Madsen, Jonas Stenløkke; Riber, Leise; Kot, Witold; Basfeld, Alrun; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes
2016-01-01
Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed to have originated. We find that mrkABCDFs of plasmids are highly expressed via a unique promoter that differs from the original Klebsiella promoter resulting in fundamental behavioral consequences. Plasmid associated mrkABCDFs did not influence the swimming behavior of the host, that hereby acquired an exceptional phenotype being able to both actively swim (planktonic behavior) and express biofilm associated fimbriae (sessile behavior). We show that this exceptional phenotype enhances the conjugal transfer of the plasmid. PMID:27627107
[Construction of plant expression plasmid of chimera SBR-CT delta A1].
Mai, Sui; Ling, Junqi
2003-08-01
The purpose of this study is to construct plant expression plasmid containing the gene encoding chimera SBR-CT delta A1. The target gene fragment P2, including the gene-encoded chimera SBR-CT delta A1 (3,498-5,378 bp), was obtained by standard PCR amplification. The PCR products were ligated with pGEM-easy vector through TA clone to form plasmid pTSC. The plasmid pTSC and plasmid pPOKII were digested by restricted endonuclease BamHI and KpnI, and the digested products were extracted and purified for recombination. Then the purified P2 and plasmid pPOKII were recombined by T4 DNA ligase to form recombinant plasmid pROSC; inserting bar gene into the plasmid and form pROSB plasmid. The recombined plasmids were isolated and identified by restricted endonuclease cutting and Sanger dideoxy DNA sequencing. P2 gene was linked to pPOKII plasmid and formed recombinant plasmid pROSC. The DNA sequence and orientation were corrected. And bar gene was inserted into pPOSC and form recombinant plasmid pROSB. Plant expression vector pROSC and pROSB containing the gene encoding chimera SBR-CT delta A1, which may provide useful experiment foundation for further study on edible vaccine against caries have been successfully constructed.
Hong, Hyerim; Jung, Jaejoon; Park, Woojun
2014-01-01
Acquisition of the extracellular tetracycline (TC) resistance plasmid pAST2 affected host gene expression and phenotype in the oil-degrading soil bacterium, Acinetobacter oleivorans DR1. Whole-transcriptome profiling of DR1 cells harboring pAST2 revealed that all the plasmid genes were highly expressed under TC conditions, and the expression levels of many host chromosomal genes were modulated by the presence of pAST2. The host energy burden imposed by replication of pAST2 led to (i) lowered ATP concentrations, (ii) downregulated expression of many genes involved in cellular growth, and (iii) reduced growth rate. Interestingly, some phenotypes were restored by deleting the plasmid-encoded efflux pump gene tetH, suggesting that the membrane integrity changes resulting from the incorporation of efflux pump proteins also resulted in altered host response under the tested conditions. Alteration of membrane integrity by tetH deletion was shown by measuring permeability of fluorescent probe and membrane hydrophobicity. The presence of the plasmid conferred peroxide and superoxide resistance to cells, but only peroxide resistance was diminished by tetH gene deletion, suggesting that the plasmid-encoded membrane-bound efflux pump protein provided peroxide resistance. The downregulation of fimbriae-related genes presumably led to reduced swimming motility, but this phenotype was recovered by tetH gene deletion. Our data suggest that not only the plasmid replication burden, but also its encoded efflux pump protein altered host chromosomal gene expression and phenotype, which also alters the ecological fitness of the host in the environment. PMID:25229538
Hong, Hyerim; Jung, Jaejoon; Park, Woojun
2014-01-01
Acquisition of the extracellular tetracycline (TC) resistance plasmid pAST2 affected host gene expression and phenotype in the oil-degrading soil bacterium, Acinetobacter oleivorans DR1. Whole-transcriptome profiling of DR1 cells harboring pAST2 revealed that all the plasmid genes were highly expressed under TC conditions, and the expression levels of many host chromosomal genes were modulated by the presence of pAST2. The host energy burden imposed by replication of pAST2 led to (i) lowered ATP concentrations, (ii) downregulated expression of many genes involved in cellular growth, and (iii) reduced growth rate. Interestingly, some phenotypes were restored by deleting the plasmid-encoded efflux pump gene tetH, suggesting that the membrane integrity changes resulting from the incorporation of efflux pump proteins also resulted in altered host response under the tested conditions. Alteration of membrane integrity by tetH deletion was shown by measuring permeability of fluorescent probe and membrane hydrophobicity. The presence of the plasmid conferred peroxide and superoxide resistance to cells, but only peroxide resistance was diminished by tetH gene deletion, suggesting that the plasmid-encoded membrane-bound efflux pump protein provided peroxide resistance. The downregulation of fimbriae-related genes presumably led to reduced swimming motility, but this phenotype was recovered by tetH gene deletion. Our data suggest that not only the plasmid replication burden, but also its encoded efflux pump protein altered host chromosomal gene expression and phenotype, which also alters the ecological fitness of the host in the environment.
Nácher-Vázquez, Montserrat; Ruiz-Masó, José A.; Mohedano, María L.; del Solar, Gloria; Aznar, Rosa; López, Paloma
2017-01-01
The exopolysaccharide synthesized by Lactobacillus sakei MN1 is a dextran with antiviral and immunomodulatory properties of potential utility in aquaculture. In this work we have investigated the genetic basis of dextran production by this bacterium. Southern blot hybridization experiments demonstrated the plasmidic location of the dsrLS gene, which encodes the dextransucrase involved in dextran synthesis. DNA sequencing of the 11,126 kbp plasmid (pMN1) revealed that it belongs to a family which replicates by the theta mechanism, whose prototype is pUCL287. The plasmid comprises the origin of replication, repA, repB, and dsrLS genes, as well as seven open reading frames of uncharacterized function. Lb. sakei MN1 produces dextran when sucrose, but not glucose, is present in the growth medium. Therefore, plasmid copy number and stability, as well as dsrLS expression, were investigated in cultures grown in the presence of either sucrose or glucose. The results revealed that pMN1 is a stable low-copy-number plasmid in both conditions. Gene expression studies showed that dsrLS is constitutively expressed, irrespective of the carbon source present in the medium. Moreover, dsrLS is expressed from a monocistronic transcript as well as from a polycistronic repA-repB-orf1-dsrLS mRNA. To our knowledge, this is the first report of a plasmid-borne dextransucrase-encoding gene, as well as the first time that co-transcription of genes involved in plasmid maintenance and replication with a gene encoding an enzyme has been established. PMID:29209293
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hervey, IV, William Judson; Khalsa-Moyers, Gurusahai K; Lankford, Patricia K
Protein enrichments of engineered, affinity-tagged (or bait ) fusion proteins with interaction partners are often laden with background, non-specific proteins, due to interactions that occur in vitro as an artifact of the technique. Furthermore, the in vivo expression of the bait protein may itself affect physiology or metabolism. In this study, intrinsic affinity purification challenges were investigated in a model protein complex, DNA-dependent RNA polymerase (RNAP), encompassing chromosome- and plasmid-encoding strategies for bait proteins in two different microbial species: Escherichia coli and Rhodopseudomonas palustris. Isotope ratio measurements of bait protein expression strains relative to native, wild-type strains were performed bymore » liquid chromatography tandem mass spectrometry (LC-MS-MS) to assess bait protein expression strategies in each species. Authentic interacting proteins of RNAP were successfully discerned from artifactual co-isolating proteins by the isotopic differentiation of interactions as random or targeted (I-DIRT) method (A. J. Tackett et al. J. Proteome Res. 2005, 4 (5), 1752-1756). To investigate broader effects of bait protein production in the bacteria, we compared proteomes from strains harboring a plasmid that encodes an affinity-tagged subunit (RpoA) of the RNAP complex with the corresponding wild-type strains using stable isotope metabolic labeling. The ratio of RpoA abundance in plasmid strains versus wild type was 0.8 for R. palustris and 1.7 for E. coli. While most other proteins showed no appreciable difference, proteins significantly increased in abundance in plasmid-encoded bait-expressing strains of both species included the plasmid encoded antibiotic resistance protein, GenR and proteins involved in amino acid biosynthesis. Together, these local, complex-specific and more global, whole proteome isotopic abundance ratio measurements provided a tool for evaluating both in vivo and in vitro effects of plasmid-encoding strategies for bait protein expression. This approach has the potential for enabling discovery of protein-protein interactions among the growing number of sequenced microbial species without the need for development of chromosomal insertion systems.« less
Kamensek, Urska; Tesic, Natasa; Sersa, Gregor; Kos, Spela; Cemazar, Maja
2017-01-01
Electrotransfer mediated delivery of interleukin-12 (IL-12) gene, encoded on a plasmid vector, has already been demonstrated to have a potent antitumor efficacy and great potential for clinical application. In the present study, our aim was to construct an optimized IL-12-encoding plasmid that is safe from the regulatory point of view. In light of previous studies demonstrating that IL-12 should be released in a tumor localized manner for optimal efficacy, the strong ubiquitous promoter was replaced with a weak endogenous promoter of the collagen 2 gene, which is specific for fibroblasts. Next, to comply with increasing regulatory demands for clinically used plasmids, the expression cassette was cloned in a plasmid lacking the antibiotic resistance gene. The constructed fibroblast-specific and antibiotic-free IL-12 plasmid was demonstrated to support low IL-12 expression after gene electrotransfer in selected cell lines. Furthermore, the removal of antibiotic resistance did not affect the plasmid expression profile and lowered its cytotoxicity. With optimal IL-12 expression and minimal transgene non-specific effects, i.e., low cytotoxicity, the constructed plasmid could be especially valuable for different modern immunological approaches to achieve localized boosting of the host's immune system. Copyright © 2016 Elsevier Inc. All rights reserved.
Sesma, F; Gardiol, D; de Ruiz Holgado, A P; de Mendoza, D
1990-01-01
The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2117878
Hughes, E J; Bayly, R C; Skurray, R A
1984-01-01
Alcaligenes eutrophus wild-type strain 345 metabolizes m- and p-toluate via a catechol meta-cleavage pathway. DNA analysis, curing studies, and transfer of this phenotype by conjugation and transformation showed that the degradative genes are encoded on a self-transmissible 85-kilobase plasmid, pRA1000. HindIII and XhoI restriction endonuclease analysis of pRA1000 showed it to be similar to the archetypal TOL plasmid, pWWO, differing in the case of HindIII only by the absence of fragments B and D present in pWWO. In strain 345, the presence of pRA1000 prevented the expression of chromosomally encoded enzymes required for the degradation of p-cresol, whereas these enzymes were expressed in strains cured of pRA1000. On the basis of studies with an R68.45-pRA1000 cointegrate plasmid, pRA1001, we conclude that the gene(s) responsible for the effect of p-cresol degradation resides within or near the m- and p-toluate degradative region on pRA1000. Images PMID:6325399
Expression of Duplicate msa Genes in the Salmonid Pathogen Renibacterium salmoninarum
Rhodes, Linda D.; Coady, Alison M.; Strom, Mark S.
2002-01-01
Renibacterium salmoninarum is a gram-positive bacterium responsible for bacterial kidney disease of salmon and trout. R. salmoninarum has two identical copies of the gene encoding major soluble antigen (MSA), an immunodominant, extracellular protein. To determine whether one or both copies of msa are expressed, reporter plasmids encoding a fusion of MSA and green fluorescent protein controlled by 0.6 kb of promoter region from msa1 or msa2 were constructed and introduced into R. salmoninarum. Single copies of the reporter plasmids integrated into the chromosome by homologous recombination. Expression of mRNA and protein from the integrated plasmids was detected, and transformed cells were fluorescent, demonstrating that both msa1 and msa2 are expressed under in vitro conditions. This is the first report of successful transformation and homologous recombination in R. salmoninarum. PMID:12406741
Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity.
Peist, R; Koch, A; Bolek, P; Sewitz, S; Kolbus, T; Boos, W
1997-01-01
malQ mutants of Escherichia coli lacking amylomaltase cannot grow on maltose. They express the maltose system constitutively and are sensitive to maltose when grown on another carbon source. In an attempt to isolate a multicopy suppressor that would result in growth on maltose, we transformed a malQ mutant with a gene bank of E. coli DNA which had been digested with Sau3a and cloned in pBR322. We screened the transformants on MacConkey maltose plates. A colony was isolated that appeared to be resistant to maltose and was pink on these plates, but it was still unable to grow on minimal medium with maltose as the carbon source. The plasmid was isolated, and the gene causing this phenotype was characterized. The deduced amino acid sequence of the encoded protein shows homology to that of lipases and esterases. We termed the gene aes, for acetyl esterase. Extracts of cells harboring plasmid-encoded aes under its own promoter exhibit a fivefold higher capacity to hydrolyze p-nitrophenyl acetate than do extracts of cells of plasmid-free strains. Similarly, strains harboring plasmid-encoded aes are able to grow on triacetyl glycerol (triacetin) whereas the plasmid-free strains are not. The expression of plasmid-encoded aes resulted in strong repression of the maltose transport genes in malT+ strains (10-fold reduction), but not in a malT(Con) strain which is independent of the inducer. Also, overproduction of MalT counteracted the Aes-dependent repression, indicating a direct interaction between MalT and Aes. PMID:9401025
Diao, Yong; Zhao, Xiao-Feng; Lin, Jun-Sheng; Wang, Qi-Zhao; Xu, Rui-An
2011-01-07
To investigate the effect of transgenic expression of kallistatin (Kal) on carbon tetrachloride (CCl(4))-induced liver injury by intramuscular (im) electrotransfer of a Kal-encoding plasmid formulated with poly-L-glutamate (PLG). The pKal plasmid encoding Kal gene was formulated with PLG and electrotransferred into mice skeletal muscle before the administration of CCl4. The expression level of Kal was measured. The serum biomarker levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malonyldialdehyde (MDA), and tumor necrosis factor (TNF)-α were monitored. The extent of CCl4-induced liver injury was analyzed histopathologically. The transgene of Kal was sufficiently expressed after an im injection of plasmid formulated with PLG followed by electroporation. In the Kal gene-transferred mice, protection against CCl4-induced liver injury was reflected by significantly decreased serum ALT, AST, MDA and TNF-α levels compared to those in control mice (P<0.01 to 0.05 in a dose-dependent manner). Histological observations also revealed that hepatocyte necrosis, hemorrhage, vacuolar change and hydropic degeneration were apparent in mice after CCl4 administration. In contrast, the damage was markedly attenuated in the Kal gene-transferred mice. The expression of hepatic fibrogenesis marker transforming growth factor-β1 was also reduced in the pKal transferred mice. Intramuscular electrotransfer of plasmid pKal which was formulated with PLG significantly alleviated the CCl4-induced oxidative stress and inflammatory response, and reduced the liver damage in a mouse model.
Giguère, Steeve; Hondalus, Mary K.; Yager, Julie A.; Darrah, Patricia; Mosser, David M.; Prescott, John F.
1999-01-01
Rhodococcus equi is a facultative intracellular pathogen of macrophages and a cause of pneumonia in young horses (foals) and immunocompromised people. Isolates of R. equi from pneumonic foals typically contain large, 85- or 90-kb plasmids encoding a highly immunogenic virulence-associated protein (VapA). The objective of this study was to determine the role of the 85-kb plasmid and VapA in the intracellular survival and virulence of R. equi. Clinical isolates containing the plasmid and expressing VapA efficiently replicated within mouse macrophages in vitro, while plasmid-cured derivatives of these organisms did not multiply intracellularly. An isolate harboring the large plasmid also replicated in the tissues of experimentally infected mice, whereas its plasmid-cured derivative was rapidly cleared. All foals experimentally infected with a plasmid-containing clinical isolate developed severe bronchopneumonia, whereas the foals infected with its plasmid-cured derivative remained asymptomatic and free of visible lung lesions. By day 14 postinfection, lung bacterial burdens had increased considerably in foals challenged with the plasmid-containing clinical isolate. In contrast, bacteria could no longer be cultured from the lungs of foals challenged with the isogenic plasmid-cured derivative. A recombinant, plasmid-cured derivative expressing wild-type levels of VapA failed to replicate in macrophages and remained avirulent for both mice and foals. These results show that the 85-kb plasmid of R. equi is essential for intracellular replication within macrophages and for development of disease in the native host, the foal. However, expression of VapA alone is not sufficient to restore the virulence phenotype. PMID:10377138
Basarkar, Ashwin; Singh, Jagdish
2009-01-01
Determine the efficiency of cationic nanoparticles prepared by blending poly (lactide-co-glycolide; PLGA) and methacrylate copolymer (Eudragit(R) E100) to deliver a therapeutic gene encoding mouse interleukin-10, in vitro and in vivo. Nanoparticles prepared with PLGA and E100 were evaluated for delivery of plasmid DNA encoding mouse interleukin-10 in vitro and in vivo in mice upon intramuscular injection. Blood-glucose, serum interferon-gamma levels and histology of pancreas were studied to determine therapeutic efficacy. Histological evaluation of skeletal muscle from the injection site was performed to assess the biocompatibility of nanoparticles. PLGA/E100 nanoparticles showed endosomal escape evidenced by confocal microscopy and buffering ability. Transfecting HEK293 cells with plasmid-loaded PLGA/E100 nanoparticles resulted in significantly (p < 0.05) greater expression of interleukin-10 compared to PLGA nanoparticles. Mice treated with PLGA/E100 nanoparticles displayed higher serum levels of interleukin-10 and lower blood glucose levels compared to those treated with interleukin-10 plasmid alone or PLGA nanoparticles. High expression of interleukin-10 facilitated suppression of interferon-gamma levels and reduced islet infiltration. Histology of muscle showed that nanoparticles were biocompatible and did not cause chronic inflammatory response. Nanoparticles prepared by blending PLGA with methacrylate can efficiently and safely deliver plasmid DNA encoding mouse interleukin-10 leading to prevention of autoimmune diabetes.
An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.
Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia
2015-12-01
Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application. Copyright © 2015 Elsevier Inc. All rights reserved.
Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J
1989-11-25
Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids encoding PKI(1-31) inhibit the expression that is stimulated by the addition of cAMP analogs in both cell lines; basal expression, however, is inhibited by PKI(1-31) only in the JEG-3 cell line and not in the CV-1 cells. These observations indicate that, in JEG-3 cells, PKI(1-31) is a specific inhibitor of kinase A-mediated gene transcription, but it does not modify kinase C-directed transcription.(ABSTRACT TRUNCATED AT 400 WORDS)
van Mastrigt, Oscar; Lommers, Marcel M A N; de Vries, Yorick C; Abee, Tjakko; Smid, Eddy J
2018-03-23
Lactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-encoded genes and the activity of the corresponding proteins is severely affected by changes in the number of plasmid copies. We studied the impact of growth rate on dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strain Lactococcus lactis FM03-V1 were selected which varied in size (3 to 39 kb), in replication mechanism (theta or rolling-circle) and in putative (dairy-associated) functions. Copy numbers ranged from 1.5 to 40.5 and the copy number of theta-type replicating plasmids were negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h -1 to 0.6 h -1 ), copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates showing that the plasmid replication rate was strictly controlled. One low-copy number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations reflected in complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation or presence of citrate (maximum 2.2-fold) signifying the stability in copy number of the plasmids. Importance Lactococcus lactis is extensively used in starter cultures for dairy fermentations. Important traits for growth and survival of L. lactis in dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation and oligopeptide uptake and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-encoded genes, it is important to know the factors that influence the plasmid copy numbers. We monitored plasmid copy numbers of L. lactis at near-zero growth rates, characteristic for cheese ripening. Moreover, we analysed the effect of pH, nutrient limitation and presence of citrate. This showed that plasmid copy numbers were stable giving insight into plasmid copy number dynamics in dairy fermentations. Copyright © 2018 American Society for Microbiology.
[Construction and expression of recombinant human serum albumin-EPO fusion protein].
Huang, Ying-Chun; Gou, Xing-Hua; Han, Lei; Li, De-Hua; Zhao, Lan-Ying; Wu, Qia-Qing
2011-05-01
OBJECTIVE To construct the recombinant plasmid pCI-HLE encoding human serum album-EPO (HSA-EPO) fusion protein and to express it in CHO cell. The cDNA encoding human serum album and EPO were amplified by PCR, and then spliced with the synsitic DNA fragment encoding GS (GGGGS), by overlap PCR extension to form LEPO. After BamH I digestion, the HSA and LEPO was ligated to generate the fusion HSA-EPO gene and was then cloned into the expression vector pCI-neo to generate the recombinant plasmid pCI-HLE. The plasmid pCI-HLE was transfected into CHO cell by liposome protocol. Then, the recombinant cells were screened by G418 and identified by PCR and Western blot. Expression of fusion protein was evaluated by Enzyme Linked Immunosorbent Assay (ELISA). Restrictive enzymes digestion and DNA sequencing revealed that HSA-EPO fusion gene was cloned into expression vector pCI-neo successfully. PCR and Western blot analysis confirmed that the fusion gene was integrated in the genome of CHO cells and expressed successfully. The HSA-EPO production varied from 86 Iu/(mL x 10(6) x 72 h) to 637 IU/(mLx 10(6) x 72 h). The results confirmed that HSA-EPO fusion gene can be expressed in the CHO cells, with EPO immunogenicity, which could serve as foundation for the development of long-lasting recombinant HSA-EPO protein.
Kalariya, Mayurkumar; Amiji, Mansoor M
2013-09-10
The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity. Copyright © 2013 Elsevier B.V. All rights reserved.
Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi
2012-01-01
TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.
Cruz, P E; Khalil, P L; Dryden, T D; Chiou, H C; Fink, P S; Berberich, S J; Bigley, N J
1999-03-05
DNA molecules complexed with an asialoglycoprotein-polycation conjugate, consisting of asialoorosomucoid (ASOR) coupled to poly-L-lysine, can enter hepatocytes which bear receptors for ASOR. We used this receptor-mediated DNA delivery system to deliver plasmid DNA encoding glycoprotein D (gD) of herpes simplex virus type 1 to ASOR-positive cells. Maximum expression of gD protein was seen at 3 days after injection of this preparation in approximately 13% of cells from BALB/c mice [hepatocytes from mice injected intravenously (i.v.) or peritoneal exudate cells from mice injected intraperitoneally (i.p.)]. In comparison with mice injected with either the plasmid vector alone or the gD-containing plasmid uncomplexed to ASOR, mice immunized with gD-containing plasmid complexed with ASOR-poly-L-lysine induced marked antigen-specific CTL responses. BALB/c mice immunized with gD-DNA developed a T-cell-mediated CTL response against target cells expressing gD and MHC class II glycoproteins, but not against cells expressing only gD and MHC class I molecules. In C3H mice, gD-DNA induced a T-cell-mediated CTL response against target cells expressing gD and class I MHC molecules. Serum anti-gD antibody in low titers were produced in both strains of mice. DNA complexed with ASOR-poly-L-lysine induced CTL responses in mice.
Khajanchi, Bijay K; Hasan, Nur A; Choi, Seon Young; Han, Jing; Zhao, Shaohua; Colwell, Rita R; Cerniglia, Carl E; Foley, Steven L
2017-08-02
The degree to which the chromosomal mediated iron acquisition system contributes to virulence of many bacterial pathogens is well defined. However, the functional roles of plasmid encoded iron acquisition systems, specifically Sit and aerobactin, have yet to be determined for Salmonella spp. In a recent study, Salmonella enterica strains isolated from different food sources were sequenced on the Illumina MiSeq platform and found to harbor the incompatibility group (Inc) FIB plasmid. In this study, we examined sequence diversity and the contribution of factors encoded on the IncFIB plasmid to the virulence of S. enterica. Whole genome sequences of seven S. enterica isolates were compared to genomes of serovars of S. enterica isolated from food, animal, and human sources. SeqSero analysis predicted that six strains were serovar Typhimurium and one was Heidelberg. Among the S. Typhimurium strains, single nucleotide polymorphism (SNP)-based phylogenetic analyses revealed that five of the isolates clustered as a single monophyletic S. Typhimurium subclade, while one of the other strains branched with S. Typhimurium from a bovine source. DNA sequence based phylogenetic diversity analyses showed that the IncFIB plasmid-encoded Sit and aerobactin iron acquisition systems are conserved among bacterial species including S. enterica. The IncFIB plasmid was transferred to an IncFIB plasmid deficient strain of S. enterica by conjugation. The transconjugant SE819::IncFIB persisted in human intestinal epithelial (Caco-2) cells at a higher rate than the recipient SE819. Genes of the Sit and aerobactin operons in the IncFIB plasmid were differentially expressed in iron-rich and iron-depleted growth media. Minimal sequence diversity was detected in the Sit and aerobactin operons in the IncFIB plasmids present among different bacterial species, including foodborne Salmonella strains. IncFIB plasmid encoded factors play a role during infection under low-iron conditions in host cells.
Nakayama, Kosuke; Ohmori, Takeshi; Ishikawa, Satoshi; Iwata, Natsumi; Seto, Yasuo; Kawahara, Kazuyoshi
2016-05-01
The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.
Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae
Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.
1991-03-26
A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.
Gibert, Marta; Paytubi, Sonia; Beltrán, Sergi; Juárez, Antonio; Balsalobre, Carlos; Madrid, Cristina
2016-12-01
Plasmids of the incompatibility group HI1 (IncHI1) have been isolated from several Gram-negative pathogens and are associated with the spread of multidrug resistance. Their conjugation is tightly regulated and it is inhibited at temperatures higher than 30°C, indicating that conjugation occurs outside warm-blooded hosts. Using R27, the prototype of IncHI1 plasmids, we report that plasmid transfer efficiency in E. coli strongly depends on the physiological state of the donor cells. Conjugation frequency is high when cells are actively growing, dropping sharply when cells enter the stationary phase of growth. Accordingly, our transcriptomic assays show significant downregulation of numerous R27 genes during the stationary phase, including several tra (transfer) genes. Growth phase-dependent regulation of tra genes transcription is independent of H-NS, a silencer of horizontal gene transfer, and ppGpp and RpoS, regulators of the stationary phase, but highly dependent on the plasmid-encoded regulatory circuit TrhR/TrhY-HtdA. The metabolic sensor cAMP, whose synthesis is chromosomally encoded, is also involved in the growth phase regulation of R27 conjugation by modulating htdA expression. Our data suggest that the involvement of regulators encoded by both chromosome and plasmid are required for efficient physiological control of IncHI1 plasmid conjugation. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
In vitro expression of erythropoietin by transfected human mesenchymal stromal cells.
Mok, P-L; Cheong, S-K; Leong, C-F; Othman, A
2008-01-01
Mesenchymal stromal cells (MSC) are pluripotent progenitor cells that can be found in human bone marrow (BM). These cells have low immunogenicity and could suppress alloreactive T-cell responses. In the current study, MSC were tested for their capacity to carry and deliver the erythropoietin (EPO) gene in vitro. Expanded BM MSC was transfected with EPO-encoded plasmid pMCV1.2 and EPO-encoded MIDGE (minimalistic immunologically defined gene expression) vector by electroporation. The expressed EPO was used to induce hematopoietic stem cells (HSC) into erythroid colonies. The results showed that the MIDGE vector was more effective and stable than the plasmid (pMCV1.2) in delivering EPO gene into MSC. The supernatants containing EPO obtained from the transfected cell culture were able to induce the differentiation of HSC into erythroid colonies. MSC hold promise as a cell factory for the production of biologic molecules, and MIDGE vector is more effective and stable than the plasmid in nucleofection involving the EPO gene.
Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae
Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.
1987-08-28
A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.
Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin
2010-02-01
This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.
Assessing the biocompatibility of click-linked DNA in Escherichia coli
Sanzone, A. Pia; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali
2012-01-01
The biocompatibility of a triazole mimic of the DNA phosphodiester linkage in Escherichia coli has been evaluated. The requirement for selective pressure on the click-containing gene was probed via a plasmid containing click DNA backbone linkages in each strand of the gene encoding the fluorescent protein mCherry. The effect of proximity of the click linkers on their biocompatibility was also probed by placing two click DNA linkers 4-bp apart at the region encoding the fluorophore of the fluorescent protein. The resulting click-containing plasmid was found to encode mCherry in E. coli at a similar level to the canonical equivalent. The ability of the cellular machinery to read through click-linked DNA was further probed by using the above click-linked plasmid to express mCherry using an in vitro transcription/translation system, and found to also be similar to that from canonical DNA. The yield and fluorescence of recombinant mCherry expressed from the click-linked plasmid was also compared to that from the canonical equivalent, and found to be the same. The biocompatibility of click DNA ligation sites at close proximity in a non-essential gene demonstrated in E. coli suggests the possibility of using click DNA ligation for the enzyme-free assembly of chemically modified genes and genomes. PMID:22904087
Genetic Stability of Streptomyces Lividans pIJ702 in Response to Spaceflight
NASA Astrophysics Data System (ADS)
Lim, K. S.; Goins, T. L.; Voeikova, T. A.; Pyle, B. H.
2008-06-01
Streptomyces lividans carrying plasmid pIJ702 encoding genes for thiostrepton resistance (tsr-) and melanin production (mel+) was plated on agar and flown on the Russian satellite Foton-M3 for 16 days. The percentage loss of plasmid expression in flight samples was lower than that in ground samples when both samples were grown in enriched (ISP) media. Differences in media content also affect plasmid expression rate; ISP media have a higher loss of plasmid expression than samples in minimum media when both were grown on ground conditions. Results suggest that stress resulted in the increased expression of plasmid pIJ702 by S. lividans. Screening of thiostrepton resistant white (tsr+ mel-) mutants showed similar proportions of variants in ground samples and flight samples. To determine if there are mutations in the mel gene, DNA extracted from flight and control white mutants was amplified and gel electrophoresis of amplified products show no major mutation in the products. Sequencing of amplified products is required to identify mutations resulting in loss of pigmentation.
2013-01-01
Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins. PMID:23957834
Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs
2013-08-20
Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.
Inducible expression of photoacoustic reporter gene tyrosinase in cells using a single plasmid
NASA Astrophysics Data System (ADS)
Paproski, Robert J.; Zemp, Roger J.
2012-02-01
We have previously demonstrated that tyrosinase is a reporter gene for photoacoustic imaging since tyrosinase is the rate-limiting step in the synthesis of melanin, a pigment capable of producing strong photoacoustic signals. We previously created a cell line capable of inducible tyrosinase expression (important due to toxicity of melanin) by stably transfecting tyrosinase in MCF-7 Tet-OnR cell line (Clontech) which expresses a doxycycline-controlled transactivator. Unfortunately, Clontech provides few Tet-On Advanced cell lines making it difficult to have inducible tyrosinase expression in cell lines not provided by Clontech. In order to simplify the creation of cell lines with inducible expression of tyrosinase, we created a single plasmid that encodes both the transactivator as well as tyrosinase. PCR was used to amplify both the transactivator and tyrosinase from the Tet-OnR Advanced and pTRE-Tight-TYR plasmids, respectively. Both PCR products were cloned into the pEGFP-N1 plasmid and the newly created plasmid was transfected into ZR-75-1, MCF-7, and MIA PaCa-1 cells using lipofectamine. After several days, brown melanin was only observed in cells incubated with doxycycline, suggesting that the newly created single plasmid allowed inducible tyrosinase expression in many different cells lines.
Dong, Bo; Feng, Jing; Lin, Hai; Li, Lanxiang; Su, Dingding; Tu, Di; Zhu, Weijuan; Yang, Qing; Ren, Xiaofeng
2013-11-19
Porcine circovirus type 2 (PCV2) is associated with many kinds of diseases including postweaning multisystemic wasting syndrome (PMWS). It affects the immune system of swine and causes huge epidemic losses every year. In our previous study, we provided evidence that DNA plasmid bearing porcine IL-15 (pVAX-pIL-15) might serve as an immune enhancer for DNA plasmid encoding porcine reproductive and respiratory syndrome virus GP5 gene. In this study, PCV2 open reading frame (ORF)2 gene was cloned into the eukaryotic expression vector pVAX, resulting in the plasmid pVAX-PCV2-ORF2. Transient expression of the plasmid in BHK-21 cells could be detected using immunofluorescence assay. Experimental mice were divided into 5 groups and immunized with PBS, pVAX, pVAX-pIL-15, pVAX-PCV2-ORF2 or pVAX-pIL-15 plus pVAX-PCV2-ORF2. The results showed that the mice co-inoculated with pVAX-PCV2-ORF2 plus pVAX-pIL-15 had higher humoral and cellular immune responses than the others. In addition, DNA plasmid bearing PCV2 ORF2 gene had a protective effect against challenge with PCV2 in mice which could be promoted with the utilization of pIL-15. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization of Endogenous Plasmids from Lactobacillus salivarius UCC118▿ †
Fang, Fang; Flynn, Sarah; Li, Yin; Claesson, Marcus J.; van Pijkeren, Jan-Peter; Collins, J. Kevin; van Sinderen, Douwe; O'Toole, Paul W.
2008-01-01
The genome of Lactobacillus salivarius UCC118 comprises a 1.83-Mb chromosome, a 242-kb megaplasmid (pMP118), and two smaller plasmids of 20 kb (pSF118-20) and 44 kb (pSF118-44). Annotation and bioinformatic analyses suggest that both of the smaller plasmids replicate by a theta replication mechanism. Furthermore, it appears that they are transmissible, although neither possesses a complete set of conjugation genes. Plasmid pSF118-20 encodes a toxin-antitoxin system composed of pemI and pemK homologs, and this plasmid could be cured when PemI was produced in trans. The minimal replicon of pSF118-20 was determined by deletion analysis. Shuttle vector derivatives of pSF118-20 were generated that included the replication region (pLS203) and the replication region plus mobilization genes (pLS208). The plasmid pLS203 was stably maintained without selection in Lactobacillus plantarum, Lactobacillus fermentum, and the pSF118-20-cured derivative strain of L. salivarius UCC118 (strain LS201). Cloning in pLS203 of genes encoding luciferase and green fluorescent protein, and expression from a constitutive L. salivarius promoter, demonstrated the utility of this vector for the expression of heterologous genes in Lactobacillus. This study thus expands the knowledge base and vector repertoire of probiotic lactobacilli. PMID:18390685
Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders
NASA Astrophysics Data System (ADS)
Tannières, Mélanie; Lang, Julien; Barnier, Claudie; Shykoff, Jacqui A.; Faure, Denis
2017-01-01
Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants.
Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus
Rodriguez, Michelle D.; Paul, Zubin; Wood, Charles E.; Rice, Kelly C.; Triplett, Eric W.
2017-01-01
Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus. These three reporter plasmids are available through BEI Resources. PMID:29312199
Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus.
Rodriguez, Michelle D; Paul, Zubin; Wood, Charles E; Rice, Kelly C; Triplett, Eric W
2017-01-01
Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus . These three reporter plasmids are available through BEI Resources.
Isolation and expression of a Bacillus cereus gene encoding benzil reductase.
Maruyama, R; Nishizawa, M; Itoi, Y; Ito, S; Inoue, M
2001-12-20
Benzil was reduced stereospecifically to (S)-benzoin by Bacillus cereus strain Tim-r01. To isolate the gene responsible for asymmetric reduction, we constructed a library consisting of Escherichia coli clones that harbored plasmids expressing Bacillus cereus genes. The library was screened using the halo formation assay, and one clone showed benzil reduction to (S)-benzoin. Thus, this clone seemed to carry a plasmid encoding a Bacillus cereus benzil reductase. The deduced amino acid sequence had marked homologies to the Bacillus subtilis yueD protein (41% identity), the yeast open reading frame YIR036C protein (31%), and the mammalian sepiapterin reductases (28% to 30%), suggesting that benzil reductase is a novel short-chain de-hydrogenases/ reductase. Copyright 2001 John Wiley & Sons, Inc.
Jiwaji, Meesbah; Daly, Rónán; Pansare, Kshama; McLean, Pauline; Yang, Jingli; Kolch, Walter; Pitt, Andrew R
2010-12-31
The importance of appropriate normalization controls in quantitative real-time polymerase chain reaction (qPCR) experiments has become more apparent as the number of biological studies using this methodology has increased. In developing a system to study gene expression from transiently transfected plasmids, it became clear that normalization using chromosomally encoded genes is not ideal, at it does not take into account the transfection efficiency and the significantly lower expression levels of the plasmids. We have developed and validated a normalization method for qPCR using a co-transfected plasmid. The best chromosomal gene for normalization in the presence of the transcriptional activators used in this study, cadmium, dexamethasone, forskolin and phorbol-12-myristate 13-acetate was first identified. qPCR data was analyzed using geNorm, Normfinder and BestKeeper. Each software application was found to rank the normalization controls differently with no clear correlation. Including a co-transfected plasmid encoding the Renilla luciferase gene (Rluc) in this analysis showed that its calculated stability was not as good as the optimised chromosomal genes, most likely as a result of the lower expression levels and transfection variability. Finally, we validated these analyses by testing two chromosomal genes (B2M and ActB) and a co-transfected gene (Rluc) under biological conditions. When analyzing co-transfected plasmids, Rluc normalization gave the smallest errors compared to the chromosomal reference genes. Our data demonstrates that transfected Rluc is the most appropriate normalization reference gene for transient transfection qPCR analysis; it significantly reduces the standard deviation within biological experiments as it takes into account the transfection efficiencies and has easily controllable expression levels. This improves reproducibility, data validity and most importantly, enables accurate interpretation of qPCR data.
Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S
2015-01-01
DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.
Tagliavia, Marcello; Cuttitta, Angela
2016-01-01
High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.
Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus
Greve, Bo; Jensen, Susanne; Phan, Hoa; Brügger, Kim; Zillig, Wolfram; She, Qunxin; Garrett, Roger A.
2005-01-01
Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plasmids pORA1 and pTIK4 encode RepA proteins, only the former of which carries the novel polymerase–primase domain of other known Sulfolobus plasmids. Plasmid pTAU4 encodes a mini-chromosome maintenance protein homolog and no RepA protein; the implications for DNA replication are considered. Plasmid pORA1 is the first Sulfolobus plasmid to be characterized that does not encode the otherwise highly conserved DNA-binding PlrA protein. Another encoded protein appears to be specific for the New Zealand plasmids. The three plasmids should provide useful model systems for functional studies of these important crenarchaeal proteins. PMID:15876565
Kim, K S; Chilton, W S; Farrand, S K
1996-01-01
The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors. PMID:8655510
Kim, K S; Chilton, W S; Farrand, S K
1996-06-01
The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors.
Kuipers, Grietje; Karyolaimos, Alexandros; Zhang, Zhe; Ismail, Nurzian; Trinco, Gianluca; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem
2017-12-16
To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is not restricted to BL21(DE3), but it can in principle be used in any T7 RNAP-based strain. Thus, pReX is a versatile alternative to Lemo21(DE3).
NASA Astrophysics Data System (ADS)
Zheng, Fengrong; Sun, Xiuqin; Liu, Hongzhan; Wu, Xingan; Zhong, Nan; Wang, Bo; Zhou, Guodong
2010-01-01
Lymphocystis disease, caused by the lymphocystis disease virus (LCDV), is a significant worldwide problem in fish industry causing substantial economic losses. In this study, we aimed to develop the DNA vaccine against LCDV, using DNA vaccination technology. We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate. The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line. The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also analyzed in tissues of the vaccinated Japanese flounder by PCR, RT-PCR and fluorescent microscopy. Results from PCR analysis indicated that the vaccine-containing plasmids were distributed in injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver, 6 and 25 days after vaccination. The vaccine plasmids disappeared 100 d post-vaccination. Fluorescent microscopy revealed green fluorescence in the injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver of fish 48 h post-vaccination, green fluorescence did not appear in the control treated tissue. Green fluorescence became weak at 60 days post-vaccination. RT-PCR analysis indicated that the mcp gene was expressed in all tested tissues of vaccinated fish 6-50 days post-vaccination. These results demonstrate that the antigen encoded by the DNA vaccine is distributed and expressed in all of the tissues analyzed in the vaccinated fish. The antigen would therefore potentially initiate a specific immune response. the plasmid DNA was injected into Japanese flounder ( Paralichthys olivaceus) intramuscularly and antibodies against LCDV were evaluated. The results indicate that the plasmid encoded DNA vaccine could induce an immune response to LCDV and would therefore offer immune protection against LCD. Further studies are required for the development and application of this promising DNA vaccine.
Chen, Q; Janssen, D B; Witholt, B
1995-01-01
Growth of Pseudomonas oleovorans GPo1, which contains the OCT plasmid, on octane results in changes in the membrane phospholipid fatty acid composition. These changes were not found for GPo12, an OCT-plasmid-cured variant of GPo1, during growth in the presence or absence of octane, implying the involvement of OCT-plasmid-encoded functions. When recombinant strain GPo12(pGEc47) carrying the alk genes from the OCT plasmid was grown on octane, the cells showed the same changes in fatty acid composition as those found for GPo1, indicating that such changes result from induction and expression of the alk genes. This finding was corroborated by inducing GPo12(pGEc47) with dicyclopropylketone (DCPK), a gratuitous inducer of the alk genes. Further experiments showed that the increase of the mean acyl chain length of fatty acids is related to the expression of alkB, which encodes a major integral membrane protein, while the formation of trans unsaturated fatty acids mainly results from the effects of 1-octanol, an octane oxidation product. PMID:7592483
Carnes, Aaron E.; Luke, Jeremy M.; Vincent, Justin M.; Anderson, Sheryl; Schukar, Angela; Hodgson, Clague P.; Williams, James A.
2010-01-01
Background For safety considerations, regulatory agencies recommend elimination of antibiotic resistance markers and nonessential sequences from plasmid DNA-based gene medicines. In the present study we analyzed antibiotic-free (AF) vector design criteria impacting bacterial production and mammalian transgene expression. Methods Both CMV-HTLV-I R RNA Pol II promoter (protein transgene) and murine U6 RNA Pol III promoter (RNA transgene) vector designs were studied. Plasmid production yield was assessed through inducible fed-batch fermentation. RNA Pol II-directed EGFP and RNA Pol III-directed RNA expression were quantified by fluorometry and quantitative real-time polymerase chain reaction (RT-PCR), respectively, after transfection of human HEK293 cells. Results Sucrose-selectable minimalized protein and therapeutic RNA expression vector designs that combined an RNA-based AF selection with highly productive fermentation manufacturing (>1,000 mg/L plasmid DNA) and high level in vivo expression of encoded products were identified. The AF selectable marker was also successfully applied to convert existing kanamycin-resistant DNA vaccine plasmids gWIZ and pVAX1 into AF vectors, demonstrating a general utility for retrofitting existing vectors. A minimum vector size for high yield plasmid fermentation was identified. A strategy for stable fermentation of plasmid dimers with improved vector potency and fermentation yields up to 1,740 mg/L was developed. Conclusions We report the development of potent high yield AF gene medicine expression vectors for protein or RNA (e.g. short hairpin RNA or microRNA) products. These AF expression vectors were optimized to exceed a newly identified size threshold for high copy plasmid replication and direct higher transgene expression levels than alternative vectors. PMID:20806425
Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng
2008-01-01
To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.
Reporter gene expression in dendritic cells after gene gun administration of plasmid DNA.
Watkins, Craig; Hopkins, John; Harkiss, Gordon
2005-07-21
Dendritic cells (DC) play an integral role in plasmid DNA vaccination. However, the interaction between plasmid DNA and DC in vivo is incompletely understood. In this report, we utilise the sheep pseudoafferent cannulation model to examine the interaction between plasmid DNA encoding enhanced green fluorescent protein (pEGFP) and afferent lymph DC (ALDC) following gene gun administration. The results show that peaks of fluorescent ALDC tended to appear around days 1-4 and 9-13, then erratically thereafter for up to 2 months. Phenotypic analysis showed that EGFP+ ALDC expressed MHC class II, WC6, CD1b, and SIRPalpha markers. Plasmid, detected by PCR, was found in lymph cells and cell-free plasma on a daily basis, and was present variably for up to 2 months. Plasmid was also detected in purified CD1b+ ALDC, but the presence of plasmid did not correlate with EGFP expression by ALDC. Free EGFP in afferent lymph plasma was detectable by luminometry only after three administrations of the plasmid. The results show that gene gun administered pEGFP persisted for extended periods after a single administration, leeching out of skin on a daily basis. The plasmid was associated with both the cellular and fluid components of afferent lymph. EGFP protein appeared in afferent lymph in a pulsatile manner, but associated only with ALDC.
Cappuccio, Jenny A.; Blanchette, Craig D.; Sulchek, Todd A.; Arroyo, Erin S.; Kralj, Joel M.; Hinz, Angela K.; Kuhn, Edward A.; Chromy, Brett A.; Segelke, Brent W.; Rothschild, Kenneth J.; Fletcher, Julia E.; Katzen, Federico; Peterson, Todd C.; Kudlicki, Wieslaw A.; Bench, Graham; Hoeprich, Paul D.; Coleman, Matthew A.
2008-01-01
Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Δ1–49 apolipoprotein A-I fragment (Δ49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR → M transition. Importantly the functional bR was solubilized in discoidal bR·NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Δ49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies. PMID:18603642
Wang, Yibing; Kahane, Simona; Cutcliffe, Lesley T; Skilton, Rachel J; Lambden, Paul R; Persson, Kenneth; Bjartling, Carina; Clarke, Ian N
2013-01-01
Our study had three objectives: to extend the plasmid-based transformation protocol to a clinical isolate of C. trachomatis belonging to the trachoma biovar, to provide "proof of principle" that it is possible to "knock out" selected plasmid genes (retaining a replication competent plasmid) and to investigate the plasticity of the plasmid. A recently developed, plasmid-based transformation protocol for LGV isolates of C. trachomatis was modified and a plasmid-free, genital tract C. trachomatis isolate from Sweden (SWFP-) was genetically transformed. Transformation of this non-LGV C. trachomatis host required a centrifugation step, but the absence of the natural plasmid removed the need for plaque purification of transformants. Transformants expressed GFP, were penicillin resistant and iodine stain positive for accumulated glycogen. The transforming plasmid did not recombine with the host chromosome. A derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene was engineered. CDS5 encodes pgp3, a protein secreted from the inclusion into the cell cytoplasm. This plasmid (pCDS5KO) was used to transform C. trachomatis SWFP-, and established that pgp3 is dispensable for plasmid function. The work shows it is possible to selectively delete segments of the chlamydial plasmid, and this is the first step towards a detailed molecular dissection of the role of the plasmid. The 3.6 kb β-galactosidase cassette was inserted into the deletion site of CDS5 to produce plasmid placZ-CDS5KO. Transformants were penicillin resistant, expressed GFP and stained for glycogen. In addition, they expressed β-galactosidase showing that the lacZ cassette was functional in C. trachomatis. An assay was developed that allowed the visualisation of individual inclusions by X-gal staining. The ability to express active β-galactosidase within chlamydial inclusions is an important advance as it allows simple, rapid assays to measure directly chlamydial infectivity without the need for plaquing, fluorescence or antibody staining.
A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.
Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G
2004-04-29
Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.
Expression of membrane targeted aequorin in Xenopus laevis oocytes.
Daguzan, C; Nicolas, M T; Mazars, C; Leclerc, C; Moreau, M
1995-08-01
We described here a system for high level of expression of the calcium activated photoprotein aequorin. This protein has been targeted to the plasma membrane of Xenopus oocyte by nuclear microinjection of a plasmid containing a construction of a chimeric cDNA encoding a fusion protein composed of the photoprotein aequorin and the 5-HT1A receptor. The expression of this fusion protein is placed under the control of RSV promoter. Functional photoprotein was reconstituted in the oocyte by incubation with coelenterazine. The amount of photoprotein 24 h after nuclear microinjection of the plasmid was sufficient to trigger a detectable light emission following calcium entry. The efficiency of the expression is correlated with the dose of plasmid injected. Intracytoplasmic injection of the plasmid always failed in photoprotein expression. Targeting of the apoprotein was demonstrated by immunolocalization under confocal microscopy. In our experimental conditions, the apoprotein was always localized at the animal pole above the nucleus. We never observed expression and targeting to the plasma membrane of the vegetal pole. WE suggest that such expression might be of great interest for the study of numerous problems of developmental biology, in which calcium-dependent pathways are involved.
[Study of neutralization antibodie induced by DNA vaccine of HCV envelope protein 2 in mice].
Shao, Shengwen; Zhou, Hongchang; Tong, Yimin; Ren, Yanli; Chen, Zhihui
2011-05-01
To explore the feasibility of induction of neutralization antibodies against hepatitis C virus (HCV) infection by HCV envelope 2 protein (E2) DNA vaccines immunization. Two kinds of expression plasmids of HCV envelope 2 protein, plasmid pCI-1b661 Delta encoding hydrophobic carboxyl terminal truncated E2 and pCI-1b661 Delta encoding E2 with deletion of hypervariable region 1 (HVR1) and carboxyl terminal, were constructed and respectively transfeted 293T cells, and truncated E2 protein in whole cell lysate and supernatant of 293T cells were analyzed by Western blot. After BALB/c mouse were intramuscularly immunized by the plasmids, sera antibodies against HVR1 were detected by ELISA and the neutralization activity of the antibodies were assayed with HCV pseudotype particle (HCVpp). Both plasmids could express secretary truncated E2 protein. All the mice immunized with plasmid pCI-1b661 produced HVR1 antibodies,while no HVR1 antibodies were detected in pCI-1b661 Delta immunized mice. The sera neutralization percentages against HCVpp in pCI1lb661 Delta and pCI-lb661 Delta immunized mice were (78.5 +/- 13.8)% and (38.7 +/- 6.5)%, respectively (P <0.01). Sera neutralization activity against HCVpp was positive correlated with the level of HVR1 antibodies in pCI-1b661 immunized mice (r = 0.967, P<0.01). DNA vaccines expressing truncated E2 protein could induce neutralization antibodies against HCV, and neutralization antibodies mainly was consisted of the antibodies against HVR1.
Yu, Xuya; Ji, Sen-Lin; He, Yi-Long; Ren, Meng-Fei; Xu, Jun-Wei
2014-01-01
We report the construction of a plasmid, pJW-EXP, designed for the expression of homologous and heterologous genes in Ganoderma lucidum. pJW-EXP was generated from the plasmid pMD19-T by inserting the G. lucidum glyceraldehyde-3-phosphate dehydrogenase gene promoter, the G. lucidum iron-sulfur protein subunit of succinate dehydrogenase gene terminator and the homologous carboxin-resistance gene as selection marker. This expression plasmid can be efficiently transformed into Ganoderma through polyethylene glycol-mediated protoplast transformation. Southern blot analysis showed that most of the integrated DNA appeared as multiple copies in the genome. The applicability of the constructed plasmid was tested by expression of the truncated G. lucidum 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene that encodes the catalytic domain of HMGR. Overexpression of the truncated HMGR gene, which is a key gene in the biosynthetic pathway of the antitumor compounds, ganoderic acids, increased the transcription of the HMGR gene and enhanced ganoderic acid accumulation. pJW-EXP can serve as a useful tool in the genetic improvement and metabolic engineering of Ganoderma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayne, M.L.; Cascieri, M.A.; Kelder, B.
1987-05-01
A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less
2008-06-01
verified the insertion of the genes in our expression plasmids and in our lentivirus vectors. Transduction/selection of the 293T with mutated E2F... mutation created in this gene is located in the PEA targeted region of EF-2, it prevents the interaction of these 2 proteins and thus the cell death...We have cloned this mutated elongation factor in an expression vector and in a lentivirus plasmid also encoding a marker gene . The mEF-2-lentivirus
Ruiz-Masó, José Á.; Luengo, Luis M.; Moreno-Córdoba, Inmaculada; Díaz-Orejas, Ramón; del Solar, Gloria
2017-01-01
Although differing in size, encoded traits, host range, and replication mechanism, both narrow-host-range theta-type conjugative enterobacterial plasmid R1 and promiscuous rolling-circle-type mobilizable streptococcal plasmid pMV158 encode a transcriptional repressor protein, namely CopB in R1 and CopG in pMV158, involved in replication control. The gene encoding CopB or CopG is cotranscribed with a downstream gene that encodes the replication initiator Rep protein of the corresponding plasmid. However, whereas CopG is an auto-repressor that inhibits transcription of the entire copG-repB operon, CopB is expressed constitutively and represses a second, downstream promoter that directs transcription of repA. As a consequence of the distinct regulatory pathways implied by CopB and CopG, these repressor proteins play a different role in control of plasmid replication during the steady state: while CopB has an auxiliary role by keeping repressed the regulated promoter whenever the plasmid copy number is above a low threshold, CopG plays a primary role by acting coordinately with RNAII. Here, we have studied the role of the regulatory circuit mediated by these transcriptional repressors during the establishment of these two plasmids in a new host cell, and found that excess Cop repressor molecules in the recipient cell result in a severe decrease in the frequency and/or the velocity of appearance of transformant colonies for the cognate plasmid but not for unrelated plasmids. Using the pMV158 replicon as a model system, together with highly sensitive real-time qPCR and inverse PCR methods, we have also analyzed the effect of CopG on the kinetics of repopulation of the plasmid in Streptococcus pneumoniae. We show that, whereas in the absence of CopG pMV158 repopulation occurs mainly during the first 45 min following plasmid transfer, the presence of the transcriptional repressor in the recipient cell severely impairs the replicon repopulation and makes the plasmid replicate at approximately the same rate as the chromosome at any time after transformation, which results in maximal plasmid loss rate in the absence of selection. Overall, these findings indicate that unrepressed activity of the Cop-regulated promoter is crucial for the successful colonization of the recipient bacterial cells by the plasmid. PMID:29250051
Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D
2005-01-01
Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.
Takala, T M; Saris, P E J; Tynkkynen, S S H
2003-01-01
A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.
Jang, Moon-Sun; Fujita, Azusa; Ikawa, Satomi; Hanawa, Keitaro; Yamamura, Hideki; Tamura, Tomohiko; Hayakawa, Masayuki; Tezuka, Takeaki; Ohnishi, Yasuo
2015-01-01
To date, no plasmid vector has been developed for the rare actinomycete Actinoplanes missouriensis. Moreover, no small circular plasmid has been reported to exist in the genus Actinoplanes. Here, a novel plasmid, designated pCAZ1, was isolated from Couchioplanes caeruleus subsp. azureus via screening for small circular plasmids in Actinoplanes (57 strains) and Couchioplanes (2 strains). Nucleotide sequencing revealed that pCAZ1 is a 5845-bp circular molecule with a G + C content of 67.5%. The pCAZ1 copy number was estimated at 30 per chromosome. pCAZ1 contains seven putative open reading frames, one of which encodes a protein containing three motifs conserved among plasmid-encoded replication proteins that are involved in the rolling-circle mechanism of replication. Detection of single-stranded DNA intermediates in C. caeruleus confirmed that pCAZ1 replicates by this mechanism. The ColE1 origin from pBluescript SK(+) and the oriT sequence with the apramycin resistance gene aac(3)IV from pIJ773 were inserted together into pCAZ1, to construct the Escherichia coli-A. missouriensis shuttle vectors, pCAM1 and pCAM2, in which the foreign DNA fragment was inserted into pCAZ1 in opposite directions. pCAM1 and pCAM2 were successfully transferred to A. missouriensis through the E. coli-mediated conjugative transfer system. The copy numbers of pCAM1 and pCAM2 in A. missouriensis were estimated to be one and four per chromosome, respectively. Thus, these vectors can be used as effective genetic tools for homologous and heterologous gene expression studies in A. missouriensis. Copyright © 2014 Elsevier Inc. All rights reserved.
Efficient production of antibody Fab fragment by transient gene expression in insect cells.
