Sample records for expression profiles conclusion

  1. Gene Expression Profiling of Multiple Leiomyomata Uteri and Matched Normal Tissue from a Single Patient

    PubMed Central

    Dimitrova, Irina K.; Richer, Jennifer K.; Rudolph, Michael C.; Spoelstra, Nicole S.; Reno, Elaine M.; Medina, Theresa M.; Bradford, Andrew P.

    2009-01-01

    Objective To identify differentially expressed genes between fibroid and adjacent normal myometrium in an identical hormonal and genetic background. Design Array analysis of 3 leiomyomata and matched adjacent normal myometrium in a single patient. Setting University of Colorado Hospital. Patient(s) A single female undergoing medically indicated hysterectomy for symptomatic fibroids. Interventions(s) mRNA isolation and microarray analysis, reverse-transcriptase polymerase chain reaction, western blotting and immunohistochemistry. Main Outcome Measure(s) Changes in mRNA and protein levels in leiomyomata and matched normal myometrium. Result(s) Expression of 197 genes was increased and 619 decreased, significantly by at least 2 fold, in leiomyomata relative to normal myometrium. Expression profiles between tumors were similar and normal myometrial samples showed minimal variation. Changes in, and variation of, expression of selected genes were confirmed in additional normal and leiomyoma samples from multiple patients. Conclusion(s) Analysis of multiple tumors from a single patient confirmed changes in expression of genes described in previous, apparently disparate, studies and identified novel targets. Gene expression profiles in leiomyomata are consistent with increased activation of mitogenic pathways and inhibition of apoptosis. Down-regulation of genes implicated in invasion and metastasis, of cancers, was observed in fibroids. This expression pattern may underlie the benign nature of uterine leiomyomata and may aid in the differential diagnosis of leiomyosarcoma. PMID:18672237

  2. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

    PubMed Central

    Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W

    2007-01-01

    Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588

  3. A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks

    PubMed Central

    2011-01-01

    Background We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm. Results We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. Conclusions The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. PMID:21699737

  4. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling.

    PubMed

    Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T

    2009-05-01

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.

  5. Modelling gene expression profiles related to prostate tumor progression using binary states

    PubMed Central

    2013-01-01

    Background Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression. Methods We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets. Results We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings. Conclusions Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies. PMID:23721350

  6. Conditional clustering of temporal expression profiles

    PubMed Central

    Wang, Ling; Montano, Monty; Rarick, Matt; Sebastiani, Paola

    2008-01-01

    Background Many microarray experiments produce temporal profiles in different biological conditions but common cluster techniques are not able to analyze the data conditional on the biological conditions. Results This article presents a novel technique to cluster data from time course microarray experiments performed across several experimental conditions. Our algorithm uses polynomial models to describe the gene expression patterns over time, a full Bayesian approach with proper conjugate priors to make the algorithm invariant to linear transformations, and an iterative procedure to identify genes that have a common temporal expression profile across two or more experimental conditions, and genes that have a unique temporal profile in a specific condition. Conclusion We use simulated data to evaluate the effectiveness of this new algorithm in finding the correct number of clusters and in identifying genes with common and unique profiles. We also use the algorithm to characterize the response of human T cells to stimulations of antigen-receptor signaling gene expression temporal profiles measured in six different biological conditions and we identify common and unique genes. These studies suggest that the methodology proposed here is useful in identifying and distinguishing uniquely stimulated genes from commonly stimulated genes in response to variable stimuli. Software for using this clustering method is available from the project home page. PMID:18334028

  7. A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.

    PubMed

    Rubel, Cory A; Wu, San-Pin; Lin, Lin; Wang, Tianyuan; Lanz, Rainer B; Li, Xilong; Kommagani, Ramakrishna; Franco, Heather L; Camper, Sally A; Tong, Qiang; Jeong, Jae-Wook; Lydon, John P; DeMayo, Francesco J

    2016-10-25

    Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR) expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage. Published by Elsevier Inc.

  8. Expression and secretory profile of buffalo fetal fibroblasts and Wharton's jelly feeder layers.

    PubMed

    Parmar, Mehtab S; Mishra, Smruti Ranjan; Somal, Anjali; Pandey, Sriti; Kumar, G Sai; Sarkar, Mihir; Chandra, Vikash; Sharma, G Taru

    2017-05-01

    The present study examined the comparative expression and secretory profile of vital signaling molecules in buffalo fetal fibroblasts (BFF) and Wharton's jelly (BWJ) feeder layers at different passages. Both feeder layers were expanded up to 8th passage. Signaling molecules viz. bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF) and transforming growth factor beta 1 (TGFB1) and pluripotency-associated transcriptional factors (POU5F1, SOX2, NANOG, KLF4, MYC and FOXD3) were immunolocalized in the both feeder types. A clear variation in the expression pattern of key signaling molecules with passaging was registered in both feeders compared to primary culture (0 passage). The conditioned media (CM) was collected from different passages (2, 4, 6, 8) of both the feeder layers and was quantified using enzyme-linked immunosorbent assay (ELISA). Concomitant to expression profile, protein quantification also revealed differences in the concentration of signaling molecules at different time points. Conjointly, expression and secretory profile revealed that 2nd passage of BFF and 6th passage of BWJ exhibit optimal levels of key signaling molecules thus may be selected as best passages for embryonic stem cells (ESCs) propagation. Further, the effect of mitomycin-C (MMC) treatment on the expression profile of signaling molecules in the selected passages of BFF and BWJ revealed that MMC modulates the expression profile of these molecules. In conclusion, the results indicate that feeder layers vary in expression and secretory pattern of vital signaling molecules with passaging. Based on these findings, the appropriate feeder passages may be selected for the quality propagation of buffalo ESCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.

    PubMed

    Dvorak, Pavel; Pesta, Martin; Soucek, Pavel

    2017-05-01

    Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.

  10. Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes

    PubMed Central

    Fu, Jia; Wei, Chengguo; Lee, Kyung; Zhang, Weijia; He, Wu; Chuang, Peter

    2016-01-01

    Evaluating the mRNA profile of podocytes in the diabetic kidney may indicate genes involved in the pathogenesis of diabetic nephropathy. To determine if the podocyte-specific gene information contained in mRNA profiles of the whole glomerulus of the diabetic kidney accurately reflects gene expression in the isolated podocytes, we crossed Nos3−/− IRG mice with podocin-rtTA and TetON-Cre mice for enhanced green fluorescent protein labeling of podocytes before diabetic injury. Diabetes was induced by streptozotocin, and mRNA profiles of isolated glomeruli and sorted podocytes from diabetic and control mice were examined 10 weeks later. Expression of podocyte-specific markers in glomeruli was downregulated in diabetic mice compared with controls. However, expression of these markers was not altered in sorted podocytes from diabetic mice. When mRNA levels of glomeruli were corrected for podocyte number per glomerulus, the differences in podocyte marker expression disappeared. Analysis of the differentially expressed genes in diabetic mice also revealed distinct upregulated pathways in the glomeruli (mitochondrial function, oxidative stress) and in podocytes (actin organization). In conclusion, our data suggest reduced expression of podocyte markers in glomeruli is a secondary effect of reduced podocyte number, thus podocyte-specific gene expression detected in the whole glomerulus may not represent that in podocytes in the diabetic kidney. PMID:26264855

  11. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    PubMed Central

    Obermeier, Christian; Hosseini, Bashir; Friedt, Wolfgang; Snowdon, Rod

    2009-01-01

    Background Serial analysis of gene expression (LongSAGE) was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus). The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP). Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species. PMID:19575793

  12. A method to identify differential expression profiles of time-course gene data with Fourier transformation

    PubMed Central

    2013-01-01

    Background Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. Results This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization. The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Conclusions Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics. PMID:24134721

  13. Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis.

    PubMed

    Niedoszytko, M; Bruinenberg, M; van Doormaal, J J; de Monchy, J G R; Nedoszytko, B; Koppelman, G H; Nawijn, M C; Wijmenga, C; Jassem, E; Elberink, J N G Oude

    2011-05-01

    Anaphylaxis to insect venom (Hymenoptera) is most severe in patients with mastocytosis and may even lead to death. However, not all patients with mastocytosis suffer from anaphylaxis. The aim of the study was to analyze differences in gene expression between patients with indolent systemic mastocytosis (ISM) and a history of insect venom anaphylaxis (IVA) compared to those patients without a history of anaphylaxis, and to determine the predictive use of gene expression profiling. Whole-genome gene expression analysis was performed in peripheral blood cells. Twenty-two adults with ISM were included: 12 with a history of IVA and 10 without a history of anaphylaxis of any kind. Significant differences in single gene expression corrected for multiple testing were found for 104 transcripts (P < 0.05). Gene ontology analysis revealed that the differentially expressed genes were involved in pathways responsible for the development of cancer and focal and cell adhesion suggesting that the expression of genes related to the differentiation state of cells is higher in patients with a history of anaphylaxis. Based on the gene expression profiles, a naïve Bayes prediction model was built identifying patients with IVA. In ISM, gene expression profiles are different between patients with a history of IVA and those without. These findings might reflect a more pronounced mast cells dysfunction in patients without a history of anaphylaxis. Gene expression profiling might be a useful tool to predict the risk of anaphylaxis on insect venom in patients with ISM. Prospective studies are needed to substantiate any conclusions. © 2010 John Wiley & Sons A/S.

  14. Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation

    PubMed Central

    2010-01-01

    Background Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Results Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Conclusion Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing. PMID:20707912

  15. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    PubMed

    Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to retain tight control over excitability under both basal and activated conditions.

  16. Gene expression profiling of intestinal regeneration in the sea cucumber

    PubMed Central

    Ortiz-Pineda, Pablo A; Ramírez-Gómez, Francisco; Pérez-Ortiz, Judit; González-Díaz, Sebastián; Santiago-De Jesús, Francisco; Hernández-Pasos, Josue; Del Valle-Avila, Cristina; Rojas-Cartagena, Carmencita; Suárez-Castillo, Edna C; Tossas, Karen; Méndez-Merced, Ana T; Roig-López, José L; Ortiz-Zuazaga, Humberto; García-Arrarás, José E

    2009-01-01

    Background Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools. For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. Results In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. Conclusion Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes. PMID:19505337

  17. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    PubMed

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  18. Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects

    PubMed Central

    2012-01-01

    Background Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the correlation among gene expression profiles. We further investigate the advantages and limitations of available models in the literature and propose a new mixture model with autoregressive random effects of the first order for the clustering of time-course gene-expression profiles. Some simulations and real examples are given to demonstrate the usefulness of the proposed models. Results We illustrate the applicability of our new model using synthetic and real time-course datasets. We show that our model outperforms existing models to provide more reliable and robust clustering of time-course data. Our model provides superior results when genetic profiles are correlated. It also gives comparable results when the correlation between the gene profiles is weak. In the applications to real time-course data, relevant clusters of coregulated genes are obtained, which are supported by gene-function annotation databases. Conclusions Our new model under our extension of the EMMIX-WIRE procedure is more reliable and robust for clustering time-course data because it adopts a random effects model that allows for the correlation among observations at different time points. It postulates gene-specific random effects with an autocorrelation variance structure that models coregulation within the clusters. The developed R package is flexible in its specification of the random effects through user-input parameters that enables improved modelling and consequent clustering of time-course data. PMID:23151154

  19. Gene expression profiles in peripheral blood mononuclear cells of Chinese nickel refinery workers with high exposures to nickel and control subjects

    PubMed Central

    Arita, Adriana; Muñoz, Alexandra; Chervona, Yana; Niu, Jingping; Qu, Qingshan; Zhao, Najuan; Ruan, Ye; Kiok, Kathrin; Kluz, Thomas; Sun, Hong; Clancy, Hailey A.; Shamy, Magdy; Costa, Max

