells and associated with HCC development was unknown. The aim of the study was to explore time-dependent cell expression patterns of CD147 in a widely accepted N-diethylnitrosamine/phenobarbital (DEN/PB)-induced HCC mouse model. Liver samples collected at month 1-12 of post-DEN/PB administration were assessed the localization of CD147 in hepatocytes, endothelial cells, hepatic stellate cells, and macrophages. Immunohistochemistry analysis showed that CD147 was upregulated in liver tumors during month 1-8 of DEN/PB induction. Expression of CD147 was positively correlated with cytokeratin 18, a hepatocyte marker (r = 0.7857, P = 0.0279), CD31 (r = 0.9048, P = 0.0046), an endothelial cell marker, and CD68, a macrophage marker (r = 0.7619, P = 0.0368). A significant correlation was also observed between CD147 and alpha-smooth muscle actin (r = 0.8857, P = 0.0333) at DEN/PB initiation and early stage of tumor formation. Immunofluorescence and fluorescence in situ hybridization showed that CD147 co-expressed with cytokeratin 18, CD31, alpha-smooth muscle actin, and CD68. Moreover, there existed positive correlations between CD147 and microvessel density (r = 0.7857, P = 0.0279), CD147 and Ki-67 (r = 0.9341, P = 0.0022) in the development of DEN/PB-induced HCC. In conclusion, our results demonstrated that CD147 was upregulated in the liver parenchymal and mesenchymal cells and involved in angiogenesis and tumor cell proliferation in the development of DEN/PB-induced HCC.
Brown, Rachel C; Morris, Andrew P; O'Neil, Roger G
2007-01-26
Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions.
Brown, Rachel C.; Morris, Andrew P.; O’Neil, Roger G.
2007-01-01
Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions. PMID:17169347
Sun, Huiqin; Guo, Deyu; Su, Yongping; Yu, Dongmei; Wang, Qingliang; Wang, Tao; Zhou, Qing; Ran, Xinze; Zou, Zhongmin
2014-01-01
Objectives To investigate the role of pericytes in constructing the malformed microvessels (MVs) and participating microvascular architecture heterogeneity of glioma. Methods Forty human glioma tissue samples (WHO grade II-IV) were included in present study. Observation of blood vessel patterns, quantitative analysis of endothelial cells (ECs)- and pericyte-labeled MVs and comparison between malignant grades based on single- or double-immunohistochemical staining. The MV number density (MVND), microvascular pericyte number density (MPND), and microvascular pericyte area density (MPAD) were calculated. The expression of PDGFβ was also scored after immunostaining. Results In grade II glioma, most of tumor MVs were the thin-wall CD34+ vessels with near normal morphology. In addition to thin-wall CD34+ MVs, more thick-wall MVs were found in grade III glioma, which often showed α-SMA positive. Most of MVs in grade IV glioma were in the form of plexus, curled cell cords and glomeruloid microvascular proliferation while the α-SMA+ cells were the main components. The MVs usually showed disordered arrangement, loose connection and active cell proliferation as shown by Ki67 and α-SMA coexpression. With the increase of glioma grades, the α-SMA+ MVND, CD34+ MVND and MPND were significantly augmented although the increase of CD34+ MVND but not MPAD was statistically insignificant between grade III and IV. It was interesting that some vessel-like structures only consist of α-SMA+ cells, assuming the guiding role of pericytes in angiogenesis. The expression level of PDGFβ was upregulated and directly correlated with the MPND in different glioma grades. Conclusion Hyperplasia of pericytes was one of the significant characteristics of malignant glioma and locally proliferated pericytes were the main constituent of MVs in high grade glioma. The pathological characteristics of pericytes could be used as indexes of malignant grades of glioma. PMID:25478951
Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.
Escue, Rachel; Kandasamy, Kathirvel; Parthasarathi, Kaushik
2017-04-01
Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca 2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.
Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A
2013-01-01
Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.
Sharma, Prashant; Pati, Hara Prasad; Mishra, Pravas Chandra; Dinda, Amit Kumar; Gupta, Ruchika; Sharma, Alok; Jacob, Tony George
2011-08-01
To explore the utility of bone marrow (BM) angiogenesis in differentiating primary myelofibrosis (PMF) from secondary myelofibrosis (MF). CD34 immunostaining was performed on BM biopsies from 21 PMFs, 23 non-PMF myeloproliferative neoplasms (MPN) with associated MF, 20 secondary MF samples, and 10 nonfibrotic controls. Microvessel density (MVD) and microvessel surface area (MSA), along with blood and BM findings were compared between the groups. The post-MPN MF cases included chronic myeloid leukemia-MF and polycythemia vera-MF. Etiologies of secondary MF were metastatic carcinomas, non-MPN hematologic malignancies, tuberculosis, autoimmune MF, and osteopetrosis. Megakaryocytic clustering was the most frequent and intrasinusoidal hematopoiesis the most specific feature of PMF. Higher reticulin grade, collagenization, and osteomyelosclerosis were commoner in PMF. MVD and MSA were significantly increased in fibrotic marrows regardless of etiology. Although mean MVD as well as MSA were highest in PMF, extensive overlaps among groups and marked heterogeneity in the secondary MF group rendered them of limited utility in the differential diagnosis. Enhanced angiogenesis is not entirely specific for PMF. Overlaps with secondary MF limits its differential diagnostic utility. Pathogenetically, our findings suggest that enhanced angiogenesis is a secondary paraneoplastic stromal response shared by various unrelated conditions.
Stroke and the Cell Therapy Saga: Towards a Safe, Swift and Efficient Utilization of cells.
Kubis, Nathalie
2017-01-01
The first clinical trials of cell therapy in stroke were first published in the 2000s and consisted of neural stems cells transplanted via the intracerebral pathway. Since mesenchymal stem cells showed similar capacities to differentiate into neural cells and allowed autologous cell transplantation, they were then preferentially studied, including diabetes and hypertension. More recently, bone marrow derived mononuclear cells were successfully transplanted in stroke with no need of culture processing, and simple collection by density gradient centrifugation rendering them immediately ready for use. They improve post-stroke neurological deficit in rodents and clinical trials have shown the feasibility of intra-arterial or intravenous administration. The underlying mechanisms are not yet understood. We investigated the therapeutic potential of peripheral blood derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+). We showed that intravenously injected PB-MNC+ after cerebral ischemia reduced infarct volume at day 3, increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglial cell density, and upregulated TGF-β expression. At D14, microvessel density was increased and functional recovery enhanced, whereas plasma levels of BDNF were increased in treated mice. Ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation and angiogenesis, as confirmed by adhesion and Matrigel assays. PB-MNC+ transplantation in stroke is a promising approach and should be investigated for the development of rapid, non-invasive bedside cell therapy strategies in stroke.(Presented at the 1944th Meeting, July 19, 2017).
Chu, Louis M.; Lassaletta, Antonio D.; Robich, Michael P.; Liu, Yuhong; Burgess, Thomas; Laham, Roger J.; Sweeney, Joseph D.; Shen, Tun-li; Sellke, Frank W.
2012-01-01
Background Moderate consumption of alcohol, particularly red wine, has been shown to decrease cardiac risk. We used a hypercholesterolemic swine model of chronic ischemia to examine the effects of two alcoholic beverages on the heart. Methods and Results Yorkshire swine fed a high-cholesterol diet underwent left circumflex ameroid constrictor placement to induce chronic ischemia at 8 weeks of age. One group (HCC, n=9) continued on the diet alone, the second (HCW, n=8) was supplemented with red wine (pinot noir, 12.5% alcohol, 375 mL daily), and the third (HCV, n=9) was supplemented with vodka (40% alcohol, 112 mL daily). After 7 weeks, cardiac function was measured, and ischemic myocardium was harvested for analysis of perfusion, myocardial fibrosis, vessel function, protein expression, oxidative stress, and capillary density. Platelet function was measured by aggregometry. Perfusion to the ischemic territory as measured by microsphere injection was significantly increased in both HCW and HCV compared to HCC at rest, but in only the HCW group under ventricular pacing. Microvessel relaxation response to adenosine 5’-diphosphate was improved in the HCW group alone, as was regional contractility in the ischemic territory, though myocardial fibrosis was decreased in both HCW and HCV. Expression of pro-angiogenic proteins phospho-eNOS and VEGF was increased in both HCW and HCV, while phospho-mTOR was increased only in the HCV group. Expression of Sirt-1 and downstream antioxidant phospho-FoxO1 was increased only in the HCW group. Protein oxidative stress was decreased in the HCW group alone, while capillary density was increased only in the HCV group. There was no significant difference in platelet function between groups. Conclusion Moderate consumption of red wine and vodka may reduce cardiovascular risk by improving collateral-dependent perfusion via different mechanisms. Red wine may offer increased cardioprotection related to its antioxidant properties. PMID:22965995
Serpi, Raisa; Tolonen, Anna‐Maria; Tenhunen, Olli; Pieviläinen, Oskari; Kubin, Anna‐Maria; Vaskivuo, Tommi; Soini, Ylermi; Kerkelä, Risto; Leskinen, Hanna; Ruskoaho, Heikki
2009-01-01
Abstract There is strong evidence for the use of angiotensin converting enzyme inhibitors and beta‐blockers to reduce morbidity and mortality in patients with myocardial infarction (MI), whereas the effect of angiotensin receptor blockers is less clear. We evaluated the effects of an angiotensin receptor blocker losartan and a beta‐blocker metoprolol on left ventricular (LV) remodeling, c‐kit+ cells, proliferation, fibrosis, apoptosis, and angiogenesis using a model of coronary ligation in rats. Metoprolol treatment for 2 weeks improved LV systolic function. In contrast, losartan triggered deleterious structural remodeling and functional deterioration of LV systolic function, ejection fraction being 41% and fractional shortening 47% lower in losartan group than in controls 2 weeks after MI. The number of c‐kit+ cells as well as expression of Ki‐67 was increased by metoprolol. Losartan‐induced thinning of the anterior wall and ventricular dilation were associated with increased apoptosis and fibrosis, while losartan had no effect on the expression of c‐kit or Ki‐67. Metoprolol or losartan had no effect on microvessel density. These results demonstrate that beta‐blocker treatment attenuated adverse remodeling via c‐kit+ cells and proliferation, whereas angiotensin receptor blocker‐induced worsening of LV systolic function was associated with increased apoptosis and fibrosis in the peri‐infarct region. PMID:20443934
Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong
2016-08-31
Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer.
Pulmonary emphysema and tumor microenvironment in primary lung cancer.
Murakami, Junichi; Ueda, Kazuhiro; Sano, Fumiho; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu
2016-02-01
To clarify the relationship between the presence of pulmonary emphysema and tumor microenvironment and their significance for the clinicopathologic aggressiveness of non-small cell lung cancer. The subjects included 48 patients with completely resected and pathologically confirmed stage I non-small cell lung cancer. Quantitative computed tomography was used to diagnose pulmonary emphysema, and immunohistochemical staining was performed to evaluate the matrix metalloproteinase (MMP) expression status in the intratumoral stromal cells as well as the microvessel density (MVD). Positive MMP-9 staining in the intratumoral stromal cells was confirmed in 17 (35%) of the 48 tumors. These 17 tumors were associated with a high MVD, frequent lymphovascular invasion, a high proliferative activity, and high postoperative recurrence rate (all, P < 0.05). The majority of the tumors (13 of 17) arose in patients with pulmonary emphysema (P = 0.02). Lung cancers arising from pulmonary emphysema were also associated with a high MVD, proliferative activity, and postoperative recurrence rate (all, P < 0.05). The MMP-9 expression in intratumoral stromal cells is associated with the clinicopathologic aggressiveness of lung cancer and is predominantly identified in tumors arising in emphysematous lungs. Further studies regarding the biological links between the intratumoral and extratumoral microenvironment will help to explain why lung cancers originating in emphysematous lung tissues are associated with a poor prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of combined mesenchymal stem cells and heme oxygenase-1 therapy on cardiac performance.
Zeng, Bin; Chen, Honglei; Zhu, Chengang; Ren, Xiaofeng; Lin, Guosheng; Cao, Feng
2008-10-01
Bone marrow mesenchymal stem cells (MSCs) have the potential to repair the infarcted myocardium and improve cardiac function. However, this approach is limited by its poor viability after transplantation, and controversy still exists over the mechanism by which MSCs contribute to the tissue repair. The human heme oxygenase-1 (hHO-1) was transfected into cultured MSCs using an adenoviral vector. 1 x 10(6) Ad-hHO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS only (PBS group) were injected intramyocardially into rat hearts 1h after myocardial infarction. HO-1-MSCs survived in the infarcted myocardium, and expressed hHO-1 mRNA. The expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) was significantly enhanced in HO-1-MSCs-treated hearts. At the same time, there were significant reduction of TNF-alpha, IL-1-beta and IL-6 mRNA, and marked increase of IL-10 mRNA in HO-1-MSCs-treated hearts. Moreover, a further downregulation of proapoptotic protein, Bax, and a marked increase in microvessel density were observed in HO-1-MSCs-treated hearts. The infarct size and cardiac performance were also significantly improved in HO-1-MSCs-treated hearts. The combined approach improves MSCs survival and is superior to MSCs injection alone.
Yang, Yuhan; He, Lili; Liu, Yongmei; Xia, Shan; Fang, Aiping; Xie, Yafei; Gan, Li; He, Zhiyao; Tan, Xiaoyue; Jiang, Chunling; Tong, Aiping; Song, Xiangrong
2016-01-01
Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer. PMID:27576898
Gaussian beam in two-photon fluorescence imaging of rat brain microvessel
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Alfano, Robert R.
2014-12-01
The critical optical properties of a Gaussian laser beam in two-photon or multiphoton fluorescence imaging, including the beam spot size, depth of focus, and intensity profile, are investigated for spatially locating nanoscale solutes in and surrounding the microvessels of rat brain.
Mechanisms for microvascular damage induced by ultrasound-activated microbubbles
NASA Astrophysics Data System (ADS)
Chen, Hong; Brayman, Andrew A.; Evan, Andrew P.; Matula, Thomas J.
2012-10-01
To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distention and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.
Mechanisms for microvascular damage induced by ultrasound-activated microbubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Hong; Brayman, Andrew A.; Evan, Andrew P.
To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distentionmore » and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.« less
An enhanced narrow-band imaging method for the microvessel detection
NASA Astrophysics Data System (ADS)
Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng
2018-02-01
A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.
Ultra-high Speed Optical Imaging of Ultrasound-activated Microbubbles in Mesenteric Microvessels
NASA Astrophysics Data System (ADS)
Chen, Hong
Ultrasound contrast agent microbubbles have gained widespread applications in diagnostic and therapeutic ultrasound. Animal studies of bioeffects induced by ultrasound-activated microbubbles have demonstrated that microbubbles can cause microvessel damage. Much scientific attention has been attracted to such microvascular bioeffects, not only because of the related safety concerns, but also because of the potential useful applications of microbubbles in the intravascular delivery of drugs and genetic materials into target tissues. A significant challenge in using microbubbles in medical ultrasound is the lack of knowledge about how the microbubbles behave in blood vessels when exposed to ultrasound and how their interactions with ultrasound cause vascular damage. Although extensive studies were performed in the past to study the dynamics of microbubbles, most of those studies were performed in vitro and did not directly address the clinical environment in which microbubbles are injected into blood vessels. In this thesis work, a synchronized optical-acoustic system was set up for ultrahigh speed imaging of insonated microbubbles in microvessels. The recorded images revealed the formation of microjets penetrating the microbubbles, as well as vessel distention (motion outward against the surrounding tissue) and vessel invagination (motion inward toward the lumen) caused by the expansion and collapse of the microbubbles, respectively. Contrary to current paradigms which propose that microbubbles damage vessels either by distending them or by forming liquid jets impinging on them, microbubbles translation and jetting were in the direction away from the nearest vessel wall; furthermore, invagination typically exceeded distention in arterioles and venules. Vessel invagination was found to be associated with vascular damage. These studies suggest that vessel invagination may be a newly discovered potential mechanism for vascular damage by ultrasound-activated microbubbles. The dynamics of bubble-vessel interactions are coupled intimately with the viscoelastic properties of the microvessels. To probe these properties, a method based on the relaxation times of the invaginated microvessels was used to estimate the relaxation time constants of the microvessels. It was found that the time constants were on microsecond time scales, which provided insight into the unique and unknown viscoelastic properties of the microvessels.
Berrout, Jonathan; Jin, Min; O'Neil, Roger G
2012-02-03
The microvessels of the brain are very sensitive to mechanical stresses such as observed in traumatic brain injury (TBI). Such stresses can quickly lead to dysfunction of the microvessel endothelial cells, including disruption of blood-brain barrier (BBB). It is now evident that elevation of cytosolic calcium levels ([Ca2+]i) can compromise the BBB integrity, however the mechanism by which mechanical injury can produce a [Ca2+]i increase in brain endothelial cells is unclear. To assess the effects of mechanical/stretch injury on [Ca2+]i signaling, mouse brain microvessel endothelial cells (bEnd3) were grown to confluency on elasticized membranes and [Ca2+]i monitored using fura 2 fluorescence imaging. Application of an injury, using a pressure/stretch pulse of 50 ms, induced a rapid transient increase in [Ca2+]i. In the absence of extracellular Ca2+, the injury-induced [Ca2+]i transient was greatly reduced, but not fully eliminated, while unloading of Ca2+ stores by thapsigargin treatment in the absence of extracellular Ca2+ abolished the injury transient. Application of LOE-908 and amiloride, TRPC and TRPP2 channel blockers, respectively, both reduced the transient [Ca2+]i increase. Further, siRNA knockdown assays directed at TRPC1 and TRPP2 expression also resulted in a reduction of the injury-induced [Ca2+]i response. In addition, stretch injury induced increases of NO production and actin stress fiber formation, both of which were markedly reduced upon treatment with LOE908 and/or amiloride. We conclude that mechanical injury of brain endothelial cells induces a rapid influx of calcium, mediated by TRPC1 and TRPP2 channels, which leads to NO synthesis and actin cytoskeletal rearrangement. Copyright © 2011. Published by Elsevier B.V.
Teramoto, K; Miura, S; Tsuzuki, Y; Hokari, R; Watanabe, C; Inamura, T; Ogawa, T; Hosoe, N; Nagata, H; Ishii, H; Hibi, T
2005-03-01
Although enhanced lymphocyte trafficking is associated with colitis formation, little information about its regulation is available. The aim of this study was to examine how the murine liver and activation-regulated chemokine (mLARC/CCL20) contributes to lymphocyte recruitment in concert with vascular adhesion molecules in murine chronic experimental colitis. T and B lymphocytes isolated from the spleen were fluorescence-labelled and administered to recipient mice. Lymphocyte adhesion to microvessels of the colonic mucosa and submucosa was observed with an intravital microscope. To induce colitis, the mice received two cycles of treatment with 2% dextran sodium sulphate (DSS). In some of the experiments antibodies against the adhesion molecules or anti-mLARC/CCL20 were administered, or CC chemokine receptor 6 (CCR6) of the lymphocytes was desensitized with excess amounts of mLARC/CCL20. Significant increases in T and B cell adhesion to the microvessels of the DSS-treated mucosa and submucosa were observed. In chronic colitis, the accumulation of lymphocytes was significantly inhibited by anti-mucosal addressin cell adhesion molecule (MAdCAM)-1 mAb, but not by anti-vascular cell adhesion molecule-1. In DSS-treated colonic tissue, the expression of mLARC/CCL20 was significantly increased, the blocking of mLARC/CCL20 by monoclonal antibody or the desensitization of CCR6 with mLARC/CCL20 significantly attenuated the DSS-induced T and B cell accumulation. However, the combination of blocking CCR6 with MAdCAM-1 did not further inhibit these accumulations. These results suggest that in chronic DSS-induced colitis, both MAdCAM-1 and mLARC/CCL20 may play important roles in T and B lymphocyte adhesion in the inflamed colon under flow conditions.
Three-dimensional motion and deformation of a red blood cell in bifurcated microvessels
NASA Astrophysics Data System (ADS)
Ye, Ting; Peng, Lina; Li, Yu
2018-02-01
Microvessels are generally not simple straight tubes, but rather they continually bifurcate (namely, diverging bifurcation) and merge with other microvessels (namely, converging bifurcation). This paper presents a simulation study on the three-dimensional motion and deformation of a red blood cell (RBC) in a bifurcated microvessel with both diverging and converging bifurcations. The motion of the fluids inside and outside of the RBC is modeled by smooth dissipative particle dynamics. The RBC membrane is modeled as a triangular network, having the ability to not only resist the stretching and bending deformations, but also to conserve the RBC volume and surface area. The bifurcation configurations have been studied, including the bifurcated angle and the branch diameter, as well as the RBC properties, including the initial shape, shear modulus, and bending modulus. The simulation results show that the RBC deformation can be divided into five stages, when the RBC flows through a diverging-converging bifurcated microvessel. In these five stages, the RBCs have similar deformation trends but different deformation indices, subject to different bifurcation configurations or different RBC properties. If the shear modulus is large enough, the RBC membrane presents several folds; if the bending modulus is large enough, the RBC loses the symmetry completely with the long shape. These results are helpful in understanding the motion and deformation of healthy or unhealthy cells in blood microcirculation.
Alfieri, Alessio; Srivastava, Salil; Siow, Richard C M; Cash, Diana; Modo, Michel; Duchen, Michael R; Fraser, Paul A; Williams, Steven C R; Mann, Giovanni E
2013-12-01
Disruption of the blood-brain barrier (BBB) and cerebral edema are the major pathogenic mechanisms leading to neurological dysfunction and death after ischemic stroke. The brain protects itself against infarction via activation of endogenous antioxidant defense mechanisms, and we here report the first evidence that sulforaphane-mediated preactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target heme oxygenase-1 (HO-1) in the cerebral vasculature protects the brain against stroke. To induce ischemic stroke, Sprague-Dawley rats were subjected to 70 min middle cerebral artery occlusion (MCAo) followed by 4, 24, or 72 h reperfusion. Nrf2 and HO-1 protein expression was upregulated in cerebral microvessels of peri-infarct regions after 4-72 h, with HO-1 preferentially associated with perivascular astrocytes rather than the cerebrovascular endothelium. In naïve rats, treatment with sulforaphane increased Nrf2 expression in cerebral microvessels after 24h. Upregulation of Nrf2 by sulforaphane treatment prior to transient MCAo (1h) was associated with increased HO-1 expression in perivascular astrocytes in peri-infarct regions and cerebral endothelium in the infarct core. BBB disruption, lesion progression, as analyzed by MRI, and neurological deficits were reduced by sulforaphane pretreatment. As sulforaphane pretreatment led to a moderate increase in peroxynitrite generation, we suggest that hormetic preconditioning underlies sulforaphane-mediated protection against stroke. In conclusion, we propose that pharmacological or dietary interventions aimed to precondition the brain via activation of the Nrf2 defense pathway in the cerebral microvasculature provide a novel therapeutic approach for preventing BBB breakdown and neurological dysfunction in stroke. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S
2015-07-01
Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.
Davies, Christine Ann; Jeziorska, Maria; Freemont, Anthony J; Herrick, Ariane L
2006-02-01
Our aim was to evaluate (a) whether there is differential expression of the endothelial regulator vascular endothelial growth factor (VEGF), its receptor (VEGFR-2), and the hypoxia-associated glucose transporter molecule, GLUT-1, in skin biopsies from different disease subtypes of systemic sclerosis (SSc) and (b) whether they associate with dermal calcinosis, a significant complication of SSc. Skin punch biopsies were taken from the forearms of 66 SSc patients including 18 with limited cutaneous disease without calcinosis (lcSSc), 23 with calcinosis (lcSSc/cal), and 25 with diffuse cutaneous disease (dcSSc) and from 12 healthy control subjects. The histological appearance of the skin was graded as G0 (normal), G1 (dermal edema), or G2 or G3 (increasing fibrotic changes). Immunohistochemistry was performed with antibodies to VEGF, VEGFR-2, and GLUT-1. Staining was assessed in the epidermis, microvessels, and fibroblasts. The Kruskal-Wallis 1-way analysis of variance was used to compare the data between disease groups. VEGF protein was located in the epidermis and in dermal endothelial cells, pericytes, fibroblasts, and inflammatory cells. In dcSSc only, there was a significant increase in VEGF staining intensity in the keratinocytes and pericytes and the lowest percentage of microvessels with VEGF-positive endothelial cells. GLUT-1 protein was located in the epidermis, erythrocytes, and perineurium. In both lcSSc/cal and dcSSC, but not lcSSc, there were significant increases in GLUT-1 staining intensity of keratinocytes. We propose that in patients with dcSSc, there is a net increase in unbound VEGF in skin that may account for the raised levels of VEGF in serum reported by others. Increased GLUT-1 expression in lcSSc/cal and dcSSc indicates that hypoxia is an associated factor.
Shibata, Masa-Aki; Hamaoka, Hitomi; Morimoto, Junji; Kanayama, Tadashi; Maemura, Kentaro; Ito, Yuko; Iinuma, Munekazu; Kondo, Yoichi
2018-03-30
We previously reported that, in a mouse model of mammary cancer, α-mangostin alone exhibits anti-metastatic properties. To enhance this anti-metastatic effect, we examined the efficacy of synthetic α-mangostin dilaurate (MGD), prepared by adding lauric acid to α-mangostin, in the same experimental system wherein mice bearing mammary tumors are exposed to dietary MGD at 0, 2000 and 4000 ppm. Lauric acid has a high propensity for lymphatic absorption, which is the most common pathway of initial dissemination of many solid malignancies. Both mammary tumor volumes and wide-spectrum organ metastasis were markedly reduced at 2000 and 4000 ppm: furthermore, survival in the 4000-ppm group was significantly greater than in control mice. Apoptosis in mammary carcinomas was also significantly increased in the 4000-ppm group, whereas blood microvessel density and lymphatic vessel invasion were markedly reduced. In real-time PCR analyses of tumor samples, increased p21 and decreased Pcna expression were observed with 4000 ppm but values were not statistically significant when compared to expression in control tumors. However, exposure to 4000 ppm significantly decreased expression of phospho-Akt (Ser473/Thr308) as compared to the control, indicating a role in the anti-tumorigenic effects of MGD. These findings suggest that MGD may be useful for adjuvant therapy and chemoprevention and that conjugated medium-chain fatty acids may enhance the efficacy of certain chemotherapeutic agents. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Wesley, Umadevi V.; Vemuganti, Raghu; Ayvaci, Rabia; Dempsey, Robert J.
2013-01-01
Focal cerebral ischemia initiates self-repair mechanisms that include the production of neurotrophic factors and cytokines. Galectin-3 is an important angiogenic cytokine. We have previously demonstrated that expression of galectin 3 (Gal-3), a carbohydrate binding protein is significantly upregulated in activated microglia in the brains of rats subjected to focal ischemia. Further blocking of Gal-3 function with Gal-3 neutralizing antibody decreased the microvessel density in ischemic brain. We currently show that Gal-3 significantly increases the viability of microglia BV2 cells subjected to oxygen glucose deprivation (OGD) and re-oxygenation. Exogenous Gal-3 promoted the formation of pro-angiogenic structures in an in vitro human umbilical vein endothelial (HUVEC) and BV2 cell co-culture model. Gal-3 induced angiogenesis was associated with increased expression of vascular endothelial growth factor. The conditioned medium of BV2 cells exposed to OGD contained increased Gal-3 levels, and promoted the formation of pro-angiogenic structures in an in vitro HUVEC culture model. Gal-3 also augmented the in vitro migratory potential of BV2 microglia. Gal-3 mediated functions were associated with increased levels of integrin-linked kinase (ILK) signaling as demonstrated by the impaired angiogenesis and migration of BV2 cells following targeted silencing of ILK expression by SiRNA. Furthermore, we show that ILK levels correlate with the levels of phos-AKT and ERK1/2 that are downstream effectors of ILK pathway. Taken together, our studies indicate that Gal-3 contributes to angiogenesis and microglia migration that may have implications in post stroke repair. PMID:23246924
Li, Yan; Zhang, Zhong-Fa; Chen, Jindong; Huang, Dan; Ding, Yan; Tan, Min-Han; Qian, Chao-Nan; Resau, James H; Kim, Hyung; Teh, Bin Tean
2010-01-01
Aurora kinases are key regulators of cell mitosis and have been implicated in the process of tumorigenesis. In recent years, the Aurora kinases have attracted much interest as promising targets for cancer treatment. Here we report on the roles of Aurora A and Aurora B kinases in clear cell renal cell carcinoma (ccRCC). Using genomewide expression array analysis of 174 patient samples of ccRCC, we found that expression levels of Aurora A and B were significantly elevated in ccRCC compared to normal kidney samples. High expression levels of Aurora A and Aurora B were significantly associated with advanced tumor stage and poor patient survival. Inhibition of Aurora kinase activity with the drug VX680 (also referred to as MK-0457) inhibited ccRCC cell growth in vitro and led to ccRCC cell accumulation in the G2/M phase and apoptosis. Growth of ccRCC xenograft tumors was also inhibited by VX680 treatment, accompanied by a reduction of tumor microvessel density. Analysis of endothelial cell lines demonstrated that VX680 inhibits endothelial cell growth with effects similar to that seen in ccRCC cells. Our findings suggest that VX680 inhibits the growth of ccRCC tumors by targeting the proliferation of both ccRCC tumor cells and tumor-associated endothelial cells. Aurora kinases and their downstream cell cycle proteins have an important role in ccRCC and may be potent prognostic markers and therapy targets for this disease. PMID:20589168
Yokoyama, Yoshihito; Xin, Bing; Shigeto, Tatsuhiko; Umemoto, Mika; Kasai-Sakamoto, Akiko; Futagami, Masayuki; Tsuchida, Shigeki; Al-Mulla, Fahd; Mizunuma, Hideki
2007-04-01
Recent reports have shown that peroxisome proliferator-activated receptor (PPAR)alpha ligands reduce growth of some types of malignant tumors and prevent carcinogenesis. In this study, we investigated the inhibitory effect of clofibric acid (CA), a ligand for PPARalpha on growth of ovarian malignancy, in in vivo and in vitro experiments using OVCAR-3 and DISS cells derived from human ovarian cancer and aimed to elucidate the molecular mechanism of its antitumor effect. CA treatment significantly suppressed the growth of OVCAR-3 tumors xenotransplanted s.c. and significantly prolonged the survival of mice with malignant ascites derived from DISS cells as compared with control. CA also dose-dependently inhibited cell proliferation of cultured cell lines. CA treatment increased the expression of carbonyl reductase (CR), which promotes the conversion of prostaglandin E(2) (PGE(2)) to PGF(2alpha), in implanted OVCAR-3 tumors as well as cultured cells. CA treatment decreased PGE(2) level as well as vascular endothelial growth factor (VEGF) amount in both of OVCAR-3-tumor and DISS-derived ascites. Reduced microvessel density and induced apoptosis were found in solid OVCAR-3 tumors treated by CA. Transfection of CR expression vector into mouse ovarian cancer cells showed significant reduction of PGE(2) level as well as VEGF expression. These results indicate that CA produces potent antitumor effects against ovarian cancer in conjunction with a reduction of angiogenesis and induction of apoptosis. We conclude that CA could be an effective agent in ovarian cancer and should be tested alone and in combination with other anticancer drugs.
Xu, Yaoqiang; Liu, Yinglong; Li, Zhiqiang; Su, Junwu; Li, Gang; Sun, Lizhong
2012-09-01
Hypoperfusion of the pulmonary vascular bed under the condition of congenital cardiac malformations may lead to progressive pulmonary vascular disease. To improve the mechanistic understanding of this disease, we examined the biochemical and morphological changes of the lung in a relevant animal model and provided valuable insights into the underlying mechanisms of the pathogenesis of pulmonary hypotension. A model of congenital heart defect with decreased pulmonary blood flow was implemented into 8 piglets (the cyanosis group). Another 8 piglets underwent a sham operation (the control group). Two months postoperatively, lung biopsy specimens were harvested for the measurement of the expression levels of MMP-2, MMP-9, TIMP-1, VEGF, and type I and type III collagens. Moreover, the light-microscopic morphology, morphometry, and ultrastructure of lobes were examined. Compared to the controls, the histopathological changes of the pulmonary vasculature in the cyanosis group showed evident hypoplasia and degeneration. The expression levels of MMP-2, MMP-9, TIMP-1, VEGF, and type I collagen, as well as the microvessel density, in the cyanosis group were significantly lower than those in the control group, whereas the level of type III collagen in the cyanosis group was significantly higher than that in the control group. The observed morphological changes may represent an adaptive reaction to the prolonged decrease of pulmonary blood flow. The underlying mechanism of lung remodeling may be attributed to the changes in the expression of structural proteins and cytokines in the pulmonary extracellular matrix induced by modulating factors.
Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.
Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A
2005-11-01
Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.
Prognostic Impact of PHIP Copy Number in Melanoma: Linkage to Ulceration
Nosrati, Mehdi; Tong, Schuyler; Wu, Clayton; Thummala, Suresh; Dar, Altaf A.; Leong, Stanley P.L.; Cleaver, James E.; Sagebiel, Richard W.; Miller, James R.; Kashani-Sabet, Mohammed
2013-01-01
Ulceration is an important prognostic factor in melanoma whose biologic basis is poorly understood. Here we assessed the prognostic impact of pleckstrin homology domain-interacting protein (PHIP) copy number and its relationship to ulceration. PHIP copy number was determined using fluorescence in situ hybridization (FISH) in a tissue microarray cohort of 238 melanomas. Elevated PHIP copy number was associated with significantly reduced DMFS (P = 0.01) and DSS (P = 0.009) by Kaplan-Meier analyses. PHIP FISH scores were independently predictive of DMFS (P = 0.03) and DSS (P = 0.03). Increased PHIP copy number was an independent predictor of ulceration status (P = 0.04). The combined impact of increased PHIP copy number and tumor vascularity on ulceration status was highly significant (P< 0.0001). Stable suppression of PHIP in human melanoma cells resulted in significantly reduced glycolytic activity in vitro, with lower expression of LDH5, HIF1A, and VEGF, and was accompanied by reduced microvessel density in vivo. These results provide further support for PHIP as a molecular prognostic marker of melanoma, and reveal a significant linkage between PHIP levels and ulceration. Moreover, they suggest that ulceration may be driven by increased glycolysis and angiogenesis. PMID:24005052
Tricarico, Carmela; Pinzani, Pamela; Bianchi, Simonetta; Paglierani, Milena; Distante, Vito; Pazzagli, Mario; Bustin, Stephen A; Orlando, Claudio
2002-10-15
Careful normalization is essential when using quantitative reverse transcription polymerase chain reaction assays to compare mRNA levels between biopsies from different individuals or cells undergoing different treatment. Generally this involves the use of internal controls, such as mRNA specified by a housekeeping gene, ribosomal RNA (rRNA), or accurately quantitated total RNA. The aim of this study was to compare these methods and determine which one can provide the most accurate and biologically relevant quantitative results. Our results show significant variation in the expression levels of 10 commonly used housekeeping genes and 18S rRNA, both between individuals and between biopsies taken from the same patient. Furthermore, in 23 breast cancers samples mRNA and protein levels of a regulated gene, vascular endothelial growth factor (VEGF), correlated only when normalized to total RNA, as did microvessel density. Finally, mRNA levels of VEGF and the most popular housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly correlated in the colon. Our results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.
Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De-Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De-Hui; Yu, Bing-Chao; Huang, Ji-Rong
2016-01-01
Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering. PMID:27191987
Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu
2017-01-01
Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.
Stereology techniques in radiation biology
NASA Technical Reports Server (NTRS)
Kubinova, Lucie; Mao, XiaoWen; Janacek, Jiri; Archambeau, John O.; Nelson, G. A. (Principal Investigator)
2003-01-01
Clinicians involved in conventional radiation therapy are very concerned about the dose-response relationships of normal tissues. Before proceeding to new clinical protocols, radiation biologists involved with conformal proton therapy believe it is necessary to quantify the dose response and tolerance of the organs and tissues that will be irradiated. An important focus is on the vasculature. This presentation reviews the methodology and format of using confocal microscopy and stereological methods to quantify tissue parameters, cell number, tissue volume and surface area, and vessel length using the microvasculature as a model tissue. Stereological methods and their concepts are illustrated using an ongoing study of the dose response of the microvessels in proton-irradiated hemibrain. Methods for estimating the volume of the brain and the brain cortex, the total number of endothelial cells in cortical microvessels, the length of cortical microvessels, and the total surface area of cortical microvessel walls are presented step by step in a way understandable for readers with little mathematical background. It is shown that stereological techniques, based on a sound theoretical basis, are powerful and reliable and have been used successfully.
Parecoxib: an enhancer of radiation therapy for colorectal cancer.
Xiong, Wei; Li, Wen-Hui; Jiang, Yong-Xin; Liu, Shan; Ai, Yi-Qin; Liu, Rong; Chang, Li; Zhang, Ming; Wang, Xiao-Li; Bai, Han; Wang, Hong; Zheng, Rui; Tan, Jing
2015-01-01
To study the effect of parecoxib, a novel cyclooxygenase-2 selective inhibitor, on the radiation response of colorectal cancer (CRC) cells and its underlying mechanisms. Both in vitro colony formation and apoptosis assays as well as in vivo mouse xenograft experiments were used to explore the radiosensitizing effects of parecoxib in human HCT116 and HT29 CRC cells. Parecoxib sensitized CRC cells to radiation in vitro with a sensitivity enhancement ratio of 1.32 for HCT116 cells and 1.15 for HT29 cells at a surviving fraction of 0.37. This effect was partially attributable to enhanced apoptosis induction by parecoxib combined with radiation, as illustrated using an in vitro apoptosis assays. Parecoxib augmented the tumor response of HCT116 xenografts to radiation, achieving growth delay more than 20 days and an enhancement factor of 1.53. In accordance with the in vitro results, parecoxib combined with radiation resulted in less proliferation and more apoptosis in tumors than radiation alone. Radiation monotherapy decreased microvessel density (MVD) and microvessel intensity (MVI), but increased the hypoxia level in xenografts. Parecoxib did not affect MVD, but it increased MVI and attenuated hypoxia. Parecoxib can effectively enhance radiation sensitivity in CRC cells through direct effects on tumor cells and indirect effects on tumor vasculature.