Mori, Keita; Hamada, Hirotsugu; Ogawa, Takafumi; Ohmuro-Matsuyama, Yuki; Katsuda, Tomohisa; Yamaji, Hideki
2017-08-01
Transient gene expression allows a rapid production of diverse recombinant proteins in early-stage preclinical and clinical developments of biologics. Insect cells have proven to be an excellent platform for the production of functional recombinant proteins. In the present study, the production of an antibody Fab fragment by transient gene expression in lepidopteran insect cells was investigated. The DNA fragments encoding heavy-chain (Hc; Fd fragment) and light-chain (Lc) genes of an Fab fragment were individually cloned into the plasmid vector pIHAneo, which contained the Bombyx mori actin promoter downstream of the B. mori nucleopolyhedrovirus (BmNPV) IE-1 transactivator and the BmNPV HR3 enhancer for high-level expression. Trichoplusia ni BTI-TN-5B1-4 (High Five) cells were co-transfected with the resultant plasmid vectors using linear polyethyleneimine. When the transfection efficiency was evaluated, a plasmid vector encoding an enhanced green fluorescent protein (EGFP) gene was also co-transfected. Transfection and culture conditions were optimized based on both the flow cytometry of the EGFP expression in transfected cells and the yield of the secreted Fab fragments determined by enzyme-linked immunosorbent assay (ELISA). Under optimal conditions, a yield of approximately 120 mg/L of Fab fragments was achieved in 5 days in a shake-flask culture. Transient gene expression in insect cells may offer a promising approach to the high-throughput production of recombinant proteins. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Orndorff, P E; Falkow, S
1984-01-01
The recombinant plasmid pSH2 confers type 1 piliation (Pil+) on a nonpiliated (Pil-) strain of Escherichia coli K-12. At least four plasmid-encoded gene products are involved in pilus biosynthesis and expression. We present evidence which indicates that one gene encodes an inhibitor of piliation. Hyperpiliated (Hyp) mutants were isolated after Tn5 insertion mutagenesis of pSH2 and introduction of the plasmid DNA into a Pil- strain of E. coli as unique small, compact colonies. Also, Hyp mutants clumped during growth in static broth and were piliated under several cultural conditions that normally suppressed piliation. Electron microscopic examination of Hyp mutants associated an observed 40-fold increase in pilin antigen with an increase in the number and length of pili per cell. All Hyp mutants examined failed to produce a 23-kilodalton protein that was encoded by a gene adjacent to the structural (pilin) gene for type 1 pili, and all Tn5 insertion mutations that produced the Hyp phenotype mapped in this region (hyp). Piliation in Hyp mutants could be reduced to near parental levels by introducing a second plasmid containing a parental hyp gene. Thus the 23-kilodalton (hyp) protein appears to act in trans to regulate the level of piliation. Images PMID:6148338
Role of the XIAP-Cooper Axis in Prostate Cancer
2011-04-01
growing yeast transformed with a plasmid encoding human XIAP in Cu-free selective medium. Supplemental Cu was added to the medium 1-2 hours before...human XIAP into yeast deletion strains. We selected 16 deletion strains from the same background as our wild-type control (BY4741) for analysis. These...transformed with the XIAP expression plasmid. This objective is complete. Assess yeast deletion mutants for delivery of copper to XIAP. After
Taylor, David M.; Kabashi, Edor; Agar, Jeffrey N.; Minotti, Sandra; Durham, Heather D.
2005-01-01
Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Sα], a nonpeptidase beta subunit [20Sβ3], or 2 regulatory subunits [19S subunit 6b, 11Sα]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes. PMID:16184768
Synthesis and evaluation of cationic nanomicelles for in vitro and in vivo gene delivery
NASA Astrophysics Data System (ADS)
Mandke, Rhishikesh Subhash
The goal of proposed study was to contribute towards the development of a nano size, high efficiency and low toxicity non-viral polymeric vector for gene delivery in vitro and in vivo. A series of fatty acid grafted low-molecular-weight chitosan (N-acyl LMWCs) were synthesized, purified and characterized for their physicochemical properties using various analytical techniques such as infrared spectroscopy, elemental analysis and dynamic light scattering. The formulation parameters including pH, sonication duration, and filtration altered the physicochemical characteristics of N-acyl LMWC nanomicelles. The acyl chain length and degree of unsaturation in fatty acids also had an impact on the physicochemical properties and the transfection efficiency of nanomicelles. N-acyl LMWC nanomicelles showed efficient in vitro transfection as visualized and quantified using a reporter plasmid (encoding green fluorescent protein), and therapeutic plasmids (encoding for interleukin-4 and interleukin-10), respectively. The in vitro transfection efficiencies of N-acyl LMWCs with 18:1 and 18:2 grafts (oleic and linoleic acids) were comparable with FuGENERTM HD (marketed non-viral vector) but were ˜8-fold and 35-fold higher as compared to LMWC and naked DNA, respectively. The in vivo transfection efficiency of N-acyl LMWC to deliver plasmids individually encoding IL-4 and IL-10 as well as a bicistronic plasmid encoding both IL-4 and IL-10 was studied in a multiple, low-dose streptozotocin induced diabetic mouse model. The transfection efficiency of pDNA/N-acyl LMWC polyplexes injected via intramuscular route showed significant improvement (p<0.05) over passive (naked DNA) or positive (FuGENE HD) controls. Additionally, a sustained and efficient expression of IL-4 and IL-10 was observed, accompanied by a reduction in interferon-gamma (INF-gamma), and tumor necrosis factor-alpha (TNF-alpha) levels. The pancreas of pDNA/N-acyl LMWC polyplex treated animals exhibited protection from streptozotocin-induced insulitis and the delivery systems were biocompatible. Histological studies revealed that there were no signs of chronic inflammation at the injection site. The bicistronic plasmid exhibited significantly (p<0.05) greater expression of IL-4 and IL-10, and demonstrated the feasibility of bicistronic IL-4/IL-10 plasmid/N-acyl LMWC nanomicelles-based polyplexes as an efficient and biocompatible system for the prevention of autoimmune diabetes.
Reschner, Anca; Scohy, Sophie; Vandermeulen, Gaëlle; Daukandt, Marc; Jacques, Céline; Michel, Benjamin; Nauwynck, Hans; Xhonneux, Florence; Préat, Véronique; Vanderplasschen, Alain; Szpirer, Cédric
2013-01-01
The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby® technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby® technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1). PMID:24051431
Reschner, Anca; Scohy, Sophie; Vandermeulen, Gaëlle; Daukandt, Marc; Jacques, Céline; Michel, Benjamin; Nauwynck, Hans; Xhonneux, Florence; Préat, Véronique; Vanderplasschen, Alain; Szpirer, Cédric
2013-10-01
The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).
Xiang, Xi; Tang, Yuanjiao; Leng, Qianying; Zhang, Lingyan; Qiu, Li
2016-02-01
The purpose of this study was to optimize an ultrasound-targeted microbubble destruction (UTMD) technique to improve the in vivo transfection efficiency of the gene encoding enhanced green fluorescent protein (EGFP) in the synovial pannus in an antigen-induced arthritis rabbit model. A mixture of microbubbles and plasmids was locally injected into the knee joints of an antigen-induced arthritis (AIA) rabbits. The plasmid concentrations and ultrasound conditions were varied in the experiments. We also tested local articular and intravenous injections. The rabbits were divided into five groups: (1) ultrasound+microbubbles+plasmid; (2) ultrasound+plasmid; (3) microbubble+plasmid; (4) plasmid only; (5) untreated controls. EGFP expression was observed by fluorescent microscope and immunohistochemical staining in the synovial pannus of each group. The optimal plasmid dosage and ultrasound parameter were determined based on the results of EGFP expression and the present and absent of tissue damage under light microscopy. The irradiation procedure was performed to observe the duration of the EGFP expression in the synovial pannus and other tissues and organs, as well as the damage to the normal cells. The optimal condition was determined to be a 1-MHz ultrasound pulse applied for 5 min with a power output of 2 W/cm(2) and a 20% duty cycle along with 300 μg of plasmid. Under these conditions, the synovial pannus showed significant EGFP expression without significant damage to the surrounding normal tissue. The EGFP expression induced by the local intra-articular injection was significantly more increased than that induced by the intravenous injection. The EGFP expression in the synovial pannus of the ultrasound+microbubbles+plasmid group was significantly higher than that of the other four groups (P<0.05). The expression peaked on day 5, remained detectable on day 40 and disappeared on day 60. No EGFP expression was detected in the other tissues and organs. The UTMD technique can significantly enhance the in vivo gene transfection efficiency without significant tissue damage in the synovial pannus of an AIA model. Thus, this could become a safe and effective non-viral gene transfection procedure for arthritis therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Malpartida, F; Zalacaín, M; Jiménez, A; Davies, J
1983-11-30
The gene encoding the phosphotransferase enzyme that modifies hygromycin B in its producing organism Streptomyces hygroscopicus, has been cloned in the Streptomyces vector pIJ41. Two plasmids, pFM4 and pFM6, containing 2.1 and 19.6 kb inserts of Streptomyces hygroscopicus DNA, respectively, which express the modifying enzyme, have been isolated. A 3.1 kb PstI restriction fragment from pFM4 was inserted in the Streptomyces vector pIJ350 and the resulting plasmids, pMZ11.1 and pMZ11.2, express the hygromycin B-resistance phenotype. The utility of this dominant marker for cloning experiments is discussed in the text.
Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick
2010-01-01
Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814
Plasmids encoding therapeutic agents
Keener, William K [Idaho Falls, ID
2007-08-07
Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.
hisT is part of a multigene operon in Escherichia coli K-12.
Marvel, C C; Arps, P J; Rubin, B C; Kammen, H O; Penhoet, E E; Winkler, M E
1985-01-01
The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon. Images PMID:2981810
Datta, Dibyadyuti; Bansal, Geetha P; Gerloff, Dietlind L; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay
2017-01-05
Pfs48/45 and Pfs25 are leading candidates for the development of Plasmodium falciparum transmission blocking vaccines (TBV). Expression of Pfs48/45 in the erythrocytic sexual stages and presentation to the immune system during infection in the human host also makes it ideal for natural boosting. However, it has been challenging to produce a fully folded, functionally active Pfs48/45, using various protein expression platforms. In this study, we demonstrate that full-length Pfs48/45 encoded by DNA plasmids is able to induce significant transmission reducing immune responses. DNA plasmids encoding Pfs48/45 based on native (WT), codon optimized (SYN), or codon optimized and mutated (MUT1 and MUT2), to prevent any asparagine (N)-linked glycosylation were compared with or without intramuscular electroporation (EP). EP significantly enhanced antibody titers and transmission blocking activity elicited by immunization with SYN Pfs48/45 DNA vaccine. Mosquito membrane feeding assays also revealed improved functional immunogenicity of SYN Pfs48/45 (N-glycosylation sites intact) as compared to MUT1 or MUT2 Pfs48/45 DNA plasmids (all N-glycosylation sites mutated). Boosting with recombinant Pfs48/45 protein after immunization with each of the different DNA vaccines resulted in significant boosting of antibody response and improved transmission reducing capabilities of all four DNA vaccines. Finally, immunization with a combination of DNA plasmids (SYN Pfs48/45 and SYN Pfs25) also provides support for the possibility of combining antigens targeting different life cycle stages in the parasite during transmission through mosquitoes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chuang, Olivia N.; Schlievert, Patrick M.; Wells, Carol L.; Manias, Dawn A.; Tripp, Timothy J.; Dunny, Gary M.
2009-01-01
Aggregation substance proteins encoded by sex pheromone plasmids increase the virulence of Enterococcus faecalis in experimental pathogenesis models, including infectious endocarditis models. These large surface proteins may contain multiple functional domains involved in various interactions with other bacterial cells and with the mammalian host. Aggregation substance Asc10, encoded by plasmid pCF10, is induced during growth in the mammalian bloodstream, and pCF10 carriage gives E. faecalis a significant selective advantage in this environment. We employed a rabbit model to investigate the role of various functional domains of Asc10 in endocarditis. The data suggested that the bacterial load of the infected tissue was the best indicator of virulence. Isogenic strains carrying either no plasmid, wild-type pCF10, a pCF10 derivative with an in-frame deletion of the prgB gene encoding Asc10, or pCF10 derivatives expressing other alleles of prgB were examined in this model. Previously identified aggregation domains contributed to the virulence associated with the wild-type protein, and a strain expressing an Asc10 derivative in which glycine residues in two RGD motifs were changed to alanine residues showed the greatest reduction in virulence. Remarkably, this strain and the strain carrying the pCF10 derivative with the in-frame deletion of prgB were both significantly less virulent than an isogenic plasmid-free strain. The data demonstrate that multiple functional domains are important in Asc10-mediated interactions with the host during the course of experimental endocarditis and that in the absence of a functional prgB gene, pCF10 carriage is actually disadvantageous in vivo. PMID:18955479
Zheng, Fengrong; Sun, Xiuqin; Wu, Xing'an; Liu, Hongzhan; Li, Jiye; Wu, Suqi; Zhang, Jinxing
2011-01-01
Here, we report the construction of a vaccine against lymphocystis disease virus (LCDV) using nucleic acid vaccination technology. A fragment of the major capsid protein encoding gene from an LCDV isolated from China (LCDV-cn) was cloned into an eukaryotic expression vector pEGFP-N2, yielding a recombinant plasmid pEGFP-N2-LCDV-cn0.6 kb. This plasmid was immediately expressed after liposomal transfer into the Japanese flounder embryo cell line. The recombinant plasmid was inoculated into Japanese flounder via two routes (intramuscular injection and hypodermic injection) at three doses (0.1, 5, and 15 μg), and then T-lymphopoiesis in different tissues and antibodies raised against LCDV were evaluated. The results indicated that this recombinant plasmid induced unique humoral or cell-mediated immune responses depending on the inoculation route and conferred immune protection. Furthermore, the humoral immune responses and protective effects were significantly increased at higher vaccine doses via the two injection routes. Plasmid pEGFP-N2-LCDV0.6 kb is therefore a promising vaccine candidate against LCDV in Japanese flounder. PMID:21789044
Haddad, Diana; Bilcikova, Erika; Witney, Adam A.; Carlton, Jane M.; White, Charles E.; Blair, Peter L.; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C.; Carucci, Daniel J.; Weiss, Walter R.
2004-01-01
We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens. PMID:14977966
Zabeau, M; Stanley, K K
1982-01-01
Hybrid plasmids carrying cro-lacZ gene fusions have been constructed by joining DNA segments carrying the PR promoter and the start of the cro gene of bacteriophage lambda to the lacZ gene fragment carried by plasmid pLG400 . Plasmids in which the translational reading frames of the cro and lacZ genes are joined in-register (type I) direct the synthesis of elevated levels of cro-beta-galactosidase fusion protein amounting to 30% of the total cellular protein, while plasmids in which the genes are fused out-of-register (type II) produce a low level of beta-galactosidase protein. Sequence rearrangements downstream of the cro initiator AUG were found to influence the efficiency of translation, and have been correlated with alterations in the RNA secondary structure of the ribosome-binding site. Plasmids which direct the synthesis of high levels of beta-galactosidase are conditionally lethal and can only be propagated when the PR promoter is repressed. Deletion of sequences downstream of the lacZ gene restored viability, indicating that this region of the plasmid encodes a function which inhibits the growth of the cells. The different applications of these plasmids for expression of cloned genes are discussed. Images Fig. 6. PMID:6327257
Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils
Garbisu, Carlos; Garaiyurrebaso, Olatz; Epelde, Lur; Grohmann, Elisabeth; Alkorta, Itziar
2017-01-01
Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest. PMID:29062312
Conlan, Sean; Thomas, Pamela J.; Deming, Clayton; Park, Morgan; Lau, Anna F.; Dekker, John P.; Snitkin, Evan S.; Clark, Tyson A.; Luong, Khai; Song, Yi; Tsai, Yu-Chih; Boitano, Matthew; Gupta, Jyoti; Brooks, Shelise Y.; Schmidt, Brian; Young, Alice C.; Thomas, James W.; Bouffard, Gerard G.; Blakesley, Robert W.; Mullikin, James C.; Korlach, Jonas; Henderson, David K.; Frank, Karen M.; Palmore, Tara N.; Segre, Julia A.
2014-01-01
Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common healthcare-associated infections nearly impossible to treat. We performed comprehensive surveillance and genomic sequencing to identify carbapenem-resistant Enterobacteriaceae in the NIH Clinical Center patient population and hospital environment in order to to articulate the diversity of carbapenemase-encoding plasmids and survey the mobility of and assess the mobility of these plasmids between bacterial species. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem-resistance genes on a wide array of plasmids. Klebsiella pneumoniae and Enterobacter cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, overriding the epidemiological scenario of plasmid transfer between organisms within this patient. We did, however, find evidence supporting horizontal transfer of carbapenemase-encoding plasmids between Klebsiella pneumoniae, Enterobacter cloacae and Citrobacter freundii in the hospital environment. Our comprehensive sequence data, with full plasmid identification, challenges assumptions about horizontal gene transfer events within patients and identified wider possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Pantoea species, from unrelated patients and the hospital environment. PMID:25232178
Shifera, Amde Selassie; Hardin, John A.
2009-01-01
The Renilla luciferase gene is commonly used as an internal control in luciferase-based reporter gene assays to normalize the values of the experimental reporter gene for variations that could be caused by transfection efficiency and sample handling. Various plasmids encoding Renilla luciferase under different promoter constructs are commercially available. The validity of the use of Renilla luciferase as an internal control is based on the assumption that it is constitutively expressed in transfected cells and that its constitutive expression is not modulated by experimental factors that could result in either the upregulation or the downregulation of the amounts of the enzyme produced. During the past ten years, a number of reports have appeared that identified a variety of conditions that could alter the basal constitutive expression of Renilla luciferase. The use of Renilla luciferase in those circumstances would not be valid and an alternative way of normalization would be necessary. This review covers the factors that have been reported thus far as modulating the expression of Renilla luciferase from plasmid constructs. PMID:19788887
Gutiérrez, Jorge; Criado, Raquel; Martín, María; Herranz, Carmen; Cintas, Luis M.; Hernández, Pablo E.
2005-01-01
The gene encoding mature enterocin P (EntP), an antimicrobial peptide from Enterococcus faecium P13, was cloned into the pPICZαA expression vector to generate plasmid pJC31. This plasmid was integrated into the genome of P. pastoris X-33, and EntP was heterologously secreted from the recombinant P. pastoris X-33t1 derivative at a higher production and antagonistic activity than from E. faecium P13. PMID:15980385
Folster, Jason P; Pecic, Gary; McCullough, Andre; Rickert, Regan; Whichard, Jean M
2011-12-01
Salmonella enterica is one of the most common bacterial causes of foodborne illness, and nontyphoidal Salmonella is estimated to cause ∼1.2 million illnesses in the United States each year. Plasmids are mobile genetic elements that play a critical role in the dissemination of antimicrobial resistance determinants. AmpC-type CMY β-lactamases (bla(CMY)) confer resistance to extended-spectrum cephalosporins and β-lactam/β-lactamase inhibitor combinations and are commonly plasmid-encoded. A variety of plasmids have been shown to encode CMY β-lactamases and certain plasmids may be associated with particular Salmonella serotypes or environmental sources. In this study, we characterized bla(CMY) β-lactamase-encoding plasmids among Salmonella isolates. Isolates of Salmonella from specimens collected from humans in 2007 were submitted to the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System laboratory for susceptibility testing. Three percent (65/2161) of Salmonella isolates displayed resistance to ceftriaxone (minimum inhibitory concentration [MIC] ≥4 mg/L) and amoxicillin/clavulanic acid (MIC ≥32 mg/L), a combination associated with the presence of a bla(CMY) mechanism of resistance. Sixty-four (98.5%) isolates were polymerase chain reaction-positive for bla(CMY) genes. Transformation and conjugation studies showed that 95% (61/64) of the bla(CMY) genes were plasmid-encoded. Most of the bla(CMY)-positive isolates were serotype Typhimurium, Newport, Heidelberg, and Agona. Forty-three plasmids were replicon type IncA/C, 15 IncI1, 2 contained multiple replicon loci, and 1 was untypeable. IncI1 plasmids conferred only the bla(CMY)-associated resistance phenotype, whereas IncA/C plasmids conferred additional multi-drug resistance (MDR) phenotypes to drugs such as chloramphenicol, sulfisoxazole, and tetracycline. Most of the IncI1 plasmids (12/15) were sequence type 12 by plasmid multi-locus sequence typing. CMY β-lactamase-encoding plasmids among human isolates of Salmonella in the United States tended to be large MDR IncA/C plasmids or single resistance determinant IncI1 plasmids. In general, IncI1 plasmids were identified among serotypes commonly associated with poultry, whereas IncA/C plasmids were more likely to be identified among cattle/beef-associated serotypes.
Diverse Broad-Host-Range Plasmids from Freshwater Carry Few Accessory Genes
Sen, Diya; Yano, Hirokazu; Bauer, Matthew L.; Rogers, Linda M.; Van der Auwera, Geraldine A.
2013-01-01
Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities. PMID:24096417
Optimization of mNeonGreen for Homo sapiens increases its fluorescent intensity in mammalian cells.
Tanida-Miyake, Emiko; Koike, Masato; Uchiyama, Yasuo; Tanida, Isei
2018-01-01
Green fluorescent protein (GFP) is tremendously useful for investigating many cellular and intracellular events. The monomeric GFP mNeonGreen is about 3- to 5-times brighter than GFP and monomeric enhanced GFP and shows high photostability. The maturation half-time of mNeonGreen is about 3-fold faster than that of monomeric enhanced GFP. However, the cDNA sequence encoding mNeonGreen contains some codons that are rarely used in Homo sapiens. For better expression of mNeonGreen in human cells, we synthesized a human-optimized cDNA encoding mNeonGreen and generated an expression plasmid for humanized mNeonGreen under the control of the cytomegalovirus promoter. The resultant plasmid was introduced into HEK293 cells. The fluorescent intensity of humanized mNeonGreen was about 1.4-fold higher than that of the original mNeonGreen. The humanized mNeonGreen with a mitochondria-targeting signal showed mitochondrial distribution of mNeonGreen. We further generated an expression vector of humanized mNeonGreen with 3xFLAG tags at its carboxyl terminus as these tags are useful for immunological analyses. The 3xFLAG-tagged mNeonGreen was recognized well with an anti-FLAG-M2 antibody. These plasmids for the expression of humanized mNeonGreen and mNeonGreen-3xFLAG are useful tools for biological studies in mammalian cells using mNeonGreen.
MCR-1 and OXA-48 In Vivo Acquisition in KPC-Producing Escherichia coli after Colistin Treatment.
Beyrouthy, Racha; Robin, Frederic; Lessene, Aude; Lacombat, Igor; Dortet, Laurent; Naas, Thierry; Ponties, Valérie; Bonnet, Richard
2017-08-01
The spread of mcr-1 -encoding plasmids into carbapenem-resistant Enterobacteriaceae raises concerns about the emergence of untreatable bacteria. We report the acquisition of mcr-1 in a carbapenem-resistant Escherichia coli strain after a 3-week course of colistin in a patient repatriated to France from Portugal. Whole-genome sequencing revealed that the Klebsiella pneumoniae carbapenemase-producing E. coli strain acquired two plasmids, an IncL OXA-48-encoding plasmid and an IncX4 mcr-1 -encoding plasmid. This is the first report of mcr-1 in carbapenemase-encoding bacteria in France. Copyright © 2017 American Society for Microbiology.
Engineering Escherichia coli into a protein delivery system for mammalian cells.
Reeves, Analise Z; Spears, William E; Du, Juan; Tan, Kah Yong; Wagers, Amy J; Lesser, Cammie F
2015-05-15
Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.
Barbieri, Nicolle L.; Vande Vorde, Jessica A.; Baker, Alison R.; Horn, Fabiana; Li, Ganwu; Logue, Catherine M.; Nolan, Lisa K.
2017-01-01
Avian pathogenic Escherichia coli (APEC) is the etiologic agent of colibacillosis, an important cause of morbidity and mortality in poultry. Though, many virulence factors associated with APEC pathogenicity are known, their regulation remains unclear. FNR (fumarate and nitrate reduction) is a well-known global regulator that works as an oxygen sensor and has previously been described as a virulence regulator in bacterial pathogens. The goal of this study was to examine the role of FNR in the regulation of APEC virulence factors, such as Type I fimbriae, and processes such as adherence and invasion, type VI secretion, survival during oxidative stress, and growth in iron-restricted environments. To accomplish this goal, APEC O1, a well-characterized, highly virulent, and fully sequenced strain of APEC harboring multiple virulence mechanisms, some of which are plasmid-linked, was compared to its FNR mutant for expression of various virulence traits. Deletion of FNR was found to affect APEC O1's adherence, invasion and expression of ompT, a plasmid-encoded outer membrane protein, type I fimbriae, and aatA, encoding an autotransporter. Indeed, the fnr− mutant showed an 8-fold reduction in expression of type I fimbriae and a highly significant (P < 0.0001) reduction in expression of fimA, ompT (plasmid-borne), and aatA. FNR was also found to regulate expression of the type VI secretion system, affecting the expression of vgrG. Further, FNR was found to be important to APEC O1's growth in iron-deficient media and survival during oxidative stress with the mutant showing a 4-fold decrease in tolerance to oxidative stress, as compared to the wild type. Thus, our results suggest that FNR functions as an important regulator of APEC virulence. PMID:28690981
Molecular cloning and characterization of the spaB gene of Streptococcus sobrinus.
Holt, R G; Perry, S E
1990-07-01
A gene of Streptococcus sobrinus 6715 (serotype g) designated spaB and encoding a surface protein antigen was isolated from a cosmid gene bank. A 5.4 kb HindIII/AvaI DNA fragment containing the gene was inserted into plasmid pBR322 to yield plasmid pXI404. Analysis of plasmid-encoded gene products showed that the 5.4 kb fragment of pXI404 encoded a 195 kDa protein. Southern blot experiments revealed that the 5.4 kb chromosomal insert DNA had sequence similarity with genomic DNA of S. sobrinus 6715, S. sobrinus B13 (serotype d) and Streptococcus cricetus HS6 (serotype a). The recombinant SpaB protein (rSpaB) was purified and monospecific antiserum was prepared. With immunological techniques and the anti-rSpaB serum, we have shown: (1) that the rSpaB protein has physico-chemical and antigenic identity with the S. sobrinus SpaB protein, (2) the presence of cross-reactive proteins in the extracellular protein of serotypes a and d of the mutans group of streptococci and (3) that the SpaB protein is expressed on the surface of mutans streptococcal serotypes a, d and g.
The 987P fimbrial gene cluster of enterotoxigenic Escherichia coli is plasmid encoded.
Schifferli, D M; Beachey, E H; Taylor, R K
1990-01-01
A clone containing the 987P fimbrial gene cluster was selected from a cosmid library of total DNA of the prototype Escherichia coli strain 987 by using 987P-specific antiserum. A subclone of 12 kilobases containing all of the genes required for fimbrial expression on a nonfimbriated K-12 strain of E. coli and a DNA fragment internal to the fimbrial subunit gene were used to probe the prototype strain and various isolates of 987P-fimbriated enterotoxigenic E. coli. All strains had several plasmids, as shown by agarose gel electrophoresis, and each of five strains which expressed 987P fimbriae showed a plasmid of 35 to 40 megadaltons (MDa) hybridizing to both 987P-specific probes. Hybridization to restricted DNA of strain 987 supported a plasmid origin for the cloned 987P gene cluster. Moreover, an isogenic strain which had lost its 35-MDa plasmid was no longer capable of synthesizing fimbrial subunits, but regained fimbrial expression after reintroduction of the TnphoA (Tn5 IS50L::phoA)-tagged 35-MDa plasmid. Absence of fimbrial subunit synthesis in K-12 strains transformed with the 35-MDa plasmid alone suggested the requirement of regulatory elements existing in strain 987 but missing in K-12 strains. A probe for the heat-stable enterotoxin STIa hybridized in each of the 987P-fimbriated strains to the plasmid containing the 987P genes and in most of these strains to an additional plasmid which contained the gene for the heat-stable enterotoxin STII. Occurrence of the 987P and STIa genes on the same replicon correlates with epidemiological observations, STIa being the most prevalent toxin produced by 987P-fimbriated E. coli. Images PMID:1967167
Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius.
Wescombe, Philip A; Burton, Jeremy P; Cadieux, Peter A; Klesse, Nikolai A; Hyink, Otto; Heng, Nicholas C K; Chilcott, Chris N; Reid, Gregor; Tagg, John R
2006-10-01
Streptococcus salivarius strains commonly produce bacteriocins as putative anti-competitor or signalling molecules. Here we report that bacteriocin production by the oral probiotic strain S. salivarius K12 is encoded by a large (ca. 190 kb) plasmid. Oral cavity transmission of the plasmid from strain K12 to a plasmid-negative variant of this bacterium was demonstrated in two subjects. Tests of additional S. salivarius strains showed large (up to ca. 220 kb) plasmids present in bacteriocin-producing isolates. Various combinations (up to 3 per plasmid) of loci encoding the known streptococcal lantibiotics salivaricin A, salivaricin B, streptin and SA-FF22 were localised to these plasmids. Since all bacteriocin-producing strains of S. salivarius tested to date appear to harbour plasmids, it appears that they may function as mobile repositories for bacteriocin loci, especially those of the lantibiotic class.
Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A
2012-03-01
The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.
Belperron, Alexia A.; Feltquate, David; Fox, Barbara A.; Horii, Toshihiro; Bzik, David J.
1999-01-01
The liver- and blood-stage-expressed serine repeat antigen (SERA) of Plasmodium falciparum is a candidate protein for a human malaria vaccine. We compared the immune responses induced in mice immunized with SERA-expressing plasmid DNA vaccines delivered by intramuscular (i.m.) injection or delivered intradermally by Gene Gun immunization. Mice were immunized with a pcdna3 plasmid encoding the entire 47-kDa domain of SERA (amino acids 17 to 382) or the N-terminal domain (amino acids 17 to 110) of SERA. Minimal antibody responses were detected following DNA vaccination with the N-terminal domain of SERA, suggesting that the N-terminal domain alone is not highly immunogenic by this route of vaccine delivery. Immunization of mice by Gene Gun delivery of the 47-kDa domain of SERA elicited a significantly higher serum antibody titer to the antigen than immunization of mice by i.m. injection with the same plasmid did. The predominant isotype subclass of the antibodies elicited to the SERA protein following i.m. and Gene Gun immunizations with SERA plasmid DNA was immunoglobulin G1. Coimmunization of mice with SERA plasmid DNA and a plasmid expressing the hepatitis B surface antigen (pCMV-s) by the i.m. route resulted in higher anti-SERA titers than those generated in mice immunized with the SERA DNA plasmid alone. Vaccination with DNA may provide a viable alternative or may be used in conjunction with protein-based subunit vaccines to maximize the efficacy of a human malaria vaccine that includes immunogenic regions of the SERA protein. PMID:10496891
Effects of different cytokines on immune responses of rainbow trout in a virus DNA vaccination model
Cao, Yongsheng; Zhang, Qiya; Xu, Liming; Li, Shaowu; Wang, Di; Zhao, Jingzhuang; Liu, Hongbai; Feng, Jian; Lu, Tongyan
2017-01-01
Seven rainbow trout cytokine genes (interleukin (IL)-2, IL-8, IL-15, IL-17, IL-1β, intracellular interferon (iIFN) 1a, and IFN-γ2) were evaluated for their adjuvant effects on a DNA vaccine, called pG, containing the glycoprotein gene of infectious hematopoietic necrosis virus (IHNV). Distinct DNA constructs in expression plasmid pcDNA3.1 encoding a cytokine gene were generated. Immunofluorescence assays in rainbow trout gonadal cells demonstrated successful protein expression from all these constructs. Subsequently, fish were immunized with pG alone or together with a cytokine expression plasmid. Results showed that each cytokine plasmids at an appropriate dose showed notable effects on immune gene expression. IL-17 and IFN-γ2 can enhance early specific IgM response. All cytokines, except IL-8, can benefit initial neutralizing antibody (NAb) titers. At 35 days post immunization (dpi), NAb titers of fish immunized with pG and IL-2, iIFN1a, or IFN-γ2 plasmids remained at high levels (1:160). NAb titers of fish immunized with pG alone decreased to 1:40. IL-8 or IL-1β can enhance antigen-specific proliferative T-cell responses at 14 dpi. At 28 dpi, coinjection of pG with IL-2, IL-8, IL-15, or IL-17 plasmids induced considerably stronger lymphocyte proliferation than that with injection of pG alone. All cytokine plasmids delivered with pG plasmid enhanced protection of trout against IHNV-mediated mortality. These results indicate that the type and dose of trout cytokine genes injected into fish affect quality of immune response to DNA vaccination. PMID:29348820
Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.
2005-01-01
A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504
Allon, Nahum; Saxena, Ashima; Chambers, Carolyn; Doctor, Bhupendra P
2012-06-10
We formulated a new gene delivery system based on targeted liposomes. The efficacy of the delivery system was demonstrated in in vitro and in vivo models. The targeting moiety consists of a high-affinity 7-amino-acid peptide, covalently and evenly conjugated to the liposome surface. The targeting peptide acts as an endothelin antagonist, and accelerates liposome binding and internalization. It is devoid of other biological activity. Liposomes with high phosphatidyl serine (PS) were specially formulated to help their fusion with the endosomal membrane at low pH and enable release of the liposome payload into the cytoplasm. A DNA payload, pre-compressed by protamine, was encapsulated into the liposomes, which directed the plasmid into the cell's nucleus. Upon exposure to epithelial cells, binding of the liposomes occurred within 5-10 min, followed by facilitated internalization of the complex. Endosomal escape was complete within 30 min, followed by DNA accumulation in the nucleus 2h post-transfection. A549 lung epithelial cells transfected with plasmid encoding for GFP encapsulated in targeted liposomes expressed significantly more protein than those transfected with plasmid complexed with Lipofectamine. The intra-tracheal instillation of plasmid encoding for GFP encapsulated in targeted liposomes into rat lungs resulted in the expression of GFP in bronchioles and alveoli within 5 days. These results suggest that this delivery system has great potential in targeting genes to lungs. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Himmah, Karimatul; Dluha, Nurul; Anyndita, Nadya V. M.; Rifa'i, Muhaimin; Widodo
2017-05-01
The Epstein - Barr virus (EBV) causes severe infections that may lead to cancers such as nasopharyngeal carcinoma. Development of effective EBV vaccines is necessary to prevent the virus spreading throughout the community. TheEBV has a surface protein gp 350/220, which serves as an antigen to help interact with host cells. Epitopes of the protein can potentially serve as bases for a vaccine. In a previous study, we have found a conserved epitope of gp 350/220 from all strains EBV through an in silico approach. The aim of this study is to design and overproduce a recombinant peptide of epitope gp 350/220 in E. coli. DNA encoding the conserved epitope was synthesized and cloned into plasmid pET-22b(+); the recombinant plasmid was transformed into E. coli strains DH5α and BL21. The transformed plasmid DNA was isolated and confirmed by restriction using XbaI and PstI enzymes followed by DNA sequencing. Protein expression was induced by isopropyl-D-thiogalactopyranoside (IPTG) with final concentrations of 0.1, 0.2, 1, and 2 mM in consecutive times. An osmotic shock method was used to isolate protein from periplasmic fraction of E. coli DH5α and BL21. The SDS-PAGE analysis was carried out to detect peptide target (3.4 kDa). Based on this result, the induction process did not work properly, and thus needs further investigation.
Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae
Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel
1991-01-01
A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.
Lobato-Márquez, Damián; Molina-García, Laura; Moreno-Córdoba, Inma; García-Del Portillo, Francisco; Díaz-Orejas, Ramón
2016-01-01
Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50-90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system ( parAB ) and two TA systems ( ccdAB ST and vapBC2 ST ). The TA module ccdAB ST has previously been shown to contribute to pSLT plasmid stability and vapBC2 ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2 ST , in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdAB ST encodes an inactive CcdB ST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdAB ST variant containing a single mutation (R99W) that restores the toxicity of CcdB ST . The "activation" of CcdB ST (R99W) did not increase pSLT stability by ccdAB ST . In contrast, ccdAB ST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdAB ST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdB ST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdA ST antitoxin more than on its toxic activity.
Ruan, Junzhong; Duan, Yong; Li, Fugen; Wang, Zitong
2017-01-01
In order to achieve a synergistic effect on anti-tumour and anti-angiogenesis activity, we designed and constructed a DNA vaccine that expresses MUC1and VEGFR2 in the same reading frame. The aim of this study was to investigate the anti-tumour activity of this DNA vaccine. Furthermore, we also investigated the enhanced synergistic anti-Lewis lung carcinoma effect of this DNA vaccine by using GM-CSF as an adjuvant. A series of DNA plasmids encoding MUC1, VEGFR2, GM-CSF, and their conjugates were constructed and injected into mice intramuscularly (i.m.) followed by an electric pulse. The humoral and cellular immune responses after immunization were detected by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot (ELISPOT), respectively. To evaluate the anti-tumour efficacy of these plasmids, murine models with MUC1-expressing tumours were generated. After injection into the tumour-bearing mouse model, the plasmid carrying the fusion gene of MUC1 and VEGFR2 showed stronger inhibition of tumour growth than the plasmid expressing MUC1 or VEGFR2 alone, which indicated that MUC1 and VEGFR2 could exert a synergistic anti-tumour effect. Furthermore, mice vaccinated with the combination of the GM-CSF expressing plasmid and the plasmid carrying the fusion gene of MUC1 and VEGFR2 showed an increased inhibition in the growth of MUC1-expressing tumours and prolonged mouse survival. These observations emphasize the potential of the synergistic anti-tumour and anti-angiogenesis strategy used in DNA vaccines, and the potential of the GM-CSF gene as an adjuvant for DNA vaccines, which could represent a promising approach for tumour immunotherapy. © 2016 John Wiley & Sons Australia, Ltd.
Woloj, M; Tolmasky, M E; Roberts, M C; Crosa, J H
1986-01-01
Two multiresistant Klebsiella pneumoniae strains isolated from cerebrospinal fluid of human neonates were analyzed for their plasmid content. Two of the plasmids harbored by these strains, pJHCMW1 (11 kilobase pairs) and pJHCMW4 (75 kilobase pairs), carried genetic determinants for amikacin resistance. These plasmids also encoded resistance to kanamycin, tobramycin, and ampicillin which could be transferred to Escherichia coli by conjugation. Extracts from transconjugant derivatives carrying pJHCMW4 produced an acetyltransferase activity that acetylated all three aminoglycosides. Transconjugant derivatives carrying pJHCMW1 encoded both acetylating and phosphorylating activities. Southern blot hybridization analysis indicated considerable DNA homology between these two plasmids. Images PMID:3521478
Gritz, L; Davies, J
1983-11-01
The plasmid-borne gene hph coding for hygromycin B phosphotransferase (HPH) in Escherichia coli has been identified and its nucleotide sequence determined. The hph gene is 1026 nucleotides long, coding for a protein with a predicted Mr of 39 000. The hph gene was placed in a shuttle plasmid vector, downstream from the promoter region of the cyc 1 gene of Saccharomyces cerevisiae, and an hph construction containing a single AUG in the 5' noncoding region allowed direct selection following transformation in yeast and in E. coli. Thus the hph gene can be used in cloning vectors for both pro- and eukaryotes.
Godovikova, Valentina; Goetting-Minesky, M. Paula; Shin, Jae M.; Kapila, Yvonne L.; Rickard, Alexander H.
2015-01-01
Oral pathogens, including Treponema denticola, initiate the dysregulation of tissue homeostasis that characterizes periodontitis. However, progress of research on the roles of T. denticola in microbe-host interactions and signaling, microbial communities, microbial physiology, and molecular evolution has been hampered by limitations in genetic methodologies. This is typified by an extremely low transformation efficiency and inability to transform the most widely studied T. denticola strain with shuttle plasmids. Previous studies have suggested that robust restriction-modification (R-M) systems in T. denticola contributed to these problems. To facilitate further molecular genetic analysis of T. denticola behavior, we optimized existing protocols such that shuttle plasmid transformation efficiency was increased by >100-fold over prior reports. Here, we report routine transformation of T. denticola ATCC 35405 with shuttle plasmids, independently of both plasmid methylation status and activity of the type II restriction endonuclease encoded by TDE0911. To validate the utility of this methodological advance, we demonstrated expression and activity in T. denticola of a flavin mononucleotide-based fluorescent protein (FbFP) that is active under anoxic conditions. Addition of routine plasmid-based fluorescence labeling to the Treponema toolset will enable more-rigorous and -detailed studies of the behavior of this organism. PMID:26162875
Coulson, Garry B.; Miranda-CasoLuengo, Aleksandra A.; Miranda-CasoLuengo, Raúl; Wang, Xiaoguang; Oliver, Jenna; Willingham-Lane, Jennifer M.
2015-01-01
Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte. PMID:26015480
Royo, Jose Luis; Moreno-Ruiz, Emilia; Cebolla, Angel; Santero, Eduardo
2005-03-16
In our laboratory we have analyzed different factors to maximize the yield in heterologous protein expression for long-term cultivation, by combination of an efficient cascade expression system and stable integration in the bacterial chromosome. In this work, we have explored this system for the production of indigo dye as a model for biotechnological production, by expressing in Escherichia coli the thnA1A2A3A4 genes from Sphingomonas macrogolitabida strain TFA, which encode the components of a tetralin dioxygenase activity. We compared Ptac, and the Pm-based cascade expression circuit in a multicopy plasmid and stably integrated into the bacterial chromosome. Plasmid-based expression systems resulted in instability of indigo production when serially diluted batch experiments were performed without a selective pressure. This problem was solved by integrating the expression module in the chromosome. Despite the gene dosage reduction, the synergic effect of the cascade expression system produced comparable expression to the dioxygenase activity in the plasmid configuration but could be stably maintained for at least 5 days. Here, we show that the cascade amplification circuit integrated in the chromosome could be an excellent system for tight control and stable production of recombinant products.
Walker, Andy W; Keasling, Jay D
2002-06-30
Pseudomonas putida KT2442 was engineered to use the organophosphate pesticide parathion, a compound similar to other organophosphate pesticides and chemical warfare agents, as a source of carbon and energy. The initial step in the engineered degradation pathway was parathion hydrolysis by organophosphate hydrolase (OPH) to p-nitrophenol (PNP) and diethyl thiophosphate, compounds that cannot be metabolized by P. putida KT2442. The gene encoding the native OPH (opd), with and without the secretory leader sequence, was cloned into broad-host-range plasmids under the control of tac and taclac promoters. Expression of opd from the tac promoter resulted in high OPH activity, whereas expression from the taclac promoter resulted in low activity. A plasmid-harboring operons encoding enzymes for p-nitrophenol transformation to beta-ketoadipate was transformed into P. putida allowing the organism to use 0.5 mM PNP as a carbon and energy source. Transformation of P. putida with the plasmids harboring opd and the PNP operons allowed the organism to utilize 0.8 mM parathion as a source of carbon and energy. Degradation studies showed that parathion formed a separate dense, non-aqueous phase liquid phase but was still bioavailable. Copyright 2002 Wiley Periodicals, Inc.
Baca, A M; Hol, W G
2000-02-01
Parasite genes often use codons which are rarely used in the highly expressed genes of Escherichia coli, possibly resulting in translational stalling and lower yields of recombinant protein. We have constructed the "RIG" plasmid to overcome the potential codon-bias problem seen in Plasmodium genes. RIG contains the genes that encode three tRNAs (Arg, Ile, Gly), which recognise rare codons found in parasite genes. When co-transformed into E. coli along with expression plasmids containing parasite genes, RIG can greatly increase levels of overexpressed protein. Codon frequency analysis suggests that RIG may be applied to a variety of protozoan and helminth genes.
Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli.
Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn; Gänzle, Michael G
2017-10-15
The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae , including pathogenic strains of Salmonella enterica and Escherichia coli The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI , yfdX2 , hdeD GI , orf11 , trx GI , kefB , and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript "GI" [genomic island] if an ortholog of the same gene is present in genomes of E. coli ) LHR-encoded heat shock proteins sHSP20, ClpK GI , and sHSP GI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI , kefB , and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food. Copyright © 2017 American Society for Microbiology.
Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli
Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn
2017-01-01
ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1GI, yfdX2, hdeDGI, orf11, trxGI, kefB, and psiEGI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trxGI, kefB, and psiEGI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food. PMID:28802266
Coelho-Castelo, AAM; Trombone, AP; Rosada, RS; Santos, RR; Bonato, VLD; Sartori, A; Silva, CL
2006-01-01
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system. PMID:16445866
Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense.
Horiuchi, Yuki; Laskaratou, Danai; Sliwa, Michel; Ruckebusch, Cyril; Hatori, Kuniyuki; Mizuno, Hideaki; Hotta, Jun-Ichi
2018-01-26
Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT) 14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense . We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein "ember" from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 10⁵ M -1 ·cm -1 . The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.
Subunit association of gamma-glutamyltranspeptidase of Escherichia coli K-12.
Hashimoto, W; Suzuki, H; Nohara, S; Tachi, H; Yamamoto, K; Kumagai, H
1995-12-01
gamma-Glutamyltranspeptidase [EC 2.3.2.2] of Escherichia coli K-12 consists of one large subunit and one small subunit, which can be separated from each other by high-performance liquid chromatography. Using ion spray mass spectrometry, the masses of the large and the small subunit were determined to be 39,207 and 20,015, respectively. The large subunit exhibited no gamma-glutamyltranspeptidase activity and the small subunit had little enzymatic activity, but a mixture of the two subunits showed partial recovery of the enzymatic activity. The results of native-polyacrylamide gel electrophoresis suggested that they could partially recombine, and that the recombined dimer exhibited enzymatic activity. The gene of gamma-glutamyltranspeptidase encoded a signal peptide, and the large and small subunits in a single open reading frame in that order. Two kinds of plasmid were constructed encoding the signal peptide and either the large or the small subunit. A gamma-glutamyltranspeptidase-less mutant of E. coli K-12 was transformed with each plasmid or with both of them. The strain harboring the plasmid encoding each subunit produced a small amount of the corresponding subunit protein in the periplasmic space but exhibited no enzymatic activity. The strain transformed with both plasmids together exhibited the enzymatic activity, but its specific activity was approximately 3% of that of a strain harboring a plasmid encoding the intact structural gene. These results indicate that a portion of the separated large and small subunits can be reconstituted in vitro and exhibit the enzymatic activity, and that the expressed large and small subunits independently are able to associate in vivo and be folded into an active structure, though the specific activity of the associated subunits was much lower than that of native enzyme. This suggests that the synthesis of gamma-glutamyltranspeptidase in a single precursor polypeptide and subsequent processing are more effective to construct the intact structure of gamma-glutamyltranspeptidase than the association of the separated large and small subunits.
Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S
1996-01-01
Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA. PMID:8943327
Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S
1996-12-01
Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA.
Yamazaki, Tatsuya; Nagashima, Maria; Ninomiya, Daisuke; Ainai, Akira; Fujimoto, Akira; Ichimonji, Isao; Takagi, Hidekazu; Morita, Naoko; Murotani, Kenta; Hasegawa, Hideki; Chiba, Joe; Akashi-Takamura, Sachiko
2018-01-01
The influenza virus causes annual epidemics and occasional pandemics and is thus a major public health problem. Development of vaccines and antiviral drugs is essential for controlling influenza virus infection. We previously demonstrated the use of vectored immune-prophylaxis against influenza virus infection. We generated a plasmid encoding neutralizing IgG monoclonal antibodies (mAbs) against A/PR/8/34 influenza virus (IAV) hemagglutinin (HA). We then performed electroporation of the plasmid encoding neutralizing mAbs (EP) in mice muscles and succeeded in inducing the expression of neutralizing antibodies in mouse serum. This therapy has a prophylactic effect against lethal IAV infection in mice. In this study, we established a new method of passive immunotherapy after IAV infection. We performed hydrodynamic injection of the plasmid encoding neutralizing mAbs (HD) involving rapid injection of a large volume of plasmid-DNA solution into mice via the tail vein. HD could induce neutralizing antibodies in the serum and in several mucosal tissues more rapidly than in EP. We also showed that a single HD completely protected the mice even after infection with a lethal dose of IAV. We also established other isotypes of anti-HA antibody (IgA, IgM, IgD, and IgE) and showed that like anti-HA IgG, anti-HA IgA was also effective at combating upper respiratory tract IAV infection. Passive immunotherapy with HD could thus provide a new therapeutic strategy targeting influenza virus infection. PMID:29416543
Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR.
Jahn, Michael; Vorpahl, Carsten; Hübschmann, Thomas; Harms, Hauke; Müller, Susann
2016-12-19
Plasmids are widely used for molecular cloning or production of proteins in laboratory and industrial settings. Constant modification has brought forth countless plasmid vectors whose characteristics in terms of average plasmid copy number (PCN) and stability are rarely known. The crucial factor determining the PCN is the replication system; most replication systems in use today belong to a small number of different classes and are available through repositories like the Standard European Vector Architecture (SEVA). In this study, the PCN was determined in a set of seven SEVA-based expression plasmids only differing in the replication system. The average PCN for all constructs was determined by Droplet Digital PCR and ranged between 2 and 40 per chromosome in the host organism Escherichia coli. Furthermore, a plasmid-encoded EGFP reporter protein served as a means to assess variability in reporter gene expression on the single cell level. Only cells with one type of plasmid (RSF1010 replication system) showed a high degree of heterogeneity with a clear bimodal distribution of EGFP intensity while the others showed a normal distribution. The heterogeneous RSF1010-carrying cell population and one normally distributed population (ColE1 replication system) were further analyzed by sorting cells of sub-populations selected according to EGFP intensity. For both plasmids, low and highly fluorescent sub-populations showed a remarkable difference in PCN, ranging from 9.2 to 123.4 for ColE1 and from 0.5 to 11.8 for RSF1010, respectively. The average PCN determined here for a set of standardized plasmids was generally at the lower end of previously reported ranges and not related to the degree of heterogeneity. Further characterization of a heterogeneous and a homogeneous population demonstrated considerable differences in the PCN of sub-populations. We therefore present direct molecular evidence that the average PCN does not represent the true number of plasmid molecules in individual cells.
Harker, A R; Olsen, R H; Seidler, R J
1989-01-01
Plasmid pJP4 enables Alcaligenes eutrophus JMP134 to degrade 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (TFD). Plasmid pRO101 is a derivative of pJP4 obtained by insertion of Tn1721 into a nonessential region of pJP4. Plasmid pRO101 was transferred by conjugation to several Pseudomonas strains and to A. eutrophus AEO106, a cured isolate of JMP134. AEO106(pRO101) and some Pseudomonas transconjugants grew on TFD. Transconjugants with a chromosomally encoded phenol hydroxylase also degraded phenoxyacetic acid (PAA) in the presence of an inducer of the TFD pathway, namely, TFD or 3-chlorobenzoate. A mutant of one such phenol-degrading strain, Pseudomonas putida PPO300(pRO101), grew on PAA as the sole carbon source in the absence of inducer. This isolate carried a mutant plasmid, designated pRO103, derived from pRO101 through the deletion of a 3.9-kilobase DNA fragment. Plasmid pRO103 constitutively expressed the TFD pathway, and this allowed the metabolism of PAA in the absence of the inducer, TFD. Complementation of pRO103 in trans by a DNA fragment corresponding to the fragment deleted in pRO101 indicates that a negative control-regulatory gene (tfdR) is located on the BamHI E fragment of pRO101. Other subcloning experiments resulted in the cloning of the tfdA monooxygenase gene on a 3.5-kilobase fragment derived from pRO101. This subclone, in the absence of other pRO101 DNA, constitutively expressed the tfdA gene and allowed PPO300 to grow on PAA. Preliminary evidence suggests that the monooxygenase activity encoded by this DNA fragment is feedback-inhibited by phenols. Images PMID:2914848
The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.
Ren, Jun; Prescott, John F
2004-11-15
An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.
An electrospun scaffold integrating nucleic acid delivery for treatment of full thickness wounds
Kobsa, Serge; Kristofik, Nina J.; Sawyer, Andrew J.; Bothwell, Alfred L.M.; Kyriakides, Themis R.; Saltzman, W. Mark
2013-01-01
We developed a multi-functional construct capable of controlled delivery of bioactive substances that can improve wound repair by supporting the intrinsic ability of the skin to heal. We synthesized electrospun scaffolds—composed of a blend of the degradable polymers poly(L-lactide) (PLA) or polycaprolactone (PCL)—that produce highly efficient non-viral in vivo gene delivery to cells in the wound bed, provide a protective barrier during early wound healing, and support cell migration and growth. This multi-functional material was tested for its influence on wound healing: scaffolds were loaded with plasmids encoding keratinocyte growth factor (KGF) and applied to full thickness wounds in mice. Compared to scaffolds with control plasmids, animals receiving the KGF plasmid-loaded scaffold produced significant enhancements in wound healing, which was quantified by improvements in the rate of wound re-epithelialization, keratinocyte proliferation, and granulation response. Further, we quantified the expression level of endogenous and plasmid-derived KGF in wound samples: qRT-PCR on wound sections revealed a correlation between the levels of plasmid-derived protein expression and histological analysis of wound healing, revealing an inverse relationship between the expression level of exogenous KGF and the size of the unhealed epithelial layer in wounds. Our findings suggest that engineered nanofiber PLA/PCL scaffolds are capable of highly efficient controlled DNA delivery and are promising materials for treatment of cutaneous wounds. PMID:23453058
Lüneberg, E; Mayer, B; Daryab, N; Kooistra, O; Zähringer, U; Rohde, M; Swanson, J; Frosch, M
2001-03-01
We recently described the phase-variable expression of a virulence-associated lipopolysaccharide (LPS) epitope in Legionella pneumophila. In this study, the molecular mechanism for phase variation was investigated. We identified a 30 kb unstable genetic element as the molecular origin for LPS phase variation. Thirty putative genes were encoded on the 30 kb sequence, organized in two putative opposite transcription units. Some of the open reading frames (ORFs) shared homologies with bacteriophage genes, suggesting that the 30 kb element was of phage origin. In the virulent wild-type strain, the 30 kb element was located on the chromosome, whereas excision from the chromosome and replication as a high-copy plasmid resulted in the mutant phenotype, which is characterized by alteration of an LPS epitope and loss of virulence. Mapping and sequencing of the insertion site in the genome revealed that the chromosomal attachment site was located in an intergenic region flanked by genes of unknown function. As phage release could not be induced by mitomycin C, it is conceivable that the 30 kb element is a non-functional phage remnant. The protein encoded by ORF T on the 30 kb plasmid could be isolated by an outer membrane preparation, indicating that the genes encoded on the 30 kb element are expressed in the mutant phenotype. Therefore, it is conceivable that the phenotypic alterations seen in the mutant depend on high-copy replication of the 30 kb element and expression of the encoded genes. Excision of the 30 kb element from the chromosome was found to occur in a RecA-independent pathway, presumably by the involvement of RecE, RecT and RusA homologues that are encoded on the 30 kb element.