    2012-01-01

    Background Occupational exposure to nickel (Ni) is associated with an increased risk of lung and nasal cancers. Ni compounds exhibit weak mutagenic activity, alter the cell’s epigenetic homeostasis, and activate signaling pathways. However, changes in gene expression associated with Ni exposure have only been investigated in vitro. This study was conducted in a Chinese population to determine whether occupational exposure to Ni was associated with differential gene expression profiles in the peripheral blood mononuclear cells (PBMCs) of Ni-refinery workers when compared to referents. Methods Eight Ni-refinery workers and ten referents were selected. PBMC RNA was extracted and gene expression profiling was performed using Affymetrix exon arrays. Differentially expressed genes between both groups were identified in a global analysis. Results There were a total of 2756 differentially expressed genes (DEG) in the Ni-refinery workers relative to the control subjects (FDR adjusted p<0.05) with 770 up-regulated genes and 1986 down-regulated genes. DNA repair and epigenetic genes were significantly overrepresented (p< 0.0002) among the DEG. Of 31 DNA repair genes, 29 were repressed in the high exposure group and two were overexpressed. Of the 16 epigenetic genes 12 were repressed in the high exposure group and 4 were overexpressed. Conclusions The results of this study indicate that occupational exposure to Ni is associated with alterations in gene expression profiles in PBMCs of subjects. Impact Gene expression may be useful in identifying patterns of deregulation that precede clinical identification of Ni-induced cancers. PMID:23195993

  20. Stage-specific differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs, Sus Scrofa

    PubMed Central

    2014-01-01

    Background Our current knowledge of tooth development derives mainly from studies in mice, which have only one set of non-replaced teeth, compared with the diphyodont dentition in humans. The miniature pig is also diphyodont, making it a valuable alternative model for understanding human tooth development and replacement. However, little is known about gene expression and function during swine odontogenesis. The goal of this study is to undertake the survey of differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs. The identification of genes related to diphyodont development should lead to a better understanding of morphogenetic patterns and the mechanisms of diphyodont replacement in large animal models and humans. Results The temporal gene expression profiles during early diphyodont development in miniature pigs were detected with the Affymetrix Porcine GeneChip. The gene expression data were further evaluated by ANOVA as well as pathway and STC analyses. A total of 2,053 genes were detected with differential expression. Several signal pathways and 151 genes were then identified through the construction of pathway and signal networks. Conclusions The gene expression profiles indicated that spatio-temporal down-regulation patterns of gene expression were predominant; while, both dynamic activation and inhibition of pathways occurred during the morphogenesis of diphyodont dentition. Our study offers a mechanistic framework for understanding dynamic gene regulation of early diphyodont development and provides a molecular basis for studying teeth development, replacement, and regeneration in miniature pigs. PMID:24498892

  1. Generation of novel pharmacogenomic candidates in the response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype

    PubMed Central

    Moncrieffe, Halima; Hinks, Anne; Ursu, Simona; Kassoumeri, Laura; Etheridge, Angela; Hubank, Mike; Martin, Paul; Weiler, Tracey; Glass, David N; Thompson, Susan D.; Thomson, Wendy; Wedderburn, Lucy R

    2010-01-01

    Objectives Little is known about mechanisms of efficacy of methotrexate (MTX) in childhood arthritis, or genetic influences upon response to MTX. The aims of this study were to use gene expression profiling to identify novel pathways/genes altered by MTX and then investigate these genes for genotype associations with response to MTX treatment. Methods Gene expression profiling before and after MTX treatment was performed on 11 children with juvenile idiopathic arthritis (JIA) treated with MTX, in whom response at 6 months of treatment was defined. Genes showing the most differential gene expression after treatment were selected for SNP genotyping. Genotype frequencies were compared between non-responders and responders (ACR-Ped70). An independent cohort was available for validation. Results Gene expression profiling before and after MTX treatment revealed 1222 differentially expressed probes sets (fold change >1.7, p< 0.05) and 1065 when restricted to full responder cases only. Six highly differentially expressed genes were analysed for genetic association to response to MTX. Three SNPs in the SLC16A7 gene showed significant association with MTX response. One SNP showed validated association in an independent cohort. Conclusions This study is the first, to our knowledge, to evaluate gene expression profiles in children with JIA before and after MTX, and to analyse genetic variation in differentially expressed genes. We have identified a gene which may contribute to genetic variability in MTX response in JIA, and established as proof of principle that genes which are differentially expressed at mRNA level after drug administration may also be good candidates for genetic analysis. PMID:20827233

  2. c-kit expression profile and regulatory factors during spermatogonial stem cell differentiation

    PubMed Central

    2013-01-01

    Background It has been proven that c-kit is crucial for proliferation, migration, survival and maturation of spermatogenic cells. A periodic expression of c-kit is observed from primordial germ cells (PGCs) to spermatogenetic stem cells (SSCs), However, the expression profile of c-kit during the entire spermatogenesis process is still unclear. This study aims to reveal and compare c-kit expression profiles in the SSCs before and after the anticipated differentiation, as well as to examine its relationship with retinoic acid (RA) stimulation. Results We have found that there are more than 4 transcripts of c-kit expressed in the cell lines and in the testes. The transcripts can be divided into short and long categories. The long transcripts include the full-length canonical c-kit transcript and the 3′ end short transcript. Short transcripts include the 3.4 kb short transcript and several truncated transcripts (1.9-3.2 kb). In addition, the 3.4 kb transcript (starting from intron 9 and covering exons 10 ~ 21) is discovered to be specifically expressed in the spermatogonia. The extracellular domain of Kit is obtained in the spermatogonia stage, but the intracellular domain (50 kDa) is constantly expressed in both SSCs and spermatogonia. The c-kit expression profiles in the testis and the spermatogonial stem cell lines vary after RA stimulation. The wave-like changes of the quantitative expression pattern of c-kit (increase initially and decrease afterwards) during the induction process are similar to that of the in vivo male germ cell development process. Conclusions There are dynamic transcription and translation changes of c-kit before and after SSCs’ anticipated differentiation and most importantly, RA is a significant upstream regulatory factor for c-kit expression. PMID:24161026

  3. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    PubMed Central

    2010-01-01

    Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets. PMID:21062462

  4. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)

    PubMed Central

    Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou

    2009-01-01

    Background MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Results Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). Conclusion We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal. PMID:19785751

  5. Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng

    2016-01-01

    Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509

  6. PanGEA: Identification of allele specific gene expression using the 454 technology

    PubMed Central

    Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian

    2009-01-01

    Background Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. Results We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology Conclusion To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: PMID:19442283

  7. A transcriptional profile of the decidua in preeclampsia

    PubMed Central

    LØSET, Mari; MUNDAL, Siv B.; JOHNSON, Matthew P.; FENSTAD, Mona H.; FREED, Katherine A.; LIAN, Ingrid A.; EIDE, Irina P.; BJØRGE, Line; BLANGERO, John; MOSES, Eric K.; AUSTGULEN, Rigmor

    2010-01-01

    OBJECTIVE To obtain insight into possible mechanisms underlying preeclampsia using genome-wide transcriptional profiling in decidua basalis. STUDY DESIGN Genome-wide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n = 37) and normal pregnancies (n = 58). Differentially expressed genes were identified and merged into canonical pathways and networks. RESULTS Of the 26,504 expressed transcripts detected, 455 were differentially expressed (P <0.05, FDR P <0.1). Both novel (ARL5B, SLITRK4) and previously reported preeclampsia-associated genes (PLA2G7, HMOX1) were identified. Pathway analysis revealed that ‘tryptophan metabolism’, ‘endoplasmic reticulum stress’, ‘linoleic acid metabolism’, ‘notch signaling’, ‘fatty acid metabolism’, ‘arachidonic acid metabolism’ and ‘NRF2-mediated oxidative stress response’ were overrepresented canonical pathways. CONCLUSION In the present study single genes, canonical pathways and gene-gene networks that are likely to play an important role in the pathogenesis of preeclampsia, have been identified. Future functional studies are needed to accomplish a greater understanding of the mechanisms involved. PMID:20934677

  8. Maternal Pre-Gravid Obesity Changes Gene Expression Profiles Towards Greater Inflammation and Reduced Insulin Sensitivity in Umbilical Cord

    PubMed Central

    Thakali, Keshari M.; Saben, Jessica; Faske, Jennifer B.; Lindsey, Forrest; Gomez-Acevedo, Horacio; Lowery, Curtis L.; Badger, Thomas M.; Andres, Aline; Shankar, Kartik

    2014-01-01

    Background Maternal obesity is associated with unfavorable outcomes, which may be reflected in the as yet undiscovered gene expression profiles of the umbilical cord (UC). Methods UCs from 12 lean (pre-gravid BMI < 24.9) and 10 overweight/obese (OW/OB, pre-gravid BMI ≥25) women without gestational diabetes were collected for gene expression analysis using Human Primeview microarrays (Affymetrix). Metabolic parameters were assayed in mother’s plasma and cord blood. Results Although offspring birth weight and adiposity (at 2-wk) did not differ between groups, expression of 232 transcripts was affected in UC from OW/OB compared to those of lean mothers. GSEA analysis revealed an up-regulation of genes related to metabolism, stimulus and defense response and inhibitory to insulin signaling in the OW/OB group. We confirmed that EGR1, periostin, and FOSB mRNA expression was induced in UCs from OW/OB moms, while endothelin receptor B, KFL10, PEG3 and EGLN3 expression was decreased. Messenger RNA expression of EGR1, FOSB, MEST and SOCS1 were positively correlated (p<0.05) with mother’s first trimester body fat mass (%). Conclusions Our data suggest a positive association between maternal obesity and changes in UC gene expression profiles favoring inflammation and insulin resistance, potentially predisposing infants to develop metabolic dysfunction later on in life. PMID:24819376

  9. Expression Profiles of TGF-β and TLR Pathways in Porphyromonas gingivalis and Prevotella intermedia Challenged Osteoblasts

    PubMed Central

    Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May

    2015-01-01

    Background: The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. Objectives: This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Materials and Methods: Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Results: Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). Conclusions: P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption. PMID:26034550

  10. High-throughput deep screening and identification of four peripheral leucocyte microRNAs as novel potential combination biomarkers for preeclampsia

    PubMed Central

    Wang, Yonghong; Yang, Xukui; Yang, Yuanyuan; Wang, Wenjun; Zhao, Meiling; Liu, Huiqiang; Li, Dongyan; Hao, Min

    2016-01-01

    Objective: To identify the specific microRNA (miRNA) biomarkers of preeclampsia (PE), the miRNA profiles analysis were performed. Study Design: The blood samples were obtained from five PE patients and five normal healthy pregnant women. The small RNA profiles were analyzed to identify miRNA expression levels and find out miRNAs that may associate with PE. The quantitative reverse transcriptase–PCR (qRT-PCR) assay was used to validate differentially expressed peripheral leucocyte miRNAs in a new cohort. Result: The data analysis showed that 10 peripheral leucocyte miRNAs were significantly differently expressed in severe PE patients. Four differently expressed miRNAs were successfully validated using qRT-PCR method. Conclusion: We successfully constructed a model with high accuracy to predict PE. A combination of four peripheral leucocyte miRNAs has great potential to serve as diagnostic biomarkers of PE. PMID:26675000

  11. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: Physiology of phytopathogenic bacteria

    PubMed Central

    2013-01-01

    Background Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. Results A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. Conclusions From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development. PMID:23587016

  12. Molecular profiling identifies prognostic markers of stage IA lung adenocarcinoma.

    PubMed

    Zhang, Jie; Shao, Jinchen; Zhu, Lei; Zhao, Ruiying; Xing, Jie; Wang, Jun; Guo, Xiaohui; Tu, Shichun; Han, Baohui; Yu, Keke

    2017-09-26

    We previously showed that different pathologic subtypes were associated with different prognostic values in patients with stage IA lung adenocarcinoma (AC). We hypothesize that differential gene expression profiles of different subtypes may be valuable factors for prognosis in stage IA lung adenocarcinoma. We performed microarray gene expression profiling on tumor tissues micro-dissected from patients with acinar and solid predominant subtypes of stage IA lung adenocarcinoma. These patients had undergone a lobectomy and mediastinal lymph node dissection at the Shanghai Chest Hospital, Shanghai, China in 2012. No patient had preoperative treatment. We performed the Gene Set Enrichment Analysis (GSEA) analysis to look for gene expression signatures associated with tumor subtypes. The histologic subtypes of all patients were classified according to the 2015 WHO lung Adenocarcinoma classification. We found that patients with the solid predominant subtype are enriched for genes involved in RNA polymerase activity as well as inactivation of the p53 pathway. Further, we identified a list of genes that may serve as prognostic markers for stage IA lung adenocarcinoma. Validation in the TCGA database shows that these genes are correlated with survival, suggesting that they are novel prognostic factors for stage IA lung adenocarcinoma. In conclusion, we have uncovered novel prognostic factors for stage IA lung adenocarcinoma using gene expression profiling in combination with histopathology subtyping.