Zozulya, Alla L.; Reinke, Emily; Baiu, Dana C.; Karman, Jozsef; Sandor, Matyas; Fabry, Zsuzsanna
2007-01-01
Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1α increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1α -induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS. PMID:17182592
Wang, Junyan; Lv, Faqin; Fei, Xiang; Cui, Qiuli; Wang, Longxia; Gao, Xuewen; Yuan, Zhixian; Lin, Qian; Lv, Yali; Liu, Aijun
2011-01-01
Angiogenesis is a critical factor in tumor growth and metastasis, and microvessel density (MVD) was an important parameter for assessing vessels in tumors. However, radiologic assessment of tumor vascularity is not yet well established. In our study, we aimed at investigating the efficacy of contrast-enhanced ultrasonography (CEUS) in exploring the vascularity of the ovarian tumors or tumor-like lesions to assess the relationship between the parameters of the peak intensity (PI) and area under curve (AUC) on CEUS and MVD in ovarian masses. Compared to the contrast-enhanced ultrasound technique, conventional ultrasound shows limitation in differentiating benign and malignant ovarian tumors. The former is promising in improving the sensitivity of detecting small vessels and blood flow in ovarian tumors. Our results showed clear differences in enhancement patterns between benign and malignant ovary tumors or tumor-like lesions. The PI and AUC in the malignant tumors were significantly higher than those in the benign tumors or tumor-like lesions (p=0.001 and =0.01, respectively). The MVD was 43.1 ± 20.4 in the benign tumors or tumor-like lesions and was 65.3 ± 22.3 in the malignant ones (p= 0.01). In both the benign and malignant groups, the PI and AUC were correlated significantly with the MVD (r=0.595, p = 0.001; r =0.533, p = 0.003, respectively). The PI and AUC in CEUS can reflect the MVD in ovarin tumors. The PI and AUC of the ovarian masses in the contrast transvaginal sonography show significant correlation with the angiogenesis and may help in assessing tumor vascularity in ovarian masses. PMID:21614152
Guimarães, George Furtado; de Araújo, Vera Cavalcanti; Nery, James Carlos; Peruzzo, Daiane Cristina; Soares, Andresa Borges
2015-01-01
Enamel matrix derivative (EMD) is commonly used in periodontal therapy and has been used successfully for periodontal regeneration. In addition, this material has a possible angiogenic effect that has been associated with enhanced wound healing. The aim of this study was to evaluate the effect of EMD on microvessel density (angiogenesis) on the soft tissues surrounding newly placed implants after 14 days. Five patients were selected, each requiring at least one implant on each side of the maxilla, in a split-mouth experimental design. The implants were placed in a two-stage procedure. Each side was then randomized as test or control. On the test side, 0.1 mL of EMD was topically applied to the soft tissues surrounding the implants, while the control side did not receive any treatment. Second-stage surgery was performed after 14 days. A 6-mm punch biopsy was performed for each implant, with the samples subsequently prepared for histology and immunohistochemistry. Quantitative vascularization analysis was performed, which involved counting three areas or "hotspots" containing vessels strongly positive for CD34 and CD105, a pan-endothelial and new vessel marker, respectively. There was no significant difference between test and control groups when evaluating the formation of new blood vessels. The total number of blood vessels, however, was significantly higher in the group treated with EMD (test group). Within the limits of the present study, it can be concluded that topical application of EMD on the soft tissues surrounding newly placed implants resulted in an increased number of blood vessels at 14 days, suggesting that EMD may play a beneficial role in this aspect of wound healing.
Maeda, Ryo; Ishii, Genichiro; Ito, Masami; Hishida, Tomoyuki; Yoshida, Junji; Nishimura, Mitsuyo; Haga, Hironori; Nagai, Kanji; Ochiai, Atsushi
2012-03-01
Angiogenesis plays a significant role in tumor progression. This study examined the association between the number of circulating endothelial progenitor cells (EPCs), intratumoral microvessel density (MVD) (both of which may be markers for neovascularization), and lung cancer histological types, particularly adenocarcinoma histological subtypes. A total of 83 stage I non-small cell lung cancer (NSCLC) patients underwent complete tumor resection between November 2009 and July 2010. The number of EPCs from the pulmonary artery of the resected lungs was measured by assaying CD34/vascular endothelial growth factor receptor 2 positive cells, and the MVD was assessed immunohistochemically in tumor specimens by staining for CD34. A statistically significant correlation between the number of EPCs from pulmonary artery and intratumoral MVD was found (p < 0.001). No statistically significant differences in the number of EPCs and the MVD were observed between the adenocarcinomas and the squamous cell carcinomas. Among the adenocarcinoma histological subtypes, a higher number of EPCs and MVD were found significantly more frequently in solid adenocarcinomas than in nonsolid adenocarcinomas (p < 0.001 and p = 0.011, respectively). In addition, solid adenocarcinomas showed higher levels of vascular endothelial growth factor using quantitative real-time polymerase chain reaction in the tumor tissue samples than in the nonsolid adenocarcinomas (p = 0.005). The higher number of circulating EPCs and the MVD of solid adenocarcinoma may indicate the presence of differences in the tumor angiogenic status between early-stage adenocarcinoma histological subtypes. Among adenocarcinoma patients, patients with solid adenocarcinoma may be the best candidates for antiangiogenic therapies.
Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai
2017-01-01
Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073
Tucsek, Zsuzsanna; Toth, Peter; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Warrington, Junie P.; Giles, Cory B.; Wren, Jonathan D.; Koller, Akos; Ballabh, Praveen; Sonntag, William E.; Csiszar, Anna
2014-01-01
Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet–fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood–brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging. PMID:24895269
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yunliang; Wu, Congshan; Ma, Jianxia, E-mail: yz_mjx@163.com
Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGFmore » was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.« less
Nguyen, Hieu M; Mejia, Edgard M; Chang, Wenguang; Wang, Ying; Watson, Emily; On, Ngoc; Miller, Donald W; Hatch, Grant M
2016-10-01
Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. Cardiolipin is a mitochondrial phospholipid required for function of the electron transport chain and ATP generation. We examined the role of cardiolipin in maintaining mitochondrial function necessary to support barrier properties of brain microvessel endothelial cells. Knockdown of the terminal enzyme of cardiolipin synthesis, cardiolipin synthase, in hCMEC/D3 cells resulted in decreased cellular cardiolipin levels compared to controls. The reduction in cardiolipin resulted in decreased mitochondrial spare respiratory capacity, increased pyruvate kinase activity, and increased 2-deoxy-[(3) H]glucose uptake and glucose transporter-1 expression and localization to membranes in hCMEC/D3 cells compared to controls. The mechanism for the increase in glucose uptake was an increase in adenosine-5'-monophosphate kinase and protein kinase B activity and decreased glycogen synthase kinase 3 beta activity. Knockdown of cardiolipin synthase did not affect permeability of fluorescent dextran across confluent hCMEC/D3 monolayers grown on Transwell(®) inserts. In contrast, knockdown of cardiolipin synthase resulted in an increase in 2-deoxy-[(3) H]glucose transport across these monolayers compared to controls. The data indicate that in hCMEC/D3 cells, spare respiratory capacity is dependent on cardiolipin. In addition, reduction in cardiolipin in these cells alters their cellular energy status and this results in increased glucose transport into and across hCMEC/D3 monolayers. Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. In human adult brain endothelial cell hCMEC/D3 monolayers cultured on Transwell(®) plates, knockdown of cardiolipin synthase results in decrease in mitochondrial cardiolipin and decreased mitochondrial spare respiratory capacity. The reduced cardiolipin results in an increased activity of adenosine monophosphate kinase (pAMPK) and protein kinase B (pAKT) and decreased activity of glycogen synthase kinase 3 beta (pGSK3β) which results in elevated glucose transporter-1 (GLUT-1) expression and association with membranes. This in turn increases 2-dexoyglucose uptake from the apical medium into the cells with a resultant 2-deoxyglucose movement into the basolateral medium. © 2016 International Society for Neurochemistry.
Gu, You-Yu; Huang, Ping; Li, Quan; Liu, Yu-Ying; Liu, George; Wang, Yu-Hui; Yi, Ming; Yan, Li; Wei, Xiao-Hong; Yang, Lei; Hu, Bai-He; Zhao, Xin-Rong; Chang, Xin; Sun, Kai; Pan, Chun-Shui; Cui, Yuan-Chen; Chen, Qing-Fang; Wang, Chuan-She; Fan, Jing-Yu; Ma, Zhi-Zhong; Han, Jing-Yan
2018-01-01
The purpose of the study was to explore the effect and the underlying mechanism of YangXue QingNao Wan (YXQNW) and Silibinin Capsules (SC), the two Chinese medicines, on cognitive impairment in older people with familial hyperlipidaemia. Fourteen month-old female LDLR (+/-) golden Syrian hamsters were used with their wild type as control. YXQNW (0.5 g/kg/day), SC (0.1 g/kg/day), or YXQNW (0.5 g/kg/day) + SC (0.1 g/kg/day) were administrated orally for 30 days. To assess the effects of the two drugs on plasma lipid content and cognitive ability, plasma TC, TG, LDL-C, and HDL-C were measured, and Y maze task was carried out both before and after administration. After administering of the drugs for 30 days, to evaluate the effect of the two drugs on disturbed blood flow caused by hyperlipidemia, the cerebral blood flow (CBF) was measured. To assess blood–brain barrier integrity, albumin leakage in middle cerebral artery (MCA) area was determined. To evaluate the effect of the drugs on impaired microvessels, the number and morphology of microvessels were assessed in hippocampus area. To further evaluate the ultrastructure of microvessels in hippocampus, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were carried out. To assess the profiles of claudin-5 and occludin in hippocampus, we performed immunofluorescence. Finally, to assess the expression of claudin-5, JAM-1, occludin and ZO-1 in hippocampus, western blot was carried out. The results showed that YXQNW, SC, and YXQNW + SC improved cognitive impairment of aged LDLR (+/-) golden Syrian hamsters without lowering plasma TC and LDL-C. YXQNW, SC, and YXQNW + SC attenuated albumin leakage in MCA area and neuronal damage in hippocampus, concomitant with an increase in CBF, a decrease of perivascular edema and an up-regulated expression of claudin-5, occludin and ZO-1. In conclusion, YXQNW, SC, and YXQNW + SC are able to improve cognitive ability in aged LDLR (+/-) golden Syrian hamsters via mechanisms involving maintaining blood–brain barrier integrity. These findings provide evidence suggesting YXQNW or SC as a potential regime to counteract the cognitive impairment caused by familial hypercholesterolemia.
Brain vascular image enhancement based on gradient adjust with split Bregman
NASA Astrophysics Data System (ADS)
Liang, Xiao; Dong, Di; Hui, Hui; Zhang, Liwen; Fang, Mengjie; Tian, Jie
2016-04-01
Light Sheet Microscopy is a high-resolution fluorescence microscopic technique which enables to observe the mouse brain vascular network clearly with immunostaining. However, micro-vessels are stained with few fluorescence antibodies and their signals are much weaker than large vessels, which make micro-vessels unclear in LSM images. In this work, we developed a vascular image enhancement method to enhance micro-vessel details which should be useful for vessel statistics analysis. Since gradient describes the edge information of the vessel, the main idea of our method is to increase the gradient values of the enhanced image to improve the micro-vessels contrast. Our method contained two steps: 1) calculate the gradient image of LSM image, and then amplify high gradient values of the original image to enhance the vessel edge and suppress low gradient values to remove noises. Then we formulated a new L1-norm regularization optimization problem to find an image with the expected gradient while keeping the main structure information of the original image. 2) The split Bregman iteration method was used to deal with the L1-norm regularization problem and generate the final enhanced image. The main advantage of the split Bregman method is that it has both fast convergence and low memory cost. In order to verify the effectiveness of our method, we applied our method to a series of mouse brain vascular images acquired from a commercial LSM system in our lab. The experimental results showed that our method could greatly enhance micro-vessel edges which were unclear in the original images.
Ouyang, Nengtai; Williams, Jennie L.; Rigas, Basil
2008-01-01
The inhibitory effect of NO-donating aspirin (NO-ASA) on colon cancer has been demonstrated in vivo and in vitro but its mechanism is still obscure. We investigated the effect of NO-ASA on angiogenesis. Four groups of athymic mice (N = 12) bearing subcutaneous xenotransplants of HT-29 human colon cancer cells were injected intratumorally twice a week for 3 weeks with vehicle or m-NO-ASA or p-NO-ASA; the fourth group received no injections. The necrotic area of tumors, expressed as percentage of total area, was similar in the non-injected and vehicle-injected groups (51.8 ± 2.8 versus 52.2 ± 4.1, P > 0.05; mean ± SEM for these and subsequent values). Compared with the vehicle group, the necrotic area of tumors was higher in the m-NO-ASA-treated (61.0 ± 2.7, P < 0.02) and p-NO-ASA (65.8 ± 2.4, P < 0.001)-treated groups. NO-ASA decreased microvessel density: vehicle = 11.7 ± 0.8; m-NO-ASA = 7.8 ± 0.6 (P = 0.0003 versus vehicle) and p-NO-ASA 6.2 ± 0.7 (P = 0.0001 versus vehicle). The expression of vascular endothelial growth factor (VEGF) was significantly reduced in response to NO-ASA, with the p- isomer being more potent than the m-. NO-ASA altered the spatial distribution of VGEF expression, with 16.7% of the vehicle-treated xenografts displaying diminished VEGF in the inner region of the area between necrosis and the outer perimeter of the tumor, compared with those treated with m- (58.3%) or p-NO-ASA (75%, P < 0.01 for both versus control). Our findings indicate that NO-ASA suppresses the expression of VEGF, which leads to suppressed angiogenesis. The antiangiogenic activity of NO-ASA may be part of its antineoplastic effect. PMID:18544566
Franchi, Alessandro; Santucci, Marco; Masini, Emanuela; Sardi, Iacopo; Paglierani, Milena; Gallo, Oreste
2002-11-01
Numerous reports have documented a direct involvement of matrix metalloproteinase (MMP) overexpression in the development and progression of head and neck squamous cell carcinoma (HNSCC). In this study, the authors examined whether the expression of MMPs in HNSCC is correlated with other steps involved in tumor growth and metastasis, like angiogenesis, activation the nitric oxide (NO) pathway, and alteration of the p53 tumor suppressor gene. MMP-1, MMP-2, and MMP-9 expression levels were examined immunohistochemically in samples from 43 patients with HNSCC. Microvessel density (MVD) was determined by immunostaining of endothelial cells with anti-CD31 monoclonal antibody. Inducible nitric oxide synthase (iNOS) activity and cyclic guanosine monophosphatate (cGMP) levels were assessed in fresh tumor samples, whereas exons 5-9 of the p53 gene were analyzed by reverse transcriptase-polymerase chain reaction, single-strand conformation polymorphism analysis and were sequenced. MMP-1 overexpression (>10% of tumor cells) was identified in 32 tumors (74.5%), whereas elevated levels of MMP-2 and MMP-9 were detected in 17 tumors (39.5%) each. Tumors with MMP-9 overexpression were characterized by significantly higher MVD (P = 0.05) and significantly higher iNOS activity and cGMP levels (P = 0.005 and P = 0.02, respectively). Moreover, p53 mutation was associated strongly with MMP-9 overexpression (P = 0.004). Conversely, no correlation was found between MMP-1 and MMP-2 expression, angiogenesis, iNOS activity, cGMP levels, and p53 mutation in this series. This study documents the existence of a correlation between MMP-9 expression, activity of the iNOS pathway, p53 status, and angiogenesis in patients with HNSCC. This raises the possibility that p53 mutation, which frequently is present in HNSCC, may result in increased angiogenesis and invasiveness related to increased nitric oxide and MMP production by tumor cells, ultimately contributing to tumor progression. Copyright 2002 American Cancer Society.
Chade, Alejandro R; Kelsen, Silvia
2012-05-15
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to treat chronic RVD.
Kelsen, Silvia
2012-01-01
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to treat chronic RVD. PMID:22357917
The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.
Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui
2010-10-01
Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.
Consolino, Lorena; Longo, Dario Livio; Sciortino, Marianna; Dastrù, Walter; Cabodi, Sara; Giovenzana, Giovanni Battista; Aime, Silvio
2017-07-01
Most metastatic gastrointestinal stromal tumors (GISTs) develop resistance to the first-line imatinib treatment. Recently, increased vessel density and angiogenic markers were reported in GISTs with a poor prognosis, suggesting that angiogenesis is implicated in GIST tumor progression and resistance. The purpose of this study was to investigate the relationship between tumor vasculature and imatinib resistance in different GIST mouse models using a noninvasive magnetic resonance imaging (MRI) functional approach. Immunodeficient mice (n = 8 for each cell line) were grafted with imatinib-sensitive (GIST882 and GIST-T1) and imatinib-resistant (GIST430) human cell lines. Dynamic contrast-enhanced MRI (DCE-MRI) was performed on GIST xenografts to quantify tumor vessel permeability (K trans ) and vascular volume fraction (v p ). Microvessel density (MVD), permeability (mean dextran density, MDD), and angiogenic markers were evaluated by immunofluorescence and western blot assays. Dynamic contrast-enhanced magnetic resonance imaging showed significantly increased vessel density (P < 0.0001) and permeability (P = 0.0002) in imatinib-resistant tumors compared to imatinib-sensitive ones. Strong positive correlations were observed between MRI estimates, K trans and v p , and their related ex vivo values, MVD (r = 0.78 for K trans and r = 0.82 for v p ) and MDD (r = 0.77 for K trans and r = 0.94 for v p ). In addition, higher expression of vascular endothelial growth factor receptors (VEGFR2 and VEFGR3) was seen in GIST430. Dynamic contrast-enhanced magnetic resonance imaging highlighted marked differences in tumor vasculature and microenvironment properties between imatinib-resistant and imatinib-sensitive GISTs, as also confirmed by ex vivo assays. These results provide new insights into the role that DCE-MRI could play in GIST characterization and response to GIST treatment. Validation studies are needed to confirm these findings.
Prasad, Sahdeo; Yadav, Vivek R.; Sung, Bokyung; Gupta, Subash C.; Tyagi, Amit K.; Aggarwal, Bharat B.
2016-01-01
The development of chemoresistance in human pancreatic cancer is one reason for the poor survival rate for patients with this cancer. Because multiple gene products are linked with chemoresistance, we investigated the ability of ursolic acid (UA) to sensitize pancreatic cancer cells to gemcitabine, a standard drug used for the treatment of pancreatic cancer. These investigations were done in AsPC-1, MIA PaCa-2, and Panc-28 cells and in nude mice orthotopically implanted with Panc-28 cells. In vitro, UA inhibited proliferation, induced apoptosis, suppressed NF-κB activation and its regulated proliferative, metastatic, and angiogenic proteins. UA (20 μM) also enhanced gemcitabine (200 nM)-induced apoptosis and suppressed the expression of NF-κB-regulated proteins. In the nude mouse model, oral administration of UA (250 mg/kg) suppressed tumor growth and enhanced the effect of gemcitabine (25 mg/kg). Furthermore, the combination of UA and gemcitabine suppressed the metastasis of cancer cells to distant organs such as liver and spleen. Immunohistochemical analysis showed that biomarkers of proliferation (Ki-67) and microvessel density (CD31) were suppressed by the combination of UA and gemcitabine. UA inhibited the activation of NF-κB and STAT3 and the expression of tumorigenic proteins regulated by these inflammatory transcription factors in tumor tissue. Furthermore, the combination of two agents decreased the expression of miR-29a, closely linked with tumorigenesis, in the tumor tissue. UA was found to be bioavailable in animal serum and tumor tissue. These results suggest that UA can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing inflammatory biomarkers linked to proliferation, invasion, angiogenesis, and metastasis. PMID:26909608
The impact of KRAS mutations on VEGF-A production and tumour vascular network
2013-01-01
Background The malignant potential of tumour cells may be influenced by the molecular nature of KRAS mutations being codon 13 mutations less aggressive than codon 12 ones. Their metabolic profile is also different, with an increased anaerobic glycolytic metabolism in cells harbouring codon 12 KRAS mutations compared with cells containing codon 13 mutations. We hypothesized that this distinct metabolic behaviour could be associated with different HIF-1α expression and a distinct angiogenic profile. Methods Codon13 KRAS mutation (ASP13) or codon12 KRAS mutation (CYS12) NIH3T3 transfectants were analyzed in vitro and in vivo. Expression of HIF-1α, and VEGF-A was studied at RNA and protein levels. Regulation of VEGF-A promoter activity was assessed by means of luciferase assays using different plasmid constructs. Vascular network was assessed in tumors growing after subcutaneous inoculation. Non parametric statistics were used for analysis of results. Results Our results show that in normoxic conditions ASP13 transfectants exhibited less HIF-1α protein levels and activity than CYS12. In contrast, codon 13 transfectants exhibited higher VEGF-A mRNA and protein levels and enhanced VEGF-A promoter activity. These differences were due to a differential activation of Sp1/AP2 transcription elements of the VEGF-A promoter associated with increased ERKs signalling in ASP13 transfectants. Subcutaneous CYS12 tumours expressed less VEGF-A and showed a higher microvessel density (MVD) than ASP13 tumours. In contrast, prominent vessels were only observed in the latter. Conclusion Subtle changes in the molecular nature of KRAS oncogene activating mutations occurring in tumour cells have a major impact on the vascular strategy devised providing with new insights on the role of KRAS mutations on angiogenesis. PMID:23506169
Combination therapy with telmisartan and parecoxib induces regression of endometriotic lesions.
Nenicu, Anca; Gu, Yuan; Körbel, Christina; Menger, Michael D; Laschke, Matthias W
2017-08-01
Telmisartan suppresses the development of endometriotic lesions. However, the drug also up-regulates the expression of COX-2, which has been suggested to promote the progression of endometriosis. Accordingly, in the present study we analysed whether a combination therapy with telmisartan and a COX-2 inhibitor may be more effective in the treatment of endometriotic lesions than the application of telmisartan alone. Endometriotic lesions were induced in the peritoneal cavity of C57BL/6 mice, which were treated daily with an i.p. injection of telmisartan (10 mg·kg -1 ), parecoxib (5 mg·kg -1 ), a combination of telmisartan and parecoxib or vehicle. Therapeutic effects on lesion survival, growth, vascularization, innervation and protein expression were studied over 4 weeks by high-resolution ultrasound imaging as well as immunohistochemical and Western blot analyses. Telmisartan-treated lesions exhibited a significantly reduced lesion volume when compared with vehicle-treated controls and parecoxib-treated lesions. This inhibitory effect of telmisartan was even more pronounced when it was used in combination with parecoxib. The combination therapy resulted in a reduced microvessel density as well as lower numbers of proliferating Ki67-positive cells and higher numbers of apoptotic cleaved caspase-3-positive stromal cells within the lesions. This was associated with a lower expression of COX-2, MMP-9 and p-Akt/Akt when compared with controls. The application of the two drugs further inhibited the ingrowth of nerve fibres into the lesions. Combination therapy with telmisartan and a COX-2 inhibitor represents a novel, effective pharmacological strategy for the treatment of endometriosis. © 2017 The British Pharmacological Society.
Stone, Rebecca L; Baggerly, Keith A; Armaiz-Pena, Guillermo N; Kang, Yu; Sanguino, Angela M; Thanapprapasr, Duangmani; Dalton, Heather J; Bottsford-Miller, Justin; Zand, Behrouz; Akbani, Rehan; Diao, Lixia; Nick, Alpa M; DeGeest, Koen; Lopez-Berestein, Gabriel; Coleman, Robert L; Lutgendorf, Susan; Sood, Anil K
2014-01-01
This investigation describes the clinical significance of phosphorylated focal adhesion kinase (FAK) at the major activating tyrosine site (Y397) in epithelial ovarian cancer (EOC) cells and tumor-associated endothelial cells. FAK gene amplification as a mechanism for FAK overexpression and the effects of FAK tyrosine kinase inhibitor VS-6062 on tumor growth, metastasis, and angiogenesis were examined. FAK and phospho-FAKY397 were quantified in tumor (FAK-T; pFAK-T) and tumor-associated endothelial (FAK-endo; pFAK-endo) cell compartments of EOCs using immunostaining and qRT-PCR. Associations between expression levels and clinical variables were evaluated. Data from The Cancer Genome Atlas were used to correlate FAK gene copy number and expression levels in EOC specimens. The in vitro and in vivo effects of VS-6062 were assayed in preclinical models. FAK-T and pFAK-T overexpression was significantly associated with advanced stage disease and increased microvessel density (MVD). High MVD was observed in tumors with elevated endothelial cell FAK (59%) and pFAK (44%). Survival was adversely affected by FAK-T overexpression (3.03 vs 2.06 y, P = 0.004), pFAK-T (2.83 vs 1.78 y, P < 0.001), and pFAK-endo (2.33 vs 2.17 y, P = 0.005). FAK gene copy number was increased in 34% of tumors and correlated with expression levels (P < 0.001). VS-6062 significantly blocked EOC and endothelial cell migration as well as endothelial cell tube formation in vitro. VS-6062 reduced mean tumor weight by 56% (P = 0.005), tumor MVD by 40% (P = 0.0001), and extraovarian metastasis (P < 0.01) in orthotopic EOC mouse models. FAK may be a unique therapeutic target in EOC given the dual anti-angiogenic and anti-metastatic potential of FAK inhibitors. PMID:24755674
NASA Astrophysics Data System (ADS)
Fedosov, I. V.; Tuchin, Valerii V.; Galanzha, E. I.; Solov'eva, A. V.; Stepanova, T. V.
2002-11-01
The direction-sensitive method of microflow velocity measurements based on the space — time correlation properties of the dynamic speckle field is described and used for in vivo monitoring of lymph flow in the vessels of rat mesentery. The results of measurements are compared with the data obtained from functional video microscopy of the microvessel region.
Nagathihalli, Nagaraj S; Castellanos, Jason A; Shi, Chanjuan; Beesetty, Yugandhar; Reyzer, Michelle L; Caprioli, Richard; Chen, Xi; Walsh, Alex J; Skala, Melissa C; Moses, Harold L; Merchant, Nipun B
2015-12-01
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense desmoplastic reaction (stroma) that impedes drug delivery to the tumor. Attempts to deplete the tumor stroma have resulted in formation of more aggressive tumors. We have identified signal transducer and activator of transcription (STAT) 3 as a biomarker of resistance to cytotoxic and molecularly targeted therapy in PDAC. The purpose of this study is to investigate the effects of targeting STAT3 on the PDAC stroma and on therapeutic resistance. Activated STAT3 protein expression was determined in human pancreatic tissues and tumor cell lines. In vivo effects of AZD1480, a JAK/STAT3 inhibitor, gemcitabine or the combination were determined in Ptf1a(cre/+);LSL-Kras(G12D/+);Tgfbr2(flox/flox) (PKT) mice and in orthotopic tumor xenografts. Drug delivery was analyzed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Collagen second harmonic generation imaging quantified tumor collagen alignment and density. STAT3 activation correlates with decreased survival and advanced tumor stage in patients with PDAC. STAT3 inhibition combined with gemcitabine significantly inhibits tumor growth in both an orthotopic and the PKT mouse model of PDAC. This combined therapy attenuates in vivo expression of SPARC, increases microvessel density, and enhances drug delivery to the tumor without depletion of stromal collagen or hyaluronan. Instead, the PDAC tumors demonstrate vascular normalization, remodeling of the tumor stroma, and down-regulation of cytidine deaminase. Targeted inhibition of STAT3 combined with gemcitabine enhances in vivo drug delivery and therapeutic response in PDAC. These effects occur through tumor stromal remodeling and down-regulation of cytidine deaminase without depletion of tumor stromal content. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Liao, Zhiming; Boileau, Thomas W-M; Erdman, John W; Clinton, Steven K
2002-10-01
Proliferation, apoptosis and angiogenesis are critical biologic processes altered during carcinogenesis. Surrogate biomarkers of these processes represent potential intermediate endpoints for short-term intervention studies with preventive and therapeutic agents. We examined the interrelationships among these processes during prostate carcinogenesis induced by N-methyl-N-nitrosourea (MNU) in male Wistar-Unilever rats. Immunohistochemical and digital image analysis techniques were used to evaluate the proliferation index, the apoptotic index and microvessel density (MVD) in tissue representing stages of prostate carcinogenesis. The proliferation index in the normal glandular epithelium of the prostate is lower than that observed in hyperplastic foci and atypical hyperplasia (P < 0.01) and is further increased in carcinoma (P < 0.01). Apoptosis in the normal prostate epithelium or hyperplastic lesions is lower than in adenocarcinoma (P < 0.01). In parallel to proliferation index, MVD increases as prostate cancer progresses. As tumors enlarge, we observed a predictable change in biomarker expression within the tumor microenvironment. We examined prostate tumors vertical line 1 cm in diameter and biomarker expression was quantified within the peripheral (outer 1-2 mm), central (perinecrotic) and intermediate (remaining) areas of each tumor. The proliferation index is higher (P < 0.01) in the intermediate area than either in the peripheral area or central area. Similarly, the vascular density in the intermediate area is higher (P < 0.01) than either in the peripheral or central area. The apoptotic index is higher (P < 0.05) in the central perinecrotic core than that in either the intermediate or the peripheral area. In conclusion, we observe that angiogenesis, proliferation and apoptosis are linked biological processes predictably altered temporally and spatially during prostate carcinogenesis in the MNU model. These biomarker changes are similar to those reported in human prostate carcinogenesis and represent potential biomarkers for the assessment of dietary, chemopreventive and therapeutic agents.
Tarantini, Stefano; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa; Toth, Peter; Gautam, Tripti; Giles, Cory B; Ballabh, Praveen; Wei, Jeanne Y; Wren, Jonathan D; Ashpole, Nicole M; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna
2016-08-01
Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.
Progranulin expression in breast cancer with different intrinsic subtypes.
Li, Li Qin; Min, Li Shan; Jiang, Qun; Ping, Jin Liang; Li, Jing; Dai, Li Cheng
2012-04-15
Progranulin is a newly discovered 88-kDa glycoprotein originally purified from the highly tumorigenic mouse teratoma-derived cell line PC. We found that high progranulin expression was associated with higher breast carcinoma angiogenesis, reflected by increased vascular endothelial growth factor expression and higher microvessel density. However, no immunohistochemical evidence currently exists to correlate progranulin expression with clinicopathological features in different intrinsic subtypes of breast carcinoma biopsies. The aim of this study was to investigate the progranulin expression profiles in the intrinsic subtypes of breast carcinomas and their relevance to histopathological and clinicopathological features. Tissue blocks containing 264 cases of breast carcinomas from 2006 to 2009 were classified as different intrinsic subtypes. Tissues of four intrinsic subtypes were immunostained for progranulin, vascular endothelial growth factor and CD105. Their relevance to histopathological and clinicopathological features was also analyzed. Twenty tissue samples from breast fibroadenomas were included in this study. Progranulin expression showed no significant differences in different intrinsic subtypes, although an increasing tendency could be found in the triple-negative breast cancer (TNBC) subgroup (χ(2)=5.00, df=3, p=0.17). However, differences were significant when pathologically node metastasis-positive (pN(+)) TNBC were excluded (χ(2)=17.84, df=3, p<0.01). Some clinicopathological parameters, including CK5/6 (χ(2)=0.08, df=3, p=0.78), E-cadherin (χ(2)=0.71, df=3, p=0.40) and P53 (χ(2)=0.05, df=3, p=0.83), displayed no correlation with activity of progranulin in pathologically node metastasis-negative (pN(-)) TNBC. It was noted that the EGFR expression level of the pN(-) TNBC subtype was significantly higher in cases with strong progranulin expression than in cases with weak progranulin expression (χ(2)=11.26, df=1, p<0.01). A significantly higher expression level of progranulin in pN(-) TNBC suggests that progranulin is a promising new target for pN(-) TNBC treatment. Strong expression of progranulin correlates with positive EGFR expression in the pN(-) TNBC subtype. The close relationship between EGFR and progranulin/VEGF/CD105 expression may partly play a role in high angiogenesis levels in the pN(-) TNBC subtype. Copyright © 2012 Elsevier GmbH. All rights reserved.
Marumo, Toshiyuki; Eto, Kei; Wake, Hiroaki; Omura, Tomohiro; Nabekura, Junichi
2010-11-01
20-Hydroxyeicosatetraenoic acid is a potent vasoconstrictor that contributes to cerebral ischaemia. An inhibitor of 20-Hydroxyeicosatetraenoic acid synthesis, TS-011, reduces infarct volume and improves neurological deficits in animal stroke models. However, little is known about how TS-011 affects the microvessels in ischaemic brain. Here, we investigated the effect of TS-011 on microvessels after cerebral ischaemia. TS-011 (0.3 mg·kg(-1) ) or a vehicle was infused intravenously for 1 h every 6 h in a mouse model of stroke, induced by transient occlusion of the middle cerebral artery occlusion following photothrombosis. The cerebral blood flow velocity and the vascular perfusion area of the peri-infarct microvessels were measured using in vivo two-photon imaging. The cerebral blood flow velocities in the peri-infarct microvessels decreased at 1 and 7 h after reperfusion, followed by an increase at 24 h after reperfusion in the vehicle-treated mice. We found that TS-011 significantly inhibited both the decrease and the increase in the blood flow velocities in the peri-infarct microvessels seen in the vehicle-treated mice after reperfusion. In addition, TS-011 significantly inhibited the reduction in the microvascular perfusion area after reperfusion, compared with the vehicle-treated group. Moreover, TS-011 significantly reduced the infarct volume by 40% at 72 h after middle cerebral artery occlusion. These findings demonstrated that infusion of TS-011 improved defects in the autoregulation of peri-infarct microcirculation and reduced the infarct volume. Our results could be relevant to the treatment of cerebral ischaemia. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.
Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan
2014-09-01
The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.
In vivo endoscopic Doppler optical coherence tomography imaging of mouse colon
NASA Astrophysics Data System (ADS)
Welge, Weston A.; Barton, Jennifer K.
2016-03-01
Colorectal cancer remains the second deadliest cancer in the United States, despite the high sensitivity and specificity of colonoscopy and sigmoidoscopy. While these standard imaging procedures can accurately detect medium and large polyps, some studies have shown miss rates up to 25% for polyps less than 5 mm in diameter. An imaging modality capable of detecting small lesions could potentially improve patient outcomes. Optical coherence tomography (OCT) has been shown to be a powerful imaging modality for adenoma detection in a mouse model of colorectal cancer. While previous work has focused on analyzing the structural OCT images based on thickening of the mucosa and changes in light attenuation in depth, imaging the microvasculature of the colon may enable earlier detection of polyps. The structure and function of vessels grown to support tumor growth are markedly different from healthy vessels. Doppler OCT is capable of imaging microvessels in vivo. We developed a method of processing raw fringe data from a commercial swept-source OCT system using a lab-built miniature endoscope to extract microvessels. This method can be used to measure vessel count and density and to measure flow velocities. This may improve early detection and aid in the development of new chemopreventive and chemotherapeutic drugs. We present, to the best of our knowledge, the first endoscopic Doppler OCT images of in vivo mouse colon.
Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I; Merkulova-Rainon, Tatyana; Kubis, Nathalie
2018-01-01
Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18-24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF- β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions . This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.
Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice
Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I.; Merkulova-Rainon, Tatyana
2018-01-01
Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18–24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF-β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions. This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase. PMID:29736174
Dabigatran abrogates brain endothelial cell permeability in response to thrombin
Hawkins, Brian Thomas; Gu, Yu-Huan; Izawa, Yoshikane; del Zoppo, Gregory John
2015-01-01
Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge. PMID:25669912
Ingangi, Vincenzo; Bifulco, Katia; Yousif, Ali Munaim; Ragone, Concetta; Motti, Maria Letizia; Rea, Domenica; Minopoli, Michele; Botti, Giovanni; Scognamiglio, Giuseppe; Fazioli, Flavio; Gallo, Michele; De Chiara, Annarosaria; Arra, Claudio; Grieco, Paolo; Carriero, Maria Vincenza
2016-08-23
The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88-92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88-92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream.
Ingangi, Vincenzo; Bifulco, Katia; Yousif, Ali Munaim; Ragone, Concetta; Motti, Maria Letizia; Rea, Domenica; Minopoli, Michele; Botti, Giovanni; Scognamiglio, Giuseppe; Fazioli, Flavio; Gallo, Michele; De Chiara, Annarosaria; Arra, Claudio; Grieco, Paolo; Carriero, Maria Vincenza
2016-01-01
The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration and uPAR88–92 is the minimal sequence required to induce cell motility and angiogenesis by interacting with the formyl peptide receptor type 1 (FPR1). In this study, we present evidence that the cyclization of the uPAR88–92 sequence generates a new potent inhibitor of migration, and extracellular matrix invasion of human osteosarcoma and chondrosarcoma cells expressing comparable levels of FPR1 on cell surface. In vitro, the cyclized peptide [SRSRY] prevents formation of capillary-like tubes by endothelial cells co-cultured with chondrosarcoma cells and trans-endothelial migration of osteosarcoma and chondrosarcoma cells. When chondrosarcoma cells were subcutaneously injected in nude mice, tumor size, intra-tumoral microvessel density and circulating tumor cells in blood samples collected before the sacrifice, were significantly reduced in animals treated daily with i.p-administration of 6 mg/Kg [SRSRY] as compared to animals treated with vehicle only. Our findings indicate that [SRSRY] prevents three key events occurring during the metastatic process of osteosarcoma and chondrosarcoma cells: the extracellular matrix invasion, the formation of a capillary network and the entry into bloodstream. PMID:27323409
Scholz, Beate; Korn, Claudia; Wojtarowicz, Jessica; Mogler, Carolin; Augustin, Iris; Boutros, Michael; Niehrs, Christof; Augustin, Hellmut G
2016-01-11
The WNT signaling enhancer R-spondin3 (RSPO3) is prominently expressed in the vasculature. Correspondingly, embryonic lethality of Rspo3-deficient mice is caused by vessel remodeling defects. Yet the mechanisms underlying vascular RSPO3 function remain elusive. Inducible endothelial Rspo3 deletion (Rspo3-iECKO) resulted in perturbed developmental and tumor vascular remodeling. Endothelial cell apoptosis and vascular pruning led to reduced microvessel density in Rspo3-iECKO mice. Rspo3-iECKO mice strikingly phenocopied the non-canonical WNT signaling-induced vascular defects of mice deleted for the WNT secretion factor Evi/Wls. An endothelial screen for RSPO3 and EVI/WLS co-regulated genes identified Rnf213, Usp18, and Trim30α. RNF213 targets filamin A and NFAT1 for proteasomal degradation attenuating non-canonical WNT/Ca(2+) signaling. Likewise, USP18 and TRIM5α inhibited NFAT1 activation. Consequently, NFAT protein levels were decreased in endothelial cells of Rspo3-iECKO mice and pharmacological NFAT inhibition phenocopied Rspo3-iECKO mice. The data identify endothelial RSPO3-driven non-canonical WNT/Ca(2+)/NFAT signaling as a critical maintenance pathway of the remodeling vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.
Sekiya, Sachiko; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2011-03-01
In the field of tissue engineering, the induction of microvessels into tissues is an important task because of the need to overcome diffusion limitations of oxygen and nutrients within tissues. Powerful methods to create vessels in engineered tissues are needed for creating real living tissues. In this study, we utilized three-dimensional (3D) highly cell dense tissues fabricated by cell sheet technology. The 3D tissue constructs are close to living-cell dense tissue in vivo. Additionally, creating an endothelial cell (EC) network within tissues promoted neovascularization promptly within the tissue after transplantation in vivo. Compared to the conditions in vivo, however, common in vitro cell culture conditions provide a poor environment for creating lumens within 3D tissue constructs. Therefore, for determining adequate conditions for vascularizing engineered tissue in vitro, our 3D tissue constructs were cultured under a "deep-media culture conditions." Compared to the control conditions, the morphology of ECs showed a visibly strained cytoskeleton, and the density of lumen formation within tissues increased under hydrostatic pressure conditions. Moreover, the increasing expression of vascular endothelial cadherin in the lumens suggested that the vessels were stabilized in the stimulated tissues compared with the control. These findings suggested that deep-media culture conditions improved lumen formation in engineered tissues in vitro.
Prognostic significance of β2-adrenergic receptor expression in malignant melanoma.