Wirebrand, Lisa; Madhushani, Anjana W K; Irie, Yasuhiko; Shingler, Victoria
2018-01-01
The dmp-system encoded on the IncP-2 pVI150 plasmid of Pseudomonas putida CF600 confers the ability to assimilate (methyl)phenols. Regulation of the dmp-genes is subject to sophisticated control, which includes global regulatory input to subvert expression of the pathway in the presence of preferred carbon sources. Previously we have shown that in P. putida, translational inhibition exerted by the carbon repression control protein Crc operates hand-in-hand with the RNA chaperon protein Hfq to reduce translation of the DmpR regulator of the Dmp-pathway. Here, we show that Crc and Hfq co-target four additional sites to form riboprotein complexes within the proximity of the translational initiation sites of genes encoding the first two steps of the Dmp-pathway to mediate two-layered control in the face of selection of preferred substrates. Furthermore, we present evidence that Crc plays a hitherto unsuspected role in maintaining the pVI150 plasmid within a bacterial population, which has implications for (methyl)phenol degradation and a wide variety of other physiological processes encoded by the IncP-2 group of Pseudomonas-specific mega-plasmids. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Cloning and Expression of the Benzoate Dioxygenase Genes from Rhodococcus sp. Strain 19070
Haddad, Sandra; Eby, D. Matthew; Neidle, Ellen L.
2001-01-01
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences. PMID:11375157
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-01-01
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518
Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L
2012-01-01
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.
Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L.
2012-01-01
Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium. PMID:22479347
Dziewit, Lukasz; Grzesiak, Jakub; Ciok, Anna; Nieckarz, Marta; Zdanowski, Marek K; Bartosik, Dariusz
2013-09-01
Pseudomonas sp. GLE121 (a psychrophilic Antarctic strain) carries three plasmids: pGLE121P1 (6899 bp), pGLE121P2 (8330 bp) and pGLE121P3 (39,583 bp). Plasmids pGLE121P1 and pGLE121P2 show significant sequence similarity to members of the IncP-9 and IncP-7 incompatibility groups, respectively, while the largest replicon, pGLE121P3, is highly related to plasmid pNCPPB880-40 of Pseudomonas syringae pathovar tomato NCPPB880. All three plasmids have a narrow host range, limited to members of the genus Pseudomonas. Plasmid pGLE121P3 encodes a conjugal transfer system, while pGLE121P1 carries only a putative MOB module, conserved in many mobilizable plasmids. Plasmid pGLE121P3 contains an additional load of genetic information, including a pair of genes with homology to the rulAB operon, responsible for ultraviolet radiation (UVR) tolerance. Given the increasing UV exposure in Antarctic regions, the expression of these genes is likely to be an important adaptive response. Copyright © 2013 Elsevier Inc. All rights reserved.
Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Parreira, Valeria R; Whitehead, Ashley E; Boerlin, Patrick; Prescott, John F
2016-01-01
The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and unique plasmid-encoded locus.
A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni.
Gaasbeek, Esther J; Wagenaar, Jaap A; Guilhabert, Magalie R; Wösten, Marc M S M; van Putten, Jos P M; van der Graaf-van Bloois, Linda; Parker, Craig T; van der Wal, Fimme J
2009-04-01
The species Campylobacter jejuni is considered naturally competent for DNA uptake and displays strong genetic diversity. Nevertheless, nonnaturally transformable strains and several relatively stable clonal lineages exist. In the present study, the molecular mechanism responsible for the nonnatural transformability of a subset of C. jejuni strains was investigated. Comparative genome hybridization indicated that C. jejuni Mu-like prophage integrated element 1 (CJIE1) was more abundant in nonnaturally transformable C. jejuni strains than in naturally transformable strains. Analysis of CJIE1 indicated the presence of dns (CJE0256), which is annotated as a gene encoding an extracellular DNase. DNase assays using a defined dns mutant and a dns-negative strain expressing Dns from a plasmid indicated that Dns is an endogenous DNase. The DNA-hydrolyzing activity directly correlated with the natural transformability of the knockout mutant and the dns-negative strain expressing Dns from a plasmid. Analysis of a broader set of strains indicated that the majority of nonnaturally transformable strains expressed DNase activity, while all naturally competent strains lacked this activity. The inhibition of natural transformation in C. jejuni via endogenous DNase activity may contribute to the formation of stable lineages in the C. jejuni population.
Selifonov, S A; Starozoĭtov, I I
1990-12-01
It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.
Liakopoulos, Apostolos; van der Goot, Jeanet; Bossers, Alex; Betts, Jonathan; Brouwer, Michael S M; Kant, Arie; Smith, Hilde; Ceccarelli, Daniela; Mevius, Dik
2018-05-16
The bla SHV-12 β-lactamase gene is one of the most prevalent genes conferring resistance to extended-spectrum β-lactams in Enterobacteriaceae disseminating within and between reservoirs, mostly via plasmid-mediated horizontal gene transfer. Yet, studies regarding the biology of plasmids encoding bla SHV-12 are very limited. In this study, we revealed the emergence of IncX3 plasmids alongside IncI1α/γ in bla SHV-12 in animal-related Escherichia coli isolates. Four representative bla SHV-12 -encoding IncX3 plasmids were selected for genome sequencing and further genetic and functional characterization. We report here the first complete sequences of IncX3 plasmids of animal origin and show that IncX3 plasmids exhibit remarkable synteny in their backbone, while the major differences lie in their bla SHV-12 -flanking region. Our findings indicate that plasmids of this subgroup are conjugative and highly stable, while they exert no fitness cost on their bacterial host. These favourable features might have contributed to the emergence of IncX3 amongst SHV-12-producing E. coli in the Netherlands, highlighting the epidemic potential of these plasmids.
Watts, Thomas D; Johanesen, Priscilla A; Lyras, Dena; Rood, Julian I; Adams, Vicki
2017-05-01
Clostridium perfringens produces an extensive repertoire of toxins and extracellular enzymes, many of which are intimately involved in the progression of disease and are encoded by genes on conjugative plasmids. In addition, many C. perfringens strains can carry up to five of these conjugative toxin or antimicrobial resistance plasmids, each of which has a similar 35kb backbone. This conserved backbone includes the tcp conjugation locus and the central control region (CCR), which encodes genes involved in plasmid regulation, replication and partitioning, including a parMRC partitioning locus. Most conjugative plasmids in C. perfringens have a conserved replication protein, raising questions as to how multiple, closely related plasmids are maintained within a single strain. Bioinformatics analysis has highlighted the presence of at least 10 different parMRC partitioning system families (parMRC A-J ) in these plasmids, with differences in amino acid sequence identity between each ParM family ranging from 15% to 54%. No two plasmids that encode genes belonging to the same partitioning family have been observed in a single strain, suggesting that these families represent the basis for plasmid incompatibility. In an attempt to validate the proposed parMRC incompatibility groups, genetically marked C. perfringens plasmids encoding identical parMRC C or parMRC D homologues or different combinations of parMRC A , parMRC C and parMRC D family homologues were introduced into a single strain via conjugation. The stability of each plasmid was determined using an incompatibility assay in which the plasmid profile of each strain was monitored over the course of two days in the absence of direct selection. The results showed that plasmids with identical parMRC C or parMRC D homologues were incompatible and could not coexist in the absence of external selection. By contrast, plasmids that encoded different parMRC homologues were compatible and could coexist in the same cell in the absence of selection, with the exception of strains housing parMRC C and parMRC D combinations, which showed a minor incompatibility phenotype. In conclusion, we have provided the first direct evidence of plasmid incompatibility in Clostridium spp. and have shown experimentally that the compatibility of conjugative C. perfringens plasmids correlates with the presence of parMRC-like partitioning systems of different phylogenetic subfamilies. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stols, L.; Donnelly, M.I.; Kulkarni, G.
The malic enzyme gene of Ascaris suum was cloned into the vector pTRC99a in two forms encoding alternative amino-termini. The resulting plasmids, pMEA1 and pMEA2, were introduced into Escherichia coli NZN111, a strain that is unable to grow fermentatively because of inactivation of the genes encoding pyruvate dissimilation. Induction of pMEA1, which encodes the native animoterminus, gave better overexpression of malic enzyme, approx 12-fold compared to uninduced cells. Under the appropriate culture conditions, expression of malic enzyme allowed the fermentative dissimilation of glucose by NZN111. The major fermentation product formed in induced cultures was succinic acid.
Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun
2014-01-01
The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage. PMID:25332122
Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun; Ryu, Sangryeol
2015-01-01
The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip
2011-08-01
The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.
Dorman, Charles J
2014-09-01
Horizontal gene transfer plays an important role in the evolution of bacterial species, conferring new genetic traits on the recipient bacterium that extend its range of phenotypes and plasmids make important contributions to this process. However, the inappropriate expression of newly acquired genes may lead to a loss of competitive fitness, resulting in the elimination of the new gene-bacterium combination. It is thought that transcriptional silencing of horizontally acquired genes offers a route out of this dilemma and that nucleoid-associated proteins, especially those related to the H-NS protein, play a particularly important role in the silencing process. The discovery that many plasmids express orthologues of nucleoid-associated proteins adds an interesting dimension to current models of regulatory integration following lateral transfer of DNA. Other horizontally acquired genetic elements, such as genomic islands, also express nucleoid-associated proteins of their own. Here the interactions of H-NS-like nucleoid-associated proteins encoded by the core genome, genomic islands and plasmids are described. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Crowley, Thomas E.
2010-01-01
In "Photobacterium," the flavin reductase encoded by "lux"G regenerates the reduced form of flavin mononucleotide (FMN). Reduced FMN is one of the substrates of the luciferase enzyme that catalyzes a light-emitting reaction. A set of experiments, that employs a "lux"G-expression plasmid construct (pGhis) and is suitable for an undergraduate…
Breau, Cathy; Cameron, D William; Desjardins, Marc; Lee, B Craig
2012-01-31
Chancroid, a sexually transmitted genital ulcer disease caused by the Gram-negative bacterium Haemophilus ducreyi, facilitates the acquisition and transmission of HIV. An effective vaccine against chancroid has not been developed. In this preliminary study, the gene encoding the H. ducreyi outer membrane hemoglobin receptor HgbA was cloned into the plasmid pTETnir15. The recombinant construct was introduced into the attenuated Salmonella typhimurium SL3261 strain and stable expression was induced in vitro under anaerobic conditions. The vaccine strain was delivered into the temperature-dependent rabbit model of chancroid by intragastric immunization as a single dose, or as three doses administered at two-weekly intervals. No specific antibody to HgbA was elicited after either dose schedule. Although the plasmid vector survived in vivo passage for up to 15 days following single oral challenge, HgbA expression was restricted to plasmid isolates recovered one day after immunization. Rabbits inoculated with the 3-dose booster regimen achieved no protective immunity from homologous challenge. These results emphasize that refinements in plasmid design to enhance a durable heterologous protein expression are necessary for the development of a live oral vaccine against chancroid. Copyright © 2011 Elsevier B.V. All rights reserved.
Turnbull, Gillian A.; Ousley, Margaret; Walker, Allan; Shaw, Eve; Morgan, J. Alun W.
2001-01-01
Arthrobacter globiformis D47 was shown to degrade a range of substituted phenylurea herbicides in soil. This strain contained two plasmids of approximately 47 kb (pHRIM620) and 34 kb (pHRIM621). Plasmid-curing experiments produced plasmid-free strains as well as strains containing either the 47- or the 34-kb plasmid. The strains were tested for their ability to degrade diuron, which demonstrated that the degradative genes were located on the 47-kb plasmid. Studies on the growth of these strains indicated that the ability to degrade diuron did not offer a selective advantage to A. globiformis D47 on minimal medium designed to contain the herbicide as a sole carbon source. The location of the genes on a plasmid and a lack of selection would explain why the degradative phenotype, as with many other pesticide-degrading bacteria, can be lost on subculture. A 22-kb EcoRI fragment of plasmid pHRIM620 was expressed in Escherichia coli and enabled cells to degrade diuron. Transposon mutagenesis of this fragment identified one open reading frame that was essential for enzyme activity. A smaller subclone of this gene (2.5 kb) expressed in E. coli coded for the protein that degraded diuron. This gene and its predicted protein sequence showed only a low level of protein identity (25% over ca. 440 amino acids) to other database sequences and was named after the enzyme it encoded, phenylurea hydrolase (puhA gene). PMID:11319111
Toxin Plasmids of Clostridium perfringens
Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.
2013-01-01
SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255
Gay, Glen; Wagner, Drew T.; Keatinge-Clay, Adrian T.; Gay, Darren C.
2014-01-01
The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast. PMID:25304917
Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J
2013-10-01
Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.
Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V
2007-06-15
A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.
Dormiani, Kianoush; Mir Mohammad Sadeghi, Hamid; Sadeghi-Aliabadi, Hojjat; Forouzanfar, Mahboobeh; Baharvand, Hossein; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein
2017-01-01
Induced pluripotent stem cells are generated from somatic cells by direct reprogramming. These reprogrammed pluripotent cells have different applications in biomedical fields such as regenerative medicine. Although viral vectors are widely used for efficient reprogramming, they have limited applications in the clinic due to the risk for immunogenicity and insertional mutagenesis. Accordingly, we designed and developed a small, non-integrating plasmid named pLENSO/Zeo as a 2A-mediated polycistronic expression vector. In this experimental study, we developed a single plasmid which includes a single expression cassette containing open reading frames of human LIN28, NANOG, SOX2 and OCT4 along with an EGFP reporter gene. Each reprogramming factor is separated by an intervening sequence that encodes a 2A self-processing peptide. The reprogramming cassette is located downstream of a CMV promoter. The vector is easily propagated in the E. coli GT115 strain through a CpG-depleted vector backbone. We evaluated the stability of the constructed vector bioinformatically, and its ability to stoichiometric expression of the reprogramming factors using quantitative molecular methods analysis after transient transfection into HEK293 cells. In the present study, we developed a nonviral episomal vector named pLENSO/ Zeo. Our results demonstrated the general structural stability of the plasmid DNA. This relatively small vector showed concomitant, high-level expression of the four reprogramming factors with similar titers, which are considered as the critical parameters for efficient and consistent reprogramming. According to our experimental results, this stable extrachromosomal plasmid expresses reliable amounts of four reprogramming factors simultaneously. Consequently, these promising results encouraged us to evaluate the capability of pLENSO/Zeo as a simple and feasible tool for generation of induced pluripotent stem cells from primary cells in the future.
Kim, K S; Farrand, S K
1996-06-01
Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.
Kim, K S; Farrand, S K
1996-01-01
Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes. PMID:8655509
USDA-ARS?s Scientific Manuscript database
A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...
Yoneyama, T; Akatsuka, T; Miyamura, T
1988-08-01
The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.
[Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].
Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua
2013-02-01
To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.
A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.
Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos
2015-07-01
The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA- mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA- mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA- mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.
Puckette, Michael; Burrage, Thomas; Neilan, John G; Rasmussen, Max
2017-06-12
The Gaussia princeps luciferase is used as a stand-alone reporter of transgene expression for in vitro and in vivo expression systems due to the rapid and easy monitoring of luciferase activity. We sought to simultaneously quantitate production of other recombinant proteins by transcriptionally linking the Gaussia princeps luciferase gene to other genes of interest through the foot-and-mouth disease virus 2A translational interrupter sequence. We produced six plasmids, each encoding a single open reading frame, with the foot-and-mouth disease virus 2A sequence placed either N-terminal or C-terminal to the Gaussia princeps luciferase gene. Two plasmids included novel Gaussia princeps luciferase variants with the position 1 methionine deleted. Placing a foot-and-mouth disease virus 2A translational interrupter sequence on either the N- or C-terminus of the Gaussia princeps luciferase gene did not prevent the secretion or luminescence of resulting chimeric luciferase proteins. We also measured the ability of another polycistronic plasmid vector with a 2A-luciferase sequence placed downstream of the foot-and-mouth disease virus P1 and 3C protease genes to produce of foot-and-mouth disease virus-like particles and luciferase activity from transfected cells. Incorporation of the 2A-luciferase sequence into a transgene encoding foot-and-mouth disease virus structural proteins retained luciferase activity and the ability to form virus-like particles. We demonstrated a mechanism for the near real-time, sequential, non-destructive quantitative monitoring of transcriptionally-linked recombinant proteins and a valuable method for monitoring transgene expression in recombinant vaccine constructs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, JoAnn Ching
A prototype subunit vaccine to IHN virus is being developed by recombinant DNA techniques. The techniques involve the isolation and characterization of the glycoprotein gene, which encodes the viral protein responsible for inducing a protective immune response in fish. The viral glycoprotein gene has been cloned and a restriction map of the cloned gene has been prepared. Preliminary DNA sequence analysis of the cloned gene has been initiated so that manipulation of the gene for maximum expression in appropriate plasmid vectors is possible. A recombinant plasmid containing the viral gene inserted in the proper orientation adjacent to a very strongmore » lambda promoter and ribosome binding site has been constructed. Evaluation of this recombinant plasmid for gene expression is being conducted. Immunization trials with purified viral glycoprotein indicate that fish are protected against lethal doses of IHNV after immersion and intraperitoneal methods of immunization. In addition, cross protection immunization trials indicate that Type 2 and Type 1 IHN virus produce glycoproteins that are cross-protective.« less
Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers
NASA Astrophysics Data System (ADS)
Dehshahri, Ali; Sadeghpour, Hossein; Kazemi Oskuee, Reza; Fadaei, Mahin; Sabahi, Zahra; Alhashemi, Samira Hossaini; Mohazabieh, Erfaneh
2014-05-01
In this study, l-thyroxine was covalently grafted on 25 kDa branched polyethylenimine (PEI), and the ability of the nano-sized polyplexes for transferring plasmid encoding interleukin-12 (IL-12) gene was evaluated. As there are several problems in systemic administration of recombinant IL-12 protein, local expression of the plasmid encoding IL-12 gene inside the tumor tissue has been considered as an effective alternative approach. The l-thyroxine-conjugated PEI polyplexes were prepared using pUMVC3-hIL12 plasmid, and their transfection activity was determined in HepG2 human liver carcinoma and Neuro2A neuroblastoma cell lines. The polyplexes characterized in terms of DNA condensation ability, particle size, zeta potential, and buffering capacity as well as cytotoxicity and resistance to enzyme digestion. The results revealed that l-thyroxine conjugation of PEI increased gene transfer ability by up to two fold relative to unmodified 25 kDa PEI, the gold standard for non-viral gene delivery, with the highest increase occurring at degrees of conjugation around 10 %. pDNA condensation tests and dynamic light scattering measurements exhibited the ability of PEI conjugates to optimally condense the plasmid DNA into polyplexes in the size range around 200 nm. The modified polymers showed remarkable buffering capacity and protection against enzymatic degradation comparable to that of unmodified PEI. These results suggest that l-thyroxine conjugation of PEI is a simple modification strategy for future investigations aimed at developing a targeting gene vehicle.
Robin, F; Beyrouthy, R; Bonacorsi, S; Aissa, N; Bret, L; Brieu, N; Cattoir, V; Chapuis, A; Chardon, H; Degand, N; Doucet-Populaire, F; Dubois, V; Fortineau, N; Grillon, A; Lanotte, P; Leyssene, D; Patry, I; Podglajen, I; Recule, C; Ros, A; Colomb-Cotinat, M; Ponties, V; Ploy, M C; Bonnet, R
2017-03-01
The objective of this study was to perform an inventory of the extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae isolates responsible for infections in French hospitals and to assess the mechanisms associated with ESBL diffusion. A total of 200 nonredundant ESBL-producing Enterobacteriaceae strains isolated from clinical samples were collected during a multicenter study performed in 18 representative French hospitals. Antibiotic resistance genes were identified by PCR and sequencing experiments. The clonal relatedness between isolates was investigated by the use of the DiversiLab system. ESBL-encoding plasmids were compared by PCR-based replicon typing and plasmid multilocus sequence typing. CTX-M-15, CTX-M-1, CTX-M-14, and SHV-12 were the most prevalent ESBLs (8% to 46.5%). The three CTX-M-type EBSLs were significantly observed in Escherichia coli (37.1%, 24.2%, and 21.8%, respectively), and CTX-M-15 was the predominant ESBL in Klebsiella pneumoniae (81.1%). SHV-12 was associated with ESBL-encoding Enterobacter cloacae strains (37.9%). qnrB , aac(6 ' )-Ib-cr , and aac(3)-II genes were the main plasmid-mediated resistance genes, with prevalences ranging between 19.5% and 45% according to the ESBL results. Molecular typing did not identify wide clonal diffusion. Plasmid analysis suggested the diffusion of low numbers of ESBL-encoding plasmids, especially in K. pneumoniae and E. cloacae However, the ESBL-encoding genes were observed in different plasmid replicons according to the bacterial species. The prevalences of ESBL subtypes differ according to the Enterobacteriaceae species. Plasmid spread is a key determinant of this epidemiology, and the link observed between the ESBL-encoding plasmids and the bacterial host explains the differences observed in the Enterobacteriaceae species. Copyright © 2017 American Society for Microbiology.
Shashidharamurthy, R; Machiah, D; Bozeman, E N; Srivatsan, S; Patel, J; Cho, A; Jacob, J; Selvaraj, P
2012-09-01
Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcγ receptor-Ig fusion molecules (FcγR-Igs) in mice by administering FcγR-Ig plasmid DNAs hydrodynamically and compared their effectiveness with purified molecules in blocking immune-complex (IC)-mediated inflammation in mice. The concentration of hydrodynamically expressed FcγR-Igs (CD16A(F)-Ig, CD32A(R)-Ig and CD32A(H)-Ig) reached a maximum of 130 μg ml(-1) of blood within 24 h after plasmid DNA administration. The in vivo half-life of FcγR-Igs was found to be 9-16 days and western blot analysis showed that the FcγR-Igs were expressed as a homodimer. The hydrodynamically expressed FcγR-Igs blocked 50-80% of IC-mediated inflammation up to 3 days in a reverse passive Arthus reaction model. Comparative analysis with purified molecules showed that hydrodynamically expressed FcγR-Igs are more efficient than purified molecules in blocking IC-mediated inflammation and had a higher half-life. In summary, these results suggest that the administration of a plasmid vector with the FcγR-Ig gene can be used to study the consequences of blocking IC binding to FcγRs during the development of inflammatory diseases. This approach may have potential therapeutic value in treating IC-mediated inflammatory autoimmune diseases such as lupus, arthritis and autoimmune vasculitis.
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-10-28
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.
A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.
Rogers, Elizabeth E; Stenger, Drake C
2012-01-01
A ≈ 38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th) century.
Mehdizadeh Gohari, Iman; Kropinski, Andrew M.; Weese, Scott J.; Parreira, Valeria R.; Whitehead, Ashley E.; Boerlin, Patrick; Prescott, John F.
2016-01-01
The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and unique plasmid-encoded locus. PMID:26859667
A Conjugative 38 kB Plasmid Is Present in Multiple Subspecies of Xylella fastidiosa
Rogers, Elizabeth E.; Stenger, Drake C.
2012-01-01
A ∼38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19th century. PMID:23251694
NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.
Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F
2017-04-01
Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrotransfer of the full-length dog dystrophin into mouse and dystrophic dog muscles.
Pichavant, Christophe; Chapdelaine, Pierre; Cerri, Daniel G; Bizario, Joao C S; Tremblay, Jacques P
2010-11-01
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by the absence of dystrophin (427 kDa). An approach to eventually restore this protein in patients with DMD is to introduce into their muscles a plasmid encoding dystrophin cDNA. Because the phenotype of the dystrophic dog is closer to the human phenotype than is the mdx mouse phenotype, we have studied the electrotransfer of a plasmid carrying the full-length dog dystrophin (FLDYS(dog)) in dystrophic dog muscle. To achieve this nonviral delivery, the FLDYS(dog) cDNA was cloned in two plasmids containing either a cytomegalovirus or a muscle creatine kinase promoter. In both cases, our results showed that the electrotransfer of these large plasmids (∼17 kb) into mouse muscle allowed FLDYS(dog) expression in the treated muscle. The electrotransfer of pCMV.FLDYS(dog) in a dystrophic dog muscle also led to the expression of dystrophin. In conclusion, introduction of the full-length dog dystrophin cDNA by electrotransfer into dystrophic dog muscle is a potential approach to restore dystrophin in patients with DMD. However, the electrotransfer procedure should be improved before applying it to humans.
Patzelt, Diana; Michael, Victoria; Päuker, Orsola; Ebert, Matthias; Tielen, Petra; Jahn, Dieter; Tomasch, Jürgen; Petersen, Jörn; Wagner-Döbler, Irene
2016-01-01
Rhodobacteraceae harbor a conspicuous wealth of extrachromosomal replicons (ECRs) and therefore the exchange of genetic material via horizontal transfer has been supposed to be a major evolutionary driving force. Many plasmids in this group encode type IV secretion systems (T4SS) that are expected to mediate transfer of proteins and/or DNA into host cells, but no experimental evidence of either has yet been provided. Dinoroseobacter shibae, a species of the Roseobacter group within the Rhodobacteraceae family, contains five ECRs that are crucial for anaerobic growth, survival under starvation and the pathogenicity of this model organism. Here we tagged two syntenous but compatible RepABC-type plasmids of 191 and 126-kb size, each encoding a T4SS, with antibiotic resistance genes and demonstrated their conjugational transfer into a distantly related Roseobacter species, namely Phaeobacter inhibens. Pulsed field gel electrophoresis showed transfer of those replicons into the recipient both individually but also together documenting the efficiency of conjugation. We then studied the influence of externally added quorum sensing (QS) signals on the expression of the T4SS located on the sister plasmids. A QS deficient D. shibae null mutant (ΔluxI1) lacking synthesis of N-acyl-homoserine lactones (AHLs) was cultivated with a wide spectrum of chemically diverse long-chain AHLs. All AHLs with lengths of the acid side-chain ≥14 reverted the ΔluxI1 phenotype to wild-type. Expression of the T4SS was induced up to log2 ∼3fold above wild-type level. We hypothesize that conjugation in roseobacters is QS-controlled and that the QS system may detect a wide array of long-chain AHLs at the cell surface. PMID:27303368
Hong, S B; Hwang, I; Dessaux, Y; Guyon, P; Kim, K S; Farrand, S K
1997-01-01
The mechanisms that ensure that Ti plasmid T-DNA genes encoding proteins involved in the biosynthesis of opines in crown gall tumors are always matched by Ti plasmid genes conferring the ability to catabolize that set of opines on the inducing Agrobacterium strains are unknown. The pathway for the biosynthesis of the opine agropine is thought to require an enzyme, mannopine cyclase, coded for by the ags gene located in the T(R) region of octopine-type Ti plasmids. Extracts prepared from agropine-type tumors contained an activity that cyclized mannopine to agropine. Tumor cells containing a T region in which ags was mutated lacked this activity and did not contain agropine. Expression of ags from the lac promoter conferred mannopine-lactonizing activity on Escherichia coli. Agrobacterium tumefaciens strains harboring an octopine-type Ti plasmid exhibit a similar activity which is not coded for by ags. Analysis of the DNA sequence of the gene encoding this activity, called agcA, showed it to be about 60% identical to T-DNA ags genes. Relatedness decreased abruptly in the 5' and 3' untranslated regions of the genes. ags is preceded by a promoter that functions only in the plant. Expression analysis showed that agcA also is preceded by its own promoter, which is active in the bacterium. Translation of agcA yielded a protein of about 45 kDa, consistent with the size predicted from the DNA sequence. Antibodies raised against the agcA product cross-reacted with the anabolic enzyme. These results indicate that the agropine system arose by a duplication of a progenitor gene, one copy of which became associated with the T-DNA and the other copy of which remained associated with the bacterium. PMID:9244272
Sources of diversity of carbapenem resistance levels in Klebsiella pneumoniae carrying blaVIM-1.
Loli, A; Tzouvelekis, L S; Tzelepi, E; Carattoli, A; Vatopoulos, A C; Tassios, P T; Miriagou, V
2006-09-01
To elucidate the mechanisms responsible for the diversity of beta-lactam resistance phenotypes among isolates of a VIM-1-producing Klebsiella pneumoniae (VPKP) strain that is endemic in Greek hospitals. Five VPKP clinical isolates were studied. MICs of beta-lactams were determined by agar dilution. PFGE of XbaI-digested genomic DNA was used for typing. Profiles of outer membrane proteins (OMPs) were determined by SDS-PAGE. Selected isolates were transformed with a plasmid encoding the Omp36K porin. beta-Lactamase activities were analysed by IEF and imipenem hydrolysis was assessed by spectrophotometry. VIM-1-encoding, self-transmissible plasmids were characterized by replicon typing, RFLP and hybridization with bla(VIM)- and IS26-specific probes. Characterization of integrons was performed by PCR, cloning and sequencing. Isolates exhibited highly similar PFGE patterns. Imipenem MICs were 2, 4, 16, 32 and 64 mg/L. The isolate with the highest imipenem MIC (Vipm-64) lacked a 36 kDa OMP. Expression of a cloned OmpK36 in this isolate reduced the imipenem MIC to susceptibility levels. Imipenem-hydrolysing activity was significantly higher in Vipm-16 as compared with the other isolates that expressed similar amounts of VIM-1. All isolates transferred beta-lactam resistance to Escherichia coli through conjugative, IncN plasmids that exhibited differences in the RFLP and hybridization patterns with bla(VIM)- and IS26-specific probes. The Vipm-16 plasmid, mediating the higher imipenem MICs among transconjugants, carried two copies of bla(VIM-1). Cloning and sequencing showed In-e541-like integrons truncated at the 5'CS by insertion of IS26 elements at two different positions. A VIM-1-producing strain of K. pneumoniae has evolved through OMP alterations and rearrangements in the bla(VIM-1)-carrying plasmid probably mediated by IS26, generating isolates with imipenem MICs ranging from susceptibility to resistance.
Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M; Branger, Christine G; Tinge, Steven A; Curtiss, Roy
2010-06-01
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal DeltaasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/P(cro)) (P(R)), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC P(BAD) c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of beta-lactamase, and cloned into pYA4534 under the control of the P(trc) promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain chi9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.
Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M.; Branger, Christine G.; Tinge, Steven A.; Curtiss, Roy
2010-01-01
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal ΔasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain χ9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/Pcro) (PR), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC PBAD c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of β-lactamase, and cloned into pYA4534 under the control of the Ptrc promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain χ9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route. PMID:20308296
Windass, J D; Newton, C R; De Maeyer-Guignard, J; Moore, V E; Markham, A F; Edge, M D
1982-01-01
An 82 base pair DNA fragment has been synthesised which contains the E. coli trp promoter and operator sequences and also encodes the first Shine Dalgarno sequence of the trp operon. This DNA fragment is flanked by EcoRI and ClaI/TaqI cohesive ends and is thus easy to clone, transfer between vector systems and couple to genes to drive their expression. It has been cloned into plasmid pAT153, producing a convenient trp promoter vector. We have also joined the fragment to a synthetic IFN-alpha 1 gene, using synthetic oligonucleotides to generate a completely natural, highly efficient bacterial translation initiation signal on the promoter proximal side of the IFN gene. Plasmids carrying this construction enable E. coli cells to express IFN-alpha 1 almost constitutively and with significantly higher efficiency than from a lacUV5 promoter based system. Images PMID:6184675
Scarless genome editing and stable inducible expression vectors for Geobacter sulfurreducens
Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori; ...
2015-08-07
Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellarmore » regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented Δ imcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. Lastly, these tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.« less
Møller, Thea S. B.; Liu, Gang; Boysen, Anders; Thomsen, Line E.; Lüthje, Freja L.; Mortensen, Sisse; Møller-Jensen, Jakob; Olsen, John E.
2017-01-01
Horizontal gene transfer (HGT) is the major mechanism responsible for spread of antibiotic resistance. Antibiotic treatment has been suggested to promote HGT, either by directly affecting the conjugation process itself or by selecting for conjugations subsequent to DNA transfer. However, recent research suggests that the effect of antibiotic treatment on plasmid conjugation frequencies, and hence the spread of resistance plasmids, may have been overestimated. We addressed the question by quantifying transfer proteins and conjugation frequencies of a blaCTX−M−1 encoding IncI1 resistance plasmid in Escherichia coli MG1655 in the presence and absence of therapeutically relevant concentrations of cefotaxime (CTX). Analysis of the proteome by iTRAQ labeling and liquid chromatography tandem mass spectrometry revealed that Tra proteins were significantly up-regulated in the presence of CTX. The up-regulation of the transfer machinery was confirmed at the transcriptional level for five selected genes. The CTX treatment did not cause induction of the SOS-response as revealed by absence of significantly regulated SOS associated proteins in the proteome and no significant up-regulation of recA and sfiA genes. The frequency of plasmid conjugation, measured in an antibiotic free environment, increased significantly when the donor was pre-grown in broth containing CTX compared to growth without this drug, regardless of whether blaCTX-M-1 was located on the plasmid or in trans on the chromosome. The results shows that antibiotic treatment can affect expression of a plasmid conjugation machinery and subsequent DNA transfer. PMID:29238335
Zhou, Jingxiang; Xue, Jiangdong; Wang, Qiuju; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming
2014-06-01
In order to construct the recombinant plasmid of pIRES-ORF81, the nucleic acid isolated from Koi herpes virus-CJ (KHV-CJ) strains was used as a template to insert the ORF81 gene fragments amplified by PCR into the pIRES-neo, a kind of eukaryotic expression vector. Using Western blotting analysis, it was verified that ORF81 gene protein can be expressed correctly by pIRES-ORF81, after MFC cells were transfected. The recombinant plasmid pIRES-ORF81 was set into three immunization dose gradients: 1, 10, and 50 μg/carp. Empty plasmid group, PBS group, and blank control group were set simultaneously. Giving intramuscular injections to healthy carps with an average body mass of 246 ± 20 g, indirect ELISA was used to regularly determine antibody levels after three times immunization injection. Neutralizing antibodies were detected by neutralization assay. The results of inoculation tests showed that the pIRES-ORF81 recombinant plasmid can induce the production of carp-specific antibodies. The differences of immune effect between the three different doses of immune gradients were not significant (P > 0.05), but they can induce the production of neutralizing antibodies. After 25 d of inoculation, carp mortality of pIRES-neo empty vector treatment groups was 85%, while the carp mortality of eukaryotic expression recombinant plasmid pIRES-ORF81 injected with three different doses of immune gradients was 20, 17.5, and 12.5%, respectively. Differences in comparison to the control group were highly significant (P < 0.01). However, histopathological section of immunohistochemistry organization revealed no significant changes. It demonstrated that the DNA vaccine pIRES-ORF81 constructed in the experiment displayed a good protective effect against KHV, which had the potential to industrial applications.
Lemaître, Chloé; Bidet, Philippe; Bingen, Edouard; Bonacorsi, Stéphane
2012-06-21
The sequenced O45:K1:H7 Escherichia coli meningitis strain S88 harbors a large virulence plasmid. To identify possible genetic determinants of pS88 virulence, we examined the transcriptomes of 88 plasmidic ORFs corresponding to known and putative virulence genes, and 35 ORFs of unknown function. Quantification of plasmidic transcripts was obtained by quantitative real-time reverse transcription of extracted RNA, normalized on three housekeeping genes. The transcriptome of E. coli strain S88 grown in human serum and urine ex vivo were compared to that obtained during growth in Luria Bertani broth, with and without iron depletion. We also analyzed the transcriptome of a pS88-like plasmid recovered from a neonate with urinary tract infection. The transcriptome obtained after ex vivo growth in serum and urine was very similar to those obtained in iron-depleted LB broth. Genes encoding iron acquisition systems were strongly upregulated. ShiF and ORF 123, two ORFs encoding protein with hypothetical function and physically linked to aerobactin and salmochelin loci, respectively, were also highly expressed in iron-depleted conditions and may correspond to ancillary iron acquisition genes. Four ORFs were induced ex vivo, independently of the iron concentration. Other putative virulence genes such as iss, etsC, ompTp and hlyF were not upregulated in any of the conditions studied. Transcriptome analysis of the pS88-like plasmid recovered in vivo showed a similar pattern of induction but at much higher levels. We identify new pS88 genes potentially involved in the growth of E. coli meningitis strain S88 in human serum and urine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, A.; York, S.W.; Yomano, L.P.
1999-10-01
Previous studies have shown an unexpectedly high nutrient requirement for efficient ethanol production by ethanologenic recombinants of Escherichia coli B such as LY01 which contain chromosomally integrated Zymomonas mobilis genes (pdc, adhB) encoding the ethanol pathway. The basis for this requirement has been identified as a media-dependent effect on the expression of the Z. mobilis genes rather than a nutritional limitation. Ethanol production was substantially increased without additional nutrients simply by increasing the level of pyruvate decarboxylase activity. This was accomplished by adding a multicopy plasmid containing pdc alone (but not adhB alone) to strain LY01, and by adding multicopymore » plasmids which express pdc and adhB from strong promoters. New strong promoters were isolated from random fragments of Z. mobilis DNA and characterized but were not used to construct integrated biocatalysts. These promoters contained regions resembling recognition sites for 3 different E. coli sigma factors: {sigma}{sup 70}, {sigma}{sup 38}, and {sigma}{sup 28}. The most effective plasmid-based promoters for fermentation were recognized by multiple sigma factors, expressed both pdc and adhB at high levels, and produced ethanol efficiently while allowing up to 80% reduction in complex nutrients as compared to LY01. The ability to utilize multiple sigma factors may be advantageous to maintain the high levels of PDC and ADH needed for efficient ethanol production throughout batch fermentation.« less
Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae
Blanco, M. Mar; López-Campos, Guillermo H.; Cutuli, M. Teresa; Fernández-Garayzábal, José F.
2012-01-01
The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen. PMID:22768237
Okeke, Iruka N.; Borneman, Jade A.; Shin, Sooan; Mellies, Jay L.; Quinn, Laura E.; Kaper, James B.
2001-01-01
Enteropathogenic Escherichia coli (EPEC) strains that carry the EPEC adherence factor (EAF) plasmid were screened for the presence of different EAF sequences, including those of the plasmid-encoded regulator (per). Considerable variation in gene content of EAF plasmids from different strains was seen. However, bfpA, the gene encoding the structural subunit for the bundle-forming pilus, bundlin, and per genes were found in 96.8% of strains. Sequence analysis of the per operon and its promoter region from 15 representative strains revealed that it is highly conserved. Most of the variation occurs in the 5′ two-thirds of the perA gene. In contrast, the C-terminal portion of the predicted PerA protein that contains the DNA-binding helix-turn-helix motif is 100% conserved in all strains that possess a full-length gene. In a minority of strains including the O119:H2 and canine isolates and in a subset of O128:H2 and O142:H6 strains, frameshift mutations in perA leading to premature truncation and consequent inactivation of the gene were identified. Cloned perA, -B, and -C genes from these strains, unlike those from strains with a functional operon, failed to activate the LEE1 operon and bfpA transcriptional fusions or to complement a per mutant in reference strain E2348/69. Furthermore, O119, O128, and canine strains that carry inactive per operons were deficient in virulence protein expression. The context in which the perABC operon occurs on the EAF plasmid varies. The sequence upstream of the per promoter region in EPEC reference strains E2348/69 and B171-8 was present in strains belonging to most serogroups. In a subset of O119:H2, O128:H2, and O142:H6 strains and in the canine isolate, this sequence was replaced by an IS1294-homologous sequence. PMID:11500429
Li, Ruichao; Xie, Miaomiao; Dong, Ning; Lin, Dachuan; Yang, Xuemei; Wong, Marcus Ho Yin; Chan, Edward Wai-Chi; Chen, Sheng
2018-03-01
Multidrug resistance (MDR)-encoding plasmids are considered major molecular vehicles responsible for transmission of antibiotic resistance genes among bacteria of the same or different species. Delineating the complete sequences of such plasmids could provide valuable insight into the evolution and transmission mechanisms underlying bacterial antibiotic resistance development. However, due to the presence of multiple repeats of mobile elements, complete sequencing of MDR plasmids remains technically complicated, expensive, and time-consuming. Here, we demonstrate a rapid and efficient approach to obtaining multiple MDR plasmid sequences through the use of the MinION nanopore sequencing platform, which is incorporated in a portable device. By assembling the long sequencing reads generated by a single MinION run according to a rapid barcoding sequencing protocol, we obtained the complete sequences of 20 plasmids harbored by multiple bacterial strains. Importantly, single long reads covering a plasmid end-to-end were recorded, indicating that de novo assembly may be unnecessary if the single reads exhibit high accuracy. This workflow represents a convenient and cost-effective approach for systematic assessment of MDR plasmids responsible for treatment failure of bacterial infections, offering the opportunity to perform detailed molecular epidemiological studies to probe the evolutionary and transmission mechanisms of MDR-encoding elements.
Rotger, R; García-Valdés, E; Trallero, E P
1986-01-01
A 9.4-kilobase plasmid encoding penicillin, streptomycin, and sulfonamide resistance was isolated from a beta-lactamase-producing Eikenella corrodens strain. This plasmid appears to be identical to a resistance plasmid common to saprophytic Neisseria strains. Images PMID:3535668
Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold; Davies, Kelvin Paul
2009-10-01
Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism.
Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold
2009-01-01
Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism. PMID:19657052
Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc
2017-07-25
Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B. subtilis. The ligation products are first transformed into E. coli cells, analyzed for correct insertions, and the correct recombinant plasmids are then transformed into B. subtilis. A major problem using E. coli cells can be the strong basal level of expression of the recombinant protein which may interfere with the stability of the cells. To minimize this problem, we developed strong expression vectors being repressed in E. coli and inducer-free in B. subtilis. In general, induction of IPTG-inducible expression vectors is determined by the regulatory lacI gene encoding the LacI repressor in combination with the lacO operator on the promoter. To investigate the inducer-free properties of the vectors, we constructed inducer-free expression plasmids by removing the lacI gene and characterized their properties. First, we examined the ability to repress a reporter gene in E. coli, which is a prominent property facilitating the construction of the expression vectors carrying a target gene. The β-galactosidase (bgaB gene) basal levels expressed from Pgrac01-bgaB could be repressed at least twice in the E. coli cloning strain. Second, the inducer-free production of BgaB from four different plasmids with the Pgrac01 promoter in B. subtilis was investigated. As expected, BgaB expression levels of inducer-free constructs are at least 37 times higher than that of the inducible constructs in the absence of IPTG, and comparable to those in the presence of the inducer. Third, using efficient IPTG-inducible expression vectors containing the strong promoter Pgrac100, we could convert them into inducer-free expression plasmids. The BgaB production levels from the inducer-free plasmid in the absence of the inducer were at least 4.5 times higher than that of the inducible vector using the same promoter. Finally, we used gfp as a reporter gene in combination with the two promoters Pgrac01 and Pgrac100 to test the new vector types. The GFP expression levels could be repressed at least 1.5 times for the Pgrac01-gfp+ inducer-free construct in E. coli. The inducer-free constructs Pgrac01-gfp+ and Pgrac100-gfp+ allowed GFP expression at high levels from 23 × 10 4 to 32 × 10 4 RFU units and 9-13% of total intracellular proteins. We could reconfirm the two major advantages of the new inducer-free expression plasmids: (1) Strong repression of the target gene expression in the E. coli cloning strain, and (2) production of the target protein at high levels in B. subtilis in the absence of the inducer. We propose a general strategy to generate inducer-free expression vector by using IPTG-inducible vectors, and more specifically we developed inducer-free expression plasmids using IPTG-inducible promoters in the absence of the LacI repressor. These plasmids could be an excellent choice for high-level production of recombinant proteins in B. subtilis without the addition of inducer and at the same time maintaining a low basal level of the recombinant proteins in E. coli. The repression of the recombinant gene expression would facilitate cloning of genes that potentially inhibit the growth of E. coli cloning strains. The inducer-free expression plasmids will be extended versions of the current available IPTG-inducible expression vectors for B. subtilis, in which all these vectors use the same cognate promoters. These inducer-free and previously developed IPTG-inducible expression plasmids will be a useful cassette to study gene expression at a small scale up to a larger scale up for the production of recombinant proteins.
Liu, Xin; Fu, Guo; Ji, Zhenyu; Huang, Xiabing; Ding, Cong; Jiang, Hui; Wang, Xiaolong; Du, Mingxuan; Wang, Ting; Kang, Qiaozhen
2016-08-01
Asthma is a chronic inflammatory airway disease. It was prevalently perceived that Th2 cells played the crucial role in asthma pathogenesis, which has been identified as the important target for anti-asthma therapy. The soluble IL-4 receptor (sIL-4R), which is the decoy receptor for Th2 cytokine IL-4, has been reported to be effective in treating asthma in phase I/II clinical trail. To develop more efficacious anti-asthma agent, we attempt to test whether the Helicobacter pylori neutrophil-activating protein (HP-NAP), a novel TLR2 agonist, would enhance the efficacy of sIL-4R in anti-asthma therapy. In our work, we constructed a pcDNA3.1-sIL-4R-NAP plasmid, named PSN, encoding fusion protein of murine sIL-4R and HP-NAP. PSN significantly inhibited airway inflammation, decreased the serum OVA-specific IgE levels and remodeled the Th1/Th2 balance. Notably, PSN is more effective on anti-asthma therapy comparing with plasmid only expressing sIL-4R.
2017-10-01
CRISPR Subtask 1A: i) design and produce mammalian expression plasmids encoding the Cas9 protein and specially...duration in SOW: 2017 Q4 – 2018 Q1 Subtask 2A: i) produce mouse myocyte cell lines that have undergone gene disruption via a technique named CRISPR ii...named CRISPR ii) confirm gene disruption and GFP expression iii) select multiple individual clones characterized with quantitative gene
Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M
2008-07-01
Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.
Gascoyne, D M; Heritage, J; Hawkey, P M; Turner, A; van Klingeren, B
1991-08-01
High level tetracycline resistant strains of Neisseria gonorrhoeae (TRNG) have been shown to carry a 40.6 kb (25.2 MDa) conjugative plasmid with a Class M tetracycline resistance determinant. Restriction endonuclease analysis mapping showed that there were at least two different TRNG plasmid types which were found in geographically distinct locations. The physical maps of these two plasmids were compared to a gonococcal conjugative plasmid which did not encode tetracycline resistance. The plasmid type which is endemic in the Netherlands was found to be closely related to the gonococcal conjugative plasmid, which supports the established hypothesis that the 40.6 kb plasmid has evolved by transposition of the TetM determinant into the conjugative plasmid. The plasmid found in the United States has either evolved by substantial divergent evolution or it results from a different transposition event. In the UK there have been isolations of TRNGs carrying either of the two plasmid types reflecting a flow of people both across the Atlantic and in Europe. It is possible that further TetM-containing plasmids will be found in N. gonorrhoeae paralleling the family of TEM beta-lactamase encoding plasmids already described.
Brunder, Werner; Khan, A. Salam; Hacker, Jörg; Karch, Helge
2001-01-01
Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− have emerged as important causes of diarrheal diseases and the hemolytic-uremic syndrome in Germany. In this study, we characterized a 32-kb fragment of the plasmid of SF EHEC O157:H−, pSFO157, which differs markedly from plasmid pO157 of classical non-sorbitol-fermenting EHEC O157:H7. We found a cluster of six genes, termed sfpA, sfpH, sfpC, sfpD, sfpJ, and sfpG, which mediate mannose-resistant hemagglutination and the expression of fimbriae. sfp genes are similar to the pap genes, encoding P-fimbriae of uropathogenic E. coli, but the sfp cluster lacks homologues of genes encoding subunits of a tip fibrillum as well as regulatory genes. The major pilin, SfpA, despite its similarity to PapA, does not cluster together with known PapA alleles in a phylogenetic tree but is structurally related to the PmpA pilin of Proteus mirabilis. The putative adhesin gene sfpG, responsible for the hemagglutination phenotype, shows significant homology neither to papG nor to other known sequences. Sfp fimbriae are 3 to 5 nm in diameter, in contrast to P-fimbriae, which are 7 nm in diameter. PCR analyses showed that the sfp gene cluster is a characteristic of SF EHEC O157:H− strains and is not present in other EHEC isolates, diarrheagenic E. coli, or other Enterobacteriaceae. The sfp gene cluster is flanked by two blocks of insertion sequences and an origin of plasmid replication, indicating that horizontal gene transfer may have contributed to the presence of Sfp fimbriae in SF EHEC O157:H−. PMID:11401985
Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S
2015-12-08
Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.
Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
Monticello, D J; Bakker, D; Schell, M; Finnerty, W R
1985-01-01
Plasmid-borne Tn5 insertion mutants of a Pseudomonas species which accumulated 2,5-dihydroxybenzoate (gentisate) following growth on 2-hydroxybenzoate (salicylate) were obtained from a pool of mutants that were unable to grow on naphthalene. One such mutant was characterized further. The ability of this mutant to oxidize gentisate was 100-fold less than the ability of a Nah+ Sal+ strain harboring the unmutagenized plasmid, although both strains oxidized and grew on salicylate. These bacteria were presumably able to metabolize salicylate via catechol, since they possessed an inducible, plasmid-encoded catechol 2,3-dioxygenase. Our results suggest that there is an alternate, plasmid-encoded route of salicylate degradation via gentisate and that some plasmid-associated relationship between this pathway and naphthalene oxidation exists. PMID:2988437
Winteler, H V; Schneidinger, B; Jaeger, K E; Haas, D
1996-01-01
The anaerobically inducible arcDABC operon encodes the enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa. Upon induction, the arcAB mRNAs and proteins reach high intracellular levels, because of a strong anaerobically controlled promoter and mRNA processing in arcD, leading to stable downstream transcripts. We explored the usefulness of this system for the construction of expression vectors. The lacZ gene of Escherichia coli was expressed to the highest levels when fused close to the arc promoter. Insertion of lacZ further downstream into arcA or arcB did not stabilize the intrinsically unstable lacZ mRNA. On the contrary, lacZ mRNA appeared to be a vulnerable endonuclease target destabilizing arcAB mRNAs in the 5'-to-3' direction in P. aeruginosa. The native arc promoter was modified for optional expression in the -10 sequence and in the -40 region, which is a binding site for the anaerobic regulator ANR. In P. aeruginosa grown either anaerobically or with oxygen limitation in unshaken cultures, this promoter was stronger than the induced tac promoter. The P. aeruginosa lipAH genes, which encode extracellular lipase and lipase foldase, respectively, were fused directly to the modified arc promoter in an IncQ vector plasmid. Semianaerobic static cultures of P. aeruginosa PAO1 carrying this recombinant plasmid overproduced extracellular lipase 30-fold during stationary phase compared with the production by strain PAO1 without the plasmid. Severe oxygen limitation, in contrast, resulted in poor lipase productivity despite effective induction of the ANR-dependent promoter, suggesting that secretion of active lipase is blocked by the absence of oxygen. In conclusion, the modified arc promoter is useful for driving the expression of cloned genes in P. aeruginosa during oxygen-limited growth and stationary phase. PMID:8795231
Expression of bacteriocin LsbB is dependent on a transcription terminator.
Uzelac, Gordana; Miljkovic, Marija; Lozo, Jelena; Radulovic, Zorica; Tosic, Natasa; Kojic, Milan
2015-10-01
The production of LsbB, leaderless class II bacteriocin, is encoded by genes (lsbB and lmrB) located on plasmid pMN5 in Lactococcus lactis BGMN1-5. Heterologous expression of the lsbB gene using the pAZIL vector (pAZIL-lsbB) in L. lactis subsp. cremoris MG7284 resulted in a significant reduction (more than 30 times) of bacteriocin LsbB expression. Subcloning and deletion experiments with plasmid pMN5 revealed that full expression of LsbB requires the presence of a complete transcription terminator located downstream of the lsbB gene. RNA stability analysis revealed that the presence of a transcription terminator increased the RNA stability by three times and the expression of LsbB by 30 times. The study of the influence of transcription terminator on the expression of other bacteriocin genes (lcnB, for lactococcin B production) indicated that this translational terminator likely functions in a lsbB-specific manner rather than in a general manner. Copyright © 2015 Elsevier GmbH. All rights reserved.
Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.
2014-01-01
Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120
Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1
Pimentel, Belén; Madine, Mark A; de la Cueva-Méndez, Guillermo
2005-01-01
Stability and copy number of extra-chromosomal elements are tightly regulated in prokaryotes and eukaryotes. Toxin Kid and antitoxin Kis are the components of the parD stability system of prokaryotic plasmid R1 and they can also function in eukaryotes. In bacteria, Kid was thought to become active only in cells that lose plasmid R1 and to cleave exclusively host mRNAs at UA(A/C/U) trinucleotide sites to eliminate plasmid-free cells. Instead, we demonstrate here that Kid becomes active in plasmid-containing cells when plasmid copy number decreases, cleaving not only host- but also a specific plasmid-encoded mRNA at the longer and more specific target sequence UUACU. This specific cleavage by Kid inhibits bacterial growth and, at the same time, helps to restore the plasmid copy number. Kid targets a plasmid RNA that encodes a repressor of the synthesis of an R1 replication protein, resulting in increased plasmid DNA replication. This mechanism resembles that employed by some human herpesviruses to regulate viral amplification during infection. PMID:16163387
Davidsson, Sabina; Carlsson, Jessica; Mölling, Paula; Gashi, Natyra; Andrén, Ove; Andersson, Swen-Olof; Brzuszkiewicz, Elzbieta; Poehlein, Anja; Al-Zeer, Munir A.; Brinkmann, Volker; Scavenius, Carsten; Nazipi, Seven; Söderquist, Bo; Brüggemann, Holger
2017-01-01
Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium) acnes was frequently isolated from prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated Cutibacterium acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74) of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows signatures for conjugative transfer. In addition, it contains a gene locus for tight adherence (tad) that is predicted to encode adhesive Flp (fimbrial low-molecular weight protein) pili. In subsequent experiments a tad locus-encoded putative pilin subunit was identified in the surface-exposed protein fraction of plasmid-positive C. acnes type II strains by mass spectrometry, indicating that the tad locus is functional. Additional plasmid-encoded proteins were detected in the secreted protein fraction, including two signal peptide-harboring proteins; the corresponding genes are specific for type II C. acnes, thus lacking from plasmid-positive type I C. acnes strains. Further support for the presence of Flp pili in C. acnes type II was provided by electron microscopy, revealing cell appendages in tad locus-positive strains. Our study provides new insight in the most prevalent prostatic subspecies of C. acnes, subsp. defendens, and indicates the existence of Flp pili in plasmid-positive strains. Such pili may support colonization and persistent infection of human prostates by C. acnes. PMID:29201018
Muscholl-Silberhorn, Albrecht B.
2000-01-01
Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an α-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated α-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of α-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P0, and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed. PMID:10850999
Andrade, B S; Villela-Dias, C; Gomes, D S; Micheli, F; Góes-Neto, A
2013-06-13
Moniliophthora perniciosa (Stahel) Aime and Phillips-Mora is a hemibiotrophic basidiomycete (Agaricales, Tricholomataceae) that causes witches' broom disease in cocoa (Theobroma cacao L.). This pathogen carries a stable integrated invertron-type linear plasmid in its mitochondrial genome that encodes viral-like DNA and RNA polymerases related to fungal senescence and longevity. After culturing the fungus and obtaining its various stages of development in triplicate, we carried out total RNA extraction and subsequent complementary DNA synthesis. To analyze DNA and RNA polymerase expression levels, we performed real-time reverse transcriptase polymerase chain reaction for various fungal phases of development. Our results showed that DNA and RNA polymerase gene expression in the primordium phase of M. perniciosa is related to a potential defense mechanism against T. cacao oxidative attack.