  13. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    PubMed Central

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  14. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes

    PubMed Central

    Shvedova, Anna A.; Yanamala, Naveena; Kisin, Elena R.; Khailullin, Timur O.; Birch, M. Eileen; Fatkhutdinova, Liliya M.

    2016-01-01

    Background As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. Methods In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. Results Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. Conclusion This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and miRNAs as prognostic markers of MWCNT exposures in humans. PMID:26930275

  15. Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord

    PubMed Central

    Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    Background In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. Methodology/Principal Findings We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50–250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. Conclusions/Significance We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord. PMID:18923679

  16. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  17. Identification of the Neuromuscular Junction Transcriptome of Extraocular Muscle by Laser Capture Microdissection

    PubMed Central

    Ketterer, Caroline; Zeiger, Ulrike; Budak, Murat T.; Rubinstein, Neal A.; Khurana, Tejvir S.

    2010-01-01

    Purpose. To examine and characterize the profile of genes expressed at the synapses or neuromuscular junctions (NMJs) of extraocular muscles (EOMs) compared with those expressed at the tibialis anterior (TA). Methods. Adult rat eyeballs with rectus EOMs attached and TAs were dissected, snap frozen, serially sectioned, and stained for acetylcholinesterase (AChE) to identify the NMJs. Approximately 6000 NMJs for rectus EOM (EOMsyn), 6000 NMJs for TA (TAsyn), equal amounts of NMJ-free fiber regions (EOMfib, TAfib), and underlying myonuclei and RNAs were captured by laser capture microdissection (LCM). RNA was processed for microarray-based expression profiling. Expression profiles and interaction lists were generated for genes differentially expressed at synaptic and nonsynaptic regions of EOM (EOMsyn versus EOMfib) and TA (TAsyn versus TAfib). Profiles were validated by using real-time quantitative polymerase chain reaction (qPCR). Results. The regional transcriptomes associated with NMJs of EOMs and TAs were identified. Two hundred seventy-five genes were preferentially expressed in EOMsyn (compared with EOMfib), 230 in TAsyn (compared with TAfib), and 288 additional transcripts expressed in both synapses. Identified genes included novel genes as well as well-known, evolutionarily conserved synaptic markers (e.g., nicotinic acetylcholine receptor (AChR) alpha (Chrna) and epsilon (Chrne) subunits and nestin (Nes). Conclusions. Transcriptome level differences exist between EOM synaptic regions and TA synaptic regions. The definition of the synaptic transcriptome provides insight into the mechanism of formation and functioning of the unique synapses of EOM and their differential involvement in diseases noted in the EOM allotype. PMID:20393109

  18. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma

    PubMed Central

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-01-01

    Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578

  19. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    PubMed Central

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  20. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA

    PubMed Central

    Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic

    2006-01-01

    Background Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E), Nissl Stain (NS), and for immunofluorescence (IF) as well as with the plasma cell-revealing methyl green pyronin (MGP) stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. Results The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. Conclusion RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts. PMID:16643667

  1. Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei

    PubMed Central

    Kabani, Sarah; Fenn, Katelyn; Ross, Alan; Ivens, Al; Smith, Terry K; Ghazal, Peter; Matthews, Keith

    2009-01-01

    Background Trypanosomes undergo extensive developmental changes during their complex life cycle. Crucial among these is the transition between slender and stumpy bloodstream forms and, thereafter, the differentiation from stumpy to tsetse-midgut procyclic forms. These developmental events are highly regulated, temporally reproducible and accompanied by expression changes mediated almost exclusively at the post-transcriptional level. Results In this study we have examined, by whole-genome microarray analysis, the mRNA abundance of genes in slender and stumpy forms of T.brucei AnTat1.1 cells, and also during their synchronous differentiation to procyclic forms. In total, five biological replicates representing the differentiation of matched parasite populations derived from five individual mouse infections were assayed, with RNAs being derived at key biological time points during the time course of their synchronous differentiation to procyclic forms. Importantly, the biological context of these mRNA profiles was established by assaying the coincident cellular events in each population (surface antigen exchange, morphological restructuring, cell cycle re-entry), thereby linking the observed gene expression changes to the well-established framework of trypanosome differentiation. Conclusion Using stringent statistical analysis and validation of the derived profiles against experimentally-predicted gene expression and phenotypic changes, we have established the profile of regulated gene expression during these important life-cycle transitions. The highly synchronous nature of differentiation between stumpy and procyclic forms also means that these studies of mRNA profiles are directly relevant to the changes in mRNA abundance within individual cells during this well-characterised developmental transition. PMID:19747379

  2. Skin transcriptome profiles associated with coat color in sheep

    PubMed Central

    2013-01-01

    Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep. PMID:23758853

  3. Comparative peptidomic profile between human hypertrophic scar tissue and matched normal skin for identification of endogenous peptides involved in scar pathology.

    PubMed

    Li, Jingyun; Chen, Ling; Li, Qian; Cao, Jing; Gao, Yanli; Li, Jun

    2018-08-01

    Endogenous peptides recently attract increasing attention for their participation in various biological processes. Their roles in the pathogenesis of human hypertrophic scar remains poorly understood. In this study, we used liquid chromatography-tandem mass spectrometry to construct a comparative peptidomic profiling between human hypertrophic scar tissue and matched normal skin. A total of 179 peptides were significantly differentially expressed in human hypertrophic scar tissue, with 95 upregulated and 84 downregulated peptides between hypertrophic scar tissue and matched normal skin. Further bioinformatics analysis (Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis) indicated that precursor proteins of these differentially expressed peptides correlate with cellular process, biological regulation, cell part, binding and structural molecule activity ribosome, and PPAR signaling pathway occurring during pathological changes of hypertrophic scar. Based on prediction database, we found that 78 differentially expressed peptides shared homology with antimicrobial peptides and five matched known immunomodulatory peptides. In conclusion, our results show significantly altered expression profiles of peptides in human hypertrophic scar tissue. These peptides may participate in the etiology of hypertrophic scar and provide beneficial scheme for scar evaluation and treatments. © 2017 Wiley Periodicals, Inc.

  4. N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide decreases triglyceride levels by downregulation of Apoc3 gene expression in acute hyperlipidemic rat model.

    PubMed

    Hamadneh, Lama; Al-Essa, Luay; Hikmat, Suhair; Al-Qirim, Tariq; Abu Sheikha, Ghassan; Al-Hiari, Yusuf; Azmy, Nisrin; Shattat, Ghassan

    2017-07-01

    Hyperlipidemia is a known cause of coronary vascular diseases, which is a major cause of death in many parts of the world. Targeting several pathways that lead to increase in lipid profiles is of great potential to control diseases. 1H-indole-2-carboxamide derivatives were tested for their hypolipidemic activity at the molecular level in comparison with bezafibrate. The gene expression profiles of lipoprotein signaling and cholesterol metabolism and fatty acid metabolism PCR arrays were determined in rats with acute hyperlipidemia induced by Triton WR1339. Lipid profiles of serum from treated rats showed significant hypolipidemic effect by the compounds. Several genes of potential interest were reported to be overexpressed by Triton WR1339 including Apoc3, Apob, Hmgcs2, Apoa1, Apoe, Apof, acsl1, and Decr1. Most of the overexpressed genes were downregulated by N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide with significant decreases in Apoc3, Apob, Acaa2, Acsl1, and Slc247a5 gene expression levels. N-(4-Benzoylphenyl)-1H-Indole-2-Carboxamide and bezafibrate did not significantly affect the gene expression levels which were increased with acute hyperlipidemia induced by Triton WR1339. In conclusion, gene expression profiling identified the possible mechanism in which Triton WR1339 induces its acute hyperlipidemic effect which was reversed by the use of N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide.

  5. In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues

    PubMed Central

    Pao, Sheng-Ying; Lin, Win-Li; Hwang, Ming-Jing

    2006-01-01

    Background Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. Results To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. Conclusion Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes. PMID:16626500

  6. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model.

    PubMed

    Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju

    2018-05-15

    Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.

  7. Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines

    PubMed Central

    Elling, Axel A; Mitreva, Makedonka; Recknor, Justin; Gai, Xiaowu; Martin, John; Maier, Thomas R; McDermott, Jeffrey P; Hewezi, Tarek; McK Bird, David; Davis, Eric L; Hussey, Richard S; Nettleton, Dan; McCarter, James P; Baum, Thomas J

    2007-01-01

    Background The soybean cyst nematode Heterodera glycines is the most important parasite in soybean production worldwide. A comprehensive analysis of large-scale gene expression changes throughout the development of plant-parasitic nematodes has been lacking to date. Results We report an extensive genomic analysis of H. glycines, beginning with the generation of 20,100 expressed sequence tags (ESTs). In-depth analysis of these ESTs plus approximately 1,900 previously published sequences predicted 6,860 unique H. glycines genes and allowed a classification by function using InterProScan. Expression profiling of all 6,860 genes throughout the H. glycines life cycle was undertaken using the Affymetrix Soybean Genome Array GeneChip. Our data sets and results represent a comprehensive resource for molecular studies of H. glycines. Demonstrating the power of this resource, we were able to address whether arrested development in the Caenorhabditis elegans dauer larva and the H. glycines infective second-stage juvenile (J2) exhibits shared gene expression profiles. We determined that the gene expression profiles associated with the C. elegans dauer pathway are not uniformly conserved in H. glycines and that the expression profiles of genes for metabolic enzymes of C. elegans dauer larvae and H. glycines infective J2 are dissimilar. Conclusion Our results indicate that hallmark gene expression patterns and metabolism features are not shared in the developmentally arrested life stages of C. elegans and H. glycines, suggesting that developmental arrest in these two nematode species has undergone more divergent evolution than previously thought and pointing to the need for detailed genomic analyses of individual parasite species. PMID:17919324

  8. Effects of surface roughness and absorption on light propagation in graded-profile waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilenko, S S; Osovitskii, A N

    2011-06-30

    This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)

  9. Oligonucleotide Microarray Analysis of Dietary-Induced Hyperlipidemia Gene Expression Profiles in Miniature Pigs

    PubMed Central

    Takahashi, Junko; Waki, Shiori; Matsumoto, Rena; Odake, Junji; Miyaji, Takayuki; Tottori, Junichi; Iwanaga, Takehiro; Iwahashi, Hitoshi

    2012-01-01

    Background Hyperlipidemia animal models have been established, but complete gene expression profiles of the transition from normal lipid levels have not been obtained. Miniature pigs are useful model animals for gene expression studies on dietary-induced hyperlipidemia because they have a similar anatomy and digestive physiology to humans, and blood samples can be obtained from them repeatedly. Methodology Two typical dietary treatments were used for dietary-induced hyperlipidemia models, by using specific pathogen-free (SPF) Clawn miniature pigs. One was a high-fat and high-cholesterol diet (HFCD) and the other was a high-fat, high-cholesterol, and high-sucrose diet (HFCSD). Microarray analyses were conducted from whole blood samples during the dietary period and from white blood cells at the end of the dietary period to evaluate the transition of expression profiles of the two dietary models. Principal Findings Variations in whole blood gene expression intensity within the HFCD or the HFCSD group were in the same range as the controls provide with normal diet at all periods. This indicates uniformity of dietary-induced hyperlipidemia for our dietary protocols. Gene ontology- (GO) based functional analyses revealed that characteristics of the common changes between HFCD and HFCSD were involved in inflammatory responses and reproduction. The correlation coefficient between whole blood and white blood cell expression profiles at 27 weeks with the HFCSD diet was significantly lower than that of the control and HFCD diet groups. This may be due to the effects of RNA originating from the tissues and/or organs. Conclusions No statistically significant differences in fasting plasma lipids and glucose levels between the HFCD and HFCSD groups were observed. However, blood RNA analyses revealed different characteristics corresponding to the dietary protocols. In this study, whole blood RNA analyses proved to be a useful tool to evaluate transitions in dietary-induced hyperlipidemia gene expression profiles in miniature pigs. PMID:22662175

  10. Using Spoken Language Benchmarks to Characterize the Expressive Language Skills of Young Children With Autism Spectrum Disorders

    PubMed Central

    Weismer, Susan Ellis

    2015-01-01

    Purpose Spoken language benchmarks proposed by Tager-Flusberg et al. (2009) were used to characterize communication profiles of toddlers with autism spectrum disorders and to investigate if there were differences in variables hypothesized to influence language development at different benchmark levels. Method The communication abilities of a large sample of toddlers with autism spectrum disorders (N = 105) were characterized in terms of spoken language benchmarks. The toddlers were grouped according to these benchmarks to investigate whether there were differences in selected variables across benchmark groups at a mean age of 2.5 years. Results The majority of children in the sample presented with uneven communication profiles with relative strengths in phonology and significant weaknesses in pragmatics. When children were grouped according to one expressive language domain, across-group differences were observed in response to joint attention and gestures but not cognition or restricted and repetitive behaviors. Conclusion The spoken language benchmarks are useful for characterizing early communication profiles and investigating features that influence expressive language growth. PMID:26254475

  11. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis.