Shimizu, Akira; Kaira, Kyoichi; Mori, Keita; Kato, Madoka; Shimizu, Kimihiro; Yasuda, Masahito; Takahashi, Ayumi; Oyama, Tetsunari; Asao, Takayuki; Ishikawa, Osamu
2016-05-01
Recent studies cite β2-adrenergic receptor (β2AR) antagonists as novel therapeutic agents for melanoma, as they may reduce the disease progression. The β2AR has shown to be expressed in malignant melanoma. However, it remains unclear whether the β2AR expression has a clinical and pathological significance in patients with cutaneous malignant melanoma. We herein conducted a clinicopathological study to investigate the protein expression of β2AR in malignant melanoma of the skin and its prognostic significance. One hundred thirty-three patients with surgically resected cutaneous malignant melanoma were evaluated. Tumor sections were stained by immunohistochemistry for β2AR, Ki-67, the microvessel density (MVD) determined by CD34, and p53. β2AR was highly expressed in 44.4 % (59 out of 133) of the patients. The expression of β2AR was significantly associated with the tumor thickness, ulceration, T factor, N factor, disease stage, tumor size, cell proliferation (Ki-67), and MVD (CD34). Using Spearman's rank test, the β2AR expression was correlated with Ki-67 (r = 0.278; 95 % CI, 0.108 to 0.432; P = 0.001), CD34 (r = 0.445; 95 %CI, 0.293 to 0.575; P < 0.001), and the tumor size (r = 0.226; 95 % CI, 0.053 to 0.386; P = 0.008). Using a univariate analysis, the tumor thickness, ulceration, disease stage, β2AR, Ki-67, and CD34 had a significant relationship with the overall and progression-free survivals. A multivariable analysis confirmed that β2AR was an independent prognostic factor for predicting a poor overall survival (HR 1.730; 95 % CI 1.221-2.515) and progression-free survival (HR 1.576; 95 % CI 1.176-2.143) of malignant melanoma of the skin. β2AR can serve as a promising prognostic factor for predicting a worse outcome after surgical treatment and may play an important role in the development and aggressiveness of malignant melanoma.
XIAO, YITAO; TENG, YINCHENG; ZHANG, RUI; LUO, LAIMIN
2012-01-01
The aim of this study was to investigate the antitumor effect of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib on endometrial adenocarcinoma in mice. Various amounts of celecoxib were added to HEC-1B cells in vitro for different durations. Cell cycle and apoptosis were analyzed using flow cytometry. HEC-1B cytostasis, invasiveness and COX-2 expression were examined by MTT, transwell cabin and western blot assays, respectively. An in vivo human endometrial adenocarcinoma model was established in BALB/c nude mice using HEC-1B cells. For two weeks, the celecoxib groups were treated with celecoxib 2 or 4 mg/day via oral administration and the control group was treated with saline. Tumor volume, growth curves and the inhibition rate (IR) were recorded. COX-2 expression levels and microvessel density (MVD) were investigated using an immunohistochemical technique. In the celecoxib groups, cell proliferation was significantly inhibited in a concentration- and time-dependent manner. The proportion of cells in the G0/G1 phase increased within 24 h after the addition of celecoxib whereas those in the S and G2/M phases decreased with an increasing apoptosis peak (sub-G1) and apoptosis rate. The microporous Matrigel-coated polycarbonate membrane of the Transwell cabin was traversable for the HEC-1B cells. The invasiveness was attenuated when the celecoxib concentration was increased. The tumor growth was also greatly inhibited when the celecoxib concentration was increased. The tumor IRs were 32.4 and 48.6% following treatment with 2 and 4 mg/day celecoxib, respectively. COX-2 was mainly expressed in the cytoplasm of the tumor cells. In the celecoxib groups, the COX-2 expression levels were concentration-dependent. The COX-2 expression level and MVD decreased when the celecoxib concentration was increased. The results of dependability analysis revealed that the COX-2 expression level was positively correlated with MVD (r=0.921; P<0.01). The antitumor effect of celecoxib on endometrial adenocarcinoma in nude mice may be related to the inhibition of COX-2 expression and microangiogenesis. PMID:23226798
Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization
Wang, Dong; Wang, Aijun; Wu, Fan; Qiu, Xuefeng; Li, Ye; Chu, Julia; Huang, Wen-Chin; Xu, Kang; Gong, Xiaohua; Li, Song
2017-01-01
Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10+ adult stem cells contribute to both encapsulation and microvessel formation. Sox10+ adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10+ stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10+ stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10+ stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10+ stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10+ stem cells. Transplanted Sox10+ stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination. PMID:28071739
NASA Astrophysics Data System (ADS)
Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.
2017-01-01
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.
Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.
2017-01-01
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system. PMID:28106129
Potential Protective Mechanism in the Cardiac Microvascular Injury.
Li, Xiuchuan; Hou, Juanni; Du, Jin; Feng, Jian; Yang, Yi; Shen, Yang; Chen, Sha; Feng, Juan; Yang, Dachun; Li, De; Pei, Haifeng; Yang, Yongjian
2018-05-07
Cardiac microvascular injury often occurs in patients with type 2 diabetes mellitus (T2DM) who develop hyperglycemia and hyperlipidemia. However, besides reported contradictory roles in cardiac diseases, the function of TRPV1 (transient receptor potential vanilloid 1) in cardiac microvessels is not well defined. This study was performed to determine the detailed role of TRPV1 in cardiac microvascular endothelial cells (CMECs) in T2DM. T2DM mice were established by multiple injections of low-dose streptozotocin and high-fat feeding. CMECs were cultured separately in mediums of normal glucose, high glucose (HG), high fatty acid (HF), and HG plus HF (HG-HF). HG-HF inhibited TRPV1 expression in CMECs, reducing cellular Ca 2+ content ([Ca 2+ ] i ). T2DM impaired cardiac function, disturbed glucose uptake, and damaged microvascular barrier, which were further aggravated by TRPV1 -/- Exposure to HG-HF, particularly in TRPV1 -/- CMECs, led to a higher level of apoptosis and a lower level of nitric oxide production in viable CMECs. HG-HF markedly enhanced generation of reactive oxygen species and nitrotyrosine, especially in the absence of TRPV1. H 2 O 2 administration reduced TRPV1 expression in CMECs. HG-HF significantly depressed expression of PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α) and OPA1 (optic atrophy 1) by reducing [Ca 2+ ] i , whereas OPA1 supplementation partly reversed those detrimental effects induced by TRPV1 -/- Furthermore, capsaicin treatment not only attenuated CMECs injury induced by HG-HF but also mitigated cardiac microvascular injury induced by T2DM. Collectively, T2DM leads to cardiac microvascular injury by exacerbating the vicious circle of TRPV1 blockage and reactive oxygen species overload. Long-term capsaicin can protect cardiac microvessels against T2DM via suppressing oxidative/nitrative stress mediated by TRPV1/Ca 2+ /PGC-1α/OPA1 pathway in CMECs. © 2018 American Heart Association, Inc.
Naito, Masahito; Aokage, Keiju; Saruwatari, Kouichi; Hisakane, Kakeru; Miyoshi, Tomohiro; Hishida, Tomoyuki; Yoshida, Junji; Masato, Sugano; Kojima, Motohiro; Kuwata, Takeshi; Fujii, Satoshi; Ochiai, Atsushi; Sato, Yukitoshi; Tsuboi, Masahiro; Ishii, Genichiro
2016-10-01
Invasive lepidic predominant adenocarcinoma (LPA) of the lung is thought to progress in a stepwise fashion from adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA). The aim of this study was to investigate the microenvironmental changes during the development from AIS to LPA. Clinicopathological characteristics of AIS (n=51), MIA (n=59), LPA smaller than 3cm (LPA-S, n=113), and LPA larger than 3cm (LPA-L, n=47) were analyzed. We then evaluated the expression levels of epithelial-mesenchymal transition (EMT)-related molecules (E-cadherin, S100A4), invasion-related molecules (laminin-5, ezrin), stem-cell-related molecules (ALDH-1), and growth factor receptors (c-Met, EGFR) in cancer cells of each group (n=20). The number of tumor-promoting stromal cells, including podoplanin-positive cancer-associated fibroblasts (PDPN+ CAFs), CD204-positive tumor-associated macrophages (CD204+ TAMs), and CD34+ microvessel cells, were also analyzed. No significant difference in these characteristics was found between LPA-S and LPA-L. Laminin-5 expression in the non-invasive carcinoma component of MIA was significantly higher than that of AIS (p<0.001). During the progression from MIA to LPA-S, the expression level of laminin-5 in the invasive carcinoma component was significantly elevated (p<0.01). Moreover, tumor-promoting stromal cells were more frequently recruited in the invasive area of LPA-S (PDPN+ CAFs; p<0.05, CD204+ TAMs; p<0.001, CD34+ microvessel; p<0.05). Ezrin expression in the invasive carcinoma component of LPA-L was significantly increased (p<0.05) compared to LPA-S; however, the number of tumor-promoting stromal cells were not different between these two groups. Our current results indicated that microenvironmental molecular changes occur during the progression from MIA to LPA-S and suggested that this process may play an important role in disease progression from AIS to LPA. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Protein markers of malignant potential in penile and vulvar lichen sclerosus.
Carlson, Bayard C; Hofer, Matthias D; Ballek, Nathaniel; Yang, Ximing J; Meeks, Joshua J; Gonzalez, Chris M
2013-08-01
Lichen sclerosus is an inflammatory skin disorder affecting anogenital areas in males and females that is associated with squamous cell carcinoma. However, there is a lack of data on the role of biomarkers for predicting lichen sclerosus progression to squamous cell carcinoma. We focused on early protein markers of squamous cell carcinoma and their expression in lichen sclerosus to improve the mechanistic and diagnostic understanding of lichen sclerosus. We performed an extensive PubMed® and MEDLINE® search for protein markers found in early stages of vulvar and penile squamous cell carcinoma, and their prevalence in associated lichen sclerosus lesions. In recent years several markers have been implicated as precursor markers for malignant transformation of lichen sclerosus into squamous cell carcinoma, including p53, Ki-67, γ-H2AX, MCM3 and cyclin D1. These proteins are up-regulated in lichen sclerosus of the vulva/penis and squamous cell carcinoma. Various levels of evidence show an association between lichen sclerosus and squamous cell carcinoma. p16 is over expressed in penile and vulvar squamous cell carcinoma associated with human papillomavirus infection but conflicting reports exist about its expression in lichen sclerosus. The angiogenesis markers vascular endothelial growth factor and cyclooxygenase-2 are expressed at higher levels, and microvessel density is increased in vulvar lichen sclerosus and squamous cell carcinoma, indicating a possible similar association in penile lichen sclerosus. Only a minority of lichen sclerosus cases are associated with squamous cell carcinoma. However, the therapeutic implications of a squamous cell carcinoma diagnosis are severe. Clinically, we lack an understanding of how to separate indolent lichen sclerosus cases from those in danger of progression to squamous cell carcinoma. Several protein markers show promise for further delineating the pathobiology of lichen sclerosus and the potential malignant transformation into squamous cell carcinoma. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Jiang, Xuan; Shan, Jinlu; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Yang, Yuxing; Zhang, Shiheng; Li, Chongyi; Sui, Jiangdong; Ren, Tao; Li, Mengxia; Wang, Dong
2015-10-01
Angiogenesis plays an important role in tumor growth and metastasis and has been reported to be inversely correlated with overall survival of osteosarcoma patients. It has been shown that apurinic/apyrimidinic endonuclease 1 (APE1), a dually functional protein possessing both base excision repair and redox activities, is involved in tumor angiogenesis, although these mechanisms are not fully understood. Our previous study showed that the expression of transforming growth factor β (TGFβ) was significantly reduced in APE1-deficient osteosarcoma cells. Transforming growth factor β promotes cancer metastasis through various mechanisms including immunosuppression, angiogenesis, and invasion. In the current study, we initially revealed that APE1, TGFβ, and microvessel density (MVD) have pairwise correlation in osteosarcoma tissue samples, whereas TGFβ, tumor size, and MVD were inversely related to the prognosis of the cohort. We found that knocking down APE1 in osteosarcoma cells resulted in TGFβ downregulation. In addition, APE1-siRNA led to suppression of angiogenesis in vitro based on HUVECs in Transwell and Matrigel tube formation assays. Reduced secretory protein level of TGFβ of culture medium also resulted in decreased phosphorylation of Smad3 of HUVECs. In a mouse xenograft model, siRNA-mediated silencing of APE1 downregulated TGFβ expression, tumor size, and MVD. Collectively, the current evidence indicates that APE1 regulates angiogenesis in osteosarcoma by controlling the TGFβ pathway, suggesting a novel target for anti-angiogenesis therapy in human osteosarcoma. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Stefanadis, Christodoulos; Toutouzas, Konstantinos; Stefanadi, Elli; Lazaris, Andreas; Patsouris, Efstratios; Kipshidze, Nicholas
2007-12-01
Neovascularization is associated with destabilization of atheromatic plaques. Increased expression of vascular endothelial growth factor (VEGF) is important in the process of neovascularization. We assessed the effect of bevacizumab, a monoclonal antibody specific for VEGF, on neovascularization. We used 12 New Zealand rabbits under atherogenic diet for 3 weeks. We immersed a phosphorycholine coated stent into a solution of 4 ml bevacizumab according to previous studies. Twelve eluting stents and 12 non-eluting stents were implanted in the middle segment of the rabbit's iliac arteries. Follow-up angiography was performed at 4 weeks and tissues were obtained for histological analysis. The procedure of stent loading with bevacizumab and stent implantation was successful. There was no difference in angiographic measurements before, after implantation and at follow-up between the two groups. mean neointimal thickness (0.09+/-0.02 versus 0.12+/-0.02 mm, p<0.01), and mean neointimal area (1.08+/-0.09 versus 1.20+/-0.12 mm(2), p<0.01) were less in the bevacizumab treated segments. bevacizumab-treated arterial segments demonstrated significantly decreased microvessel density compared with the control group (1.69+/-0.06 CI: 1.65-1.73 versus 15.68+/-0.56 CI: 15.32-16.04 vessels per mm(2), p<0.001) and vegf expression was decreased in the media and adventitia of bevacizumab group. Endothelialization, inflammation and injury scores were similar between the two groups. These results suggest that bevacizumab-eluting stent implantation in rabbit iliac arteries is safe, and inhibits neovascularization without affecting the endothelialization.
Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats.
Kant, Vinay; Kumar, Dinesh; Prasad, Raju; Gopal, Anu; Pathak, Nitya N; Kumar, Pawan; Tandan, Surender K
2017-05-15
Our earlier studies demonstrated that topically applied substance P (SP) or curcumin on excision skin wound accelerated the wound healing in streptozotocin-induced diabetic rats. In the present study, we aimed to evaluate the wound healing potential of combination of SP and curcumin in diabetic rats. Open cutaneous excision wound was created on the back of each of the 60 diabetic rats. Wound-inflicted rats were equally divided into three groups namely, control, gel treated, and SP + curcumin treated. Normal saline, pluronic gel, and SP (0.5 × 10 -6 M) + curcumin (0.15%) were topically applied once daily for 19 d to these control, gel-treated, and SP + curcumin groups, respectively. SP + curcumin combination significantly accelerated wound closure and decreased messenger RNA expressions of tumor necrosis factor-alpha, interleukin-1beta, and matrix metalloproteinase-9, whereas the combination markedly increased the expressions of interleukin-10, vascular endothelial growth factor, transforming growth factor-beta1, hypoxia-inducible factor 1-alpha, stromal cell-derived factors-1alpha, heme oxygenase-1 and endothelial nitric oxide synthase, and activities of superoxide dismutase, catalase, and glutathione peroxidase in granulation-healing tissue, compared with control and gel-treated groups. In combination group, granulation tissue was better, as was evidenced by improved fibroblast proliferation, collagen deposition, microvessel density, growth-associated protein 43-positive nerve fibers, and thick regenerated epithelial layer. The combination of SP and curcumin accelerated wound healing in diabetic rats and both the drugs were compatible at the doses used in this study. Copyright © 2017 Elsevier Inc. All rights reserved.
Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto
2014-03-20
Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4(+) lymphocytes, ICAM-1(+) and iNOS(+) microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and reduces mucosal inflammation in UC patients.
Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto
2014-01-01
Objectives: Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. Methods: To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Results: Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4+ lymphocytes, ICAM-1+ and iNOS+ microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Conclusions: Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and reduces mucosal inflammation in UC patients. PMID:24646507
Quan, Shuo; Yang, Liming; Abraham, Nader G.; Kappas, Attallah
2001-01-01
Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin. PMID:11593038
Quan, S; Yang, L; Abraham, N G; Kappas, A
2001-10-09
Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin.
Dong, Chaoling; Helton, E Scott; Zhou, Ping; Ouyang, Xuan; d'Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José; Ubogu, Eroboghene E
2018-06-18
There is emerging evidence that glial-derived neurotrophic factor (GDNF) is a potent inducer of restrictive barrier function in tight junction-forming microvascular endothelium and epithelium, including the human blood-nerve barrier (BNB) in vitro. We sought to determine the role of GDNF in restoring BNB function in vivo by evaluating sciatic nerve horseradish peroxidase (HRP) permeability in tamoxifen-inducible GDNF conditional knockout (CKO) adult mice following non-transecting crush injury via electron microscopy, with appropriate wildtype (WT) and heterozygous (HET) littermate controls. A total of 24 age-, genotype- and sex-matched mice >12 weeks of age were injected with 30 mg/kg HRP via tail vein injection 7 or 14 days following unilateral sciatic nerve crush, and both sciatic nerves were harvested 30 minutes later for morphometric assessment by light and electron microscopy. The number and percentage of HRP-permeable endoneurial microvessels were ascertained to determine the effect of GDNF in restoring barrier function in vivo. Following sciatic nerve crush, there was significant upregulation in GDNF protein expression in WT and HET mice that was abrogated in CKO mice. GDNF significantly restored sciatic nerve BNB HRP impermeability to near normal levels by day 7, with complete restoration seen by day 14 in WT and HET mice. A significant recovery lag was observed in CKO mice. This effect was independent on VE-Cadherin or claudin-5 expression on endoneurial microvessels. These results imply an important role of GDNF in restoring restrictive BNB function in vivo, suggesting a potential strategy to re-establish the restrictive endoneurial microenvironment following traumatic peripheral neuropathies.
NASA Astrophysics Data System (ADS)
Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.
2016-08-01
This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.
Wilhelmi, Verena; Seiler, Anja; Lampp, Katrin; Neff, Andreas; Guthe, Michael; Lobachev, Oleg
2016-01-01
The arrangement of microvessels in human bone marrow is so far unknown. We combined monoclonal antibodies against CD34 and against CD141 to visualise all microvessel endothelia in 21 serial sections of about 1 cm2 size derived from a human iliac crest. The specimen was not decalcified and embedded in Technovit® 9100. In different regions of interest, the microvasculature was reconstructed in three dimensions using automatic methods. The three-dimensional models were subject to a rigid semiautomatic and manual quality control. In iliac crest bone marrow, the adipose tissue harbours irregularly distributed haematopoietic areas. These are fed by networks of large sinuses, which are loosely connected to networks of small capillaries prevailing in areas of pure adipose tissue. Our findings are compatible with the hypothesis that capillaries and sinuses in human iliac crest bone marrow are partially arranged in parallel. PMID:27997569
Yehia, Lamis; Boulos, Fouad; Jabbour, Mark; Mahfoud, Ziyad; Fakhruddin, Najla; El-Sabban, Marwan
2015-01-01
Triple negative breast cancer lacks estrogen, progesterone and epidermal growth factor receptors rendering it refractory to available targetedtherapies. TNBC is associated with central fibrosis and necrosis, both indicators of tumor hypoxia. Hypoxia inducible factor 1α is up-regulated under hypoxia and its expression is associated with induction of angiogenesis resulting in proliferation, aggressive tumor phenotype and metastasis. In this study we evaluate the potential use of HIF-1α as aTNBC-specific marker. 62 TNBC, 64 HER2+, and 64 hormone-receptors positive breast cancer cases were evaluated for central fibrosis and necrosis, HIF-1α, HIF-1β, VEGFR3, CD31 expression and microvessel density. RNA extraction from paraffin-embedded samples, followed by quantitative real-time polymerase chain reaction (qRT-PCR) evaluation of HIF-1α and VEGF transcripts was performed on 54 cases (18 from each subtype). HIF-1α protein was expressed in 35.5% TNBC, 45.3% HER2+and 25.0% ER+/PR+ (p = 0.055; χ2 test). PCRanalysis of subgroup of breast cancers, 84.2% expressed HIF-1α protein and its transcripts, while only 66.7% expressed VEGF transcripts simultaneously with the HIF-1α protein and its transcripts. Central fibrosis and necrosis was highest in TNBC (p = 0.015; χ2 test), while MVD was comparable among all groups (p = 0.928; χ2 test). VEGFR3 was highest in TNBC expressing HIF-1α. HIF-1β protein was expressed in 32.0% of HIF-1α(+), and in (44.3%) of HIF-1α(-) breast cancer cases (p = 0.033; χ2 test). Moreover, HIF-1α expression in cases with central fibrosis and necrosis was highest in the HER2+ followed by the TNBC (p = 0.156; χ2 test). A proportion of TNBC express HIF-1α but not in a significantly different manner from other breast cancer subtypes. The potential of anti-HIF-1α targeted therapy is therefore not a candidate for exclusive use in TNBC, but should be considered in all breast cancers, especially in the setting of clinically aggressive or refractory disease.
Stadlbauer, Andreas; Zimmermann, Max; Kitzwögerer, Melitta; Oberndorfer, Stefan; Rössler, Karl; Dörfler, Arnd; Buchfelder, Michael; Heinz, Gertraud
2017-06-01
Purpose To explore the diagnostic performance of physiological magnetic resonance (MR) imaging of oxygen metabolism and neovascularization activity for grading and characterization of isocitrate dehydrogenase (IDH) gene mutation status of gliomas. Materials and Methods This retrospective study had institutional review board approval; written informed consent was obtained from all patients. Eighty-three patients with histopathologically proven glioma (World Health Organization [WHO] grade II-IV) were examined with quantitative blood oxygen level-dependent imaging and vascular architecture mapping. Biomarker maps of neovascularization activity (microvessel radius, microvessel density, and microvessel type indicator [MTI]) and oxygen metabolism (oxygen extraction fraction [OEF] and cerebral metabolic rate of oxygen [CMRO 2 ]) were calculated. Receiver operating characteristic analysis was used to determine diagnostic performance for grading and detection of IDH gene mutation status. Results Low-grade (WHO grade II) glioma showed areas with increased OEF (+18%, P < .001, n = 20), whereas anaplastic glioma (WHO grade III) and glioblastoma (WHO grade IV) showed decreased OEF when compared with normal brain tissue (-54% [P < .001, n = 21] and -49% [P < .001, n = 41], respectively). This allowed clear differentiation between low- and high-grade glioma (area under the receiver operating characteristic curve [AUC], 1) for the patient cohort. MTI had the highest diagnostic performance (AUC, 0.782) for differentiation between gliomas of grades III and IV among all biomarkers. CMRO 2 was decreased (P = .037) in low-grade glioma with a mutated IDH gene, and MTI was significantly increased in glioma grade III with IDH mutation (P = .013) when compared with the IDH wild-type counterparts. CMRO 2 showed the highest diagnostic performance for IDH gene mutation detection in low-grade glioma (AUC, 0.818) and MTI in high-grade glioma (AUC, 0.854) and for all WHO grades (AUC, 0.899) among all biomarkers. Conclusion MR imaging-derived oxygen metabolism and neovascularization characterization may be useful for grading and IDH mutation detection of gliomas and requires only 7 minutes of extra imaging time. © RSNA, 2016 Online supplemental material is available for this article.
Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts
Zhu, Yin; Cheng, Ming; Yang, Zhen; Zeng, Chun-Yan; Chen, Jiang; Xie, Yong; Luo, Shi-Wen; Zhang, Kun-He; Zhou, Shu-Feng; Lu, Nong-Hua
2014-01-01
Mesenchymal stem cells (MSCs) have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met) which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP). Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS), MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor tissues after systemic injection. The microvessel density of tumor xenografts was decreased, and tumor cellular apoptosis was significantly induced in the mice treated with MSCs-NK4 compared to control mice. These findings demonstrate that MSC-based NK4 gene therapy can obviously inhibit the growth of gastric cancer xenografts, and MSCs are a better vehicle for NK4 gene therapy than lentiviral vectors. Further studies are warranted to explore the efficacy and safety of the MSC-based NK4 gene therapy in animals and cancer patients. PMID:25525335
Vascular signaling abnormalities in Alzheimer disease.
Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph
2011-08-01
Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.
Zografou, A; Tsigris, C; Papadopoulos, O; Kavantzas, N; Patsouris, E; Donta, I; Perrea, D
2011-12-01
Skin grafts are frequently used for a variety of indications in plastic and reconstructive surgery. Their necrosis is a common complication, while different therapies have been proposed. Currently, adipose-derived stem cells (ASCs) hold great promise for their angiogenic potential and role during tissue repair. In this study, autologous transplantation of ASCs was used in skin grafts in rats to determine if it increases angiogenesis, skin-graft survival and wound healing. ASCs were isolated, cultured, labelled with fluorescent dye and injected under full-thickness skin grafts in 10 rats (group 1), while 10 others served as controls (group 2). Skin grafts were analysed after 1 week. Collagen's framework was assessed with Masson's trichrome stain and angiogenesis with von Willebrand factor (vWF) immunohistochemistry. In addition, immunohistochemical staining intensity of vascular endothelial growth factor (VEGF) and transforming growth factor b3 (TGFb3) was assessed in all grafts. Mean area of graft necrosis was significantly less in group 1 than in group 2 (6.12% vs. 32.62%, p<0.01). Statistically significant increase of microvessel density, collagen density, VEGF and TGFb3 expression was noted in group 1 compared with group 2 (all: p<0.01). These findings suggest that autologous ASCs transplantation increases full-thickness skin-graft survival and shows promise for use in skin-graft surgery. This might be both due to in situ differentiation of ASCs into endothelial cells and increased secretion by ASCs of growth factors, such as VEGF and TGFb3 that enhance angiogenesis and wound healing. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Nonaka, Cassiano Francisco Weege; Maia, Alexandre Pinto; Nascimento, George João Ferreira do; de Almeida Freitas, Roseana; Batista de Souza, Lélia; Galvão, Hébel Cavalcanti
2008-12-01
Our aim was to assess and compare the immunoexpression of vascular endothelial growth factor (VEGF) in periapical granulomas (PGs), radicular cysts (RCs), and residual radicular cysts (RRCs), relating it to the angiogenic index and the intensity of the inflammatory infiltrate. Twenty PGs, 20 RCs, and 10 RRCs were evaluated by immunohistochemistry using anti-VEGF antibody. Angiogenic index was determined by microvessel count (MVC) using anti-von Willebrand factor antibody. The PGs and RCs showed higher expression of VEGF than the RRCs. Lesions presenting few inflammatory infiltrate revealed the lowest immunoexpression of VEGF (P < .05). Irrespective of the intensity of the inflammatory infiltrate, most of the RCs and RRCs showed moderate to strong epithelial expression of VEGF. Lesions showing dense inflammatory infiltrate presented higher MVC indices (P < .05). VEGF expression and MVC did not reveal a significant correlation (P > .05). VEGF is present in periapical inflammatory lesions but at a lower level in RRCs. The expression of this proangiogenic factor is closely related to the intensity of the inflammatory infiltrate in these lesions.
Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization
NASA Astrophysics Data System (ADS)
Feng, Yi; Qin, Dui; Zhang, Jun; Zhang, Lei; Bouakaz, Ayache; Wan, Mingxi
2018-06-01
Gas embolotherapy (GE) consists in the occlusion of tumor blood vessels using gas emboli induced by acoustic droplet vaporization (ADV), to create tumor starvation and localized drug delivery. Therefore, the occlusion and rupture of capillary bifurcation due to ADV was investigated in an ex vivo rat mesentery model using a confocal acousto-optical high-speed microscope system. Following ADV bubble formation, coalescence, and translational movement, the growing bubbles lodged in and then occluded two different capillary bifurcations. Capillary rupture was induced at the bubble lodging area, immediately followed by gas extravasation and bubble dislodging. Before and after bubble lodgment/occlusion, a local microvessel invagination was observed due to the interactions between ADV bubbles and the microvessel itself, indicating a contribution to the capillary rupture. Understanding the transient dynamics of ADV bubble, the bubble-microvessel interaction and the consequent mechanical bio-effects in GE is of the paramount importance for developing and applying this approach in clinical practice.
Brain-endocrine interactions: a microvascular route in the mediobasal hypothalamus.
Ciofi, Philippe; Garret, Maurice; Lapirot, Olivier; Lafon, Pierrette; Loyens, Anne; Prévot, Vincent; Levine, Jon E
2009-12-01
Blood-borne hormones acting in the mediobasal hypothalamus, like those controlling food intake, require relatively direct access to target chemosensory neurons of the arcuate nucleus (ARC). An anatomical substrate for this is a permeable microvasculature with fenestrated endothelial cells in the ARC, a system that has awaited comprehensive documentation. Here, the immunofluorescent detection of endothelial fenestral diaphragms in the rat ARC allowed us to quantitate permeable microvessels throughout its rostrocaudal extent. We have determined that permeable microvessels are part of the subependymal plexus irrigating exclusively the ventromedial (vm) ARC from the subadjacent neuroendocrine median eminence. Unexpectedly, permeable microvessels were concentrated proximal to the pituitary stalk. This marked topography strongly supports the functional importance of retrograde blood flow from the pituitary to the vmARC, therefore making a functional relationship between peripheral long-loop, pituitary short-loop, and neuroendocrine ultra-short loop feedback, altogether converging for integration in the vmARC (formerly known as the hypophysiotrophic area), thereby so pivotal as a multicompetent brain endocrinostat.
Marien, Koen M.; Andries, Luc; De Schepper, Stefanie; Kockx, Mark M.; De Meyer, Guido R.Y.
2015-01-01
Tumor angiogenesis is measured by counting microvessels in tissue sections at high power magnification as a potential prognostic or predictive biomarker. Until now, regions of interest1 (ROIs) were selected by manual operations within a tumor by using a systematic uniform random sampling2 (SURS) approach. Although SURS is the most reliable sampling method, it implies a high workload. However, SURS can be semi-automated and in this way contribute to the development of a validated quantification method for microvessel counting in the clinical setting. Here, we report a method to use semi-automated SURS for microvessel counting: • Whole slide imaging with Pannoramic SCAN (3DHISTECH) • Computer-assisted sampling in Pannoramic Viewer (3DHISTECH) extended by two self-written AutoHotkey applications (AutoTag and AutoSnap) • The use of digital grids in Photoshop® and Bridge® (Adobe Systems) This rapid procedure allows traceability essential for high throughput protein analysis of immunohistochemically stained tissue. PMID:26150998
Rattan, Ramandeep; Graham, Rondell P; Maguire, Jacie L; Giri, Shailendra; Shridhar, Viji
2011-05-01
Ovarian cancer is the most lethal gynecologic cancer in women. Its high mortality rate (68%) reflects the fact that 75% of patients have extensive (>stage III) disease at diagnosis and also the limited efficacy of currently available therapies. Consequently, there is clearly a great need to develop improved upfront and salvage therapies for ovarian cancer. Here, we investigated the efficacy of metformin alone and in combination with cisplatin in vivo. A2780 ovarian cancer cells were injected intraperitoneally in nude mice; A2780-induced tumors in nude mice, when treated with metformin in drinking water, resulted in a significant reduction of tumor growth, accompanied by inhibition of tumor cell proliferation (as assessed by immunohistochemical staining of Ki-67, Cyclin D1) as well as decreased live tumor size and mitotic cell count. Metformin-induced activation of AMPK/mTOR pathway was accompanied by decreased microvessel density and vascular endothelial growth factor expression. More importantly, metformin treatment inhibited the growth of metastatic nodules in the lung and significantly potentiated cisplatin-induced cytotoxicity resulting in approximately 90% reduction in tumor growth compared with treatment by either of the drugs alone. Collectively, our data show for the first time that, in addition to inhibiting tumor cell proliferation, metformin treatment inhibits both angiogenesis and metastatic spread of ovarian cancer. Overall, our study provides a strong rationale for use of metformin in ovarian cancer treatment.
VHL deletion impairs mammary alveologenesis but is not sufficient for mammary tumorigenesis.
Seagroves, Tiffany N; Peacock, Danielle L; Liao, Debbie; Schwab, Luciana P; Krueger, Robin; Handorf, Charles R; Haase, Volker H; Johnson, Randall S
2010-05-01
Overexpression of hypoxia inducible factor-1 (HIF-1)alpha, which is common in most solid tumors, correlates with poor prognosis and high metastatic risk in breast cancer patients. Because HIF-1alpha protein stability is tightly controlled by the tumor suppressor von Hippel-Lindau (VHL), deletion of VHL results in constitutive HIF-1alpha expression. To determine whether VHL plays a role in normal mammary gland development, and if HIF-1alpha overexpression is sufficient to initiate breast cancer, Vhl was conditionally deleted in the mammary epithelium using the Cre/loxP system. During first pregnancy, loss of Vhl resulted in decreased mammary epithelial cell proliferation and impaired alveolar differentiation; despite these phenotypes, lactation was sufficient to support pup growth. In contrast, in multiparous dams, Vhl(-/-) mammary glands exhibited a progressive loss of alveolar epithelium, culminating in lactation failure. Deletion of Vhl in the epithelium also impacted the mammary stroma, as there was increased microvessel density accompanied by hemorrhage and increased immune cell infiltration. However, deletion of Vhl was not sufficient to induce mammary tumorigenesis in dams bred continuously for up to 24 months of age. Moreover, co-deletion of Hif1a could not rescue the Vhl(-/-)-dependent phenotype as dams were unable to successfully lactate during the first lactation. These results suggest that additional VHL-regulated genes besides HIF1A function to maintain the proliferative and regenerative potential of the breast epithelium.
FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis
Gong, Fei-Ran; Zhou, Binhua P.; Lian, Lian; Shen, Bairong; Chen, Kai; Duan, Weiming; Wu, Meng-Yao; Tao, Min; Li, Wei
2016-01-01
The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation. PMID:27323403
Orecchioni, Stefania; Reggiani, Francesca; Talarico, Giovanna; Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Noonan, Douglas M; Dallaglio, Katiuscia; Albini, Adriana; Bertolini, Francesco
2015-03-15
The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic growth of triple negative and HER2+ BC in immune-competent and immune-deficient mice orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a genetically engineered murine model model of HER2+ BC. In vivo, biguanides increased pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. Considering their safety profile, biguanides deserve to be further investigated for BC prevention in high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy consolidation or maintenance therapy for the prevention of BC recurrence. © 2014 UICC.
Inhibition of hemangioma growth using polymer-lipid hybrid nanoparticles for delivery of rapamycin.
Li, Haitao; Teng, Yunfei; Sun, Jin; Liu, Jianyong
2017-11-01
Although infantile hemangiomas is benign, its rapid growth may induce serious complications. However, only one drug Hemangeol™ has been approved by US Food and Drug Administration (FDA) to treat infantile hemangiomas. Thus it is necessary to develop novel alternative drugs to treat infantile hemangiomas. Rapamycin is a well-know potent antiangiogenic agent, whereas the daily oral administration of rapamycin exerts undesired metabolic effects due to its inhibition of mechanistic target of rapamycin (mTOR) which is critical in cell metabolism. We hereby developed rapamycin-loaded polymer-lipid hybrid nanoparticles (Rapamycin-PLNPs) as a local controlled release system to realize local and sustained release of rapamycin, aiming to reduce the side effects and frequency of administration of rapamycin. Rapamycin-PLNPs are of a small size (129.1nm), desired drug encapsulation efficiency (63.7%), and sustained drug release for 5 days. Rapamycin-PLNPs were shown to be able to effectively bind to hemangioma endothelia cells (HemECs), induce significant proliferation inhibition and reduce expression of angiogenesis factors in HemECs. The therapeutic effect of Rapamycin-PLNPs against infantile hemangioma in vivo was superior to rapamycin, as reflected by reduced hemangioma volume, weight and microvessel density. Taken together, Rapamycin-PLNPs represent a very promising local approach in the treatment of infantile hemangiomas. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
King-VanVlack, C E; Mewburn, J D; Chapler, C K; MacDonald, P H
2003-06-01
The hemodynamic and proinflammatory effects of endothelin-1 (ET-1) in proximal (1st/2nd order) and terminal (3rd/4th order) arterioles and venules were examined in small intestine submucosa of anesthetized guinea pigs. Vessel diameter (D), red blood cell velocity, and blood flow (Q) were determined in eight proximal and eight terminal microvessels before and at 20 min of ET-1 suffusion (10(-10), 10(-9), and 10(-8) M) and then with endothelin-A (ET(A))-receptor blockade with BQ-123 (10(-5) M). This protocol was repeated with platelet-activating factor (PAF) inhibition (WEB-2086, 1.0 mg/kg iv; n = 16). The ET-1-mediated microvascular responses were also examined with endothelin-B (ET(B))-receptor blockade using BQ-788 (10(-5) M; n = 11) alone or with ET(A+B)-receptor blockade with BQ-123 + BQ-788 (n = 10). Microvascular permeability was assessed by FITC-albumin (25 mg/kg iv) extravasation in seven series: 1) buffered modified Krebs solution suffusion (n = 6), 2) histamine suffusion (HIS; 10(-3) M, n = 5), 3) ET-1 suffusion (10(-8) M, n = 5), 4) BQ-123 (10(-5) M) plus ET-1 suffusion (n = 5), 5) PAF inhibition before ET-1 suffusion (n = 5), 6) histamine-1 (H1)-receptor blockade (diphenhydramine, 20 mg/kg iv) before ET-1 suffusion (n = 5), and 7) ET(B)-receptor blockade before (BQ-788 10(-5) M; n = 3) or with ET-1 suffusion (n = 3). D and Q decreased at 10(-8) M ET-1 and returned to control values with BQ-123 and BQ-123+BQ788 but not with BQ-788 in proximal microvessels. D did not change in terminal microvessels with ET-1 (10(-8) M) but decreased with BQ-788 and increased with BQ-123. PAF inhibition did not affect the D and Q responses of proximal microvessels to ET-1 but prevented the fall in Q in terminal microvessels with ET-1. ET-1 increased vascular permeability to approximately 1/3 of that with HIS; this response was prevented with BQ-123 and WEB-2086 but not with H1-receptor blockade. This is the first evidence that submucosal terminal microvessel flow is reduced with ET-1 independent of vessel diameter changes and that this response is associated with increased microvascular permeability mediated via ET(A)-receptor stimulation and PAF activation.