Specific Detection of Campylobacter Jejuni and Campylobacter Coli by Using Polymerase Chain Reaction
1992-10-01
indicated a high degree of SSC buffer (1x SSC is 0.15 M NaC! plus 0.015 M sodium conservation at the amino terminus of the protein (20). We citrate...Guerry, P., S. M. Logan, S. A. Thornton, and T. J. Trust. 1990. American Society for Microbiology, Washington, D.C. Genomic organization and expression of...Probes 4:261-271. 1981. Construction and expression of recombinant plasmids 36. Taylor, D. N. 1991. Campylobacter infections in developing encoding type 1
Wallace, B; Yang, Y J; Hong, J S; Lum, D
1990-01-01
A gene encoding a carrier protein for glutamate and aspartate was cloned into Escherichia coli K-12 strain BK9MDG by using the high-copy-number plasmid pBR322. The gene (designated gltP) is probably identical to a gene recently cloned from E. coli B (Y. Deguchi, I. Yamato, and Y. Anraku, J. Bacteriol. 171:1314-1319). A 1.6-kilobase DNA fragment containing gltP was subcloned into the expression plasmids pT7-5 and pT7-6, and its product was identified by a phage T7 RNA polymerase-T7 promoter coupled system (S. Tabor and C. C. Richardson, Proc. Natl. Acad. Sci. USA 82:1074-1078) as a polypeptide with an apparent mass of 38 kilodaltons. A portion of the gltP polypeptide was associated with the cytoplasmic membrane. The nucleotide sequence of the 1.6-kilobase fragment was determined. It contained an open reading frame capable of encoding a highly hydrophobic polypeptide of 395 amino acids, containing four possible transmembrane segments. Uptake of glutamate and aspartate was increased 5.5- and 4.5-fold, respectively, in strains containing gltP plasmids. Glutamate uptake was insensitive to the concentration of Na+ and was inhibited by L-cysteate and beta-hydroxyaspartate. These results suggest that gltP is a structural gene for a carrier protein of the Na(+)-independent, binding-protein-independent glutamate-aspartate transport system. Images PMID:1971622
Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A; Agu, Chukwuma A; Wang, Xindan; Bernal, Juan A; Sherratt, David J; de la Cueva-Méndez, Guillermo
2014-02-18
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.
Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A.; Agu, Chukwuma A.; Wang, Xindan; Bernal, Juan A.; Sherratt, David J.; de la Cueva-Méndez, Guillermo
2014-01-01
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs. PMID:24449860
Miyamoto, Kazuaki; Li, Jihong; Sayeed, Sameera; Akimoto, Shigeru; McClane, Bruce A
2008-11-01
Clostridium perfringens type B and D isolates produce epsilon-toxin, the third most potent clostridial toxin. The epsilon-toxin gene (etx) is plasmid borne in type D isolates, but etx genetics have been poorly studied in type B isolates. This study reports the first sequencing of any etx plasmid, i.e., pCP8533etx, from type B strain NCTC8533. This etx plasmid is 64.7 kb, carries tcp conjugative transfer genes, and encodes additional potential virulence factors including beta2-toxin, sortase, and collagen adhesin but not beta-toxin. Interestingly, nearly 80% of pCP8533etx open reading frames (ORFs) are also present on pCPF5603, an enterotoxin-encoding plasmid from type A isolate F5603. Pulsed-field gel electrophoresis and overlapping PCR indicated that a pCP8533etx-like etx plasmid is also present in most, if not all, other type B isolates and some beta2-toxin-positive, cpe-negative type D isolates, while other type D isolates carry different etx plasmids. Sequences upstream of the etx gene vary between type B isolates and some type D isolates that do not carry a pCP8533etx-like etx plasmid. However, nearly all type B and D isolates have an etx locus with an upstream IS1151, and those etx loci typically reside near a dcm ORF. These results suggest that pCPF5603 and pCP8533etx evolved from insertion of mobile genetic elements carrying enterotoxin or etx genes, respectively, onto a common progenitor plasmid.
Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong
2015-01-01
A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.
Ma, Bing-cun; Yang, Xin; Wang, Hong-ning; Cao, Hai-peng; Xu, Peng-wei; Ding, Meng-die; Liu, Hui
2016-01-01
To obtain adhesive and safe lactic acid bacteria (LAB) strains for expressing heterologous antigens, we screened LAB inhabitants in intestine of Tibetan chickens by analyzing their adhesion and safety properties and the selected LAB was engineered to express heterologous antigen (UTEpi C-A) based on chromosomal integration strategy. We demonstrated that a new Lactobacillu salivarius TCMM17 strain is strongly adhesive to chicken intestinal epithelial cells, contains no endogenous plasmids, is susceptible to tested antimicrobials, and shows no toxicities. In order to examine the potential of TCMM17 strain as heterogenous antigen delivering vehicle, we introduced a UTEpi C-A expression cassette in its chromosome by constructing a non-replicative plasmid (pORI280-UUTEpi C-AD). The recombinant TCMM17 strain (∆TCMM17) stably was found to keep the gene cassette through 50 generations, and successfully displayed EpiC encoded by the cassette on its surface. This work provides a universal platform for development of novel oral vaccines and expression of further antigens of avian pathogens.
O'Neill, M; Chen, A; Murray, N E
1997-12-23
Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491-496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as "selfish" units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.
Woods, J P; Heinecke, E L; Goldman, W E
1998-04-01
We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.
Talmadge, J E; Talmadge, C B; Zbar, B; McEwen, R; Meeker, A K; Tribble, H
1987-06-01
The mechanism by which tumor allografts escape host immunologic attack was investigated. B16-BL6 cells (the bladder 6 subline of the B16 melanoma) (H-2b) were transfected with a gene (Dd) encoding an allogeneic class I major histocompatibility complex antigen. Clones that expressed Dd antigen were injected into the footpads of nonimmune syngeneic mice, syngeneic immune mice, and nude mice. Under conditions of immunologic selection a clone that contained multiple copies of the transfected gene formed variants that lacked the transfected gene. Primary tumors and pulmonary metastases of immunized mice and pulmonary metastases of nonimmunized mice had lost the Dd gene and, in most cases, all of the associated plasmid. In contrast, in immunodeficient nude mice, primary tumors and pulmonary metastases retained the Dd gene and the associated plasmid. Deletion of genes encoding cell surface antigens may be one of the mechanisms by which allogeneic tumors escape immunologic attack.
Cherpillod, P; Tipold, A; Griot-Wenk, M; Cardozo, C; Schmid, I; Fatzer, R; Schobesberger, M; Zurbriggen, R; Bruckner, L; Roch, F; Vandevelde, M; Wittek, R; Zurbriggen, A
2000-07-01
Canine distemper virus (CDV), a member of the genus Morbillivirus induces a highly infectious, frequently lethal disease in dogs and other carnivores. Current vaccines against canine distemper consisting of attenuated viruses have been in use for many years and have greatly reduced the incidence of distemper in the dog population. However, certain strains may not guarantee adequate protection and others can induce post vaccinal encephalitis. We tested a DNA vaccine for its ability to protect dogs, the natural host of CDV, against distemper. We constructed plasmids containing the nucleocapsid, the fusion, and the attachment protein genes of a virulent canine distemper virus strain. Mice inoculated with these plasmids developed humoral and cellular immune responses against CDV antigens. Dogs immunized with the expression plasmids developed virus-neutralizing antibodies. Significantly, vaccinated dogs were protected against challenge with virulent CDV, whereas unvaccinated animals succumbed to distemper.
Zhao, Qi; Li, Tao; Qi, Jianni; Liu, Juan; Qin, Chengyong
2014-01-01
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a poor prognosis, and monitoring sera levels of miR-545/374a may be a useful diagnostic marker for HCC.
Sharma, Vijay K; Stanton, Thaddeus B
2008-12-10
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 (strain 86-24) harbors a 3.3-kb plasmid (pSP70) that does not encode a selectable phenotype. A 1.1-kb fragment of DNA encoding kanamycin resistance (Kan(r)) was inserted by in vitro transposon mutagenesis at a random location on pSP70 to construct pSP70-Kan(r) that conferred Kan(r) to the host E. coli strain. Oligonucleotides complementary to 5' and 3' ends of the fragment encoding Kan(r) were used for initiating nucleotide sequencing from the plus and minus strands of pSP70, and thereafter primer walking was used to determine nucleotide sequence of pSP70. Analysis of nucleotide sequence revealed that pSP70 contained 3306 base pairs in its genome and that the genome was almost 100% identical to nucleotide sequences of small plasmids identified in EHEC O157:H7 isolates from Germany and Japan. A DNA cassette encoding a green fluorescent protein (GFP), ampicillin resistance (Amp(r)), and a double transcriptional terminator (DT) was cloned in pSP70 either at the BamHI site (created by deletion of mobA by PCR) or at the NsiI site located downstream of mobA to generate pSP70 DeltamobA-GFP/Amp(r)/DT (pSM431) and pSP70-GFP/Amp(r)/DT (pSM433), respectively. Introduction of pSM431 or pSM433 into EHEC O157:H7 yielded ampicillin-resistant colonies that glowed green under UV illumination. Consecutive subcultures of EHEC O157:H7, carrying pSM431 or pSM433 under conditions simulating the environment of bovine intestine (no selective antibiotic, incubation temperature of 39 degrees C, with or without oxygen), demonstrated that these plasmids were highly stable as greater than 95% of the isolates recovered from these subcultures were positive for green fluorescence. These findings indicate that EHEC O157:H7 carrying pSM431 or pSM433 would be useful for studying persistence and shedding of this important food-borne pathogen in cattle.
Mo, Yongkai; Quanquin, Natalie M; Vecino, William H; Ranganathan, Uma Devi; Tesfa, Lydia; Bourn, William; Derbyshire, Keith M; Letvin, Norman L; Jacobs, William R; Fennelly, Glenn J
2007-10-01
Mycobacteria target and persist within phagocytic monocytes and are strong adjuvants, making them attractive candidate vectors for DNA vaccines. We characterized the ability of mycobacteria to deliver transgenes to mammalian cells and the effects of various bacterial chromosomal mutations on the efficiency of transfer in vivo and in vitro. First, we observed green fluorescent protein expression via microscopy and fluorescence-activated cell sorting analysis after infection of phagocytic and nonphagocytic cell lines by Mycobacterium smegmatis or M. bovis BCG harboring a plasmid encoding the fluorescence gene under the control of a eukaryotic promoter. Next, we compared the efficiencies of gene transfer using M. smegmatis or BCG containing chromosomal insertions or deletions that cause early lysis, hyperconjugation, or an increased plasmid copy number. We observed a significant-albeit only 1.7-fold-increase in the level of plasmid transfer to eukaryotic cells infected with M. smegmatis hyperconjugation mutants. M. smegmatis strains that overexpressed replication proteins (Rep) of pAL5000, a plasmid whose replicon is incorporated in many mycobacterial constructs, generated a 10-fold increase in plasmid copy number and 3.5-fold and 3-fold increases in gene transfer efficiency to HeLa cells and J774 cells, respectively. Although BCG strains overexpressing Rep could not be recovered, BCG harboring a plasmid with a copy-up mutation in oriM resulted in a threefold increase in gene transfer to J774 cells. Moreover, M. smegmatis strains overexpressing Rep enhanced gene transfer in vivo compared with a wild-type control. Immunization of mice with mycobacteria harboring a plasmid (pgp120(h)(E)) encoding human immunodeficiency virus gp120 elicited gp120-specific CD8 T-cell responses among splenocytes and peripheral blood mononuclear cells that were up to twofold (P < 0.05) and threefold (P < 0.001) higher, respectively, in strains supporting higher copy numbers. The magnitude of these responses was approximately one-half of that observed after intramuscular immunization with pgp120(h)(E). M. smegmatis and other nonpathogenic mycobacteria are promising candidate vectors for DNA vaccine delivery.
Plesiat, P; Grandguillot, M; Harayama, S; Vragar, S; Michel-Briand, Y
1991-01-01
Pseudomonas testosteroni ATCC 17410 is able to grow on testosterone. This strain was mutagenized by Tn5, and 41 mutants defective in the utilization of testosterone were isolated. One of them, called mutant 06, expressed 3-oxosteroid delta 1- and 3-oxosteroid delta 4-5 alpha-dehydrogenases only at low levels. The DNA region around the Tn5 insertion in mutant 06 was cloned into pUC19, and the 1-kbp EcoRI-BamHI segment neighbor to the Tn5 insertion was used to probe DNA from the wild-type strain. The probe hybridized to a 7.8-kbp SalI fragment. Plasmid pTES5, which is a pUC19 derivative containing this 7.8-kbp SalI fragment, was isolated after the screening by the 1-kbp EcoRI-BamHI probe. This plasmid expressed delta 1-dehydrogenase in Escherichia coli cells. The 2.2-kbp KpnI-KpnI segment of pTES5 was subcloned into pUC18, and pTEK21 was constructed. In E. coli containing the lacIq plasmid pRG1 and pTEK21, the expression of delta 1-dehydrogenase was induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The induced level was about 40 times higher than the induced level in P. testosteroni. Delta 1-Dehydrogenase synthesized in E. coli was localized in the inner membrane fraction. The minicell experiments showed that a 59-kDa polypeptide was synthesized from pTEK21, and this polypeptide was located in the inner membrane fraction. The complete nucleotide sequence of the 2.2-kbp KpnI-KpnI segment of pTEK21 was determined. An open reading frame which encodes a 62.4-kDa polypeptide and which is preceded by a Shine-Dalgarno-like sequence was identified. The first 44 amino acids of the putative product exhibited significant sequence similarity to the N-terminal sequences of lipoamide dehydrogenases. Images FIG. 4 PMID:1657885
Identification of a movement protein of Mirafiori lettuce big-vein ophiovirus.
Hiraguri, Akihiro; Ueki, Shoko; Kondo, Hideki; Nomiyama, Koji; Shimizu, Takumi; Ichiki-Uehara, Tamaki; Omura, Toshihiro; Sasaki, Nobumitsu; Nyunoya, Hiroshi; Sasaya, Takahide
2013-05-01
Mirafiori lettuce big-vein virus (MiLBVV) is a member of the genus Ophiovirus, which is a segmented negative-stranded RNA virus. In microprojectile bombardment experiments to identify a movement protein (MP) gene of ophioviruses that can trans-complement intercellular movement of an MP-deficient heterologous virus, a plasmid containing an infectious clone of a tomato mosaic virus (ToMV) derivative expressing the GFP was co-bombarded with plasmids containing one of three genes from MiLBVV RNAs 1, 2 and 4 onto Nicotiana benthamiana. Intercellular movement of the movement-defective ToMV was restored by co-expression of the 55 kDa protein gene, but not with the two other genes. Transient expression in epidermal cells of N. benthamiana and onion showed that the 55 kDa protein with GFP was localized on the plasmodesmata. The 55 kDa protein encoded in the MiLBVV RNA2 can function as an MP of the virus. This report is the first to describe an ophiovirus MP.
Characterization of a cryptic plasmid from an alpha-proteobacterial endosymbiont of Amoeba proteus.
Park, Miey; Kim, Min-Soo; Lee, Kyung-Min; Hwang, Sue-Yun; Ahn, Tae In
2009-01-01
A new cryptic plasmid pAP3.9 was discovered in symbiotic alpha-proteobacteria present in the cytoplasm of Amoeba proteus. The plasmid is 3869bp with a GC content of 34.66% and contains replication origins for both double-strand (dso) and single-strand (sso). It has three putative ORFs encoding Mob, Rep and phosphoglycolate phosphatase (PGPase). The pAP3.9 plasmid appears to propagate by the conjugative rolling-circle replication (RCR), since it contains all required factors such as Rep, sso and dso. Mob and Rep showed highest similarities to those of the cryptic plasmid pBMYdx in Bacillus mycoides. The PGPase was homologous to that of Bacillus cereus and formed a clade with those of Bacillus sp. in molecular phylogeny. These results imply that the pAP3.9 plasmid evolved by the passage through Bacillus species. We hypothesize that the plasmid-encoded PGPase may have contributed to the establishment of bacterial symbiosis within the hostile environment of amoeba cytoplasm.
Horii, T; Arakawa, Y; Ohta, M; Ichiyama, S; Wacharotayankun, R; Kato, N
1993-01-01
Klebsiella pneumoniae NU2936 was isolated from a patient and was found to produce a plasmid-encoded beta-lactamase (MOX-1) which conferred resistance to broad spectrum beta-lactams, including moxalactam, flomoxef, ceftizoxime, cefotaxime, and ceftazidime. Resistance could be transferred from K. pneumoniae NU2936 to Escherichia coli CSH2 by conjugation with a transfer frequency of 5 x 10(-7). The structural gene of MOX-1 (blaMOX-1) was cloned and expressed in E. coli HB101. The MIC of moxalactam for E. coli HB101 producing MOX-1 was > 512 micrograms/ml. The apparent molecular mass and pI of this enzyme were calculated to be 38 kDa and 8.9, respectively. Hg2+ and Cu2+ failed to block enzyme activity, and the presence of EDTA in the reaction buffer did not reduce the enzyme activity. However, clavulanate and cloxacillin, serine beta-lactamase inhibitors, inhibited the enzyme activity competitively (Kis = 5.60 and 0.35 microM, respectively). The kinetic study of MOX-1 suggested that it effectively hydrolyzed broad-spectrum beta-lactams. A hybridization study confirmed that blaMOX-1 is encoded on a large resident plasmid (pRMOX1; 180 kb) of strain NU2936. By deletion analysis, the functional region was localized within a 1.2-kb region of the plasmid. By amino acid sequencing, 18 of 33 amino acid residues at the N terminus of MOX-1 were found to be identical to those of Pseudomonas aeruginosa AmpC. These findings suggest that MOX-1 is a plasmid-mediated AmpC-type beta-lactamase that provides enteric bacteria resistance to broad-spectrum beta-lactams, including moxalactam. Images PMID:8517725
Keelara, Shivaramu; Thakur, Siddhartha
2014-09-17
The aim of this study was to characterize and determine the inter-serovar exchange of AmpC β-lactamase conferring plasmids isolated from humans, pigs and the swine environment. Plasmids isolated from a total of 21 antimicrobial resistant (AMR) Salmonella isolates representing human clinical cases (n=6), pigs (n=6) and the swine farm environment (n=9) were characterized by replicon typing and restriction digestion, inter-serovar transferability by conjugation, and presence of AmpC β-lactamase enzyme encoding gene blaCMY-2 by southern hybridization. Based on replicon typing, the majority (17/21, 81%) of the plasmids belonged to the I1-Iγ Inc group and were between 70 and 103kb. The potential for inter-serovar plasmid transfer was further confirmed by the PCR detection of AMR genes on the plasmids isolated from trans-conjugants. Plasmids from Salmonella serovars Anatum, Ouakam, Johannesburg and Typhimurium isolated from the same cohort of pigs and their environment and S. Heidelberg from a single human clinical isolate had identical plasmids based on digestion with multiple restriction enzymes (EcoRI, HindIII and PstI) and southern blotting. We demonstrated likely horizontal inter-serovar exchange of plasmid-encoding AmpC β-lactamases resistance among MDR Salmonella serotypes isolated from pigs, swine farm environment and clinical human cases. This study provides valuable information on the role of the swine farm environment and by extension other livestock farm environments, as a potential reservoir of resistant bacterial strains that potentially transmit resistance determinants to livestock, in this case, swine, humans and possibly other hosts by horizontal exchange of plasmids. Copyright © 2014 Elsevier B.V. All rights reserved.
Welkie, David; Zhang, Xiaohui; Markillie, Meng Lye; Taylor, Ronald; Orr, Galya; Jacobs, Jon; Bhide, Ketaki; Thimmapuram, Jyothi; Gritsenko, Marina; Mitchell, Hugh; Smith, Richard D; Sherman, Louis A
2014-12-29
Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light-dark cycle. Utilizing transcriptomic and proteomic methods, we quantified the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions. By combining mass-spectrometry based proteomics and RNA-sequencing transcriptomics, we quantitatively measured a total of 6766 mRNAs and 1322 proteins at four time points across a 24 hour light-dark cycle. Photosynthesis, nitrogen fixation, and carbon storage relevant genes were expressed during the preceding light or dark period, concurrent with measured nitrogenase activity in the late light period. We describe many instances of disparity in peak mRNA and protein abundances, and strong correlation of light dependent expression of both antisense and CRISPR-related gene expression. The proteins for nitrogenase and the pentose phosphate pathway were highest in the dark, whereas those for glycolysis and the TCA cycle were more prominent in the light. Interestingly, one copy of the psbA gene encoding the photosystem II (PSII) reaction center protein D1 (psbA4) was highly upregulated only in the dark. This protein likely cannot catalyze O2 evolution and so may be used by the cell to keep PSII intact during N2 fixation. The CRISPR elements were found exclusively at the ends of the large plasmid and we speculate that their presence is crucial to the maintenance of this plasmid. This investigation of parallel transcriptional and translational activity within Cyanothece sp. PCC 7822 provided quantitative information on expression levels of metabolic pathways relevant to engineering efforts. The identification of expression patterns for both mRNA and protein affords a basis for improving biofuel production in this strain and for further genetic manipulations. Expression analysis of the genes encoded on the 6 plasmids provided insight into the possible acquisition and maintenance of some of these extra-chromosomal elements.
Yin, Ji-Yuan; Guo, Chao-Qun; Wang, Zi; Yu, Mei-Ling; Gao, Shuai; Bukhari, Syed M; Tang, Li-Jie; Xu, Yi-Gang; Li, Yi-Jing
2016-11-01
Using two-step plasmid integration in the presence of 5-fluorouracil (5-FU), we developed a stable and markerless Lactobacillus casei strain for vaccine antigen expression. The upp of L. casei, which encodes uracil phosphoribosyltransferase (UPRTase), was used as a counterselection marker. We employed the Δupp isogenic mutant, which is resistant to 5-FU, as host and a temperature-sensitive suicide plasmid bearing upp expression cassette as counterselectable integration vector. Extrachromosomal expression of UPRTase complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. The resultant genotype can either be wild type or recombinant. The efficacy of the system was demonstrated by insertion and expression of porcine rotavirus (PRV) VP4. To improve VP4 expression, we analyzed L. casei transcriptional profiles and selected the constitutive highly expressed enolase gene (eno). The VP4 inserted after the eno termination codon were screened in the presence of 5-FU. Using genomic PCR amplification, we confirmed that VP4 was successfully integrated and stably inherited for at least 50 generations. Western blot demonstrated that VP4 was steadily expressed in medium with different carbohydrates. RT-qPCR and ELISA analysis showed that VP4 expression from the chromosomal location was similar to that achieved by a plasmid expression system. Applying the recombinant strain to immunize BALB/c mice via oral administration revealed that the VP4-expressing L. casei could induce both specific local and systemic humoral immune responses in mice. Overall, the improved gene replacement system represents an efficient method for chromosome recombination in L. casei and provides a safe tool for vaccine production.
Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli.
Robeson, J P; Barletta, R G; Curtiss, R
1983-01-01
Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.
Price, Paul A.; Tanner, Houston R.; Dillon, Brett A.; Shabab, Mohammed; Walker, Graham C.; Griffitts, Joel S.
2015-01-01
Legume–rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes. PMID:26401024
Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana.
Lu, Dingding; Geng, Tao; Hou, Chengxiang; Huang, Yuxia; Qin, Guangxing; Guo, Xijie
2016-05-25
A cDNA encoding cecropin A (CecA) was cloned from the larvae of silkworm, Bombyx mori, using RT-PCR. It encodes a protein of 63 amino acids, containing a 22 amino acid signal peptide and a 37 amino acid mat peptide of functional domain. The CecA secondary structure contains two typical amphiphilic α-helices. Real-time qPCR analysis revealed that CecA was expressed in all the tissues tested, including cuticle, fat body, hemocytes, Malpighian tubule, midgut and silk gland in the silkworm larvae with the highest expression in the fat body and hemocytes. The gene expression of B. mori CecA was rapidly induced by Beauveria bassiana challenge and reached maximum levels at 36h after inoculation in third instar larvae. In the fifth instar larvae infected with B. bassiana, the relative expression level of CecA was upregulated in fat body and hemocytes, but not in cuticle, Malpighian tubule, midgut and silk gland. The cDNA segment of the CecA was inserted into the expression plasmid pET-30a(+) to construct a recombinant expression plasmid. Western blot results revealed that his-tagged fusion protein was successfully expressed and purified. Then the mat peptide of CecA was chemically synthesized with C-terminus amidation for in vivo antifungal assay and purity achieved 93.7%. Mass spectrometry and SDS-PAGE showed its molecular weight to be 4046.95Da. Antifungal assays indicated that the B. mori CecA had a high antifungal activity to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that the CecA is effective to inhibit B. bassiana inside the body of silkworm. Copyright © 2016 Elsevier B.V. All rights reserved.
Roles of Long and Short Replication Initiation Proteins in the Fate of IncP-1 Plasmids
Yano, Hirokazu; Deckert, Gail E.; Rogers, Linda M.
2012-01-01
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts. PMID:22228734
Yan, Y; Xu, W; Chen, H; Ma, Z; Zhu, Y; Cai, S
1994-01-01
The partial structure gene encoding ES antigen derived from Trichinella spiralis (TSP) muscle larvae was cloned, characterized, and expressed in E. coli. The target DNA (0.7 kb) was directly obtained from the TSP total RNA by using RNA PCR technique. Based on the analysis with the RE digestion, the fragment was cloned into the fusion expression vector pEX31C. It was shown that a kind of 37kDa fusion protein was expressed in E. coli containing the recombinant plasmid by SDS-PAGE electrophoresis. The expressed protein was over 22% of the total cell protein, and it was aggregated in the form of inclusion bodies in E. coli. The purified protein could be recognized in ELISA both by sera from swine-infected with TSP and by the monoclonal antibody against TSP. These findings suggest that the recombinant protein is a potentially valuable antigen both for immunodiagnosis and vaccine development of trichinellosis.
Plasmid-determined cytotoxicity in Yersinia pestis and Yersinia pseudotuberculosis.
Goguen, J D; Walker, W S; Hatch, T P; Yother, J
1986-01-01
Yersinia pestis KIM5 was found to be cytotoxic for the IC21 and P388D1 mouse macrophage cell lines, as well as for resident peritoneal macrophages from C57BL/6 mice. Affected cells phagocytosed KIM5 inefficiently, became spherical, detached readily from culture dishes, and retained 51Cr poorly. The cytotoxic effect was dependent on the presence of the 75-kilobase plasmid pCD1. Because this plasmid also encodes the low calcium response (LCR), three Mu d1 insertion mutants previously shown to be LCR- and of reduced virulence in mice were examined for cytotoxicity; all were found to be atoxic. The insertions in these mutants lie within three distinct LCR loci (lcrB, C, and D). Like LCR, cytotoxicity was expressed only at 37 degrees C. Unlike LCR, it was not influenced by Ca2+ concentration, indicating that the V and W antigens are probably not involved. Yersinia pseudotuberculosis was found to have a similar plasmid-dependent cytotoxicity. Thus, biological activity observed as cytotoxicity in vitro may well be a common feature contributing to virulence of the yersiniae. Images PMID:3949380
Lim, C K; Smith, M C; Petty, J; Baumberg, S; Wootton, J C
1989-12-01
The aphD gene of Streptomyces griseus, encoding a streptomycin 6-phosphotransferase (SPH), was sub-cloned in the pBR322-based expression vector pRK9 (which contains the Serratia marcescens trp promoter) with selection for expression of streptomycin resistance in Escherichia coli. Two hybrid plasmids, pCKL631 and pCKL711, were isolated which conferred resistance. Both contained a approximately 2 kbp fragment already suspected to include aphD. The properties of in vitro deletion derivatives of these plasmids were consistent with the presumed location of aphD. In vitro deletion of a sequence including most of the trp promoter largely, but not quite completely, abolished the ability of the plasmid to confer streptomycin resistance, confirming that expression was indeed principally from the trp promoter. A polypeptide of approximately 34.5 kDa was present in minicells containing plasmids that conferred streptomycin resistance, but was absent when the plasmids contained in vitro deletions removing streptomycin resistance. Part of the fragment was sequenced and an open reading frame corresponding to aphD identified. A computer-assisted comparison of the deduced SPH sequence with those of other antibiotic phosphotransferases suggested a common structure A-B-C-D-E, where B and D were conserved between all sequences compared while A, C and E divided between the streptomycin and hygromycin B phosphotransferases on one hand and kanamycin/neomycin ones on the other. A composite sequence data base was searched for homologues to consensus matrices constructed from five approximately 12-residue subsequences within blocks B and D. For one subsequence, corresponding to the N-terminal portion of block D, those sequences from the database that yielded the highest homology scores comprised almost entirely either antibiotic phosphotransferases or eukaryotic protein kinases. Possible evolutionary implications of this homology, previously described by other groups, are discussed.
Isolation and characterization of novel mutations in the pSC101 origin that increase copy number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.
pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cellmore » in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. Thus, these pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.« less
Isolation and characterization of novel mutations in the pSC101 origin that increase copy number
Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.; ...
2018-01-25
pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cellmore » in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. Thus, these pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.« less
Smith, Hilde; Bossers, Alex; Harders, Frank; Wu, Guanghui; Woodford, Neil; Schwarz, Stefan; Guerra, Beatriz; Rodríguez, Irene; van Essen-Zandbergen, Alieda; Brouwer, Michael; Mevius, Dik
2015-09-01
The aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained from Escherichia coli and Salmonella enterica isolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase genes were compared using plasmid multilocus sequence typing (pMLST). Thirty-two of these plasmids belonging to different pMLST types were sequenced using Roche 454 and Illumina platforms. Epidemic IncI1-Iγ plasmids could be assigned to various dominant clades, whereas rarely detected plasmids clustered together as a distinct clade. Similar phylogenetic trees were obtained using only the plasmid backbone sequences, showing that the differences observed between the plasmids belonging to distinct clades resulted mainly from differences between their backbone sequences. Plasmids belonging to the various clades differed particularly in the presence/absence of genes encoding partitioning and addiction systems, which contribute to stable inheritance during cell division and plasmid maintenance. Despite this, plasmids belonging to the various phylogenetic clades also showed marked resistance gene associations, indicating the circulation of successful plasmid-gene combinations. The variation in traY and excA genes found in IncI1-Iγ plasmids is conserved within pMLST sequence types and plays a role in incompatibility, although functional study is needed to elucidate the role of these genes in plasmid epidemiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Regis, David P.; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L.; Stefaniak, Maureen E.; Campo, Joseph J.; Carucci, Daniel J.; Roth, David A.; He, Huaping; Felgner, Philip L.; Doolan, Denise L.
2009-01-01
We have evaluated a technology called Transcriptionally Active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data. PMID:18164079
Regis, David P; Dobaño, Carlota; Quiñones-Olson, Paola; Liang, Xiaowu; Graber, Norma L; Stefaniak, Maureen E; Campo, Joseph J; Carucci, Daniel J; Roth, David A; He, Huaping; Felgner, Philip L; Doolan, Denise L
2008-03-01
We have evaluated a technology called transcriptionally active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P. yoelii antigens and a small panel of uncharacterized open reading frames from the P. falciparum genome sequence database. We demonstrated that TAP fragments encoding six well-characterized P. falciparum antigens and five well-characterized P. yoelii antigens could be amplified in an equivalent manner from both plasmid DNA and genomic DNA templates, and that uncharacterized open reading frames could also be amplified from genomic DNA template. Second, we showed that the in vitro expression of the TAP fragments was equivalent or superior to that of supercoiled plasmid DNA encoding the same antigen. Third, we evaluated the in vivo immunogenicity of TAP fragments encoding a subset of the model P. falciparum and P. yoelii antigens. We found that antigen-specific antibody and cellular immune responses induced by the TAP fragments in mice were equivalent or superior to those induced by the corresponding plasmid DNA vaccines. Finally, we developed and demonstrated proof-of-principle for an in vitro humoral immunoscreening assay for down-selection of novel target antigens. These data support the potential of a TAP approach for rapid high throughput functional screening and identification of potential candidate vaccine antigens from genomic sequence data.
Hashimoto, Y; Tanimoto, K; Ozawa, Y; Murata, T; Ike, Y
2000-04-15
The vancomycin-resistant enterococci GV1, GV2 and GV3, which were isolated from droppings from broiler farms in Japan have been characterized as VanA-type VRE, which express high-level vancomycin resistance (256 or 512 microg ml(-1), MIC) and low-level teicoplanin resistance (1 or 2 microg ml(-1), MIC). The vancomycin resistances were encoded on plasmids. The vancomycin resistance conjugative plasmid pMG2 was isolated from the GV2 strain. The VanA determinant of pMG2 showed the same genetic organization as that of the VanA genes encoded on the representative transposon Tn1546, which comprises vanRSHAXYZ. The nucleotide sequences of all the genes, except the gene related to the vanS gene on Tn1546, were completely identical to the genes encoded on Tn1546. Three amino acid substitutions in the N-terminal region of the deduced VanS were detected in the nucleotide sequence of vanS encoded on pMG2. There were also three amino acid substitutions in the vanS gene of the GV1 and GV3 strains in the same positions as in the vanS gene of pMG2. Vancomycin induced the increased teicoplanin resistance in these strains.
Modulation of ColE1-like Plasmid Replication for Recombinant Gene Expression
Camps, Manel
2010-01-01
ColE1-like plasmids constitute the most popular vectors for recombinant protein expression. ColE1 plasmid replication is tightly controlled by an antisense RNA mechanism that is highly dynamic, tuning plasmid metabolic burden to the physiological state of the host. Plasmid homeostasis is upset upon induction of recombinant protein expression because of non-physiological levels of expression and because of the frequently biased amino acid composition of recombinant proteins. Disregulation of plasmid replication is the main cause of collapse of plasmid-based expression systems because of a simultaneous increase in the metabolic burden (due to increased average copy number) and in the probability of generation of plasmid-free cells (due to increased copy number variation). Interference between regulatory elements of co-resident plasmids causes comparable effects on plasmid stability (plasmid incompatibility). Modulating plasmid copy number for recombinant gene expression aims at achieving a high gene dosage while preserving the stability of the expression system. Here I present strategies targeting plasmid replication for optimizing recombinant gene expression. Specifically, I review approaches aimed at modulating the antisense regulatory system (as well as their implications for plasmid incompatibility) and innovative strategies involving modulation of host factors, of R-loop formation, and of the timing of recombinant gene expression. PMID:20218961
Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli.
Yue, Chang-Wu; Zhang, Yi-Zheng
2009-03-01
A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded beta-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.
Top, E M; Maltseva, O V; Forney, L J
1996-01-01
The modular pathway for the metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) encoded on plasmid pJP4 of Alcaligenes eutrophus JMP134 appears to be an example in which two genes, tfdA and tfdB, have been recruited during the evolution of a catabolic pathway. The products of these genes act to convert 2,4-D to a chloro-substituted catechol that can be further metabolized by enzymes of a modified ortho-cleavage pathway encoded by tfdCDEF. Given that modified ortho-cleavage pathways are comparatively common and widely distributed among bacteria, we sought to determine if microbial populations in soil carry tfdA on plasmid vectors that lack tfdCDEF or tfdB. To capture such plasmids from soil populations, we used a recipient strain of A. eutrophus that was rifampin resistant and carried a derivative of plasmid pJP4 (called pBH501aE) in which the tfdA had been deleted. Upon mating with mixed bacterial populations from soil treated with 2,4-D, transconjugants that were resistant to rifampin yet able to grow on 2,4-D were obtained. Among the transconjugants obtained were clones that contained a ca. 75-kb plasmid, pEMT8. Bacterial hosts that carried this plasmid in addition to pBH501aE metabolized 2,4-D, whereas strains with only pEMT8 did not. Southern hybridization showed that pEMT8 encoded a gene with a low level of similarity to the tfdA gene from plasmid pJP4. Using oligonucleotide primers based on known tfdA sequences, we amplified a 330-bp fragment of the gene and determined that it was 77% similar to the tfdA gene of plasmid pJP4 and 94% similar to tfdA from Burkholderia sp. strain RASC. Plasmid pEMT8 lacked genes that exhibited significant levels of homology to tfdB and tfdCDEF. Moreover, cell extracts from A. eutrophus(pEMT8) cultures did not exhibit TfdB, TfdC, TfdD, and TfdE activities, whereas cell extracts from A. eutrophus(pEMT8)(pBH501aE) cultures did. These data suggest that pEMT8 encodes only tfdA and that this gene can effectively complement the tfdA deletion mutation of pBH501aE. PMID:8779586
Avila, D M; Robinson, A K; Kaushal, V; Barnes, L D
1991-01-01
The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product. PMID:1660456
Avila, D M; Robinson, A K; Kaushal, V; Barnes, L D
1991-12-01
The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product.
Nitric oxide synthase gene transfer for erectile dysfunction in a rat model.
Chancellor, M B; Tirney, S; Mattes, C E; Tzeng, E; Birder, L A; Kanai, A J; de Groat, W C; Huard, J; Yoshimura, N
2003-05-01
To determine whether over-expression of nitric oxide synthase (NOS) in the corpus cavernosum of the penis improves erectile function, as NO is an important transmitter for genitourinary tract function, mediating smooth muscle relaxation and being essential for penile erection. The inducible form of the enzyme NOS (iNOS) was introduced into the corpus cavernosum of adult Sprague-Dawley rats (250-300 g) by injecting a solution of plasmid, adenovirus or adenovirus-transduced myoblast cells (adeno-myoblasts). Plasmid, adenovirus and adeno-myoblasts encoding the expression of the beta-galactosidase reporter gene were also injected into rats. Throughout the corpora cavernosum there was expression of beta-galactosidase after injecting each of the three solutions. Maximum staining was greatest for adeno-myoblast, then adenovirus and then plasmid. The mean (sd) basal intracavernosal pressure (ICP) of iNOS-treated animals (adenovirus and adeno-myoblast) increased to 55 (23) cmH2O, compared with naive animals with a basal ICP of 5 (6) cmH2O (P = 0.001). Stimulating the cavernosal nerve (15 Hz, 1.5 ms, 10-40 V, 1 min) resulted in a doubling of the ICP (adenovirus and adeno-myoblast) from the basal level of the iNOS-treated animals. Direct in situ measurement of NO showed the release of 1-1.3 micro mol/L in the adeno-myoblast penis. Myoblast-mediated gene therapy was more successful for delivering iNOS into the corpus cavernosum than direct adenovirus injection or plasmid transfection. Surprisingly, implanting muscle cells into the penis is not only feasible but also beneficial. Gene therapy for NOS may open new avenues of treatment for erectile dysfunction. Control of NOS expression would be necessary to prevent priapism.
Controlling cell volume for efficient PHB production by Halomonas.
Jiang, Xiao-Ran; Yao, Zhi-Hao; Chen, Guo-Qiang
2017-11-01
Bacterial morphology is decided by cytoskeleton protein MreB and cell division protein FtsZ encoded by essential genes mreB and ftsZ, respectively. Inactivating mreB and ftsZ lead to increasing cell sizes and cell lengths, respectively, yet seriously reduce cell growth ability. Here we develop a temperature-responsible plasmid expression system for compensated expression of relevant gene(s) in mreB or ftsZ disrupted recombinants H. campaniensis LS21, allowing mreB or ftsZ disrupted recombinants to grow normally at 30°C in a bioreactor for 12h so that a certain cell density can be reached, followed by 36h cell size expansions or cell shape elongations at elevated 37°C at which the mreB and ftsZ encoded plasmid pTKmf failed to replicate in the recombinants and thus lost themselves. Finally, 80% PHB yield increase was achieved via controllable morphology manipulated H. campaniensis LS21. It is concluded that controllable expanding cell volumes (widths or lengths) provides more spaces for accumulating more inclusion body polyhydroxybutyrate (PHB) and the resulting cell gravity precipitation benefits the final separation of cells and product during downstream. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins
Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.
2016-01-01
Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422
A Cryptosporidium parvum genomic region encoding hemolytic activity.
Steele, M I; Kuhls, T L; Nida, K; Meka, C S; Halabi, I M; Mosier, D A; Elliott, W; Crawford, D L; Greenfield, R A
1995-01-01
Successful parasitization by Cryptosporidium parvum requires multiple disruptions in both host and protozoan cell membranes as cryptosporidial sporozoites invade intestinal epithelial cells and subsequently develop into asexual and sexual life stages. To identify cryptosporidial proteins which may play a role in these membrane alterations, hemolytic activity was used as a marker to screen a C. parvum genomic expression library. A stable hemolytic clone (H4) containing a 5.5-kb cryptosporidial genomic fragment was identified. The hemolytic activity encoded on H4 was mapped to a 1-kb region that contained a complete 690-bp open reading frame (hemA) ending in a common stop codon. A 21-kDa plasmid-encoded recombinant protein was expressed in maxicells containing H4. Subclones of H4 which contained only a portion of hemA did not induce hemolysis on blood agar or promote expression of the recombinant protein in maxicells. Reverse transcriptase-mediated PCR analysis of total RNA isolated from excysted sporozoites and the intestines of infected adult mice with severe combined immunodeficiency demonstrated that hemA is actively transcribed during the cryptosporidial life cycle. PMID:7558289
Clostridium perfringens type A–E toxin plasmids
Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.
2014-01-01
Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728
Molecular Characterization of Plasmid-Mediated Oxytetracycline Resistance in Aeromonas salmonicida
Adams, C. A.; Austin, B.; Meaden, P. G.; McIntosh, D.
1998-01-01
Using broth conjugation, we found that 19 of 29 (66%) oxytetracycline (OT)-resistant isolates of Aeromonas salmonicida transferred the OT resistance phenotype to Escherichia coli. The OT resistance phenotype was encoded by high-molecular-weight R-plasmids that were capable of transferring OT resistance to both environmental and clinical isolates of Aeromonas spp. The molecular basis for antibiotic resistance in OT-resistant isolates of A. salmonicida was determined. The OT resistance determinant from one plasmid (pASOT) of A. salmonicida was cloned and used in Southern blotting and hybridization experiments as a probe. The determinant was identified on a 5.4-kb EcoRI fragment on R-plasmids from the 19 OT-resistant isolates of A. salmonicida. Hybridization with plasmids encoding the five classes (classes A to E) of OT resistance determinants demonstrated that the OT resistance plasmids of the 19 A. salmonicida isolates carried the class A resistance determinant. Analysis of data generated from restriction enzyme digests showed that the OT resistance plasmids were not identical; three profiles were characterized, two of which showed a high degree of homology. PMID:9797265
Cui, Yanbing; Meng, Yiwei; Zhang, Juan; Cheng, Bin; Yin, Huijia; Gao, Chao; Xu, Ping; Yang, Chunyu
2017-01-01
In well-established heterologous hosts, such as Escherichia coli, recombinant proteins are usually intracellular and frequently found as inclusion bodies-especially proteins possessing high rare codon content. In this study, successful secretory expression of three hydrolases, in a constructed inducible or constitutive system, was achieved by fusion with a novel signal peptide (Kp-SP) from an actinomycete. The signal peptide efficiently enabled extracellular protein secretion and also contributed to the active expression of the intracellular recombinant proteins. The thermophilic α-amylase gene of Bacillus licheniformis was fused with Kp-SP. Both recombinants, carrying inducible and constitutive plasmids, showed remarkable increases in extracellular and intracellular amylolytic activity. Amylase activity was observed to be > 10-fold in recombinant cultures with the constitutive plasmid, pBSPPc, compared to that in recombinants lacking Kp-SP. Further, the signal peptide enabled efficient secretion of a thermophilic cellulase into the culture medium, as demonstrated by larger halo zones and increased enzymatic activities detected in both constructs from different plasmids. For heterologous proteins with a high proportion of rare codons, it is difficult to obtain high expression in E. coli owing to the codon bias. Here, the fusion of an archaeal homologue of the amylase encoding gene, FSA, with Kp-SP resulted in > 5-fold higher extracellular activity. The successful extracellular expression of the amylase indicated that the signal peptide also contributed significantly to its active expression and signified the potential value of this novel and versatile signal peptide in recombinant protein production. Copyright © 2016 Elsevier Inc. All rights reserved.
Touihri, Leila; Ahmed, Sami Belhaj; Chtourou, Yacine; Daoud, Rahma; Bahloul, Chokri
2012-12-27
During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an "Internal Ribosome Entry Site" (IRES) domain. The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient in the design of multivalent plasmids. In a single shot, the design of efficient multivalent plasmids will be very beneficial for DNA-based vaccination against numerous diseases.
Yin, Yajuan; Cao, Guangli; Xue, Renyu; Gong, Chengliang
2014-10-01
The Streptomyces bacteriophage, φC31, uses a site-specific integrase enzyme to perform efficient recombination. The recombination system uses specific sequences to integrate exogenous DNA from the phage into a host. The sequences are known as the attP site in the phage and the attB site in the host. The system can be used as a genetic manipulation tool. In this study it has been applied to the transformation of cultured BmN cells and the construction of transgenic Bombyx mori individuals. A plasmid, pSK-attB/Pie1-EGFP/Zeo-PASV40, containing a cassette designed to express a egfp-zeocin fusion gene, was co-transfected into cultured BmN cells with a helper plasmid, pSK-Pie1/NLS-Int/NSL. Expression of the egfp-zeocin fusion gene was driven by an ie-1 promoter, downstream of a φC31 attB site. The helper plasmid encoded the φC31 integrase enzyme, which was flanked by two nuclear localization signals. Expression of the egfp-zeocin fusion gene could be observed in transformed cells. The two plasmids were also transferred into silkworm eggs to obtain transgenic silkworms. Successful integration of the fusion gene was indicated by the detection of green fluorescence, which was emitted by the silkworms. Nucleotide sequence analysis demonstrated that the attB site had been cut, to allow recombination between the attB and endogenous pseudo attP sites in the cultured silkworm cells and silkworm individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Jiangmei; Dai Anlan; Laddy, Dominick J.
2009-10-10
Interleukin (IL)-15, is a cytokine that is important for the maintenance of long-lasting, high-avidity T cell response to invading pathogens and has, therefore, been used in vaccine and therapeutic platforms as an adjuvant. In addition to pure protein delivery, plasmids encoding the IL-15 gene have been utilized. However, it is critical to determine the appropriate dose to maximize the adjuvanting effects. We immunized rhesus macaques with different doses of IL-15 expressing plasmid in an influenza non-human primate immunogenicity model. We found that co-immunization of rhesus macaques with a Flu DNA-based vaccine and low doses of plasmid encoding macaque IL-15 enhancedmore » the production of IFN-gamma (0.5 mg) and the proliferation of CD4{sup +} and CD8{sup +} T cells, as well as T{sub CM} levels in proliferating CD8{sup +} T cells (0.25 mg). Whereas, high doses of IL-15 (4 mg) decrease the production of IFN-gamma and the proliferation of CD4{sup +} and CD8{sup +} T cells and T{sub CM} levels in the proliferating CD4{sup +} and CD8{sup +} T cells. In addition, the data of hemagglutination inhibition (HI) antibody titer suggest that although not significantly different, there appears to be a slight increase in antibodies at lower doses of IL-15. Importantly, however, the higher doses of IL-15 decrease the antibody levels significantly. This study demonstrates the importance of optimizing DNA-based cytokine adjuvants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori
Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellarmore » regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented Δ imcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. Lastly, these tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.« less
Folster, J. P.; Pecic, G.; Singh, A.; Duval, B.; Rickert, R.; Ayers, S.; Abbott, J.; McGlinchey, B.; Bauer-Turpin, J.; Haro, J.; Hise, K.; Zhao, S.; Fedorka-Cray, P. J.; Whichard, J.; McDermott, P. F.
2015-01-01
Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment and ceftriaxone, an extended-spectrum cephalosporin, is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in extended-spectrum cephalosporin (ESC) resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded blaCMY β-lactamase. In 2009, we identified 47 ESC resistant blaCMY-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of blaCMY, determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the blaCMY plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing. All 47 blaCMY genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred blaCMY associated resistance. Six were IncA/C plasmids that carried additional resistance genes. Plasmid multi-locus sequence typing (pMLST) of the IncI1-blaCMY plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among blaCMY-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of blaCMY on IncI1 and IncA/C plasmids in a variety of genetic backgrounds, and likely not the result of clonal expansion. PMID:22755514
Bryant, Kendall A.; Van Schooneveld, Trevor C.; Thapa, Ishwor; Bastola, Dhundy; Williams, Laurina O.; Safranek, Thomas J.; Hinrichs, Steven H.; Rupp, Mark E.
2013-01-01
We describe the transfer of blaKPC-4 from Enterobacter cloacae to Serratia marcescens in a single patient. DNA sequencing revealed that KPC-4 was encoded on an IncL/M plasmid, pNE1280, closely related to pCTX-M360. Further analysis found that KPC-4 was encoded within a novel Tn4401 element (Tn4401f) containing a truncated tnpA and lacking tnpR, ISKpn7 left, and Tn4401 IRL-1, which are conserved in other Tn4401 transposons. This study highlights the continued evolution of Tn4401 transposons and movement to multiple plasmid backbones that results in acquisition by multiple species of Gram-negative bacilli. PMID:23070154
Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A
1989-10-01
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.
A Shigella flexneri Virulence Plasmid Encoded Factor Controls Production of Outer Membrane Vesicles
Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R.
2014-01-01
Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474
Pinaud, Laurie; Ferrari, Mariana L.; Friedman, Robin; Jehmlich, Nico; von Bergen, Martin; Phalipon, Armelle; Sansonetti, Philippe J.
2017-01-01
Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed. PMID:29073283
Stibitz, S; Weiss, A A; Falkow, S
1988-01-01
The vir locus of Bordetella pertussis apparently encodes a trans-acting positive regulator that is required for the coordinate expression of genes associated with virulence: pertussis toxin, filamentous hemagglutinin (FHA), hemolysin, and adenylate cyclase toxin. DNA clones of vir and of genes required for the synthesis of some of the factors under vir control were obtained with DNA probes from the chromosomal DNA surrounding sites of Tn5 insertion mutations that inactivated those genes. Two vir clones were found which also contained genes required for the proper expression of FHA in B. pertussis. The plasmids which contained both the fha and vir genes expressed immunologically reactive FHA in Escherichia coli, as detected by colony blots, whereas plasmids which contained only fha or vir were negative in this assay. The regulation of FHA production in E. coli, as in B. pertussis, was temperature dependent and inhibited by high concentrations of either magnesium ions or nicotinic acid, indicating that the sequences cloned in E. coli contained the information required to preserve the physiological responses seen in B. pertussis. Further characterization of the vir-fha clones by Tn5 mutagenesis in E. coli and by the return of cloned sequences to B. pertussis in trans and to the B. pertussis chromosome led to the localization of the vir locus, the structural gene for FHA, and genes that are possibly required for the synthesis and export of FHA. Images PMID:2898470
Melman, A; Biggs, G; Davies, K; Zhao, W; Tar, M T; Christ, G J
2008-03-01
Previous reports have demonstrated that gene transfer with the alpha, or pore-forming, subunit of the human Maxi-K channel (hSlo) restores the decline in erectile capacity observed in established rat models of diabetes and aging. Preliminary data from a human clinical trial also showed safety and potential efficacy in 11 men treated with the same plasmid construct expressing the Maxi-K channel. In all instances, the original plasmid was driven by the heterologous cytomegalovirus promoter which is broadly active in a wide variety of cell and tissue types. To more precisely determine the contribution of the corporal myocyte to the observed physiological effects in vivo, we report here our initial work using a distinct vector (pSMAA-hSlo) in which hSlo gene expression was driven off the mouse smooth muscle alpha-actin (SMAA) promoter. Specifically, older rats, with diminished erectile capacity, were given a single intracorporal injection with either 100 mug pVAX-hSlo or 10, 100 or 1000 mug pSMAA-hSlo, or vector or vehicle alone. Significantly increased intracavernous pressure (ICP) responses to cavernous nerve stimulation were observed for all doses of both plasmids encoding hSlo, relative to control injections. These data confirm and extend previous observations to document that smooth muscle cell-specific expression of hSlo in corporal tissue is both necessary and sufficient to restore erectile function in aging rats.
Grass, Gregor; Fan, Bin; Rosen, Barry P.; Franke, Sylvia; Nies, Dietrich H.; Rensing, Christopher
2001-01-01
The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of 65Zn, suggesting ZitB-mediated efflux of zinc. PMID:11443104
Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold
2004-02-01
We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.
Börner, Kathleen; Niopek, Dominik; Cotugno, Gabriella; Kaldenbach, Michaela; Pankert, Teresa; Willemsen, Joschka; Zhang, Xian; Schürmann, Nina; Mockenhaupt, Stefan; Serva, Andrius; Hiet, Marie-Sophie; Wiedtke, Ellen; Castoldi, Mirco; Starkuviene, Vytaute; Erfle, Holger; Gilbert, Daniel F.; Bartenschlager, Ralf; Boutros, Michael; Binder, Marco; Streetz, Konrad; Kräusslich, Hans-Georg; Grimm, Dirk
2013-01-01
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems. PMID:24049077
Folster, J P; Pecic, G; Singh, A; Duval, B; Rickert, R; Ayers, S; Abbott, J; McGlinchey, B; Bauer-Turpin, J; Haro, J; Hise, K; Zhao, S; Fedorka-Cray, P J; Whichard, J; McDermott, P F
2012-07-01
Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment, and ceftriaxone, an extended-spectrum cephalosporin (ESC), is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in ESC resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded bla(CMY) β-lactamase. In 2009, we identified 47 ESC-resistant bla(CMY)-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of bla(CMY), determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the bla(CMY) plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing (pMLST). All 47 bla(CMY) genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred bla(CMY)-associated resistance. Six were IncA/C plasmids that carried additional resistance genes. pMLST of the IncI1-bla(CMY) plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among bla(CMY)-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of bla(CMY) on IncI1 and IncA/C plasmids in a variety of genetic backgrounds, and is likely not the result of clonal expansion.
Lucas, Carolina Gonçalves de Oliveira; Rigato, Paula Ordonhez; Gonçalves, Jorge Luiz Santos; Sato, Maria Notomi; Maciel, Milton; Peçanha, Ligia Maria Torres; August, J. Thomas; de Azevedo Marques, Ernesto Torres; de Arruda, Luciana Barros
2014-01-01
We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field. PMID:24932692
Antigen-specific CD8{sup +} T cells induced by the ubiquitin fusion degradation pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, Takashi; Duan Xuefeng; Hisaeda, Hajime
We have developed a DNA vaccine encoding a fusion protein of ubiquitin (Ub) and target proteins at the N-terminus for effective induction of antigen-specific CD8{sup +} T cells. A series of expression plasmids encoding a model antigen, ovalbumin (OVA), fused with mutated Ub, was constructed. Western blotting analyses using COS7 cells transfected with these plasmids revealed that there were three types of amino acid causing different binding capacities between Ub and OVA. Natural Ub with a C-terminal glycine readily dissociated from OVA; on the other hand, artificially mutated Ub, the C-terminal amino acid of which had been exchanged to valinemore » or arginine, stably united with the polypeptide, while Ub with a C-terminal alanine partially dissociated. The ability of DNA vaccination to induce OVA-specific CD8{sup +} T cells closely correlated with the stability of Ub fusion to OVA. Our strategy could be used to optimize the effect of genetic vaccines on the induction of CD8{sup +} T cells.« less
O'Brien, Frances G.; Yui Eto, Karina; Murphy, Riley J. T.; Fairhurst, Heather M.; Coombs, Geoffrey W.; Grubb, Warren B.; Ramsay, Joshua P.