    PubMed

    Wang, Wenyu; Liu, Yang; Hao, Jingcan; Zheng, Shuyu; Wen, Yan; Xiao, Xiao; He, Awen; Fan, Qianrui; Zhang, Feng; Liu, Ruiyu

    2016-10-10

    Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The Role of Vitamin D in the Transcriptional Program of Human Pregnancy

    PubMed Central

    Al-Garawi, Amal; Carey, Vincent J.; Chhabra, Divya; Morrow, Jarrett; Lasky-Su, Jessica; Qiu, Weiliang; Laranjo, Nancy; Litonjua, Augusto A.; Weiss, Scott T.

    2016-01-01

    Background Patterns of gene expression of human pregnancy are poorly understood. In a trial of vitamin D supplementation in pregnant women, peripheral blood transcriptomes were measured longitudinally on 30 women and used to characterize gene co-expression networks. Objective Studies suggest that increased maternal Vitamin D levels may reduce the risk of asthma in early life, yet the underlying mechanisms have not been examined. In this study, we used a network-based approach to examine changes in gene expression profiles during the course of normal pregnancy and evaluated their association with maternal Vitamin D levels. Design The VDAART study is a randomized clinical trial of vitamin D supplementation in pregnancy for reduction of pediatric asthma risk. The trial enrolled 881 women at 10–18 weeks of gestation. Longitudinal gene expression measures were obtained on thirty pregnant women, using RNA isolated from peripheral blood samples obtained in the first and third trimesters. Differentially expressed genes were identified using significance of analysis of microarrays (SAM), and clustered using a weighted gene co-expression network analysis (WGCNA). Gene-set enrichment was performed to identify major biological pathways. Results Comparison of transcriptional profiles between first and third trimesters of pregnancy identified 5839 significantly differentially expressed genes (FDR<0.05). Weighted gene co-expression network analysis clustered these transcripts into 14 co-expression modules of which two showed significant correlation with maternal vitamin D levels. Pathway analysis of these two modules revealed genes enriched in immune defense pathways and extracellular matrix reorganization as well as genes enriched in notch signaling and transcription factor networks. Conclusion Our data show that gene expression profiles of healthy pregnant women change during the course of pregnancy and suggest that maternal Vitamin D levels influence transcriptional profiles. These alterations of the maternal transcriptome may contribute to fetal immune imprinting and reduce allergic sensitization in early life. Trial Registration clinicaltrials.gov NCT00920621 PMID:27711190

  13. Transcriptional mechanisms of resistance to anti-PD-1 therapy

    PubMed Central

    Ascierto, Maria L.; Makohon-Moore, Alvin; Lipson, Evan J.; Taube, Janis M.; McMiller, Tracee L.; Berger, Alan E.; Fan, Jinshui; Kaunitz, Genevieve J.; Cottrell, Tricia R.; Kohutek, Zachary A.; Favorov, Alexander; Makarov, Vladimir; Riaz, Nadeem; Chan, Timothy A.; Cope, Leslie; Hruban, Ralph H.; Pardoll, Drew M.; Taylor, Barry S.; Solit, David B.; Iacobuzio-Donahue, Christine A; Topalian, Suzanne L.

    2017-01-01

    Purpose To explore factors associated with response and resistance to anti-PD-1 therapy, we analyzed multiple disease sites at autopsy in a patient with widely metastatic melanoma who had a heterogeneous response. Materials and Methods Twenty-six melanoma specimens (four pre-mortem, 22 post-mortem) were subjected to whole-exome sequencing. Candidate immunologic markers and gene expression were assessed in ten cutaneous metastases showing response or progression during therapy. Results The melanoma was driven by biallelic inactivation of NF1. All lesions had highly concordant mutational profiles and copy number alterations, indicating linear clonal evolution. Expression of candidate immunologic markers was similar in responding and progressing lesions. However, progressing cutaneous metastases were associated with over-expression of genes associated with extracellular matrix and neutrophil function. Conclusions Although mutational and immunologic differences have been proposed as the primary determinants of heterogeneous response/resistance to targeted therapies and immunotherapies, respectively, differential lesional gene expression profiles may also dictate anti-PD-1 outcomes. PMID:28193624

  14. Expression of MIF and TNFA in psoriatic arthritis: relationship with Th1/Th2/Th17 cytokine profiles and clinical variables.

    PubMed

    Bautista-Herrera, L A; De la Cruz-Mosso, U; Morales-Zambrano, R; Villanueva-Quintero, G D; Hernández-Bello, J; Ramírez-Dueñas, M G; Martínez-López, E; Brennan-Bourdon, L M; Baños-Hernández, C J; Muñoz-Valle, J F

    2018-05-01

    Psoriatic arthritis (PsA) is an autoimmune inflammatory disease associated with psoriasis. The cause of this pathology is still unknown, but research suggests the diseases are caused by a deregulated cytokine production. MIF is a cytokine associated with immunomodulation of Th1, Th2, and Th17 cytokine profiles in inflammatory diseases. Based on this knowledge, the aim of this study was to determine the association of MIF and TNFA expression with Th1, Th2, and Th17 cytokine profiles in serum levels of PsA patients. A cross-sectional study was performed in 50 PsA patients and 30 control subjects (CS). The cytokine profiles were quantified by BioPlex MagPix system and the mRNA expression levels by real-time PCR. TNFA mRNA expression was 138.81-folds higher in PsA patients than CS (p < 0.001). Regarding MIF mRNA expression, no significant differences were observed; however, a positive correlation was identified between MIF mRNA expression and PsA time of evolution (r = - 0.53, p = 0.009). An increase of Th1 (IFNγ: PsA = 37.1 pg/mL vs. CS = 17 pg/mL, p < 0.05; TNFα: PsA = 24.6 pg/mL vs. CS = 9.8 pg/mL, p < 0.0001) and Th17 cytokine profiles (IL-17: PsA = 6.4 pg/mL vs. CS = 2.7 pg/mL, p < 0.05; IL-22: PsA = 8.4 pg/mL vs. CS = 1.8 pg/mL, p < 0.001), were found in PsA patients. Th2 cytokines were not significantly different in both groups. In conclusion, a high expression of TNFA mRNA, as well as an increase of Th1 and Th17 cytokine profiles evaluated by IFNγ, TNFα, IL-17, and IL-22 cytokines, was observed in PsA patients.

  15. Exploiting the full power of temporal gene expression profiling through a new statistical test: Application to the analysis of muscular dystrophy data

    PubMed Central

    Vinciotti, Veronica; Liu, Xiaohui; Turk, Rolf; de Meijer, Emile J; 't Hoen, Peter AC

    2006-01-01

    Background The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. Results We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gamma-sarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. Conclusion The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it allows fast interpretation of the temporal behaviour of genes. The R code is available from V.V. The microarray data have been submitted to GEO under series GSE1574 and GSE3523. PMID:16584545

  16. miRNA expression and function in thyroid carcinomas: a comparative and critical analysis and a model for other cancers.

    PubMed

    Saiselet, Manuel; Pita, Jaime M; Augenlicht, Alice; Dom, Geneviève; Tarabichi, Maxime; Fimereli, Danai; Dumont, Jacques E; Detours, Vincent; Maenhaut, Carine

    2016-08-09

    As in many cancer types, miRNA expression profiles and functions have become an important field of research on non-medullary thyroid carcinomas, the most common endocrine cancers. This could lead to the establishment of new diagnostic tests and new cancer therapies. However, different studies showed important variations in their research strategies and results. In addition, the action of miRNAs is poorly considered as a whole because of the use of underlying dogmatic truncated concepts. These lead to discrepancies and limits rarely considered. Recently, this field has been enlarged by new miRNA functional and expression studies. Moreover, studies using next generation sequencing give a new view of general miRNA differential expression profiles of papillary thyroid carcinoma. We analyzed in detail this literature from both physiological and differential expression points of view. Based on explicit examples, we reviewed the progresses but also the discrepancies and limits trying to provide a critical approach of where this literature may lead. We also provide recommendations for future studies. The conclusions of this systematic analysis could be extended to other cancer types.

  17. [Endoplasmic reticulum stress in INS-1-3 cell associated with the expression changes of MODY gene pathway].

    PubMed

    Liu, Y T; Li, S R; Wang, Z; Xiao, J Z

    2016-09-13

    Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.

  18. Differential co-expression analysis of a microarray gene expression profiles of pulmonary adenocarcinoma.

    PubMed

    Fu, Shijie; Pan, Xufeng; Fang, Wentao

    2014-08-01

    Lung cancer severely reduces the quality of life worldwide and causes high socioeconomic burdens. However, key genes leading to the generation of pulmonary adenocarcinoma remain elusive despite intensive research efforts. The present study aimed to identify the potential associations between transcription factors (TFs) and differentially co‑expressed genes (DCGs) in the regulation of transcription in pulmonary adenocarcinoma. Gene expression profiles of pulmonary adenocarcinoma were downloaded from the Gene Expression Omnibus, and gene expression was analyzed using a computational method. A total of 37,094 differentially co‑expressed links (DCLs) and 251 DCGs were identified, which were significantly enriched in 10 pathways. The construction of the regulatory network and the analysis of the regulatory impact factors revealed eight crucial TFs in the regulatory network. These TFs regulated the expression of DCGs by promoting or inhibiting their expression. In addition, certain TFs and target genes associated with DCGs did not appear in the DCLs, which indicated that those TFs could be synergistic with other factors. This is likely to provide novel insights for research into pulmonary adenocarcinoma. In conclusion, the present study may enhance the understanding of disease mechanisms and lead to an improved diagnosis of lung cancer. However, further studies are required to confirm these observations.

  19. Organogenic nodule development in hop (Humulus lupulus L.): Transcript and metabolic responses

    PubMed Central

    Fortes, Ana M; Santos, Filipa; Choi, Young H; Silva, Marta S; Figueiredo, Andreia; Sousa, Lisete; Pessoa, Fernando; Santos, Bartolomeu A; Sebastiana, Mónica; Palme, Klaus; Malhó, Rui; Verpoorte, Rob; Pais, Maria S

    2008-01-01

    Background Hop (Humulus lupulus L.) is an economically important plant forming organogenic nodules which can be used for genetic transformation and micropropagation. We are interested in the mechanisms underlying reprogramming of cells through stress and hormone treatments. Results An integrated molecular and metabolomic approach was used to investigate global gene expression and metabolic responses during development of hop's organogenic nodules. Transcript profiling using a 3,324-cDNA clone array revealed differential regulation of 133 unigenes, classified into 11 functional categories. Several pathways seem to be determinant in organogenic nodule formation, namely defense and stress response, sugar and lipid metabolism, synthesis of secondary metabolites and hormone signaling. Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, lipid and sugar metabolism and secondary metabolism in organogenic nodule formation. Conclusion The expression profile of genes pivotal for energy metabolism, together with metabolites profile, suggested that these morphogenic structures gain energy through a heterotrophic, transport-dependent and sugar-degrading anaerobic metabolism. Polyamines and auxins are likely to be involved in the regulation of expression of many genes related to organogenic nodule formation. These results represent substantial progress toward a better understanding of this complex developmental program and reveal novel information regarding morphogenesis in plants. PMID:18823540