Su, J; Ji, X B; Xie, J H; Li, W
2016-12-07
Objective: To investigate the expressions of endoglin (CD105), erythropoietin-producing hepatocyte receptor A2 (EphA2) and its ligand ephrinA1 proteins in laryngeal squamous cell carcinoma (LSCC) and the relationship between their expressions and the clinicopathological factors of LSCC. Methods: The expressions of CD105, EphA2 and EphrinA1 proteins were detected with immunohistochemical staining in LSCC in 76 cases and adjacent normal laryngeal tissues (ANLT) (S-P) in 25 cases.SPSS 17.0 software was used to analyze the data. Results: The mean microvessel density (MVD) value marked by CD105 staining in LSCC was 10.33±2.29, which was significantly higher than that in ANLT(1.20±1.04, t =18.732, P <0.05). The CD105-MVD was correlated with T stage, histological grading, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (F value was 5.34, 4.79, 5.36, t value was -2.70, 2.56, all P <0.05). The positive expression rates of EphA2 and EphrinA1 in LSCC were 78.95% (60/76), and 81.85% (62/76), which were respectively significantly higher than 40% (10/25) for EphA2 expression and 44% (11/25) for EphrinA1, expression in ANLT (χ 2 value was 13.41, 13.26, both P <0.05). EphA2 expression was correlated with histological grading, T stage, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (χ 2 value was 6.25, 14.60, 15.11, 8.52, 5.54, all P <0.05). EphrinA1 expression was correlated with T stage, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (χ 2 value was 6.44, 12.28, 16.78, 6.44, all P <0.05). The expressions of CD105, EphA2 and EphrinA1 were positively correlated with each other r value was 0.72, 0.74, 0.64, all P <0.05. Survival analysis indicated that the expressions of CD105 and EphA2, histological grading, lymph node metastasis, clinical stage and recurrence were independent factors for tumor prognosis in LSCC ( P <0.05). Conclusions: The expressions of CD105, EphA2 and EphrinA1 protein were positively correlated with each other in LSCC. They may play important roles in the tumorigenesis, malignant progression and poor prognosis of LSCC.
Jain, Surbhi; Gabunia, Khatuna; Kelemen, Sheri E.; Panetti, Tracee S.; Autieri, Michael V.
2010-01-01
OBJECTIVE The expression and effects of anti-inflammatory interleukins on endothelial cell (EC) activation and development of angiogenesis is uncharacterized. The purpose of this study is to characterize the expression and function of Interleukin-19 (IL-19), a recently described Th2 anti-inflammatory interleukin on EC pathophysiology. METHODS and RESULTS We demonstrate by immunohistochemistry and immunoblot that IL-19 is expressed in inflamed, but not normal human coronary endothelium, and can be induced in cultured human EC by serum and bFGF. IL-19 is mitogenic, chemotactic, and promotes cell EC spreading. IL-19 activates the signaling proteins STAT3, p44/42, and Rac1. In functional ex vivo studies, IL-19 promotes cord-like structure formation of cultured EC and also enhances microvessel sprouting in the mouse aortic ring assay. IL-19 induces tube formation in matrigel plugs in vivo. CONCLUSIONS These data are the first to report expression of the anti-inflammatory interleukin IL-19 in EC, and the first to indicate that IL-19 is mitogenic and chemotactic for EC, and can induce the angiogenic potential of EC. PMID:20966397
Bed isolation in experimental flap studies in rats: a dispensable procedure.
Heimer, Sina; Schaefer, Amelia; Mueller, Wolf; Lass, Ulrike; Gebhard, Martha M; Germann, Günter; Leimer, Uwe; Köllensperger, Eva; Reichenberger, Matthias A
2013-03-01
Review of the literature regarding rodent experimental flap models reveals fundamental differences in applied surgical procedures. Although some authors isolate the flap from its wound bed, others do not. This study was planned to investigate to what extent the insertion of a silicone sheet affects physiological wound healing in experimental flap surgery. An extended epigastric adipocutaneous flap (6 × 10 cm) was raised in 16 male Lewis rats. In the control group (group C), flaps were immediately inset without any intervention. In the experimental group (group M), a silicone sheet barrier was placed between the flap and the wound bed. Mean flap survival area and flap perfusion were evaluated. Microvessel density was visualized by immunohistochemistry, and semiquantitative real-time polymerase chain reaction addressed differential gene expression. All animals were investigated on postoperative day 5. Flap survival area and flap perfusion were found to be similar. Immunohistochemistry, however, demonstrated a significantly increased number of CD31-positive small vessels in group C. The insertion of the silicone sheet barrier (group M) was accompanied by a significantly enhanced expression of proinflammatory genes and a suppression of proangiogenic genes. Our results show that although the silicone membrane has no influence on the surgical outcome in terms of flap survival and perfusion, it does lead to significant molecular alterations in pathways involved in physiological wound healing. These alterations are artificially induced by the foreign body material and conceal the true driving forces of the healing process. As the latter might include relevant therapeutic targets to ameliorate surgical results, we regard wound bed isolation as a dispensable procedure in the study of rodent flap models.
Zhang, Shishuang; Zhi, Yongle; Li, Fei; Huang, Shan; Gao, Huabin; Han, Zhaoli; Ge, Xintong; Li, Dai; Chen, Fanglian; Kong, Xiaodong; Lei, Ping
2018-04-15
To date, the pathogenesis of Alzheimer's disease (AD) remains unclear. It is well-known that excessive deposition of Aβ in the brain is a crucial part of the pathogenesis of AD. In recent years, the AD neurovascular unit hypothesis has attracted much attention. Impairment of the blood-brain barrier (BBB) leads to abnormal amyloid-β (Aβ) transport, and chronic cerebral hypoperfusion causes Aβ deposition throughout the onset and progression of AD. Endothelial progenitor cells (EPCs) are the universal cells for repairing blood vessels. Our previous studies have shown that a reduced number of EPCs in the peripheral blood results in cerebral vascular repair disorder, cerebral hypoperfusion and neurodegeneration, which might be related to the cognitive dysfunction of AD patients. This study was designed to confirm whether EPCs transplantation could repair the blood-brain barrier, stimulate angiogenesis and reduce Aβ deposition in AD. The expression of ZO-1, Occludin and Claudin-5 was up-regulated in APP/PS1 transgenic mice after hippocampal transplantation of EPCs. Consistent with previous studies, EPC transplants also increased the microvessel density. We observed that Aβ senile plaque deposition was decreased and hippocampal cell apoptosis was reduced after EPCs transplantation. The Morris water maze test showed that spatial learning and memory functions were significantly improved in mice transplanted with EPCs. Consequently, EPCs could up-regulate the expression of tight junction proteins, repair BBB tight junction function, stimulate angiogenesis, promote Aβ clearance, and decrease neuronal loss, ultimately improve cognitive function. Taken together, these data demonstrate EPCs may play an important role in the therapeutic implications for vascular dysfunction in AD. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Yuhong; Xie, An; Singh, Arun K; Ehsan, Afshin; Choudhary, Gaurav; Dudley, Samuel; Sellke, Frank W; Feng, Jun
2015-08-24
Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SK(Ca)/IK(Ca)) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hemoglobin = 9.6±0.25) and nondiabetic patients (glycosylated hemoglobin 5.4±0.12) during coronary artery bypass graft surgery (n=8/group). In-vitro relaxation response of precontracted arterioles was examined in the presence of the selective SK(Ca)/IK(Ca) activator NS309 and other vasodilatory agents. The channel density and membrane potential of diabetic and nondiabetic endothelial cells was measured by using the whole cell patch-clamp technique. The protein expression and distribution of the SK(Ca)/IK(Ca) in the human myocardium and coronary arterioles was examined by Western blotting and immunohistochemistry. Our results indicate that diabetes significantly reduced the coronary arteriolar response to the SK(Ca)/IK(Ca) activator NS309 compared to the respective responses of nondiabetic vessels (P<0.05 versus nondiabetes). The relaxation response of diabetic arterioles to NS309 was prevented by denudation of endothelium (P=0.001 versus endothelium-intact). Diabetes significantly decreased endothelial SK(Ca)/IK(Ca) currents and hyperpolarization induced by the SK(Ca)/IK(Ca) activator NS309 as compared with that of nondiabetics. There were no significant differences in the expression and distribution of SK(Ca)/IK(Ca) proteins in the coronary microvessels. Diabetes is associated with inactivation of endothelial SK(Ca)/IK(Ca) channels, which may contribute to endothelial dysfunction in diabetic patients. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Sridharan, Vijayalakshmi; Seawright, John W.; Antonawich, Francis J.; Garnett, Merrill; Cao, Maohua; Singh, Preeti; Boerma, Marjan
2017-01-01
Exposure of the heart to ionizing radiation can cause adverse myocardial remodeling. In small animal models, local heart irradiation causes persistent alterations in cardiac mitochondrial function and swelling. POLY-MVA is a dietary supplement that contains a palladium lipoic acid complex that targets mitochondrial complex I and has been demonstrated to have greater redox potential than lipoic acid alone. POLY-MVA improves mitochondrial function and anti-oxidant enzyme activity in the aged rat heart. In this study, we tested whether POLY-MVA can mitigate cardiac effects of ionizing radiation. Adult male rats were exposed to local heart X rays with a daily dose of 9 Gy for 5 consecutive days. Eighteen weeks after irradiation, POLY-MVA was administered orally at 1 ml/kg bodyweight per day during weekdays, for 6 weeks. Alterations in cardiac function as measured with echocardiography coincided with enhanced mitochondrial swelling, a reduction in mitochondrial expression of complex II, manifestations of adverse remodeling such as a reduction in myocardial microvessel density and an increase in collagen deposition and mast cell numbers. POLY-MVA enhanced left ventricular expression of superoxide dismutase 2, but only in sham-irradiated animals. In irradiated animals, POLY-MVA caused a reduction in markers of inflammatory infiltration, CD2 and CD68. Moreover, POLY-MVA mitigated the effects of radiation on mitochondria. Nonetheless, POLY-MVA did not mitigate adverse cardiac remodeling, suggesting that this tissue remodeling may not be alleviated by altering cardiac mitochondria alone. However, we cannot exclude the possibility that an earlier onset of POLY-MVA administration may have more profound effects on radiation-induced cardiac remodeling. PMID:28231026
Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang
2011-12-01
This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.
Feng, Jiuhuan; Qin, Shukui
2018-01-01
Methylsulfonic apatinib (hereinafter referred to as Apatinib) is a small-molecule angiogenesis inhibitor highly and selectively targeted to vascular endothelial growth factor receptor-2. At present, a series of basic and clinical studies have confirmed that Apatinib mono-therapy can inhibit the growth of different carcinomas. Our experiment aimed to determine whether there is a synergistic effect between the combination of the traditional cytotoxic chemotherapy drugs paclitaxel (TAX), oxaliplatin (L-OHP), 5-fluorouracil (5-FU), and Apatinib. We evaluated the combined effect using cytological experiments and a fluorescence imaging xenograft model. In vitro, the inhibition of cell proliferation increased notably when Apatinib was combined with TAX, L-OHP, and 5-FU. Then, for the mechanistic research, we selected the optimal dose of drugs that also had a synergistic effect. Apatinib combined with the aforementioned drugs, especially the combination of Apatinib and 5-FU, decreased the invasion and migration ability of the cells and increased the apoptosis ratio; expression of the anti-apoptotic protein Bcl-2 significantly decreased, and expression of the pro-apoptotic protein Bax increased. In vivo, when Apatinib was combined with TAX, L-OHP, and 5-FU, the volume of the xenograft model was significantly inhibited, the strength of the green fluorescence was weakened and the microvessel density decreased. The combination of Apatinib with TAX and 5-FU was synergistic (coefficient of drug interaction <1); the combination effect of Apatinib and L-OHP was only additive, with a shorter associated survival time. The combination of Apatinib and classical chemotherapy drugs may be an optimal choice for gastric cancer treatment.
Feng, Jiuhuan; Qin, Shukui
2018-01-01
Introduction Methylsulfonic apatinib (hereinafter referred to as Apatinib) is a small-molecule angiogenesis inhibitor highly and selectively targeted to vascular endothelial growth factor receptor-2. At present, a series of basic and clinical studies have confirmed that Apatinib mono-therapy can inhibit the growth of different carcinomas. Our experiment aimed to determine whether there is a synergistic effect between the combination of the traditional cytotoxic chemotherapy drugs paclitaxel (TAX), oxaliplatin (L-OHP), 5-fluorouracil (5-FU), and Apatinib. Materials and methods We evaluated the combined effect using cytological experiments and a fluorescence imaging xenograft model. In vitro, the inhibition of cell proliferation increased notably when Apatinib was combined with TAX, L-OHP, and 5-FU. Then, for the mechanistic research, we selected the optimal dose of drugs that also had a synergistic effect. Apatinib combined with the aforementioned drugs, especially the combination of Apatinib and 5-FU, decreased the invasion and migration ability of the cells and increased the apoptosis ratio; expression of the anti-apoptotic protein Bcl-2 significantly decreased, and expression of the pro-apoptotic protein Bax increased. In vivo, when Apatinib was combined with TAX, L-OHP, and 5-FU, the volume of the xenograft model was significantly inhibited, the strength of the green fluorescence was weakened and the microvessel density decreased. Results The combination of Apatinib with TAX and 5-FU was synergistic (coefficient of drug interaction <1); the combination effect of Apatinib and L-OHP was only additive, with a shorter associated survival time. Conclusion The combination of Apatinib and classical chemotherapy drugs may be an optimal choice for gastric cancer treatment. PMID:29872316
Inhibition of osteopontin suppresses in vitro and in vivo angiogenesis in endometrial cancer.
Du, Xue-lian; Jiang, Tao; Sheng, Xiu-gui; Gao, Rong; Li, Qing-shui
2009-12-01
Osteopontin (OPN) has been found to play an important role in tumor angiogenesis in recent years. Our previous studies have shown that OPN is overexpressed in tumor-associated human endometrial endothelial cells (HEECs) isolated from tissue samples of patients with endometrial cancer. In the present study, we aimed to further determine the role of OPN in endometrial cancer-associated angiogenesis. We knock down OPN expression in HEECs and human endometrial cancer Ishikawa (ISK) cells using the small interference RNA method, and then evaluate the effects of OPN on endometrial cancer-associated angiogenesis by in vivo mouse studies and in vitro assays. Our results revealed that proliferative activity of HEECs and ISK cells in vitro was not affected by transfection with the siOPN-RNA (P>0.05). Inhibition of OPN expression in HEECs reduced the cell migration, with the percentage of repaired area of 36.32+/-2.88 vs. 8.54+/-1.13 (P=0.007). HEEC/siOPN and ISK/siOPN demonstrated 67.4% and 51.2% decreased invasiveness compared with controls, respectively (P<0.05). The number of branched points per well was obviously lower in HEEC/siOPN than that in HEEC/Control (32.46+/-17.10 vs. 53.15+/-15.44, P=0.021). Furthermore, ISK cells transfected with OPN siRNA formed smaller tumor in mice and led to a lower microvessel density, i.e., angiogenesis, in transplanted tumors of mice than scrambled siRNA controls (12.88+/-7.14 vs. 28.42+/-9.69 vessels per HPF, P=0.019). These data confirm the positive role of OPN in endometrial cancer-associated angiogenesis and might be of great benefit for finding rational approach in endometrial cancer therapy.
Wu, Limei; Yao, Chenguo; Xiong, Zhengai; Zhang, Ruizhe; Wang, Zhiliang; Wu, Yutong; Qin, Qin; Hua, Yuanyuan
2016-04-01
The application of picosecond pulsed electric field (psPEF) is a new biomedical engineering technique used in cancer therapy. However, its effects on cervical cancer angiogenesis are not clear. Therefore, the aim of the present study is to investigate the effects of psPEF on angiogenesis in cervical cancer xenograft models. Xenograft tumors were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with HeLa cells, then were placed closely between tweezer-type plate electrodes and subjected to psPEF with a gradually increased electric field intensity (0kV/cm, 50kV/cm, 60kV/cm, 70kV/cm). The direct effect on tumor tissue was observed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). The changes of blood vessels and oxygen saturation (sO2) of tumors were monitored in vivo by photoacoustic tomography (PAT). The microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible transcription factors (HIF-1α and HIF-2α) were detected by immunohistochemical technique (IHC). Their protein expressions and gene transcription levels were evaluated using western blot (WB) and quantitative reverse transcription and polymerase chain reaction (RT-PCR). PsPEF induced obvious necrosis of cervical cancer tissue; with the increasing of electric field intensity, the MVD, vascular PA signal and sO2 values declined significantly. The protein expression and gene transcription levels of VEGF, HIF1α and HIF2α were significantly decreased at the same time. PsPEF exhibited dramatic anti-tumor and anti-angiogenesis effects in cervical cancer xenograft models by exerting direct effect on cancer cells and vascular endothelial cells and indirect effect on tumor angiogenesis-related factors. Copyright © 2016 Elsevier Inc. All rights reserved.
Sinha, Sonam; Khan, Sajid; Shukla, Samriddhi; Lakra, Amar Deep; Kumar, Sudhir; Das, Gunjan; Maurya, Rakesh; Meeran, Syed Musthapa
2016-08-01
Available breast cancer therapeutic strategies largely target the primary tumor but are ineffective against tumor metastasis and angiogenesis. In our current study, we determined the effect of Cucurbitacin B (CuB), a plant triterpenoid, on the metastatic and angiogenic potential of breast cancer cells. CuB was found to inhibit cellular proliferation and induce apoptosis in breast cancer cells in a time- and dose-dependent manner. Further, CuB-treatment significantly inhibited the migratory and invasive potential of highly metastatic breast cancer MDA-MB-231 and 4T1 cells at sub-IC50 concentrations, where no significant apoptosis was observed. CuB was also found to inhibit migratory, invasive and tube-forming capacities of HUVECs in vitro. In addition, inhibition of pre-existing vasculature in chick embryo chorioallantoic membrane ex vivo further supports the anti-angiogenic effect of CuB. CuB-mediated anti-metastatic and anti-angiogenic effects were associated with the downregulation of VEGF/FAK/MMP-9 signaling, which has been validated by using FAK-inhibitor (FI-14). CuB-treatment resulted in a significant inhibition of VEGF-induced phosphorylation of FAK and MMP-9 expressions similar to the action of FI-14. CuB was also found to decrease the micro-vessel density as evidenced by the decreased expression of CD31, a marker for neovasculature. Further, CuB-treatment inhibited tumor growth, lung metastasis and angiogenesis in a highly metastatic 4T1-syngeneic mouse mammary cancer. Collectively, our findings suggest that CuB inhibited breast cancer metastasis and angiogenesis, at least in part, through the downregulation of VEGF/FAK/MMP-9 signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brooks, Samira A; Khandani, Amir H; Fielding, Julia R; Lin, Weili; Sills, Tiffany; Lee, Yueh; Arreola, Alexandra; Milowsky, Mathew I; Wallen, Eric M; Woods, Michael E; Smith, Angie B; Nielsen, Mathew E; Parker, Joel S; Lalush, David S; Rathmell, W Kimryn
2016-06-15
Clear cell renal cell carcinoma (ccRCC) has recently been redefined as a highly heterogeneous disease. In addition to genetic heterogeneity, the tumor displays risk variability for developing metastatic disease, therefore underscoring the urgent need for tissue-based prognostic strategies applicable to the clinical setting. We have recently employed the novel PET/magnetic resonance (MR) image modality to enrich our understanding of how tumor heterogeneity can relate to gene expression and tumor biology to assist in defining individualized treatment plans. ccRCC patients underwent PET/MR imaging, and these images subsequently used to identify areas of varied intensity for sampling. Samples from 8 patients were subjected to histologic, immunohistochemical, and microarray analysis. Tumor subsamples displayed a range of heterogeneity for common features of hypoxia-inducible factor expression and microvessel density, as well as for features closely linked to metabolic processes, such as GLUT1 and FBP1. In addition, gene signatures linked with disease risk (ccA and ccB) also demonstrated variable heterogeneity, with most tumors displaying a dominant panel of features across the sampled regions. Intriguingly, the ccA- and ccB-classified samples corresponded with metabolic features and functional imaging levels. These correlations further linked a variety of metabolic pathways (i.e., the pentose phosphate and mTOR pathways) with the more aggressive, and glucose avid ccB subtype. Higher tumor dependency on exogenous glucose accompanies the development of features associated with the poor risk ccB subgroup. Linking these panels of features may provide the opportunity to create functional maps to enable enhanced visualization of the heterogeneous biologic processes of an individual's disease. Clin Cancer Res; 22(12); 2950-9. ©2016 AACR. ©2016 American Association for Cancer Research.
Testa, Jacqueline E; Chrastina, Adrian; Oh, Phil; Li, Yan; Witkiewicz, Halina; Czarny, Malgorzata; Buss, Tim; Schnitzer, Jan E
2009-08-01
Mapping protein expression of endothelial cells (EC) in vivo is fundamental to understanding cellular function and may yield new tissue-selective targets. We have developed a monoclonal antibody, MAb J120, to a protein expressed primarily in rat lung and heart endothelium. The antigen was identified as CD34, a marker of hematopoietic stem cells and global marker of endothelial cells in human and mouse tissues. PCR-based cloning identified two CD34 variant proteins, full length and truncated, both of which are expressed on luminal endothelial cell plasma membranes (P) isolated from lung. Truncated CD34 predominated in heart P, and neither variant was detected in P from kidney or liver. CD34 in lung was readily accessible to (125)I-J120 inoculated intravenously, and immunohistochemistry showed strong CD34 expression in lung EC. Few microvessels stained in heart and kidney, and no CD34 was detected in vessels of other organs or in lymphatics. We present herein the first complete sequence of a rat CD34 variant and show for the first time that the encoded truncated variant is endogenously expressed on EC in vivo. We also demonstrate that CD34 expression in rat EC, unlike mouse and human, is restricted in its distribution enabling quite specific lung targeting in vivo.
Luo, Dahu; Lou, Weihua
2017-07-01
Objective To study the expressions of RNA-binding Ras-GAP SH3 binding protein (G3BP) and tumor stem cell marker CD44v6 in laryngeal squamous cell carcinoma and their correlations with angiogenesis. Methods We collected the cancer tissues and corresponding paracancerous tissues from 56 patients with laryngeal squamous cell carcinoma. The expressions of G3BP and CD44v6 proteins were detected by Western blotting in cancer tissues and corresponding paracancerous tissues; the expressions of G3BP, CD44v6 and vascular endothelial growth factor A (VEGF-A) were tested by immunohistochemistry. Thereafter, we compared the positive expression rates of G3BP and CD44v6 between in cancer tissues and in normal tissues, analyzed the correlations between the expressions of G3BP, CD44v6 and the laryngeal squamous cell carcinoma features as well as their correlations with microvessel density (MVD) that was determined by FVIIIAg immunohistochemistry. Results Western blotting showed that the expressions of G3BP and CD44v6 proteins in the laryngeal squamous cell carcinoma were higher than those in the paracancerous tissues. Immunohistochemistry showed that compared with the paracancerous tissues, G3BP, CD44v6 and VEGF-A expressions (the positive rates are 58.9%, 53.6%, 46.4%, respectively) were higher in cancer tissues. The positive rates of G3BP and CD44v6 in cancer tissues were related with the clinical stage, recurrence or metastasis, and lymph node metastasis of laryngeal squamous cell carcinoma, but had nothing to do with patients' age and tumor size. Pearson correlation analysis showed the expressions of both G3BP and CD44v6 were positively correlated with VEGF-A (r=0.741, r=0.756). MVD values were significantly higher in the G3BP and CD44v6 positive cases than in paracancerous tissues, but there was no difference in MVD between those without G3BP and CD44v6 positive expressions and the paracancerous tissues. Conclusion The positive expression rates of G3BP and CD44v6 in laryngeal squamous cell carcinoma tissues are very high, and they have a close relationship with the clinical prognosis. They may raise the VEGF-A expression so as to promote angiogenesis, and then accelerate the development of the laryngeal squamous cell carcinoma.
Luo, Judong; Zhu, Wei; Tang, Yiting; Cao, Han; Zhou, Yuanyuan; Ji, Rong; Zhou, Xifa; Lu, Zhongkai; Yang, Hongying; Zhang, Shuyu; Cao, Jianping
2014-03-25
Cervical cancer is the third most common type of cancer in women worldwide and radiotherapy remains its predominant therapeutic treatment. Artesunate (ART), a derivative of artemisinin, has shown radiosensitization effect in previous studies. However, such effects of ART have not yet been revealed for cervical cancer cells. The effect of ART on radiosensitivity of human cervical cancer cell lines HeLa and SiHa was assessed using the clonogenic assay. Cell cycle progression and apoptosis alterations were analyzed by flow cytometry. For in vivo study, HeLa or SiHa cells were inoculated into nude mice to establish tumors. Tissues from xenografts were obtained to detect the changes of microvessel density, apoptosis and cell cycle distribution. Microarray was used to analyze differentially expressed genes. ART increased the radiosensitivity of HeLa cells (SER=1.43, P<0.001) but not of SiHa cells. Apoptosis and the G2-M phase transition induced by X-ray irradiation (IR) were enhanced by ART via increased Cyclin B1 expression in HeLa cells. Tumor growth of xenografts from HeLa but not SiHa cells was significantly inhibited by irradiation combined with ART (tumor volume reduction of 72.34% in IR+ART group vs. 41.22% in IR group in HeLa cells and 48.79% in IR+ART group vs. 44.03% in IR alone group in SiHa cells). Compared with the irradiated group, cell apoptosis was increased and the G2/M cell cycle arrest was enhanced in the group receiving irradiation combined with ART. Furthermore, compared with radiation alone, X-ray irradiation plus ART affected the expression of 203 genes that function in multiple pathways including RNA transport, the spliceosome, RNA degradation and p53 signaling. ART potently abrogates the G2 checkpoint control in HeLa cells. ART can induce radiosensitivity of HeLa cells in vitro and in vivo.
Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D; Eisinger-Mathason, T S Karin; Choy, Edwin; Kirsch, David G; Simon, M Celeste; Yoon, Sam S
2015-03-01
To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm(3) within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm(3) for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature. Copyright © 2015 Elsevier Inc. All rights reserved.
Shang, Fei; Liu, Mingming; Li, Bingwei; Zhang, Xiaoyan; Sheng, Youming; Liu, Shuying; Han, Jianqun; Li, Hongwei; Xiu, Ruijuan
2016-05-01
Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism. The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex. PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P < 0.01). After treated by Dex, the gluconeogenesis could be restored significantly (P < 0.01) in H22 cells. The supernatant of H22 treated by Dex inhibited the migration, tube formation and endothelial permeability in HUVECs (P < 0.05). In mouse tissue, PEPCK and G6Pase were highly expressed in Dex group than control groups (P < 0.01). 11β-HSDs abnormally expressed in tumor also could be restored by Dex. Meanwhile, the density and total length of microvessels in Dex-treated group were less than those in HCC groups (P < 0.05). This study explored the therapeutic efficacy of Dex in murine HCC. Dex might inhibit tumor growth and angiogenesis by augmenting the gluconeogenesis pathway.
Adjudin disrupts spermatogenesis by targeting drug transporters
Qian, Xiaojing; Cheng, Yan-ho; Jenardhanan, Pranitha; Mruk, Dolores D.; Mathur, Premendu P.; Xia, Weiliang; Silvestrini, Bruno; Cheng, C. Yan
2013-01-01
For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII‒VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be synthesized can improve their efficacy in downregulating BCRP and perhaps other drug efflux transporters in the testis to improve their efficacy to traverse the BTB by modifying their interacting domains. PMID:23885306
Dabiri, Shahriar; Talebi, Amin; Shahryari, Jahanbanoo; Meymandi, Manzoumeh Shamsi; Safizadeh, Hossein
2013-02-01
This study seeks to determine the relationships between manifestation of myofibroblasts in the stroma tissue of hyperplastic pre-invasive breast lesions to invasive cancer by investigating clinicopathological data of patients, their effect on steroid receptor expression and HER2, and angiogenesis according to CD34 antigen expression. 100 cases of invasive ductal carcinoma were immunohistochemically investigated for the presence of smooth muscle actin (SMA), ER/PR, HER2, anti-CD34 antibody and microvessel count (MVC). Patients were scored in four different zones of invasive areas: invasive cancer, DCIS, fibrocystic disease ± ductal intraepithelial neoplasia (FCD ± DIN), and normal tissue. There was a significant difference in stromal myofibroblasts between all areas except for the stroma of DCIS and FCD ± DIN (P < 0.001). We observed positive significant correlations between stromal myofibroblasts, HER2 expression, and the numbers of involved lymph nodes in invasive cancer, DCIS, and FCD ± DIN (P < 0.001). More myofibroblasts were present in grade III cases, with the least frequent observed among grade I cases in the stroma of those with invasive disease, DCIS, and FCD ± DIN (P < 0.001). MVC was inversely related to stromal myofibroblasts in invasive cancer (P < 0.001) and DCIS (P < 0.001), whereas there was a positive correlation in the stroma of FCD ± DIN (P = 0.002) and normal areas (P = 0.054). There was a significant difference in MVC observed in all areas except for DCIS and FCD ± DIN (P < 0.001). We noted significant inverse correlations between MVC, HER2 expression, and the numbers of involved lymph nodes in invasive cancer and DCIS (P < 0.001). Most MVC were present in grade I, with the least frequent observed in grade III cases in the stroma of invasive cancer, DCIS and FCD ± DIN (P < 0.001). Angiogenesis can be observed before any significant myofibroblastic changes in the pre-invasive breast lesions. The elevated content of myofibroblasts in stroma of tumor; probably may be a worse prognostic factor and the steps from atypical epithelial hyperplasia to DCIS and then to the invasive carcinoma do not appear to be always part of a linear progression.
Betteridge, Kai B.; Arkill, Kenton P.; Neal, Christopher R.; Harper, Steven J.; Foster, Rebecca R.; Satchell, Simon C.; Bates, David O.
2017-01-01
Key points We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability.Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel.The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth.Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin. Abstract The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real‐time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17–3.02 μm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 μm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same vessels in a time‐dependent manner, with changes in all three true vessel wall permeability coefficients (hydraulic conductivity, reflection coefficient and diffusive solute permeability). These novel technologies expand the range of techniques that permit direct studies of the structure of the endothelial glycocalyx and dependent microvascular functions in vivo, and demonstrate that sialic acid residues within the endothelial glycocalyx are critical regulators of microvascular permeability to both water and albumin. PMID:28524373
Data-driven sampling method for building 3D anatomical models from serial histology
NASA Astrophysics Data System (ADS)
Salunke, Snehal Ulhas; Ablove, Tova; Danforth, Theresa; Tomaszewski, John; Doyle, Scott
2017-03-01
In this work, we investigate the effect of slice sampling on 3D models of tissue architecture using serial histopathology. We present a method for using a single fully-sectioned tissue block as pilot data, whereby we build a fully-realized 3D model and then determine the optimal set of slices needed to reconstruct the salient features of the model objects under biological investigation. In our work, we are interested in the 3D reconstruction of microvessel architecture in the trigone region between the vagina and the bladder. This region serves as a potential avenue for drug delivery to treat bladder infection. We collect and co-register 23 serial sections of CD31-stained tissue images (6 μm thick sections), from which four microvessels are selected for analysis. To build each model, we perform semi-automatic segmentation of the microvessels. Subsampled meshes are then created by removing slices from the stack, interpolating the missing data, and re-constructing the mesh. We calculate the Hausdorff distance between the full and subsampled meshes to determine the optimal sampling rate for the modeled structures. In our application, we found that a sampling rate of 50% (corresponding to just 12 slices) was sufficient to recreate the structure of the microvessels without significant deviation from the fullyrendered mesh. This pipeline effectively minimizes the number of histopathology slides required for 3D model reconstruction, and can be utilized to either (1) reduce the overall costs of a project, or (2) enable additional analysis on the intermediate slides.
Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds
Skardal, Aleksander; Mack, David; Kapetanovic, Edi; Atala, Anthony; Jackson, John D.; Yoo, James
2012-01-01
Stem cells obtained from amniotic fluid show high proliferative capacity in culture and multilineage differentiation potential. Because of the lack of significant immunogenicity and the ability of the amniotic fluid-derived stem (AFS) cells to modulate the inflammatory response, we investigated whether they could augment wound healing in a mouse model of skin regeneration. We used bioprinting technology to treat full-thickness skin wounds in nu/nu mice. AFS cells and bone marrow-derived mesenchymal stem cells (MSCs) were resuspended in fibrin-collagen gel and “printed” over the wound site. At days 0, 7, and 14, AFS cell- and MSC-driven wound closure and re-epithelialization were significantly greater than closure and re-epithelialization in wounds treated by fibrin-collagen gel only. Histological examination showed increased microvessel density and capillary diameters in the AFS cell-treated wounds compared with the MSC-treated wounds, whereas the skin treated only with gel showed the lowest amount of microvessels. However, tracking of fluorescently labeled AFS cells and MSCs revealed that the cells remained transiently and did not permanently integrate in the tissue. These observations suggest that the increased wound closure rates and angiogenesis may be due to delivery of secreted trophic factors, rather than direct cell-cell interactions. Accordingly, we performed proteomic analysis, which showed that AFS cells secreted a number of growth factors at concentrations higher than those of MSCs. In parallel, we showed that AFS cell-conditioned media induced endothelial cell migration in vitro. Taken together, our results indicate that bioprinting AFS cells could be an effective treatment for large-scale wounds and burns. PMID:23197691
Microvascular Perfusion Changes following Transarterial Hepatic Tumor Embolization
Johnson, Carmen Gacchina; Sharma, Karun V.; Levy, Elliot B.; Woods, David L.; Morris, Aaron H.; Bacher, John D.; Lewis, Andrew L.; Wood, Bradford J.; Dreher, Matthew R.
2015-01-01
Purpose To quantify changes in tumor microvascular (< 1 mm) perfusion relative to commonly used angiographic endpoints. Materials and Methods Rabbit Vx2 liver tumors were embolized with 100–300-µm LC Bead particles to endpoints of substasis or complete stasis (controls were not embolized). Microvascular perfusion was evaluated by delivering two different fluorophore-conjugated perfusion markers (ie, lectins) through the catheter before embolization and 5 min after reaching the desired angiographic endpoint. Tumor microvasculature was labeled with an anti-CD31 antibody and analyzed with fluorescence microscopy for perfusion marker overlap/mismatch. Data were analyzed by analysis of variance and post hoc test (n = 3–5 per group; 18 total). Results Mean microvascular density was 70 vessels/mm2 ± 17 (standard error of the mean), and 81% ± 1 of microvasculature (ie, CD31+ structures) was functionally perfused within viable Vx2 tumor regions. Embolization to the extent of substasis eliminated perfusion in 37% ± 9 of perfused microvessels (P > .05 vs baseline), whereas embolization to the extent of angiographic stasis eliminated perfusion in 56% ± 8 of perfused microvessels. Persistent microvascular perfusion following embolization was predominantly found in the tumor periphery, adjacent to normal tissue. Newly perfused microvasculature was evident following embolization to substasis but not when embolization was performed to complete angiographic stasis. Conclusions Nearly half of tumor microvasculature remained patent despite embolization to complete angiographic stasis. The observed preservation of tumor microvasculature perfusion with angiographic endpoints of substasis and stasis may have implications for tumor response to embolotherapy. PMID:26321051
Numerical Simulation of Thrombotic Occlusion in Tortuous Arterioles
Feng, Zhi-Gang; Cortina, Miguel; Chesnutt, Jennifer KW; Han, Hai-Chao
2017-01-01
Tortuous microvessels alter blood flow and stimulate thrombosis but the physical mechanisms are poorly understood. Both tortuous microvessels and abnormally large platelets are seen in diabetic patients. Thus, the objective of this study was to determine the physical effects of arteriole tortuosity and platelet size on the microscale processes of thrombotic occlusion in microvessels. A new lattice-Boltzmann method-based discrete element model was developed to simulate the fluid flow field with fluid-platelet coupling, platelet interactions, thrombus formation, and thrombotic occlusion in tortuous arterioles. Our results show that vessel tortuosity creates high shear stress zones that activate platelets and stimulate thrombus formation. The growth rate depends on the level of tortuosity and the pressure and flow boundary conditions. Once thrombi began to form, platelet collisions with thrombi and subsequent activations were more important than tortuosity level. Thrombus growth narrowed the channel and reduced the flow rate. Larger platelet size leads to quicker decrease of flow rate due to larger thrombi that occluded the arteriole. This study elucidated the important roles that tortuosity and platelet size play in thrombus formation and occlusion in arterioles. PMID:29327739
Stromal-dependent tumor promotion by MIF family members.
Mitchell, Robert A; Yaddanapudi, Kavitha
2014-12-01
Solid tumors are composed of a heterogeneous population of cells that interact with each other and with soluble and insoluble factors that, when combined, strongly influence the relative proliferation, differentiation, motility, matrix remodeling, metabolism and microvessel density of malignant lesions. One family of soluble factors that is becoming increasingly associated with pro-tumoral phenotypes within tumor microenvironments is that of the migration inhibitory factor family which includes its namesake, MIF, and its only known family member, D-dopachrome tautomerase (D-DT). This review seeks to highlight our current understanding of the relative contributions of a variety of immune and non-immune tumor stromal cell populations and, within those contexts, will summarize the literature associated with MIF and/or D-DT. Copyright © 2014 Elsevier Inc. All rights reserved.
Spaks, Artjoms; Svirina, Darja; Spaka, Irina; Jaunalksne, Inta; Breiva, Donats; Tracums, Ilmars; Krievins, Dainis
2016-07-01
To evaluate the association of CXC chemokine ligand 4 (CXCL4) plasma levels with tumour angiogenesis in non-small cell lung cancer (NSCLC) and to assess association of CXCL4 with clinical outcomes. Fifty patients with early stage NSCLC who underwent pulmonary resection. CXCL4 levels were analysed by ELISA. Angiogenesis was assessed by immunohistochemistry, and microvessel density (MVD) count. There was positive correlation between MVD and CXCL4 levels. Patients with higher CXCL4 levels had worse overall and disease-free survival. Plasma levels of CXCL4 are associated with tumour vascularity. Increased CXCL4 levels in NSCLC patients undergoing treatment may indicate active cancer-induced angiogenesis associated with relapse and worse outcome.
Pelisch, Nicolas; Hosomi, Naohisa; Ueno, Masaki; Nakano, Daisuke; Hitomi, Hirofumi; Mogi, Masaki; Shimada, Kenji; Kobori, Hiroyuki; Horiuchi, Masatsugu; Sakamoto, Haruhiko; Matsumoto, Masayasu; Kohno, Masakazu; Nishiyama, Akira
2011-01-01
BACKGROUND The present study tested the hypothesis that inappropriate activation of the brain renin–angiotensin system (RAS) contributes to the pathogenesis of blood–brain barrier (BBB) disruption and cognitive impairment during development of salt-dependent hypertension. Effects of an angiotensin II (AngII) type-1 receptor blocker (ARB), at a dose that did not reduce blood pressure, were also examined. METHODS Dahl salt-sensitive (DSS) rats at 6 weeks of age were assigned to three groups: low-salt diet (DSS/L; 0.3% NaCl), high-salt diet (DSS/H; 8% NaCl), and high-salt diet treated with ARB, olmesartan at 1 mg/kg. RESULTS DSS/H rats exhibited hypertension, leakage from brain microvessels in the hippocampus, and impaired cognitive functions, which were associated with increased brain AngII levels, as well as decreased mRNA levels of tight junctions (TJs) and collagen-IV in the hippocampus. In DSS/H rats, olmesartan treatment, at a dose that did not alter blood pressure, restored the cognitive decline, and ameliorated leakage from brain microvessels. Olmesartan also decreased brain AngII levels and restored mRNA expression of TJs and collagen-IV in DSS/H rats. CONCLUSIONS These results suggest that during development of salt-dependent hypertension, activation of the brain RAS contributes to BBB disruption and cognitive impairment. Treatment with an ARB could elicit neuroprotective effects in cognitive disorders by preventing BBB permeability, which is independent of blood pressure changes. PMID:21164491
Mach, François; Sauty, Alain; Iarossi, Albert S.; Sukhova, Galina K.; Neote, Kuldeep; Libby, Peter; Luster, Andrew D.