2015-01-01
Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus. PMID:26243776
Zhao, Qi; Li, Tao; Qi, Jianni; Liu, Juan; Qin, Chengyong
2014-01-01
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a poor prognosis, and monitoring sera levels of miR-545/374a may be a useful diagnostic marker for HCC. PMID:25299640
Valdivia, R H; Wang, L; Winans, S C
1991-01-01
Neoplastic crown gall tumors incited by Agrobacterium tumefaciens release novel amino acid or sugar derivatives known as opines, whose synthesis is directed by genes transferred to plant cells. Agrobacterium cells can transport and catabolize these compounds as sources of carbon and nitrogen. This article describes a region of the pTiA6 plasmid which is required for catabolism of the opine octopine and whose transcription is induced by octopine. This region of the plasmid contains four open reading frames, occQ, occM, occP, and occJ, which show homology to the family of so-called shock-sensitive permeases. TnphoA mutagenesis demonstrated that the OccJ and OccM proteins lie fully or partly in the periplasmic space. The OccJ protein was identified by electrophoresis and found to be fully localized in the periplasmic space. When these proteins were expressed in Escherichia coli, radiolabeled octopine became cell-associated. Images FIG. 6 PMID:1655707
Hirota, Ryuichi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao; Kato, Junichi
2006-08-01
The nitrifying bacterium Nitrosomonas sp. strain ENI-11 has three copies of the gene encoding hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)) on its genome. Broad-host-range reporter plasmids containing transcriptional fusion genes between hao copies and lacZ were constructed to analyze the expression of each hydroxylamine oxidoreductase gene (hao) copy individually and quantitatively. beta-Galactosidase assays of ENI-11 harboring reporter plasmids revealed that all hao copies were transcribed in the wild-type strain. Promoter analysis of hao copies revealed that transcription of hao(3) was highest among the hao copies. Expression levels of hao(1) and hao(2) were 40% and 62% of that of hao(3) respectively. Transcription of hao(1) was negatively regulated, whereas a portion of hao(3) transcription was read through transcription from the rpsT promoter. When energy-depleted cells were incubated in the growth medium, only hao(3) expression increased. This result suggests that it is hao(3) that is responsible for recovery from energy-depleted conditions in Nitrosomonas sp. strain ENI-11.
Repression of small toxic protein synthesis by the Sib and OhsC small RNAs
Fozo, Elizabeth M.; Kawano, Mitsuoki; Fontaine, Fanette; Kaya, Yusuf; Mendieta, Kathy S.; Jones, Kristi L.; Ocampo, Alejandro; Rudd, Kenneth E.; Storz, Gisela
2008-01-01
Summary The sequences encoding the QUAD1 RNAs were initially identified as four repeats in Escherichia coli. These repeats, herein renamed SIB, are conserved in closely related bacteria, though the number of repeats varies. All five Sib RNAs in E. coli MG1655 are expressed, and no phenotype was observed for a five sib deletion strain. However, a phenotype reminiscent of plasmid addiction was observed for overexpression of the Sib RNAs, and further examination of the SIB repeat sequences revealed conserved open reading frames encoding highly hydrophobic 18–19 amino acid proteins (Ibs) opposite each sib gene. The Ibs proteins were found to be toxic when overexpressed and this toxicity could be prevented by co-expression of the corresponding Sib RNA. Two other RNAs encoded divergently in the yfhL-acpS intergenic region were similarly found to encode a small hydrophobic protein (ShoB) and an antisense RNA regulator (OhsC). Overexpression of both IbsC and ShoB led to immediate changes in membrane potential suggesting both proteins affect the cell envelope. Whole genome expression analysis showed that overexpression of IbsC and ShoB, as well as the small hydrophobic LdrD and TisB proteins, has both overlapping and unique consequences for the cell. PMID:18710431
Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M
2003-05-01
Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.
Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water.
Caldwell, B A; Ye, C; Griffiths, R P; Moyer, C L; Morita, R Y
1989-01-01
Strains of enteric bacteria and pseudomonads containing plasmid R388::Tnl721 (Tpr, Tcr) or pRO101 (Hgr, Tcr) were starved for over 250 days in sterile well water to evaluate effects of starvation-survival on plasmid expression and maintenance. Viable populations dropped to between approximately 0.1 and 1% of the initial populations. Escherichia coli(pRO101) and Pseudomonas cepacia(pRO101) lost both viability and plasmid expression at a lower rate than strains containing R388::Tnl721. Three patterns of host-plasmid interaction were detected: (i) no apparent loss of plasmid expression, (ii) loss of plasmid expression on initial recovery with subsequent expression upon resuscitation, and (iii) loss of capability to produce functional plasmid resistance. PMID:2782868
Genomics of high molecular weight plasmids isolated from an on-farm biopurification system.
Martini, María C; Wibberg, Daniel; Lozano, Mauricio; Torres Tejerizo, Gonzalo; Albicoro, Francisco J; Jaenicke, Sebastian; van Elsas, Jan Dirk; Petroni, Alejandro; Garcillán-Barcia, M Pilar; de la Cruz, Fernando; Schlüter, Andreas; Pühler, Alfred; Pistorio, Mariano; Lagares, Antonio; Del Papa, María F
2016-06-20
The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.
Börjesson, Stefan; Ny, Sofia; Egervärn, Maria; Bergström, Jakob; Rosengren, Åsa; Englund, Stina; Löfmark, Sonja; Byfors, Sara
2016-04-01
Extended-spectrum β-lactamase (ESBL)- and plasmid-encoded ampC (pAmpC)-producing Enterobacteriaceae might spread from farm animals to humans through food. However, most studies have been limited in number of isolates tested and areas studied. We examined genetic relatedness of 716 isolates from 4,854 samples collected from humans, farm animals, and foods in Sweden to determine whether foods and farm animals might act as reservoirs and dissemination routes for ESBL/pAmpC-producing Escherichia coli. Results showed that clonal spread to humans appears unlikely. However, we found limited dissemination of genes encoding ESBL/pAmpC and plasmids carrying these genes from foods and farm animals to healthy humans and patients. Poultry and chicken meat might be a reservoir and dissemination route to humans. Although we found no evidence of clonal spread of ESBL/pAmpC-producing E. coli from farm animals or foods to humans, ESBL/pAmpC-producing E. coli with identical genes and plasmids were present in farm animals, foods, and humans.
Fekete, Péter Z; Brzuszkiewicz, Elzbieta; Blum-Oehler, Gabriele; Olasz, Ferenc; Szabó, Mónika; Gottschalk, Gerhard; Hacker, Jörg; Nagy, Béla
2012-01-01
In this study the plasmid pTC, a 90 kb self-conjugative virulence plasmid of the porcine enterotoxigenic Escherichia coli (ETEC) strain EC2173 encoding the STa and STb heat-stable enterotoxins and tetracycline resistance, has been sequenced in two steps. As a result we identified five main distinct regions of pTC: (i) the maintenance region responsible for the extreme stability of the plasmid, (ii) the TSL (toxin-specific locus comprising the estA and estB genes) which is unique and characteristic for pTC, (iii) a Tn10 transposon, encoding tetracycline resistance, (iv) the tra (plasmid transfer) region, and (v) the colE1-like origin of replication. It is concluded that pTC is a self-transmissible composite plasmid harbouring antibiotic resistance and virulence genes. pTC belongs to a group of large conjugative E. coli plasmids represented by NR1 with a widespread tra backbone which might have evolved from a common ancestor. This is the first report of a completely sequenced animal ETEC virulence plasmid containing an antimicrobial resistance locus, thereby representing a selection advantage for spread of pathogenicity in the presence of antimicrobials leading to increased disease potential. Copyright © 2011. Published by Elsevier GmbH.
Lorenzo-Díaz, Fabián; Fernández-López, Cris; Lurz, Rudi
2017-01-01
Abstract Horizontal gene transfer is a key process in the evolution of bacteria and also represents a source of genetic variation in eukaryotes. Among elements participating in gene transfer, thousands of small (<10 kb) mobile bacterial plasmids that replicate by the rolling circle mechanism represent a driving force in the spread of antibiotic resistances. In general, these plasmids are built as genetic modules that encode a replicase, an antibiotic-resistance determinant, and a relaxase that participates in their conjugative mobilization. Further, they control their relatively high copy number (∼30 copies per genome equivalent) by antisense RNAs alone or combined with a repressor protein. We report here that the MobM conjugative relaxase encoded by the promiscuous plasmid pMV158 participates in regulation of the plasmid copy number by transcriptional repression of the antisense RNA, thus increasing the number of plasmid molecules ready to be horizontally transferred (mobilization) and/or vertically inherited (replication). This type of crosstalk between genetic modules involved in vertical and horizontal gene flow has not been reported before. PMID:28525572
The Tcp conjugation system of Clostridium perfringens.
Wisniewski, Jessica A; Rood, Julian I
2017-05-01
The Gram-positive pathogen Clostridium perfringens possesses a family of large conjugative plasmids that is typified by the tetracycline resistance plasmid pCW3. Since these plasmids may carry antibiotic resistance genes or genes encoding extracellular or sporulation-associated toxins, the conjugative transfer of these plasmids appears to be important for the epidemiology of C. perfringens-mediated diseases. Sequence analysis of members of this plasmid family identified a highly conserved 35kb region that encodes proteins with various functions, including plasmid replication and partitioning. The tcp conjugation locus also was identified in this region, initially based on low-level amino acid sequence identity to conjugation proteins from the integrative conjugative element Tn916. Genetic studies confirmed that the tcp locus is required for conjugative transfer and combined with biochemical and structural analyses have led to the development of a functional model of the Tcp conjugation apparatus. This review summarises our current understanding of the Tcp conjugation system, which is now one of the best-characterized conjugation systems in Gram-positive bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of Corynebacteria.
Oram, Mark; Woolston, Joelle E; Jacobson, Andrew D; Holmes, Randall K; Oram, Diana M
2007-04-15
In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as beta. beta-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally encoded genes, is regulated by the DtxR protein in response to Fe(2+) levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the beta-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae DeltadtxR strain. Additionally, strains of beta-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for beta, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species.
Shang, Yonglei; Tesar, Devin; Hötzel, Isidro
2015-10-01
A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Use of the alr gene as a food-grade selection marker in lactic acid bacteria.
Bron, Peter A; Benchimol, Marcos G; Lambert, Jolanda; Palumbo, Emmanuelle; Deghorain, Marie; Delcour, Jean; De Vos, Willem M; Kleerebezem, Michiel; Hols, Pascal
2002-11-01
Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Deltaalr) showed auxotrophy for D-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented D-alanine auxotrophy in the L. plantarum Deltaalr and L. lactis Deltaalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to D-cycloserine, a competitive inhibitor of Alr (600 and 200 micro g/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that D-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Deltaalr. The resulting strain could grow in the absence of D-alanine only when expression of the alr gene was induced with nisin.
Antitumoral effect of IL-12 gene transfected via liposomes into B16F0 cells.
Speroni, Lucía; Gasparri, Julieta; de los A Bustuoabad, Victoria; Chiaramoni, Nadia S; Smagur, Andrzej; Szala, Stanisław; Taira, María C; del V Alonso, Silvia
2009-01-01
Murine melanoma B16F0 cells were transfected with SA:DPPC:DOPE (2:1:1 molar ratio) liposomes associated with a plasmid encoding murine IL-12. Stearylamine, a cationic lipid, showed a greater transfection efficiency compared to DOTAP-containing liposomes. The lipid:DNA ratio was 2:1 (w/w). Control groups were mock transfected or transfected with an empty plasmid (pNeo). pNeo or IL-12 transfected cells and controls were inoculated intradermically into the dorsal region of the foot or the lateral flank of C57BL6 mice. Results showed that IL-12 expression had a marked effect on in vivo growth of B16 melanoma tumors developed in both anatomic sites, significantly retarding their growth and prolonging host survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodyer, P.R.; Torban, E.; Dehbi, M.
1994-09-01
The Wilms` tumor gene encodes a 47-49 kDa transcription factor expressed in kidney, gonads and mesothelium during embryogenesis. Inherited mutations of WT1 lead to aberrant urogenital development and Wilms` tumor, but the role of WT1 in development is not fully understood. Since the human RAR-{alpha} gene contains a potential WT1 binding site at its 5{prime} end, we studied the effect of WT1 co-transfection on expression of an RAR-{alpha} promoter/CAT reporter construct in COS cells. COS cells were plated at 5X10{sup 5} cells/dish in DMEM with 10% FBS and transfected by the Ca/PO4 method with an expression plasmid containing the full-lengthmore » WT1 (-/-) cDNA under the control of the CMV promoter, plasmid containing the RAR-{alpha} promoter (-519 to +36)/CAT reporter and TK/growth hormone plasmid to control for efficiency of transfection. CAT/GH activity at 48 hours was inhibited by co-transfection with increasing amounts of WT1 (-/-); maximum inhibition = 5% of control. WT1 co-transfection did not affect expression of TKGH, nor of a CMV-CAT vector. Expression of WT1 protein in tranfected COS cells was demonstrated by Western blotting. Minimal inhibiton of RAR-{alpha}/CAT activity was seen when cells were co-transfected with vectors containing WT1 deletion mutants, alternate WT1 splicing variants, or WT1 (-/-) cDNA bearing a mutation identified in a patient with Drash syndrome. Gel shift assays indicated binding of WT1 to RAR-{alpha} cDNA but not to an RAR-{alpha} deletion mutant lacking the GCGGGGGGCG site. These observations suggest that WT1 may function to regulate RAR-{alpha} expression during normal development.« less
Heterologous Expression of Gene of Interest Using the Marine Protozoan Perkinsus marinus
NASA Astrophysics Data System (ADS)
Cold, E. R.
2016-02-01
Perkinsus marinus is a marine protozoan parasite that causes "Dermo" disease in eastern oysters (Crassostrea virginica). P. marinus is closely related to Plasmodium falciparum which causes malaria. A recent study has showed that P. marinus causes no pathology damage but an immune response in humanized mouse, providing the bases for a genetically modified P. marinus expressing Plasmodium genes to be used as a vaccination delivery system for malaria and other pathogenic diseases. A modified plasmid vector (pMOE-GFP) based on highly expressed gene tagged with green fluorescence protein and targeted to P. marinus cell wall was used to clone MSP8 and HAP2. MSP8 encodes for merozoite surface in P. falciparum and HAP2 is essential for fusion of male and female gametes; genetic disruption of the HAP2 locus revealed that parasite fertilization is prevented. Using electroporation, MSP8 and HAP2 plasmid were introduced into the P. marinus trophozoites. As controls pMOE-GFP was transfected into P. mediterraneus, P. atlanticus and P. chesapeaki. Transfection conditions included 5x107 Perkinsus trophozoites and 10 µg of plasmid using Nucleofector® technology (D-023 program). The cells were recovered in 3 mL of Perkinsus culture media and transfected trophozoites were examined for green fluorescence. To facilitate subcloning of cells expressing GFP, we optimized a DME: HAM's F12 -5% FBS -containing agar solid medium for plating Perkinsus. Examination of all transfected cells indicates expression of both MSP8 and HAP2. This is the first time that genes of a protozoan parasite have been expressed in a marine protozoan. It was also concluded that P. mediterraneus, P. atlanticus and P. chesapeaki were stable mutation and can be isolated for further research.
CrpP Is a Novel Ciprofloxacin-Modifying Enzyme Encoded by the Pseudomonas aeruginosa pUM505 Plasmid.
Chávez-Jacobo, Víctor M; Hernández-Ramírez, Karen C; Romo-Rodríguez, Pamela; Pérez-Gallardo, Rocío Viridiana; Campos-García, Jesús; Gutiérrez-Corona, J Félix; García-Merinos, Juan Pablo; Meza-Carmen, Víctor; Silva-Sánchez, Jesús; Ramírez-Díaz, Martha I
2018-06-01
The pUM505 plasmid, isolated from a clinical Pseudomonas aeruginosa isolate, confers resistance to ciprofloxacin (CIP) when transferred into the standard P. aeruginosa strain PAO1. CIP is an antibiotic of the quinolone family that is used to treat P. aeruginosa infections. In silico analysis, performed to identify CIP resistance genes, revealed that the 65-amino-acid product encoded by the orf131 gene in pUM505 displays 40% amino acid identity to the Mycobacterium smegmatis aminoglycoside phosphotransferase (an enzyme that phosphorylates and inactivates aminoglycoside antibiotics). We cloned orf131 (renamed crpP , for c iprofloxacin r esistance p rotein, p lasmid encoded) into the pUCP20 shuttle vector. The resulting recombinant plasmid, pUC- crpP , conferred resistance to CIP on Escherichia coli strain J53-3, suggesting that this gene encodes a protein involved in CIP resistance. Using coupled enzymatic analysis, we determined that the activity of CrpP on CIP is ATP dependent, while little activity against norfloxacin was detected, suggesting that CIP may undergo phosphorylation. Using a recombinant His-tagged CrpP protein and liquid chromatography-tandem mass spectrometry, we also showed that CIP was phosphorylated prior to its degradation. Thus, our findings demonstrate that CrpP, encoded on the pUM505 plasmid, represents a new mechanism of CIP resistance in P. aeruginosa , which involves phosphorylation of the antibiotic. Copyright © 2018 American Society for Microbiology.
Singer, John T; Phennicie, Ryan T; Sullivan, Matthew J; Porter, Laura A; Shaffer, Valerie J; Kim, Carol H
2010-06-01
To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-beta-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacI(q) carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen.
Muraki, Yasushi; Washioka, Hiroshi; Sugawara, Kanetsu; Matsuzaki, Yoko; Takashita, Emi; Hongo, Seiji
2004-07-01
Influenza C virus-like particles (VLPs) have been generated from cloned cDNAs. A cDNA of the green fluorescent protein (GFP) gene in antisense orientation was flanked by the 5' and 3' non-coding regions of RNA segment 5 of the influenza C virus. The cDNA cassette was inserted between an RNA polymerase I promoter and terminator of the Pol I vector. This plasmid DNA was transfected into 293T cells together with plasmids encoding virus proteins of C/Ann Arbor/1/50 or C/Yamagata/1/88. Transfer of the supernatants of the transfected 293T cells to HMV-II cells resulted in GFP expression in the HMV-II cells. The quantification of the GFP-positive HMV-II cells indicated the presence of approximately 10(6) VLPs (ml supernatant)(-1). Cords 50-300 microm in length were observed on transfected 293T cells, although the cords were not observed when the plasmid for M1 protein of C/Ann Arbor/1/50 was replaced with that of C/Taylor/1233/47. A series of transfection experiments with plasmids encoding M1 mutants of C/Ann Arbor/1/50 or C/Taylor/1233/47 showed that an amino acid at residue 24 of the M1 protein is responsible for cord formation. This finding provides direct evidence for a previous hypothesis that M1 protein is involved in the formation of cord-like structures protruding from the C/Yamagata/1/88-infected cells. Evidence was obtained by electron microscopy that transfected cells bearing cords produced filamentous VLPs, suggesting the potential role of the M1 protein in determining the filamentous/spherical morphology of influenza C virus.
Complete Sequence and Molecular Epidemiology of IncK Epidemic Plasmid Encoding blaCTX-M-14
Cottell, Jennifer L.; Webber, Mark A.; Coldham, Nick G.; Taylor, Dafydd L.; Cerdeño-Tárraga, Anna M.; Hauser, Heidi; Thomson, Nicholas R.; Woodward, Martin J.
2011-01-01
Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to β-lactam antimicrobial drugs, mediated by production of extended-spectrum β-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, blaCTX-M-14. From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals. PMID:21470454
Dahl, Lotte; Jensen, Trine Hammer; Gottschalck, Elisabeth; Karlskov-Mortensen, Peter; Jensen, Tove Dannemann; Nielsen, Line; Andersen, Mads Klindt; Buckland, Robin; Wild, T Fabian; Blixenkrone-Møller, Merete
2004-09-09
We have investigated the protective effect of immunization of a highly susceptible natural host of canine distemper virus (CDV) with DNA plasmids encoding the viral nucleoprotein (N) and hemagglutinin (H). The combined intradermal and intramuscular routes of immunization elicited high virus-neutralizing serum antibody titres in mink (Mustela vison). To mimic natural exposure, we also conducted challenge infection by horizontal transmission from infected contact animals. Other groups received a lethal challenge infection by administration to the mucosae of the respiratory tract and into the muscle. One of the mink vaccinated with N plasmid alone developed severe disease after challenge. In contrast, vaccination with the H plasmid together with the N plasmid conferred solid protection against disease and we were unable to detect CDV infection in PBMCs or in different tissues after challenge. Our findings show that DNA immunization by the combined intradermal and intramuscular routes can confer solid protective immunity against naturally transmitted morbillivirus infection and disease.
Ultrasound-targeted hepatic delivery of factor IX in hemophiliac mice.
Anderson, C D; Moisyadi, S; Avelar, A; Walton, C B; Shohet, R V
2016-06-01
Ultrasound-targeted microbubble destruction (UTMD) was used to direct the delivery of plasmid and transposase-based vectors encoding human factor IX (hFIX) to the livers of hemophilia B (FIX-/-) mice. The DNA vectors were incorporated into cationic lipid microbubbles, injected intravenously, and transfected into hepatocytes by acoustic cavitation of the bubbles as they transited the liver. Ultrasound parameters were identified that produced transfection of hepatocytes in vivo without substantial damage or bleeding in the livers of the FIX-deficient mice. These mice were treated with a conventional expression plasmid, or one containing a piggyBac transposon construct, and hFIX levels in the plasma and liver were evaluated at multiple time points after UTMD. We detected hFIX in the plasma by western blotting from mice treated with either plasmid during the 12 days after UTMD, and in the hepatocytes of treated livers by immunofluorescence. Reductions in clotting time and improvements in the percentage of FIX activity were observed for both plasmids, conventional (4.15±1.98%), and transposon based (2.70±.75%), 4 to 5 days after UTMD compared with untreated FIX (-/-) control mice (0.92±0.78%) (P=0.001 and P=0.012, respectively). Reduced clotting times persisted for both plasmids 12 days after treatment (reflecting percentage FIX activity of 3.12±1.56%, P=0.02 and 3.08±0.10%, P=0.001, respectively). Clotting times from an additional set of mice treated with pmGENIE3-hFIX were evaluated for long-term effects and demonstrated a persistent reduction in average clotting time 160 days after a single treatment. These data suggest that UTMD could be a minimally invasive, nonviral approach to enhance hepatic FIX expression in patients with hemophilia.
Neomycin resistance as a selectable marker in Methanococcus maripaludis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argyle, J.L.; Leigh, J.A.; Tumbula, D.L.
1996-11-01
The authors cloned the aminoglycoside phosphotransferase genes APH3{prime}I and APH3{prime}II between the Methanococcus voltae methyl reductase promoter and terminator in a plasmid containing a fragment of Methanococcus maripaludis chromosomal DNA. The resulting plasmids encoding neomycin resistance transformed M. maripaludis at frequencies similar to those observed for pKAS102 encoding puromycin resistance. The antibiotic geneticin was not inhibitory to M. maripaludis. 22 refs., 3 figs., 3 tabs.
Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae
Lacks, Sanford A.
1990-01-01
Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.
Agrobacterium-mediated transformation of lipomyces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Ziyu; Magnuson, Jon K.; Deng, Shuang
This disclosure provides Agrobacterium-mediated transformation methods for the oil-producing (oleaginous) yeast Lipomyces sp., as well as yeast produced by the method. Such methods utilize Agrobacterium sp. cells that have a T-DNA binary plasmid, wherein the T-DNA binary plasmid comprises a first nucleic acid molecule encoding a first protein and a second nucleic acid molecule encoding a selective marker that permits growth of transformed Lipomyces sp. cells in selective culture media comprising an antibiotic.
Survey of Navy Funded Marine Mammal Research and Studies FY 00-01
2001-05-10
protein of canine distemper virus as a reporter system in order to evaluate 103 the humoral response to DNA-mediated vaccination in cetaceans. If...PCR/ RT PCR, DNA cloning and sequencing, etc. Efforts are ongoing to design and clone a vector encoding Canine Distemper Virus, a virus closely...alternative plasmid as our reporter gene delivery vector. This alternate plasmid will encode for Canine Distemper virus genes, closely related to
Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae
Lacks, S.A.
1990-10-02
Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.
Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR.
Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz
2017-01-01
Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future.
Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR
Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz
2017-01-01
Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future. PMID:28085908
Li, Hedan; Zhang, Lirong; Guo, Wei; Xu, Daqing
2016-12-01
Gene disruption and replacement in Corynebacterium glutamicum is dependent upon a high transformation efficiency. The cglIR-cgIIR restriction system is a major barrier to introduction of foreign DNA into Corynebacterium glutamicum cells. To improve the transformation efficiency of C. glutamicum, the cglIM gene encoding methyltransferase in the cglIR-cglIIR-cglIM restriction-modification system of C. glutamicum ATCC 13032 was chromosomally integrated and expressed in Escherichia coli, resulting in an engineered strain E. coli AU1. The electro-transformation experiments of C. glutamicum ATCC 13032 with the E. coli-C. glutamicum shuttle plasmid pAU4 showed that the transformation efficiency of C. glutamicum with pAU4 DNA extracted from E. coli TG1/pAU4 was 1.80±0.21×10 2 cfu/μg plasmid DNA, while using pAU4 DNA extracted from E. coli AU1/pAU4, the transformation efficiency reached up to 5.22±0.33×10 6 cfu/μg plasmid DNA. The results demonstrated that E. coli AU1 is able to confer the cglIM-specific DNA methylation pattern to its resident plasmid, which makes the plasmid resistant to the cglIR-cglIIR restriction and efficiently transferred into C. glutamicum. E. coli AU1 is a useful intermediate host for efficient transformation of C. glutamicum. Copyright © 2016. Published by Elsevier B.V.
Replicon typing of plasmids encoding resistance to newer beta-lactams.
Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria
2006-07-01
Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems.
Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D
2007-04-01
Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.
Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii.
Lee, Song F; Li, Yi-Jing; Halperin, Scott A
2009-11-01
One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.
Use of a bacterial expression vector to map the varicella-zoster virus major glycoprotein gene, gC.
Ellis, R W; Keller, P M; Lowe, R S; Zivin, R A
1985-01-01
The genome of varicella-zoster virus (VZV) encodes at least three major glycoprotein genes. Among viral gene products, the gC gene products are the most abundant glycoproteins and induce a substantial humoral immune response (Keller et al., J. Virol. 52:293-297, 1984). We utilized two independent approaches to map the gC gene. Small fragments of randomly digested VZV DNA were inserted into a bacterial expression vector. Bacterial colonies transformed by this vector library were screened serologically for antigen expression with monoclonal antibodies to gC. Hybridization of the plasmid DNA from a gC antigen-positive clone revealed homology to the 3' end of the VZV Us segment. In addition, mRNA from VZV-infected cells was hybrid selected by a set of VZV DNA recombinant plasmids and translated in vitro, and polypeptide products were immunoprecipitated by convalescent zoster serum or by monoclonal antibodies to gC. This analysis revealed that the mRNA encoding a 70,000-dalton polypeptide precipitable by anti-gC antibodies mapped to the HindIII C fragment, which circumscribes the entire Us region. We conclude that the VZV gC glycoprotein gene maps to the 3' end of the Us region and is expressed as a 70,000-dalton primary translational product. These results are consistent with the recently reported DNA sequence of Us (A.J. Davison, EMBO J. 2:2203-2209, 1983). Furthermore, glycosylation appears not to be required for a predominant portion of the antigenicity of gC glycoproteins. We also report the tentative map assignments for eight other VZV primary translational products. Images PMID:2981365
Nishida, Takashi; Watanabe, Kenta; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa
2017-03-01
In this study, a cryptic plasmid pOfk55 from Legionella pneumophila was isolated and characterized. pOfk55 comprised 2584bp with a GC content of 37.3% and contained three putative open reading frames (ORFs). orf1 encoded a protein of 195 amino acids and the putative protein shared 39% sequence identity with a putative plasmid replication protein RepL. ORF1 was needed for replication in L. pneumophila but pOfk55 did not replicate in Escherichia coli. orf2 and orf3 encoded putative hypothetical proteins of 114 amino acids and 78 amino acids, respectively, but the functions of the putative proteins ORF2 and OFR3 are not clear. The transfer mechanism for pOfk55 was independent on the type IVB secretion system in the original host. A L. pneumophila-E. coli shuttle vector, pNT562 (5058bp, Km R ), was constructed by In-Fusion Cloning of pOfk55 with a kanamycin-resistance gene from pUTmini-Tn5Km and the origin of replication from pBluescript SK(+) (pNT561). Multiple cloning sites from pBluescript SK(+) as well as the tac promoter region and lacI gene from pAM239-GFP were inserted into pNT561 to construct pNT562. The transformation efficiency of pNT562 in L. pneumophila strains ranged from 1.6×10 1 to 1.0×10 5 CFU/ng. The relative number of pNT562 was estimated at 5.7±1.0 copies and 73.6% of cells maintained the plasmid after 1week in liquid culture without kanamycin. A green fluorescent protein (GFP) expression vector, pNT563, was constructed by ligating pNT562 with the gfpmut3 gene from pAM239-GFP. pNT563 was introduced into L. pneumophila Lp02 and E. coli DH5α, and both strains expressed GFP successfully. These results suggest that the shuttle vector is useful for genetic studies in L. pneumophila. Copyright © 2017 Elsevier Inc. All rights reserved.
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset, Trygve; Jakobsen M, Øyvind M; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E
2004-03-01
Bacillus methanolicus can efficiently utilize methanol as a sole carbon source and has an optimum growth temperature of 50 degrees C. With the exception of mannitol, no sugars have been reported to support rapid growth of this organism, which is classified as a restrictive methylotroph. Here we describe the DNA sequence and characterization of a 19,167-bp circular plasmid, designated pBM19, isolated from B. methanolicus MGA3. Sequence analysis of pBM19 demonstrated the presence of the methanol dehydrogenase gene, mdh, which is crucial for methanol consumption in this bacterium. In addition, five genes (pfk, encoding phosphofructokinase; rpe, encoding ribulose-5-phosphate 3-epimerase; tkt, encoding transketolase; glpX, encoding fructose-1,6-bisphosphatase; and fba, encoding fructose-1,6-bisphosphate aldolase) with deduced roles in methanol assimilation via the ribulose monophosphate pathway are encoded by pBM19. A shuttle vector, pTB1.9, harboring the pBM19 minimal replicon (repB and ori) was constructed and used to transform MGA3. Analysis of the resulting recombinant strain demonstrated that it was cured of pBM19 and was not able to grow on methanol. A pTB1.9 derivative harboring the complete mdh gene could not restore growth on methanol when it was introduced into the pBM19-cured strain, suggesting that additional pBM19 genes are required for consumption of this carbon source. Screening of 13 thermotolerant B. methanolicus wild-type strains showed that they all harbor plasmids similar to pBM19, and this is the first report describing plasmid-linked methylotrophy in any microorganism. Our findings should have an effect on future genetic manipulations of this organism, and they contribute to a new understanding of the biology of methylotrophs.
Plasmid-Dependent Methylotrophy in Thermotolerant Bacillus methanolicus
Brautaset, Trygve; Jakobsen, Øyvind M.; Flickinger, Michael C.; Valla, Svein; Ellingsen, Trond E.
2004-01-01
Bacillus methanolicus can efficiently utilize methanol as a sole carbon source and has an optimum growth temperature of 50°C. With the exception of mannitol, no sugars have been reported to support rapid growth of this organism, which is classified as a restrictive methylotroph. Here we describe the DNA sequence and characterization of a 19,167-bp circular plasmid, designated pBM19, isolated from B. methanolicus MGA3. Sequence analysis of pBM19 demonstrated the presence of the methanol dehydrogenase gene, mdh, which is crucial for methanol consumption in this bacterium. In addition, five genes (pfk, encoding phosphofructokinase; rpe, encoding ribulose-5-phosphate 3-epimerase; tkt, encoding transketolase; glpX, encoding fructose-1,6-bisphosphatase; and fba, encoding fructose-1,6-bisphosphate aldolase) with deduced roles in methanol assimilation via the ribulose monophosphate pathway are encoded by pBM19. A shuttle vector, pTB1.9, harboring the pBM19 minimal replicon (repB and ori) was constructed and used to transform MGA3. Analysis of the resulting recombinant strain demonstrated that it was cured of pBM19 and was not able to grow on methanol. A pTB1.9 derivative harboring the complete mdh gene could not restore growth on methanol when it was introduced into the pBM19-cured strain, suggesting that additional pBM19 genes are required for consumption of this carbon source. Screening of 13 thermotolerant B. methanolicus wild-type strains showed that they all harbor plasmids similar to pBM19, and this is the first report describing plasmid-linked methylotrophy in any microorganism. Our findings should have an effect on future genetic manipulations of this organism, and they contribute to a new understanding of the biology of methylotrophs. PMID:14973041
Folster, J. P.; Pecic, G.; Stroika, S.; Rickert, R.; Whichard, J.
2015-01-01
Escherichia coli O157 is a major cause of foodborne illness. Plasmids are genetic elements that mobilize antimicrobial resistance determinants including blaCMY β-lactamases that confer resistance to extended-spectrum cephalosporins (ESC). ESCs are important for treating a variety of infections. IncA/C plasmids are found among diverse sources, including cattle, the principal source of E. coli O157 infections in humans. IncI1 plasmids are common among E. coli and Salmonella from poultry and other avian sources. To broaden our understanding of reservoirs of blaCMY, we determined the types of plasmids carrying blaCMY among E. coli O157. From 1996 to 2009, 3742 E. coli O157 isolates were tested. Eleven (0.29%) were ceftriaxone resistant and had a blaCMY-2-containing plasmid. All four isolates submitted before 2001 and a single 2001 isolate had blaCMY encoded on IncA/C plasmids, while all five isolates submitted after 2001 and a single 2001 isolate had blaCMY carried on IncI1 plasmids. The IncI1 plasmids were ST2, ST20, and ST23. We conclude that cephalosporin resistance among E. coli O157:H7 is due to plasmid-encoded blaCMY genes and that plasmid types appear to have shifted from IncA/C to IncI1. This shift suggests either a change in plasmid type among animal reservoirs or that the organism has expanded into avian reservoirs. More analysis of human, retail meat, and food animal isolates is necessary to broaden our understanding of the antimicrobial resistance determinants of ESC resistance among E. coli O157. PMID:26478858
Maj, Anna; Dziewit, Lukasz; Czarnecki, Jakub; Wlodarczyk, Miroslawa; Baj, Jadwiga; Skrzypczyk, Grazyna; Giersz, Dorota; Bartosik, Dariusz
2013-01-01
Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria. PMID:24260361
Lord, Megan S; Ellis, April L; Farrugia, Brooke L; Whitelock, John M; Grenett, Hernan; Li, Chuanyu; O'Grady, Robert L; DeCarlo, Arthur A
2017-03-28
The repair of dermal wounds, particularly in the diabetic population, poses a significant healthcare burden. The impaired wound healing of diabetic wounds is attributed to low levels of endogenous growth factors, including vascular endothelial growth factor (VEGF), that normally stimulate multiple phases of wound healing. In this study, chitosan scaffolds were prepared via freeze drying and loaded with plasmid DNA encoding perlecan domain I and VEGF189 and analyzed in vivo for their ability to promote dermal wound healing. The plasmid DNA encoding perlecan domain I and VEGF189 loaded scaffolds promoted dermal wound healing in normal and diabetic rats. This treatment resulted in an increase in the number of blood vessels and sub-epithelial connective tissue matrix components within the wound beds compared to wounds treated with chitosan scaffolds containing control DNA or wounded controls. These results suggest that chitosan scaffolds containing plasmid DNA encoding VEGF189 and perlecan domain I have the potential to induce angiogenesis and wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Expression and Activity Analysis of Fructosyltransferase from Aspergillus oryzae.
Guan, Lihong; Chen, Liping; Chen, Yongsen; Zhang, Nu; Han, Yawei
2017-08-01
The fructosyltransferase gene was isolated and cloned from Aspergillus oryzae. The gene was 1368 bp, which encoded a protein of 455 amino acids. To analyze the activity of the expressed fructosyltransferase, the pET32a-fructosyltransferase recombined plasmid was transformed into Escherichia coli BL21. The fructosyltransferase gene was successfully expressed by Isopropyl-β-d-thiogalactoside (IPTG) induction. The molecular weight of the expression protein was about 45 kDa. The optimal conditions of protein expression were 25 °C, 0.1 mM IPTG, and 8 h of inducing time. The optimal concentration of urea dealing with inclusion body was 2.5 M. The expressed protein exhibited a strong fructosyl transfer activity. These results showed that the expressed fructosyltransferas owned transferase activity, and could catalyze the synthesis of sucrose-6-acetate.
Over-expression of phage HK022 Nun protein is toxic for Escherichia coli
Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.
2008-01-01
The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198
ZHAI, YONGZHEN; ZHOU, YAN; LI, XIMEI; FENG, GUOHE
2015-01-01
Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM-CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan-pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF. PMID:25738258
Zhai, Yongzhen; Zhou, Yan; Li, Ximei; Feng, Guohe
2015-07-01
Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM‑CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan‑pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF.
Folster, Jason P.; Grass, Julian E.; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R.; Whichard, Jean M.
2017-01-01
Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded blaCMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing blaCMY-IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with blaCMY-IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). Additionally, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries. PMID:27828730
Folster, Jason P; Grass, Julian E; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R; Whichard, Jean M
2017-03-01
Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded bla CMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing bla CMY -IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with bla CMY -IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). In addition, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid-encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries.
Cao, Yi-zhan; Hao, Chun-qiu; Feng, Zhi-hua; Zhou, Yong-xing; Li, Jin-ge; Jia, Zhan-sheng; Wang, Ping-zhong
2003-02-01
To construct three recombinant shuttle plasmids of adenovirus expression vector which can express hepatitis C virus(HCV) different structure genes(C, C+E1, C+E1+E2) in order to pack adenovirus expression vectors which can express HCV different structure gene effectively. The different HCV structure genes derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) were inserted into the backward position of cytomegalovirus(CMV) immediate early promotor element of shuttle plasmid(pAd.CMV-Link.1) of adenovirus expression vector respectively, then the three recombinant plasmids (pAd.HCV-C, pAd.HCV-CE1, pAd.HCV-S) were obtained. The recombinant plasmids were identified by endonuclease, PCR and sequencing. HCV structure genes were expressed transiently with Lipofectamine 2000 coated in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. Insert DNAs of the three recombinant plasmids' were confirmed to be HCV different structure genes by endonuclease, PCR and sequencing. The three recombinant plasmids can express HCV structure gene (C, C+E1, C+E1+E2) transiently in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. The three recombinant shuttle plasmids of adenovirus expression vector can express HCV structure gene(C, C+E1, C+E1+E2) transiently. This should be useful to pack adenovirus expression vector which can express HCV structure genes.
Dehshahri, Ali; Sadeghpour, Hossein; Keykhaee, Maryam; Khalvati, Bahman; Sheikhsaran, Fatemeh
2016-05-01
Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100-180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers.
NASA Astrophysics Data System (ADS)
Gregersen, Jens-Peter
2001-12-01
Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, JoAnn Ching
The IHNV glycoprotein has been identified as the virion protein which elicits neutralizing antibody in rabbits and induces protective immunity in fish to homologous and heterologous strains of IHNV (Engelking and Leong, 1989). These findings suggested that genetic engineering might be used to develop an economically feasible IHNV vaccine for fish. Thus, a clone of the IHNV glycoprotein gene was made and expression of a portion of this gene in bacteria resulted in a prototype IHNV subunit vaccine. Only 350 bases of IHNV sequence was expressed in this initial vaccine construction because there were 16 cysteine residues in the glycoproteinmore » gene. Previous work with the rabies glycoprotein had shown that when the entire gene was expressed in bacteria, a denatured protein was produced, presumably because appropriate folding mechanisms for disulfide bond formation in protein were absent in E. coli. The IHNV vaccine clone contained a region of the gene which encoded only one cysteine residue. Despite the efficacy of the vaccine in laboratory trials, it seemed useful to determine whether other regions of the IHNV glycoprotein gene would be expressed in an antigenically recognizable form in bacteria and thereby, provide increased protection in fish. The recombinant plasmids pXL2, pXL3, and pXL7 were constructed so that all regions of the glycoprotein gene were expressed in bacteria as trpE-G fusion proteins. All of these recombinant plasmids produced fusion proteins that were also analyzed in Western immunoblots with anti-IHNV sera and specific monoclonal antibodies. These results were compared with the proteins produced by p52G and p618G, the plasmids identified in the original vaccine construction. The results of this comparison are shown.« less
Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge
2017-01-01
ABSTRACT Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly, etp, and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H− strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins (stx2a and the cdtV-ABC operon) and adhesins (eae-γ, efa1, lpfAO157OI-141, and lpfAO157OI-154) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H− strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H− strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H− (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic-uremic syndrome in Europe. They account for 10 to 20% of sporadic cases of this disease and have caused several large outbreaks. The strains isolated throughout Europe share conserved chromosomal and plasmid characteristics. Here we identified novel sorbitol-fermenting enterohemorrhagic E. coli O157:H− patient isolates in the Czech Republic which differ from all such strains reported previously by their unique plasmid characteristics, including plasmid number, composition of plasmid-carried virulence genes, and plasmid origins. Our findings contribute substantially to understanding the evolution of E. coli O157 strains and their plasmids. In practical terms, they enable the identification of strains with these novel plasmid characteristics in patient stool samples and thus the investigation of their roles as human pathogens in other geographic areas. PMID:28970221
Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge; Mellmann, Alexander; Bielaszewska, Martina
2017-12-01
Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H - strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly , etp , and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H - strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins ( stx 2a and the cdtV -ABC operon) and adhesins ( eae -γ, efa1 , lpfA O157OI-141 , and lpfA O157OI-154 ) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H - strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H - strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H - (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic-uremic syndrome in Europe. They account for 10 to 20% of sporadic cases of this disease and have caused several large outbreaks. The strains isolated throughout Europe share conserved chromosomal and plasmid characteristics. Here we identified novel sorbitol-fermenting enterohemorrhagic E. coli O157:H - patient isolates in the Czech Republic which differ from all such strains reported previously by their unique plasmid characteristics, including plasmid number, composition of plasmid-carried virulence genes, and plasmid origins. Our findings contribute substantially to understanding the evolution of E. coli O157 strains and their plasmids. In practical terms, they enable the identification of strains with these novel plasmid characteristics in patient stool samples and thus the investigation of their roles as human pathogens in other geographic areas. Copyright © 2017 American Society for Microbiology.
Lean, Soo-Sum; Yeo, Chew Chieng; Suhaili, Zarizal; Thong, Kwai-Lin
2015-01-01
Acinetobacter baumannii is a Gram-negative nosocomial pathogen of importance due to its uncanny ability to acquire resistance to most antimicrobials. These include carbapenems, which are the drugs of choice for treating A. baumannii infections, and polymyxins, the drugs of last resort. Whole genome sequencing was performed on two clinical carbapenem-resistant A. baumannii AC29 and AC30 strains which had an indistinguishable ApaI pulsotype but different susceptibilities to polymyxin. Both genomes consisted of an approximately 3.8 Mbp circular chromosome each and several plasmids. AC29 (susceptible to polymyxin) and AC30 (resistant to polymyxin) belonged to the ST195 lineage and are phylogenetically clustered under the International Clone II (IC-II) group. An AbaR4-type resistance island (RI) interrupted the comM gene in the chromosomes of both strains and contained the bla OXA-23 carbapenemase gene and determinants for tetracycline and streptomycin resistance. AC29 harbored another copy of bla OXA-23 in a large (~74 kb) conjugative plasmid, pAC29b, but this gene was absent in a similar plasmid (pAC30c) found in AC30. A 7 kb Tn1548::armA RI which encodes determinants for aminoglycoside and macrolide resistance, is chromosomally-located in AC29 but found in a 16 kb plasmid in AC30, pAC30b. Analysis of known determinants for polymyxin resistance in AC30 showed mutations in the pmrA gene encoding the response regulator of the two-component pmrAB signal transduction system as well as in the lpxD, lpxC, and lpsB genes that encode enzymes involved in the biosynthesis of lipopolysaccharide (LPS). Experimental evidence indicated that impairment of LPS along with overexpression of pmrAB may have contributed to the development of polymyxin resistance in AC30. Cloning of a novel variant of the bla AmpC gene from AC29 and AC30, and its subsequent expression in E. coli also indicated its likely function as an extended-spectrum cephalosporinase.
Molecular Determinants of Antiestrogen and Drug Sensitivity in Breast Carcinoma Cells
1996-08-01
00 ~cd -olC CC) 00, COq -6 0 00d C5 kr0) C~U, 23l Effects of infection rate and selection pressure on gene expression from an internal promoter of a...Hybridization probes were prepared by restriction enzyme digestion of the LNCIuc plasmid, followed by the isolation of the desired fragments by...sensitivity to this drug. The bacterial neo gene encodes neomycin phosphotransferase, an enzyme that metabolically inactivates G418, with the extent of
Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams
Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria
2006-01-01
Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838
USDA-ARS?s Scientific Manuscript database
The genomes of a diverse set of Shiga toxin-producing E. coli strains and the presence of 38 plasmids among all the isolates were determined. Among the novel plasmids found, there were eight that encoded resistance genes to antibiotics, including aminoglycosides, carbapenems, penicillins, cephalosp...
IL6 induces TAM resistance via kinase-specific phosphorylation of ERα in OVCA cells.
Wang, Yue; Niu, Xiu Long; Guo, Xiao Qin; Yang, Jing; Li, Ling; Qu, Ye; Xiu Hu, Cun; Mao, Li Qun; Wang, Dan
2015-06-01
About 40-60% of ovarian cancer (OVCA) cases express ERα, but only a small proportion of patients respond clinically to anti-estrogen treatment with estrogen receptor (ER) antagonist tamoxifen (TAM). The mechanism of TAM resistance in the course of OVCA progression remains unclear. However, IL6 plays a critical role in the development and progression of OVCA. Our recent results indicated that IL6 secreted by OVCA cells may promote the resistance of these cells to TAM via ER isoforms and steroid hormone receptor coactivator-1. Here we demonstrate that both exogenous (a relatively short period of treatment with recombinant IL6) and endogenous IL6 (generated as a result of transfection with a plasmid encoding sense IL6) increases expression of pERα-Ser118 and pERα-Ser167 in non-IL6-expressing A2780 cells, while deleting endogenous IL6 expression in IL6-overexpressing CAOV-3 cells (by transfection with a plasmid encoding antisense IL6) reduces expression of pERα-Ser118 and pERα-Ser167, indicating that IL6-induced TAM resistance may also be associated with increased expression of pERα-Ser118 and pERα-Ser167 in OVCA cells. Results of further investigation indicate that IL6 phosphorylates ERα at Ser118 and Ser167 by triggering activation of MEK/ERK and phosphotidylinositol 3 kinase/Akt signaling, respectively, to activate the ER pathway and thereby induce OVCA cells resistance to TAM. These results indicate that IL6 secreted by OVCA cells may also contribute to the refractoriness of these cells to TAM via the crosstalk between ER and IL6-mediated intracellular signal transduction cascades. Overexpression of IL6 not only plays an important role in OVCA progression but also promotes TAM resistance. Our results indicate that TAM-IL6-targeted adjunctive therapy may lead to a more effective intervention than TAM alone. © 2015 Society for Endocrinology.
NDM-1 encoded by a pNDM-HN380-like plasmid pNDM-BJ03 in clinical Enterobacter cloacae.
Lü, Yang; Liu, Wei; Liang, Hui; Zhao, Shulong; Zhang, Wei; Liu, Jia; Jin, Cheng; Hu, Hongyan
2018-02-01
A carbapenemase-producing Enterobacter cloacae hhy03 with a bla NDM-1 and bla SHV-12 -coharboring plasmid was isolated from a sputum specimen of a patient. This is the third nucleotide sequence report of bla NDM-1 -harboring plasmid from Enterobacter cloacae that have caused lethal infections in China, indicating the spread of NDM-1 by IncX3 plasmid between Enterobacteriaceae. Copyright © 2017. Published by Elsevier Inc.
Bacteriophage-based Vectors for Site-specific Insertion of DNA in the Chromosome of Corynebacteria
Oram, Mark; Woolston, Joelle E.; Jacobson, Andrew D.; Holmes, Randall K.; Oram, Diana M.
2007-01-01
In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as β. β-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally-encoded genes, is regulated by the DtxR protein in response to Fe2+ levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the β-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae ΔdtxR strain. Additionally, strains of β-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for β, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species. PMID:17275217
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, J.W.; Petersen, D.J.; Bennett, G.N.
1990-06-01
Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defectmore » in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.« less
Suwa, Y; Wright, A D; Fukimori, F; Nummy, K A; Hausinger, R P; Holben, W E; Forney, L J
1996-01-01
The findings of previous studies indicate that the genes required for metabolism of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) are typically encoded on broad-host-range plasmids. However, characterization of plasmid-cured strains of Burkholderia sp. strain RASC, as well as mutants obtained by transposon mutagenesis, suggested that the 2,4-D catabolic genes were located on the chromosome of this strain. Mutants of Burkholderia strain RASC unable to degrade 2,4-D (2,4-D- strains) were obtained by insertional inactivation with Tn5. One such mutant (d1) was shown to have Tn5 inserted in tfdARASC, which encodes 2,4-D/alpha-ketoglutarate dioxygenase. This is the first reported example of a chromosomally encoded tfdA. The tfdARASC gene was cloned from a library of wild-type Burkholderia strain RASC DNA and shown to express 2,4-D/alpha-ketoglutarate dioxygenase activity in Escherichia coli. The DNA sequence of the gene was determined and shown to be similar, although not identical, to those of isofunctional genes from other bacteria. Moreover, the gene product (TfdARASC) was purified and shown to be similar in molecular weight, amino-terminal sequence, and reaction mechanism to the canonical TfdA of Alcaligenes eutrophus JMP134. The data presented here indicate that tfdA genes can be found on the chromosome of some bacterial species and suggest that these catabolic genes are rather mobile and may be transferred by means other than conjugation. PMID:8779585
Wetzel, Margaret E; Asenstorfer, Robert E; Tate, Max E; Farrand, Stephen K
2018-04-10
We previously described a plasmid of Agrobacterium spp., pAoF64/95, in which the quorum-sensing system that controls conjugative transfer is induced by the opine mannopine. We also showed that the quorum-sensing regulators TraR, TraM, and TraI function similarly to their counterparts in other repABC plasmids. However, traR, unlike its counterpart on Ti plasmids, is monocistronic and not located in an operon that is inducible by the conjugative opine. Here, we report that both traR and traM are expressed constitutively and not regulated by growth with mannopine. We report two additional regulatory genes, mrtR and tmsP, that are involved in a novel mechanism of control of TraR activity. Both genes are located in the distantly linked region of pAoF64/95 encoding mannopine utilization. MrtR, in the absence of mannopine, represses the four-gene mocC operon as well as tmsP, which is the distal gene of the eight-gene motA operon. As judged by a bacterial two-hybrid analysis, TmsP, which shows amino acid sequence relatedness with the TraM-binding domain of TraR, interacts with the antiactivator. We propose a model in which mannopine, acting through the repressor MrtR, induces expression of TmsP which then titrates the levels of TraM thereby freeing TraR to activate the tra regulon. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
A novel bicistronic sensor vector for detecting caspase-3 activation.
Vagner, Tatyana; Mouravlev, Alexandre; Young, Deborah
2015-01-01
Apoptosis is involved in pathological cell death of a wide range of human diseases. One of the most important biochemical markers of apoptosis is activation of caspase-3. Ability to detect caspase-3 activation early in the pathological process is important for determining the timing for interfering with apoptosis initiation and prevention of cell damage. Techniques allowing detection of caspase-3 activity at a single cell level show increased sensitivity, compared to biochemical assays; therefore, we developed a novel bicistronic caspase-3 sensor vector enabling detection of caspase-3 activity in individual cells. We employed green fluorescent protein (GFP) as a reporter for caspase-3 activation in our constructs and assessed the functionality of the generated constructs in transiently transfected Neuro2A and HEK293 cells under basal conditions and following application of okadaic acid (OA) or staurosporine (STS) to induce apoptosis. To ensure responsiveness of the new sensor vector to active caspase-3, we co-transfected the sensor with plasmid(s) overexpressing active caspase-3 and quantified GFP fluorescence using a plate reader. We observed an increase in GFP expression in cells transfected with the new bicistronic caspase-3 sensor in response to both OA and STS. We also showed a significant increase in GFP fluorescence intensity in cells co-expressing the sensor with the plasmid(s) encoding active caspase-3. We generated a novel bicistronic caspase-3 sensor vector which relies on a transcription factor/response element system. The obtained sensor combines high sensitivity of the single cell level detection with the possibility of automated quantification. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Heon Seok; Lee, Kyungjin; Bae, Sangsu; Park, Jeongbin; Lee, Chong-Kyo; Kim, Meehyein; Kim, Eunji; Kim, Minju; Kim, Seokjoong; Kim, Chonsaeng; Kim, Jin-Soo
2017-06-23
Several groups have used genome-wide libraries of lentiviruses encoding small guide RNAs (sgRNAs) for genetic screens. In most cases, sgRNA expression cassettes are integrated into cells by using lentiviruses, and target genes are statistically estimated by the readout of sgRNA sequences after targeted sequencing. We present a new virus-free method for human gene knockout screens using a genome-wide library of CRISPR/Cas9 sgRNAs based on plasmids and target gene identification via whole-genome sequencing (WGS) confirmation of authentic mutations rather than statistical estimation through targeted amplicon sequencing. We used 30,840 pairs of individually synthesized oligonucleotides to construct the genome-scale sgRNA library, collectively targeting 10,280 human genes ( i.e. three sgRNAs per gene). These plasmid libraries were co-transfected with a Cas9-expression plasmid into human cells, which were then treated with cytotoxic drugs or viruses. Only cells lacking key factors essential for cytotoxic drug metabolism or viral infection were able to survive. Genomic DNA isolated from cells that survived these challenges was subjected to WGS to directly identify CRISPR/Cas9-mediated causal mutations essential for cell survival. With this approach, we were able to identify known and novel genes essential for viral infection in human cells. We propose that genome-wide sgRNA screens based on plasmids coupled with WGS are powerful tools for forward genetics studies and drug target discovery. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Cloning and characterization of the human 5,10-methenyltetrahydrofolate synthetase-encoding cDNA.
Dayan, A; Bertrand, R; Beauchemin, M; Chahla, D; Mamo, A; Filion, M; Skup, D; Massie, B; Jolivet, J
1995-11-20
Methenyltetrahydrofolate synthetase (MTHFS) catalyses the obligatory initial metabolic step in the intracellular conversion of 5-formyltetrahydrofolate to other reduced folates. We have isolated and sequenced a human MTHFS cDNA which is 872-bp long and codes for a 203-amino-acid protein of 23,229 Da. Escherichia coli BL21(DE3), transfected with pET11c plasmids containing an open reading frame encoding MTHFS, showed a 100-fold increase in MTHFS activity in bacterial extracts after IPTG induction. Northern blot studies of human tissues determined that the MTHFS mRNA was expressed preferentially in the liver and Southern blot analysis of human genomic DNA suggested the presence of a single-copy gene.
Tumor targeting of gene expression through metal-coordinated conjugation with dextran.
Hosseinkhani, Hossein; Aoyama, Teruyoshi; Ogawa, Osamu; Tabata, Yasuhiko
2003-03-07
Tumor targeting of plasmid DNA was achieved through the conjugation of dextran derivatives with chelate residues based on metal coordination. Diethylenetriamine pentaacetic acid (DTPA), spermidine (Sd), and spermine (Sm) were chemically introduced to the hydroxyl groups of dextran to obtain dextran-DTPA, dextran-Sd and dextran-Sm derivatives. Conjugation of the dextran derivative by Zn(2+) coordination decreased the apparent size of the plasmid DNA, depending on the derivative type. The negative zeta potential of plasmid DNA became almost 0 mV after Zn(2+)-coordinated conjugation with dextran-Sm. When the dextran derivative-plasmid DNA conjugates with Zn(2+) coordination were intravenously injected subcutaneously into mice bearing Meth-AR-1 fibrosarcoma, the dextran-Sm-plasmid DNA conjugate significantly enhanced the level of gene expression in the tumor, in contrast to the conjugate of other dextran derivatives and free plasmid DNA. The enhanced gene expression produced by the Zn(2+)-coordinated dextran-Sm-plasmid DNA conjugate was specific to the tumor, whereas a simple mixture of dextran-Sm and plasmid DNA was not effective. The level of gene expression depended on the percentage of chelate residues introduced, the mixing weight ratio of the plasmid DNA/Sm residue used for conjugate preparation, and the plasmid DNA dose. A fluorescent microscopic study revealed that localization of plasmid DNA in the tumor tissue was observed only after injection of the dextran-Sm-plasmid DNA conjugate with Zn(2+) coordination. In addition, the gene expression induced by the conjugate lasted for more than 10 days after the injection. We conclude that Zn(2+)-coordinated dextran-Sm conjugation is a promising way to enable plasmid DNA to target the tumor in gene expression as well as to prolong the duration of gene expression.