  20. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

    PubMed Central

    2012-01-01

    Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182

  1. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection. PMID:25664019

  2. Male reproductive development: gene expression profiling of maize anther and pollen ontogeny

    PubMed Central

    Ma, Jiong; Skibbe, David S; Fernandes, John; Walbot, Virginia

    2008-01-01

    Background During flowering, central anther cells switch from mitosis to meiosis, ultimately forming pollen containing haploid sperm. Four rings of surrounding somatic cells differentiate to support first meiosis and later pollen dispersal. Synchronous development of many anthers per tassel and within each anther facilitates dissection of carefully staged maize anthers for transcriptome profiling. Results Global gene expression profiles of 7 stages representing 29 days of anther development are analyzed using a 44 K oligonucleotide array querying approximately 80% of maize protein-coding genes. Mature haploid pollen containing just two cell types expresses 10,000 transcripts. Anthers contain 5 major cell types and express >24,000 transcript types: each anther stage expresses approximately 10,000 constitutive and approximately 10,000 or more transcripts restricted to one or a few stages. The lowest complexity is present during meiosis. Large suites of stage-specific and co-expressed genes are identified through Gene Ontology and clustering analyses as functional classes for pre-meiotic, meiotic, and post-meiotic anther development. MADS box and zinc finger transcription factors with constitutive and stage-limited expression are identified. Conclusions We propose that the extensive gene expression of anther cells and pollen represents the key test of maize genome fitness, permitting strong selection against deleterious alleles in diploid anthers and haploid pollen. Because flowering plants show a substantial bias for male-sterile compared to female-sterile mutations, we propose that this fitness test is general. Because both somatic and germinal cells are transcriptionally quiescent during meiosis, we hypothesize that successful completion of meiosis is required to trigger maturation of anther somatic cells. PMID:19099579

  3. ExprAlign - the identification of ESTs in non-model species by alignment of cDNA microarray expression profiles

    PubMed Central

    2009-01-01

    Background Sequence identification of ESTs from non-model species offers distinct challenges particularly when these species have duplicated genomes and when they are phylogenetically distant from sequenced model organisms. For the common carp, an environmental model of aquacultural interest, large numbers of ESTs remained unidentified using BLAST sequence alignment. We have used the expression profiles from large-scale microarray experiments to suggest gene identities. Results Expression profiles from ~700 cDNA microarrays describing responses of 7 major tissues to multiple environmental stressors were used to define a co-expression landscape. This was based on the Pearsons correlation coefficient relating each gene with all other genes, from which a network description provided clusters of highly correlated genes as 'mountains'. We show that these contain genes with known identities and genes with unknown identities, and that the correlation constitutes evidence of identity in the latter. This procedure has suggested identities to 522 of 2701 unknown carp ESTs sequences. We also discriminate several common carp genes and gene isoforms that were not discriminated by BLAST sequence alignment alone. Precision in identification was substantially improved by use of data from multiple tissues and treatments. Conclusion The detailed analysis of co-expression landscapes is a sensitive technique for suggesting an identity for the large number of BLAST unidentified cDNAs generated in EST projects. It is capable of detecting even subtle changes in expression profiles, and thereby of distinguishing genes with a common BLAST identity into different identities. It benefits from the use of multiple treatments or contrasts, and from the large-scale microarray data. PMID:19939286

  4. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren's Syndrome

    PubMed Central

    Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.

    2013-01-01

    Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008

  5. Unravelling the neurophysiological basis of aggression in a fish model

    PubMed Central

    2010-01-01

    Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors. Conclusions Thus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model. PMID:20846403

  6. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    PubMed

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  7. Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer

    PubMed Central

    O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik

    2015-01-01

    To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329

  8. AFos Dissociates Cardiac Myocyte Hypertrophy and Expression of the Pathological Gene Program

    PubMed Central

    Jeong, Mark Y.; Kinugawa, Koichiro; Vinson, Charles; Long, Carlin S.

    2005-01-01

    Background Although induction of activator protein-1 (AP-1) transcription factor activity has been observed in cardiac hypertrophy, a direct role for AP-1 in myocardial growth and gene expression remains obscure. Methods and Results Hypertrophy was induced in cultured neonatal rat cardiomyocytes with phenylephrine or overexpression of a constitutively active MAP3K, MKK6. In both treatment groups, induction of the pathological gene profile was observed, ie, expression of β-myosin heavy chain (βMHC), atrial/brain natriuretic peptides (ANP/BNP), and skeletal α-actin (sACT) was increased, whereas expression for α-myosin heavy chain (αMHC) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA) genes was repressed. The role of AP-1 in the hypertrophic phenotype was evaluated with the use of an adenoviral construct expressing a dominant negative mutant of the c-Fos proto-oncogene (AdAFos). Although AFos did not change the myocyte growth response, it abrogated the gene profile to both agonists, including the upregulation of both αMHC and SERCA expression. Conclusions Although c-Fos/AP-1 is necessary for induction of the pathological/fetal gene program, it does not appear to be critical for cardiomyocyte hypertrophy. PMID:15795322

  9. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    PubMed

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  10. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    PubMed Central

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  11. OP17MICRORNA PROFILING USING SMALL RNA-SEQ IN PAEDIATRIC LOW GRADE GLIOMAS

    PubMed Central

    Jeyapalan, Jennie N.; Jones, Tania A.; Tatevossian, Ruth G.; Qaddoumi, Ibrahim; Ellison, David W.; Sheer, Denise

    2014-01-01

    INTRODUCTION: MicroRNAs regulate gene expression by targeting mRNAs for translational repression or degradation at the post-transcriptional level. In paediatric low-grade gliomas a few key genetic mutations have been identified, including BRAF fusions, FGFR1 duplications and MYB rearrangements. Our aim in the current study is to profile aberrant microRNA expression in paediatric low-grade gliomas and determine the role of epigenetic changes in the aetiology and behaviour of these tumours. METHOD: MicroRNA profiling of tumour samples (6 pilocytic, 2 diffuse, 2 pilomyxoid astrocytomas) and normal brain controls (4 adult normal brain samples and a primary glial progenitor cell-line) was performed using small RNA sequencing. Bioinformatic analysis included sequence alignment, analysis of the number of reads (CPM, counts per million) and differential expression. RESULTS: Sequence alignment identified 695 microRNAs, whose expression was compared in tumours v. normal brain. PCA and hierarchical clustering showed separate groups for tumours and normal brain. Computational analysis identified approximately 400 differentially expressed microRNAs in the tumours compared to matched location controls. Our findings will then be validated and integrated with extensive genetic and epigenetic information we have previously obtained for the full tumour cohort. CONCLUSION: We have identified microRNAs that are differentially expressed in paediatric low-grade gliomas. As microRNAs are known to target genes involved in the initiation and progression of cancer, they provide critical information on tumour pathogenesis and are an important class of biomarkers.

  12. Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients

    PubMed Central

    2010-01-01

    Background Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. Methods Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. Results Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. Conclusion In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria. PMID:20719001

  13. Effect of timing of development on total cell number and expression profile of HSP-70.1 and GLUT-1 in buffalo (Bubalus bubalis) oocytes and preimplantation embryos produced in vitro.

    PubMed

    Rajhans, Rajib; Kumar, G Sai; Dubey, Pawan K; Sharma, G Taru

    2010-03-29

    The present study was designed to compare the expression profile of two developmentally important genes (HSP-70.1 and GLUT-1) and TCN (total cell number) count in fast (group A) and slow (group B) cleaved buffalo embryos to access their in vitro developmental competence. Buffalo COCs (cumulus oocyte complexes) were collected from local abattoir ovaries and subjected to in vitro maturation in: TCM-199 supplemented with 10% FBS (fetal bovine serum), BSA (3 mg/ml), sodium pyruvate (0.25 mM) and 20 ng/ml EGF (epidermal growth factor) at 38.5 degrees C under 5% CO2. In vitro derived embryos were collected at 4-8, 8-16 cell, morula and blastocyst stages at specific time points for gene expression analysis and total cell count. A semiquantitative RT-PCR (reverse transcriptase-PCR) assay was used to determine the HSP-70.1 and GLUT-1 transcripts. Results showed that developmental competence and TCN count in fast (group A)-cleaving embryos was significantly (P<0.05) higher than in the slow group (group B). The gene transcript of HSP-70.1 and GLUT-1 was expressed in oocytes (immature and mature) and throughout the embryonic developmental stages in the fast group (group A), while in the slow (group B) cleaving embryos, the expression of HSP-70.1 was absent in all the embryonic developmental stages, and expression of GLUT-1 was absent after 8-16 cell stage. In conclusion, TCN count and expression profile of HSP-70.1 and GLUT-1 genes in buffalo embryos are different taking into account the cleavage rate. Quality of such embryos for research purposes, TCN and expression profiling of developmentally important genes should be employed to optimize the in vitro culture system to produce superior quality of embryos.

  14. A Dynamic Bronchial Airway Gene Expression Signature of Chronic Obstructive Pulmonary Disease and Lung Function Impairment

    PubMed Central

    Steiling, Katrina; van den Berge, Maarten; Hijazi, Kahkeshan; Florido, Roberta; Campbell, Joshua; Liu, Gang; Xiao, Ji; Zhang, Xiaohui; Duclos, Grant; Drizik, Eduard; Si, Huiqing; Perdomo, Catalina; Dumont, Charles; Coxson, Harvey O.; Alekseyev, Yuriy O.; Sin, Don; Pare, Peter; Hogg, James C.; McWilliams, Annette; Hiemstra, Pieter S.; Sterk, Peter J.; Timens, Wim; Chang, Jeffrey T.; Sebastiani, Paola; O’Connor, George T.; Bild, Andrea H.; Postma, Dirkje S.; Lam, Stephen

    2013-01-01

    Rationale: Molecular phenotyping of chronic obstructive pulmonary disease (COPD) has been impeded in part by the difficulty in obtaining lung tissue samples from individuals with impaired lung function. Objectives: We sought to determine whether COPD-associated processes are reflected in gene expression profiles of bronchial airway epithelial cells obtained by bronchoscopy. Methods: Gene expression profiling of bronchial brushings obtained from 238 current and former smokers with and without COPD was performed using Affymetrix Human Gene 1.0 ST Arrays. Measurements and Main Results: We identified 98 genes whose expression levels were associated with COPD status, FEV1% predicted, and FEV1/FVC. In silico analysis identified activating transcription factor 4 (ATF4) as a potential transcriptional regulator of genes with COPD-associated airway expression, and ATF4 overexpression in airway epithelial cells in vitro recapitulates COPD-associated gene expression changes. Genes with COPD-associated expression in the bronchial airway epithelium had similarly altered expression profiles in prior studies performed on small-airway epithelium and lung parenchyma, suggesting that transcriptomic alterations in the bronchial airway epithelium reflect molecular events found at more distal sites of disease activity. Many of the airway COPD-associated gene expression changes revert toward baseline after therapy with the inhaled corticosteroid fluticasone in independent cohorts. Conclusions: Our findings demonstrate a molecular field of injury throughout the bronchial airway of active and former smokers with COPD that may be driven in part by ATF4 and is modifiable with therapy. Bronchial airway epithelium may ultimately serve as a relatively accessible tissue in which to measure biomarkers of disease activity for guiding clinical management of COPD. PMID:23471465

  15. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums

    PubMed Central

    2014-01-01

    Background Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community. PMID:24456189

  16. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    PubMed Central

    2014-01-01

    Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Conclusions Our findings demonstrate that unique miRNA expression profiles correlate with the biological behavior of canine MCTs. Furthermore, dysregulation of miR-9 is associated with MCT metastasis potentially through the induction of an invasive phenotype, identifying a potentially novel pathway for therapeutic intervention. PMID:24517413

  17. Dissecting modes of action of non-genotoxic carcinogens in primary mouse hepatocytes.

    PubMed

    Schaap, Mirjam M; Zwart, Edwin P; Wackers, Paul F K; Huijskens, Ilse; van de Water, Bob; Breit, Timo M; van Steeg, Harry; Jonker, Martijs J; Luijten, Mirjam

    2012-11-01

    Under REACH, the European Community Regulation on chemicals, the testing strategy for carcinogenicity is based on in vitro and in vivo genotoxicity assays. Given that non-genotoxic carcinogens are negative for genotoxicity and chronic bioassays are no longer regularly performed, this class of carcinogens will go undetected. Therefore, test systems detecting non-genotoxic carcinogens, or even better their modes of action, are required. Here, we investigated whether gene expression profiling in primary hepatocytes can be used to distinguish different modes of action of non-genotoxic carcinogens. For this, primary mouse hepatocytes were exposed to 16 non-genotoxic carcinogens with diverse modes of action. Upon profiling, pathway analysis was performed to obtain insight into the biological relevance of the observed changes in gene expression. Subsequently, both a supervised and an unsupervised comparison approach were applied to recognize the modes of action at the transcriptomic level. These analyses resulted in the detection of three of eight compound classes, that is, peroxisome proliferators, metalloids and skin tumor promotors. In conclusion, gene expression profiles in primary hepatocytes, at least in rodent hepatocytes, appear to be useful to detect some, certainly not all, modes of action of non-genotoxic carcinogens.