1999-01-01
Activated T lymphocytes accumulate early in atheroma formation and persist at sites of lesion growth and rupture, suggesting that they may play an important role in the pathogenesis of atherosclerosis. Moreover, atherosclerotic lesions contain the Th1-type cytokine IFN-γ, a potentiator of atherosclerosis. The present study demonstrates the differential expression of the 3 IFN-γ–inducible CXC chemokines — IFN-inducible protein 10 (IP-10), monokine induced by IFN-γ (Mig), and IFN-inducible T-cell α chemoattractant (I-TAC) — by atheroma-associated cells, as well as the expression of their receptor, CXCR3, by all T lymphocytes within human atherosclerotic lesions in situ. Atheroma-associated endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages (MØ) all expressed IP-10, whereas Mig and I-TAC were mainly expressed in ECs and MØ, as detected by double immunofluorescence staining. ECs of microvessels within lesions also expressed abundant I-TAC. In vitro experiments supported these results and showed that IL-1β, TNF-α, and CD40 ligand potentiated IP-10 expression from IFN-γ–stimulated ECs. In addition, nitric oxide (NO) treatment decreased IFN-γ induction of IP-10. Our findings suggest that the differential expression of IP-10, Mig, and I-TAC by atheroma-associated cells plays a role in the recruitment and retention of activated T lymphocytes observed within vascular wall lesions during atherogenesis. PMID:10525042
Efficient post-exposure prophylaxis against rabies by applying a four-dose DNA vaccine intranasally.
Tesoro Cruz, Emiliano; Feria Romero, Iris Angélica; López Mendoza, Juan Gabriel; Orozco Suárez, Sandra; Hernández González, Rafael; Favela, Francisco Blanco; Pérez Torres, Armando; José Alvaro Aguilar Setién
2008-12-09
We tested two post-exposure prophylaxes (PEPs) for rabies in laboratory animals; one was a traditional antirabies vaccine for humans via intramuscular route (IM), and the other was a DNA vaccine administered by intranasal route (IN). In contrast to The World Health Organization's recommended five-dose PEP, we gave only four doses without hyper-immune antirabies sera, making the PEP more rigorous. All animals were challenged with challenge virus strain (CVS); 16h later, PEP was applied. All animals that received the PEP with DNA/IN survived, and 87% of the rabbits and 80% of the mice that received the PEP with traditional antirabies vaccine/IM survived. Negative controls succumbed to infection. The expression of G protein was detected in the NALT, cerebellum, cerebral cortex (neocortex), cerebellum and hippocampus, mainly in the glial cells (microglia) and microvessels. On the other hand, plasmid construct was detected in brain and its mRNA expression in medium and posterior encephalon. The efficiency of this DNA/IN PEP is probably due to the early expression of the antigen in the brain stimulating the immune system locally.
High eIF4E, VEGF, and Microvessel Density in Stage I to III Breast Cancer
Byrnes, Kerry; White, Stephen; Chu, Quyen; Meschonat, Carol; Yu, Herbert; Johnson, Lester W.; DeBenedetti, Arrigo; Abreo, Fleurette; Turnage, Richard H.; McDonald, John C.; Li, Benjamin D.
2006-01-01
Objective: In a prospective trial, to determine if eIF4E overexpression in breast cancer specimens is correlated with VEGF elevation, increased tumor microvessel density (MVD) counts, and a worse clinical outcome irrespective of nodal status. Summary and Background Data: In vitro, the overexpression of eukaryotic initiation factor 4E (eIF4E) up-regulates the translation of mRNAs with long 5′-untranslated regions (5′-UTRs). One such gene product is the vascular endothelial growth factor (VEGF). Methods: A total of 114 stage I to III breast cancer patients were prospectively accrued and followed with a standardized clinical surveillance protocol. Cancer specimens were quantified for eIF4E, VEGF, and MVD. Outcome endpoints were cancer recurrence and cancer-related death. Results: eIF4E overexpression was found in all cancer specimens (mean ± SD, 12.5 ± 7.6-fold). Increasing eIF4E overexpression correlated with increasing VEGF elevation (r = 0.24, P = 0.01, Spearman's coefficient), and increasing MVD counts (r = 0.35, P < 0.0002). Patients whose tumor had high eIF4E overexpression had shorter disease-free survival (P = 0.004, log-rank test) and higher cancer-related deaths (P = 0.002) than patients whose tumors had low eIF4E overexpression. Patients with high eIF4E had a hazard ratio for cancer recurrence and cancer-related death of 1.8 and 2.1 times that of patients with low eIF4E (respectively, P = 0.009 and P = 0.002, Cox proportional hazard model). Conclusions: In breast cancer patients, increasing eIF4E overexpression in the cancer specimens correlates with higher VEGF levels and MVD counts. Patients whose tumors had high eIF4E overexpression had a worse clinical outcome, independent of nodal status. Thus, eIF4E overexpression in breast cancer appears to predict increased tumor vascularity and perhaps cancer dissemination by hematogenous means. PMID:16633004
Nguyen, Duong H; Chen, Nanhai G; Zhang, Qian; Le, Ha T; Aguilar, Richard J; Yu, Yong A; Cappello, Joseph; Szalay, Aladar A
2013-01-01
Recombinant human erythropoietin (rhEPO), a glycoprotein hormone regulating red blood cell (RBC) formation, is used for the treatment of cancer-related anemia. The effect of rhEPO on tumor growth, however, remains controversial. Here, we report the construction and characterization of the recombinant vaccinia virus (VACV) GLV-1h210, expressing hEPO. GLV-1h210 was shown to replicate in and kill A549 lung cancer cells in culture efficiently. In mice bearing A549 lung cancer xenografts, treatment with a single intravenous dose of GLV-1h210 resulted in tumor-specific production and secretion of functional hEPO, which exerted an effect on RBC progenitors and precursors in the mouse bone marrow, leading to a significant increase in the number of RBCs and in the level of hemoglobin. Furthermore, virally expressed hEPO, but not exogenously added rhEPO, enhanced virus-mediated green fluorescent protein (GFP) expression in tumors and subsequently accelerated tumor regression when compared with the treatment with the parental virus GLV-1h68 or GLV-1h209 that expressed a nonfunctional hEPO protein. Moreover, intratumorally expressed hEPO caused enlarged tumoral microvessels, likely facilitating virus spreading. Taken together, VACV-mediated intratumorally expressed hEPO not only enhanced oncolytic virotherapy but also simultaneously alleviated cancer-related anemia. PMID:23765443
Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.
Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D
2017-09-01
Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Sheng-cai; Huang, Ming; Wang, Yong; Gao, Yuan; Huang, Yan; Wang, Meng-die; Mao, Ling; Hu, Bo
2013-01-01
This study examines the regulating effect of Sonic Hedgehog (Shh) on the permeability of the blood-brain barrier (BBB) in cerebral ischemia. By employing permanent middle cerebral artery occlusion (pMCAO) model, we find that Shh significantly decreases brain edema and preserves BBB permeability. Moreover, Shh increases zonula occludens-1 (ZO-1), occludin and angiopiotetin-1 (Ang-1) expression in the ischemic penumbra. Blockage of Shh with cyclopamine abolishes the effects of Shh on brain edema, BBB permeability and ZO-1, occludin, Ang-1 expression. Primary brain microvessel endothelial cells (BMECs) and astrocytes were pre-treated with Shh, cyclopamine, Ang-1-neutralizing antibody, and subjected to oxygen-glucose deprivation (OGD). Results show that the Ang-1 protein level in the culture medium of Shh-treated astrocytes is significantly higher. Shh also increased ZO-1, occludin and Ang-1 expression in BMECs, while cyclopamine and Ang-1-neutralizing antibody inhibited the effects of Shh on the ZO-1 and occludin expression, respectively. This study suggests that, under ischemic insults, Shh triggers Ang-1 production predominantly in astrocytes, and the secreted Ang-1 acts on BMECs, thereby upregulating ZO-1 and occludin to repair the tight junction and ameliorate the brain edema and BBB leakage. PMID:23894369
Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Wei; Chai, Hongyan; Li, Ying
2012-10-01
Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressingmore » cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have been studied in vitro and in vivo. ► CYP4Z1 regulates expression and production of VEGF-A and TIMP-2. ► CYP4Z1-induced angiogenesis is associated with PI3K and ERK1/2 activation. ► CYP4Z1 may be an attractive target for anti-cancer therapy.« less
Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K; Jensen, Mette M; El Ali, Henrik H; Madsen, Jacob; Wiinberg, Bo; Petersen, Lars C; Kjaer, Andreas
2016-07-01
Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF. The purpose of this study was to investigate the possibility of using active site-inhibited FVII (FVIIai) labeled with (64)Cu for PET imaging of TF expression. FVIIai was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (64)Cu ((64)Cu-NOTA-FVIIai). Longitudinal in vivo PET imaging was performed at 1, 4, 15, and 36 h after injection of (64)Cu-NOTA-FVIIai in mice with pancreatic adenocarcinomas (BxPC-3). The specificity of TF imaging with (64)Cu-NOTA-FVIIai was investigated in subcutaneous pancreatic tumor models with different levels of TF expression and in a competition experiment. In addition, imaging of orthotopic pancreatic tumors was performed using (64)Cu-NOTA-FVIIai and PET/MRI. In vivo imaging data were supported by ex vivo biodistribution, flow cytometry, and immunohistochemistry. Longitudinal PET imaging with (64)Cu-NOTA-FVIIai showed a tumor uptake of 2.3 ± 0.2, 3.7 ± 0.3, 3.4 ± 0.3, and 2.4 ± 0.3 percentage injected dose per gram at 1, 4, 15, and 36 h after injection, respectively. An increase in tumor-to-normal-tissue contrast was observed over the imaging time course. Competition with unlabeled FVIIai significantly (P < 0.001) reduced the tumor uptake. The tumor uptake observed in models with different TF expression levels was significantly different from each other (P < 0.001) and was in agreement with the TF level evaluated by TF immunohistochemistry staining. Orthotopic tumors were clearly visible on the PET/MR images, and the uptake of (64)Cu-NOTA-FVIIai was colocalized with viable tumor tissue. (64)Cu-NOTA-FVIIai is well suited for PET imaging of tumor TF expression, and imaging is capable of distinguishing the TF expression level of various pancreatic tumor models. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Kumar, Manoj; Liu, Zheng-Ren; Thapa, Laxmi; Wang, Da-Yu; Tian, Rui; Qin, Ren-Yi
2004-08-01
Several studies reported that somatostatin receptor subtypes, especially subtype 2 (SSTR2), exerted their cytostatic and/or cytotoxic effects on various types of tumors. The aim of this study was to investigate the antitumor effect of SSTR2 gene transfer to the pancreatic cancer cell line PC-3 and the mechanisms involved in this effect. The full-length human SSTR2 cDNA was introduced into pancreatic cancer cell line PC-3 by lipofectamine-mediated transfection; positive clones were screened by G418, and stable expression of SSTR2 was detected by the immunohistochemical SABC method and RT-PCR. Athymic mice were separately xenografted with SSTR2-expressing cells (experimental group), vector control, and mock control cells. TUNEL assay was used to determine the apoptotic index (AI) in the tumors of these groups. The immunohistochemical SP method was used to determine expression of apoptosis-regulating genes Bcl-2 and Bax and re-expression of SSTR2 and to assess intratumoral microvessel density (MVD). Moreover, tumor volume and weight were compared among these 3 groups. Restoration of SSTR2 was observed in the experimental group both in vitro and in vivo. The AI was significantly higher in the experimental group (3.39 +/- 0.84%) compared with that in the vector control (0.69 +/- 0.08%) and mock control (0.68 +/- 0.09%) (P < 0.05). MVD was significantly lower in the experimental group (6.30 +/- 1.71) than that in the vector control (12.64 +/- 1.69) and mock control (13.50 +/- 1.86) (P < 0.05). Furthermore, a significant decrease in Bcl-2 and increase in Bax protein expression were detected in the experimental group compared with the vector control and mock control (P < 0.05). A significant negative correlation of protein expression between Bcl-2/Bax ratio and SSTR2 was observed in these tumors (P < 0.05). Tumor volume and weight were significantly decreased in the experimental group compared with the vector control and mock control (P < 0.05) groups. However, no significant differences were observed between the vector control and mock control (P > 0.05). Re-expression of the SSTR2 gene, the expression of which is frequently lost in human pancreatic adenocarcinoma, induces apoptosis, which may be mediated via down-regulation of Bcl-2 and up-regulation of Bax (alteration of Bcl-2/Bax ratio) and inhibits tumor angiogenesis in pancreatic carcinoma, resulting in inhibition of tumor growth.
Yu, Ching-Han; Kan, Shu-Fen; Shu, Chin-Hang; Lu, Ting-Jang; Sun-Hwang, Lucy; Wang, Paulus S
2009-10-01
Agaricus blazei Murill (A. blazei) has been conventionally used as a health food for the prevention of cancer. However, little is known about the direct effects and action mechanisms of A. blazei on human prostate cancer. In the present study, the effects of A. blazei on the growth of human prostate cancer were examined in vitro and in vivo. A. blazei, especially the broth fraction, inhibited cell proliferation in both androgen-dependent and androgen-independent prostate cancer cell lines. The broth of A. blazei induced lactate dehydrogenase leakage in three cancer cell lines, whereas the activities of caspase 3 and the DNA fragmentation were enhanced the most in androgen-independent PC3 cells. The protein expressions of apoptosis-related molecules were elevated by the broth of A. blazei in PC3 cells. Oral supplementation with the broth of A. blazei (with the higher ratio of beta-glucan) significantly suppressed tumor growth without inducing adverse effects in severe combined immunodeficient mice with PC3 tumor xenograft. Tumor xenografts from A. blazei-fed mice showed decreased proliferating cell nuclear antigen-positive cells and reduced tumor microvessel density. Based on these results, we found that the broth of A. blazei may directly inhibit the growth of prostate cancer cell via an apoptotic pathway and suppress prostate tumor growth via antiproliferative and antiangiogenic mechanisms. We therefore suggest that A. blazei might have potential therapeutic use in the prevention and treatment of human prostate cancer.
Ubiquitous Release Of Exosomal Tumor Suppressor miR-6126 from Ovarian Cancer Cells
Kanlikilicer, Pinar; Rashed, Mohammed H.; Bayraktar, Recep; Mitra, Rahul; Ivan, Cristina; Aslan, Burcu; Zhang, Xinna; Filant, Justyna; Silva, Andreia M.; Rodriguez-Aguayo, Cristian; Bayraktar, Emine; Pichler, Martin; Ozpolat, Bulent; Calin, George A.; Sood, Anil K.; Lopez-Berestein, Gabriel
2017-01-01
Cancer cells actively promote their tumorigenic behavior by reprogramming gene expression. Loading intraluminal vesicles with specific miRNAs and releasing them into the tumor microenvironment as exosomes is one mechanism of reprogramming whose regulation remains to be elucidated. Here, we report that miR-6126 is ubiquitously released in high abundance from both chemosensitive and chemoresistant ovarian cancer cells via exosomes. Overexpression of miR-6126 was confirmed in healthy ovarian tissue compared to ovarian cancer patient samples and correlated with better overall survival in high-grade serous ovarian cancer patients. miR-6126 acted as a tumor suppressor by directly targeting integrin β1, a key regulator of cancer cell metastasis. miR-6126 mimic treatment of cancer cells resulted in increased miR-6126 and decreased integrin β1 mRNA levels in the exosome. Functional analysis showed that treatment of endothelial cells with miR-6126 mimic significantly reduced tube formation as well as invasion and migration capacities of ovarian cancer cells in vitro. Administration of miR-6126 mimic in an orthotopic mouse model of ovarian cancer elicited a relative reduction in tumor growth, proliferating cells and microvessel density. miR-6126 inhibition promoted oncogenic behavior by leading ovarian cancer cells to release more exosomes. Our findings provide new insights into the role of exosomal miRNA-mediated tumor progression and suggest a new therapeutic approach to disrupt oncogenic phenotypes in tumors. PMID:27742688
Awojoodu, Anthony O.; Ogle, Molly E.; Sefcik, Lauren S.; Bowers, Daniel T.; Martin, Kyle; Brayman, Kenneth L.; Lynch, Kevin R.; Peirce-Cottler, Shayn M.; Botchwey, Edward
2013-01-01
Endothelial cells play significant roles in conditioning tissues after injury by the production and secretion of angiocrine factors. At least two distinct subsets of monocytes, CD45+CD11b+Gr1+Ly6C+ inflammatory and CD45+CD11b+Gr1−Ly6C− anti-inflammatory monocytes, respond differentially to these angiocrine factors and promote pathogen/debris clearance and arteriogenesis/tissue regeneration, respectively. We demonstrate here that local sphingosine 1-phosphate receptor 3 (S1P3) agonism recruits anti-inflammatory monocytes to remodeling vessels. Poly(lactic-co-glycolic acid) thin films were used to deliver FTY720, an S1P1/3 agonist, to inflamed and ischemic tissues, which resulted in a reduction in proinflammatory cytokine secretion and an increase in regenerative cytokine secretion. The altered balance of cytokine secretion results in preferential recruitment of anti-inflammatory monocytes from circulation. The chemotaxis of these cells, which express more S1P3 than inflammatory monocytes, toward SDF-1α was also enhanced with FTY720 treatment, but not in S1P3 knockout cells. FTY720 delivery enhanced arteriolar diameter expansion and increased length density of the local vasculature. This work establishes a role for S1P receptor signaling in the local conditioning of tissues by angiocrine factors that preferentially recruit regenerative monocytes that can enhance healing outcomes, tissue regeneration, and biomaterial implant functionality. PMID:23918395
Antitumor and antiangiogenic effects of GA-13315, a gibberellin derivative.
Zhang, Yanli; Zhang, Hui; Chen, Jingbo; Zhao, Haixia; Zeng, Xianghui; Zhang, Hongbin; Qing, Chen
2012-02-01
This study showed that 13-chlorine-3,15-dioxy-gibberellic acid methyl ester (GA-13315), a gibberellin derivative, possessed high antitumor and antiangiogenic activity in vitro and in vivo. Cytotoxicity assays showed that GA-13315 was a potential and efficient antitumor compound, with inhibitory concentration 50 (IC(50)) values ranging from 0.13 to 30.28 μg/ml in 12 human tumor cell lines, and it showed moderate toxicity to peripheral blood mononuclear cells with an IC(50) value of 14.2 μg/ml. Administration of 0.5 or 2.5 mg/kg GA-13315 for 23 days significantly inhibited tumor growth of human non-small cell lung tumor (A549) xenografts, with relative growth rates ranging from 29.91% to 35.05%. Acute toxicity was determined in ICR mice, and the lethal dose 50 (LD(50)) was 4.19 g/kg after intragastric administration. The high antitumor potency of GA-13315 occurred in parallel with its antiangiogenic activity. In vitro, GA-13315 inhibited recombinant human epithelial growth factor-induced chemotactic motility and capillary-like tube formation of primary cultured human endothelial cells. Furthermore, GA-13315 decreased the factor VIII(+) microvessel density and vascular endothelial growth factor expression in A549 tumors, indicating its antiangiogenic efficacy in vivo. These results indicate that the antiangiogenic activity of GA-13315 contributes to its anticancer properties. Further studies are needed to investigate the use of GA-13315 as an anticancer drug.
Ha, Xiaoqin; Peng, Junhua; Zhao, Hongbin; Deng, Zhiyun; Dong, Juzi; Fan, Hongyan; Zhao, Yong; Li, Bing; Feng, Qiangsheng; Yang, Zhihua
2017-02-01
The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 10⁹ cfu), vehicle (TP, 1 × 10⁹ cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm², which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm², respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm², which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site.
2017-01-01
The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 109 cfu), vehicle (TP, 1 × 109 cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm2, which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm2, respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm2, which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site. PMID:28049228
Characterization of atrial natriuretic peptide receptors in brain microvessel endothelial cells
NASA Technical Reports Server (NTRS)
Whitson, Peggy A.; Huls, M. H.; Sams, Clarence F.
1989-01-01
In view of the suggestions by Chabrier et al. (1987) and Steardo and Nathanson (1987) that atrial natriuretic peptide (ANP) may play a role in the fluid homeostasis of the brain, the ANP receptors in primary cultures of bovine brain microvessel endothelian cells were quantitated and characterized. Results of partition binding studies and the effect of cGMP additions indicated the presence of at least two types of ANP receptors, with the majority of the receptors being the nonguanylate cyclase coupled receptors. The presence of at least two ANP receptor types suggests an active role for ANP in regulating brain endothelial cell function.
Vovenko, E P; Sokolova, I B; Loshchagin, O V
2002-03-01
Using oxygen microelectrodes, distribution of oxygen tension (pO2) has been studied in venules of the rat brain cortex at normobaric hyperoxia (spontaneous breathing with pure oxygen). It has been shown that inhalation of oxygen results in sharp increase of pO2 in majority of the venules under study. The pO2 distribution along the length of venous microvessels of 7-280 microns in diameter is best approximated by equation: pO2 = 76.44 e-0.0008D, n = 407. The pO2 distribution was characterised by extremely high pO2 values (180-240 mm Hg) in some minute venules. Heterogeneity of pO2 distribution in venous microvessels at hyperoxia was shown to be significantly increased. Profiles of pO2 between neighbouring arterioles and venules were for the first time measured. The data clearly evidenced that O2 diffusional shunting took place between cortical arterioles and venules, provided they were distanced from each other for not over 80-100 microns. Distribution of pO2 in venules has been shown to be dependent on the blood flow in the brain cortical microvessels.
Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven
2003-01-01
We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy.
Barua, Animesh; Bitterman, Pincas; Bahr, Janice M.; Basu, Sanjib; Sheiner, Eyal; Bradaric, Michael J.; Hales, Dale B.; Luborsky, Judith L.; Abramowicz, Jacques S.
2011-01-01
Objective Our goal was to examine the feasibility of using laying hens, a preclinical model of human spontaneous ovarian cancer, in determining the kinetics of an ultrasound contrast agent indicative of ovarian tumor-associated neoangiogenesis in early-stage ovarian cancer. Methods Three-year-old White Leghorn laying hens with decreased ovarian function were scanned before and after intravenous injection of a human serum albumin–perflutren contrast agent at a dose of 5 µL/kg body weight. Gray scale morphologic characteristics, Doppler indices, the arrival time, peak intensity, and wash-out of the contrast agent were recorded and archived on still images and video clips. Hens were euthanized thereafter; sonographic predictions were compared at gross examination; and ovarian tissues were collected. Archived clips were analyzed to determine contrast parameters and Doppler intensities of vessels. A time-intensity curve per hen was drawn, and the area under the curve was derived. Tumor types and the density of ovarian microvessels were determined by histologic examination and immunohistochemistry and compared to sonographic predictions. Results The contrast agent significantly (P < .05) enhanced the visualization of microvessels, which was confirmed by immunohistochemistry. Contrast parameters, including the time of wash-out and area under the curve, were significantly different (P < .05) between ovaries of normal hens and hens with ovarian cancer and correctly detected cancer at earlier stages than the time of peak intensity. Conclusions The laying hen may be a useful animal model for determining ovarian tumor-associated vascular kinetics diagnostic of early-stage ovarian cancer using a contrast agent. This model may also be useful for testing the efficacy of different contrast agents in a preclinical setting. PMID:21357555
Tuppurainen, Laura; Sallinen, Hanna; Karvonen, Anni; Valkonen, Elina; Laakso, Hanne; Liimatainen, Timo; Hytönen, Elisa; Hämäläinen, Kirsi; Kosma, Veli-Matti; Anttila, Maarit; Ylä-Herttuala, Seppo
2017-06-01
Ovarian cancer is highly dependent on tumor microvessels and angiogenesis regulated by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) and angiopoietins (Ang) and their Tie receptors. We studied the efficacy of adenoviral (Ad) gene therapy with soluble VEGFR2 and Tie2 combined with paclitaxel and carboplatin for the treatment of ovarian cancer. An intraperitoneal human ovarian cancer xenograft model in nude mice (n = 44) was used in this study. Gene therapy was given intravenously when the presence of sizable tumors was confirmed in magnetic resonance imaging. The study groups were as follows: AdCMV as a control (group I), AdCMV with chemotherapy (group II), AdsVEGFR2 and AdsTie2 (group III), and AdsVEGFR2 and AdsTie2 with chemotherapy (group IV). Antitumor effectiveness was assessed by overall tumor growth, ascites, immunohistochemistry, microvessel density, and sequential magnetic resonance imaging analyses. AdsVEGFR2 and AdsTie2 gene therapy (group III) significantly reduced tumor weights as compared with group II (P = 0.007). Accumulation of ascites was significantly reduced when the mice were treated with AdsVEGFR2 and AdsTie2 gene therapy or with combined gene therapy and chemotherapy as compared with controls (P = 0.029 and P = 0.010, respectively). Vascular endothelial growth factor and Ang2 levels in ascites fluid were elevated after the gene therapy. Combined inhibition of VEGF/VEGFR2 and Ang/Tie2 pathways provided efficient therapy for ovarian cancer in mice. In addition, antiangiogenic gene therapy has potential as a treatment for the accumulation of ascites.
Life and death in the microcirculation: a role for angiotensin II
NASA Technical Reports Server (NTRS)
Greene, A. S.; Cowley, A. W. (Principal Investigator)
1998-01-01
OBJECTIVE: Angiotensin II (ANGII) plays a critical role in the maintenance of the microcirculation and in the anatomical loss of microvessels (rarefaction) that occurs in low renin forms of hypertension and in animals fed a high-salt diet. Elevations in sodium intake can trigger a series of hemodynamic and hormonal responses culminating in a substantial rarefaction of small arterioles and capillaries in both normal and reduced renal mass hypertensive rats. METHODS: Immunohistochemistry, Northern blot, and reverse transcription-polymerase chain reaction (RT-PCR) analysis of microdissected blood vessels were used to localize ANGII receptors in the microcirculation. Chronic infusion of ANGII and other physiologic and pharmacologic manipulations of the reninangiotensin system in rats was combined with morphologic and mathematical analysis of the network architecture. RESULTS: We have shown that rarefaction of the microcirculation can cause an increase in total peripheral resistance, reduced tissue perfusion, decreased oxygen delivery, and impaired organ function. Although the mechanisms by which this occurs are not well understood, a number of key observations point to a role for the renin-angiotensin system in this effect. First, ANGII infused systemically at subpressor levels, or locally into the skeletal muscle interstitium, can induce significant microvessel growth. Second, localization of ANGII receptor proteins by immunohistochemistry and Western blotting and RNA localization by RT-PCR confirm the presence of AT1 receptors, which are growth-stimulatory, and AT2 receptors, which are growth-inhibitory in the microcirculation. Third, maintenance of ANGII at normal levels during periods of hypertension or high-salt diet completely eliminates rarefaction. CONCLUSIONS: Taken together, these results support the hypothesis that ANGII acting through AT1- and AT2-receptor mechanisms modulate vessel density during high-salt diet and hypertension.
Anderson, Joshua C; Grammer, J Robert; Wang, Wenquan; Nabors, L Burton; Henkin, Jack; Stewart, Jerry E; Gladson, Candece L
2007-03-01
Anti-angiogenic therapies would be particularly beneficial in the treatment of malignant gliomas. Peptides derived from the second type 1 repeat (TSR) of thrombospondin-1 (TSP-1) have been shown to inhibit angiogenesis in non-glioma tumor models and a modified TSR peptide, ABT-510, has now entered into Phase II clinical trials of its efficacy in non-glioma tumors. As microvascular endothelial cells (MvEC) exhibit heterogeneity, we evaluated the ability of the modified TSR peptide (NAcSarGlyValDallolleThrNvalleArgProNHE, ABT-510) to inhibit malignant glioma growth in vivo and to induce apoptosis of brain microvessel endothelial cells (MvEC) propagated in vitro. We found that daily administration of ABT-510 until euthanasia (days 7 to 19), significantly inhibited the growth of human malignant astrocytoma tumors established in the brain of athymic nude mice. The microvessel density was significantly lower and the number of apoptotic MvEC was significantly higher (3-fold) in the tumors of the ABT-510-treated animals. Similar results were found using a model in which the established tumor is an intracerebral malignant glioma propagated in a syngeneic mouse model. ABT-510 treatment of primary human brain MvEC propagated as a monolayer resulted in induction of apoptosis in a dose- and time-dependent manner through a caspase-8-dependent mechanism. It also inhibited tubular morphogenesis of MvEC propagated in collagen gels in a dose- and caspase-8 dependent manner through a mechanism that requires the TSP-1 receptor (CD36) on the MvEC. These findings indicate that ABT-510 should be evaluated as a therapeutic option for patients with malignant glioma.
Hu, Xiquan; Zheng, Haiqing; Yan, Tiebin; Pan, Sanqiang; Fang, Jie; Jiang, Ruishu; Ma, Shangfeng
2010-05-01
The present study was aimed at examining the role of physical exercise in the improvement of damaged neural function and the induction of angiogenesis. An infarction model was induced by ligating the left middle cerebral artery occlusion (MCAO) in a total of 66 adult Sprague-Dawley rats that were further randomly divided into three groups: the physical exercise group (n=30), which was given running wheel exercise every day after MCAO, the control group (n=30) and sham-operated group (n=6), which were fed in standard cages without any special training exercise. The rats were killed on the third, seventh and fourteenth days and the neurological severity scores were examined for evaluating the neural function. And the neogenetic microvessels around the peri-infarction region were checked with the specific marker CD31. Although neogenetic microvessels in the peri-infarction region were observed in both control group and physical exercise group, which showed the highest signal on the seventh day after ischemia, the number of CD31 positive cells significantly increased in physical exercise group in comparison with those in control group on the seventh and fourteenth days after ischemia (p<0.01). Moreover, the neurological severity scores in the physical exercise group showed more quick declination as compared to those in control group from the seventh day after ischemic. Our results suggested that physical exercise plays an important role in the recovery of damaged neural function and induction of angiogenesis after cerebral infarction in rats.
FDG-PET scan shows increased cerebral blood flow in rat after sublingual glycine application
NASA Astrophysics Data System (ADS)
Blagosklonov, Oleg; Podoprigora, Guennady I.; Davani, Siamak; Nartsissov, Yaroslav R.; Comas, Laurent; Boulahdour, Hatem; Cardot, Jean-Claude
2007-02-01
Positron emission tomography (PET) with [18F]-2-fluoro-deoxy-D-glucose (FDG) is being increasingly used in research. Isotope studies may be of help in an assessment of vasoactive potential of newly developed therapeutic preparations, including natural metabolites, like glycine. As a medicine, glycine was recently shown to have a positive therapeutic effect in the treatment of patients with neurological disorders based on vascular disturbances. By previous direct biomicroscopic investigations of pial microvessels in laboratory rats, an expressed vasodilatory effect of topically applied glycine was proved. The aim of this study was to evaluate the influence of glycine on the rat cerebral blood flow (CBF) using FDG-PET scan. A baseline study was started immediately after intravenous injection of 19 MBq of FDG in anesthetized rat. The PET images were acquired twice, one by one during 20 min. Two hours later, after sublingual application of glycine and the second FDG injection, the pair of PET scan was performed during 20 min as well. Finally, 4 days after the first studies, we repeated the PET scans in the same conditions after sublingual application of glycine. The quantitative analysis of FDG volume concentration (Bq/ml) in the rat brain demonstrated that in both studies after glycine administration, the FDG uptake increased at least 1.5 times in comparison with the baseline data. Moreover, the peak of the concentration was coming in more rapidly. These results confirm the enhancing effect of glycine on the rat CBF possibly because of its vasodilatory effect on brain microvessels. Therefore, FDG-PET technique contributes to better understanding of glycine pharmacokinetics.
NASA Astrophysics Data System (ADS)
Tung, Yen-Ting; Chang, Cheng-Chung; Ju, Jyh-Cherng; Wang, Gou-Jen
2017-12-01
The microvascular network is a simple but critical system that is responsible for a range of important biological mechanisms in the bodies of all animals. The ability to generate a functional microvessel not only makes it possible to engineer vital tissue of considerable size but also serves as a platform for biomedical studies. However, most of the current methods for generating microvessel networks in vitro use rectangular channels which cannot represent real vessels in vivo and have dead zones at their corners, hence hindering the circulation of culture medium. We propose a scaffold-wrapping method which enables fabrication of a customized microvascular network in vitro in a more biomimetic way. By integrating microelectromechanical techniques with thermal reflow, we designed and fabricated a microscale hemi-cylindrical photoresist template. A replica mold of polydimethylsiloxane, produced by casting, was then used to generate cylindrical scaffolds with biodegradable poly(lactide-co-glycolide) (PLGA). Human umbilical vein endothelial cells were seeded on both sides of the PLGA scaffold and cultured using a traditional approach. The expression of endothelial cell marker CD31 and intercellular junction vascular endothelial cadherin on the cultured cell demonstrated the potential of generating a microvascular network with a degradable cylindrical scaffold. Our method allows cells to be cultured on a scaffold using a conventional culture approach and monitors cell conditions continuously. We hope our cell-covered scaffold can serve as a framework for building large tissues or can be used as the core of a vascular chip for in vitro circulation studies.
Tang, Hong-Bo; Ren, Yu-Ping; Zhang, Jun; Ma, Shi-Hui; Gao, Feng; Wu, Yi-Ping
2007-11-01
Insulin-like growth factors (IGFs) play important roles in the development and progression of tumors. But the mechanism of tumorigenesis in relation to IGF-1 is unclear yet. This study was to explore the correlation of circulating IGF-1 level to the angiogenesis of breast cancer in IGF-1-deficient mice. The liver-specific IGF-1-deficient (LID) mice and control mice were injected with 7,12-dimethybenz(a)anthracene (DMBA) to develop breast cancer. Ginsenoside Rg3 was used to intervene tumor growth. The occurrence rates of breast cancer were compared. The expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) was detected by immunohistochemistry. The occurrence rate of breast cancer was 66.67% in untreated control mice, 33.33% in untreated LID mice, 36.00% in Rg3-treated control mice, and 12.00% in Rg3-treated LID mice. The tumor size was (0.79+/-0.20) cm in untreated control mice, (0.37+/-0.08) cm in untreated LID mice, (0.32+/-0.08) cm in Rg3-treated control mice, and (0.15+/-0.05) cm in Rg3-treated LID mice. The average light density and positive rate of VEGF were the highest in untreated control mice (0.34+/-0.10 and 0.04+/-0.02, P<0.05), and the lowest in Rg3-treated LID mice (0.13+/-0.03 and 0.01+/-0.00, P<0.05). The MVD was 31.9+/-5.3 in untreated control mice, 26.8+/-4.9 in untreated LID mice, 20.1+/-4.9 in Rg3-treated control mice, and 14.4+/-4.9 in Rg3-treated LID mice. Circulating IGF-1 plays a role in the onset and development of breast cancer. Degrading serum IGF-1 level could inhibit angiogenesis and growth of breast cancer. Rg3 could promote this effect.
Restraint stress delays endometrial adaptive remodeling during mouse embryo implantation.
Liu, Guanhui; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing
2015-01-01
In mice, previously, we showed that restraint stress reduces the number of embryo implantation sites in the endometrium. Here, we hypothesized that the uterine microenvironment is altered by restraint stress and consequently is suboptimal for embryo implantation. On embryonic day 1 (E1), 60 of 154 pregnant CD1 mice underwent restraint stress (4 h), repeated daily to E3, E5 or E7 (n = 10 mice per group). Restraint stress decreased food intake and suppressed body weight gain on E3, E5 and E7. Restraint stress decreased the actual and relative weight (percent body weight) of uterus and ovary on E5 (by 14.9%, p = 0.03; 16.1%, p = 0.004) and E7 (by 16.8%, p = 0.03; 20.0%, p = 0.01). Morphologically, restraint stress decreased relative endometrial area (by 8.94-18.8%, p = 0.003-0.021) and uterine gland area (by 30.6%, p < 0.01 on E3 and 44.5%, p < 0.01 on E5). Immunohistochemistry showed that restraint stress decreased microvessel density (by 12.9-70.5%, p < 0.01) and vascular endothelial growth factor expression (by 14.6-45.9%, p = 0.007-0.02). Restraint stress decreased by 32.4-39.8% (p = 0.002-0.01) the mean optical density ratio for proliferating cell nuclear antigen/terminal deoxynucleotidyl transferase dUTP nick end labeling. Methyl thiazolyl tetrazolium assay showed a dose-dependent decrease in proliferative activity of endometrial stromal cells (from 52 of 154 pregnant E5 control mice) incubated with H2O2 (100-1000 μM) in vitro. These findings supported the hypothesis that restraint stress negatively influences endometrial adaptive remodeling via an oxidative stress pathway, which resulted in fewer implantation sites.
NASA Astrophysics Data System (ADS)
Hoang, Nu Bryan
Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to microvessel density. Ultimately, the 111In-micelles could be used for such diverse applications as detection of malignancies, molecular characterization of tumors, improved therapy guidance and targeted anti-cancer treatment.
Shimojima, Naoki; Eckman, Christopher B; McKinney, Michael; Sevlever, Daniel; Yamamoto, Satoshi; Lin, Wenlang; Dickson, Dennis W; Nguyen, Justin H
2008-01-01
Brain edema secondary to increased blood-brain barrier (BBB) permeability is a lethal complication in fulminant hepatic failure (FHF). Intact tight junctions (TJ) between brain capillary endothelial cells are critical for normal BBB function. However, the role of TJ in FHF has not been explored. We hypothesized that alterations in the composition of TJ proteins would result in increased BBB permeability in FHF. In this study, FHF was induced in C57BL/6J mice by using azoxymethane. BBB permeability was assessed with sodium fluorescein. Expression of TJ proteins was determined by Western blot, and their cellular distribution was examined using immunofluorescent microscopy. Comatose FHF mice had significant cerebral sodium fluorescein extravasation compared with control and precoma FHF mice, indicating increased BBB permeability. Western blot analysis showed a significant decrease in zonula occludens (ZO)-2 expression starting in the precoma stage. Immunofluorescent microscopy showed a significantly altered distribution pattern of ZO-2 in isolated microvessels from precoma FHF mice. These changes were more prominent in comatose FHF animals. Significant alterations in ZO-2 expression and distribution in the tight junctions preceded the increased BBB permeability in FHF mice. These results suggest that ZO-2 may play an important role in the pathogenesis of brain edema in FHF.