Alexander, C J; Hammer, J A
2016-01-01
We present a simple and efficient method to knock down proteins specifically in Purkinje neurons (PN) present in mixed mouse primary cerebellar cultures. This method utilizes the introduction via nucleofection of a plasmid encoding a specific miRNA downstream of the L7/Pcp2 promoter, which drives PN-specific expression. As proof-of-principle, we used this plasmid to knock down the motor protein myosin Va, which is required for the targeting of smooth endoplasmic reticulum (ER) into PN spines. Consistent with effective knockdown, transfected PNs robustly phenocopied PNs from dilute-lethal (myosin Va-null) mice with regard to the ER targeting defect. Importantly, our plasmid-based approach is less challenging technically and more specific to PNs than several alternative methods (e.g., biolistic- and lentiviral-based introduction of siRNAs). We also present a number of improvements for generating mixed cerebellar cultures that shorten the procedure and improve the total yield of PNs, and of transfected PNs, considerably. Finally, we present a method to rescue cerebellar cultures that develop large cell aggregates, a common problem that otherwise precludes the further use of the culture. Copyright © 2016 Elsevier Inc. All rights reserved.
Sentchilo, Vladimir S.; Perebituk, Alexander N.; Zehnder, Alexander J. B.; van der Meer, Jan Roelof
2000-01-01
Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024–5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids. PMID:10877777
Wang, Bo; Yu, Jianping
2015-01-01
Restriction digestion of foreign DNA is one of the key biological barriers against genetic transformation in microorganisms. To establish a high-efficiency transformation protocol in the model cyanobacterium, Synechocystis sp. strain PCC 6803 (Synechocystis 6803), we investigated the effects of premethylation of foreign DNA on the integrative transformation of this strain. In this study, two type II methyltransferase-encoding genes, i.e., sll0729 (gene M) and slr0214 (gene C), were cloned from the chromosome of Synechocystis 6803 and expressed in Escherichia coli harboring an integration plasmid. After premethylation treatment in E. coli, the integration plasmid was extracted and used for transformation of Synechocystis 6803. The results showed that although expression of methyltransferase M had little impact on the transformation of Synechocystis 6803, expression of methyltransferase C resulted in 11- to 161-fold-higher efficiency in the subsequent integrative transformation of Synechocystis 6803. Effective expression of methyltransferase C, which could be achieved by optimizing the 5′ untranslated region, was critical to efficient premethylation of the donor DNA and thus high transformation efficiency in Synechocystis 6803. Since premethylating foreign DNA prior to transforming Synechocystis avoids changing the host genetic background, the study thus provides an improved method for high-efficiency integrative transformation of Synechocystis 6803. PMID:26452551
Binder, Andreas; Lambert, Jayne; Morbitzer, Robert; Popp, Claudia; Ott, Thomas; Lahaye, Thomas; Parniske, Martin
2014-01-01
The Golden Gate (GG) modular assembly approach offers a standardized, inexpensive and reliable way to ligate multiple DNA fragments in a pre-defined order in a single-tube reaction. We developed a GG based toolkit for the flexible construction of binary plasmids for transgene expression in plants. Starting from a common set of modules, such as promoters, protein tags and transcribed regions of interest, synthetic genes are assembled, which can be further combined to multigene constructs. As an example, we created T-DNA constructs encoding multiple fluorescent proteins targeted to distinct cellular compartments (nucleus, cytosol, plastids) and demonstrated simultaneous expression of all genes in Nicotiana benthamiana, Lotus japonicus and Arabidopsis thaliana. We assembled an RNA interference (RNAi) module for the construction of intron-spliced hairpin RNA constructs and demonstrated silencing of GFP in N. benthamiana. By combination of the silencing construct together with a codon adapted rescue construct into one vector, our system facilitates genetic complementation and thus confirmation of the causative gene responsible for a given RNAi phenotype. As proof of principle, we silenced a destabilized GFP gene (dGFP) and restored GFP fluorescence by expression of a recoded version of dGFP, which was not targeted by the silencing construct. PMID:24551083
Bossé, Janine T.; Li, Yanwen; Walker, Stephanie; Atherton, Tom; Fernandez Crespo, Roberto; Williamson, Susanna M.; Rogers, Jon; Chaudhuri, Roy R.; Weinert, Lucy A.; Oshota, Olusegun; Holden, Matt T. G.; Maskell, Duncan J.; Tucker, Alexander W.; Wren, Brendan W.; Rycroft, Andrew N.; Langford, Paul R.
2015-01-01
Objectives The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Methods Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. Results A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. Conclusions This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial. PMID:25957382
McLenigan, Mary P.; Kulaeva, Olga I.; Ennis, Don G.; Levine, Arthur S.; Woodgate, Roger
1999-01-01
The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD′. Many homologs of umuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly, humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD′ protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD′-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD′ functions in vivo as well as examined HumD’s physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutable recA430 lexA(Def) and UV-sensitive ΔumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD′, HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD′-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo. PMID:10559166
Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi
2016-01-01
We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.
Genetic control of ColE1 plasmid stability that is independent of plasmid copy number regulation.
Standley, Melissa S; Million-Weaver, Samuel; Alexander, David L; Hu, Shuai; Camps, Manel
2018-06-16
ColE1-like plasmid vectors are widely used for expression of recombinant genes in E. coli. For these vectors, segregation of individual plasmids into daughter cells during cell division appears to be random, making them susceptible to loss over time when no mechanisms ensuring their maintenance are present. Here we use the plasmid pGFPuv in a recA relA strain as a sensitized model to study factors affecting plasmid stability in the context of recombinant gene expression. We find that in this model, plasmid stability can be restored by two types of genetic modifications to the plasmid origin of replication (ori) sequence: point mutations and a novel 269 nt duplication at the 5' end of the plasmid ori, which we named DAS (duplicated anti-sense) ori. Combinations of these modifications produce a range of copy numbers and of levels of recombinant expression. In direct contradiction with the classic random distribution model, we find no correlation between increased plasmid copy number and increased plasmid stability. Increased stability cannot be explained by reduced levels of recombinant gene expression either. Our observations would be more compatible with a hybrid clustered and free-distribution model, which has been recently proposed based on detection of individual plasmids in vivo using super-resolution fluorescence microscopy. This work suggests a role for the plasmid ori in the control of segregation of ColE1 plasmids that is distinct from replication initiation, opening the door for the genetic regulation of plasmid stability as a strategy aimed at enhancing large-scale recombinant gene expression or bioremediation.
Kukor, J J; Olsen, R H; Siak, J S
1989-01-01
When Pseudomonas aeruginosa PAO1c or P. putida PPO200 or PPO300 carry plasmid pJP4, which encodes enzymes for the degradation of 2,4-dichlorophenoxyacetic acid (TFD) to 2-chloromaleylacetate, cells do not grow on TFD and UV-absorbing material with spectral characteristics of chloromaleylacetate accumulates in the culture medium. Using plasmid pRO1727, we cloned from the chromosome of a nonfluorescent pseudomonad, Pseudomonas sp. strain PKO1, 6- and 0.5-kilobase BamHI DNA fragments which contain the gene for maleylacetate reductase. When carrying either of the recombinant plasmids, pRO1944 or pRO1945, together with pJP4, cells of P. aeruginosa or P. putida were able to utilize TFD as a sole carbon source for growth. A novel polypeptide with an estimated molecular weight of 18,000 was detected in cell extracts of P. aeruginosa carrying either plasmid pRO1944 or plasmid pRO1945. Maleylacetate reductase activity was induced in cells of P. aeruginosa or P. putida carrying plasmid pRO1945, as well as in cells of Pseudomonas strain PKO1, when grown on L-tyrosine, suggesting that the tyrosine catabolic pathway might be the source from which maleylacetate reductase is recruited for the degradation of TFD in pJP4-bearing cells of Pseudomonas sp. strain PKO1. Images PMID:2722753
Iwaki, Hiroaki; Grosse, Stephan; Bergeron, Hélène; Leisch, Hannes; Morley, Krista; Hasegawa, Yoshie
2013-01-01
Whereas the biochemical properties of the monooxygenase components that catalyze the oxidation of 2,5-diketocamphane and 3,6-diketocamphane (2,5-DKCMO and 3,6-DKCMO, respectively) in the initial catabolic steps of (+) and (−) isomeric forms of camphor (CAM) metabolism in Pseudomonas putida ATCC 17453 are relatively well characterized, the actual identity of the flavin reductase (Fred) component that provides the reduced flavin to the oxygenases has hitherto been ill defined. In this study, a 37-kDa Fred was purified from a camphor-induced culture of P. putida ATCC 17453 and this facilitated cloning and characterization of the requisite protein. The active Fred is a homodimer with a subunit molecular weight of 18,000 that uses NADH as an electron donor (Km = 32 μM), and it catalyzes the reduction of flavin mononucleotide (FMN) (Km = 3.6 μM; kcat = 283 s−1) in preference to flavin adenine dinucleotide (FAD) (Km = 19 μM; kcat = 128 s−1). Sequence determination of ∼40 kb of the CAM degradation plasmid revealed the locations of two isofunctional 2,5-DKCMO genes (camE25–1 for 2,5-DKCMO-1 and camE25–2 for 2,5-DKCMO-2) as well as that of a 3,6-DKCMO-encoding gene (camE36). In addition, by pulsed-field gel electrophoresis, the CAM plasmid was established to be linear and ∼533 kb in length. To enable functional assessment of the two-component monooxygenase system in Baeyer-Villiger oxidations, recombinant plasmids expressing Fred in tandem with the respective 2,5-DKCMO- and 3,6-DKCMO-encoding genes in Escherichia coli were constructed. Comparative substrate profiling of the isofunctional 2,5-DCKMOs did not yield obvious differences in Baeyer-Villiger biooxidations, but they are distinct from 3,6-DKCMO in the stereoselective oxygenations with various mono- and bicyclic ketone substrates. PMID:23524667
Farshadpour, Fatemeh; Makvandi, Manoochehr; Taherkhani, Reza
2015-01-01
Background: Hepatitis E Virus (HEV) is the causative agent of enterically transmitted acute hepatitis and has high mortality rate of up to 30% among pregnant women. Therefore, development of a novel vaccine is a desirable goal. Objectives: The aim of this study was to construct tPAsp-PADRE-truncated open reading frame 2 (ORF2) and truncated ORF2 DNA plasmid, which can assist future studies with the preparation of an effective vaccine against Hepatitis E Virus. Materials and Methods: A synthetic codon-optimized gene cassette encoding tPAsp-PADRE-truncated ORF2 protein was designed, constructed and analyzed by some bioinformatics software. Furthermore, a codon-optimized truncated ORF2 gene was amplified by the polymerase chain reaction (PCR), with a specific primer from the previous construct. The constructs were sub-cloned in the pVAX1 expression vector and finally expressed in eukaryotic cells. Results: Sequence analysis and bioinformatics studies of the codon-optimized gene cassette revealed that codon adaptation index (CAI), GC content, and frequency of optimal codon usage (Fop) value were improved, and performance of the secretory signal was confirmed. Cloning and sub-cloning of the tPAsp-PADRE-truncated ORF2 gene cassette and truncated ORF2 gene were confirmed by colony PCR, restriction enzymes digestion and DNA sequencing of the recombinant plasmids pVAX-tPAsp-PADRE-truncated ORF2 (aa 112-660) and pVAX-truncated ORF2 (aa 112-660). The expression of truncated ORF2 protein in eukaryotic cells was approved by an Immunofluorescence assay (IFA) and the reverse transcriptase polymerase chain reaction (RT-PCR) method. Conclusions: The results of this study demonstrated that the tPAsp-PADRE-truncated ORF2 gene cassette and the truncated ORF2 gene in recombinant plasmids are successfully expressed in eukaryotic cells. The immunogenicity of the two recombinant plasmids with different formulations will be evaluated as a novel DNA vaccine in future investigations. PMID:26865938
Sumner, Dale R; Virdi, Amarjit S
2012-01-01
An exogenous supply of growth factors and bioreplaceable scaffolds may help bone regeneration. The aim of this study was to examine the effects of TGF-β1 and VEGF-A transgenes on the osteogenic potential of bone marrow stromal cells. Rat bone marrow stromal cells were transfected with plasmids encoding mouse TGF-β1 and/or VEGF-A complementary DNAs and cultured for up to 28 days. Furthermore, collagen scaffolds carrying combinations of the plasmids-transfected cells were implanted subcutaneously in rats. The transgenes increased alkaline phosphatase activity, enhanced mineralized nodule formation, and elevated osteogenic gene expressions in vitro. In vivo, messenger RNA expression of osteogenic genes such as BMPs and Runx2 elevated higher by the transgenes. The data indicate that exogenous TGF-β1 and VEGF-A acted synergistically and could induce osteoblastic differentiation of bone marrow stromal cells in both cell culture and an animal model. The results may provide valuable information to optimize protocols for transgene-and-cell-based tissue engineering. PMID:22962632
[Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB 24.2].
Bolotin, A P; Sorokin, A V; Aleksandrov, N N; Danilenko, V N; Kozlov, Iu I
1985-11-01
The nucleotide sequence of DNA in plasmid pSB 24.2, a natural deletion derivative of plasmid pSB 24.1 isolated from S. cyanogenus was studied. The plasmid amounted by its size to 3706 nucleotide pairs. The G-C composition was equal to 73 per cent. The analysis of the DNA structure in plasmid pSB 24.2 revealed the protein-encoding sequence of DNA, the continuity of which was significant for replication of the plasmid containing more than 1300 nucleotide pairs. The analysis also revealed two A-T-rich areas of DNA, the G-C composition of which was less than 55 per cent and a DNA area with a branched pin structure. The results may be of value in investigation of plasmid replication in actinomycetes and experimental cloning of DNA with this plasmid as a vector.
Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.
de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A
2004-08-15
A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.
[Non-viral gene therapy approach for regenerative recovery of skin wounds in mammals].
Efremov, A M; Dukhovlinov, I V; Dizhe, E B; Burov, S V; Leko, M V; Akif'ev, B N; Mogilenko, D A; Ivanov, I A; Perevozchikov, A P; Orlov, S V
2010-01-01
The rate and character of skin tissue regeneration after wounds, burns and other traumas depend on the cell proliferation within damaged area. Acceleration of healing by stimulation of cell proliferation and extracellular matrix synthesis is one of the most important tasks of modern medicine. There are gene therapy approaches to wound treatment consisting in the transfer of genes encoding mitogenic growth factors to wound area. The most important step in the development of gene therapy approaches is the design of gene delivery tools. In spite of high efficacy of viral vectors, the non-viral means have some preferences (low toxicity, low immunogenity, safety and the absence of backside effects). Among non-viral gene delivery tools, molecular conjugates are the most popular because of their efficacy, simplicity, and the capacity to the targeted gene transfer. In the present work we have developed two molecular conjugates--NLS-TSF7 and NLS-TSF12 consisting of the modified signal of nuclear localization of T-antigen of SV40 virus (cationic part) and the peptide ligands of mammalian transferrin receptor (ligand part). These conjugates bind to plasmid DNA with formation of polyelectrolytic complexes and are capable to deliver plasmid DNA into cells expressing transferrin receptors by receptor-mediated endocytosis. Transfer of the expression vector of luciferase gene in the complex with molecular conjugate NLS-TSF7 to murine surface tissues led to about 100 fold increasing of luciferase activity in comparison with the transfer of free expression vector. Treatment of slash wounds in mice with the complexes of expression vector of synthetic human gene encoding insulin-like growth factor 1 with molecular conjugates NLS-TSF7 led to acceleration of healing in comparison with mice treated with free expression vector. The results obtained confirm the high efficiency of the developed regenerative gene therapy approach for the treatment of damaged skin tissues in mammals.
PemK toxin encoded by the Xylella fastidiosa IncP-1 plasmid pXF-RIV11 is a ribonuclease
USDA-ARS?s Scientific Manuscript database
Stable inheritance of the IncP-1 plasmid pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. Here, PemK toxin and PemI ant...
Network Analysis of Plasmidomes: The Azospirillum brasilense Sp245 Case
Fondi, Marco
2014-01-01
Azospirillum brasilense is a nitrogen-fixing bacterium living in association with plant roots. The genome of the strain Sp245, isolated in Brazil from wheat roots, consists of one chromosome and six plasmids. In this work, the A. brasilense Sp245 plasmids were analyzed in order to shed some light on the evolutionary pathways they followed over time. To this purpose, a similarity network approach was applied in order to identify the evolutionary relationships among all the A. brasilense plasmids encoded proteins; in this context a computational pipeline specifically devoted to the analysis and the visualization of the network-like evolutionary relationships among different plasmids molecules was developed. This information was supplemented with a detailed (in silico) functional characterization of both the connected (i.e., sharing homology with other sequences in the dataset) and the unconnected (i.e., not sharing homology) components of the network. Furthermore, the most likely source organism for each of the genes encoded by A. brasilense plasmids was checked, allowing the identification of possible trends of gene loss/gain in this microorganism. Data obtained provided a detailed description of the evolutionary landscape of the plasmids of A. brasilense Sp245, suggesting some of the molecular mechanisms responsible for the present-day structure of these molecules. PMID:25610702
Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S
1986-07-01
Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration.
Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S
1986-01-01
Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration. Images PMID:3013836
Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.
Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R
2017-01-01
Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in plasmids, advances in plasmid sequencing, and phylogenetic analyses, and important insights about how MDR evolution occurs across diverse serotypes from different animal sources, particularly in agricultural settings where antimicrobial drug use practices vary.
Dhalia, Rafael; Maciel, Milton; Cruz, Fábia S P; Viana, Isabelle F T; Palma, Mariana L; August, Thomas; Marques, Ernesto T A
2009-12-01
Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the development of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP). The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.
Repression of small toxic protein synthesis by the Sib and OhsC small RNAs.
Fozo, Elizabeth M; Kawano, Mitsuoki; Fontaine, Fanette; Kaya, Yusuf; Mendieta, Kathy S; Jones, Kristi L; Ocampo, Alejandro; Rudd, Kenneth E; Storz, Gisela
2008-12-01
The sequences encoding the QUAD1 RNAs were initially identified as four repeats in Escherichia coli. These repeats, herein renamed SIB, are conserved in closely related bacteria, although the number of repeats varies. All five Sib RNAs in E. coli MG1655 are expressed, and no phenotype was observed for a five-sib deletion strain. However, a phenotype reminiscent of plasmid addiction was observed for overexpression of the Sib RNAs, and further examination of the SIB repeat sequences revealed conserved open reading frames encoding highly hydrophobic 18- to 19-amino-acid proteins (Ibs) opposite each sib gene. The Ibs proteins were found to be toxic when overexpressed and this toxicity could be prevented by coexpression of the corresponding Sib RNA. Two other RNAs encoded divergently in the yfhL-acpS intergenic region were similarly found to encode a small hydrophobic protein (ShoB) and an antisense RNA regulator (OhsC). Overexpression of both IbsC and ShoB led to immediate changes in membrane potential suggesting both proteins affect the cell envelope. Whole genome expression analysis showed that overexpression of IbsC and ShoB, as well as the small hydrophobic LdrD and TisB proteins, has both overlapping and unique consequences for the cell.
Ku, Hye-Jin; Park, Myeong Soo; Lee, Ju-Hoon
2015-01-01
A 2.1-kb plasmid was previously isolated from Weissella cibaria KLC140 in kimchi and cloned into pUC19 along with the slpA and gfp genes, resulting in an 8.6-kb pKWCSLGFP construct for use as a novel surface display vector. To reduce the size of the vector, the minimal replicon of pKW2124 was determined. The pKW2124 plasmid contains a putative origin of replication (ori), a potential ribosomal binding site (RBS), and the repA gene encoding a plasmid replication protein. To conduct the minimal replicon experiment, four different PCR products (MR1, ori+RBS+repA; MR2, RBS+repA; MR2’, repA; MR3, fragment of repA) were obtained and cloned into pUC19 (pKUCm1, pKUCm2, pKUCm2’, and pKUCm3, respectively) containing the chloramphenicol acetyltransferase (CAT) gene. These constructed vectors were electroporated into W. confusa ATCC 10881 with different transformation efficiencies of 1.5 × 105 CFU/μg, 1.3 × 101 CFU/μg, and no transformation, respectively, suggesting that the putative ori, RBS, and repA gene are essential for optimum plasmid replication. Subsequent segregational plasmid stability testing of pKUCm1 and pKUCm2 showed that the vector pKUCm1 is highly stable up to 100 generations but pKUCm2 was completely lost after 60 generations, suggesting that the putative ori may be important for plasmid stability in the host strain. In addition, a host range test of pKUCm1 revealed that it has a broad host range spectrum including Weissella, Lactococcus, Leuconostoc, and even Lactobacillus. To verify the application of pKUCm1, the β-galactosidase gene and its promoter region from W. cibaria KSD1 were cloned in the vector, resulting in pKUGal. Expression of the β-galactosidase gene was confirmed using blue-white screening after IPTG induction. The small and stable pKUGal vector will be useful for gene transfer, expression, and manipulation in the Weissella genome and in other lactic acid bacteria. PMID:25691882
Zhang, Silai; Ban, Akihiko; Ebara, Naoki; Mizutani, Osamu; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya
2017-04-01
In this study, we developed a self-excising Cre/loxP-mediated marker recycling system with mutated lox sequences to introduce a number of biosynthetic genes into Aspergillus oryzae. To construct the self-excising marker cassette, both the selectable marker, the Aspergillus nidulans adeA gene, and the Cre recombinase gene (cre), conditionally expressed by the xylanase-encoding gene promoter, were designed to be located between the mutant lox sequences, lox66 and lox71. However, construction of the plasmid failed, possibly owing to a slight expression of cre downstream of the fungal gene promoter in Escherichia coli. Hence, to avoid the excision of the cassette in E. coli, a 71-bp intron of the A. oryzae xynG2 gene was inserted into the cre gene. The A. oryzae adeA deletion mutant was transformed with the resulting plasmid in the presence of glucose, and the transformants were cultured in medium containing xylose as the sole carbon source. PCR analysis of genomic DNA from resultant colonies revealed the excision of both the marker and Cre expression construct, indicating that the self-excising marker cassette was efficient at removing the selectable marker. Using the marker recycling system, hyperproduction of kojic acid could be achieved in A. oryzae by the introduction of two genes that encode oxidoreductase and transporter. Furthermore, we also constructed an alternative marker recycling cassette bearing the A. nidulans pyrithiamine resistant gene (ptrA) as a dominant selectable marker. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Xingmin; Goehler, Andre; Heller, Knut J.
2006-06-20
The ltp gene, located within the lysogeny module of temperate Streptococcus thermophilus phage TP-J34, has been shown to be expressed in lysogenic strain S. thermophilus J34. It codes for a lipoprotein, as demonstrated by inhibition of cleavage of the signal sequence by globomycin. Exposure of Ltp on the surface of Lactococcus lactis protoplasts bearing a plasmid-encoded copy of ltp has been demonstrated by immunogold labeling and electron microscopy. Expression of ltp in prophage- and plasmid-cured S. thermophilus J34-6f interfered with TP-J34 infection. While plating efficiency was reduced by a factor of about 40 and lysis of strain J34-6f in liquidmore » medium was delayed considerably, phage adsorption was not affected at all. Intracellular accumulation of phage DNA was shown to be inhibited by Ltp. This indicates interference of Ltp with infection at the stage of triggering DNA release and injection into the cell, indicating a role of Ltp in superinfection exclusion. Expression of ltp in L. lactis Bu2-60 showed that the same superinfection exclusion mechanism was strongly effective against phage P008, a member of the lactococcal 936 phage species: no plaque-formation was detectable with even 10{sup 9} phage per ml applied, and lysis in liquid medium did not occur. In Lactococcus also, Ltp apparently inhibited phage DNA release and/or injection. Ltp appears to be a member of a family of small, secreted proteins with a 42 amino acids repeat structure encoded by genes of Gram-positive bacteria. Some of these homologous genes are part of the genomes of prophages.« less
Shang, Shu-huan; Zhang, Yu-feng; Shi, Bin; Cheng, Xiang-rong
2008-10-01
To construct a recombinant human platelet-derived growth factor-B (PDGF-B) adenoviral vector and to transfect it into human periodontal ligament stem cells (PDLSC). The recombinant plasmid pAd-PDGF-B was constructed by homologous recombination and confirmed by restriction endonucleases digestion. Recombinant adenovirus was packaged in HEK293 cells. PDLSC were transfected with recombinant adenovirus and PDGF-B expression was confirmed. Expression of collagen type I gene was determined by quantitative analysis of the products of RT-PCR. The cell proliferation was determined with MTT colorimetric assay. The recombinant plasmid pAd-PDGF-B was confirmed by restriction endonucleases digestion. EGFP expression was observed on the third day after transfecting, and the expression of PDGF-B was detected. Immunohistochemical methods revealed that PDGF-B was expressed in PDLSC. Levels of expression of collagen type I gene were increased significantly by transfer of the exogenous PDGF-B gene to PDLSC. At the same time, findings indicated that Ad-PDGF-B stimulated PDLSC proliferation. MTT assay indicated the absorbance of PDLSC by stimulating with Ad-PDGF-B was (0.68 +/- 0.02), P < 0.01. Using the AdEasy system, the human PDGF-B recombinant adenovirus can be rapidly obtained. These results indicate that recombinant adenoviruses encoding PDGF-B transgenes could modulate proliferative activity of PDLSC, enhance the high expression of collagen type I and lay the foundation for periodontal tissue regeneration and dental implant gene therapy.
Richie, Thomas L.; Charoenvit, Yupin; Wang, Ruobing; Epstein, Judith E.; Hedstrom, Richard C.; Kumar, Sanjai; Luke, Thomas C.; Freilich, Daniel A.; Aguiar, Joao C.; Sacci, Jr., John B.; Sedegah, Martha; Nosek, Jr., Ronald A.; De La Vega, Patricia; Berzins, Mara P.; Majam, Victoria F.; Abot, Esteban N.; Ganeshan, Harini; Richie, Nancy O.; Banania, Jo Glenna; Baraceros, Maria Fe B.; Geter, Tanya G.; Mere, Robin; Bebris, Lolita; Limbach, Keith; Hickey, Bradley W.; Lanar, David E.; Ng, Jennifer; Shi, Meng; Hobart, Peter M.; Norman, Jon A.; Soisson, Lorraine A.; Hollingdale, Michael R.; Rogers, William O.; Doolan, Denise L.; Hoffman, Stephen L.
2012-01-01
When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines. PMID:23151451
Shchelkunov, S N; Taranov, O S; Tregubchak, T V; Maksyutov, R A; Silkov, A N; Nesterov, A E; Sennikov, S V
2016-07-01
Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins.
Sanchez, Danilo Garcia; de Melo, Fernanda Maciel; Savazzi, Eduardo Angelino; Stehling, Eliana Guedes
2018-06-16
Bacterial resistance occurs by spontaneous mutations or horizontal gene transfer mediated by mobile genetic elements, which represents a great concern. Resistance to β-lactam antibiotics is mainly due to the production of β-lactamases, and an important mechanism of fluoroquinolone resistance is the acquisition plasmid determinants. The aim of this study was to verify the presence of β-lactamase-encoding genes and plasmid-mediated quinolone resistance genes in different water samples obtained from São Paulo state, Brazil. A high level of these resistance genes was detected, being the bla SHV , bla GES , and qnr the most prevalent. Besides that, the bla NDM gene, which codify an important and hazardous metallo-β-lactamase, was detected.
Streptococcus mutans serotype c tagatose 6-phosphate pathway gene cluster.
Jagusztyn-Krynicka, E K; Hansen, J B; Crow, V L; Thomas, T D; Honeyman, A L; Curtiss, R
1992-01-01
DNA cloned into Escherichia coli K-12 from a serotype c strain of Streptococcus mutans encodes three enzyme activities for galactose utilization via the tagatose 6-phosphate pathway: galactose 6-phosphate isomerase, tagatose 6-phosphate kinase, and tagatose-1,6-bisphosphate aldolase. The genes coding for the tagatose 6-phosphate pathway were located on a 3.28-kb HindIII DNA fragment. Analysis of the tagatose proteins expressed by recombinant plasmids in minicells was used to determine the sizes of the various gene products. Mutagenesis of these plasmids with transposon Tn5 was used to determine the order of the tagatose genes. Tagatose 6-phosphate isomerase appears to be composed of 14- and 19-kDa subunits. The sizes of the kinase and aldolase were found to be 34 and 36 kDa, respectively. These values correspond to those reported previously for the tagatose pathway enzymes in Staphylococcus aureus and Lactococcus lactis. Images PMID:1328153
Luisi-DeLuca, C; Clark, A J; Kolodner, R D
1988-01-01
Exonuclease VIII (exoVIII) of Escherichia coli has been purified from a strain carrying a plasmid-encoded recE gene by using a new procedure. This procedure yielded 30 times more protein per gram of cells, and the protein had a twofold higher specific activity than the enzyme purified by the previously published procedure (J. W. Joseph and R. Kolodner, J. Biol. Chem. 258:10411-10417, 1983). The sequence of the 12 N-terminal amino acids was also obtained and found to correspond to one of the open reading frames predicted from the nucleic acid sequence of the recE region of Rac (C. Chu, A. Templin, and A. J. Clark, manuscript in preparation). Polyclonal antibodies directed against purified exoVIII were also prepared. Cell-free extracts prepared from strains containing a wide range of chromosomal- or plasmid-encoded point, insertion, and deletion mutations which result in expression of exoVIII were examined by Western blot (immunoblot) analysis. This analysis showed that two point sbcA mutations (sbcA5 and sbcA23) and the sbc insertion mutations led to the synthesis of the 140-kilodalton (kDa) polypeptide of wild-type exoVIII. Plasmid-encoded partial deletion mutations of recE reduced the size of the cross-reacting protein(s) in direct proportion to the size of the deletion, even though exonuclease activity was still present. The analysis suggests that 39 kDa of the 140-kDa exoVIII subunit is all that is essential for exonuclease activity. One of the truncated but functional exonucleases (the pRAC3 exonuclease) has been purified and confirmed to be a 41-kDa polypeptide. The first 18 amino acids from the N terminus of the 41-kDa pRAC3 exonuclease were sequenced and fond to correspond to one of the translational start signals predicted from the nucleotide sequence of radC (Chu et al., in preparation). Images PMID:3056915
Ho, Wing Sze; Yap, Kien-Pong; Yeo, Chew Chieng; Rajasekaram, Ganeswrie; Thong, Kwai Lin
2015-01-01
Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as bla TEM-1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical importance. Such phenomenon is bothersome when the plasmids are transmissible, facilitating the spread of virulence and resistance plasmids among pathogenic bacteria. Notably, certain TA systems are more commonly found in particular ExPEC plasmid types, indicating the possible relationships between certain TA systems and ExPEC pathogenesis.
Yao, Qingxia; Qian, Ping; Huang, Qinfeng; Cao, Yi; Chen, Huanchun
2008-01-01
The P12A3C gene from FMDV (serotype O) encoding the capsid precursor protein, and the highly immunogenic gene FHG, which encodes multiple epitopes of FMDV capsid proteins, were inserted into eukaryotic expression vectors to compare different candidate genetically engineered vaccines for foot-and-mouth disease (FMD). A modified live pseudorabies virus (MLPRV) was also used to deliver P12A3C. Guinea pigs were inoculated intramuscularly with the candidate vaccines to compare the ability to elicit immunity of the DNA vector and a live viral vector. An indirect enzyme-linked immunosorbent assay (iELISA), virus-neutralization test and lymphoproliferation assay were used to detect antibody and cellular responses. The group immunized with P12A3C delivered by MLPRV produced significantly greater antibody and cellular responses indicating that MLPRV has a greater ability to mediate exogenous gene delivery than the plasmid DNA vector. Comparison of the immune responses induced by P12A3C and FHG, which were both mediated by DNA plasmids, showed that FHG and P12A3C elicited similar cellular responses, while P12A3C induced higher antibody levels, suggesting that P12A3C is a more powerful immunogen than FHG. In challenge experiments, guinea pigs vaccinated with P12A3C delivered by MLPRV were protected fully from FMDV challenge, whereas guinea pigs vaccinated with P12A3C or FHG delivered by DNA plasmid were only protected partially. This study provides a basis for future construction of a genetically engineered vaccine for FMDV.
Bröker, Daniel; Arenskötter, Matthias; Legatzki, Antje; Nies, Dietrich H.; Steinbüchel, Alexander
2004-01-01
The complete sequence of the circular 101,016-bp megaplasmid pKB1 from the cis-1,4-polyisoprene-degrading bacterium Gordonia westfalica Kb1, which represents the first described extrachromosomal DNA of a member of this genus, was determined. Plasmid pKB1 harbors 105 open reading frames. The predicted products of 46 of these are significantly related to proteins of known function. Plasmid pKB1 is organized into three functional regions that are flanked by insertion sequence (IS) elements: (i) a replication and putative partitioning region, (ii) a putative metabolic region, and (iii) a large putative conjugative transfer region, which is interrupted by an additional IS element. Southern hybridization experiments revealed the presence of another copy of this conjugational transfer region on the bacterial chromosome. The origin of replication (oriV) of pKB1 was identified and used for construction of Escherichia coli-Gordonia shuttle vectors, which was also suitable for several other Gordonia species and related genera. The metabolic region included the heavy-metal resistance gene cadA, encoding a P-type ATPase. Expression of cadA in E. coli mediated resistance to cadmium, but not to zinc, and decreased the cellular content of cadmium in this host. When G. westfalica strain Kb1 was cured of plasmid pKB1, the resulting derivative strains exhibited slightly decreased cadmium resistance. Furthermore, they had lost the ability to use isoprene rubber as a sole source of carbon and energy, suggesting that genes essential for rubber degradation are encoded by pKB1. PMID:14679241
Pilla, Giulia; McVicker, Gareth; Tang, Christoph M
2017-09-01
Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30 kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segregational killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecular recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV.
Müller, J-M V; Wissemann, J; Meli, M L; Dasen, G; Lutz, H; Heinzerling, L; Feige, K
2011-11-01
Whole blood pharmacokinetics of intratumourally injected naked plasmid DNA coding for equine Interleukin 12 (IL-12) was assessed as a means of in vivo gene transfer in the treatment of melanoma in grey horses. The expression of induced interferon gamma (IFN-g) was evaluated in order to determine the pharmacodynamic properties of in vivo gene transduction. Seven grey horses bearing melanoma were injected intratumourally with 250 µg naked plasmid DNA coding for IL-12. Peripheral blood and biopsies from the injection site were taken at 13 time points until day 14 post injection (p.i.). Samples were analysed using quantitative real-time PCR. Plasmid DNA was quantified in blood samples and mRNA expression for IFN-g in tissue samples. Plasmid DNA showed fast elimination kinetics with more than 99 % of the plasmid disappearing within 36 hours. IFN-g expression increased quickly after IL-12 plasmid injection, but varied between individual horses. Intratumoural injection of plasmid DNA is a feasible method for inducing transgene expression in vivo. Biological activity of the transgene IL-12 was confirmed by measuring expression of IFN-g.
Distinct Mutations Led to Inactivation of Type 1 Fimbriae Expression in Shigella spp.
Bravo, Verónica; Puhar, Andrea; Sansonetti, Philippe; Parsot, Claude; Toro, Cecilia S.
2015-01-01
Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events. PMID:25811616
Venturini, Carola; Hassan, Karl A; Roy Chowdhury, Piklu; Paulsen, Ian T; Walker, Mark J; Djordjevic, Steven P
2013-01-01
Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.
He, Zhuojing; Xu, Juan; Tao, Wei; Fu, Ting; He, Fang; Hu, Ruxi; Jia, Lan; Hong, Yan
2016-08-01
The aim of the present study was to evaluate the efficacy of a herpes simplex virus type 2 (HSV-2) DNA vaccine co‑immunized with a plasmid adjuvant containing CpG motifs. A novel eukaryotic expression plasmid vector containing kanamycin resistance gene (pcDNA3Kan) was acquired from pET‑28a(+) and pcDNA3 plasmids. A gene encoding full length HSV‑2 glycoprotein D (gD) was amplified from the pcDNA3‑gD plasmid, which was cloned into pcDNA3Kan resulting in the construction of the recombinant plasmid pcDNA3Kan‑gD (pgD). A DNA segment containing 8 CpG motifs was synthesized, and cloned into pcDNA3Kan, resulting in the recombinant plasmid pcDNA3Kan‑CpG (pCpG). Mice were co‑inoculated with pgD (used as a DNA vaccine) and pCpG (used as an adjuvant) by bilateral intramuscular injection. Mice inoculated with pgD+pCpG showed higher titers of antibodies than those inoculated with the DNA vaccine alone (P<0.05). In addition, mice inoculated with pgD+pCpG showed the highest percentage of CD4+ T cells in the blood of all the groups (P﹤0.05). Thus, the present study demonstrated that pCpG could stimulate the HSV‑2 DNA vaccine to induce a stronger cell‑mediated immune response than the DNA vaccine alone. The aim of the present study was to evaluate the efficacy of a HSV‑2 DNA vaccine (pgD) co‑immunized with a plasmid adjuvant containing CpG motifs (pCpG). Whether the pCpG would be able to stimulate the pgD to induce a stronger immune response compared with pgD alone.
DNA transformation via local heat shock
NASA Astrophysics Data System (ADS)
Li, Sha; Meadow Anderson, L.; Yang, Jui-Ming; Lin, Liwei; Yang, Haw
2007-07-01
This work describes transformation of foreign DNA into bacterial host cells by local heat shock using a microfluidic system with on-chip, built-in platinum heaters. Plasmid DNA encoding ampicillin resistance and a fluorescent protein can be effectively transformed into the DH5α chemically competent E. coli using this device. Results further demonstrate that only one-thousandth of volume is required to obtain transformation efficiencies as good as or better than conventional practices. As such, this work complements other lab-on-a-chip technologies for potential gene cloning/therapy and protein expression applications.
Perreten, Vincent; Boerlin, Patrick
2003-03-01
A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Delta/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland.
Perreten, Vincent; Boerlin, Patrick
2003-01-01
A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Δ/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland. PMID:12604565
Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida.
Vincent, Antony T; Emond-Rheault, Jean-Guillaume; Barbeau, Xavier; Attéré, Sabrina A; Frenette, Michel; Lagüe, Patrick; Charette, Steve J
2016-06-01
Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids.
Bossé, Janine T; Li, Yanwen; Walker, Stephanie; Atherton, Tom; Fernandez Crespo, Roberto; Williamson, Susanna M; Rogers, Jon; Chaudhuri, Roy R; Weinert, Lucy A; Oshota, Olusegun; Holden, Matt T G; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R
2015-08-01
The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Overexpression, purification, crystallization and preliminary X-ray studies of Vibrio cholerae EpsG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jens, Jason; Raghunathan, Kannan; Vago, Frank
2010-01-12
EpsG is the major pseudopilin protein of the Vibrio cholerae type II secretion system. An expression plasmid that encodes an N-terminally truncated form of EpsG with a C-terminal noncleavable His tag was constructed. Recombinant EpsG was expressed in Escherichia coli; the truncated protein was purified and crystallized by hanging-drop vapor diffusion against a reservoir containing 6 mM zinc sulfate, 60 mM MES pH 6.5, 15% PEG MME 550. The crystals diffracted X-rays to a resolution of 2.26 {angstrom} and belonged to space group P2{sub 1}, with unit-cell parameters a = 88.61, b = 70.02, c = 131.54 {angstrom}.
Genetic transformation of Dichanthium annulatum (Forssk)--an apomictic tropical forage grass.
Dalton, S J; Bettany, A J E; Bhat, V; Gupta, M G; Bailey, K; Timms, E; Morris, P
2003-06-01
Eleven Dichanthium annulatum (Forssk) plants were regenerated from embryogenic callus co-transformed with two plasmids encoding either the hygromycin phosphotransferase gene (hph) or the beta-glucuronidase (GUS) gene (uidA). Analysis of these putative transformants showed that three plants were transformed with the hph gene, showed the presence of the hph transcript and expressed hygromycin resistance after transfer to soil. Two of these also contained the uidA gene but did not express GUS and were shown to be the same transformation event. All three of the transformants set seed. Hygromycin resistance varied from 68-100% in the progeny of the three transformants. Transgene transmission appeared to have been mainly through apomixis.
Falcone, D L; Tabita, F R
1991-01-01
A Rhodobacter sphaeroides ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain was constructed that was complemented by plasmids containing either the form I or form II CO2 fixation gene cluster. This strain was also complemented by genes encoding foreign RubisCO enzymes expressed from a Rhodospirillum rubrum RubisCO promoter. In R. sphaeroides, the R. rubrum promoter was regulated, resulting in variable levels of disparate RubisCO molecules under different growth conditions. Photosynthetic growth of the R. sphaeroides deletion strain complemented with cyanobacterial RubisCO revealed physiological properties reflective of the unique cellular environment of the cyanobacterial enzyme. The R. sphaeroides RubisCO deletion strain and R. rubrum promoter system may be used to assess the properties of mutagenized proteins in vivo, as well as provide a potential means to select for altered RubisCO molecules after random mutagenesis of entire genes or gene regions encoding RubisCO enzymes. Images PMID:1900508
Haney, Matthew J; Zhao, Yuling; Harrison, Emily B; Mahajan, Vivek; Ahmed, Shaheen; He, Zhijian; Suresh, Poornima; Hingtgen, Shawn D; Klyachko, Natalia L; Mosley, R Lee; Gendelman, Howard E; Kabanov, Alexander V; Batrakova, Elena V
2013-01-01
The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.
Haney, Matthew J.; Zhao, Yuling; Harrison, Emily B.; Mahajan, Vivek; Ahmed, Shaheen; He, Zhijian; Suresh, Poornima; Hingtgen, Shawn D.; Klyachko, Natalia L.; Mosley, R. Lee; Gendelman, Howard E.; Kabanov, Alexander V.; Batrakova, Elena V.
2013-01-01
The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders. PMID:23620794
Pasion, S G; Brown, G W; Brown, L M; Ray, D S
1994-12-01
In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.
The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome
Saillard, Colette; Carle, Patricia; Duret-Nurbel, Sybille; Henri, Raphaël; Killiny, Nabil; Carrère, Sébastien; Gouzy, Jérome; Bové, Joseph-Marie; Renaudin, Joël; Foissac, Xavier
2008-01-01
Background Spiroplama citri, the causal agent of citrus stubborn disease, is a bacterium of the class Mollicutes and is transmitted by phloem-feeding leafhopper vectors. In order to characterize candidate genes potentially involved in spiroplasma transmission and pathogenicity, the genome of S. citri strain GII3-3X is currently being deciphered. Results Assembling 20,000 sequencing reads generated seven circular contigs, none of which fit the 1.8 Mb chromosome map or carried chromosomal markers. These contigs correspond to seven plasmids: pSci1 to pSci6, with sizes ranging from 12.9 to 35.3 kbp and pSciA of 7.8 kbp. Plasmids pSci were detected as multiple copies in strain GII3-3X. Plasmid copy numbers of pSci1-6, as deduced from sequencing coverage, were estimated at 10 to 14 copies per spiroplasma cell, representing 1.6 Mb of extrachromosomal DNA. Genes encoding proteins of the TrsE-TraE, Mob, TraD-TraG, and Soj-ParA protein families were predicted in most of the pSci sequences, in addition to members of 14 protein families of unknown function. Plasmid pSci6 encodes protein P32, a marker of insect transmissibility. Plasmids pSci1-5 code for eight different S. citri adhesion-related proteins (ScARPs) that are homologous to the previously described protein P89 and the S. kunkelii SkARP1. Conserved signal peptides and C-terminal transmembrane alpha helices were predicted in all ScARPs. The predicted surface-exposed N-terminal region possesses the following elements: (i) 6 to 8 repeats of 39 to 42 amino acids each (sarpin repeats), (ii) a central conserved region of 330 amino acids followed by (iii) a more variable domain of about 110 amino acids. The C-terminus, predicted to be cytoplasmic, consists of a 27 amino acid stretch enriched in arginine and lysine (KR) and an optional 23 amino acid stretch enriched in lysine, aspartate and glutamate (KDE). Plasmids pSci mainly present a linear increase of cumulative GC skew except in regions presenting conserved hairpin structures. Conclusion The genome of S. citri GII3-3X is characterized by abundant extrachromosomal elements. The pSci plasmids could not only be vertically inherited but also horizontally transmitted, as they encode proteins usually involved in DNA element partitioning and cell to cell DNA transfer. Because plasmids pSci1-5 encode surface proteins of the ScARP family and pSci6 was recently shown to confer insect transmissibility, diversity and abundance of S. citri plasmids may essentially aid the rapid adaptation of S. citri to more efficient transmission by different insect vectors and to various plant hosts. PMID:18442384
Fallico, V; Ross, R P; Fitzgerald, G F; McAuliffe, O
2012-07-01
A collection of 17 natural lactococcal isolates from raw milk cheeses were studied in terms of their plasmid distribution, content, and diversity. All strains in the collection harbored an abundance of plasmids, including Lactococcus lactis ssp. cremoris DPC3758, whose 8-plasmid complement was selected for sequencing. The complete sequences of pAF22 (22,388 kb), pAF14 (14,419 kb), pAF12 (12,067 kb), pAF07 (7,435 kb), and pAF04 (3,801 kb) were obtained, whereas gene functions of technological interest were mapped to pAF65 (65 kb) and pAF45 (45 kb) by PCR. The plasmids of L. lactis DPC3758 were found to encode many genes with the potential to improve the technological properties of dairy starters. These included 3 anti-phage restriction/modification (R/M) systems (1 of type I and 2 of type II) and genes for immunity/resistance to nisin, lacticin 481, cadmium, and copper. Regions encoding conjugative/mobilization functions were present in 6 of the 8 plasmids, including those containing the R/M systems, thus enabling the food-grade transfer of these mechanisms to industrial strains. Using cadmium selection, the sequential stacking of the R/M plasmids into a plasmid-free host provided the recipient with increased protection against 936- and c2-type phages. The association of food-grade selectable markers and mobilization functions on L. lactis DPC3758 plasmids will facilitate their exploitation to obtain industrial strains with enhanced phage protection and robustness. These natural plasmids also provide another example of the major role of plasmids in contributing to host fitness and preservation within its ecological niche. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sacramento, C B; Moraes, J Z; Denapolis, P M A; Han, S W
2010-08-01
The main objective of the present study was to find suitable DNA-targeting sequences (DTS) for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS) and hypoxia-responsive element (HRE) sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF). The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2) and hypoxia (less than 5% O2) were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line) in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.
Mealey, Robert H.; Leib, Steven R.; Littke, Matt H.; Wagner, Bettina; Horohov, David W.; McGuire, Travis C.
2009-01-01
Effective DNA-based vaccines against lentiviruses will likely induce CTL against conserved viral proteins. Equine infectious anemia virus (EIAV) infects horses worldwide, and serves as a useful model for lentiviral immune control. Although attenuated live EIAV vaccines have induced protective immune responses, DNA-based vaccines have not. In particular, DNA-based vaccines have had limited success in inducing CTL responses against intracellular pathogens in the horse. We hypothesized that priming with a codon-optimized plasmid encoding EIAV Gag p15/p26 with co-administration of a plasmid encoding an equine IL-2/IgG fusion protein as a molecular adjuvant, followed by boosting with a vaccinia vector expressing Gag p15/p26, would induce protective Gag-specific CTL responses. Although the regimen induced Gag-specific CTL in four of seven vaccinated horses, CTL were not detected until after the vaccinia boost, and protective effects were not observed in EIAV challenged vaccinates. Unexpectedly, vaccinates had significantly higher viral loads and more severe clinical disease, associated with the presence of vaccine-induced CTL. It was concluded that 1.) further optimization of the timing and route of DNA immunization was needed for efficient CTL priming in vivo, 2.) co-administration of the IL-2/IgG plasmid did not enhance CTL priming by the Gag p15/p26 plasmid, 3.) vaccinia vectors are useful for lentivirus-specific CTL induction in the horse, 4.) Gag-specific CTL alone are either insufficient or a more robust Gag-specific CTL response is needed to limit EIAV viremia and clinical disease, and 5.) CTL-inducing vaccines lacking envelope immunogens can result in lentiviral disease enhancement. Although the mechanisms for enhancement associated with this vaccine regimen remain to be elucidated, these results have important implications for development of lentivirus T cell vaccines. PMID:19368787
Triman, K L
1995-01-01
Mutations that disrupt each of seven specific G-C base pairs in 16S rRNA from Escherichia coli confer loss of expression of a plasmid-encoded 16S rRNA selectable marker (spectinomycin resistance). However, A-U replacement of G-C base pairs at nucleotides 359/52 or 1292/1245 in 16S rRNA permits normal expression of the marker. By contrast, A-U replacements at 146/176, 153/168, 350/339, or 1293/1244 are associated with loss of expression of the marker. These genetic studies are designed to determine the importance of specific base pairs by assessment of the structural and functional impairments of 16S rRNA molecules resulting from expression of base pair substitutions at these positions. PMID:7543481
Pettis, Gregg S.; Prakash, Shubha
1999-01-01
A database search revealed extensive sequence similarity between Streptomyces lividans plasmid pIJ101 and Streptomyces plasmid pSB24.2, which is a deletion derivative of Streptomyces cyanogenus plasmid pSB24.1. The high degree of relatedness between the two plasmids allowed the construction of a genetic map of pSB24.2, consisting of putative transfer and replication loci. Two pSB24.2 loci, namely, the cis-acting locus for transfer (clt) and the transfer-associated korB gene, were shown to be capable of complementing the pIJ101 clt and korB functions, respectively, a result that is consistent with the notion that pIJ101 and the parental plasmid pSB24.1 encode highly similar, if not identical, conjugation systems. PMID:10419972
SapTrap, a Toolkit for High-Throughput CRISPR/Cas9 Gene Modification in Caenorhabditis elegans.
Schwartz, Matthew L; Jorgensen, Erik M
2016-04-01
In principle, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 allows genetic tags to be inserted at any locus. However, throughput is limited by the laborious construction of repair templates and guide RNA constructs and by the identification of modified strains. We have developed a reagent toolkit and plasmid assembly pipeline, called "SapTrap," that streamlines the production of targeting vectors for tag insertion, as well as the selection of modified Caenorhabditis elegans strains. SapTrap is a high-efficiency modular plasmid assembly pipeline that produces single plasmid targeting vectors, each of which encodes both a guide RNA transcript and a repair template for a particular tagging event. The plasmid is generated in a single tube by cutting modular components with the restriction enzyme SapI, which are then "trapped" in a fixed order by ligation to generate the targeting vector. A library of donor plasmids supplies a variety of protein tags, a selectable marker, and regulatory sequences that allow cell-specific tagging at either the N or the C termini. All site-specific sequences, such as guide RNA targeting sequences and homology arms, are supplied as annealed synthetic oligonucleotides, eliminating the need for PCR or molecular cloning during plasmid assembly. Each tag includes an embedded Cbr-unc-119 selectable marker that is positioned to allow concurrent expression of both the tag and the marker. We demonstrate that SapTrap targeting vectors direct insertion of 3- to 4-kb tags at six different loci in 10-37% of injected animals. Thus SapTrap vectors introduce the possibility for high-throughput generation of CRISPR/Cas9 genome modifications. Copyright © 2016 by the Genetics Society of America.
Iacono-Connors, L C; Schmaljohn, C S; Dalrymple, J M
1990-01-01
The gene encoding Bacillus anthracis protective antigen (PA) was modified by site-directed mutagenesis, subcloned into baculovirus and vaccinia virus plasmid transfer vectors (pAcYM1 and pSC-11, respectively), and inserted via homologous recombinations into baculovirus Autographa californica nuclear polyhedrosis virus or vaccinia virus (strains WR and Connaught). Expression of PA was detected in both systems by immunofluorescence assays with antisera from rabbits immunized with B. anthracis PA. Western blot (immunoblot) analysis showed that the expressed product of both systems was slightly larger (86 kilodaltons) than B. anthracis-produced PA (83.5 kilodaltons). Analysis of trypsin digests of virus-expressed and authentic PA suggested that the size difference was due to the presence of a signal sequence remaining with the virus-expressed protein. Immunization of mice with either recombinant baculovirus-infected Spodoptera frugiperda cells or with vaccinia virus recombinants elicited a high-titer, anti-PA antibody response. Images PMID:2105271
Larsen, Rachel A.; Cusumano, Christina; Fujioka, Akina; Lim-Fong, Grace; Patterson, Paula; Pogliano, Joe
2007-01-01
Prokaryotes rely on a distant tubulin homolog, FtsZ, for assembling the cytokinetic ring essential for cell division, but are otherwise generally thought to lack tubulin-like polymers that participate in processes such as DNA segregation. Here we characterize a protein (TubZ) from the Bacillus thuringiensis virulence plasmid pBtoxis, which is a member of the tubulin/FtsZ GTPase superfamily but is only distantly related to both FtsZ and tubulin. TubZ assembles dynamic, linear polymers that exhibit directional polymerization with plus and minus ends, movement by treadmilling, and a critical concentration for assembly. A point mutation (D269A) that alters a highly conserved catalytic residue within the T7 loop completely eliminates treadmilling and allows the formation of stable polymers at a much lower protein concentration than the wild-type protein. When expressed in trans, TubZ(D269A) coassembles with wild-type TubZ and significantly reduces the stability of pBtoxis, demonstrating a direct correlation between TubZ dynamics and plasmid maintenance. The tubZ gene is in an operon with tubR, which encodes a putative DNA-binding protein that regulates TubZ levels. Our results suggest that TubZ is representative of a novel class of prokaryotic cytoskeletal proteins important for plasmid stability that diverged long ago from the ancient tubulin/FtsZ ancestor. PMID:17510284
2006-05-10
nifH encoding plasmids of diazotrophic bacteria isolated from roots of a salt marsh grass. Meeting Abstract, 105th General Meeting of the American...When the method was applied to 100 endogenous plasmids isolated from cultivated marine diazotrophs from salt marsh grass rhizoplane niches remarkably...Beeson, K.E., D.L. Erdner, C.E. Bagwell, C.R. Lovell, and P.A. Sobecky. 2002. Differentiation of plasmids in marine diazotroph assemblages
Involvement of the pagR gene of pXO2 in anthrax pathogenesis
Liang, Xudong; Zhang, Enmin; Zhang, Huijuan; Wei, Jianchun; Li, Wei; Zhu, Jin; Wang, Bingxiang; Dong, Shulin
2016-01-01
Anthrax is a disease caused by Bacillus anthracis. Specifically, the anthrax toxins and capsules encoded by the pXO1 and pXO2 plasmids, respectively, are the major virulence factors. We previously reported that the pXO1 plasmid was retained in the attenuated strain of B. anthracis vaccine strains even after subculturing at high temperatures. In the present study, we reinvestigate the attenuation mechanism of Pasteur II. Sequencing of pXO1 and pXO2 from Pasteur II strain revealed mutations in these plasmids as compared to the reference sequences. Two deletions on these plasmids, one each on pXO1 and pXO2, were confirmed to be unique to the Pasteur II strain as compared to the wild-type strains. Gene replacement with homologous recombination revealed that the mutation in the promoter region of the pagR gene on pXO2, but not the mutation on pXO1, contributes to lethal levels of toxin production. This result was further confirmed by RT-PCR, western blot, and animal toxicity assays. Taken together, our results signify that the attenuation of the Pasteur II vaccine strain is caused by a mutation in the pagR gene on its pXO2 plasmid. Moreover, these data suggest that pXO2 plasmid encoded proteins are involved in the virulence of B. anthracis. PMID:27363681
Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao
2007-01-01
To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.