  18. Transcriptional profiling of NCI/ADR-RES cells unveils a complex network of signaling pathways and molecular mechanisms of drug resistance

    PubMed Central

    Vert, Anna; Castro, Jessica; Ribó, Marc; Vilanova, Maria; Benito, Antoni

    2018-01-01

    Background Ovarian cancer has the highest mortality rate among all the gynecological cancers. This is mostly due to the resistance of ovarian cancer to current chemotherapy regimens. Therefore, it is of crucial importance to identify the molecular mechanisms associated with chemoresistance. Methods NCI/ADR-RES is a multidrug-resistant cell line that is a model for the study of drug resistance in ovarian cancer. We carried out a microarray-derived transcriptional profiling analysis of NCI/ADR-RES to identify differentially expressed genes relative to its parental OVCAR-8. Results Gene-expression profiling has allowed the identification of genes and pathways that may be important for the development of drug resistance in ovarian cancer. The NCI/ADR-RES cell line has differential expression of genes involved in drug extrusion, inactivation, and efficacy, as well as genes involved in the architectural and functional reorganization of the extracellular matrix. These genes are controlled through different signaling pathways, including MAPK–Akt, Wnt, and Notch. Conclusion Our findings highlight the importance of using orthogonal therapies that target completely independent pathways to overcome mechanisms of resistance to both classical chemotherapeutic agents and molecularly targeted drugs. PMID:29379303

  19. Gene Expression Profiling in Pachyonychia Congenita Skin

    PubMed Central

    Cao, Yu-An; Hickerson, Robyn P.; Seegmiller, Brandon L.; Grapov, Dmitry; Gross, Maren M.; Bessette, Marc R.; Phinney, Brett S.; Flores, Manuel A.; Speaker, Tycho J.; Vermeulen, Annaleen; Bravo, Albert A.; Bruckner, Anna L.; Milstone, Leonard M.; Schwartz, Mary E.; Rice, Robert H.; Kaspar, Roger L.

    2015-01-01

    Background Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. Objective To better understand PC pathogenesis. Methods RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. Results A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. Conclusion Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics. PMID:25656049

  20. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression ofmore » surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.« less

  1. Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease.

    PubMed

    Diao, Hongyu; Li, Xinxing; Hu, Sheng; Liu, Yunhui

    2012-01-01

    Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF, E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result.

  2. Gene Expression Profiling Combined with Bioinformatics Analysis Identify Biomarkers for Parkinson Disease

    PubMed Central

    Diao, Hongyu; Li, Xinxing; Hu, Sheng; Liu, Yunhui

    2012-01-01

    Parkinson disease (PD) progresses relentlessly and affects approximately 4% of the population aged over 80 years old. It is difficult to diagnose in its early stages. The purpose of our study is to identify molecular biomarkers for PD initiation using a computational bioinformatics analysis of gene expression. We downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially coexpressed genes (DCGs) and dysfunctional pathways in PD patients compared to controls. Besides, we built a regulatory network by mapping the DCGs to known regulatory data between transcription factors (TFs) and target genes and calculated the regulatory impact factor of each transcription factor. As the results, a total of 1004 genes associated with PD initiation were identified. Pathway enrichment of these genes suggests that biological processes of protein turnover were impaired in PD. In the regulatory network, HLF, E2F1 and STAT4 were found have altered expression levels in PD patients. The expression levels of other transcription factors, NKX3-1, TAL1, RFX1 and EGR3, were not found altered. However, they regulated differentially expressed genes. In conclusion, we suggest that HLF, E2F1 and STAT4 may be used as molecular biomarkers for PD; however, more work is needed to validate our result. PMID:23284986

  3. A Discrepancy in Comprehension and Production in Early Language Development in ASD: Is it Clinically Relevant?

    PubMed

    Davidson, Meghan M; Ellis Weismer, Susan

    2017-07-01

    This study examined the extent to which a discrepant comprehension-production profile (i.e., relatively more delayed comprehension than production) is characteristic of the early language phenotype in autism spectrum disorders (ASD) and tracked the developmental progression of the profile. Our findings indicated that a discrepant comprehension-production profile distinguished toddlers (30 months) with ASD from late talkers without ASD (91% sensitivity, 100% specificity) in groups that were comparable on expressive language, age, and socioeconomic status. Longitudinal data for children with ASD revealed that the discrepant profile steadily decreased from 30 to 44 months until there was no significant comprehension-production difference at 66 months. In conclusion, results suggest that lower comprehension than production may be an age-specific marker of toddlers with ASD.

  4. Emergent Self-Organized Criticality in Gene Expression Dynamics: Temporal Development of Global Phase Transition Revealed in a Cancer Cell Line

    PubMed Central

    Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi

    2015-01-01

    Background The underlying mechanism of dynamic control of the genome-wide expression is a fundamental issue in bioscience. We addressed it in terms of phase transition by a systemic approach based on both density analysis and characteristics of temporal fluctuation for the time-course mRNA expression in differentiating MCF-7 breast cancer cells. Methodology In a recent work, we suggested criticality as an essential aspect of dynamic control of genome-wide gene expression. Criticality was evident by a unimodal-bimodal transition through flattened unimodal expression profile. The flatness on the transition suggests the existence of a critical transition at which up- and down-regulated expression is balanced. Mean field (averaging) behavior of mRNAs based on the temporal expression changes reveals a sandpile type of transition in the flattened profile. Furthermore, around the transition, a self-similar unimodal-bimodal transition of the whole expression occurs in the density profile of an ensemble of mRNA expression. These singular and scaling behaviors identify the transition as the expression phase transition driven by self-organized criticality (SOC). Principal Findings Emergent properties of SOC through a mean field approach are revealed: i) SOC, as a form of genomic phase transition, consolidates distinct critical states of expression, ii) Coupling of coherent stochastic oscillations between critical states on different time-scales gives rise to SOC, and iii) Specific gene clusters (barcode genes) ranging in size from kbp to Mbp reveal similar SOC to genome-wide mRNA expression and ON-OFF synchronization to critical states. This suggests that the cooperative gene regulation of topological genome sub-units is mediated by the coherent phase transitions of megadomain-scaled conformations between compact and swollen chromatin states. Conclusion and Significance In summary, our study provides not only a systemic method to demonstrate SOC in whole-genome expression, but also introduces novel, physically grounded concepts for a breakthrough in the study of biological regulation. PMID:26067993

  5. OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli Biofilm

    PubMed Central

    2013-01-01

    Background Biofilms are communities of bacteria that are characterized by specific phenotypes, including an increased resistance towards anti-microbials and the host immune system. This calls for the development of novel biofilm prevention and treatment options to combat infectious disease. In Escherichia coli, numerous global regulators have been implicated in the control of biofilm associated cell surface organelles. These include the flagellar regulator FlhD/FlhC, the osmoregulator EnvZ/OmpR, and the colanic acid activator RcsCDB. Using flow cell technology and fluorescence microscopy, we determined the temporal expression from flhD::gfp, ompR::gfp, and rcsB::gfp in E. coli biofilm, as well as the impact of the negative regulation of flhD by OmpR and RcsB. Spatial gene expression was investigated from flhD::gfp. Results The temporal gene expression profile for flhD yielded an early peak at 12 h, a minimum of expression at 35 h, and a second increase in expression towards 51 h of biofilm development. In contrast, the ompR profile showed a peak at 35 h. A mutation in ompR abolished time dependence of flhD expression after the initial growth period of 12 h. Intriguingly, rcsB expression did not correlate inversely with flhD expression, yet a mutation in rcsB abolished time dependence of flhD expression as well. Spatially, expression of flhD was highest in the outermost layer of the biofilm in the parent strain. In ompR and rcsB mutants, flhD was expressed throughout the biofilm. Mutations in both, ompR and rcsB increased flhD expression throughout all temporal and spatial experiments. This increase was paralleled by reductions in biofilm amounts at four tested time points. Conclusion Our data lead to the conclusion that FlhD/FlhC and its regulation by OmpR and RcsB may be our first target mechanism for the development of novel biofilm prevention and treatment techniques. PMID:23914787

  6. Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair

    PubMed Central

    Furtado, Milena B.; Costa, Mauro W.; Pranoto, Edward Adi; Salimova, Ekaterina; Pinto, Alex; Lam, Nicholas T.; Park, Anthony; Snider, Paige; Chandran, Anjana; Harvey, Richard P.; Boyd, Richard; Conway, Simon J.; Pearson, James; Kaye, David M.; Rosenthal, Nadia A.

    2014-01-01

    Rationale Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical MSC and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. Whilst genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, Tbx20, caused marked myocardial dysmorphology and perturbations in scar formation upon myocardial infarction. Conclusions The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs and direct contribution to cardiac development and repair provokes alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies. PMID:24650916

  7. Radio Sounding of the Martian and Venusian Ionospheres

    NASA Astrophysics Data System (ADS)

    Paetzold, M.; Haeusler, B.; Bird, M. K.; Peter, K.; Tellmann, S.; Tyler, G. L.; Withers, P.

    2011-12-01

    The Mars Express Radio Science Experiment MaRS and the radio science experiment Vera on Venus Express sound the ionospheres of Mars and Venus, respectively, at two frequencies in the microwave band and cover altitudes from the base of the ionosphere at 80 km (100 km at Venus) to the ionopause at altitudes between 300 km and 600 km. In general, both ionospheres consists of a lower layer M1 (V1 at Venus) at about 110 km (115 km), and the main layer M2 (V2) at about 135 km (145 km) altitude, both formed mainly by solar radiation at X-ray and EUV, respectively. The specific derivation and interpretation of the vertical electron density profiles at two radio frequencies from radio sounding is demonstrated in detail. Cases of quiet and disturbed ionospheric electron density profiles and cases of potential misinterpretations are presented. The behavior of the peak densities and peak altitudes of both ionospheres as a function of solar zenith angle and phase of the solar cycle as seen with Mars Express and Venus Express will be compared with past observations, models and conclusions.

  8. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    PubMed Central

    2011-01-01

    Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046

  9. Periodontal therapy alters gene expression of peripheral blood monocytes

    PubMed Central

    Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul

    2009-01-01

    Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309

  10. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  11. Global Analysis of Gene Expression Profiles in Physic Nut (Jatropha curcas L.) Seedlings Exposed to Salt Stress

    PubMed Central

    Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Background Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many “biological processes” were affected by salt stress, particular those categories belong to “metabolic process”, such as “primary metabolism process”, “cellular metabolism process” and “macromolecule metabolism process”. The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. Conclusions/Significance The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future. PMID:24837971

  12. Mucin (MUC) expression in EUS-FNA specimens is a useful prognostic factor in pancreatic ductal adenocarcinoma

    PubMed Central

    Higashi, Michiyo; Yokoyama, Seiya; Yamamoto, Takafumi; Goto, Yuko; Kitazono, Ikumi; Hiraki, Tsubasa; Taguchi, Hiroki; Hashimoto, Shinichi; Fukukura, Yoshihiko; Koriyama, Chihaya; Mataki, Yuko; Maemura, Kosei; Shinchi, Hiroyuki; Jain, Maneesh; Batra, Surinder K.; Yonezawa, Suguru

    2015-01-01

    Objectives The aim of this study was to further examine the utility of mucin expression profiles as prognostic factors in PDAC. Methods Mucin (MUC) expression was examined by immunohistochemistry (IHC) analysis in endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) specimens obtained from 114 patients with PDAC. The rate of expression of each mucin was compared with clinicopathologic features. Results The expression rates of mucins in cancer lesions were MUC1, 87.7%; MUC2, 0.8%; MUC4, 93.0%; MUC5AC, 78.9%; MUC6, 24.6%; and MUC16, 67.5%. MUC1 and MUC4 were positive and MUC2 was negative in most PDACs. Patients with advanced stage of PDAC with MUC5AC expression had a significantly better outcome than those who were MUC5AC-negative (P=0.002).With increasing clinical stage, total MUC6 expression decreased (P for trend=0.001) and MUC16 cytoplasmic expression increased (P for trend=0.02). The prognosis of patients with MUC16 cytoplasmic expression was significantly poorer than those without this expression. Multivariate survival analysis revealed that MUC16 cytoplasmic expression was a significant independent predictor of a poor prognosis after adjusting for the effects of other prognostic factors (P=0.002). Conclusion Mucin expression profiles in EUS-FNA specimens have excellent diagnostic utility and are useful predictors of outcome in patients with PDAC. PMID:25906442

  13. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    PubMed

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: relationship with autoimmunity and inflammatory markers.