Prakash, J; Ramesh, K; Tripathi, D; Kumar, R
2018-07-01
A numerical simulation is presented to study the heat and flow characteristics of blood flow altered by electroosmosis through the tapered micro-vessels. Blood is assumed as non-Newtonian (micropolar) nanofluids. The flow regime is considered as asymmetric diverging (tapered) microchannel for more realistic micro-vessels which is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The Rosseland approximation is employed to model the radiation heat transfer and temperatures of the walls are presumed constants. The mathematical formulation of the present problem is simplified under the long-wavelength, low-Reynolds number and Debye-Hückel linearization approximations. The influence of various dominant physical parameters are discussed for axial velocity, microrotation distribution, thermal temperature distribution and nanoparticle volume fraction field. However, our foremost emphasis is to determine the effects of thermal radiation and coupling number on the axial velocity and microrotation distribution beneath electroosmotic environment. This analysis places a significant observation on the thermal radiation and coupling number which plays an influential role in hearten fluid velocity. This study is encouraged by exploring the nanofluid-dynamics in peristaltic transport as symbolized by heat transport in biological flows and also in novel pharmacodynamics pumps and gastro-intestinal motility enhancement. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Haonan; Hu, Zi Zhong; Li, Jia; Mordovanakis, Aghapi G.; Yang, Xinmai; Paulus, Yannis M.; Wang, Xueding
2017-02-01
Retinal and choroidal neovascularization play a pivotal role in the leading causes of blindness including macular degeneration and diabetic retinopathy (DR). Current therapy by focal laser photocoagulation can damage the normal surrounding cells, such as the photoreceptor inner and outer segments which are adjacent to the retinal pigment epithelium (RPE), due to the use of high laser energy and millisecond pulse duration. Therapies with pharmaceutical agents involve systemic administration of drugs, which can cause adverse effects and patients may become drug-resistant. We have developed a noninvasive photo-mediated ultrasound therapy (PUT) technique as a localized antivascular method, and applied it to remove micro blood vessels in the retina. PUT takes advantage of the high native optical contrast among biological tissues, and has the unique capability to self-target microvessels without causing unwanted damages to the surrounding tissues. This technique promotes cavitation activity in blood vessels by synergistically applying nanosecond laser pulses and ultrasound bursts. Through the interaction between cavitation and blood vessel wall, blood clots in microvessels and vasoconstriction can be induced. As a result, microvessels can be occluded. In comparison with other techniques that involves cavitation, both laser and ultrasound energy needed in PUT is significantly lower, and hence improves the safety in therapy.
Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels.
Hyakutake, Toru; Kishimoto, Takumi
2017-12-01
The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
Engineering of functional, perfusable 3D microvascular networks on a chip.
Kim, Sudong; Lee, Hyunjae; Chung, Minhwan; Jeon, Noo Li
2013-04-21
Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.
Nakanishi, Hiromi; Miyata, Yasuyoshi; Mochizuki, Yasushi; Yasuda, Takuji; Nakamura, Yuichiro; Araki, Kyohei; Sagara, Yuji; Matsuo, Tomohiro; Ohba, Kojiro; Sakai, Hideki
2018-05-19
The immune system is closely associated with malignant behavior in renal cell carcinoma (RCC). Therefore, understanding the pathological roles of immune cells in tumor stroma is essential to discuss the pathological characteristics of RCC. In this study, the clinical significance of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios were investigated in patients with clear cell RCC. The densities of CD57+, CD68+, and mast cells were evaluated by immunohistochemical techniques in 179 patients. Proliferation index (PI), apoptotic index (AI), and microvessel density (MVD) were evaluated by using anti-Ki-67, anti-cleaved caspase-3, and anti-CD31 antibodies, respectively. The density of CD57+ cell was negatively correlated with grade, pT stage, and metastasis, although densities of CD68+ cell and mast cell were positively correlated. Ratios of CD68+ cell/CD57+ cell and mast cell/CD57+ cell were significantly correlated with grade, pT stage, and metastasis. Survival analyses showed that the CD68+ cell/CD57+ cell ratio was a significant predictor for cause-specific survival by multi-variate analyses (hazard ratio=1.41, 95% confidential interval=1.03-1.93, P=.031), and was significantly correlated with PI, AI, and MVD (r=.47; P <. 001, r=-.31, P<.001, and r=.40, P<.001, respectively). In conclusion, CD57+ cell, CD68+ cell, and mast cell played important roles in malignancy in clear cell RCC. The CD68+ cell/CD57+ cell ratio was strongly correlated with pathological features and prognosis in these patients because this ratio reflected the status of cancer cell proliferation, apoptosis, and angiogenesis. Copyright © 2018. Published by Elsevier Inc.
Sugiyama, Tetsuya; Kobayashi, Masato; Kawamura, Hajime; Li, Qing; Puro, Donald G; Kobayshi, Masato
2004-03-01
A sight-threatening complication of diabetes is cell death in retinal capillaries. Currently, the mechanisms responsible for this classic manifestation of diabetic retinopathy remain uncertain. The hypothesis for the current study is that diabetes increases the vulnerability of retinal microvessels to the potentially lethal consequences of having their P2X(7) purinoceptors activated. A pathophysiological role is suspected for these receptor-operated channels because, in addition to transducing retinovascular responses to extracellular adenosine triphosphate (ATP), the sustained opening of these channels can induce the formation of large transmembrane pores. In pericyte-containing retinal microvessels that were freshly isolated from nondiabetic and streptozotocin-injected rats, cells with pores were identified by the uptake of YO-PRO-1. Cell viability was assayed by trypan blue dye exclusion, and cleaved caspase-3 immunoreactivity, TUNEL positivity, and nuclear morphology were used to detect apoptotic cells. Patch-clamp recordings assessed electrophysiological parameters. Activation of P2X(7) receptors caused large pores to form and apoptosis to occur in retinal capillaries of nondiabetic and diabetic rats. Of importance to diabetes, the agonist concentration needed to open pores and trigger apoptosis decreased markedly soon after the onset of streptozotocin-induced hyperglycemia. However, despite this increased sensitivity, diabetes minimally affected the P2X(7)-induced ionic currents. Thus, rather than upregulate the number of functional P2X(7) receptor/channels, diabetes appears to facilitate the channel-to-pore transition that occurs during activation of these purinoceptors. In this way, normally nonlethal concentrations of P2X(7) ligands may trigger apoptosis in microvessels of the diabetic retina. A diabetes-induced increase in the vulnerability of retinal microvessels to the lethal effect of P2X(7) receptor activation may be a previously unrecognized mechanism by which diabetic retinopathy progresses.
Gao, Qiang; Zhao, Ying-Jun; Wang, Xiao-Ying; Qiu, Shuang-Jian; Shi, Ying-Hong; Sun, Jian; Yi, Yong; Shi, Jie-Yi; Shi, Guo-Ming; Ding, Zhen-Bin; Xiao, Yong-Sheng; Zhao, Zhong-Hua; Zhou, Jian; He, Xiang-Huo; Fan, Jia
2012-07-15
CXC chemokines and their cognate receptors have been implicated widely in cancer pathogenesis. In this study, we report a critical causal relationship between CXCR6 expression and tumorigenesis in the setting of human hepatocellular carcinoma (HCC). Among the CXC chemokine receptors, only CXCR6 was detected in all the hepatoma cell lines studied. Moreover, in HCC tissue, CXCR6 expression was significantly higher than in noncancerous liver tissues. Reduction of CXCR6 or its ligand CXCL16 in cancer cells reduced cell invasion in vitro and tumor growth, angiogenesis, and metastases in vivo. Importantly, loss of CXCR6 led to reduced Gr-1+ neutrophil infiltration and decreased neoangiogenesis in hepatoma xenografts via inhibition of proinflammatory cytokine production. Clinically, high expression of CXCR6 was an independent predictor of increased recurrence and poor survival in HCCs. Human HCC samples expressing high levels of CXCR6 also contained an increased number of CD66b+ neutrophils and microvessels, and the combination of CXCR6 and neutrophils was a superior predictor of recurrence and survival than either marker used alone. Together, our findings suggest that elevated expression of CXCR6 promotes HCC invasiveness and a protumor inflammatory environment and is associated with poor patient outcome. These results support the concept that inhibition of the CXCR6-CXCL16 pathway may improve prognosis after HCC treatment.
Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven
2003-01-01
Abstract We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy. PMID:12659668
Angiogenesis in the Progression of Breast Ductal Proliferations
Carpenter, Philip M.; Chen, Wen-Pin; Mendez, Aaron; McLaren, Christine E.; Su, Min-Ying
2013-01-01
Angiogenesis, the formation of blood vessels, is necessary for a tumor to grow, but when angiogenesis first appears in the progression of breast ductal carcinomas is unknown. To determine when this occurs, the authors examined microvessel density (MVD) by CD31 and CD105 immunostaining in normal ducts, 32 cases of usual hyperplasia, 19 cases of atypical hyperplasia, and 29 cases of ductal carcinoma in situ (DCIS). Simple hyperplasia had a 22-fold greater MVD than normal ducts (P < .0001). An increase during the progression of ductal changes was highly significant (P < .0001). To determine a possible mechanism, immunohistochemistry for vascular endothelial growth factor (VEGF) was evaluated. VEGF staining intensity of ductal epithelium increased during the progression from normal to hyperplastic to DCIS. This study shows that the first significant increase in angiogenesis occurs very early in the evolution of ductal proliferations as ductal cells become hyperplastic. PMID:19403546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hae-June; Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul; Yoon, Changhwan
Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumormore » growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.« less
Jin, Zhao-Hui; Furukawa, Takako; Claron, Michael; Boturyn, Didier; Coll, Jean-Luc; Fukumura, Toshimitsu; Fujibayashi, Yasuhisa; Dumy, Pascal; Saga, Tsuneo
2012-12-01
64Cu-cyclam-RAFT-c(-RGDfK-)4 is a novel multimeric positron emission tomography (PET) probe for αVβ3 integrin imaging. Its uptake and αVβ3 expression in tumors showed a linear correlation. Since αVβ3 integrin is strongly expressed on activated endothelial cells during angiogenesis, we aimed to determine whether 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used to image tumor angiogenesis and monitor the antiangiogenic effect of a novel multi-targeted tyrosine kinase inhibitor, TSU-68. Athymic nude mice bearing human hepatocellular carcinoma HuH-7 xenografts, which expressed negligible αVβ3 levels on the tumor cells, received intraperitoneal injections of TSU-68 or the vehicle for 14 days. Antiangiogenic effects were determined at the end of therapy in terms of 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake evaluated using PET, biodistribution assay, and autoradiography, and they were compared with microvessel density (MVD) determined by CD31 immunostaining. 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET enabled clear tumor visualization by targeting the vasculature, and the biodistribution assay indicated high tumor-to-blood and tumor-to-muscle ratios of 31.6 ± 6.3 and 6.7 ± 1.1, respectively, 3 h after probe injection. TSU-68 significantly slowed tumor growth and reduced MVD; these findings were consistent with a significant reduction in the tumor 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake. Moreover, a linear correlation was observed between tumor MVD and the corresponding standardized uptake value (SUV) (r = 0.829, P = 0.011 for SUV(mean); r = 0.776, P = 0.024 for SUV(max)) determined by quantitative PET. Autoradiography and immunostaining showed that the distribution of intratumoral radioactivity and tumor vasculature corresponded. We concluded that 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used for in vivo angiogenesis imaging and monitoring of tumor response to antiangiogenic therapy.
Liu, Yuan; Yu, Jiang; Bai, Jie; Gu, Jin-song; Cai, Bin; Zhou, Xia
2013-12-01
To study the effects of cuttlefish bone-bone morphogenetic protein (BMP) composite material on osteogenesis and revascularization of bone defect in rats. The cuttlefish bone was formed into cylinder with the diameter of about 5 mm and height of about 2 mm after the shell was removed, and then it was soaked in the recombinant human BMP 2 to make a cuttlefish bone-BMP (CBB) composite material. Thirty SD rats, with a defect of skull in every rat, were divided into the CBB and pure cuttlefish bone (PCB) groups according to the random number table, with 15 rats in each group. The rats in the group CBB and group PCB were transplanted with the corresponding material to repair the skull defect. At post transplantation week (PTW) 4, 6, and 8, 5 rats from every group were sacrificed by exsanguination, and ink perfusion was performed. One day later, all the transplants and part of the skull surrounding the defect were harvested, and general observation was conducted at the same time. The specimens were paraffin sectioned for HE staining and Masson staining. The area of microvessel and the area of newborn bone were observed and analyzed through histopathological techniques and image collection system. Data were processed with the analysis of variance of factorial design and LSD test. The correlation between the area of microvessel and the area of newborn bone of the group CBB was analyzed with Pearson correlation analysis. (1) The general observation of the transplant region showed that the transplants were encapsulated by a capsule of fibrous connective tissue. The texture of capsule was soft and relatively thick at PTW 4. The texture was tenacious and thin, but rather compact at PTW 6 and 8. The transplants became gelatinous at PTW 4, and similar to the cartilage tissue at PTW 6 and 8. (2) Histological observation showed that the structure of the transplants in two groups was damaged at PTW 4. A moderate quantity of inflammatory cell infiltration could be observed. The amounts of the primary bone trabeculae and microvessels in group CBB were more abundant than those of group PCB, while the number of osteoclasts was less than those of group PCB. At PTW 6, the inflammatory cell infiltration in the transplants in both groups decreased obviously, the cuttlefish bone was found to be further degraded, and the number of newborn microvessels was increased. There were mature bone trabeculae around the transplants in both groups. And there were also mature bone trabeculae in the degraded CBB in group CBB. At PTW 8, the inflammatory reaction in the transplants in both groups disappeared; there were more mature bone trabeculae; the structure of the cuttlefish bone was found to be damaged basically. Bone trabeculae in group PCB were found around the transplant, while the bone trabeculae could be observed not only around the transplant but also in the degraded CBB in group CBB. The amount of the microvessels in group CBB was still larger than that of group PCB. (3) From PTW 4 to 8, the area of microvessel in group CBB [(63 ± 4), ( 136 ± 36), ( 347 ± 31) µm(2)] was larger than that in group PCB [(44 ± 7), (73 ± 4), (268 ± 42) µm(2), P < 0.05 or P < 0.01]. From PTW 4 to 8, the area of newborn bone in group CBB [(236 ± 26), (339 ± 42), (553 ± 40) µm(2)] was larger than that in group PCB [(137 ± 15), (243 ± 21), (445 ± 29) µm(2), with P values all below 0.01]. (4) The relation between the area of microvessel and the area of newborn bone was significantly positive (r = 0.948, P = 0.001). The CBB may exert good effect on osteogenesis and vascularization of rats with bone defect. It is a good three dimensional scaffold in bone tissue engineering.
Poittevin, Marine; Bonnin, Philippe; Pimpie, Cynthia; Rivière, Léa; Sebrié, Catherine; Dohan, Anthony; Pocard, Marc; Charriaut-Marlangue, Christiane; Kubis, Nathalie
2015-03-01
Diabetes increases the risk of stroke by three, increases related mortality, and delays recovery. We aimed to characterize functional and structural alterations in cerebral microvasculature before and after experimental cerebral ischemia in a mouse model of type 1 diabetes. We hypothesized that preexisting brain microvascular disease in patients with diabetes might partly explain increased stroke severity and impact on outcome. Diabetes was induced in 4-week-old C57Bl/6J mice by intraperitoneal injections of streptozotocin (60 mg/kg). After 8 weeks of diabetes, the vasoreactivity of the neurovascular network to CO2 was abolished and was not reversed by nitric oxide (NO) donor administration; endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) mRNA, phospho-eNOS protein, nNOS, and phospho-nNOS protein were significantly decreased; angiogenic and vessel maturation factors (vascular endothelial growth factor a [VEGFa], angiopoietin 1 (Ang1), Ang2, transforming growth factor-β [TGF-β], and platelet-derived growth factor-β [PDGF-β]) and blood-brain barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and microvessel density was increased without changes in ultrastructural imaging. After permanent focal cerebral ischemia induction, infarct volume and neurological deficit were significantly increased at D1 and D7, and neuronal death (TUNEL+ / NeuN+ cells) and BBB permeability (extravasation of Evans blue) at D1. At D7, CD31+ / Ki67+ double-immunolabeled cells and VEGFa and Ang2 expression were significantly increased, indicating delayed angiogenesis. We show that cerebral microangiopathy thus partly explains stroke severity in diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong
2013-07-01
NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.
Hou, Sheng T; Jiang, Susan X; Slinn, Jacqueline; O'Hare, Michael; Karchewski, Laurie
2010-04-01
Neuropilin 2 (NRP2) is a type I transmembrane protein that binds to distinct members of the class III secreted Semaphorin subfamily. NRP2 plays important roles in repulsive axon guidance, angiogenesis and vasculogenesis through partnering with co-receptors such as vascular endothelial growth factor receptors (VEGFRs) during development. Emerging evidence also suggests that NRP2 contributes to injury response and environment changes in adult brains. In this study, we examined the contribution of NRP2 gene to cerebral ischemia-induced brain injury using NRP2 deficient mouse. To our surprise, the lack of NRP2 expression does not affect the outcome of brain injury induced by transient occlusion of the middle cerebral artery (MCAO) in mouse. The cerebral vasculature in terms of the middle cerebral artery anatomy and microvessel density in the cerebral cortex of NRP2 deficient homozygous (NRP2(-/-)) mice are normal and almost identical to those of the heterozygous (NRP2(+/-)) and wild type (NRP2(+/+)) littermates. MCAO (1h) and 24h reperfusion caused a brain infarction of 23% (compared to the contralateral side) in NRP2(-/-) mice, which is not different from those in NRP2(+/- and +/+) mice at 22 and 21%, respectively (n=19, p>0.05). Correspondingly, NRP2(-/-) mouse also showed a similar level of deterioration of neurological functions after stroke compared with their NRP2(+/- and +/+) littermates. Oxygen-glucose-deprivation (OGD) caused a significant neuronal death in NRP2(-/-) cortical neurons, at the level similar to that in NRP(+/+) cortical neurons (72% death in NRP(-/-) neurons vs. 75% death in NRP2(+/+) neurons; n=4; p>0.05). Together, these loss-of-function studies demonstrated that despite of its critical role in neuronal guidance and vascular formation during development, NRP2 expression dose not affect adult brain response to cerebral ischemia. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.
Zhang, Lei; Jiang, Kan; Chai, Hao; Zhou, Mei; Bai, Jingping
2016-01-01
Background The aim of this study was to determine if anterior cruciate ligament (ACL) reconstruction by remnant preservation promotes cell proliferation, vascularization, proprioception recovery, and improved biomechanical properties of the tendon grafts. Material/Methods 75 New Zealand rabbits were randomly assigned into the control group (group A), conventional ACL reconstruction group (group B), ACL reconstruction using remnant preservation and graft through remnant sleeve technique group (group C), and ACL reconstruction using remnant preservation and remnant tensioning technique group (group D). The remnant and healing of tendon grafts in groups C and D were observed at 3, 6, and 12 weeks after surgery, and the mRNA expression levels of VEGF, NT-3 and GAP-43 in ACL (group A) or tendon graft samples (groups B, C, and D) were determined by real-time PCR. Tendon graft cell count, microvessel density (MVD), and proprioceptors were determined by H&E staining, CD34, and S-100 immunohistochemical staining. The biomechanical properties of the tendon graft at week 12 in groups B, C, and D were examined by using a tensile strength test. Results Remnant and tendon grafts were not healed at 3, 6, and 12 weeks after the operation in groups C and D. VEGF, NT-3, and GAP-43 mRNA expressions in groups B, C, and D were higher than those in group A (P<0.05), but no significant difference was observed between groups B, C, and D (P>0.05). Furthermore, tendon graft cell count, MVD, proprioception, and biomechanical properties showed no significant differences (P>0.05) among groups B, C, and D at various time points. Conclusions There was no significant difference in cell proliferation, vascularization, proprioception recovery, or biomechanical properties of the tendon grafts between remnant-preserving and conventional ACL reconstruction methods. PMID:27669454
Platelet size and density affect shear-induced thrombus formation in tortuous arterioles
NASA Astrophysics Data System (ADS)
Chesnutt, Jennifer K. W.; Han, Hai-Chao
2013-10-01
Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.
Cheng, Cynthia; Lee, Chadd W; Daskalakis, Constantine
2015-10-27
Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient's microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.(1) This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique.
Daskalakis, Constantine
2015-01-01
Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient’s microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.1 This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique. PMID:26554744
Expression of GRIM-19 in adenomyosis and its possible role in pathogenesis.
Wang, Jing; Deng, Xiaohui; Yang, Yang; Yang, Xingsheng; Kong, Beihua; Chao, Lan
2016-04-01
To study the expression of the gene associated with retinoid-interferon (IFN)-induced mortality 19 (GRIM-19) in the endometrial tissue of patients with adenomyosis and to describe the possible pathogenic mechanisms of this phenomenon. Experimental study using human samples and cell lines. University-affiliated hospital. Ectopic and eutopic endometrial tissues were obtained from 30 patients with adenomyosis, whereas normal endometrial specimens were obtained from 10 control patients without adenomyosis. Patients with rapid pathology report-confirmed adenomyosis were recruited, and eutopic and ectopic endometrial tissue samples were collected from patients who had undergone hysterectomies by either the transabdominal or laparoscopic method at Qilu Hospital. Normal endometrial tissue was collected from a group of control patients without adenomyosis. Immunohistochemistry (IHC) was performed to evaluate the expression of GRIM-19, phospho-signal transducer and activator of transcription 3 (Y705) (Y705) (pSTAT3(Y705)), and vascular endothelial growth factor (VEGF) in endometrial tissue samples. The protein levels of GRIM-19, pSTAT3(Y705), STAT3, and VEGF were detected by Western blot. Apoptosis in endometrial specimens was assayed by TUNEL. Immunohistochemistry with an antibody directed against CD34 was performed to detect new blood vessels in the endometrial tissue. GRIM-19 small interfering RNA and a recombinant plasmid carrying GRIM-19 were constructed to evaluate the effects of GRIM-19 on the downstream factors pSTAT3(Y705), STAT3, and VEGF in Ishikawa cells. The expression of GRIM-19 was down-regulated in the eutopic endometria of patients with adenomyosis compared with the endometria of patients in the control group, and it was further reduced in the endometrial glandular epithelial cells of adenomyotic lesions. Apoptosis was reduced in the eutopic endometrium compared with the control group, and it was significantly reduced in ectopic endometrial tissues. In addition, the ectopic and eutopic endometria of patients with adenomyosis displayed a much higher microvessel density. In the eutopic and ectopic endometria of patients with adenomyosis, the expression levels of pSTAT3(Y705) and VEGF were significantly higher than in the controls. Furthermore, down-regulation of GRIM-19 in Ishikawa cells significantly promoted the activation of both pSTAT3(Y705) and its dependent gene VEGF. Aberrant expression of GRIM-19 may be associated with adenomyosis through the regulation of apoptosis and angiogenesis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Participation of blood vessel cells in human adaptive immune responses.
Pober, Jordan S; Tellides, George
2012-01-01
Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Complexity of tumor vasculature in clear cell renal cell carcinoma.
Qian, Chao-Nan; Huang, Dan; Wondergem, Bill; Teh, Bin Tean
2009-05-15
Clear cell renal cell carcinoma (CCRCC) is a highly vascularized cancer resistant to conventional chemotherapy and radiotherapy. Antiangiogenic therapy has achieved some effectiveness against this unique malignancy. The complexity of the tumor vasculature in CCRCC has led to differences in correlating tumor microvessel density with patient prognosis. The authors' recent findings demonstrated that there were at least 2 major categories of tumor vessels in CCRCC-namely, undifferentiated and differentiated-correlating with patient prognosis in contrasting ways, with higher undifferentiated vessel density indicating poorer prognosis, and higher differentiated vessel density correlating with better prognosis. Furthermore, the presence of pericytes supporting the differentiated vessels varied in CCRCC. The distributions of pericyte coverage and differentiated vessels in CCRCC were uneven. The tumor margin had a higher pericyte coverage rate for differentiated vessels than did the inner tumor area. The uneven distributions of pericyte coverage and differentiated vessels in CCRCC prompted the authors to revisit the mechanism of tumor central necrosis, which was also known to be a prognostic indicator for CCRCC. The discrepancy of prognostic correlation between protein and messenger RNA levels of vascular endothelial growth factor in CCRCC was discussed. The complexity of the tumor vasculature in CCRCC also led the authors to begin to re-evaluate the therapeutic effects of antiangiogenic agents for each type of tumor vessel, which will in turn significantly broaden understanding of tumor angiogenesis and improve therapeutic effect. (c) 2009 American Cancer Society.
Vascular pericyte density and angiogenesis associated with adenocarcinoma of the prostate.
Killingsworth, Murray C; Wu, Xiaojuan
2011-01-01
Angiogenesis facilitates metabolism, proliferation and metastasis of adenocarcinoma cells in the prostate, as without the development of new vasculature tumor growth cannot be sustained. However, angiogenesis is variable with the well-known phenomenon of vascular 'hotspots' seen associated with viable tumor cell mass. With the recent recognition of pericytes as molecular regulators of angiogenesis, we have examined the interaction of these cells in actively growing new vessels. Pericyte interactions with developing new vessels were examined using transmission electron microscopy. Pericyte distribution was mapped from α-SMA+ immunostained histological sections and quantified using image analysis. Data was obtained from peripheral and more central regions of 27 cases with Gleason scores of 4-9. Pericyte numbers were increased around developing new vessel sprouts at sites of luminal maturation. Numbers were reduced around the actively growing tips of migrating endothelial cells and functional new vessels. Tumor regions internal to a 500-μm peripheral band showed higher microvessel pericyte density than the peripheral region. Pericytes were found to be key cellular components of developing new vessels in adenocarcinoma of the prostate. Their numbers increased at sites of luminal maturation with these cells displaying an activated phenotype different to quiescent pericytes. Increased pericyte density was found internal to the peripheral region, suggesting more mature vessels lie more centrally. Copyright © 2011 S. Karger AG, Basel.
Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio
2013-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.
Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio
2013-01-01
Purpose Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. Experimental Design EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. Results EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Conclusion Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC. PMID:24073208
Schiffmann, L M; Brunold, M; Liwschitz, M; Goede, V; Loges, S; Wroblewski, M; Quaas, A; Alakus, H; Stippel, D; Bruns, C J; Hallek, M; Kashkar, H; Hacker, U T; Coutelle, O
2017-02-28
Vascular endothelial growth factor (VEGF)-targeting drugs normalise the tumour vasculature and improve access for chemotherapy. However, excessive VEGF inhibition fails to improve clinical outcome, and successive treatment cycles lead to incremental extracellular matrix (ECM) deposition, which limits perfusion and drug delivery. We show here, that low-dose VEGF inhibition augmented with PDGF-R inhibition leads to superior vascular normalisation without incremental ECM deposition thus maintaining access for therapy. Collagen IV expression was analysed in response to VEGF inhibition in liver metastasis of colorectal cancer (CRC) patients, in syngeneic (Panc02) and xenograft tumours of human colorectal cancer cells (LS174T). The xenograft tumours were treated with low (0.5 mg kg -1 body weight) or high (5 mg kg -1 body weight) doses of the anti-VEGF antibody bevacizumab with or without the tyrosine kinase inhibitor imatinib. Changes in tumour growth, and vascular parameters, including microvessel density, pericyte coverage, leakiness, hypoxia, perfusion, fraction of vessels with an open lumen, and type IV collagen deposition were compared. ECM deposition was increased after standard VEGF inhibition in patients and tumour models. In contrast, treatment with low-dose bevacizumab and imatinib produced similar growth inhibition without inducing detrimental collagen IV deposition, leading to superior vascular normalisation, reduced leakiness, improved oxygenation, more open vessels that permit perfusion and access for therapy. Low-dose bevacizumab augmented by imatinib selects a mature, highly normalised and well perfused tumour vasculature without inducing incremental ECM deposition that normally limits the effectiveness of VEGF targeting drugs.
Zhu, Xiang-Yang; Bentley, Michael D; Chade, Alejandro R; Ritman, Erik L; Lerman, Amir; Lerman, Lilach O
2007-09-01
Changes in the structure of the artery wall commence shortly after exposure to cardiovascular risk factors, such as hypercholesterolemia (HC), but may be difficult to detect. The ability to study vascular wall structure could be helpful in evaluation of the factors that instigate atherosclerosis and its pathomechanisms. The present study tested the hypothesis that early morphological changes in coronary arteries of hypercholesterolemic (HC) pigs can be detected using the novel X-ray contrast agent OsO(4) and three-dimensional micro-computed tomography (CT). Two groups of pigs were studied after they were fed a normal or an HC (2% cholesterol) diet for 12 wk. Hearts were harvested, coronary arteries were injected with 1% OsO(4) solution, and cardiac samples (6-mum-thick) were scanned by micro-CT. Layers of the epicardial coronary artery wall, early lesions, and perivascular OsO(4) accumulation were determined. Leakage of OsO(4) from myocardial microvessels was used to assess vascular permeability, which was correlated with immunoreactivity of vascular endothelial growth factor in corresponding histological cross sections. OsO(4) enhanced the visualization of coronary artery wall layers and facilitated detection of early lesions in HC in longitudinal tomographic sections of vascular segments. Increased density of perivascular OsO(4) in HC was correlated with increased vascular endothelial growth factor expression and suggested increased microvascular permeability. The use of OsO(4) as a contrast agent in micro-CT allows three-dimensional visualization of coronary artery wall structure, early lesion formation, and changes in vascular permeability. Therefore, this technique can be a useful tool in atherosclerosis research.
Cifuentes, Diana; Poittevin, Marine; Dere, Ekrem; Broquères-You, Dong; Bonnin, Philippe; Benessiano, Joëlle; Pocard, Marc; Mariani, Jean; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I
2015-01-01
Cerebrovascular impairment is frequent in patients with Alzheimer disease and is believed to influence clinical manifestation and severity of the disease. Cardiovascular risk factors, especially hypertension, have been associated with higher risk of developing Alzheimer disease. To investigate the mechanisms underlying the hypertension, Alzheimer disease cross talk, we established a mouse model of dual pathology by infusing hypertensive doses of angiotensin II into transgenic APPPS1 mice overexpressing mutated human amyloid precursor and presenilin 1 proteins. At 4.5 months, at the early stage of disease progression, only hypertensive APPPS1 mice presented impairment of temporal order memory performance in the episodic-like memory task. This cognitive deficit was associated with an increased number of cortical amyloid deposits (223±5 versus 207±5 plaques/mm(2); P<0.05) and a 2-fold increase in soluble amyloid levels in the brain and in plasma. Hypertensive APPPS1 mice presented several cerebrovascular alterations, including a 25% reduction in cerebral microvessel density and a 30% to 40% increase in cerebral vascular amyloid deposits, as well as a decrease in vascular endothelial growth factor A expression in the brain, compared with normotensive APPPS1 mice. Moreover, the brain levels of nitric oxide synthase 1 and 3 and the nitrite/nitrate levels were reduced in hypertensive APPPS1 mice (by 49%, 34%, and 33%, respectively, compared with wild-type mice; P<0.05). Our results indicate that hypertension accelerates the development of Alzheimer disease-related structural and functional alterations, partially through cerebral vasculature impairment and reduced nitric oxide production. © 2014 American Heart Association, Inc.
Melatonin Reduces Angiogenesis in Serous Papillary Ovarian Carcinoma of Ethanol-Preferring Rats
Zonta, Yohan Ricci; Martinez, Marcelo; Camargo, Isabel Cristina C.; Domeniconi, Raquel F.; Lupi Júnior, Luiz Antonio; Pinheiro, Patricia Fernanda F.; Reiter, Russel J.; Martinez, Francisco Eduardo; Chuffa, Luiz Gustavo A.
2017-01-01
Angiogenesis is a hallmark of ovarian cancer (OC); the ingrowth of blood vessels promotes rapid cell growth and the associated metastasis. Melatonin is a well-characterized indoleamine that possesses important anti-angiogenic properties in a set of aggressive solid tumors. Herein, we evaluated the role of melatonin therapy on the angiogenic signaling pathway in OC of an ethanol-preferring rat model that mimics the same pathophysiological conditions occurring in women. OC was chemically induced with a single injection of 7,12-dimethylbenz(a)anthracene (DMBA) under the ovarian bursa. After the rats developed serous papillary OC, half of the animals received intraperitoneal injections of melatonin (200 µg/100 g body weight/day) for 60 days. Melatonin-treated animals showed a significant reduction in OC size and microvessel density. Serum levels of melatonin were higher following therapy, and the expression of its receptor MT1 was significantly increased in OC-bearing rats, regardless of ethanol intake. TGFβ1, a transforming growth factor-beta1, was reduced only after melatonin treatment. Importantly, vascular endothelial growth factor (VEGF) was severely reduced after melatonin therapy in animals given or not given ethanol. Conversely, the levels of VEGF receptor 1 (VEGFR1) was diminished after ethanol consumption, regardless of melatonin therapy, and VEGFR2 was only reduced following melatonin. Hypoxia-inducible factor (HIF)-1α was augmented with ethanol consumption, and, notably, melatonin significantly reduced their levels. Collectively, our results suggest that melatonin attenuates angiogenesis in OC in an animal model of ethanol consumption; this provides a possible complementary therapeutic opportunity for concurrent OC chemotherapy. PMID:28398226
Saengjaroentham, Chonlawan; Supornsilpchai, Weera; Ji-Au, Wilawan; Srikiatkhachorn, Anan; Maneesri-le Grand, Supang
2015-02-01
Serotonin (5-HT) is an important neurotransmitter involved in the control of neural and vascular responses. 5-HT depletion can induce several neurological disorders, including migraines. Studies on a cortical spreading depression (CSD) migraine animal model showed that the cortical neurons sensitivity, vascular responses, and nitric oxide (NO) production were significantly increased in 5-HT depletion. However, the involvement of NO in the cerebrovascular responses in 5-HT depletion remains unclear. This study aimed to investigate the role of NO in the CSD-induced alterations of cerebral microvessels in 5-HT depletion. Rats were divided into four groups: control, control with L-NAME treatment, 5-HT depleted, and 5-HT depleted with L-NAME treatment. 5-HT depletion was induced by intraperitoneal injection with para-chlorophenylalanine (PCPA) 3 days before the experiment. The CSD was triggered by KCl application. After the second wave of CSD, N-nitro-l-arginine methyl ester (L-NAME) or saline was intravenously injected into the rats with or without L-NAME treatment groups, respectively. The intercellular adhesion molecules-1 (ICAM-1), cell adhesion molecules-1 (VCAM-1), and the ultrastructural changes of the cerebral microvessels were examined. The results showed that 5-HT depletion significantly increased ICAM-1 and VCAM-1 expressions in the cerebral cortex. The number of endothelial pinocytic vesicles and microvilli was higher in the 5-HT depleted group when compared to the control. Interestingly, L-NAME treatment significantly reduced the abnormalities observed in the 5-HT depleted group. The results of this study demonstrated that an increase of NO production is one of the mechanisms involved in the CSD-induced alterations of the cerebrovascular responses in 5-HT depletion.
Hotta, Kazuki; Behnke, Bradley Jon; Masamoto, Kazuto; Shimotsu, Rie; Onodera, Naoya; Yamaguchi, Akihiko; Poole, David C; Kano, Yutaka
2018-05-03
Via modulation of endothelial integrity and vascular permeability in response to damage skeletal muscle microvessels play a crucial permissive role in tissue leukocyte invasion. However, direct visual evidence of altered microvascular permeability of skeletal muscle has not been technically feasible impairing mechanistic understanding of these responses. Two-photon laser scanning microscopy (TPLSM) allows three-dimensional in vivo imaging of skeletal muscle microcirculation. We hypothesized that the regulation of microvessels permeability in vivo is temporally related to acute inflammatory and regenerative processes following muscle injury. To test our hypothesis, tibialis anterior muscle of anesthetized male Wistar rats were subjected to eccentric contractions (ECC) via electrical stimulation. The skeletal muscle microcirculation was imaged by an intravenously infused fluorescent dye (rhodamine b isothiocyanate dextran) to assess microvascular permeability via TPLSM 1, 3 and 7 days after ECC. Immunohistochemistry on muscle sections was performed to determine the proportion of VEGF-A positive fibers in the damaged muscle. Compared with control rats, the volumetrically-determined interstitial leakage of fluorescent dye (5.1 {plus minus} 1.4, 5.3 {plus minus} 1.2 vs. 0.51 {plus minus} 0.14 μm 3 x 10 6 , P < 0.05 respectively days 1 and 3 vs. control) and percentage of VEGF-A positive fibers in the damaged muscle (10 {plus minus} 0.4, 22 {plus minus} 1.1 vs. 0%; days 1 and 3 vs. control) were significantly higher on days 1 and 3 after ECC. The interstitial leakage volume returned to control by day 7. These results suggest that microvascular hyperpermeability assessed by in vivo TPLSM imaging is associated with ECC-induced muscle damage and increased VEGF expression.
Abdul Muneer, P M; Alikunju, Saleena; Szlachetka, Adam M; Haorah, James
2011-04-01
Evidence shows that alcohol intake causes oxidative neuronal injury and neurocognitive deficits that are distinct from the classical Wernicke-Korsakoff neuropathy. Our previous findings indicated that alcohol-elicited blood-brain barrier (BBB) damage leads to neuroinflammation and neuronal loss. The dynamic function of the BBB requires a constant supply and utilization of glucose. Here we examined whether interference of glucose uptake and transport at the endothelium by alcohol leads to BBB dysfunction and neuronal degeneration. We tested the hypothesis in cell culture of human brain endothelial cells, neurons and alcohol intake in animal by immunofluorescence, Western blotting and glucose uptake assay methods. We found that decrease in glucose uptake correlates the reduction of glucose transporter protein 1 (GLUT1) in cell culture after 50 mM ethanol exposure. Decrease in GLUT1 protein levels was regulated at the translation process. In animal, chronic alcohol intake suppresses the transport of glucose into the frontal and occipital regions of the brain. This finding is validated by a marked decrease in GLUT1 protein expression in brain microvessel (the BBB). In parallel, alcohol intake impairs the BBB tight junction proteins occludin, zonula occludens-1, and claudin-5 in the brain microvessel. Permeability of sodium fluorescein and Evans Blue confirms the leakiness of the BBB. Further, depletion of trans-endothelial electrical resistance of the cell monolayer supports the disruption of BBB integrity. Administration of acetyl-L: -carnitine (a neuroprotective agent) significantly prevents the adverse effects of alcohol on glucose uptake, BBB damage and neuronal degeneration. These findings suggest that alcohol-elicited inhibition of glucose transport at the blood-brain interface leads to BBB malfunction and neurological complications.
Schmid-Schönbein, Geert W.