Ren, Ya-Jun; Huang, Tao; Yu, Hong-Lu; Zhang, Li; He, Qian-Jin; Xiong, Zhi-Fan; Peng, Hua
2016-12-01
This study aimed to investigate the expression of β-catenin in hepatocellular carcinoma (HCC) tissues and its relationship with α-fetoprotein (AFP) in HCC. Immunohistochemistry was used to determine the expression of β-catenin in normal liver tissues (n=10), liver cirrhosis tissues (n=20), and primary HCC tissues (n=60). The relationship between β-catenin expression and clinical parameters of HCC was investigated. Real-time PCR and Western blotting were used to detect the mRNA and protein expression levels of β-catenin in the liver cancer cell line SMMC-7721 transfected with a plasmid encoding AFP, and also the mRNA and protein expression levels of β-catenin were measured in the liver cancer cell line Huh7 before and after the transfection with AFP shRNA plasmids. The results showed that β-catenin was only expressed on the cell membrane in normal liver tissues. Its localization to the cytoplasm and nucleus of cells was observed in a small proportion of cirrhotic tissues or adjacent HCC tissues, and such ectopic expression of β-catenin was predominant in HCC tissues. The abnormal expression of β-catenin was correlated with serum AFP levels, cancer cell differentiation and vascular invasion (P<0.05). Additionally, the increased expression of AFP resulted in the upregulation of β-catenin mRNA and protein levels, while knockdown of AFP with AFP shRNA led to significantly decreased β-catenin mRNA and protein levels (P<0.05). It was suggested that the abnormal expression of β-catenin is implicated in hepatic carcinogenesis and development. AFP can lead to increased expression of β-catenin, which may account for the poor prognosis of AFP-associated HCC patients.
Rauta, Pradipta R; Nayak, Bismita; Monteiro, Gabriel A; Mateus, Marília
2017-01-10
The current investigation aimed at designing DNA vaccines against Aeromonas hydrophila infections. The DNA vaccine candidates were designed to express two antigenic outer membrane protein (Aha1) peptides and to be delivered by a nanoparticle-based delivery system. Gene sequences of conserved regions of antigenic Aha1 [aha1(211-381), aha1(211-381)opt, aha1(703-999) and aha1(703-999)opt] were cloned into pVAX-GFP expression vector. The selected DNA vaccine candidates were purified from E. coli DH5α and transfected into Chinese hamster ovary cells. The expression of the antigenic peptides was measured in cells along post-transfection time, through the fluorescence intensity of the reporter GFP. The lipofection efficiency of aha-pVAX-GFP was highest after 24h incubation. Formulated PLGA-chitosan nanoparticle/plasmid DNA complexes were characterized in terms of size, size distribution and zeta potential. Nanocomplexes with average diameters in the range of 150-170nm transfected in a similar fashion into CHO cells confirmed transfection efficiency comparable to that of lipofection. DNA entrapment and further DNase digestion assays demonstrated ability for pDNA protection by the nanoparticles against enzymatic digestion. Copyright © 2016 Elsevier B.V. All rights reserved.
Rella, M; Watson, J M; Thomas, C M; Haas, D
1987-01-01
A derivative of the broad-host-range plasmid RP1, pME301, was temperature-sensitive (Ts) at 43 degrees C for maintenance in Pseudomonas aeruginosa, P. mendocina, Klebsiella aerogenes and Escherichia coli. In E. coli, the Ts defect of pME301 could be complemented in trans by the cloned trfA gene, which is known to be essential for RP1 replication in E. coli and P. aeruginosa. Because pME301 expressed a Ts phenotype in P. mendocina and K. aerogenes, we assume that the trfA function is also vital in these organisms. When plasmid-encoded carbenicillin resistance (on transposon Tn801) was selected at non-permissive temperatures in P. aeruginosa strain PAO carrying pME301, we obtained either Tn801 insertions into the chromosome or pME301 derivatives having a deletion (or point mutation) in their tet genes, which determine resistance to tetracycline and are not transposable. From cloning experiments, we infer that the tet gene product(s) destabilize the pME301 replicon in P. aeruginosa at 40-43 degrees C.
Kamenšek, Simona; Browning, Douglas F; Podlesek, Zdravko; Busby, Stephen J W; Žgur-Bertok, Darja; Butala, Matej
2015-06-01
Colicins are plasmid-encoded narrow spectrum antibiotics that are synthesized by strains of Escherichia coli and govern intraspecies competition. In a previous report, we demonstrated that the global transcriptional factor IscR, co dependently with the master regulator of the DNA damage response, LexA, delays induction of the pore forming colicin genes after SOS induction. Here we show that IscR is not involved in the regulation of nuclease colicins, but that the AsnC protein is. We report that AsnC, in concert with LexA, is the key controller of the temporal induction of the DNA degrading colicin E8 gene (cea8), after DNA damage. We demonstrate that a large AsnC nucleosome-like structure, in conjunction with two LexA molecules, prevent cea8 transcription initiation and that AsnC binding activity is directly modulated by L asparagine. We show that L-asparagine is an environmental factor that has a marked impact on cea8 promoter regulation. Our results show that AsnC also modulates the expression of several other DNase and RNase colicin genes but does not substantially affect pore-forming colicin K gene expression. We propose that selection pressure has "chosen" highly conserved regulators to control colicin expression in E. coli strains, enabling similar colicin gene silencing among bacteria upon exchange of colicinogenic plasmids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domingo Meza-Aguilar, J.; Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato Oncología e Investigación, Hospital Infantil de México Federico Gómez 06720, D.F.; Fromme, Petra
Highlights: • X-ray crystal structure of the passenger domain of Plasmid encoded toxin at 2.3 Å. • Structural differences between Pet passenger domain and EspP protein are described. • High flexibility of the C-terminal beta helix is structurally assigned. - Abstract: Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause ofmore » acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.« less
Jiang, Xiaobing; Yu, Tao; Liang, Yu; Ji, Shengdong; Guo, Xiaowei; Ma, Jianmin; Zhou, Lijun
2016-01-18
In this study, efflux pump-mediated benzalkonium chloride (BC) resistance, including plasmid-encoded (Qac protein family and BcrABC) and chromosome-borne efflux pumps, was investigated in Listeria monocytogenes from retail food in China. Among the 59 L. monocytogenes strains, 13 (22.0%) strains were resistant to BC. The PCR results showed that bcrABC was harbored by 2 of 13 BC resistant strains. However, none of the qac genes were detected among the 59 strains. The bcrABC was absent in both of the plasmid cured strains, indicating that this BC resistance determinant was plasmid-encoded in the two bcrABC-positive strains. In the presence of reserpine, most of the bcrABC-negative strains had decreases in the MICs of BC, suggesting the existence of other efflux pumps and their role in BC resistance. After exposed to reserpine, the reduction in BC MICs was observed in the two cured strains, indicating that efflux pumps located on chromosome was also involved in BC resistance. Our findings suggest that food products may act as reservoirs for BC resistant isolates of L. monocytogenes and plasmid- and chromosome-encoded efflux pumps could mediate the BC resistance of L. monocytogenes, which is especially relevant to the adaption of this organism in food-related environments with frequent BC use. Copyright © 2015 Elsevier B.V. All rights reserved.
Geyer, Antonia; Taschauer, Alexander; Alioglu, Fatih; Anton, Martina; Maier, Julia; Drothler, Elisabeth; Simlinger, Manuela; Yavuz, Sümeyye; Sami, Haider; Ogris, Manfred
2017-12-01
Local delivery of anticancer agents or gene therapeutics to lung tumors can circumvent side effects or accumulation in non-target organs, but accessibility via the alveolar side of the blood-air barrier remains challenging. Polyplexes based on plasmid and linear polyethylenimine (LPEI) transfect healthy lung tissue when applied intravenously (i.v.) in the mouse, but direct delivery into the lungs results in low transfection of lung tissue. Nevertheless, LPEI could offer the potential to transfect lung tumors selectively, if accessible from the alveolar side. This study combined near infrared fluorescent protein 720 (iRFP720) and firefly luciferase as reporter genes for detection of tumor lesions and transfection efficiency of LPEI polyplexes, after intratracheal microspraying in mice bearing 4T1 triple negative breast cancer lung metastases. Simultaneous flow cytometric analysis of iRFP720 and enhanced green fluorescent protein expression in vitro demonstrated the potential to combine these reporter genes within transfection studies. Polyplex biophysics was characterized by single nanoparticle tracking analysis (NTA) to monitor physical integrity after microspraying in vitro. 4T1 cells were transduced with iRFP720-encoding lentivirus and evaluated by flow cytometry for stable iRFP720 expression. Growth of 4T1-iRFP720 cells was monitored in Balb/c mice by tomographic near infrared imaging, tissue and tumor morphology by computed tomography and magnetic resonance imaging. In 4T1-iRFP720 tumor-bearing mice, intratracheal administration of luciferase-encoding plasmid DNA by LPEI polyplexes resulted in successful tumor transfection, as revealed by bioluminescence imaging.
Pérez-Ramos, Adrian; Werning, Maria L.; Prieto, Alicia; Russo, Pasquale; Spano, Giuseppe; Mohedano, Mari L.; López, Paloma
2017-01-01
Pediococcus parvulus 2.6 secretes a 2-substituted (1,3)-β-D-glucan with prebiotic and immunomodulatory properties. It is synthesized by the GTF glycosyltransferase using UDP-glucose as substrate. Analysis of the P. parvulus 2.6 draft genome revealed the existence of a sorbitol utilization cluster of six genes (gutFRMCBA), whose products should be involved in sorbitol utilization and could generate substrates for UDP-glucose synthesis. Southern blot hybridization analysis showed that the cluster is located in a plasmid. Analysis of metabolic fluxes and production of the exopolysaccharide revealed that: (i) P. parvulus 2.6 is able to metabolize sorbitol, (ii) sorbitol utilization is repressed in the presence of glucose and (iii) sorbitol supports the synthesis of 2-substituted (1,3)-β-D-glucan. The sorbitol cluster encodes two putative regulators, GutR and GutM, in addition to a phosphoenolpyruvate-dependent phosphotransferase transport system and sorbitol-6-phosphate dehydrogenase. Therefore, we investigated the involvement of GutR and GutM in the expression of gutFRMCBA. The promoter-probe vector pRCR based on the mrfp gene, which encodes the fluorescence protein mCherry, was used to test the potential promoter of the cluster (Pgut) and the genes encoding the regulators. This was performed by transferring by electrotransformation the recombinant plasmids into two hosts, which metabolize sorbitol: Lactobacillus plantarum and Lactobacillus casei. Upon growth in the presence of sorbitol, but not of glucose, only the presence of Pgut was required to support expression of mrfp in L. plantarum. In L. casei the presence of sorbitol in the growth medium and the pediococcal gutR or gutR plus gutM in the genome was required for Pgut functionality. This demonstrates that: (i) Pgut is required for expression of the gut cluster, (ii) Pgut is subjected to catabolic repression in lactobacilli, (iii) GutR is an activator, and (iv) in the presence of sorbitol, trans-complementation for activation of Pgut exists in L. plantarum but not in L. casei. PMID:29259592
PSI:Biology-Materials Repository: A Biologist’s Resource for Protein Expression Plasmids
Cormier, Catherine Y.; Park, Jin G.; Fiacco, Michael; Steel, Jason; Hunter, Preston; Kramer, Jason; Singla, Rajeev; LaBaer, Joshua
2011-01-01
The Protein Structure Initiative:Biology-Materials Repository (PSI:Biology-MR; MR; http://psimr.asu.edu) sequence-verifies, annotates, stores, and distributes the protein expression plasmids and vectors created by the Protein Structure Initiative (PSI). The MR has developed an informatics and sample processing pipeline that manages this process for thousands of samples per month from nearly a dozen PSI centers. DNASU (http://dnasu.asu.edu), a freely searchable database, stores the plasmid annotations, which include the full-length sequence, vector information, and associated publications for over 130,000 plasmids created by our laboratory, by the PSI and other consortia, and by individual laboratories for distribution to researchers worldwide. Each plasmid links to external resources, including the PSI Structural Biology Knowledgebase (http://sbkb.org), which facilitates cross-referencing of a particular plasmid to additional protein annotations and experimental data. To expedite and simplify plasmid requests, the MR uses an expedited material transfer agreement (EP-MTA) network, where researchers from network institutions can order and receive PSI plasmids without institutional delays. Currently over 39,000 protein expression plasmids and 78 empty vectors from the PSI are available upon request from DNASU. Overall, the MR’s repository of expression-ready plasmids, its automated pipeline, and the rapid process for receiving and distributing these plasmids more effectively allows the research community to dissect the biological function of proteins whose structures have been studied by the PSI. PMID:21360289
Lampel, J S; Aphale, J S; Lampel, K A; Strohl, W R
1992-01-01
The gene encoding a novel milk protein-hydrolyzing proteinase was cloned on a 6.56-kb SstI fragment from Streptomyces sp. strain C5 genomic DNA into Streptomyces lividans 1326 by using the plasmid vector pIJ702. The gene encoding the small neutral proteinase (snpA) was located within a 2.6-kb BamHI-SstI restriction fragment that was partially sequenced. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 15,740, which corresponds very closely with the relative molecular mass of the purified protein (15,500) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified neutral proteinase was determined, and the DNA encoding this sequence was found to be located within the sequenced DNA. The deduced amino acid sequence contains a conserved zinc binding site, although secondary ligand binding and active sites typical of thermolysinlike metalloproteinases are absent. The combination of its small size, deduced amino acid sequence, and substrate and inhibition profile indicate that snpA encodes a novel neutral proteinase. Images PMID:1569011
Kyostio-Moore, Sirkka; Berthelette, Patricia; Cornell, Cathleen Sookdeo; Nambiar, Bindu; Figueiredo, Monica Dias
2018-05-01
OBJECTIVE To evaluate gene transfer of recombinant adeno-associated viral (rAAV) vectors with AAV2 or AAV5 capsid and encoding hyaluronic acid (HA) synthase-2 (HAS2) into joints of healthy dogs. ANIMALS 22 purpose-bred Beagles. PROCEDURES Plasmid expression cassettes encoding canine HAS2 (cHAS2) were assessed in vitro for concentration and molecular size of secreted HA. Thereafter, rAAV2-cHAS2 vectors at 3 concentrations and rAAV5-cHAS2 vectors at 1 concentration were each administered intra-articularly into the left stifle joint of 5 dogs; 2 dogs received PBS solution instead. Synovial fluid HA concentration and serum and synovial fluid titers of neutralizing antibodies against AAV capsids were measured at various points. Dogs were euthanized 28 days after treatment, and cartilage and synovium samples were collected for vector DNA and mRNA quantification and histologic examination. RESULTS Cell transfection with plasmids encoding cHAS2 resulted in an increase in production and secretion of HA in vitro. In vivo, the rAAV5-cHAS2 vector yielded uniform genome transfer and cHAS2 expression in collected synovium and cartilage samples. In contrast, rAAV2-cHAS2 vectors were detected inconsistently in synovium and cartilage samples and failed to produce clear dose-related responses. Histologic examination revealed minimal synovial inflammation in joints injected with rAAV vectors. Neutralizing antibodies against AAV capsids were detected in serum and synovial fluid samples from all vector-treated dogs. CONCLUSIONS AND CLINICAL RELEVANCE rAAV5-mediated transfer of the gene for cHAS2 into healthy joints of dogs by intra-articular injection appeared safe and resulted in vector-derived cHAS2 production by synoviocytes and chondrocytes. Whether this treatment may increase HA production by synoviocytes and chondrocytes in osteoarthritic joints remains to be determined.
Botts, Ryan T.; Apffel, Brooke A.; Walters, C. J.; Davidson, Kelly E.; Echols, Ryan S.; Geiger, Michael R.; Guzman, Victoria L.; Haase, Victoria S.; Montana, Michal A.; La Chat, Chip A.; Mielke, Jenna A.; Mullen, Kelly L.; Virtue, Cierra C.; Brown, Celeste J.; Top, Eva M.; Cummings, David E.
2017-01-01
Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, β-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like β-lactamase (blaWDC-1), which shares less than 62% amino acid sequence identity with the PDC class of β-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic blaCTX-M-55 extended-spectrum β-lactamase downstream of ISEcp1. Our results indicate that urban coastal wetlands are reservoirs of diverse self-transmissible and mobilizable plasmids of relevance to human health. PMID:29067005
Ruwona, Tinashe B; Xu, Haiyue; Li, Junwei; Diaz-Arévalo, Diana; Kumar, Amit; Zeng, Mingtao; Cui, Zhengrong
2016-05-03
Botulinum neurotoxin (BoNT) is a lethal neurotoxin, for which there is currently not an approved vaccine. Recent efforts in developing vaccine candidates against botulism have been directed at the heavy chain fragment of BoNT, because antibodies against this region have been shown to prevent BoNT from binding to its receptor and thus to nerve cell surface, offering protection against BoNT intoxication. In the present study, it was shown that immunization with plasmid DNA that encodes the 50 KDa C-terminal fragment of the heavy chain of BoNT serotype C (i.e., BoNT/C-Hc50) and is carried by cationic poly (lactic-co-glycolic) acid (PLGA) nanoparticles induces stronger BoNT/C-specific antibody responses, as compared to immunization with the plasmid alone. Importantly, the antibodies have BoNT/C-neutralizing activity, protecting the immunized mice from a lethal dose of BoNT/C challenge. A plasmid DNA vaccine encoding the Hc50 fragments of BoNT serotypes that cause human botulism may represent a viable vaccine candidate for protecting against botulinum neurotoxin intoxication.
Takamitsu, Ito; Fukui, Yasuo; Ono, Noriaki; Ikeda, Fumiaki; Kanayama, Akiko; Kobayashi, Intetsu
2013-03-01
Metallo-beta-lactamase (MBL) producing Serratia marcescens isolate was recovered from a study patient in September, 2007 in whom MBL non-producing S. marcescens had been isolated 2 months previously. Two S. marcescens isolates recovered from the study patient showed the same pulsed-field gel electrophoresis (PFGE) pattern. Seven S. marcescens isolates were recovered from other patients in our hospital during August, 2007 and November, 2007. Five of the seven isolates produced MBL. All of the MBL-producing isolates showed the same PFGE pattern and harbored plasmids of the same size and bla(IMP) genes. The bla(IMP) genes were easily transferred to Escherichia coli DH5alpha by transformation of a plasmid purified from the MBL-producing isolate. Those transformation experiments suggested that bla(IMP) genes were encoded by the plasmid. From these observations, it was speculated that the MBL non-producing S. marcescens isolate recovered from the study patient had acquired the plasmid which encoded bla(IMP) genes and a monoclone of MBL-producing S. marcescens spread horizontally in our hospital.
Williams, Laura E; Wireman, Joy; Hilliard, Valda C; Summers, Anne O
2013-01-01
Plasmids are important in evolution and adaptation of host bacteria, yet we lack a comprehensive picture of their own natural variation. We used replicon typing and RFLP analysis to assess diversity and distribution of plasmids in the ECOR, SARA, SARB and SARC reference collections of Escherichia coli and Salmonella. Plasmids, especially large (≥30 kb) plasmids, are abundant in these collections. Host species and genotype clearly impact plasmid prevalence; plasmids are more abundant in ECOR than SAR, but, within ECOR, subgroup B2 strains have the fewest large plasmids. The majority of large plasmids have unique RFLP patterns, suggesting high variation, even within dominant replicon families IncF and IncI1. We found only four conserved plasmid types within ECOR, none of which are widely distributed. Within SAR, conserved plasmid types are primarily serovar-specific, including a pSLT-like plasmid in 13 Typhimurium strains. Conservation of pSLT contrasts with variability of other plasmids, suggesting evolution of serovar-specific virulence plasmids is distinct from that of most enterobacterial plasmids. We sequenced a conserved serovar Heidelberg plasmid but did not detect virulence or antibiotic resistance genes. Our data illustrate the high degree of natural variation in large plasmids of E. coli and Salmonella, even among plasmids sharing backbone genes. Copyright © 2012 Elsevier Inc. All rights reserved.
Bharati, Kaushik; Appaiahgari, Mohan Babu; Vrati, Sudhanshu
2005-01-01
We have previously shown that immunization of mice with plasmid pMEa synthesizing Japanese encephalitis virus (JEV) envelope protein induced anti-JEV humoral and cellular immune responses. We now show that intra-muscular co-administration of mice with pMEa and pGM-CSF, encoding murine granulocyte-macrophage colony-stimulating factor or pIL-2, encoding murine interleukin-2 given 4 days after pMEa, augmented anti-JEV antibody titers. This did not enhance the level of protection in immunized mice against JEV. However, intra-dermal co-administration of pMEa and pGM-CSF in mice using the gene gun, enhanced anti-JEV antibody titers resulting in an increased level of protection in mice against lethal JEV challenge.
Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji
2013-01-01
Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.
Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.
Hosseinkhani, Hossein; Tabata, Yasuhiko
2005-11-28
This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in the tumor tissue injected with the PEG-introduced cationized dextran-plasmid DNA complex plus the subsequent US irradiation. We conclude that complexation with the PEG-introduced cationized dextran combined with US irradiation is a promising way to target the plasmid DNA to the tumor for gene expression.
Paul, Deepjyoti; Ingti, Birson; Bhattacharjee, Dibyojyoti; Maurya, Anand Prakash; Dhar, Debadatta; Chakravarty, Atanu; Bhattacharjee, Amitabha
2017-05-01
The bla OXA-23 group was considered as the first group of OXA-type β-lactamases conferring carbapenem resistance and has been reported worldwide in Acinetobacter baumannii, however their presence in Escherichia coli is very rare and unique. This study describes an unusual occurrence of bla OXA-23 in 14 clinical isolates of E. coli obtained from intensive care unit patients admitted to a tertiary referral hospital in India. The bla OXA-23 gene was found located within a self-conjugative plasmid of IncF rep B and IncK incompatibility types and simultaneously carrying bla CTX-M-15 , bla VEB-1 , bla PER-1 and/or bla NDM-1 . The copy number of bla OXA-23 within the IncK-type plasmid was inversely proportional to increasing concentrations of imipenem, whereas in the case of the IncF rep B-type the result was variable; and increased copy number of the IncK-type plasmid was observed with increasing concentrations of meropenem. Plasmids encoding bla OXA-23 could be successfully eliminated after single treatment and were found to be not highly stable, as complete loss of plasmids was observed within 5-10 days. This study emphasises that carbapenem stress invariably altered the copy number of two different Inc type plasmids encoding the bla OXA-23 resistance gene and also highlights a potential threat of clonal expansion of this class D carbapenemase through a heterologous host in this country, which is in second incidence globally. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Bergsveinson, Jordyn; Ziola, Barry
2017-12-01
Beer-spoilage-related lactic acid bacteria (BSR LAB) belong to multiple genera and species; however, beer-spoilage capacity is isolate-specific and partially acquired via horizontal gene transfer within the brewing environment. Thus, the extent to which genus-, species-, or environment- (i.e., brewery-) level genetic variability influences beer-spoilage phenotype is unknown. Publicly available Lactobacillus brevis genomes were analyzed via BlAst Diagnostic Gene findEr (BADGE) for BSR genes and assessed for pangenomic relationships. Also analyzed were functional coding capacities of plasmids of LAB inhabiting extreme niche environments. Considerable genetic variation was observed in L. brevis isolated from clinical samples, whereas 16 candidate genes distinguish BSR and non-BSR L. brevis genomes. These genes are related to nutrient scavenging of gluconate or pentoses, mannose, and metabolism of pectin. BSR L. brevis isolates also have higher average nucleotide identity and stronger pangenome association with one another, though isolation source (i.e., specific brewery) also appears to influence the plasmid coding capacity of BSR LAB. Finally, it is shown that niche-specific adaptation and phenotype are plasmid-encoded for both BSR and non-BSR LAB. The ultimate combination of plasmid-encoded genes dictates the ability of L. brevis to survive in the most extreme beer environment, namely, gassed (i.e., pressurized) beer.
Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.
Merkl, Claudia; Saalfrank, Anja; Riesen, Nathalie; Kühn, Ralf; Pertek, Anna; Eser, Stefan; Hardt, Markus Sebastian; Kind, Alexander; Saur, Dieter; Wurst, Wolfgang; Iglesias, Antonio; Schnieke, Angelika
2013-01-01
Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.
Cheng, Jun; Ye, Ying; Wang, Ying-ying; Li, Hui; Li, Xu; Li, Jia-bin
2008-02-01
The aim of the present study was to study the phenotypic and molecular characterization of 5 novel CTX-M-beta-1actamases carried by 5 Klebsiella pneumoniae isolates and 3 Escherichia coli isolates collected from 4 hospitals in Hefei, China. The purified PCR products were ligated with pGEM-Teasy vectors, expressed, and sequenced. The complete genes of the CTX-M-beta-lactamases were ligated with the pHSG398 vector to express prokaryotic recombinant proteins. Plasmids were extracted by rapid alkaline lysis protocol, and the PCR method was performed to determine whether the prokaryotic expression was successful or not. Antimicrobial susceptibility was tested and the phenotypes of transformants were determined according to criteria recommended by the Clinical and Laboratory Standards Institute. The kinetic parameters of enzymes were confirmed. The isoelectric points (pI) were determined by isoelectric focusing assay. Pulsed-field gel electrophoresis and plasmid profiling were performed. The PCR products had 1101 nucleotides and were determined as CTX-M-46, CTX-M-47, CTX-M-48, CTX-M-49, and CTX-M-50. All strains were resistant to cefotaxime, but most of them were susceptible or intermediate to ceftazidime. The phenotypes of novel enzymes were determined as extended-spectrum-beta-lactamases (ESBL). Penicillin G, cephalothin, cefuroxime, and cefotaxime were determined to good substrates, whereas ceftazidime hydrolysis was not detected. The pI of the 5 novel CTX-M-beta-lactamases were 8.0. CTX-M-derivatives could be the multiplex genesis in our area. This is the first report of these 5 novel plasmid-mediated CTX-M ESBL produced from China in the world. Molecular typing reveals notably different origin in genes encoding different CTX-M variants of 8 strains.
Rodriguez, Alberto; Martínez, Juan A; Millard, Pierre; Gosset, Guillermo; Portais, Jean-Charles; Létisse, Fabien; Bolivar, Francisco
2017-06-01
Metabolic engineering strategies applied over the last two decades to produce shikimate (SA) in Escherichia coli have resulted in a battery of strains bearing many expression systems. However, the effects that these systems have on the host physiology and how they impact the production of SA are still not well understood. In this work we utilized an engineered E. coli strain to determine the consequences of carrying a vector that promotes SA production from glucose with a high-yield but that is also expected to impose a significant cellular burden. Kinetic comparisons in fermentors showed that instead of exerting a negative effect, the sole presence of the plasmid increased glucose consumption without diminishing the growth rate. By constitutively expressing a biosynthetic operon from this vector, the more active glycolytic metabolism was exploited to redirect intermediates toward the production of SA, which further increased the glucose consumption rate and avoided excess acetate production. Fluxomics and metabolomics experiments revealed a global remodeling of the carbon and energy metabolism in the production strain, where the increased SA production reduced the carbon available for oxidative and fermentative pathways. Moreover, the results showed that the production of SA relies on a specific setup of the pentose phosphate pathway, where both its oxidative and non-oxidative branches are strongly activated to supply erythrose-4-phosphate and balance the NADPH requirements. This work improves our understanding of the metabolic reorganization observed in E. coli in response to the plasmid-based expression of the SA biosynthetic pathway. Biotechnol. Bioeng. 2017;114: 1319-1330. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep.
Manoj, Sharmila; Griebel, Philip J; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia
2003-01-15
CD40-CD154 interactions play an important role in regulating humoral and cell-mediated immune responses. Recently, these interactions have been exploited for the development of therapeutic and preventive treatments. The objective of this study was to test the ability of bovine CD154 to target a plasmid-encoded Ag to CD40-expressing APCs. To achieve this, a plasmid coding for bovine CD154 fused to a truncated secreted form of bovine herpesvirus 1 glycoprotein D (tgD), pSLIAtgD-CD154, was constructed. The chimeric tgD-CD154 was expressed in vitro in COS-7 cells and reacted with both glycoprotein D- and CD154-specific Abs. Both tgD and tgD-CD154 were capable of binding to epithelial cells, whereas only tgD-CD154 bound to B cells. Furthermore, dual-labeling of ovine PBMCs revealed that tgD-CD154 was bound by primarily B cells. The functional integrity of the tgD-CD154 chimera was confirmed by the induction of both IL-4-dependent B cell proliferation and tgD-specific lymphoproliferative responses in vitro. Finally, sheep immunized with pSLIAtgD-CD154 developed a more rapid primary tgD-specific Ab response and a significantly stronger tgD-specific secondary response when compared with animals immunized with pSLIAtgD and control animals. Similarly, virus-neutralizing Ab titers were significantly higher after secondary immunization with pSLIAtgD-CD154. These results demonstrate that using CD154 to target plasmid-expressed Ag can significantly enhance immune responses induced by a DNA vaccine.
Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.
Antimicrobial resistance inStaphylococcus aureuspresents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at theoriTregion of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by themore » full 665-residue NES proteinin vitro. Second, pSK156 and pCA347 are nonconjugativeStaphylococcus aureusplasmids that contain sequences similar to theoriTregion of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate theoriTsequences of these nonconjugative plasmidsin vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognateoriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variantoriTmimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-likeoriT. These data indicate that the conjugative relaxase intransmechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids. IMPORTANCEUnderstanding the mechanism of antimicrobial resistance transfer in bacteria such asStaphylococcus aureusis an important step toward potentially slowing the spread of antimicrobial-resistant infections. This work establishes protein-DNA interactions essential for the transfer of theStaphylococcus aureusmultiresistance plasmid pSK41 by its relaxase, NES. This enzyme also processed variantoriT-like sequences found on numerous plasmids previously considered nontransmissible, suggesting that in conjunction with an uncharacterized accessory protein, these plasmids may be transferred horizontally via a relaxase intransmechanism. These findings have important implications for our understanding of staphylococcal resistance plasmid evolution.« less
Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin
2015-10-01
To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.
Nilsen, E; Haldorsen, B C; Sundsfjord, A; Simonsen, G S; Ingebretsen, A; Naseer, U; Samuelsen, O
2013-11-01
We investigated the prevalence of extended-spectrum β-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates from 19 hospital laboratories in Norway during 2011. A total of 62/230 (27%) isolates were resistant to third-generation cephalosporins and four (1.7%) were ESBL-positive; blaCTX -M-15 (n = 3) and blaSHV -12 (n = 1). This is comparable to the prevalence of ESBLs in clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway during the same period. All ESBL-positive isolates were multidrug resistant (MDR) and harboured plasmid-mediated quinolone resistance. Three isolates supported transfer of large IncHI2-plasmids harbouring ESBL- and MDR-encoding genes to E. coli recipients by in vitro conjugation. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Abruzzi, Katharine; Denome, Sylvia; Olsen, Jens Raabjerg; Assenholt, Jannie; Haaning, Line Lindegaard; Jensen, Torben Heick; Rosbash, Michael
2007-01-01
Genetic screens in Saccharomyces cerevisiae provide novel information about interacting genes and pathways. We screened for high-copy-number suppressors of a strain with the gene encoding the nuclear exosome component Rrp6p deleted, with either a traditional plate screen for suppressors of rrp6Δ temperature sensitivity or a novel microarray enhancer/suppressor screening (MES) strategy. MES combines DNA microarray technology with high-copy-number plasmid expression in liquid media. The plate screen and MES identified overlapping, but also different, suppressor genes. Only MES identified the novel mRNP protein Nab6p and the tRNA transporter Los1p, which could not have been identified in a traditional plate screen; both genes are toxic when overexpressed in rrp6Δ strains at 37°C. Nab6p binds poly(A)+ RNA, and the functions of Nab6p and Los1p suggest that mRNA metabolism and/or protein synthesis are growth rate limiting in rrp6Δ strains. Microarray analyses of gene expression in rrp6Δ strains and a number of suppressor strains support this hypothesis. PMID:17101774
Liu, Lu; Feng, Yu; McNally, Alan; Zong, Zhiyong
2018-06-14
New Delhi MBL (NDM) is a type of carbapenemase; 20 variants of NDM have been identified to date. We have found a new variant of NDM, NDM-21, and describe it here. A carbapenem-resistant Escherichia coli was subjected to WGS using an Illumina X10 sequencer to identify the antimicrobial resistance genes and its ST. The gene encoding the new variant of NDM was cloned into E. coli DH5α, with blaNDM-5 being cloned as the control. Transformants were tested for susceptibility to carbapenems. Mating was performed to obtain the plasmid carrying the new blaNDM gene and the complete plasmid sequence was obtained using long-read MinION sequencing. The E. coli isolate belonged to ST617 and phylogenetic group A. It had a gene encoding NDM-21, a new NDM variant. NDM-21 differs from NDM-5 by a Gly-to-Ser amino acid substitution at position 69 (G69S). NDM-21 retains the same activity against carbapenems as NDM-5. blaNDM-21 is carried by a 46.1 kb IncX3 plasmid, which is self-transmissible, and is located in a complex genetic context as blaNDM-5. The isolate also carried blaCTX-M-55, which encodes an ESBL conferring resistance to aztreonam (which completed its resistance to all clinically available β-lactams), and rmtB, which mediates high-level resistance to aminoglycosides, on an IncFII plasmid. A new NDM variant has been identified and blaNDM-21 has evolved from blaNDM-5 on an IncX3 plasmid.
Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B†
Eaton, Richard W.
2001-01-01
Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains. PMID:11371533
Chen, Tingfang; Luo, Na; Xie, Huaping; Wu, Xiushan; Deng, Yun
2010-02-01
In an effort to generate a desired expression construct for making heart-specific expression transgenic zebrafish, a Tol2 plasmid, which can drive EGFP reporter gene specifically expressed in the heart, was modified using subcloning technology. An IRES fragment bearing multiple cloning site (MCS) was amplified directly from pIRES2-EGFP plasmid and was inserted between the CMLC2 promoter and EGFP fragment of the pDestTol2CG vector. This recombinant expression plasmid pTol2-CMLC2-IRES-EGFP can drive any interested gene specifically expressed in the zebrafish heart along with EGFP reporter gene. To test the effectiveness of this new expression plasmid, we constructed pTol2-CMLC2-RED-IRES-EGFP plasmid by inserting another reporter gene DsRed-Monome into MCS downstream of the CMLC2 promoter and injected this transgenic recombinant plasmid into one-cell stage embryos of zebrafish. Under fluorescence microscope, both the red fluorescence and the green fluorescence produced by pTol2-CMLC2-RED-IRES-EGFP were detected specifically in the heart tissue in the same expression pattern. This novel expression construct pTol2-CMLC2-IRES-EGFP will become an important tool for our research on identifying heart development candidate genes' function using zebrafish as a model.
Overexpression, purification, crystallization and preliminary X-ray studies of Vibrio cholerae EpsG
Jens, Jason; Raghunathan, Kannan; Vago, Frank; Arvidson, Dennis
2009-01-01
EpsG is the major pseudopilin protein of the Vibrio cholerae type II secretion system. An expression plasmid that encodes an N-terminally truncated form of EpsG with a C-terminal noncleavable His tag was constructed. Recombinant EpsG was expressed in Escherichia coli; the truncated protein was purified and crystallized by hanging-drop vapor diffusion against a reservoir containing 6 mM zinc sulfate, 60 mM MES pH 6.5, 15% PEG MME 550. The crystals diffracted X-rays to a resolution of 2.26 Å and belonged to space group P21, with unit-cell parameters a = 88.61, b = 70.02, c = 131.54 Å. PMID:19478449
Expression Plasmids for Use in Candida glabrata
Zordan, Rebecca E.; Ren, Yuxia; Pan, Shih-Jung; Rotondo, Giuseppe; Peñas, Alejandro De Las; Iluore, Joseph; Cormack, Brendan P.
2013-01-01
We describe a series of CEN/ARS episomal plasmids containing different Candida glabrata promoters, allowing for a range of constitutive or regulated expression of proteins in C. glabrata. The set of promoters includes three constitutive promoters (EGD2pr, HHT2pr, PDC1pr), two macrophage/phagocytosis-induced promoters (ACO2pr, LYS21pr), and one nutritionally regulated promoter (MET3pr). Each promoter was cloned into two plasmid backbones that differ in their selectable marker, URA3, or the dominant-selectable NAT1 gene, which confers resistance to the drug nourseothricin. Expression from the 12 resulting plasmids was assessed using GFP as a reporter and flow cytometry or quantitative reverse-transcription polymerase chain reaction to assess expression levels. Together this set of plasmids expands the toolkit of expression vectors available for use with C. glabrata. PMID:23934995
Arif, Amina; Rashid, Naeem; Aslam, Farheen; Mahmood, Nasir; Akhtar, Muhammad
2016-03-01
Human interferon α-2b and Escherichia coli methionine amino peptidase genes were cloned independently as well as bicistronically in expression plasmid pET-21a (+). Production of human interferon α-2b was comparable to that of E. coli methionine amino peptidase when these genes were expressed independently in E. coli BL21-CodonPlus (DE3)-RIL. However, human interferon α-2b was produced in a much less amount whereas there was no difference in the production of methionine amino peptidase when the encoding genes were expressed bicistronically. It is important to note that human interferon α-2b was the first gene in order, after the promoter and E. coli methionine amino peptidase was the next with a linker sequence of 27 nucleotides between them.
Morris, C J; Lidstrom, M E
1992-01-01
In Methylobacterium extorquens AM1, gene encoding methanol dehydrogenase polypeptides are transcriptionally regulated in response to C1 compounds, including methanol (M. E. Lidstrom and D. I. Stirling, Annu. Rev. Microbiol. 44:27-57, 1990). In order to study this regulation, a transcriptional fusion has been constructed between a beta-galactosidase reporter gene and a 1.55-kb XhoI-SalI fragment of M. extorquens AM1rif DNA encoding the N terminus of the methanol dehydrogenase large subunit (moxF) and 1,289 bp of upstream DNA. The fusion exhibited orientation-specific promoter activity in M. extorquens AM1rif but was expressed constitutively when the transcriptional fusion was located on the plasmid. However, correct regulation was restored when the construction was inserted in the M. extorquens AM1rif chromosome. This DNA fragment was shown to contain both the moxFJGI promoter and the sequences necessary in cis for its transcriptional regulation by methanol. Transcription from this promoter was studied in the M. extorquens AM1rif moxB mutant strains UV4rif and UV25rif, which have a pleiotropic phenotype with regard to the components of methanol oxidation. In these mutants, beta-galactosidase activity from the fusion was reduced to a level equal to that of the vector background when the fusion was present in both plasmid and chromosomal locations. Since both constitutive and methanol-inducible promoter activities were lost in the mutants, moxB appears to be required for transcription of the genes encoding the methanol dehydrogenase polypeptides. Images PMID:1624436
Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada
2002-07-01
Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.
Newman, Laura E; Schiavon, Cara; Kahn, Richard A
2016-01-01
We describe the construction and uses of a series of plasmids for directing expression to varied levels of exogenous proteins targeted to the mitochondrial matrix or intermembrane space. We found that the level of protein expression achieved, the kinetics of expression and mitochondrial import, and half-life after import can each vary with the protein examined. These factors should be considered when directing localization of an exogenous protein to mitochondria for rescue, proteomics, or other approaches. We describe the construction of a collection of plasmids for varied expression of proteins targeted to the mitochondrial matrix or intermembrane space, using previously defined targeting sequences and strength CMV promoters. The limited size of these compartments makes them particularly vulnerable to artifacts from over-expression. We found that different proteins display different kinetics of expression and import that should be considered when analyzing results from this approach. Finally, this collection of plasmids has been deposited in the Addgene plasmid repository to facilitate the ready access and use of these tools.
1986-11-26
cloning at the SalI site of pUCI8 vector DNA, iii) by treatment with EcoRl DNA methylase, ligation to EcoRI and cloning at the EcoRl site of pUCI8...cDNA to synthetic Sail linker 10 2.3.10 Treatment of DEN-2 cDNA with EcoRi methylase, followed 10 by ligation to EcoRI linkers and digestion with...picked by the mini plasmid preparation method as described in Maniatis et al. (1982). The procedure followed involved briefly treatment with a
Ssb1 chaperone is a [PSI+] prion-curing factor.
Chacinska, A; Szczesniak, B; Kochneva-Pervukhova, N V; Kushnirov, V V; Ter-Avanesyan, M D; Boguta, M
2001-04-01
Yeast SUP7' or SUP11 nonsense suppressors have no phenotypic expression in strains deficient in the isopentenylation of A37 in tRNA. Here we show that such strains spontaneously produce cells with a nonsense suppressor phenotype which is related to the cytoplasmically inherited determinant and manifests all the key features of the [PSI+] prion. A screen of a multicopy yeast genomic library for genes that inactivate the [PSI+]-related suppressor phenotype resulted in the isolation of the SSB1 gene. Moreover, we demonstrate that multicopy plasmid encoding the Ssb1 chaperone cures cells of the [PSI+] prion.
Nomura, Takahiro; Tanimoto, Koichi; Shibayama, Keigo; Arakawa, Yoshichika; Fujimoto, Shuhei; Ike, Yasuyoshi; Tomita, Haruyoshi
2012-12-01
Five VanN-type vancomycin-resistant Enterococcus faecium strains were isolated from a sample of domestic chicken meat in Japan. All isolates showed low-level resistance to vancomycin (MIC, 12 mg/liter) and had the same pulsed-field gel electrophoresis profile. The vancomycin resistance was encoded on a large plasmid (160 kbp) and was expressed constitutively. The VanN-type resistance operon was identical to the first resistance operon to be reported, with the exception of a 1-bp deletion in vanT(N) and a 1-bp substitution in vanS(N).
Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†
Russell, W. M.; Klaenhammer, T. R.
2001-01-01
The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918
Tsukagoshi, Y; Nikawa, J; Hosaka, K; Yamashita, S
1991-01-01
The coding region of the CCT gene from the yeast Saccharomyces cerevisiae was cloned into the pUC18 expression vector. The plasmid directed the synthesis of an active cholinephosphate cytidylyltransferase in Escherichia coli, confirming that CCT is the structural gene for this enzyme. The enzyme produced in E. coli efficiently utilized cholinephosphate and N,N-dimethylethanolaminephosphate, but N-methylethanolamine-phosphate and ethanolaminephosphate were poor substrates. Consistently, disruption of the CCT locus in the wild-type yeast cells resulted in a drastic decrease in activities with respect to the former two substrates. When activity was expressed in E. coli, over 90% was recovered in the cytosol, whereas most of the activity of yeast cells was associated with membranes, suggesting that yeast cells possess a mechanism that promotes membrane association of cytidylyltransferase. Images PMID:1848222
Ni, Lisheng; Jensen, Slade O; Ky Tonthat, Nam; Berg, Tracey; Kwong, Stephen M; Guan, Fiona H X; Brown, Melissa H; Skurray, Ronald A; Firth, Neville; Schumacher, Maria A
2009-11-01
Plasmids harbored by Staphylococcus aureus are a major contributor to the spread of bacterial multi-drug resistance. Plasmid conjugation and partition are critical to the dissemination and inheritance of such plasmids. Here, we demonstrate that the ArtA protein encoded by the S. aureus multi-resistance plasmid pSK41 is a global transcriptional regulator of pSK41 genes, including those involved in conjugation and segregation. ArtA shows no sequence homology to any structurally characterized DNA-binding protein. To elucidate the mechanism by which it specifically recognizes its DNA site, we obtained the structure of ArtA bound to its cognate operator, ACATGACATG. The structure reveals that ArtA is representative of a new family of ribbon-helix-helix (RHH) DNA-binding proteins that contain extended, N-terminal basic motifs. Strikingly, unlike most well-studied RHH proteins ArtA binds its cognate operators as a dimer. However, we demonstrate that it is also able to recognize an atypical operator site by binding as a dimer-of-dimers and the extended N-terminal regions of ArtA were shown to be essential for this dimer-of-dimer binding mode. Thus, these data indicate that ArtA is a master regulator of genes critical for both horizontal and vertical transmission of pSK41 and that it can recognize DNA utilizing alternate binding modes.
Ni, Lisheng; Jensen, Slade O.; Ky Tonthat, Nam; Berg, Tracey; Kwong, Stephen M.; Guan, Fiona H. X.; Brown, Melissa H.; Skurray, Ronald A.; Firth, Neville; Schumacher, Maria A.
2009-01-01
Plasmids harbored by Staphylococcus aureus are a major contributor to the spread of bacterial multi-drug resistance. Plasmid conjugation and partition are critical to the dissemination and inheritance of such plasmids. Here, we demonstrate that the ArtA protein encoded by the S. aureus multi-resistance plasmid pSK41 is a global transcriptional regulator of pSK41 genes, including those involved in conjugation and segregation. ArtA shows no sequence homology to any structurally characterized DNA-binding protein. To elucidate the mechanism by which it specifically recognizes its DNA site, we obtained the structure of ArtA bound to its cognate operator, ACATGACATG. The structure reveals that ArtA is representative of a new family of ribbon–helix–helix (RHH) DNA-binding proteins that contain extended, N-terminal basic motifs. Strikingly, unlike most well-studied RHH proteins ArtA binds its cognate operators as a dimer. However, we demonstrate that it is also able to recognize an atypical operator site by binding as a dimer-of-dimers and the extended N-terminal regions of ArtA were shown to be essential for this dimer-of-dimer binding mode. Thus, these data indicate that ArtA is a master regulator of genes critical for both horizontal and vertical transmission of pSK41 and that it can recognize DNA utilizing alternate binding modes. PMID:19759211
Johnson, Timothy J; Siek, Kylie E; Johnson, Sara J; Nolan, Lisa K
2006-01-01
ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.
Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.
2006-01-01
ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains. PMID:16385064
Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease.
USDA-ARS?s Scientific Manuscript database
Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. PemK toxin and PemI antitoxin were over-expre...
USDA-ARS?s Scientific Manuscript database
The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-based clones to expres...
Bruni, C B; Musti, A M; Frunzio, R; Blasi, F
1980-01-01
A fragment of deoxyribonucleic acid 5,300 base paris long and containing the promoter-proximal portion of the histidine operon of Escherichia coli K-12, has been cloned in plasmid pBR313 (plasmids pCB2 and pCB3). Restriction mapping, partial nucleotide sequencing, and studies on functional expression in vivo and on protein synthesis in minicells have shown that the fragment contains the regulatory region of the operon, the hisG, hisD genes, and part of the hisC gene. Another plasmid (pCB5) contained the hisG gene and part of the hisD gene. Expression of the hisG gene in the latter plasmid was under control of the tetracycline promoter of the pBR313 plasmid. The in vivo expression of the two groups of plasmids described above, as well as their effect on the expression of the histidine genes not carried by the plasmids but present on the host chromosome, has been studied. The presence of multiple copies of pCB2 or pCB3, but not of pCB5, prevented derepression of the chromosomal histidine operon. Possible interpretations of this phenomenon are discussed. Images PMID:6246067
Clostridium botulinum: a bug with beauty and weapon.
Shukla, H D; Sharma, S K
2005-01-01
Clostridium botulinum, a Gram-positive, anaerobic spore-forming bacteria, is distinguished by its significant clinical applications as well as its potential to be used as bioterror agent. Growing cells secrete botulinum neurotoxin (BoNT), the most poisonous of all known poisons. While BoNT is the causative agent of deadly neuroparalytic botulism, it also serves as a remarkably effective treatment for involuntary muscle disorders such as blepharospasm, strabismus, hemifacial spasm, certain types of spasticity in children, and other ailments. BoNT is also used in cosmetology for the treatment of glabellar lines, and is well-known as the active component of the anti-aging medications Botox and Dysport. In addition, recent reports show that botulinum neurotoxin can be used as a tool for pharmaceutical drug delivery. However, BoNT remains the deadliest of all toxins, and is viewed by biodefense researchers as a possible agent of bioterrorism (BT). Among seven serotypes, C. botulinum type A is responsible for the highest mortality rate in botulism, and thus has the greatest potential to act as biological weapon. Genome sequencing of C. botulinum type A Hall strain (ATCC 3502) is now complete, and has shown the genome size to be 3.89 Mb with a G+C content of approximately 28.2%. The bacterium harbors a 16.3 kb plasmid with a 26.8% G+C content--slightly lower than that of the chromosome. Most of the virulence factors in C. botulinum are chromosomally encoded; bioinformatic analysis of the genome sequence has shown that the plasmid does not harbor toxin genes or genes for related virulence factors. Interestingly, the plasmid does harbor genes essential to replication, including dnaE, which encodes the alpha subunit of DNA polymerase III which has close similarity with its counterpart in C. perfringens strain 13. The plasmid also contains similar genes to those that encode the ABC-type multidrug transport ATPase, and permease. The presence of ABC-type multidrug transport ATPase, and permease suggests putative involvement of efflux pumps in bacteriocin production, modification, and export in C. botulinum. The C. botulinum plasmid additionally harbors genes for LambdaBa04 prophage and site-specific recombinase that are similar to those found in the Ames strain of Bacillus anthracis; these genes and their products may play a role in genomic rearrangement. Completion of genome sequencing for C. botulinum will provide an opportunity to design genomic and proteomic-based systems for detecting different serotypes of C. botulinum strains in the environment. The completed sequence may also facilitate identification of potential virulence factors and drug targets, as well as help characterize neurotoxin-complexing proteins, their polycistronic expression, and phylogenetic relationships between different serotypes.
Stable zymomonas mobilis xylose and arabinose fermenting strains
Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Taipei, TW
2008-04-08
The present invention briefly includes a transposon for stable insertion of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, and at least one promoter for expression of the structural genes in the bacterium, a pair of inverted insertion sequences, the operons contained inside the insertion sequences, and a transposase gene located outside of the insertion sequences. A plasmid shuttle vector for transformation of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, at least one promoter for expression of the structural genes in the bacterium, and at least two DNA fragments having homology with a gene in the bacterial genome to be transformed, is also provided.The transposon and shuttle vectors are useful in constructing significantly different Zymomonas mobilis strains, according to the present invention, which are useful in the conversion of the cellulose derived pentose sugars into fuels and chemicals, using traditional fermentation technology, because they are stable for expression in a non-selection medium.
Fuchs, W; Ziemann, K; Teifke, J P; Werner, O; Mettenleiter, T C
2000-03-01
The DNA sequence of the infectious laryngotracheitis virus (ILTV) UL50, UL51 and UL52 gene homologues was determined. Although the deduced UL50 protein lacks the first of five conserved domains of the corresponding proteins of mammalian alphaherpesviruses, the ILTV gene product was also shown to possess dUTPase activity. The generation of UL50-negative ILTV mutants was facilitated by recombination plasmids encoding green fluorescent protein (GFP), and expression constructs of predicted transactivator proteins of ILTV (alphaTIF, ICP4) were successfully used to increase the infectivity of viral genomic DNA. A GFP-expressing UL50-deletion mutant of ILTV showed reduced cell-to-cell spread in vitro, and was attenuated in vivo. A similar deletion mutant without the foreign gene, however, propagated like wild-type ILTV in cell culture and was pathogenic in chickens. We conclude that the viral dUTPase is not required for efficient replication of ILTV in the respiratory tract of infected animals. The replication defect of the GFP-expressing ILTV recombinant is most likely caused by toxic effects of the reporter gene product, since spontaneously occurring inactivation mutants exhibited wild-type-like growth.
A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.
York, Joanne; Nunberg, Jack H
2018-01-01
For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.
Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4.
Cao, Qing-Hua; Shao, Huan-Huan; Qiu, Hui; Li, Tao; Zhang, Yi-Zheng; Tan, Xue-Mei
2017-03-01
The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs. This system was successfully employed to knockout the upp gene of Escherichia coli and the replicase genes of native Z. mobilis plasmids. This is the first study to apply the CRISPR/Cas9 system of S. pyogenes to eliminate native plasmids in Z. mobilis. It provides a new method for plasmid curing and paves the way for the genomic engineering of Z. mobilis.
Reprint of "versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16".
Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra
2014-12-20
The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.
Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16.
Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra
2014-09-30
The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96 h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.
Modulation of Mcl-1 expression reduces age-related cochlear degeneration
Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua
2013-01-01
Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration. PMID:23790646
Bartels, Hanni; Luban, Jeremy
2014-09-12
All retroviruses synthesize essential proteins via alternatively spliced mRNAs. Retrovirus genera, though, exploit different mechanisms to coordinate the synthesis of proteins from alternatively spliced mRNAs. The best studied of these retroviral, post-transcriptional effectors are the trans-acting Rev protein of lentiviruses and the cis-acting constitutive transport element (CTE) of the betaretrovirus Mason-Pfizer monkey virus (MPMV). How members of the gammaretrovirus genus translate protein from unspliced RNA has not been elucidated. The mechanism by which two gammaretroviruses, XMRV and MLV, synthesize the Gag polyprotein (Pr65Gag) from full-length, unspliced mRNA was investigated here. The yield of Pr65Gag from a gag-only expression plasmid was found to be at least 30-fold less than that from an otherwise isogenic gag-pol expression plasmid. A frameshift mutation disrupting the pol open reading frame within the gag-pol expression plasmid did not decrease Pr65Gag production and 398 silent nucleotide changes engineered into gag rendered Pr65Gag synthesis pol-independent. These results are consistent with pol-encoded RNA acting in cis to promote Pr65Gag translation. Two independently-acting pol fragments were identified by screening 17 pol deletion mutations. To determine the mechanism by which pol promoted Pr65Gag synthesis, gag RNA in total and cytoplasmic fractions was quantitated by northern blot and by RT-PCR. The pol sequences caused, maximally, three-fold increase in total or cytoplasmic gag mRNA. Instead, pol sequences increased gag mRNA association with polyribosomes ~100-fold, a magnitude sufficient to explain the increase in Pr65Gag translation efficiency. The MPMV CTE, an NXF1-binding element, substituted for pol in promoting Pr65Gag synthesis. A pol RNA stem-loop resembling the CTE promoted Pr65Gag synthesis. Over-expression of NXF1 and NXT, host factors that bind to the MPMV CTE, synergized with pol to promote gammaretroviral gag RNA loading onto polysomes and to increase Pr65Gag synthesis. Conversely, Gag polyprotein synthesis was decreased by NXF1 knockdown. Finally, overexpression of SRp20, a shuttling protein that binds to NXF1 and promotes NXF1 binding to RNA, also increased gag RNA loading onto polysomes and increased Pr65Gag synthesis. These experiments demonstrate that gammaretroviral pol sequences act in cis to recruit NXF1 and SRp20 to promote polysome loading of gag RNA and, thereby license the synthesis of Pr65Gag from unspliced mRNA.
pTRA - A reporter system for monitoring the intracellular dynamics of gene expression.