    PubMed

    García-Díaz, Diego F; Pizarro, Carolina; Camacho-Guillén, Patricia; Codner, Ethel; Soto, Néstor; Pérez-Bravo, Francisco

    2018-02-01

    Objective The aim of this research was to analyze the expression profile of miR-155, miR-146a, and miR-326 in peripheral blood mononuclear cells (PBMC) of 47 patients with type 1 diabetes mellitus (T1D) and 39 control subjects, as well as the possible association with autoimmune or inflammatory markers. Subjects and methods Expression profile of miRs by means of qPCR using TaqMan probes. Autoantibodies and inflammatory markers by ELISA. Statistical analysis using bivariate correlation. Results The analysis of the results shows an increase in the expression of miR-155 in T1D patients in basal conditions compared to the controls (p < 0.001) and a decreased expression level of miR-326 (p < 0.01) and miR-146a (p < 0.05) compared T1D patients to the controls. miR-155 was the only miRs associated with autoinmmunity (ZnT8) and inflammatory status (vCAM). Conclusion Our data show a possible role of miR-155 related to autoimmunity and inflammation in Chilean patients with T1D.

  15. Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy

    PubMed Central

    2013-01-01

    Background Polyadenylation is a key regulatory step in eukaryotic gene expression and one of the major contributors of transcriptome diversity. Aberrant polyadenylation often associates with expression defects and leads to human diseases. Results To better understand global polyadenylation regulation, we have developed a polyadenylation sequencing (PA-seq) approach. By profiling polyadenylation events in 13 human tissues, we found that alternative cleavage and polyadenylation (APA) is prevalent in both protein-coding and noncoding genes. In addition, APA usage, similar to gene expression profiling, exhibits tissue-specific signatures and is sufficient for determining tissue origin. A 3′ untranslated region shortening index (USI) was further developed for genes with tandem APA sites. Strikingly, the results showed that different tissues exhibit distinct patterns of shortening and/or lengthening of 3′ untranslated regions, suggesting the intimate involvement of APA in establishing tissue or cell identity. Conclusions This study provides a comprehensive resource to uncover regulated polyadenylation events in human tissues and to characterize the underlying regulatory mechanism. PMID:24025092

  16. Transcriptional Changes That Characterize the Immune Reactions of Leprosy

    PubMed Central

    Dupnik, Kathryn M.; Bair, Thomas B.; Maia, Andressa O.; Amorim, Francianne M.; Costa, Marcos R.; Keesen, Tatjana S. L.; Valverde, Joanna G.; Queiroz, Maria do Carmo A. P.; Medeiros, Lúcio L.; de Lucena, Nelly L.; Wilson, Mary E.; Nobre, Mauricio L.; Johnson, Warren D.; Jeronimo, Selma M. B.

    2015-01-01

    Background. Leprosy morbidity is increased by 2 pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL). Methods. To discover host factors related to immune reactions, global transcriptional profiles of peripheral blood mononuclear cells were compared between 11 RR, 11 ENL, and 19 matched control patients, with confirmation by quantitative polymerase chain reaction. Encoded proteins were investigated in skin biopsy specimens by means of immunohistochemistry. Results. There were 275 genes differentially expressed in RR and 517 differentially expressed in ENL on the microarray. Pathway analysis showed immunity-related pathways represented in RR and ENL transcriptional profiles, with the “complement and coagulation” pathway common to both. Interferon γ was identified as a significant upstream regulator of the expression changes for RR and ENL. Immunohistochemical staining of skin lesions showed increased C1q in both RR and ENL. Conclusions. These data suggest a previously underrecognized role for complement in the pathogenesis of both RR and ENL, and we propose new hypotheses for reaction pathogenesis. PMID:25398459

  17. Profiling analysis of long non-coding RNAs in early postnatal mouse hearts

    PubMed Central

    Sun, Xiongshan; Han, Qi; Luo, Hongqin; Pan, Xiaodong; Ji, Yan; Yang, Yao; Chen, Hanying; Wang, Fangjie; Lai, Wenjing; Guan, Xiao; Zhang, Qi; Tang, Yuan; Chu, Jianhong; Yu, Jianhua; Shou, Weinian; Deng, Youcai; Li, Xiaohui

    2017-01-01

    Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition. PMID:28266538

  18. Circulating MicroRNAs as Novel Biomarkers of Stenosis Progression in Asymptomatic Carotid Stenosis.

    PubMed

    Dolz, Sandra; Górriz, David; Tembl, José Ignacio; Sánchez, Dolors; Fortea, Gerardo; Parkhutik, Vera; Lago, Aida

    2017-01-01

    Progression of asymptomatic carotid artery stenosis (ACAS) in patients with >50% luminal narrowing is considered a potential risk factor for ischemic stroke; however, subclinical molecular biomarkers of ACAS progression are lacking. Recent studies suggest a regulatory function for several microRNAs (miRNAs) on the evolution of carotid plaque, but its role in ACAS progression is mostly unknown. The aim of our study was to investigate a wide miRNA panel in peripheral blood exosomes from patients with ACAS to associate circulating miRNA expression profiles with stenosis progression. The study included 60 patients with ACAS carrying >50% luminal narrowing. First, miRNA expression profiles of circulating exosomes were determined by Affymetrix microarrays from plasma samples of 16 patients from the cohort. Second, those miRNAs among the most differentially expressed in patients with ACAS progression were quantified by real-time polymerase chain reaction in a separate replication cohort of 39 subjects within the patient sample. Our results showed that ACAS progression was associated with development of stroke. MiR-199b-3p, miR-27b-3p, miR-130a-3p, miR-221-3p, and miR-24-3p presented significant higher expression in those patients with ACAS progression. In conclusion, our study supports that specific circulating miRNA expression profiles could provide a new tool that complements the monitoring of ACAS progression, improving therapeutic approaches to prevent ischemic stroke. © 2016 American Heart Association, Inc.

  19. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    PubMed

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  20. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    PubMed Central

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  1. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landmark-Hoyvik, Hege, E-mail: hblandma@rr-research.n; Institute for Clinical Medicine, University of Oslo, Oslo; Dumeaux, Vanessa

    2011-03-01

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0more » and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-{beta}1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-{beta}1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.« less

  2. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  3. Genome-wide sequencing and quantification of circulating microRNAs for dogs with congestive heart failure secondary to myxomatous mitral valve degeneration.

    PubMed

    Jung, SeungWoo; Bohan, Amy

    2018-02-01

    OBJECTIVE To characterize expression profiles of circulating microRNAs via genome-wide sequencing for dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve degeneration (MMVD). ANIMALS 9 healthy client-owned dogs and 8 age-matched client-owned dogs with CHF secondary to MMVD. PROCEDURES Blood samples were collected before administering cardiac medications for the management of CHF. Isolated microRNAs from plasma were classified into microRNA libraries and subjected to next-generation sequencing (NGS) for genome-wide sequencing analysis and quantification of circulating microRNAs. Quantitative reverse transcription PCR (qRT-PCR) assays were used to validate expression profiles of differentially expressed circulating microRNAs identified from NGS analysis of dogs with CHF. RESULTS 326 microRNAs were identified with NGS analysis. Hierarchical analysis revealed distinct expression patterns of circulating microRNAs between healthy dogs and dogs with CHF. Results of qRT-PCR assays confirmed upregulation of 4 microRNAs (miR-133, miR-1, miR-let-7e, and miR-125) and downregulation of 4 selected microRNAs (miR-30c, miR-128, miR-142, and miR-423). Results of qRT-PCR assays were highly correlated with NGS data and supported the specificity of circulating microRNA expression profiles in dogs with CHF secondary to MMVD. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested that circulating microRNA expression patterns were unique and could serve as molecular biomarkers of CHF in dogs with MMVD.

  4. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    PubMed Central

    Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519

  5. Gene expression profiling at birth characterizing the preterm infant with early onset infection.

    PubMed

    Hilgendorff, Anne; Windhorst, Anita; Klein, Manuel; Tchatalbachev, Svetlin; Windemuth-Kieselbach, Christine; Kreuder, Joachim; Heckmann, Matthias; Gkatzoflia, Anna; Ehrhardt, Harald; Mysliwietz, Josef; Maier, Michael; Izar, Benjamin; Billion, Andre; Gortner, Ludwig; Chakraborty, Trinad; Hossain, Hamid

    2017-02-01

    Early onset infection (EOI) in preterm infants <32 weeks gestational age (GA) is associated with a high mortality rate and the development of severe acute and long-term complications. The pathophysiology of EOI is not fully understood and clinical and laboratory signs of early onset infections in this patient cohort are often not conclusive. Thus, the aim of this study was to identify signatures characterizing preterm infants with EOI by using genome-wide gene expression (GWGE) analyses from umbilical arterial blood of preterm infants. This prospective cohort study was conducted in preterm infants <32 weeks GA. GWGE analyses using CodeLink human microarrays were performed from umbilical arterial blood of preterm infants with and without EOI. GWGE analyses revealed differential expression of 292 genes in preterm infants with EOI as compared to infants without EOI. Infants with EOI could be further differentiated into two subclasses and were distinguished by the magnitude of the expression of genes involved in both neutrophil and T cell activation. A hallmark activity for both subclasses of EOI was a common suppression of genes involved in natural killer (NK) cell function, which was independent from NK cell numbers. Significant results were recapitulated in an independent validation cohort. Gene expression profiling may enable early and more precise diagnosis of EOI in preterm infants. Gene expression (GE) profiling at birth characterizes preterm infants with EOI. GE analysis indicates dysregulation of NK cell activity. NK cell activity at birth may be a useful marker to improve early diagnosis of EOI.

  6. RNA Expression Analysis of Passive Transfer Myasthenia Supports Extraocular Muscle as a Unique Immunological Environment

    PubMed Central

    Zhou, Yuefang; Kaminski, Henry J.; Gong, Bendi; Cheng, Georgiana; Feuerman, Jason M.; Kusner, Linda

    2014-01-01

    Purpose. Myasthenia gravis demonstrates a distinct predilection for involvement of the extraocular muscles (EOM), and we have hypothesized that this may be due to a unique immunological environment. To assess this hypothesis, we took an unbiased approach to analyze RNA expression profiles in EOM, diaphragm, and extensor digitorum longus (EDL) in rats with experimentally acquired myasthenia gravis (EAMG). Methods. Experimentally acquired myasthenia gravis was induced in rats by intraperitoneal injection of antibody directed against the acetylcholine receptor (AChR), whereas control rats received antibody known to bind the AChR but not induce disease. After 48 hours, animals were killed and muscles analyzed by RNA expression profiling. Profiling results were validated using qPCR and immunohistochemical analysis. Results. Sixty-two genes common among all muscle groups were increased in expression. These fell into four major categories: 12.8% stress response, 10.5% immune response, 10.5% metabolism, and 9.0% transcription factors. EOM expressed 212 genes at higher levels, not shared by the other two muscles, and a preponderance of EOM gene changes fell into the immune response category. EOM had the most uniquely reduced genes (126) compared with diaphragm (26) and EDL (50). Only 18 downregulated genes were shared by the three muscles. Histological evaluation and disease load index (sum of fold changes for all genes) demonstrated that EOM had the greatest degree of pathology. Conclusions. Our studies demonstrated that consistent with human myasthenia gravis, EOM demonstrates a distinct RNA expression signature from EDL and diaphragm, which is based on differences in the degree of muscle injury and inflammatory response. PMID:24917137

  7. A molecular analysis by gene expression profiling reveals Bik/NBK overexpression in sporadic breast tumor samples of Mexican females

    PubMed Central

    García, Normand; Salamanca, Fabio; Astudillo-de la Vega, Horacio; Curiel-Quesada, Everardo; Alvarado, Isabel; Peñaloza, Rosenda; Arenas, Diego