2017-01-01
Transformation of circulating leukocytes from a dormant into an activated state with changing rheological properties leads to a major shift of their behavior in the microcirculation. Low levels of pseudopod formation or expression of adhesion molecules facilitate relatively free passage through microvessels while activated leukocytes with pseudopods and enhanced levels of adhesion membrane proteins become trapped in microvessels, attach to the endothelium and migrate into the tissue. The transformation of leukocytes into an activated state is seen in many diseases. While mechanisms for activation due to infections, tissue trauma, as well as non-physiological biochemical or biophysical exposures are well recognized, the mechanisms for activation in many diseases have not been conclusively liked to these traditional mechanisms and remain unknown. We summarize our recent evidence suggesting a major and surprising role of digestive enzymes in the small intestine as root causes for leukocyte activation and microvascular disturbances. During normal digestion of food digestive enzymes are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. When permeability of this barrier increases, these powerful degrading enzymes leak into the wall of the intestine and into the systemic circulation. Leakage of digestive enzymes occurs for example in physiological shock and multi-organ failure. Entry of digestive enzymes into the wall of the small intestine leads to degradation of the intestinal tissue in an autodigestion process. The digestive enzymes and tissue/food fragments generate not only activate leukocytes but also cause numerous cell dysfunctions. For example, proteolytic destruction of membrane receptors, plasma proteins and other biomolecules occurs. We conclude that escape of digestive enzymes from the intestinal track serves as a major source of cell dysfunction, morbidity and even mortality, including abnormal leukocyte activation seen in rheological studies. PMID:28269737
Pei, Ke-Ling; Yuan, Yi; Qin, San-Hai; Wang, Yan; Zhou, Ling; Zhang, Hou-Li; Qu, Xian-Jun; Cui, Shu-Xiang
2012-04-01
Aminopeptidase N (APN/CD13) is highly expressed on the surface of cancer cells and is thought to be involved in cancer growth and metastasis. The research of APN/CD13 inhibitors is considered as a strategy of cancer treatment. We aimed to evaluate the efficacy of CIP-13F, a novel APN/CD13 inhibitor, using a Lewis lung carcinoma (LLC) implantation mouse model. C57BL/6 mice were subcutaneously inoculated with LLC cells in anterior flank. Then, 0, 50 and 100 mg/kg of CIP-13F were injected via vena caudalis. Bestatin was used as the positive control. Administration of CIP-13F or bestatin was performed daily for 3 consecutive weeks. Mice were killed, and the tumors in anterior flank and metastasis nodules in lungs were examined. The assays of immunohistochemical staining, immunofluorescent flow cytometry and western blotting were performed to estimate the expression of APN/CD13 in LLC cells. We carried out the experiments of Annexin-V/PI staining, DNA fragmentation analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining to determine apoptotic cells in LLC tissues. Using immunohistochemical staining with CD34, the antiangiogenesis of CIP-13F was evaluated in LLC tissue sections. CIP-13F treatment resulted in a significant delay of LLC growth in anterior flank. Examination of lungs showed that the number of metastatic nodules of LLC was also markedly decreased. The inhibitory effect of CIP-13F on LLC growth was further evidenced by the induction of LLC apoptosis, showing the increases in Annexin-V/PI staining cells, DNA fragmentation and TUNEL staining cells. Molecular analyses of LLC tissues in CIP-13F-treated mice suggested that the decrease in APN/CD13 expression by CIP-13F might account for its actions of mechanism. Further, the inhibition of angiogenesis in LLC tissues was determined, showing the decreases in microvessel density (MVD) and angiogenic factors including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor-alpha (TGF-α). Our results showed that CIP-13F effectively inhibited LLC growth and pulmonary metastasis in mice and suggested that CIP-13F is a potential drug for the treatment for cancers with positive APN/CD13 expression.
De Silva, D A; Woon, F-P; Manzano, J J F; Liu, E Y; Chang, H-M; Chen, C; Wang, J J; Mitchell, P; Kingwell, B A; Cameron, J D; Lindley, R I; Wong, T Y; Wong, M-C
2012-12-01
Large-artery stiffness is a risk factor for stroke, including cerebral small-vessel disease. Retinal microvascular changes are thought to mirror those in cerebral microvessels. We investigated the relationship between aortic stiffness and retinal microvascular changes in Asian ischemic stroke patients. We studied 145 acute ischemic stroke patients in Singapore who had aortic stiffness measurements using carotid-femoral pulse wave velocity (cPWV). Retinal photographs were assessed for retinal microvessel caliber and qualitative signs of focal arteriolar narrowing, arteriovenous nicking and enhanced arteriolar light reflex. Aortic stiffening was associated with retinal arteriolar changes. Retinal arteriolar caliber decreased with increasing cPWV (r=-0.207, P=0.014). After adjusting for age, gender, hypertension, diabetes, mean arterial pressure and small-vessel stroke subtype, patients within the highest cPWV quartile were more likely to have generalized retinal arteriolar narrowing defined as lowest caliber tertile (odds ratio (OR) 6.84, 95% confidence interval (CI) 1.45-32.30), focal arteriolar narrowing (OR 13.85, CI 1.82-105.67), arteriovenous nicking (OR 5.08, CI 1.12-23.00) and enhanced arteriolar light reflex (OR 3.83, CI 0.89-16.48), compared with those within the lowest quartile. In ischemic stroke patients, aortic stiffening is associated with retinal arteriolar luminal narrowing as well as features of retinal arteriolosclerosis.
Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie
2017-03-01
Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.
Dai, L; Guo, X; Huang, H J; Liao, X M; Luo, X Q; Li, D; Zhou, H; Gao, X C; Tan, M Y
2018-04-20
Objective: To observe effects of exogenous high mobility group protein box 1 (HMGB1) on angiogenesis in ischemic zone of early scald wounds of rats. Methods: Thirty-six Sprague-Dawley rats were divided into HMGB1 group and simple scald (SS) group according to the random number table, with 18 rats in each group. Comb-like copper mould was placed on the back of rats for 20 s after being immersed in 100 ℃ hot water for 3 to 5 min to make three ischemic zones of wound. Immediately after scald, rats in HMGB1 group were subcutaneously injected with 0.4 μg HMGB1 and 0.1 mL phosphate buffer solution (PBS), and rats in SS group were subcutaneously injected with 0.1 mL PBS from boarders of ischemic zone of scald wound. At post scald hour (PSH) 24, 48, and 72, 6 rats in each group were collected. Protein expressions of vascular endothelial growth factor (VEGF) in ischemic zone of wound at PSH 24, 48, and 72 and protein expressions of CD31 in ischemic zone of wound at PSH 48 and 72 were detected by immunohistochemistry. The number of microvessel in CD31 immunohistochemical sections of ischemic zone of wound at PSH 48 and 72 was calculated after observing by the microscope. The mRNA expressions of VEGF and CD31 in ischemic zone of wound were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction at PSH 24, 48, and 72. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) At PSH 24, 48, and 72, protein expressions of VEGF in ischemic zone of wound of rats in HMGB1 group were significantly higher than those of rats in SS group ( t =7.496, 4.437, 5.402, P <0.05 or P <0.01). At PSH 48 and 72, protein expressions of CD31 in ischemic zone of wound of rats in HMGB1 group were 0.038 8±0.007 9 and 0.057 7±0.001 2 respectively, significantly higher than 0.013 4±0.004 9 and 0.030 3±0.004 0 of rats in SS group ( t =10.257, 15.055, P <0.01). (2) At PSH 48 and 72, the number of microvessel in ischemic zone of wound of rats in HMGB1 group was obviously more than that of rats in SS group ( t =3.536, 4.000, P <0.05). (3) At PSH 24, 48, and 72, mRNA expressions of VEGF in ischemic zone of wound of rats in HMGB1 group were significantly higher than those of rats in SS group ( t =4.406, 3.821, 3.356, P <0.05). At PSH 24 and 48, mRNA expressions of CD31 in ischemic zone of wound of rats in HMGB1 group were significantly higher than those of rats in SS group ( t =4.113, 3.466, P <0.05). At PSH 72, mRNA expressions of CD31 in ischemic zone of wound of rats in 2 groups were close ( t =0.010, P >0.05). Conclusions: Exogenous HMGB1 can promote angiogenesis in ischemic zone of early scald wounds of rats by increasing expressions of VEGF and CD31.
Ito, Osamu; Nakamura, Yasuhiro; Tan, Liping; Ishizuka, Tsuneo; Sasaki, Yuko; Minami, Naoyoshi; Kanazawa, Masayuki; Ito, Sadayoshi; Sasano, Hironobu; Kohzuki, Masahiro
2006-03-01
Members of the cytochrome P-450 4 (CYP4) family catalyze the omega-hydroxylation of fatty acids, and some of them have the PPAR response element in the promoter area of the genes. The localization of CYP4A and PPAR isoforms and the effect of PPAR agonists on CYP4A protein level and activity were determined in rat kidney and liver. Immunoblot analysis showed that CYP4A was expressed in the liver and proximal tubule, with lower expression in the preglomerular microvessel, glomerulus and thick ascending limb (TAL), but the expression was not detected in the collecting duct. PPARalpha was expressed in the liver, proximal tubule and TAL. PPARgamma was expressed in the collecting duct, with lower expression in the TAL, but no expression in the proximal tubule and liver. The PPARalpha agonist clofibrate induced CYP4A protein levels and activity in the renal cortex and liver. The PPARgamma agonist pioglitazone did not modulate them in these tissues. The localization of CYP4A and CYP4F were further determined in human kidney and liver by immunohistochemical technique. Immunostainings for CYP4A and CYP4F were observed in the hepatocytes of the liver lobule and the proximal tubules, with lower stainings in the TALs and collecting ducts, but no staining in the glomeruli or renal vasculatures. These results indicate that the inducibility of CYP4A by PPAR agonists in the rat tissues correlates with the expression of the respective PPAR isoforms, and that the localization of CYP4 in the kidney has a species-difference between rat and human.
Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S
2002-11-01
Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.
Willis, Colin L; Meske, Diana S; Davis, Thomas P
2010-11-01
Hypoxia (Hx) is a component of many disease states including stroke. Ischemic stroke occurs when there is a restriction of cerebral blood flow and oxygen to part of the brain. During the ischemic, and subsequent reperfusion phase of stroke, blood-brain barrier (BBB) integrity is lost with tight junction (TJ) protein disruption. However, the mechanisms of Hx and reoxygenation (HR)-induced loss of BBB integrity are not fully understood. We examined the role of protein kinase C (PKC) isozymes in modifying TJ protein expression in a rat model of global Hx. The Hx (6% O(2)) induced increased hippocampal and cortical vascular permeability to 4 and 10 kDa dextran fluorescein isothiocyanate (FITC) and endogenous rat-IgG. Cortical microvessels revealed morphologic changes in nPKC-θ distribution, increased nPKC-θ and aPKC-ζ protein expression, and activation by phosphorylation of nPKC-θ (Thr538) and aPKC-ζ (Thr410) residues after Hx treatment. Claudin-5, occludin, and ZO-1 showed disrupted organization at endothelial cell margins, whereas Western blot analysis showed increased TJ protein expression after Hx. The PKC inhibition with chelerythrine chloride (5 mg/kg intraperitoneally) attenuated Hx-induced hippocampal vascular permeability and claudin-5, PKC (θ and ζ) expression, and phosphorylation. This study supports the hypothesis that nPKC-θ and aPKC-ζ signaling mediates TJ protein disruption resulting in increased BBB permeability.
Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen
2017-01-01
Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299
[The expression of MMP-2 and MMP-9 in adenoid cystic carcinoma of lacrimal gland].
Zhang, Lei; Zhang, Hong; Song, Guo-xiang; Lin, Ting-ting; Xu, Guang-chang; Zhu, Li-min
2013-01-01
To investigate the expression of matrix metal proteinase (MMP)-2 and MMP-9 in adenoid cystic carcinoma of lacrimal gland as well as their relation with biological behaviour of adenoid cystic carcinoma. Experimental study. The research objects were 60 cases of adenoid cystic carcinoma of lacrimal gland which were collected from No.2 Hospital of Tianjin Medical University from January 1991 to Jule 2011. There were 25 males and 35 females aged from 29 to 42 years. Based on histological revision, there were 36 cases of cribriform-tubular subtype and 24 cases of solid subtype. Forty-five cases were primary lesions and 15 cases were recurrent lesions. Ten samples of normal lacrimal gland around polymorphic adenoma were selected as the control group. The expression of CD105, MMP-2 and MMP-9 were evaluated by immunohistochemistry. The microvessel density (MVD) was defined by expression of CD105. One way ANOVA, χ(2)-test and spearman correlation test were used to analyzed the data. The number of MVD [(17.71 ± 5.63)/100 folds field of vision] and the positive rates of MMP-2 (45.0%, 27/60) and MMP-9 (55.0%, 33/60) in the samples of adenoid cystic carcinoma of lacrimal gland were higher than those in the normal lacrimal gland [the number of MVD was (0.70 ± 0.95)/100 folds field of vision, the expressions of MMP-2 and MMP-9 were negative] (t' = 2.039, P < 0.05; χ(2) = 5.550, P < 0.05; χ(2) = 8.315, P < 0.01), the solid subtypes had more MVD [(26.12 ± 5.32)/100 folds field of vision] and higher positive rates of MMP-2 (62.5%, 15/24) and MMP-9 (79.2%, 19/24) than the cribriform-tubular subtypes (t' = 2.060, P < 0.05; χ(2) = 4.950, P < 0.05; χ(2) = 9.439, P < 0.05); the recurrent lesions had more MVD and higher positive rate of MMP-2 and MMP-9 than the primary lesions (t' = 2.129, P < 0.05; χ(2) = 9.899, P < 0.05; χ(2) = 8.103, P < 0.05). The number of MVD in ACC of lacrimal gland patients was correlated with the positive rate of MMP-2 and MMP-9 respectively (rs = 0.636, P < 0.05; rs = 0.524, P < 0.05). The number of MVD and the expression of MMP-2 and MMP-9 are higher level in adenoid cystic carcinoma of lacrimal gland and are significantly correlated with pathological type and recurrence. Detecting the number of MVD and the expression of MMP-2 and MMP-9 may become biological indexes for malignancy, recurrence and metastasis of adenoid cystic carcinoma of lacrimal gland.
Ritz, Marie-Françoise; Grond-Ginsbach, Caspar; Engelter, Stefan; Lyrer, Philippe
2012-02-01
Cerebral small vessel disease (SVD) is an important cause of stroke, cognitive decline and vascular dementia (VaD). It is associated with diffuse white matter abnormalities and small deep cerebral ischemic infarcts. The molecular mechanisms involved in the development and progression of SVD are unclear. As hypertension is a major risk factor for developing SVD, Spontaneously Hypertensive Rats (SHR) are considered an appropriate experimental model for SVD. Prior work suggested an imbalance between the number of blood microvessels and astrocytes at the level of the neurovascular unit in 2-month-old SHR, leading to neuronal hypoxia in the brain of 9-month-old animals. To identify genes and pathways involved in the development of SVD, we compared the gene expression profile in the cortex of 2 and 9-month-old of SHR with age-matched normotensive Wistar Kyoto (WKY) rats using microarray-based technology. The results revealed significant differences in expression of genes involved in energy and lipid metabolisms, mitochondrial functions, oxidative stress and ischemic responses between both groups. These results strongly suggest that SHR suffer from chronic hypoxia, and therefore are unable to tolerate ischemia-like conditions, and are more vulnerable to high-energy needs than WKY. This molecular analysis gives new insights about pathways accounting for the development of SVD.
Boosting the signal: Endothelial inward rectifier K+ channels.
Jackson, William F
2017-04-01
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of K IR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K + channel (K IR ) currents display a region of negative slope conductance at membrane potentials positive to the K + equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting K IR to amplify hyperpolarization induced by other K + channels and ion transporters. Increases in extracellular K + concentration activate K IR allowing them to sense extracellular K + concentration and transduce this change into membrane hyperpolarization. These properties position K IR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of K IR in capillaries in electrically active tissues may allow K IR to sense extracellular K + , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial K IR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future. © 2016 John Wiley & Sons Ltd.
Guo, Muyi; Cai, Yan; Yao, Xinke; Li, Zhiyong
2018-08-07
Observational studies have identified angiogenesis from the adventitial vasa vasorum and intraplaque hemorrhage (IPH) as critical factors in atherosclerotic plaque progression and destabilization. Here we propose a mathematical model incorporating intraplaque neovascularization and hemodynamic calculation with plaque destabilization for the quantitative evaluation of the role of neoangiogenesis and IPH in the vulnerable atherosclerotic plaque formation. An angiogenic microvasculature is generated by two-dimensional nine-point discretization of endothelial cell proliferation and migration from the vasa vasorum. Three key cells (endothelial cells, smooth muscle cells and macrophages) and three key chemicals (vascular endothelial growth factors, extracellular matrix and matrix metalloproteinase) are involved in the plaque progression model, and described by the reaction-diffusion partial differential equations. The hemodynamic calculation of the microcirculation on the generated microvessel network is carried out by coupling the intravascular, interstitial and transvascular flow. The plasma concentration in the interstitial domain is defined as the description of IPH area according to the diffusion and convection with the interstitial fluid flow, as well as the extravascular movement across the leaky vessel wall. The simulation results demonstrate a series of pathophysiological phenomena during the vulnerable progression of an atherosclerotic plaque, including the expanding necrotic core, the exacerbated inflammation, the high microvessel density (MVD) region at the shoulder areas, the transvascular flow through the capillary wall and the IPH. The important role of IPH in the plaque destabilization is evidenced by simulations with varied model parameters. It is found that the IPH can significantly speed up the plaque vulnerability by increasing necrotic core and thinning fibrous cap. In addition, the decreased MVD and vessel permeability may slow down the process of plaque destabilization by reducing the IPH dramatically. We envision that the present model and its future advances can serve as a valuable theoretical platform for studying the dynamic changes in the microenvironment during the plaque destabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun
2010-09-01
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woo Ho; Lee, Sun Hee; Jung, Myung Hwan
2009-08-01
The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression ismore » significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.« less
Dual-wavelength photothermal optical coherence tomography for blood oxygen saturation measurement
NASA Astrophysics Data System (ADS)
Yin, Biwei; Kuranov, Roman V.; McElroy, Austin B.; Milner, Thomas E.
2013-03-01
We report design and demonstration of a dual wavelength photothermal (DWP) optical coherence tomography (OCT) system for imaging of a phantom microvessel and measurement of hemoglobin oxygen saturation (SO2) level. The DWP-OCT system contains a swept-source (SS) two-beam phase-sensitive (PhS) OCT system (1060 nm) and two intensity modulated photothermal excitation lasers (770 nm and 800 nm). The PhS-OCT probe beam (1060 nm) and photothermal excitation beams are combined into one single-mode optical fiber. A galvanometer based two-dimensional achromatic scanning system is designed to provide 14 μm lateral resolution for the PhS-OCT probe beam (1060 nm) and 13 μm lateral resolution for photothermal excitation beams. DWP-OCT system's sensitivity is 102 dB, axial resolution is 13 μm in tissue and uses a real-time digital dispersion compensation algorithm. Noise floor for optical pathlength measurements is 300 pm in the signal frequency range (380-400 Hz) of photothermal modulation frequencies. Blood SO2 level is calculated from measured optical pathlength (op) signal in a 300 μm diameter microvessel phantom introduced by the two photothermal excitation beams. En-face and B-scan images of a phantom microvessel are recorded, and six blood samples' SO2 levels are measured using DWP-OCT and compared with values provided by a commercial blood oximeter. A mathematical model indicates thermal diffusion introduces a systematic artifact that over-estimates SO2 values and is consistent with measured data.
A standalone perfusion platform for drug testing and target validation in micro-vessel networks
Zhang, Boyang; Peticone, Carlotta; Murthy, Shashi K.; Radisic, Milica
2013-01-01
Studying the effects of pharmacological agents on human endothelium includes the routine use of cell monolayers cultivated in multi-well plates. This configuration fails to recapitulate the complex architecture of vascular networks in vivo and does not capture the relationship between shear stress (i.e. flow) experienced by the cells and dose of the applied pharmacological agents. Microfluidic platforms have been applied extensively to create vascular systems in vitro; however, they rely on bulky external hardware to operate, which hinders the wide application of microfluidic chips by non-microfluidic experts. Here, we have developed a standalone perfusion platform where multiple devices were perfused at a time with a single miniaturized peristaltic pump. Using the platform, multiple micro-vessel networks, that contained three levels of branching structures, were created by culturing endothelial cells within circular micro-channel networks mimicking the geometrical configuration of natural blood vessels. To demonstrate the feasibility of our platform for drug testing and validation assays, a drug induced nitric oxide assay was performed on the engineered micro-vessel network using a panel of vaso-active drugs (acetylcholine, phenylephrine, atorvastatin, and sildenafil), showing both flow and drug dose dependent responses. The interactive effects between flow and drug dose for sildenafil could not be captured by a simple straight rectangular channel coated with endothelial cells, but it was captured in a more physiological branching circular network. A monocyte adhesion assay was also demonstrated with and without stimulation by an inflammatory cytokine, tumor necrosis factor-α. PMID:24404058
Blood Vessel Adaptation with Fluctuations in Capillary Flow Distribution
Hu, Dan; Cai, David; Rangan, Aaditya V.
2012-01-01
Throughout the life of animals and human beings, blood vessel systems are continuously adapting their structures – the diameter of vessel lumina, the thickness of vessel walls, and the number of micro-vessels – to meet the changing metabolic demand of the tissue. The competition between an ever decreasing tendency of luminal diameters and an increasing stimulus from the wall shear stress plays a key role in the adaptation of luminal diameters. However, it has been shown in previous studies that the adaptation dynamics based only on these two effects is unstable. In this work, we propose a minimal adaptation model of vessel luminal diameters, in which we take into account the effects of metabolic flow regulation in addition to wall shear stresses and the decreasing tendency of luminal diameters. In particular, we study the role, in the adaptation process, of fluctuations in capillary flow distribution which is an important means of metabolic flow regulation. The fluctuation in the flow of a capillary group is idealized as a switch between two states, i.e., an open-state and a close-state. Using this model, we show that the adaptation of blood vessel system driven by wall shear stress can be efficiently stabilized when the open time ratio responds sensitively to capillary flows. As micro-vessel rarefaction is observed in our simulations with a uniformly decreased open time ratio of capillary flows, our results point to a possible origin of micro-vessel rarefaction, which is believed to induce hypertension. PMID:23029014
Finnie, J W; Manavis, J; Chidlow, G
2014-01-01
The epsilon toxin elaborated by Clostridium perfringens type D in the intestine of domestic livestock is principally responsible for the neurological disease produced after its absorption in excessive quantities into the systemic circulation. The fundamental basis of the cerebral damage induced by epsilon toxin appears to be microvascular injury with ensuing severe, diffuse vasogenic oedema. Endothelial barrier antigen (EBA), which is normally expressed by virtually all capillaries and venules in the rat brain, was used in this study as a marker of blood-brain barrier (BBB) integrity. After exposure to high levels of circulating epsilon toxin, there was substantial loss of EBA in many brain microvessels, attended by widespread plasma albumin extravasation. These results support microvascular injury and subsequent BBB breakdown as a key factor in the pathogenesis of epsilon toxin-induced neurological disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
2012-01-01
Background Rheumatoid arthritis (RA) is associated with increased morbidity and mortality from cardiovascular disease (CVD). This can be only partially attributed to traditional CVD risk factors such as dyslipidaemia and their downstream effects on endothelial function. The most common lipid abnormality in RA is reduced levels of high-density lipoprotein (HDL) cholesterol, probably due to active inflammation. In this longitudinal study we hypothesised that anti-tumor necrosis factor-α (anti-TNFα) therapy in patients with active RA improves HDL cholesterol, microvascular and macrovascular endothelial function. Methods Twenty-three RA patients starting on anti-TNFα treatment were assessed for HDL cholesterol level, and endothelial-dependent and -independent function of microvessels and macrovessels at baseline, 2-weeks and 3 months of treatment. Results Disease activity (CRP, fibrinogen, DAS28) significantly decreased during the follow-up period. There was an increase in HDL cholesterol levels at 2 weeks (p < 0.05) which was paralleled by a significant increase in microvascular endothelial-dependent function (p < 0.05). However, both parameters returned towards baseline at 12 weeks. Conclusion Anti-TNFα therapy in RA patients appears to be accompanied by transient but significant improvements in HDL cholesterol levels, which coexists with an improvement in microvascular endothelial-dependent function. PMID:22824166
Qosa, Hisham; Abuznait, Alaa H.; Hill, Ronald A.; Kaddoumi, Amal
2014-01-01
Rifampicin and caffeine are widely used drugs with reported protective effect against Alzheimer’s disease (AD). However, the mechanism underlying this effect is incompletely understood. In this study, we have hypothesized that enhanced amyloid-β (Aβ) clearance from the brain across the blood-brain barrier (BBB) of wild-type mice treated with rifampicin or caffeine is caused by both drugs potential to upregulate low-density lipoprotein receptor related protein-1 (LRP1) and/or P-glycoprotein (P-gp) at the BBB. Expression studies of LRP1 and P-gp in brain endothelial cells and isolated mice brain microvessels following treatment with rifampicin or caffeine demonstrated both drugs as P-gp inducers, and only rifampicin as an LRP1 inducer. Also, brain efflux index (BEI%) studies conducted on C57BL/6 mice treated with either drug to study alterations in Aβ clearance demonstrated the BEI% of Aβ in rifampicin (82.4 ± 4.3%) and caffeine (80.4 ± 4.8%) treated mice were significantly higher than those of control mice (62.4 ±6.1%, p <0.01). LRP1 and P-gp inhibition studies confirmed the importance of both proteins to the clearance of Aβ, and that enhanced clearance following drugs treatment was caused by LRP1 and/or P-gp upregulation at the mouse BBB. Furthermore, our results provided evidence for the presence of a yet to be identified transporter/receptor that plays significant role in Aβ clearance and is upregulated by caffeine and rifampicin. In conclusion, our results demonstrated the upregulation of LRP1 and P-gp at the BBB by rifampicin and caffeine enhanced brain Aβ clearance, and this effect could explain, at least in part, the protective effect of rifampicin and caffeine against AD. PMID:22504320
Luo, Yong; Azad, Abul Kalam; Karanika, Styliani; Basourakos, Spyridon P.; Zuo, Xuemei; Wang, Jianxiang; Yang, Luan; Yang, Guang; Korentzelos, Dimitrios; Yin, Jianhua; Park, Sanghee; Zhang, Penglie; Campbell, James J.; Schall, Thomas J.; Cao, Guangwen; Li, Likun
2018-01-01
Previous studies have shown that increased levels of chemokine receptor CXCR7 are associated with the increased invasiveness of prostate cancer cells. We now show that CXCR7 expression is upregulated in VCaP and C4‐2B cells after enzalutamide (ENZ) treatment. ENZ treatment induced apoptosis (sub‐G1) in VCaP and C4‐2B cells, and this effect was further increased after combination treatment with ENZ and CCX771, a specific CXCR7 inhibitor. The levels of p‐EGFR (Y1068), p‐AKT (T308) and VEGFR2 were reduced after ENZ and CCX771 combination treatment compared to single agent treatment. In addition, significantly greater reductions in migration were shown after combination treatment compared to those of single agents or vehicle controls, and importantly, similar reductions in the levels of secreted VEGF were also demonstrated. Orthotopic VCaP xenograft growth and subcutaneous MDA133‐4 patient‐derived xenograft (PDX) tumor growth was reduced by single agent treatment, but significantly greater suppression was observed in the combination treatment group. Although overall microvessel densities in the tumor tissues were not different among the different treatment groups, a significant reduction in large blood vessels (>100 μm2) was observed in tumors following combination treatment. Apoptotic indices in tumor tissues were significantly increased following combination treatment compared with vehicle control‐treated tumor tissues. Our results demonstrate that significant tumor suppression mediated by ENZ and CXCR7 combination treatment may be due, in part, to reductions in proangiogenic signaling and in the formation of large blood vessels in prostate cancer tumors. PMID:29277895
Antitumor activity of combined endostatin and thymidine kinase gene therapy in C6 glioma models.
Chen, Yan; Huang, Honglan; Yao, Chunshan; Su, Fengbo; Guan, Wenming; Yan, Shijun; Ni, Zhaohui
2016-09-01
The combination of Endostatin (ES) and Herpes Simplex Virus thymidine kinase (HSV-TK) gene therapy is known to have antitumor activity in bladder cancer. The potential effect of ES and TK therapy in glioma has not yet been investigated. In this study, pTK-internal ribosome entry site (IRES), pIRES-ES, and pTK-IRES-ES plasmids were constructed; pIRES empty vector served as the negative control. The recombinant constructs were transfected into human umbilical vein endothelial cells (HUVECs) ECV304 and C6 rat glioma cell line. Ganciclovir (GCV) was used to induce cell death in transfected C6 cells. We found that ECV304 cells expressing either ES or TK-ES showed reduced proliferation, decreased migration capacity, and increased apoptosis, as compared to untransfected cells or controls. pTK-IRES-ES/GCV or pTK-IRES/GCV significantly suppressed cell proliferation and induced cell apoptosis in C6 cells, as compared to the control. In addition, the administration of pIRES-ES, pTK-IRES/GCV, or pTK-IRES-ES/GCV therapy improved animal activity and behavior; was associated with prolonged animal survival, and a lower microvessel density (MVD) value in tumor tissues of C6 glioma rats. In comparison to others, dual gene therapy in form of pTK-IRES-ES/GCV had a significant antitumor activity against C6 glioma. These findings indicate combined TK and ES gene therapy was associated with a superior antitumor efficacy as compared to single gene therapy in C6 glioma. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Hasina, Rifat; Martin, Leslie E; Kasza, Kristen; Jones, Colleen L; Jalil, Asif; Lingen, Mark W
2009-04-01
Despite numerous advances, the 5-year survival rate for head and neck squamous cell cancer (HNSCC) has remained largely unchanged. This poor outcome is due to several variables, including the development of multiple primary tumors. Therefore, it is essential to supplement early detection with preventive strategies. Using the 4-nitroquinoline 1-oxide (4-NQO) mouse model, we sought to define an appropriate dose and duration of administration that would predict the histologic timeline of HNSCC progression. Additionally, we sought to determine the timing of the onset of the angiogenic phenotype. Finally, using ABT-510 as a proof-of-principle drug, we tested the hypothesis that inhibitors of angiogenesis can slow/delay the development of HNSCC. We determined that 8 weeks of 100 microg/mL 4-NQO in the drinking water was the optimal dosage and duration to cause a sufficient incidence of hyperkeratoses, dysplasias, and HNSCC over a period of 32 weeks with minimal morbidity and mortality. Increased microvessel density and vascular endothelial growth factor expression in hyperkeratotic lesions provided evidence that the initiation of the angiogenic phenotype occurred before the development of dysplasia. Importantly, ABT-510 significantly decreased the overall incidence of HNSCC from 37.3% to 20.3% (P = 0.021) as well as the combined incidence of dysplasia and HNSCC from 82.7% to 50.6% (P < 0.001). These findings suggest that our refinement of the 4-NQO model allows for the investigation of the histologic, molecular, and biological alterations that occur during the premalignant phase of HNSCC. In addition, these data support the hypothesis that inhibitors of angiogenesis may be promising chemopreventive agents.
Quantitative contrast-enhanced mammography for contrast medium kinetics studies
NASA Astrophysics Data System (ADS)
Arvanitis, C. D.; Speller, R.
2009-10-01
Quantitative contrast-enhanced mammography, based on a dual-energy approach, aims to extract quantitative and temporal information of the tumour enhancement after administration of iodinated vascular contrast media. Simulations using analytical expressions and optimization of critical parameters essential for the development of quantitative contrast-enhanced mammography are presented. The procedure has been experimentally evaluated using a tissue-equivalent phantom and an amorphous silicon active matrix flat panel imager. The x-ray beams were produced by a tungsten target tube and spectrally shaped using readily available materials. Measurement of iodine projected thickness in mg cm-2 has been performed. The effect of beam hardening does not introduce nonlinearities in the measurement of iodine projected thickness for values of thicknesses found in clinical investigations. However, scattered radiation introduces significant deviations from slope equal to unity when compared with the actual iodine projected thickness. Scatter correction before the analysis of the dual-energy images provides accurate iodine projected thickness measurements. At 10% of the exposure used in clinical mammography, signal-to-noise ratios in excess of 5 were achieved for iodine projected thicknesses less than 3 mg cm-2 within a 4 cm thick phantom. For the extraction of temporal information, a limited number of low-dose images were used with the phantom incorporating a flow of iodinated contrast medium. The results suggest that spatial and temporal information of iodinated contrast media can be used to indirectly measure the tumour microvessel density and determine its uptake and washout from breast tumours. The proposed method can significantly improve tumour detection in dense breasts. Its application to perform in situ x-ray biopsy and assessment of the oncolytic effect of anticancer agents is foreseeable.
Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P
2016-01-01
Background and Purpose It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O′‐acac)(γ‐acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non‐genomic targets, on human renal carcinoma and compared them with those of the well‐established anticancer drug, cisplatin. Experimental Approach Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki‐1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Key Results Treatment of the Caki‐1 cells with cisplatin or [Pt(DMS)] resulted in a dose‐dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. Conclusions and Implications The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. PMID:27351124
Muscella, A; Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P
2016-09-01
It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non-genomic targets, on human renal carcinoma and compared them with those of the well-established anticancer drug, cisplatin. Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki-1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Treatment of the Caki-1 cells with cisplatin or [Pt(DMS)] resulted in a dose-dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. © 2016 The British Pharmacological Society.
Forest, Valérie; Peoc'h, Michel; Campos, Lydia; Guyotat, Denis; Vergnon, Jean-Michel
2006-10-01
In the treatment of lung cancers, a local cryotherapy can be proposed as a palliative option for bronchial clearance. But this therapy can also be used as an adjuvant treatment, for instance in association with chemotherapy. We have already demonstrated differential biological effects of these therapies and the benefit to combine them. The aim of this study was to determine if this benefit observed at a molecular level was correlated with tumour growth. As vascular changes occur after cryotherapy, intratumoral angiogenesis was also studied. Cells from the A549 cell line were inoculated into SCID mice. Tumours were treated by cryotherapy (nitrous oxide cryoprobe), chemotherapy (injection of Vinorelbine) or both. Tumour growth was studied in each group and the T/C ratios were compared. Tumours treated by cryochemotherapy presented a significantly reduced volume and the lower T/C ratio, confirming the benefit of a combined treatment. Angiogenesis was assessed at variable time points after cryotherapy by immunohistochemical staining of VEGF and western blot analysis. A late cryo-induced angiogenesis was observed 8-15 days after treatment (expression of VEGF increased from 13% in untreated tumours to 77 and 70%, respectively). To determine if this hypervascularization could enhance the efficiency of chemotherapy, the drug was injected 15 days after cryotherapy and the induction of cell death was investigated (morphological study, immunohistochemical staining of cleaved caspase-3, TUNEL). Necrosis was increased but not apoptosis, suggesting that though a crucial parameter, intratumoral microvessel density is not the only factor to consider to reach an optimal efficiency of a combined treatment.
Yang, Lei; Hu, Shusheng; Tan, Jinjing; Zhang, Xiaojing; Yuan, Wen; Wang, Qian; Xu, Lingling; Liu, Jian; Liu, Zheng; Jia, Yanjun; Huang, Xiaoxi
2016-09-20
PSG9 is a member of the pregnancy-specific glycoprotein (PSG) family and has been shown to contribute to the progression of colorectal cancer (CRC) and cancer-related angiogenesis. Here, we aim to investigate abnormal PSG9 levels in patients with CRC and to emphasize the role of PSG9 in driving tumorigenesis. Serum from 140 patients with CRC and 125 healthy controls as well as 74 paired tumors and adjacent normal tissue were used to determine PSG9 levels. We discovered that PSG9 was significantly increased in serum (P<0.001) and in tumor tissues (P<0.001) from patients with CRC. Interestingly, the increased PSG9 levels correlated with poor survival (P=0.009) and microvessel density (MVD) (P=0.034). The overexpression of PSG9 strongly promoted the proliferation and migration of HCT-116 and HT-29 cells. However, PSG9 depletion inhibited the proliferation of SW-480 cells. Using a human umbilical vein endothelial cell tube-forming assay, we found that PSG9 promoted angiogenesis. The overexpression of PSG9 also increased the growth of tumor xenografts in nude mice. Co-immunoprecipitation experiments revealed that PSG9 was bound to SMAD4. The PSG9/SMAD4 complex recruited cytoplasmic SMAD2/3 to form a complex, which enhanced SMAD4 nuclear retention. The PSG9 and SMAD4 complex activated the expression of multiple angiogenesis-related genes (included IGFBP-3, PDGF-AA, GM-CSF, and VEGFA). Together, our findings illustrate the innovative mechanism by which PSG9 drives the progression of CRC and tumor angiogenesis. This occurs via nuclear translocation of PSG9/SMAD4, which activates angiogenic cytokines. Therefore, our study may provide evidence for novel treatment strategies by targeting PSG9 in antiangiogenic cancer therapy.
Solorzano, C C; Baker, C H; Tsan, R; Traxler, P; Cohen, P; Buchdunger, E; Killion, J J; Fidler, I J
2001-08-01
We determined the optimal administration schedule of a novel epidermal growth factor receptor (EGFR) protein tyrosine kinase inhibitor (PKI), PKI 166 (4-(R)-phenethylamino-6-(hydroxyl)phenyl-7H-pyrrolo[2.3-d]-pyrimidine), alone or in combination with gemcitabine (administered i.p.) for therapy of L3.6pl human pancreatic carcinoma growing in the pancreas of nude mice. Seven days after orthotopic implantation of L3.6pl cells, the mice received daily oral doses of PKI 166. PKI 166 therapy significantly inhibited phosphorylation of the EGFR without affecting EGFR expression. EGFR phosphorylation was restored 72 h after cessation of therapy. Seven days after orthotopic injection of L3.6pl cells, groups of mice received daily or thrice weekly oral doses of PKI 166 alone or in combination with gemcitabine. Treatment with PKI 166 (daily), PKI 166 (3 times/week), or gemcitabine alone produced a 72%, 69%, or 70% reduction in the volume of pancreatic tumors in mice, respectively. Daily oral PKI 166 or thrice weekly oral PKI 166 in combination with injected gemcitabine produced 97% and 95% decreases in volume of pancreatic cancers and significant inhibition of lymph node and liver metastasis. Daily oral PKI 166 produced a 20% decrease in body weight, whereas treatment 3 times/week did not. Decreased microvessel density, decreased proliferating cell nuclear antigen staining, and increased tumor cell and endothelial cell apoptosis correlated with therapeutic success. Collectively, our results demonstrate that three weekly oral administrations of an EGFR tyrosine kinase inhibitor in combination with gemcitabine are sufficient to significantly inhibit primary and metastatic human pancreatic carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hai-dong; Cui, Guo-hong; Yang, Jia-jun
Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. Thismore » designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.« less
Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis
2015-01-01
Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.
Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.
2015-01-01
Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383
Pysz, Marybeth A; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K
2012-09-01
To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.