Wagner, Sabine G; Ziegler, Martin; Löwe, Hannes; Kremling, Andreas; Pflüger-Grau, Katharina
2018-01-01
The presence of standardised tools and methods to measure and represent accurately biological parts and functions is a prerequisite for successful metabolic engineering and crucial to understand and predict the behaviour of synthetic genetic circuits. Many synthetic gene networks are based on transcriptional circuits, thus information on transcriptional and translational activity is important for understanding and fine-tuning the synthetic function. To this end, we have developed a toolkit to analyse systematically the transcriptional and translational activity of a specific synthetic part in vivo. It is based on the plasmid pTRA and allows the assignment of specific transcriptional and translational outputs to the gene(s) of interest (GOI) and to compare different genetic setups. By this, the optimal combination of transcriptional strength and translational activity can be identified. The design is tested in a case study using the gene encoding the fluorescent mCherry protein as GOI. We show the intracellular dynamics of mRNA and protein formation and discuss the potential and shortcomings of the pTRA plasmid.
Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli.
Ramisetty, Bhaskar Chandra Mohan; Santhosh, Ramachandran Sarojini
2016-02-01
Type II toxin-antitoxin systems (TAs) are small autoregulated bicistronic operons that encode a toxin protein with the potential to inhibit metabolic processes and an antitoxin protein to neutralize the toxin. Most of the bacterial genomes encode multiple TAs. However, the diversity and accumulation of TAs on bacterial genomes and its physiological implications are highly debated. Here we provide evidence that Escherichia coli chromosomal TAs (encoding RNase toxins) are 'acquired' DNA likely originated from heterologous DNA and are the smallest known autoregulated operons with the potential for horizontal propagation. Sequence analyses revealed that integration of TAs into the bacterial genome is unique and contributes to variations in the coding and/or regulatory regions of flanking host genome sequences. Plasmids and genomes encoding identical TAs of natural isolates are mutually exclusive. Chromosomal TAs might play significant roles in the evolution and ecology of bacteria by contributing to host genome variation and by moderation of plasmid maintenance. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie
2015-01-01
Municipal wastewater treatment facilities are considered to be “hotspots” for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7–9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like plasmids concomitant to phylogenetic analysis of housekeeping genes from host Klebsiella strains, revealed that these plasmids are limited to a predominantly human-associated sub-clade of Klebsiella, suggesting that their host range is very narrow. Conversely, the pGNB2-like plasmids had a much broader host range and appeared to be associated with Klebsiella residing in natural environments. This study suggests that: (A) qnrB-harboring multidrug-resistant pKPN3-like plasmids can endure the rigorous wastewater treatment process and may therefore be disseminated to downstream environments; and (B) that small qnrS-harboring pGNB2-like plasmids are ubiquitous in wastewater treatment facilities and are most likely environmental in origin. PMID:26696974
Kaplan, Ella; Sela, Noa; Doron-Faigenboim, Adi; Navon-Venezia, Shiri; Jurkevitch, Edouard; Cytryn, Eddie
2015-01-01
Municipal wastewater treatment facilities are considered to be "hotspots" for antibiotic resistance, since they conjoin high densities of environmental and fecal bacteria with selective pressure in the form of sub-therapeutic concentrations of antibiotics. Discharged effluents and biosolids from these facilities can disseminate antibiotic resistant genes to terrestrial and aquatic environments, potentially contributing to the increasing global trend in antibiotic resistance. This phenomenon is especially pertinent when resistance genes are associated with mobile genetic elements such as conjugative plasmids, which can be transferred between bacterial phyla. Fluoroquinolones are among the most abundant antibiotic compounds detected in wastewater treatment facilities, especially in biosolids, where due to their hydrophobic properties they accumulate to concentrations that may exceed 40 mg/L. Although fluoroquinolone resistance is traditionally associated with mutations in the gyrA/topoisomerase IV genes, there is increasing evidence of plasmid-mediated quinolone resistance, which is primarily encoded on qnr genes. In this study, we sequenced seven qnr-harboring plasmids from a diverse collection of Klebsiella strains, isolated from dewatered biosolids from a large wastewater treatment facility in Israel. One of the plasmids, termed pKPSH-11XL was a large (185.4 kbp), multi-drug resistance, IncF-type plasmid that harbored qnrB and 10 additional antibiotic resistance genes that conferred resistance to five different antibiotic families. It was highly similar to the pKPN3-like plasmid family that has been detected in multidrug resistant clinical Klebsiella isolates. In contrast, the six additional plasmids were much smaller (7-9 Kbp) and harbored a qnrS -type gene. These plasmids were highly similar to each other and closely resembled pGNB2, a plasmid isolated from a German wastewater treatment facility. Comparative genome analyses of pKPSH-11XL and other pKPN3-like plasmids concomitant to phylogenetic analysis of housekeeping genes from host Klebsiella strains, revealed that these plasmids are limited to a predominantly human-associated sub-clade of Klebsiella, suggesting that their host range is very narrow. Conversely, the pGNB2-like plasmids had a much broader host range and appeared to be associated with Klebsiella residing in natural environments. This study suggests that: (A) qnrB-harboring multidrug-resistant pKPN3-like plasmids can endure the rigorous wastewater treatment process and may therefore be disseminated to downstream environments; and (B) that small qnrS-harboring pGNB2-like plasmids are ubiquitous in wastewater treatment facilities and are most likely environmental in origin.
[Expression and characterization of a neutral Enterobacter cloacae GX-3 invertase].
Zhao, Yingli; Wu, Qianqian; Zhang, Zhikai; Wang, Zilong; Wei, Yutuo; Huang, Ribo; Du, Liqin
2015-04-04
To characterize a neutral invertase from Enterobacter cloacae GX-3. By searching GenBank database, we found the genes encoding invertase from the same genus Enterobacter. These sequences were aligned and analyzed. Then, a gene encoding neutral invertase was amplified by PCR. The recombinant plasmid pQE-Einv was constructed. We purified the expressed protein Einv with nickel-nitrilotriacetic acid chromatography. At last, the characterics of the recombinant protein Einv were studied in detail. A gene encoding neutral invertase was discovered and cloned from E. cloacae GX-3. The recombinant enzyme Einv was characterized. Einv had an optimum pH of 6.5 and an optimum temperature of 40 degrees C. The results of sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and gel permeation chromatography ( GPC) showed that Einv was a homo-dimer protein. Einv retained 80% activity at sucrose concentrations up to 1170 mmol/L. But, Einv had no transglycosylation activity at high sucrose concentration. It could hydrolyze raffinose, 1-kestose, nystose, fructofuranosylnystose and stachyose. It is first reported that an invertase from Enterobacter cloacae is a beta-fructofuranosidase at neutral pH range. It only has hydrolysis activity without tranglycosylation activity. These characteristics indicate that the neutral invertase Einv has important applications in food industry.
Marín-López, Alejandro; Ortego, Javier
2016-01-01
Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental vaccine vector for its lack of replication in mammalian cells and high expression level of foreign/heterologous genes. Recombinant MVAs (rMVAs) are used as platforms for protein production as well as vectors to generate vaccines against a high number of infectious diseases and other pathologies. The portrait of the virus combines desirable elements such as high-level biological safety, the ability to activate appropriate innate immune mediators upon vaccination, and the capacity to deliver substantial amounts of heterologous antigens. Recombinant MVAs encoding proteins of bluetongue virus (BTV), an Orbivirus that infects domestic and wild ruminants transmitted by biting midges of the Culicoides species, are excellent vaccine candidates against this virus. In this chapter we describe the methods for the generation of rMVAs encoding VP2, NS1, and VP7 proteins of bluetongue virus as a model example for orbiviruses. The protocols included cover the cloning of VP2, NS1, and VP7 BTV-4 genes in a transfer plasmid, the construction of recombinant MVAs, the titration of virus working stocks and the protein expression analysis by immunofluorescence and radiolabeling of rMVA infected cells as well as virus purification.
Jain, Shardool; Tran, Thanh-Huyen; Amiji, Mansoor
2015-01-01
In this study, we have shown for the first time the effectiveness of a non-viral gene transfection strategy to re-polarize macrophages from M1 to M2 functional sub-type for the treatment of rheumatoid arthritis (RA). An anti-inflammatory (IL-10) cytokine encoding plasmid DNA was successfully encapsulated into non-condensing alginate based nanoparticles and the surface of the nano-carriers was modified with tuftsin peptide to achieve active macrophage targeting. Enhanced localization of tuftsin-modified alginate nanoparticles was observed in the inflamed paws of arthritic rats upon intraperitoneal administration. Importantly, targeted nanoparticle treatment was successful in reprogramming macrophage phenotype balance as ~66% of total synovial macrophages from arthritic rats treated with the IL-10 plasmid DNA loaded tuftsin/alginate nanoparticles were in the M2 state compared to ~9% of macrophages in the M2 state from untreated arthritic rats. Treatment significantly reduced systemic and joint tissue pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression and prevented the progression of inflammation and joint damage as revealed by magnetic resonance imaging and histology. Treatment enabled animals to retain their mobility throughout the course of study, whereas untreated animals suffered from impaired mobility. Overall, this study demonstrates that targeted alginate nanoparticles loaded with IL-10 plasmid DNA can efficiently re-polarize macrophages from an M1 to an M2 state, offering a novel treatment paradigm for treatment of chronic inflammatory diseases. PMID:26004232
Cloning-independent plasmid construction for genetic studies in streptococci
Xie, Zhoujie; Qi, Fengxia; Merritt, Justin
2013-01-01
Shuttle plasmids are among the few routinely utilized tools in the Streptococcus mutans genetic system that still require the use of classical cloning methodologies and intermediate hosts for genetic manipulation. Accordingly, it typically requires considerably less time and effort to introduce mutations onto the S. mutans chromosome than it does to construct shuttle vectors for expressing genes in trans. Occasionally, shuttle vector constructs also exhibit toxicity in E. coli, which prevents their proper assembly. To circumvent these limitations, we modified a prolonged overlap extension PCR (POE-PCR) protocol to facilitate direct plasmid assembly in S. mutans. Using solely PCR, we created the reporter vector pZX7, which contains a single minimal streptococcal replication origin and harbors a spectinomycin resistance cassette and the gusA gene encoding β-glucuronidase. We compared the efficiency of pZX7 assembly using multiple strains of S. mutans and were able to obtain from 5×103 – 2×105 CFU/μg PCR product. Likewise, we used pZX7 to further demonstrate that Streptococcus sanguinis and Streptococcus gordonii are also excellent hosts for cloning-independent plasmid assembly, which suggests that this system is likely to function in numerous other streptococci. Consequently, it should be possible to completely forgo the use of E. coli – Streptococcus shuttle vectors in many streptococcal species, thereby decreasing the time and effort required to assemble constructs and eliminating any toxicity issues associated with intermediate hosts. PMID:23673081
Cloning-independent plasmid construction for genetic studies in streptococci.
Xie, Zhoujie; Qi, Fengxia; Merritt, Justin
2013-08-01
Shuttle plasmids are among the few routinely utilized tools in the Streptococcus mutans genetic system that still require the use of classical cloning methodologies and intermediate hosts for genetic manipulation. Accordingly, it typically requires considerably less time and effort to introduce mutations onto the S. mutans chromosome than it does to construct shuttle vectors for expressing genes in trans. Occasionally, shuttle vector constructs also exhibit toxicity in Escherichia coli, which prevents their proper assembly. To circumvent these limitations, we modified a prolonged overlap extension PCR (POE-PCR) protocol to facilitate direct plasmid assembly in S. mutans. Using solely PCR, we created the reporter vector pZX7, which contains a single minimal streptococcal replication origin and harbors a spectinomycin resistance cassette and the gusA gene encoding β-glucuronidase. We compared the efficiency of pZX7 assembly using multiple strains of S. mutans and were able to obtain from 5 × 10³ to 2 × 10⁵ CFU/μg PCR product. Likewise, we used pZX7 to further demonstrate that Streptococcus sanguinis and Streptococcus gordonii are also excellent hosts for cloning-independent plasmid assembly, which suggests that this system is likely to function in numerous other streptococci. Consequently, it should be possible to completely forgo the use of E. coli-Streptococcus shuttle vectors in many streptococcal species, thereby decreasing the time and effort required to assemble constructs and eliminating any toxicity issues associated with intermediate hosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Plasmids foster diversification and adaptation of bacterial populations in soil.
Heuer, Holger; Smalla, Kornelia
2012-11-01
It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Dunlap, P V
1992-07-01
Iron controls luminescence in Vibrio fischeri by an indirect but undefined mechanism. To gain insight into that mechanism, the involvement of cyclic AMP (cAMP) and cAMP receptor protein (CRP) and of modulation of DNA levels in iron control of luminescence were examined in V. fischeri and in Escherichia coli containing the cloned V. fischeri lux genes on plasmids. For V. fischeri and E. coli adenylate cyclase (cya) and CRP (crp) mutants containing intact lux genes (luxR luxICDABEG), presence of the iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid) (EDDHA) increased expression of the luminescence system like in the parent strains only in the cya mutants in the presence of added cAMP. In the E. coli strains containing a plasmid with a Mu dl(lacZ) fusion in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the lux operon promoter) were both 2-3-fold higher in the presence of EDDHA in the parent strain, and for the mutants this response to EDDHA was observed only in the cya mutant in the presence of added cAMP. Therefore, cAMP and CRP are required for the iron restriction effect on luminescence, and their involvement in iron control apparently is distinct from the known differential control of transcription from the luxR and luxICDABEG promoters by cAMP-CRP. Furthermore, plasmid and chromosomal DNA levels were higher in E. coli and V. fischeri in the presence of EDDHA. The higher DNA levels correlated with an increase in expression of chromosomally encoded beta-galactosidase in E. coli and with a higher level of autoinducer in cultures of V. fischeri. These results implicate cAMP-CRP and modulation of DNA levels in the mechanism of iron control of the V. fischeri luminescence system.
Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis.
Yoon, Ki-Hong; Lim, Byung-Lak
2007-10-01
A gene encoding the mannanase of Bacillus subtilis WL-3, which had been isolated from Korean soybean paste, was cloned into Escherichia coli and the nucleotide sequence of a 2.7-kb DNA fragment containing the mannanase gene was subsequently determined. The mannanase gene, designated manA, consisted of 1,080 nucleotides encoding polypeptide of 360 amino acid residues. The deduced amino acid sequence was highly homologous to those of mannanases belonging to glycosyl hydrolase family 26. The manA gene was strongly expressed in B. subtilis 168 by cloning the gene downstream of a strong B. subtilis promoter of plasmid pJ27Delta 88U. In flask cultures, the production of mannanase by recombinant B. subtilis 168 reached maximum levels of 300 units/ml and 450 units/ml in LB medium and LB medium containing 0.3% locust bean gum, respectively. Based on the zymogram of the mannanase, it was found that the mannanase produced by recombinant B. subtilis could be maintained stably without proteolytic degradation during the culture time.
Shao, Lili; Zhang, Tianyuan; Melero, Jose; Huang, Yumeng; Liu, Yuanjun; Liu, Quanzhong; He, Cheng; Nelson, David E; Zhong, Guangming
2018-01-01
The cryptic plasmid is essential for Chlamydia muridarum dissemination from the genital tract to the gastrointestinal (GI) tract. Following intravaginal inoculation, a C. muridarum strain deficient in plasmid-encoded pGP3 or pGP4 but not pGP5, pGP7, or pGP8 failed to spread to the mouse gastrointestinal tract, although mice infected with these strains developed productive genital tract infections. pGP3- or pGP4-deficient strains also failed to colonize the gastrointestinal tract when delivered intragastrically. pGP4 regulates pGP3, while pGP3 does not affect pGP4 expression, indicating that pGP3 is critical for C. muridarum colonization of the gastrointestinal tract. Mutants deficient in GlgA, a chromosome-encoded protein regulated by pGP4, also consistently colonized the mouse gastrointestinal tract. Interestingly, C. muridarum colonization of the gastrointestinal tract positively correlated with pathogenicity in the upper genital tract. pGP3-deficient C. muridarum strains did not induce hydrosalpinx or spread to the GI tract even when delivered to the oviduct by intrabursal inoculation. Thus, the current study not only has revealed that pGP3 is a novel chlamydial colonization factor in the gastrointestinal tract but also has laid a foundation for investigating the significance of gastrointestinal Chlamydia . Copyright © 2017 American Society for Microbiology.
O'Flaherty, Sarah; Klaenhammer, Todd R
2016-10-15
Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid-based expression systems since expressing antigens from a chromosomal location confers an advantage to the vaccine strains by eliminating the antibiotic maintenance required for plasmids and negates issues with plasmid instability that would result in loss of the antigen. Lactic acid bacteria, including Lactobacillus acidophilus, have shown potential for mucosal vaccine delivery, as L. acidophilus is bile and acid tolerant, allowing transit through the gastrointestinal tract where cells interact with host epithelial and immune cells, including dendritic cells. In this study, we successfully expressed C. botulinum and B. anthracis antigens in the probiotic L. acidophilus strain NCFM. Both antigens were highly expressed individually or in tandem from the chromosome of L. acidophilus. Copyright © 2016 O'Flaherty and Klaenhammer.
Klaenhammer, Todd R.
2016-01-01
ABSTRACT Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid-based expression systems since expressing antigens from a chromosomal location confers an advantage to the vaccine strains by eliminating the antibiotic maintenance required for plasmids and negates issues with plasmid instability that would result in loss of the antigen. Lactic acid bacteria, including Lactobacillus acidophilus, have shown potential for mucosal vaccine delivery, as L. acidophilus is bile and acid tolerant, allowing transit through the gastrointestinal tract where cells interact with host epithelial and immune cells, including dendritic cells. In this study, we successfully expressed C. botulinum and B. anthracis antigens in the probiotic L. acidophilus strain NCFM. Both antigens were highly expressed individually or in tandem from the chromosome of L. acidophilus. PMID:27496774
Huffman, David L; Huyett, Jennifer; Outten, F Wayne; Doan, Peter E; Finney, Lydia A; Hoffman, Brian M; O'Halloran, Thomas V
2002-08-06
The plasmid-encoded pco copper resistance operon in Escherichia coli consists of seven genes that are expressed from two pco promoters in response to elevated copper; however, little is known about how they mediate resistance to excess environmental copper. Two of the genes encode the soluble periplasmic proteins PcoA and PcoC. We show here that inactivation of PcoC, and PcoA to a lesser extent, causes cells to become more sensitive to copper than wild-type nonresistant strains, consistent with a tightly coupled detoxification pathway. Periplasmic extracts show copper-inducible oxidase activity, attributed to the multicopper oxidase function of PcoA. PcoC, a much smaller protein than PcoA, binds one Cu(II) and exhibits a weak electronic transition characteristic of a type II copper center. ENDOR and ESEEM spectroscopy of Cu(II)-PcoC and the (15)N- and Met-CD(3)-labeled samples are consistent with a tetragonal ligand environment of three nitrogens and one aqua ligand "in the plane". A weakly associated S-Met and aqua are likely axial ligands. At least one N is a histidine and is likely trans to the in-plane aqua ligand. The copper chemistry of PcoC and the oxidase function of PcoA are consistent with the emerging picture of the chromosomally encoded copper homeostasis apparatus in the E. coli cell envelope [Outten, F. W., Huffman, D. L., Hale, J. A., and O'Halloran, T. V. (2001) J. Biol. Chem. 276, 30670-30677]. We propose a model for the plasmid system in which Cu(I)-PcoC functions in this copper efflux pathway as a periplasmic copper binding protein that docks with the multiple repeats of Met-rich domains in PcoA to effect oxidation of Cu(I) to the less toxic Cu(II) form. The solvent accessibility of the Cu(II) in PcoC may allow for metal transfer to other plasmid and chromosomal factors and thus facilitate removal of Cu(II) from the cell envelope.
USDA-ARS?s Scientific Manuscript database
Incompatibility group P-1 (incP-1) includes broad host range plasmids of Gram negative bacteria and are classified into five subgroups (alpha, beta, gamma, delta, and epsilon). The incP-1 replication module consists of the trfA gene, encoding the replication initiator protein TrfA, and the origin o...
USDA-ARS?s Scientific Manuscript database
The molecular biological techniques for plasmid-based assembly and cloning of synthetic assembled gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-bas...
Nowell, Victoria J; Kropinski, Andrew M; Songer, J Glenn; MacInnes, Janet I; Parreira, Valeria R; Prescott, John F
2012-01-01
Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified.
Nowell, Victoria J.; Kropinski, Andrew M.; Songer, J. Glenn; MacInnes, Janet I.; Parreira, Valeria R.; Prescott, John F.
2012-01-01
Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified. PMID:22412860
Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang
2015-01-01
The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang
2015-01-01
The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains. PMID:26005332
Mehlmer, Norbert; Parvin, Nargis; Hurst, Charlotte H.; Knight, Marc R.; Teige, Markus; Vothknecht, Ute C.
2014-01-01
Calcium has long been acknowledged as one of the most important signalling components in plants. Many abiotic and biotic stimuli are transduced into a cellular response by temporal and spatial changes in cellular calcium concentration and the calcium-sensitive protein aequorin has been exploited as a genetically encoded calcium indicator for the measurement of calcium in planta. The objective of this work was to generate a compatible set of aequorin expression plasmids for the generation of transgenic plant lines to measure changes in calcium levels in different cellular subcompartments. Aequorin was fused to different targeting peptides or organellar proteins as a means to localize it to the cytosol, the nucleus, the plasma membrane, and the mitochondria. Furthermore, constructs were designed to localize aequorin in the stroma as well as the inner and outer surface of the chloroplast envelope membranes. The modular set-up of the plasmids also allows the easy replacement of targeting sequences to include other compartments. An additional YFP-fusion was included to verify the correct subcellular localization of all constructs by laser scanning confocal microscopy. For each construct, pBin19-based binary expression vectors driven by the 35S or UBI10 promoter were made for Agrobacterium-mediated transformation. Stable Arabidopsis lines were generated and initial tests of several lines confirmed their feasibility to measure calcium signals in vivo. PMID:22213817
Jiménez, Juan J.; Gútiez, Loreto; Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.
2015-01-01
We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins. PMID:25821820
Brzuszkiewicz, Elzbieta; Thürmer, Andrea; Schuldes, Jörg; Leimbach, Andreas; Liesegang, Heiko; Meyer, Frauke-Dorothee; Boelter, Jürgen; Petersen, Heiko; Gottschalk, Gerhard; Daniel, Rolf
2011-12-01
The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum β-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic E scherichia c oli (EAHEC).
Blane, Beth; Coll, Francesc; Naydenova, Plamena; Hunt, Martin; Tracey, Alan; Hopkins, Katie L.; Brown, Nicholas M.; Woodford, Neil; Parkhill, Julian
2017-01-01
Dissemination of carbapenem resistance among pathogenic Gram-negative bacteria is a looming medical emergency. Efficient spread of resistance within and between bacterial species is facilitated by mobile genetic elements. We hypothesized that wastewater contributes to the dissemination of carbapenemase-producing Enterobacteriaceae (CPE), and studied this through a cross-sectional observational study of wastewater in the East of England. We isolated clinically relevant species of CPE in untreated and treated wastewater, confirming that waste treatment does not prevent release of CPE into the environment. We observed that CPE-positive plants were restricted to those in direct receipt of hospital waste, suggesting that hospital effluent may play a role in disseminating carbapenem resistance. We postulated that plasmids carrying carbapenemase genes were exchanged between bacterial hosts in sewage, and used short-read (Illumina) and long-read (MinION) technologies to characterize plasmids encoding resistance to antimicrobials and heavy metals. We demonstrated that different CPE species (Enterobacter kobei and Raoultella ornithinolytica) isolated from wastewater from the same treatment plant shared two plasmids of 63 and 280 kb. The former plasmid conferred resistance to carbapenems (blaOXA-48), and the latter to numerous drug classes and heavy metals. We also report the complete genome sequence for Enterobacter kobei. Small, portable sequencing instruments such as the MinION have the potential to improve the quality of information gathered on antimicrobial resistance in the environment. PMID:29026655
Development of Novel Peptide Inhibitors of the Estrogen Receptor
1997-10-01
plasmids used for the transfection experiments described below included pERE-TK- CAT , an estrogen responsive chloramphenicol acetylase reporter plasmid...The inhibitory potential of expressed fragments of ER were assessed by measuring the activity of chloramphenicol acetyltransferase ( CAT ) enzyme...with an ER expression plasmid (pCMV-ER) and an estrogen-responsive reporter plasmid (pERE-TK- CAT ) in order to look for inhibition of an ER mediated
Birkenhead, K; Manian, S S; O'Gara, F
1988-01-01
A recombinant plasmid encoding Rhizobium meliloti sequences involved in dicarboxylic acid transport (plasmid pRK290:4:46) (E. Bolton, B. Higgisson, A. Harrington, and F. O'Gara, Arch. Microbiol. 144:142-146, 1986) was used to study the relationship between dicarboxylic acid transport and nitrogen fixation in Bradyrhizobium japonicum. The expression of the dct sequences on plasmid pRK290:4:46 in B. japonicum CJ1 resulted in increased growth rates in media containing dicarboxylic acids as the sole source of carbon. In addition, strain CJ1(pRK290:4:46) exhibited enhanced succinate uptake activity when grown on dicarboxylic acids under aerobic conditions. Under free-living nitrogen-fixing conditions, strain CJ1(pRK290:4:46) exhibited higher nitrogenase (acetylene reduction) activity compared with that of the wild-type strain. This increase in nitrogenase activity also correlated with an enhanced dicarboxylic acid uptake rate under these microaerobic conditions. The regulation of dicarboxylic acid transport by factors such as metabolic inhibitors and the presence of additional carbon sources was similar in both the wild-type and the engineered strains. The implications of increasing nitrogenase activity through alterations in the dicarboxylic acid transport system are discussed. PMID:3422072
Evaluation of a Novel Non-Penetrating Electrode for Use in DNA Vaccination
Donate, Amy; Coppola, Domenico; Cruz, Yolmari; Heller, Richard
2011-01-01
Current progress in the development of vaccines has decreased the incidence of fatal and non-fatal infections and increased longevity. However, new technologies need to be developed to combat an emerging generation of infectious diseases. DNA vaccination has been demonstrated to have great potential for use with a wide variety of diseases. Alone, this technology does not generate a significant immune response for vaccination, but combined with delivery by electroporation (EP), can enhance plasmid expression and immunity. Most EP systems, while effective, can be invasive and painful making them less desirable for use in vaccination. Our lab recently developed a non-invasive electrode known as the multi-electrode array (MEA), which lies flat on the surface of the skin without penetrating the tissue. In this study we evaluated the MEA for its use in DNA vaccination using Hepatitis B virus as the infectious model. We utilized the guinea pig model because their skin is similar in thickness and morphology to humans. The plasmid encoding Hepatitis B surface antigen (HBsAg) was delivered intradermally with the MEA to guinea pig skin. The results show increased protein expression resulting from plasmid delivery using the MEA as compared to injection alone. Within 48 hours of treatment, there was an influx of cellular infiltrate in experimental groups. Humoral responses were also increased significantly in both duration and intensity as compared to injection only groups. While this electrode requires further study, our results suggest that the MEA has potential for use in electrically mediated intradermal DNA vaccination. PMID:21559474
MicroRNA-7a regulates Müller glia differentiation by attenuating Notch3 expression.
Baba, Yukihiro; Aihara, Yuko; Watanabe, Sumiko
2015-09-01
miRNA-7a plays critical roles in various biological aspects in health and disease. We aimed to reveal roles of miR-7a in mouse retinal development by loss- and gain-of-function analyses of miR-7a. Plasmids encoding miR-7a or miR-7a-decoy (anti-sense miR-7a) were introduced into mouse retina at P0, and the retina was cultured as explant. Then, proliferation of retinal progenitors and differentiation of retinal subtypes were examined by immunostaining. miR-7a had no apparent effect on the proliferation of retinal progenitor cells. However, the expression of Müller glia marker, cyclin D3, was reduced by miR-7a overexpression and up-regulated by miR-7a decoy, suggesting that miR-7a negatively regulates differentiation of Müller glia. Targets of miR-7a, which were predicted by using a public program miRNA.org, and Notch3 was suggested to be one of candidate genes of miR-7a target. Notch3 3' UTR appeared to contain complementary sequence to the seed sequence of miR-7a. A reporter assay in NIH3T3 cells using a plasmid containing multiple repeats of potential target sequence of 3' Notch UTR showed that miR-7a suppress expression of reporter EGFP through 3'UTR region. Expression of sh-Notch3 and over-expression of NICD3 in retina suggested that miR-7a regulates Müller glia differentiation through attenuation of Notch3 expression. Taken together, we revealed that the miR-7a regulates the differentiation of Müller glia through the suppression of Notch3 expression. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lis, Maciej; Kuramitsu, Howard K.
2003-01-01
We analyzed a previously constructed stress-sensitive Streptococcus mutans mutant Tn-1 strain resulting from disruption by transposon Tn916 of a gene encoding a protein exhibiting amino acid sequence similarity to the Escherichia coli diacylglycerol kinase. It was confirmed that the mutation led to significantly reduced lipid kinase activity, while expression of the intact gene on a plasmid restored both kinase activity and the wild-type phenotype. Further analysis revealed that the product of the dgk gene in S. mutans predominantly recognizes a lipid substrate other than diacylglycerol, most likely undecaprenol, as demonstrated by its efficient phosphorylation and the resistance of the product of the reaction to saponification. The physiological role of the product of the dgk gene as a putative undecaprenol kinase was further supported by a significantly higher sensitivity of the mutant to bacitracin compared with that of the parental strain. PMID:12654811
Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery.
Lee, Dongwon; Zhang, Weidong; Shirley, Shawna A; Kong, Xiaoyuan; Hellermann, Gary R; Lockey, Richard F; Mohapatra, Shyam S
2007-01-01
Thiolated chitosan appears to possess enhanced mucoadhesiveness and cell penetration properties, however, its potential in gene-drug delivery remains unknown. Herein, we report on a highly effective gene delivery system utilizing a 33-kDa thiol-modified chitosan derivative. Thiolated chitosan was prepared by the reaction with thioglycolic acid. Nanocomplexes of unmodified chitosan or thiolated chitosan with plasmid DNA encoding green fluorescenct protein (GFP) were characterized for their size, zeta potential, their ability to bind and protect plasmid DNA from degradation. The transfection efficiency of thiolated chitosan and sustained gene expression were evaluated in various cell lines in vitro and in Balb/c mice in vivo. Thiolated chitosan-DNA nanocomplexes ranged in size from 75 to 120 nm in diameter and from +2.3 to 19.7 mV in zeta potential, depending on the weight ratio of chitosan to DNA. Thiolated chitosan, CSH360, exhibited effective physical stability and protection against DNase I digestion at a weight ratio>or=2.5:1. CSH360/DNA nanocomplexes induced significantly (P<0.01) higher GFP expression in HEK293, MDCK and Hep-2 cell lines than unmodified chitosan. Nanocomplexes of disulphide-crosslinked CSH360/DNA showed a sustained DNA release and continuous expression in cultured cells lasting up to 60 h post transfection. Also, intranasal administration of crosslinked CSH360/DNA nanocomplexes to mice yielded gene expression that lasted for at least 14 days. Thiolated chitosans condense pDNA to form nanocomplexes, which exhibit a significantly higher gene transfer potential and sustained gene expression upon crosslinking, indicating their great potential for gene therapy and tissue engineering.
Jayol, Aurélie; Nordmann, Patrice
2017-01-01
SUMMARY Polymyxins are well-established antibiotics that have recently regained significant interest as a consequence of the increasing incidence of infections due to multidrug-resistant Gram-negative bacteria. Colistin and polymyxin B are being seriously reconsidered as last-resort antibiotics in many areas where multidrug resistance is observed in clinical medicine. In parallel, the heavy use of polymyxins in veterinary medicine is currently being reconsidered due to increased reports of polymyxin-resistant bacteria. Susceptibility testing is challenging with polymyxins, and currently available techniques are presented here. Genotypic and phenotypic methods that provide relevant information for diagnostic laboratories are presented. This review also presents recent works in relation to recently identified mechanisms of polymyxin resistance, including chromosomally encoded resistance traits as well as the recently identified plasmid-encoded polymyxin resistance determinant MCR-1. Epidemiological features summarizing the current knowledge in that field are presented. PMID:28275006
Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt.
Osman, O; Tanguichi, H; Ikeda, K; Park, P; Tanabe-Hosoi, S; Nagata, S
2010-04-01
To isolate and characterize copper-resistant halophilic bacteria from the polluted Maruit Lake, Egypt and identify the role of plasmids in toxic metal resistance. We isolated strain MA2, showing high copper resistance up to the 1.5 mmol l(-1) concentration; it was also resistant to other metals such as nickel, cobalt and zinc and a group of antibiotics. Partial 16S rRNA analysis revealed that strain MA2 belonged to the genus Halomonas. Copper uptake, measured by atomic absorption spectrophotometery, was higher in the absence of NaCl than in the presence of 0.5-1.0 mol l(-1) NaCl during 5-15 min of incubation. Cell fractionation and electron microscopic observation clarified that most of the copper accumulated in the outer membrane and periplasmic fractions of the cells. Plasmid screening yielded two plasmids: pMA21 (11 kb) and pMA22 (5 kb). Plasmid curing resulted in a strain that lost both the plasmids and was sensitive to cobalt and chromate but not copper, nickel and zinc. This cured strain also showed weak growth in the presence of 0.5-1.0 mol l(-1) NaCl. Partial sequencing of both plasmids led to the identification of different toxic metals transporters but copper transporters were not identified. The highest cell viability was found in the presence of 1.0 mol l(-1) NaCl at different copper concentrations, and copper uptake was optimal in the absence of NaCl. Plasmid pMA21 encoded chromate, cobalt, zinc and cadmium transporters, whereas pMA22 encoded specific zinc and RND (resistance, nodulation, cell division) efflux transporters as well as different kinds of metabolic enzymes. Copper resistance was mainly incorporated in the chromosome. Strain MA2 is a fast and efficient tool for copper bioremediation and the isolated plasmids show significant characteristics of both toxic metal and antibiotic resistance.
Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.
2017-01-01
We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072
Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
McKenna, Rebekah; Thompson, Brian; Pugh, Shawn; Nielsen, David R
2014-08-21
Styrene is an important building-block petrochemical and monomer used to produce numerous plastics. Whereas styrene bioproduction by Escherichia coli was previously reported, the long-term potential of this approach will ultimately rely on the use of hosts with improved industrial phenotypes, such as the yeast Saccharomyces cerevisiae. Classical metabolic evolution was first applied to isolate a mutant capable of phenylalanine over-production to 357 mg/L. Transcription analysis revealed up-regulation of several phenylalanine biosynthesis pathway genes including ARO3, encoding the bottleneck enzyme DAHP synthase. To catalyze the first pathway step, phenylalanine ammonia lyase encoded by PAL2 from A. thaliana was constitutively expressed from a high copy plasmid. The final pathway step, phenylacrylate decarboxylase, was catalyzed by the native FDC1. Expression of FDC1 was naturally induced by trans-cinnamate, the pathway intermediate and its substrate, at levels sufficient for ensuring flux through the pathway. Deletion of ARO10 to eliminate the competing Ehrlich pathway and expression of a feedback-resistant DAHP synthase encoded by ARO4K229L preserved and promoted the endogenous availability precursor phenylalanine, leading to improved pathway flux and styrene production. These systematic improvements allowed styrene titers to ultimately reach 29 mg/L at a glucose yield of 1.44 mg/g, a 60% improvement over the initial strain. The potential of S. cerevisiae as a host for renewable styrene production has been demonstrated. Significant strain improvements, however, will ultimately be needed to achieve economical production levels.
Closely related NDM-1-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan.
Chen, Chao-Ju; Wu, Tsu-Lan; Lu, Po-Liang; Chen, Ying-Tsong; Fung, Chang-Phone; Chuang, Yin-Ching; Lin, Jung-Chung; Siu, L Kristopher
2014-01-01
Two plasmids carrying blaNDM-1 isolated from carbapenem-resistant Klebsiella pneumoniae (CR-KP) and carbapenem-resistant Escherichia coli (CR-EC) were sequenced. CR-KP and CR-EC were isolated from two Taiwanese patients without travel histories. Complete sequencing of the plasmids (pLK75 and pLK78) was conducted using a shotgun approach. Annotation of the contigs was performed using the RAST Server, followed by manual inspection and correction. These similar plasmids were obtained from two patients with overlapping stays at the same hospital. The pLK75 and pLK78 plasmids were 56,489-bp and 56,072-bp in length, respectively. Plasmid annotation revealed a common backbone similar to the IncN plasmid pR46. The regions flanking the blaNDM-1 genes in these plasmids were very similar to plasmid pNDM-HU01 in Japan, which contains a complex class 1 integron located next to an ISCR1 element. The ISCR1 element has been suggested to provide a powerful mechanism for mobilising antibiotic resistance genes. Two indigenous NDM-1-producing Enterobacteriaceae cases were identified for the first time in Taiwan, highlighting the alarming introduction of NDM-1-producing Enterobacteriaceae in this region.
2006-04-01
Fig. 2B). In addition, luciferase assay on cells co-transfected with constructs expressing firefly and renilla luciferase genes showed a significant...positive cells. (C) BT474 cells were co-transfected with pGL3 plasmid expressing firefly luciferase, pRL plasmid expressing renilla luciferase, and...genes Per1 (A) and Bmal1 (B). BT474 cells were transfected with Per1 (A) and Bmal1 (B) firefly luciferase reporters, pRL plasmid expressing renilla
Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.
Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E
2009-11-20
In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polissi, A.; Bestetti, G.; Bertoni, G.
1990-11-01
The catabolic pathway for the degradation of aromatic hydrocarbons encoded by Pseudomonas putida TMB differs from the TOL plasmid-encoded pathway as far as regulation of the upper pathway is concerned. We found, by analyzing Tn5-induced mutants and by Southern blot hybridization with appropriate probes derived from the TOL plasmid pWWO, that the catabolic genes of strain TMB were located on the bacterial chromosome and not on the 84-kb plasmid harbored by this strain. The catabolic genes of TMB and pWWO had sequence homology, as shown by Southern blot hybridization, but different significantly in their restriction patterns. The analysis of themore » mutants suggests that a regulatory mechanism similar to that present in pWWO coexists in TMB with a second mode of regulation which is epistatic on the former and that the chromosomal region carrying the catabolic genes is prone to rearrangements and deletions.« less
Low Sensitivity of Listeria monocytogenes to Quaternary Ammonium Compounds
Mereghetti, L.; Quentin, R.; Marquet-Van Der Mee, N.; Audurier, A.
2000-01-01
Ninety-seven epidemiologically unrelated strains of Listeria monocytogenes were investigated for their sensitivities to quaternary ammonium compounds (benzalkonium chloride and cetrimide). The MICs for seven serogroup 1/2 strains were high. Three came from the environment and four came from food; none were isolated from human or animal samples. All 97 strains carried the mdrL gene, which encodes a multidrug efflux pump, and the orfA gene, a putative transcriptional repressor of mdrL. The absence of plasmids in four of the seven resistant strains and the conservation of resistance after plasmid curing suggested that the resistance genes are not plasmid borne. Moreover, PCR amplification and Southern blot hybridization experiments failed to find genes phylogenetically related to the qacA and smr genes, encoding multidrug efflux systems previously described for the genus Staphylococcus. The high association between nontypeability by phages and the loss of sensitivity to quaternary ammonium compounds are suggestive of an intrinsic resistance due to modifications in the cell wall. PMID:11055967
Jagura-Burdzy, G; Kostelidou, K; Pole, J; Khare, D; Jones, A; Williams, D R; Thomas, C M
1999-05-01
The korAB operon of broad-host-range plasmid RK2 encodes five genes, two of which, incC and korB, belong to the parA and parB families, respectively, of genome partitioning functions. Both korB and a third gene, korA, are responsible for coordinate regulation of operons encoding replication, transfer, and stable inheritance functions. Overexpression of incC alone caused rapid displacement of RK2. Using two different reporter systems, we show that incC modulates the action of KorB. Using promoter fusions to the reporter gene xylE, we show that incC potentiates the repression of transcription by korB. This modulation of korB activity was only observed with incC1, which encodes the full-length IncC (364 amino acids [aa]), whereas no effect was observed with incC2, which encodes a polypeptide of 259 aa that lacks the N-terminal 105 aa. Using bacterial extracts with IncC1 and IncC2 or IncC1 purified through the use of a His6 tail and Ni-agarose chromatography, we showed that IncC1 potentiates the binding of KorB to DNA at representative KorB operators. The ability of IncC to stabilize KorB-DNA complexes suggests that these two proteins work together in the global regulation of many operons on the IncP-1 genomes, as well in plasmid partitioning.
Yi, Y; Zhang, M; Liu, C
2001-06-01
To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.
Pond, F R; Gibson, I; Lalucat, J; Quackenbush, R L
1989-01-01
Until 10 years ago, R bodies were known only as diagnostic features by which endosymbionts of paramecia were identified as kappa particles. They were thought to be limited to the cytoplasm of two species in the Paramecium aurelia species complex. Now, R bodies have been found in free-living bacteria and other Paramecium species. The organisms now known to form R bodies include the cytoplasmic kappa endosymbionts of P. biaurelia and P. tetraurelia, the macronuclear kappa endosymbionts of P. caudatum, Pseudomonas avenae (a free-living plant pathogen), Pseudomonas taeniospiralis (a hydrogen-oxidizing soil microorganism), Rhodospirillum centenum (a photosynthetic bacterium), and a soil bacterium, EPS-5028, which is probably a pseudomonad. R bodies themselves fall into five distinct groups, distinguished by size, the morphology of the R-body ribbons, and the unrolling behavior of wound R bodies. In recent years, the inherent difficulties in studying the organization and assembly of R bodies by the obligate endosymbiont kappa, have been alleviated by cloning and expressing genetic determinants for these R bodies (type 51) in Escherichia coli. Type 51 R-body synthesis requires three low-molecular-mass polypeptides. One of these is modified posttranslationally, giving rise to 12 polypeptide species, which are the major structural subunits of the R body. R bodies are encoded in kappa species by extrachromosomal elements. Type 51 R bodies, produced in Caedibacter taeniospiralis, are encoded by a plasmid, whereas bacteriophage genomes probably control R-body synthesis in other kappa species. However, there is no evidence that either bacteriophages or plasmids are present in P. avenae or P. taeniospiralis. No sequence homology was detected between type 51 R-body-encoding DNA and DNA from any R-body-producing species, except C. varicaedens 1038. The evolutionary relatedness of different types of R bodies remains unknown. Images PMID:2651865
Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein.
Pawluk, April; Shah, Megha; Mejdani, Marios; Calmettes, Charles; Moraes, Trevor F; Davidson, Alan R; Maxwell, Karen L
2017-12-12
CRISPR (clustered regularly interspaced short palindromic repeat)-Cas adaptive immune systems are prevalent defense mechanisms in bacteria and archaea. They provide sequence-specific detection and neutralization of foreign nucleic acids such as bacteriophages and plasmids. One mechanism by which phages and other mobile genetic elements are able to overcome the CRISPR-Cas system is through the expression of anti-CRISPR proteins. Over 20 different families of anti-CRISPR proteins have been described, each of which inhibits a particular type of CRISPR-Cas system. In this work, we determined the structure of type I-E anti-CRISPR protein AcrE1 by X-ray crystallography. We show that AcrE1 binds to the CRISPR-associated helicase/nuclease Cas3 and that the C-terminal region of the anti-CRISPR protein is important for its inhibitory activity. We further show that AcrE1 can convert the endogenous type I-E CRISPR system into a programmable transcriptional repressor. IMPORTANCE The CRISPR-Cas immune system provides bacteria with resistance to invasion by potentially harmful viruses, plasmids, and other foreign mobile genetic elements. This study presents the first structural and mechanistic insight into a phage-encoded protein that inactivates the type I-E CRISPR-Cas system in Pseudomonas aeruginosa The interaction of this anti-CRISPR protein with the CRISPR-associated helicase/nuclease proteins Cas3 shuts down the CRISPR-Cas system and protects phages carrying this gene from destruction. This interaction also allows the repurposing of the endogenous type I-E CRISPR system into a programmable transcriptional repressor, providing a new biotechnological tool for genetic studies of bacteria encoding this type I-E CRISPR-Cas system. Copyright © 2017 Pawluk et al.
A PNPase Dependent CRISPR System in Listeria
Sesto, Nina; Touchon, Marie; Andrade, José Marques; Kondo, Jiro; Rocha, Eduardo P. C.; Arraiano, Cecilia Maria; Archambaud, Cristel; Westhof, Éric; Romby, Pascale; Cossart, Pascale
2014-01-01
The human bacterial pathogen Listeria monocytogenes is emerging as a model organism to study RNA-mediated regulation in pathogenic bacteria. A class of non-coding RNAs called CRISPRs (clustered regularly interspaced short palindromic repeats) has been described to confer bacterial resistance against invading bacteriophages and conjugative plasmids. CRISPR function relies on the activity of CRISPR associated (cas) genes that encode a large family of proteins with nuclease or helicase activities and DNA and RNA binding domains. Here, we characterized a CRISPR element (RliB) that is expressed and processed in the L. monocytogenes strain EGD-e, which is completely devoid of cas genes. Structural probing revealed that RliB has an unexpected secondary structure comprising basepair interactions between the repeats and the adjacent spacers in place of canonical hairpins formed by the palindromic repeats. Moreover, in contrast to other CRISPR-Cas systems identified in Listeria, RliB-CRISPR is ubiquitously present among Listeria genomes at the same genomic locus and is never associated with the cas genes. We showed that RliB-CRISPR is a substrate for the endogenously encoded polynucleotide phosphorylase (PNPase) enzyme. The spacers of the different Listeria RliB-CRISPRs share many sequences with temperate and virulent phages. Furthermore, we show that a cas-less RliB-CRISPR lowers the acquisition frequency of a plasmid carrying the matching protospacer, provided that trans encoded cas genes of a second CRISPR-Cas system are present in the genome. Importantly, we show that PNPase is required for RliB-CRISPR mediated DNA interference. Altogether, our data reveal a yet undescribed CRISPR system whose both processing and activity depend on PNPase, highlighting a new and unexpected function for PNPase in “CRISPRology”. PMID:24415952
Kurylo, Chad M.; Alexander, Noah; Dass, Randall A.; Parks, Matthew M.; Altman, Roger A.; Vincent, C. Theresa; Mason, Christopher E.; Blanchard, Scott C.
2016-01-01
Escherichia coli strain MRE600 was originally identified for its low RNase I activity and has therefore been widely adopted by the biomedical research community as a preferred source for the expression and purification of transfer RNAs and ribosomes. Despite its widespread use, surprisingly little information about its genome or genetic content exists. Here, we present the first de novo assembly and description of the MRE600 genome and epigenome. To provide context to these studies of MRE600, we include comparative analyses with E. coli K-12 MG1655 (K12). Pacific Biosciences Single Molecule, Real-Time sequencing reads were assembled into one large chromosome (4.83 Mb) and three smaller plasmids (89.1, 56.9, and 7.1 kb). Interestingly, the 7.1-kb plasmid possesses genes encoding a colicin E1 protein and its associated immunity protein. The MRE600 genome has a G + C content of 50.8% and contains a total of 5,181 genes, including 4,913 protein-encoding genes and 268 RNA genes. We identified 41,469 modified DNA bases (0.83% of total) and found that MRE600 lacks the gene for type I methyltransferase, EcoKI. Phylogenetic, taxonomic, and genetic analyses demonstrate that MRE600 is a divergent E. coli strain that displays features of the closely related genus, Shigella. Nevertheless, comparative analyses between MRE600 and E. coli K12 show that these two strains exhibit nearly identical ribosomal proteins, ribosomal RNAs, and highly homologous tRNA species. Substantiating prior suggestions that MRE600 lacks RNase I activity, the RNase I-encoding gene, rna, contains a single premature stop codon early in its open-reading frame. PMID:26802429
The Virulence Plasmid of Yersinia, an Antihost Genome
Cornelis, Guy R.; Boland, Anne; Boyd, Aoife P.; Geuijen, Cecile; Iriarte, Maite; Neyt, Cécile; Sory, Marie-Paule; Stainier, Isabelle
1998-01-01
The 70-kb virulence plasmid enables Yersinia spp. (Yersinia pestis, Y. pseudotuberculosis, and Y. enterocolitica) to survive and multiply in the lymphoid tissues of their host. It encodes the Yop virulon, an integrated system allowing extracellular bacteria to disarm the cells involved in the immune response, to disrupt their communications, or even to induce their apoptosis by the injection of bacterial effector proteins. This system consists of the Yop proteins and their dedicated type III secretion apparatus, called Ysc. The Ysc apparatus is composed of some 25 proteins including a secretin. Most of the Yops fall into two groups. Some of them are the intracellular effectors (YopE, YopH, YpkA/YopO, YopP/YopJ, YopM, and YopT), while the others (YopB, YopD, and LcrV) form the translocation apparatus that is deployed at the bacterial surface to deliver the effectors into the eukaryotic cells, across their plasma membrane. Yop secretion is triggered by contact with eukaryotic cells and controlled by proteins of the virulon including YopN, TyeA, and LcrG, which are thought to form a plug complex closing the bacterial secretion channel. The proper operation of the system also requires small individual chaperones, called the Syc proteins, in the bacterial cytosol. Transcription of the genes is controlled both by temperature and by the activity of the secretion apparatus. The virulence plasmid of Y. enterocolitica and Y. pseudotuberculosis also encodes the adhesin YadA. The virulence plasmid contains some evolutionary remnants including, in Y. enterocolitica, an operon encoding resistance to arsenic compounds. PMID:9841674
Vaccine to control the viral infection of fish
Leong, Jo-Ann C.
1994-10-11
Subunit vaccines and their use for immunizing fish against infection by viruses are disclosed. In particular, plasmid pG8 is constructed by joining, with the plasmid pUC8, DNA which encodes the glycoprotein of infectious hematopoietic necrosis virus (IHNV). E. coli cells are transformed by pG8, whereby pure viral antigen is produced to provide a vaccine for the control of IHNV in fish.
Plasmids of Legionella Species.
1982-06-18
LEGIONELLA SPECIES *PERRY MIKESELL, CPT GREGORY B. KNUDSON, PhD U.S. ARMY MEDICAL RESEARCH INSTITUTE OF INFECTIOUS DISEASES FORT DETRICK, FREDERICK, MARYLAND...sponsible for metabolism, resistan to metals and fertility factors , plasmids also encode for druKg_-sistance factors . These latter genetic elements are an...3). The etiological agent was identified as a fastidious, aerobic, gram-nega- tive bacterium and given the name Legionella pneumophila. The number of
Hsieh, Ming Kun; Wu, Ching Ching; Lin, Tsang Long
2006-11-17
The purpose of the present study was to determine whether DNA vaccination by co-administration of DNA coding for chicken interferon-gamma (IFN-gamma) gene and DNA encoding for the VP243 gene of IBDV could enhance immune response and protection efficacy of chickens against challenge by IBDV. Plasmids carrying VP243 gene of IBDV strain variant E (VE) (P/VP243/E) and chicken IFN-gamma gene (P/cIFN-gamma) were constructed, respectively. One-day-old chickens were intramuscularly injected with P/VP243/E, or P/cIFN-gamma, or both once, twice, or three times into the thigh muscle of one leg or the thigh muscles of two separate legs at weekly intervals. Chickens were orally challenged with IBDV strain VE at 3 weeks of age and observed for 10 days. Chickens receiving two plasmids in the same site two times had significantly higher (P<0.05) bursal lesion scores and significantly lower (P<0.05) bursa weight/body weight ratios than those that only received P/VP243/E two or three times. Chickens inoculated with two plasmids separately in the thigh muscles of different legs or P/VP243/E two times had 33-50% protection and those receiving two plasmids in the same sites did not have any protection against IBD. The enzyme-linked immunosorbent assay (ELISA) and virus neutralization (VN) titers to IBDV of chickens in the groups with three doses of P/VP243/E were significantly higher (P<0.05) than those in groups receiving two doses of P/VP243/E or P/VP243/E and P/cIFN-gamma. Chickens protected by DNA vaccination did not have detectable IBDV antigen in the bursae as determined by immunofluorescent antibody assay (IFA). The results indicated that co-administration of plasmid encoding chicken IFN-gamma gene with plasmid encoding a large segment gene of the IBDV did not enhance immune response and protection against challenge by IBDV.
Girlich, Delphine; Poirel, Laurent; Nordmann, Patrice
2010-01-01
A Pseudomonas fluorescens isolate (PF-1) resistant to carbapenems was recovered during an environmental survey performed with water from the Seine River (Paris). It expressed a novel Ambler class A carbapenemase, BIC-1, sharing 68 and 59% amino acid identities with beta-lactamases SFC-1 from Serratia fonticola and the plasmid-encoded KPC-2, respectively. beta-Lactamase BIC-1 hydrolyzed penicillins, carbapenems, and cephalosporins except ceftazidime and monobactams. The bla(BIC-1) gene was chromosomally located and was also identified in two other P. fluorescens strains isolated from the Seine River 3 months later.
Plasmid Frequency Fluctuations in Bacterial Populations from Chemically Stressed Soil Communities
Wickham, Gene S.; Atlas, Ronald M.
1988-01-01
The frequency of plasmids in chemically stressed bacterial populations was investigated by individually adding various concentration of kanamycin, ampicillin, and mercuric chloride to soil samples. Viable bacterial populations were enumerated, soil respiration was monitored for up to 6 weeks as an indicator of physiological stress, and bacterial isolates from stressed and control soils were screened for the presence of plasmids. Low levels of the chemical stress factors did not for the most part significantly alter population viability, soil respiration, or plasmid frequency. Exposure to high stress levels of mercury and ampicillin, however, resulted in altered numbers of viable organisms, soil respiration, and plasmid frequency. Plasmid frequency increased in response to ampicillin exposure but was not significantly changed after exposure to kanamycin. In mercuric chloride-stressed soils, there was a decrease in plasmid frequency despite an increase in overall mercury resistance of the isolates, suggesting that mercury resistance in these populations is largely, if not completely, chromosome encoded. Chemical stress did not cause an increase in plasmid-mediated multiple resistance. A genetic response (change in plasmid frequency) was not found unless a physiological (phenotypic) response (change in viable cells and respiratory activity) was also observed. The results indicate that a change in plasmid frequency is dependent on both the amount and type of chemical stress. PMID:16347730
A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast.
Jaschke, Paul R; Lieberman, Erica K; Rodriguez, Jon; Sierra, Adrian; Endy, Drew
2012-12-20
The 5386 nucleotide bacteriophage øX174 genome has a complicated architecture that encodes 11 gene products via overlapping protein coding sequences spanning multiple reading frames. We designed a 6302 nucleotide synthetic surrogate, øX174.1, that fully separates all primary phage protein coding sequences along with cognate translation control elements. To specify øX174.1f, a decompressed genome the same length as wild type, we truncated the gene F coding sequence. We synthesized DNA encoding fragments of øX174.1f and used a combination of in vitro- and yeast-based assembly to produce yeast vectors encoding natural or designer bacteriophage genomes. We isolated clonal preparations of yeast plasmid DNA and transfected E. coli C strains. We recovered viable øX174 particles containing the øX174.1f genome from E. coli C strains that independently express full-length gene F. We expect that yeast can serve as a genomic 'drydock' within which to maintain and manipulate clonal lineages of other obligate lytic phage. Copyright © 2012 Elsevier Inc. All rights reserved.