Han, Dongdong; Cao, Chengjie; Su, Ya; Wang, Jun; Sun, Jian; Chen, Huasheng; Xu, Aihua
2016-11-04
A fruit of Ginkgo biloba L. also known as Ginkgo biloba, can be used for the treatment of cancer in Chinese traditional medicine. The scientific name of succulent skin, which is the episperm of Ginkgo nuts, is exocarp. Experiment shows that Ginkgo biloba exocarp extracts (GBEE) has the effects of immune promotion, cancer inhibition and etc. Study on the activity of GBEE against Lewis lung cancer (LLC) angiogenesis and its partial molecular mechanism. The effect of GBEE on proliferation of LLC cells was detected by MTT method in vitro. The metastasis model of LLC was set up. The C57BL/6J mice were randomly separated into normal control, model control, positive control and GBEE (50, 100, 200mg/kg) treatment groups, n=10. The mice in normal group and model group were both intragastric gavage (i.g.) normal saline (NS) in a volume of 0.1mL/10g (b.w.), positive group were intraperitoneal (i.p.) injection cyclophosphamide (CPA) at a dose of 20mg/kg (b.w.) , the GBEE treatment groups were respectively i.g. GBEE 50, 100, and 200mg/kg (b.w.), once a day for 20d. After treatment, we calculated the tumor inhibition rate and anti-metastasis rate. The microvessel density (MVD) was measured by immunohistochemistry method in transplanted tumor. The expression levels of vascular en-dothelial growth factor (VEGF) and VEGFR2 mRNA or Wnt3a, β-catenin, VEGF, VEGFR2 and p-Akt/Akt protein expression were respectively tested by Quantitative Reverse transcription Polymerase chain reaction (qRT-PCR) or western blot in vitro and vivo. GBEE suppressed the growth of LLC cells in a dose-dependent way at the dose of 5, 10, 20, 40, 80 and 160µg/mL in vitro. It can suppressed Wnt3a and β-catenin protein expression and the content of mRNA of VEGF and VEGFR2 in LLC cells significantly. In vivo, we discovered GBEE can retard the growth of LLC transplanted tumor in a dose-dependent way at the dose of 50, 100, 200mg/kg, suppressing tumor lung metastasis. The expression of CD34 was reduced, which means MVD was inhibited and so do β-catenin, VEGF, VEGFR2 and p-AKT/AKT protein expression and VEGF and VEGFR2 mRNA expression levels in LLC transplanted tumor of C57BL/6 mice. GBEE played the effects of anti-tumor and anti-metastatic depending upon the inhibition of tumor angiogenesis, which may be closely relevant to its effect in blockage of Wnt /β-catenin-VEGF signaling pathway in LLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Menssen, Hans D; Harnack, Ulf; Erben, Ulrike; Neri, Dario; Hirsch, Burkhard; Dürkop, Horst
2018-03-01
To analyze the impact of TNFα or IL2 on human lymphocytes in vitro and the anti-tumor and immune-modifying effects of L19-IL2 and L19-TNFα on subcutaneously growing J558L myeloma in immunocompetent mice. PBMCs from three healthy volunteers were incubated with IL2, TNFα, or with IL2 plus addition of TNFα (final 20 h). BALB/c J558L mice with subcutaneous tumors were treated with intravenous L19-TNFα plus L19-IL2, or controls. Tumor growth and intra- and peri-tumoral tissues were analyzed for micro-vessel density, necrosis, immune cell composition, and PD1 or PD-L1 expressing cells. Exposure of PBMC in vitro to IL2, TNFα, or to IL2 over 3 and 5 days plus TNFα for the final 20 h resulted in an approximately 50 and 75% reduction of the CD25low effector cell/CD25high Treg cell ratio, respectively, compared to medium control. IL2 or TNFα increased the proportion of CD4- CD25low effector lymphocytes while reducing the proportion of CD4+ CD25low Teff cells. In the J558L myeloma model, tumor eradication was observed in 58, 42, 25, and 0% of mice treated with L19-TNFα plus L19-IL2, L19-TNFα, L19-IL2, and PBS, respectively. L19-TNFα/L19-IL2 combination caused tumor necrosis, capillary density doubling, peri-tumoral T cell and PD1+ T cell reduction (- 50%), and an increase in PD-L1+ myeloma cells. IL2, TNFα, or IL2 plus TNFα (final 20 h) increased the proportion of CD4- CD25low effector lymphocytes possibly indicating immune activation. L19-TNFα/L19-IL2 combination therapy eradicated tumors in J558L myeloma BALB/c mice likely via TNFα-induced tumor necrosis and L19-TNFα/L19-IL2-mediated local cellular immune reactions.
Essential role of interleukin-6 in post-stroke angiogenesis
Gertz, Karen; Kronenberg, Golo; Kälin, Roland E.; Baldinger, Tina; Werner, Christian; Balkaya, Mustafa; Eom, Gina D.; Hellmann-Regen, Julian; Kröber, Jan; Miller, Kelly R.; Lindauer, Ute; Laufs, Ulrich; Dirnagl, Ulrich; Heppner, Frank L.
2012-01-01
Ambivalent effects of interleukin-6 on the pathogenesis of ischaemic stroke have been reported. However, to date, the long-term actions of interleukin-6 after stroke have not been investigated. Here, we subjected interleukin-6 knockout (IL-6−/−) and wild-type control mice to mild brain ischaemia by 30-min filamentous middle cerebral artery occlusion/reperfusion. While ischaemic tissue damage was comparable at early time points, IL-6−/− mice showed significantly increased chronic lesion volumes as well as worse long-term functional outcome. In particular, IL-6−/− mice displayed an impaired angiogenic response to brain ischaemia with reduced numbers of newly generated endothelial cells and decreased density of perfused microvessels along with lower absolute regional cerebral blood flow and reduced vessel responsivity in ischaemic striatum at 4 weeks. Similarly, the early genomic activation of angiogenesis-related gene networks was strongly reduced and the ischaemia-induced signal transducer and activator of transcription 3 activation observed in wild-type mice was almost absent in IL-6−/− mice. In addition, systemic neoangiogenesis was impaired in IL-6−/− mice. Transplantation of interleukin-6 competent bone marrow into IL-6−/− mice (IL-6chi) did not rescue interleukin-6 messenger RNA expression or the early transcriptional activation of angiogenesis after stroke. Accordingly, chronic stroke outcome in IL-6chi mice recapitulated the major effects of interleukin-6 deficiency on post-stroke regeneration with significantly enhanced lesion volumes and reduced vessel densities. Additional in vitro experiments yielded complementary evidence, which showed that after stroke resident brain cells serve as the major source of interleukin-6 in a self-amplifying network. Treatment of primary cortical neurons, mixed glial cultures or immortalized brain endothelia with interleukin 6-induced robust interleukin-6 messenger RNA transcription in each case, whereas oxygen–glucose deprivation did not. However, oxygen–glucose deprivation of organotypic brain slices resulted in strong upregulation of interleukin-6 messenger RNA along with increased transcription of key angiogenesis-associated genes. In conclusion, interleukin-6 produced locally by resident brain cells promotes post-stroke angiogenesis and thereby affords long-term histological and functional protection. PMID:22492561
The vascularization pattern of acellular nerve allografts after nerve repair in Sprague-Dawley rats.
Zhu, Zhaowei; Huang, Yanyan; Zou, Xiaoyan; Zheng, Canbin; Liu, Jianghui; Qiu, Longhai; He, Bo; Zhu, Qingtang; Liu, Xiaolin
2017-11-01
We have demonstrated that angiogenesis in acellular nerve allografts (ANAs) can promote neuroregeneration. The present study aimed to investigate the microvascular regeneration pattern of ANAs in Sprague-Dawley (SD) rats. Sixty male SD rats were randomly divided into an autologous group and a rat acellular nerve allograft group (rANA), and 10-mm sciatic nerve defects were induced in these rats. On the 7th, 14th and 21st days after surgery, systemic perfusion with Evans Blue (EB) or lead oxide was performed on the rats through carotid intubation. Samples were then collected for gross observation, and the microvessels in the nerves were reconstructed through microscopic CT scans using MIMICS software. The vascular volume fraction (VF, %) and microvessel growth rate (V, mm/d) in both groups were then measured, and 1 month after surgery, NF-200 staining was performed to observe and compare the growth condition of the axons. Early post-operative perfusion with gelatin/EB showed EB permeation around the acellular nerve. Perfusion with gelatin/lead oxide showed that the blood vessels had grown into the allograft from both ends 7 days after the operation. Fourteen days after the operation, the microvessel growth rate of the autologous group was faster than that of the rANA group (0.39 ± 0.17 mm/d vs. 0.26 ± 0.14 mm/d, p < 0.05), and the vascular VF was also higher than that of the rANA group (8.92% ± 1.54% vs. 6.31% ± 1.21%, p < 0.05). Twenty-one days after the operation, the blood vessels at both ends of the allograft had connected to form a microvessel network. The growth rate was not significantly different between the two groups; however, the vascular VF of the autologous group was higher than that of the rANA group (12.18% ± 2.27% vs. 9.92% ± 0.84%, p < 0.05). One month after the operation, the NF-200 fluorescence (IOD) in the autologous group significantly increased compared with that of the rANA group (540,278 ± 17,424 vs. 473,310 ± 14,636, respectively, p < 0.05), suggesting that the results of the repair after nerve injury were significantly better in the autologous group than in the rANA group. Both the autologous nerve and ANAs rely on the permeation of tissue fluids to supply nutrients during the early stage, and microvessel growth mainly starts at both ends of the graft and enters the graft along the long axis. Compared to ANAs, the growth speed of revascularization in autologous nerve grafts was faster, leading to a better outcome in the autologous nerve group.
[Dynamic change in microcirculation of pancreas after experimental high-voltage electric burn].
Zhang, Qing-fu; Bai, Yong-qiang
2009-10-01
To observe the changes in surface microcirculation of pancreas after high-voltage electric burn (HEB). Thirty rabbits were divided into electrical injury (E) group and control (C) group in a simple random method, with 15 rabbits in each group. Rabbit model of HEB was reproduced from E group with TC-30-20KVA type voltage regulator and YDJ-10KVA type experimental transformer. Rabbits in C group were shamly burned with the same equipment as in E group but not electrified. Intravenous blood of rabbits in both groups was drawn 15 mins before HEB and 0, 1, 2, 4, 8 h after to determine the levels of serum amylase and blood glucose. The morphology of the pancreas microvessels and its surrounding tissues, and the dynamic changes in microvascular blood flow were observed with WX-9 microscope and its image analytical system. The level of serum amylase of rabbits in E group increased gradually and peaked (849 +/- 39) U/L at 8 post HEB h (PHH), which decreased gradually reaching the nadir (153 +/- 21) U/L at 8 PHH in C group (P < 0.05). The blood glucose levels of rabbits in E group and C group increased gradually, with the former level obviously higher than the latter (P < 0.05). Arteriole, venule and capillary network on the surface of pancreatic lobules of rabbits in both groups were clearly seen and well-distributed in the natural way before HEB. In E group, arterioles of rabbits contracted at 0 PHH, and increased gradually in caliber size at 1 PHH; venules of rabbits were unevenly thickened at 2 PHH, and dilated at 8 PHH; the capillaries were contracted or with interrupted flow or completely obstructed at 0 PHH, and their thickness were uneven at 2 PHH, showing exudation at 8 PHH. There was no obvious change of microvessels in rabbits in C group at each time point. There was no exudation and bleeding around the microvessels on the pancreas surface of rabbits in both groups before HEB. In E group exudation was observed around microvessels at 1 PHH, bleeding was observed at 2 PHH and became obvious at 4 PHH; exudation and diffuse bleeding from capillaries were observed at 8 PHH. There was no exudation and bleeding in rabbits in C group as observed at each time point. Before HEB, blood flow speed in microvessels of rabbits in 2 groups was similar to each other (P > 0.05), and no erythrocyte aggregation or microthrombus was found in both groups. In E group, blood flow speed slowed down at 0 PHH as compared with that before HEB, it accelerated at 1 h and slowed down later; erythrocyte aggregation in venules and capillaries was found at 0 PHH, and it aggregated gradually. No above-mentioned change was found in C group. HEB produces microcirculation disturbance and functional disturbance of pancreas.
Deregulation of tumor angiogenesis and blockade of tumor growth in PPARbeta-deficient mice.
Müller-Brüsselbach, Sabine; Kömhoff, Martin; Rieck, Markus; Meissner, Wolfgang; Kaddatz, Kerstin; Adamkiewicz, Jürgen; Keil, Boris; Klose, Klaus J; Moll, Roland; Burdick, Andrew D; Peters, Jeffrey M; Müller, Rolf
2007-08-08
The peroxisome proliferator-activated receptor-beta (PPARbeta) has been implicated in tumorigenesis, but its precise role remains unclear. Here, we show that the growth of syngeneic Pparb wild-type tumors is impaired in Pparb(-/-) mice, concomitant with a diminished blood flow and an abundance of hyperplastic microvascular structures. Matrigel plugs containing pro-angiogenic growth factors harbor increased numbers of morphologically immature, proliferating endothelial cells in Pparb(-/-) mice, and retroviral transduction of Pparb triggers microvessel maturation. We have identified the Cdkn1c gene encoding the cell cycle inhibitor p57(Kip2) as a PPARbeta target gene and a mediator of the PPARbeta-mediated inhibition of cell proliferation, which provides a possible mechanistic explanation for the observed tumor endothelial hyperplasia and deregulation of tumor angiogenesis in Pparb(-/-) mice. Our data point to an unexpected essential role for PPARbeta in constraining tumor endothelial cell proliferation to allow for the formation of functional tumor microvessels.
Live-cell imaging of invasion and intravasation in an artificial microvessel platform.
Wong, Andrew D; Searson, Peter C
2014-09-01
Methods to visualize metastasis exist, but additional tools to better define the biologic and physical processes underlying invasion and intravasation are still needed. One difficulty in studying metastasis stems from the complexity of the interface between the tumor microenvironment and the vascular system. Here, we report the development of an investigational platform that positions tumor cells next to an artificial vessel embedded in an extracellular matrix. On this platform, we used live-cell fluorescence microscopy to analyze the complex interplay between metastatic cancer cells and a functional artificial microvessel that was lined with endothelial cells. The platform recapitulated known interactions, and its use demonstrated the capabilities for a systematic study of novel physical and biologic parameters involved in invasion and intravasation. In summary, our work offers an important new tool to advance knowledge about metastasis and candidate antimetastatic therapies. ©2014 American Association for Cancer Research.
Natarajan, Reka; Northrop, Nicole
2017-01-01
The blood-brain barrier (BBB) is formed in part by vascular endothelial cells that constitute the capillaries and microvessels of the brain. The function of this barrier is to maintain homeostasis within the brain microenvironment and buffer the brain from changes in the periphery. A dysfunction of the BBB would permit circulating molecules and pathogens typically restricted to the periphery to enter the brain and interfere with normal brain function. As increased permeability of the BBB is associated with several neuropathologies, it is important to have a reliable and sensitive method that determines BBB permeability and the degree of BBB disruption. A detailed protocol is presented for assessing the integrity of the BBB by transcardial perfusion of a 10,000 Da FITC labeled dextran molecule and its visualization to determine the degree of extravasation from brain microvessels. PMID:28398646
Microcirculation of the pancreas. A quantitative study of physiology and changes in pancreatitis.
Klar, E; Endrich, B; Messmer, K
1990-02-01
A rabbit model was designed to study the microcirculation of the pancreas with special reference to changes occurring during acute pancreatitis. Intravital microscopy was used in conjunction with video techniques allowing for continuous observation and off-line evaluation of microvessel diameters and blood cell velocities. Based on the microvessel geometry a functional microvascular unit could be defined at the level of the pancreatic lobule consisting of intralobular arteries and veins and an arcade-like preferential pathway framing the capillary network. Experimental acute pancreatitis resulted in immediate leakage of the macromolecular plasma marker (FITC-Dextran 70) from the microvasculature suggesting increased permeability. In contrast to control conditions, pancreatic capillaries were excluded from the circulation during acute pancreatitis starting 30 min after induction with only single capillaries remaining perfused after 3 hours. At the same time, there was constant blood flow through the preferential pathways representing shunt perfusion.
NASA Astrophysics Data System (ADS)
Ishida, Hiroki; Hachiga, Tadashi; Andoh, Tsugunobu; Akiguchi, Shunsuke
2012-11-01
We demonstrate that using micro multipoint laser Doppler velocimetry (μ-MLDV) for noninvasive in-vivo imaging of blood vessels is useful for diagnosing malignant melanomas by comparison with visual diagnosis by dermoscopy. The blood flow velocity in microvessels varied during growth of melanomas transplanted in mouse ears. Mouse ears were observed by μ-MLDV up to 16 days after transplantation. The blood flow velocity in the tumor increased with increasing time and reached maximum of 4.5 mm/s at 9 days, which is more than twice that prior to transplantation. After 12 days, when the lesion had grown to an area of 6.6 mm2, we observed the formation of new blood vessels in the tumor. Finally, when the lesion had an area of 18 mm2 after 16 days, the flow velocity in the tumor decreased to approximately 3.2 mm/s.
Hyperforin acts as an angiogenesis inhibitor.
Schempp, Christoph M; Kiss, Judit; Kirkin, Vladimir; Averbeck, Marco; Simon-Haarhaus, Birgit; Kremer, Bernhard; Termeer, Christian C; Sleeman, Jonathan; Simon, Jan C
2005-11-01
Hyperforin is a plant compound from Hypericum perforatum that inhibits tumor cell proliferation in vitro by induction of apoptosis. Here, we report that hyperforin also acts as an angiogenesis inhibitor in vitro and in vivo. In vitro, hyperforin blocked microvessel formation of human dermal microvascular endothelial cells (HDMEC) on a complex extracellular matrix. Furthermore, hyperforin reduced proliferation of HDMEC in a dose-dependent manner, without displaying toxic effects or inducing apoptosis of the cells. To evaluate the antiangiogenic activity of hyperforin in vivo, Wistar rats were subcutaneously injected with MT-450 mammary carcinoma cells and were treated with peritumoral injections of hyperforin or solvent. Hyperforin significantly inhibited tumor growth, induced apoptosis of tumor cells and reduced tumor vascularization, as shown by in situ staining of CD31-positive microvessels in the tumor stroma. These data suggest that, in addition to the induction of tumor cell apoptosis, hyperforin can also suppress angiogenesis by a direct, non-toxic effect on endothelial cells.
Sakharova, A V; Kalashnikova, L A; Chaĭkovskaia, R P; Mir-Kasimov, M F; Nazarova, M A; Pykhtina, T N; Dobrynina, L A; Patrusheva, N L; Patrushev, L I; Protskiĭ, S V
2012-01-01
Skin and muscles biopsy specimens of a patient harboring A3243G mutation in mitochondrial DNA, with dissection of internal carotid and vertebral arteries, associated with MELAS were studied using histochemical and electron-microscopy techniques. Ragged red fibers, regional variability of SDH histochemical reaction, two types of morphologically atypical mitochondria and their aggregation were found in muscle. There was correlation between SDH histochemical staining and number of mitochondria revealed by electron microscopy in muscle tissue. Similar mitochondrial abnormality, their distribution and cell lesions followed by extra-cellular matrix mineralization were found in the blood vessel walls. In line with generalization of cytopathy process caused by gene mutation it can be supposed that changes found in skin and muscle microvessels also exist in large cerebral vessels causing the vessel wall "weakness", predisposing them to dissection.
Sukmana, Irza
2012-01-01
The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined. PMID:22623881
Mander, K A; Finnie, J W
2018-01-01
Clostridium perfringens type D epsilon toxin (ETX) is a potent neurotoxin producing a severe, and often fatal, neurological disorder in ruminant livestock. Microvascular damage appears to be the fundamental action of ETX in the brain and, recently, similar vascular injury, with subsequent severe vasogenic oedema, has been reported in the retina of rats given ETX. Endothelial barrier antigen (EBA) is a useful marker of an intact blood-brain barrier in rats and it has been shown that loss of EBA immunoreactivity is correlated with ETX-induced cerebral microvascular damage in this species. This paper reports, for the first time, that loss of EBA immunoexpression also occurs in rat retinal microvessels exposed to ETX, the marked reduction in EBA immunopositivity acting as a useful marker for blood-retinal barrier breakdown produced by this neurotoxin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sleep Restriction Impairs Blood–Brain Barrier Function
He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping
2014-01-01
The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222
Sleep restriction impairs blood-brain barrier function.
He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong
2014-10-29
The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. Copyright © 2014 the authors 0270-6474/14/3414697-10$15.00/0.
CCL11 promotes angiogenic activity by activating the PI3K/Akt pathway in HUVECs.
Park, Jun Young; Kang, Yeo Wool; Choi, Byung Young; Yang, Young Chul; Cho, Byung Pil; Cho, Won Gil
2017-08-01
CCR3, the receptor for CCL11, is expressed on the surface of immune cells and even on non-immune cells. CCL11-CCR3 interactions can promote cell migration and proliferation. In this study, we investigated the effect of CCL11 on angiogenesis in HUVECs and also examined the molecular mechanisms of this process. We found that CCL11 induced mRNA transcription and protein expression of CCR3 in HUVECs. Moreover, the scratch wound healing assay and MTS proliferation assay both demonstrated that CCL11 promotes endothelial cell migration and induces weak proliferation. CCL11 directly induced microvessel sprouting from the rat aortic ring; these effects occurred earlier and to a greater extent than with VEGF stimulation. Furthermore, CCL11-induced phosphorylation of Akt was abolished by PI3K inhibitors. siRNA-mediated knockdown of CCR3 led to a significant reduction of PI3K phosphorylation. However, the phosphorylation levels of ERK1/2 were not changed, even after CCL11 treatment. Cumulatively, our data suggest that the CCL11-CCR3 interaction mainly activates PI3K/Akt signal transduction pathway in HUVECs.
Wittig, Christine; Scheuer, Claudia; Parakenings, Julia; Menger, Michael D.; Laschke, Matthias W.
2015-01-01
Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors. PMID:26154255
Wittig, Christine; Scheuer, Claudia; Parakenings, Julia; Menger, Michael D; Laschke, Matthias W
2015-01-01
Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors.
In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis.
Yang, Yunan; Zhang, Yin; Hong, Hao; Liu, Glenn; Leigh, Bryan R; Cai, Weibo
2011-11-01
Angiogenesis is an indispensable process during tumor development. The currently accepted standard method for quantifying tumor angiogenesis is to assess microvessel density (MVD) based on CD105 staining, which is an independent prognostic factor for survival in patients with most solid tumor types. The goal of this study is to evaluate tumor angiogenesis in a mouse model by near-infrared fluorescence (NIRF) imaging of CD105 expression. TRC105, a human/murine chimeric anti-CD105 monoclonal antibody, was conjugated to an NIRF dye (IRDye 800CW; Ex: 778 nm; Em: 806 nm). FACS analysis and microscopy studies were performed to compare the CD105 binding affinity of TRC105 and 800CW-TRC105. In vivo/ex vivo NIRF imaging, blocking studies, and ex vivo histology were performed on 4T1 murine breast tumor-bearing mice to evaluate the ability of 800CW-TRC105 to target tumor angiogenesis. Another chimeric antibody, cetuximab, was used as an isotype-matched control. FACS analysis of human umbilical vein endothelial cells (HUVECs) revealed no difference in CD105 binding affinity between TRC105 and 800CW-TRC105, which was further validated by fluorescence microscopy. 800CW conjugation of TRC105 was achieved in excellent yield (> 85%), with an average of 0.4 800CW molecules per TRC105. Serial NIRF imaging after intravenous injection of 800CW-TRC105 revealed that the 4T1 tumor could be clearly visualized as early as 30 min post-injection. Quantitative region of interest (ROI) analysis showed that the tumor uptake peaked at about 16 h post-injection. Based on ex vivo NIRF imaging at 48 h post-injection, tumor uptake of 800CW-TRC105 was higher than most organs, thus providing excellent tumor contrast. Blocking experiments, control studies with 800CW-cetuximab and 800CW, as well as ex vivo histology all confirmed the in vivo target specificity of 800CW-TRC105. This is the first successful NIRF imaging study of CD105 expression in vivo. Fast, prominent, persistent, and CD105-specific uptake of the probe during tumor angiogenesis was observed in a mouse model. 800CW-TRC105 may be used in the clinic for imaging tumor angiogenesis within the lesions close to the skin surface, tissues accessible by endoscopy, or during image-guided surgery.
Li, Xiao-Hui; Tang, Liang; Liu, Dong; Sun, Hong-Mei; Zhou, Cai-Cun; Tan, Li-Song; Wang, Li-Ping; Zhang, Pei-De; Zhang, Shang-Quan
2006-10-01
Angiogenesis plays an important role in growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is considered as a fundamental regulator for angiogenesis. This study was to construct a recombinant T7 phage vaccine expressing xenogenic VEGF on the capsid, and test its inhibitory effect on Lewis lung cancer cells in mice. VEGF gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR) from human lung cancer tissues, and inserted into phage using T7 Select10-3b kit to construct T7 Select10-3b_VEGF vaccine. The titer of prepared phage reached 1x10(13) pfu/ml. C57BL/6J mice were randomly divided into 3 groups: T7 Select10-3b_VEGF vaccine group (T7-VEGF), T7 phage (T7) group, normal saline (NS) group (10 mice/group). Each mouse was injected with Freundos adjuvant mixed with 1x10(12) pfu/200 microl T7 Select10-3b_VEGF, or T7, or normal saline once a week for 4 weeks. Lewis lung carcinoma model (LL/2) was established in C57BL/6J mice after 4-week immunization. Tumor growth and mouse's physical status were observed during immunization. Tumor weight and serum level of specific anti-VEGF antibody were measured by enzyme-linked immunosorbent assay (ELISA). Microvessel density (MVD) of tumors was detected by immunohistochemistry 14 days after the inoculation of tumor cells. Tumor weight of T7-VEGF vaccine group,T7 group, and NS group were (0.543+/-0.259)g, (0.982+/-0.359)g, (1.169+/-0.460)g, respectively. Tumor weight of T7-VEGF vaccine group was significantly lower than that of NS group (P<0.01). Serum anti-VEGF antibody level in T7-VEGF vaccine group was 1:1,000. MVD was significantly lower in T7-VEGF vaccine group than in NS group (8.5+/-0.8 vs 18.5+/-1.6, P<0.05). MVD in T7 group was 16.4+/-1.3. Recombinant T7 phage vaccine expressing xenogenic VEGF can break immunologic tolerance against self-VEGF and inhibit the growth of Lewis lung cancer cells.
Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong
2016-01-01
The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756
Choi, Chunggab; Kim, Hye Min; Shon, Jeeheun; Park, Jiae; Kim, Hyeong-Taek; Oh, Seung-Hun; Kim, Nam Keun; Kim, Ok Joon
2018-03-04
The blood-brain barrier (BBB) is major obstacle in drug or stem cell treatment in chronic stroke. We hypothesized that adding mannitol to temozolomide (TMZ) is a practically applicable method for resolving the low efficacy of intravenous mannitol therapy. In this study, we investigated whether BBB permeability could be increased by this combined treatment. First, we established a chronic ischemic stroke rat model and examined changes in leakage of Evans blue dye within a lesion site, and in expression of tight junction proteins (TJPs), by this combined treatment. Additionally, in an in vitro BBB model using trans-wells, we analyzed changes in diffusion of a fluorescent tracer and in expression of TJPs. Mannitol-TMZ combined treatment not only increased the amount of Evans blue dye within the stroke lesion site, but also reduced occludin expression in rat brain microvessels. The in vitro study also showed that combined treatment increased the permeability for two different-sized fluorescent tracers, especially large size, and decreased expression of TJPs, such as occludin and ZO-1. Increased BBB permeability effects were more prominent with combined than with single treatments. Mannitol-TMZ combined treatment induced a decrease of TJPs with a consequent increase in BBB permeability. This combined treatment is clinically useful and might provide new therapeutic options by enabling efficient intracerebral delivery of various drugs that could not otherwise be used to treat many CNS diseases due to their inability to penetrate the BBB. Copyright © 2018 Elsevier Inc. All rights reserved.
Gupta, Rajaneesh Kumar; Kanungo, Madhusudan
2013-02-01
Glial cells, besides participating as passive supporting matrix, are also proposed to be involved in the optimization of the interstitial space for synaptic transmission by tight control of ionic and water homeostasis. In adult mouse brain, inwardly rectifying K+ (Kir4.1) and aquaporin-4 (AQP4) channels localize to astroglial endfeets in contact with brain microvessels and glutamate synapses, optimizing clearance of extracellular K(+) and water from the synaptic layers. However, it is still unclear whether there is an age-dependent difference in the expressions of Kir4.1 and AQP4 channels specifically during postnatal development and aging when various marked changes occur in brain and if these changes region specific. RT-PCR and immunoblotting was conducted to compare the relative expression of Kir4.1 and AQP4 mRNA and protein in the early and mature postnatal (0-, 15-, 45-day), adult (20-week), and old age (70-week) mice cerebral and cerebellar cortices. Expressions of Kir4.1 and AQP4 mRNA and protein are very low at 0-day. A pronounced and continuous increase was observed by mature postnatal ages (15-, 45-days). However, in the 70-week-old mice, expressions are significantly up-regulated as compared to 20-week-old mice. Both genes follow the same age-related pattern in both cerebral and cerebellar cortices. The time course and expression pattern suggests that Kir4.1 and AQP4 channels may play an important role in brain K(+) and water homeostasis in early postnatal weeks after birth and during aging.
Frangogiannis, Nikolaos G; Mendoza, Leonardo H; Ren, Guofeng; Akrivakis, Spyridon; Jackson, Peggy L; Michael, Lloyd H; Smith, C Wayne; Entman, Mark L
2003-08-01
Myocardial infarction is associated with the rapid induction of mononuclear cell chemoattractants that promote monocyte infiltration into the injured area. Monocyte-to-macrophage differentiation and macrophage proliferation allow a long survival of monocytic cells, critical for effective healing of the infarct. In a canine infarction-reperfusion model, newly recruited myeloid leukocytes were markedly augmented during early reperfusion (5-72 h). By 7 days, the number of newly recruited myeloid cells was reduced, and the majority of the inflammatory cells remaining in the infarct were mature macrophages. Macrophage colony-stimulating factor (MCSF) is known to facilitate monocyte survival, monocyte-to-macrophage conversion, and macrophage proliferation. We demonstrated marked induction of MCSF mRNA in ischemic segments persisting for at least 5 days after reperfusion. MCSF expression was predominantly localized to mature macrophages infiltrating the infarcted myocardium; the expression of the MCSF receptor, c-Fms, a protein with tyrosine kinase activity, was found in these macrophages but was also observed in a subset of microvessels within the infarct. Many infarct macrophages expressed proliferating cell nuclear antigen, a marker of proliferative activity. In vitro MCSF induced monocyte chemoattractant protein-1 synthesis in canine venous endothelial cells. MCSF-induced endothelial monocyte chemoattractant protein-1 upregulation was inhibited by herbimycin A, a tyrosine kinase inhibitor, and by LY-294002, a phosphatidylinositol 3'-kinase inhibitor. We suggest that upregulation of MCSF in the infarcted myocardium may have an active role in healing not only through its effects on cells of monocyte/macrophage lineage, but also by regulating endothelial cell chemokine expression.
Oxygen gradients in the microcirculation.
Pittman, R N
2011-07-01
Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.
Protein-bounded uremic toxin p-cresylsulfate induces vascular permeability alternations.
Tang, Wei-Hua; Wang, Chao-Ping; Yu, Teng-Hung; Tai, Pei-Yang; Liang, Shih-Shin; Hung, Wei-Chin; Wu, Cheng-Ching; Huang, Sung-Hao; Lee, Yau-Jiunn; Chen, Shih-Chieh
2018-06-01
The goal of the present studies is to investigate that the impact of p-cresylsulfate (PCS) on the endothelial barrier integrity via in situ exposure and systemic exposure. Vascular permeability changes induced by local injection of PCS were evaluated by the techniques of both Evans blue (EB) and India ink tracer. Rats were intravenously injected with EB or India ink followed by intradermal injections of various doses of PCS (0, 0.4, 2, 10 and 50 µmol/site) on rat back skins. At different time points, skin EB was extracted and quantified. The administration of India ink was used to demonstrate leaky microvessels. Skin PCS levels were also determined by liquid chromatography-mass spectrometry. We also investigated whether the increased endothelial leakage occurred in the aortic endothelium in rats treated with 5/6 nephrectomy and intraperitoneal injection of PCS 50 mg/kg/day for 4 weeks. The aortic endothelial integrity was evaluated by increased immunoglobulin G (IgG) leakage. High doses of PCS, but not lower doses, significantly induced vascular leakage as compared to saline injection and EB leakage exhibited in time-dependent manner. A time-correlated increase in leaky microvessels was detected in the tissues examined. The injected PCS declined with time and displayed an inverse relationship with vascular leakage. Chronic kidney disease (CKD) rats administered with PCS, compared to control rats, had significantly higher serum levels of PCS and apparent IgG deposition in the aortic intima. Increased endothelial leakage induced by PCS in skin microvessels and the aorta of CKD rats suggests that the PCS-induced endothelial barrier dysfunction.
Interactive effects of acupuncture on pain and distress in major burns: An experiment with rats.
Abali, Ayse Ebru; Cabioglu, Tugrul; Ozdemir, Handan; Haberal, Mehmet
2015-06-01
This study sought to investigate the interactive effects of acupuncture on pain and distress and the local progress in the burn wound in an experimental major burn model. Forty-eight male Sprague-Dawley rats were divided into six groups: S group (sham/observation during 7 days after injury); SA group (sham/acupuncture/observation during 7 days after injury); B1 group (burns/observation during 1h after injury); BA1 group (burns/acupuncture/observation during 1 h after injury); B7 group (burns/observation during 7 days after injury); and BA7 group (burns/acupuncture/observation during 7 days after injury). Pain and distress scores were evaluated throughout the study. The amounts of neutrophils and mononuclear cells were evaluated semiquantitatively, and the number of microvessels was evaluated quantitatively. Our data indicated that the average pain score of BA7 group was significantly lower than the other study groups. Histopathologic investigations indicate that the amounts of neutrophil and mononuclear cell and numbers of microvessels in the unburned skin were higher in acupuncture-applied groups. The number of microvessels in burn wounds of BA7 group was significantly higher than that of the other groups. Our data suggest that acupuncture provides low pain and distress scores in experimental rat model, and it contributes to wound healing with an enhanced angiogenesis during the acute phase of burns. Future clinical and experimental studies should be conducted to discern the benefits from acupuncture in pain management of burn patients. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Oxygen Gradients in the Microcirculation
Pittman, Roland N.
2010-01-01
Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO2 gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453
Yan, Shi; Wang, Xing; Lv, Chao; Phan, Kevin; Wang, Yuzhao; Wang, Jia; Yang, Yue
2016-01-01
Background Postoperative pleural drainage markedly influences the length of postoperative stay and financial costs of medical care. The aim of this study is to retrospectively investigate potentially predisposing factors related to pleural drainage after curative thoracic surgery and to explore the impact of mediastinal micro-vessels clipping on pleural drainage control after lymph node dissection. Methods From February 2012 to November 2013, 322 consecutive cases of operable non-small cell lung cancers (NSCLC) undergoing lobectomy and mediastinal lymph node dissection with or without application of clipping were collected. Total and daily postoperative pleural drainage were recorded. Propensity score matching (1:2) was applied to balance variables potentially impacting pleural drainage between group clip and group control. Analyses were performed to compare drainage volume, duration of chest tube and postoperative hospital stay between the two groups. Variables linked with pleural drainage in whole cohort were assessed using multivariable logistic regression analysis. Results Propensity score matching resulted in 197 patients (matched cohort). Baseline patient characteristics were matched between two groups. Group clip showed less cumulative drainage volume (P=0.020), shorter duration of chest tube (P=0.031) and postoperative hospital stay (P=0.022) compared with group control. Risk factors significantly associated with high-output drainage in multivariable logistic regression analysis were being male, age >60 years, bilobectomy/sleeve lobectomy, pleural adhesion, the application of clip applier, duration of operation ≥220 minutes and chylothorax (P<0.05). Conclusions This study suggests that mediastinal micro-vessels clipping during lymph node dissection may reduce postoperative pleural drainage and thus shorten hospital stay. PMID:27076936
Peroxynitrite mediates testosterone-induced vasodilation of microvascular resistance vessels.
Puttabyatappa, Yashoda; Stallone, John N; Ergul, Adviye; El-Remessy, Azza B; Kumar, Sanjiv; Black, Stephen; Johnson, Maribeth; Owen, Mary P; White, Richard E
2013-04-01
Our knowledge of how androgens influence the cardiovascular system is far from complete, and this lack of understanding is especially true of how androgens affect resistance vessels. Our aim was to identify the signaling mechanisms stimulated by testosterone (TES) in microvascular arteries and to understand how these mechanisms mediate TES-induced vasodilation. Mesenteric microvessels were isolated from male Sprague-Dawley rats. Tension studies demonstrated a rapid, concentration-dependent, vasodilatory response to TES that did not involve protein synthesis or aromatization to 17β-estradiol. Dichlorofluorescein fluorescence and nitrotyrosine immunoblot experiments indicated that TES stimulated peroxynitrite formation in microvessels, and functional studies demonstrated that TES-induced vasodilation was inhibited by scavenging peroxynitrite. As predicted, TES enhanced the production of both peroxynitrite precursors (i.e., superoxide and nitic oxide), and xanthine oxidase was identified as the likely source of TES-stimulated superoxide production. Functional and biochemical studies indicated that TES signaling involved activity of the phosphoinositide 3 (PI3) kinase-protein kinase B (Akt) cascade initiated by activation of the androgen receptor and culminated in enhanced production of cGMP and microvascular vasodilation. These findings, derived from a variety of analytical and functional approaches, provide evidence for a novel nongenomic signaling mechanism for androgen action in the microvasculature: TES-stimulated vasodilation mediated primarily by peroxynitrite formed from xanthine oxidase-generated superoxide and NO. This response was associated with activation of the PI3 kinase-Akt signaling cascade initiated by activation of the androgen receptor. We propose this mechanism could account for TES-stimulated cGMP production in microvessels and, ultimately, vasodilation.
Peroxynitrite Mediates Testosterone-Induced Vasodilation of Microvascular Resistance Vessels
Puttabyatappa, Yashoda; Stallone, John N.; Ergul, Adviye; El-Remessy, Azza B.; Kumar, Sanjiv; Black, Stephen; Johnson, Maribeth; Owen, Mary P.
2013-01-01
Our knowledge of how androgens influence the cardiovascular system is far from complete, and this lack of understanding is especially true of how androgens affect resistance vessels. Our aim was to identify the signaling mechanisms stimulated by testosterone (TES) in microvascular arteries and to understand how these mechanisms mediate TES-induced vasodilation. Mesenteric microvessels were isolated from male Sprague-Dawley rats. Tension studies demonstrated a rapid, concentration-dependent, vasodilatory response to TES that did not involve protein synthesis or aromatization to 17β-estradiol. Dichlorofluorescein fluorescence and nitrotyrosine immunoblot experiments indicated that TES stimulated peroxynitrite formation in microvessels, and functional studies demonstrated that TES-induced vasodilation was inhibited by scavenging peroxynitrite. As predicted, TES enhanced the production of both peroxynitrite precursors (i.e., superoxide and nitic oxide), and xanthine oxidase was identified as the likely source of TES-stimulated superoxide production. Functional and biochemical studies indicated that TES signaling involved activity of the phosphoinositide 3 (PI3) kinase-protein kinase B (Akt) cascade initiated by activation of the androgen receptor and culminated in enhanced production of cGMP and microvascular vasodilation. These findings, derived from a variety of analytical and functional approaches, provide evidence for a novel nongenomic signaling mechanism for androgen action in the microvasculature: TES-stimulated vasodilation mediated primarily by peroxynitrite formed from xanthine oxidase-generated superoxide and NO. This response was associated with activation of the PI3 kinase-Akt signaling cascade initiated by activation of the androgen receptor. We propose this mechanism could account for TES-stimulated cGMP production in microvessels and, ultimately, vasodilation. PMID:23318471