    2005-01-01

    Background Breast cancer is one of the most frequent causes of death in Mexican women over 35 years of age. At molecular level, changes in many genetic networks have been reported as associated with this neoplasia. To analyze these changes, we determined gene expression profiles of tumors from Mexican women with breast cancer at different stages and compared these with those of normal breast tissue samples. Methods 32P-radiolabeled cDNA was synthesized by reverse transcription of mRNA from fresh sporadic breast tumor biopsies, as well as normal breast tissue. cDNA probes were hybridized to microarrays and expression levels registered using a phosphorimager. Expression levels of some genes were validated by real time RT-PCR and immunohistochemical assays. Results We identified two subgroups of tumors according to their expression profiles, probably related with cancer progression. Ten genes, unexpressed in normal tissue, were turned on in some tumors. We found consistent high expression of Bik gene in 14/15 tumors with predominant cytoplasmic distribution. Conclusion Recently, the product of the Bik gene has been associated with tumoral reversion in different neoplasic cell lines, and was proposed as therapy to induce apoptosis in cancers, including breast tumors. Even though a relationship among genes, for example those from a particular pathway, can be observed through microarrays, this relationship might not be sufficient to assign a definitive role to Bik in development and progression of the neoplasia. The findings herein reported deserve further investigation. PMID:16060964

  8. Stem cell media culture of melanoma results in the induction of a nonrepresentative neural expression profile.

    PubMed

    Anaka, Matthew; Freyer, Claudia; Gedye, Craig; Caballero, Otavia; Davis, Ian D; Behren, Andreas; Cebon, Jonathan

    2012-02-01

    The ability of cell lines to accurately represent cancer is a major concern in preclinical research. Culture of glioma cells as neurospheres in stem cell media (SCM) has been shown to better represent the genotype and phenotype of primary glioblastoma in comparison to serum cell lines. Despite the use of neurosphere-like models of many malignancies, there has been no robust analysis of whether other cancers benefit from a more representative phenotype and genotype when cultured in SCM. We analyzed the growth properties, transcriptional profile, and genotype of melanoma cells grown de novo in SCM, as while melanocytes share a common precursor with neural cells, melanoma frequently demonstrates divergent behavior in cancer stem cell assays. SCM culture of melanoma cells induced a neural lineage gene expression profile that was not representative of matched patient tissue samples and which could be induced in serum cell lines by switching them into SCM. There was no enrichment for expression of putative melanoma stem cell markers, but the SCM expression profile did overlap significantly with that of SCM cultures of glioma, suggesting that the observed phenotype is media-specific rather than melanoma-specific. Xenografts derived from either culture condition provided the best representation of melanoma in situ. Finally, SCM culture of melanoma did not prevent ongoing acquisition of DNA copy number abnormalities. In conclusion, SCM culture of melanoma does not provide a better representation of the phenotype or genotype of metastatic melanoma, and the resulting neural bias could potentially confound therapeutic target identification. Copyright © 2011 AlphaMed Press.

  9. The role of childhood maltreatment in the altered trait and global expression of personality in cocaine addiction

    PubMed Central

    Brents, Lisa K; Tripathi, Shanti Prakash; Young, Jonathan; James, G Andrew; Kilts, Clinton D

    2015-01-01

    Background and aims Drug addictions are debilitating disorders that are highly associated with personality abnormalities. Early life stress (ELS) is a common risk factor for addiction and personality disturbances, but the relationships between ELS, addiction, and personality are poorly understood. Methods Ninety-five research participants were assessed for and grouped by ELS history and cocaine dependence. NEO-FFI personality measures were compared between the groups to define ELS− and addiction-related differences in personality traits. ELS and cocaine dependence were then examined as predictors of personality trait scores. Finally, k-means clustering was used to uncover clusters of personality trait configurations within the sample. Odds of cluster membership across subject groups was then determined. Results Trait expression differed significantly across subject groups. Cocaine-dependent subjects with a history of ELS (cocaine+/ELS+) displayed the greatest deviations in normative personality. Cocaine dependence significantly predicted four traits, while ELS predicted neuroticism and agreeableness; there was no interaction effect between ELS and cocaine dependence. The cluster analysis identified four distinct personality profiles: Open, Gregarious, Dysphoric, and Closed. Distribution of these profiles across subject groups differed significantly. Inclusion in cocaine+/ELS+, cocaine−/ELS+, and cocaine−/ELS− groups significantly increased the odds of expressing the Dysphoric, Open and Gregarious profiles, respectively. Conclusions Cocaine dependence and early life stress were significantly and differentially associated with altered expression of individual personality traits and their aggregation as personality profiles, suggesting that individuals who are at-risk for developing addictions due to ELS exposure may benefit from personality centered approaches as an early intervention and prevention. PMID:25805246

  10. Molecular Profiling of Glatiramer Acetate Early Treatment Effects in Multiple Sclerosis

    PubMed Central

    Achiron, Anat; Feldman, Anna; Gurevich, Michael

    2009-01-01

    Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood. Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC). Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS. Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation. Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity. PMID:19893201

  11. Gene expression profiling in whole blood of patients with coronary artery disease

    PubMed Central

    Taurino, Chiara; Miller, William H.; McBride, Martin W.; McClure, John D.; Khanin, Raya; Moreno, María U.; Dymott, Jane A.; Delles, Christian; Dominiczak, Anna F.

    2010-01-01

    Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease. PMID:20528768

  12. In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer.

    PubMed

    Pandi, Narayanan Sathiya; Suganya, Sivagurunathan; Rajendran, Suriliyandi

    2013-10-04

    Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However, the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages

    PubMed Central

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-01-01

    Background: An appropriate intake of omega-3 (n-3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n-3 FAs on gene expression levels are also dose-dependent. PMID:28441337

  14. The dark cube: dark and light character profiles.

    PubMed

    Garcia, Danilo; Rosenberg, Patricia

    2016-01-01

    Background. Research addressing distinctions and similarities between people's malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger's character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger's "light" character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people's dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon's Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals' dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast, scored high in self-directedness. Moreover, individuals with a profile low in the dark traits were more likely to end up with a profile high in cooperativeness. The opposite was true for those individuals with a profile high in the dark traits. The rest of the cross-comparisons revealed some of the characteristics of human personality as a non-linear complex dynamic system. Conclusions. Our study suggests that individuals who are high in Machiavellianism and psychopathy share a unified non-agentic and uncooperative character (i.e., irresponsible, low in self-control, unempathetic, unhelpful, untolerant), while individuals high in narcissism have a more unique character configuration expressed as high agency and, when the other dark traits are high, highly spiritual but uncooperative. In other words, based on differences in their associations to the light side of character, the Dark Triad seems to be a dyad rather than a triad.

  15. The dark cube: dark and light character profiles

    PubMed Central

    2016-01-01

    Background. Research addressing distinctions and similarities between people’s malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger’s character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger’s “light” character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people’s dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon’s Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals’ dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast, scored high in self-directedness. Moreover, individuals with a profile low in the dark traits were more likely to end up with a profile high in cooperativeness. The opposite was true for those individuals with a profile high in the dark traits. The rest of the cross-comparisons revealed some of the characteristics of human personality as a non-linear complex dynamic system. Conclusions. Our study suggests that individuals who are high in Machiavellianism and psychopathy share a unified non-agentic and uncooperative character (i.e., irresponsible, low in self-control, unempathetic, unhelpful, untolerant), while individuals high in narcissism have a more unique character configuration expressed as high agency and, when the other dark traits are high, highly spiritual but uncooperative. In other words, based on differences in their associations to the light side of character, the Dark Triad seems to be a dyad rather than a triad. PMID:26966650

  16. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakoor, N; Nair, R; Crasta, O

    2014-01-23

    Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specificmore » probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e. g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.« less

  17. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  18. Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes

    PubMed Central

    Zhou, Qiong; Zheng, Zhijie; Xia, Bijun; Tang, Lan; Lv, Chang; Liu, Wei; Liu, Zhongqiu; Hu, Ming

    2010-01-01

    Purposes Glucuronidation via UDP-glucuronosyltransferases (or UGTs) is a major metabolic pathway. The purposes of this study are to determine the UGT-isoform specific metabolic fingerprint (or GSMF) of wogonin and oroxylin A, and to use isoform-specific metabolism rates and kinetics to determine and describe their glucuronidation behaviors in tissue microsomes. Methods In vitro glucuronidation rates and profiles were measured using expressed UGTs and human intestinal and liver microsomes. Results GSMF experiments indicated that both flavonoids were metabolized mainly by UGT1As, with major contributions from UGT1A3 and UGT1A7-1A10. Isoform-specific metabolism showed that kinetic profiles obtained using expressed UGT1A3 and UGT1A7-1A10 could fit to known kinetic models. Glucuronidation of both flavonoids in human intestinal and liver microsomes followed simple Michaelis-Menten kinetics. A comparison of the kinetic parameters and profiles suggests that UGT1A9 is likely the main isoform responsible for liver metabolism. In contrast, a combination of UGT1As with a major contribution from UGT1A10 contributed to their intestinal metabolism. Correlation studies clearly showed that UGT isoform-specific metabolism could describe their metabolism rates and profiles in human liver and intestinal microsomes. Conclusion GSMF and isoform-specific metabolism profiles can determine and describe glucuronidation rates and profiles in human tissue microsomes. PMID:20411407

  19. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less

  20. Functional clustering of time series gene expression data by Granger causality

    PubMed Central

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  1. The Rice B-Box Zinc Finger Gene Family: Genomic Identification, Characterization, Expression Profiling and Diurnal Analysis

    PubMed Central

    Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo

    2012-01-01

    Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960

  2. Integrated Copy Number and Expression Analysis Identifies Profiles of Whole-Arm Chromosomal Alterations and Subgroups with Favorable Outcome in Ovarian Clear Cell Carcinomas

    PubMed Central

    Uehara, Yuriko; Oda, Katsutoshi; Ikeda, Yuji; Koso, Takahiro; Tsuji, Shingo; Yamamoto, Shogo; Asada, Kayo; Sone, Kenbun; Kurikawa, Reiko; Makii, Chinami; Hagiwara, Otoe; Tanikawa, Michihiro; Maeda, Daichi; Hasegawa, Kosei; Nakagawa, Shunsuke; Wada-Hiraike, Osamu; Kawana, Kei; Fukayama, Masashi; Fujiwara, Keiichi; Yano, Tetsu; Osuga, Yutaka; Fujii, Tomoyuki; Aburatani, Hiroyuki

    2015-01-01

    Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis. PMID:26043110

  3. Gene expression profiling of whole blood: Comparison of target preparation methods for accurate and reproducible microarray analysis

    PubMed Central

    Vartanian, Kristina; Slottke, Rachel; Johnstone, Timothy; Casale, Amanda; Planck, Stephen R; Choi, Dongseok; Smith, Justine R; Rosenbaum, James T; Harrington, Christina A

    2009-01-01

    Background Peripheral blood is an accessible and informative source of transcriptomal information for many human disease and pharmacogenomic studies. While there can be significant advantages to analyzing RNA isolated from whole blood, particularly in clinical studies, the preparation of samples for microarray analysis is complicated by the need to minimize artifacts associated with highly abundant globin RNA transcripts. The impact of globin RNA transcripts on expression profiling data can potentially be reduced by using RNA preparation and labeling methods that remove or block globin RNA during the microarray assay. We compared four different methods for preparing microarray hybridization targets from human whole blood collected in PAXGene tubes. Three of the methods utilized the Affymetrix one-cycle cDNA synthesis/in vitro transcription protocol but varied treatment of input RNA as follows: i. no treatment; ii. treatment with GLOBINclear; or iii. treatment with globin PNA oligos. In the fourth method cDNA targets were prepared with the Ovation amplification and labeling system. Results We find that microarray targets generated with labeling methods that reduce globin mRNA levels or minimize the impact of globin transcripts during hybridization detect more transcripts in the microarray assay compared with the standard Affymetrix method. Comparison of microarray results with quantitative PCR analysis of a panel of genes from the NF-kappa B pathway shows good correlation of transcript measurements produced with all four target preparation methods, although method-specific differences in overall correlation were observed. The impact of freezing blood collected in PAXGene tubes on data reproducibility was also examined. Expression profiles show little or no difference when RNA is extracted from either fresh or frozen blood samples. Conclusion RNA preparation and labeling methods designed to reduce the impact of globin mRNA transcripts can significantly improve the sensitivity of the DNA microarray expression profiling assay for whole blood samples. While blockage of globin transcripts during first strand cDNA synthesis with globin PNAs resulted in the best overall performance in this study, we conclude that selection of a protocol for expression profiling studies in blood should depend on several factors, including implementation requirements of the method and study design. RNA isolated from either freshly collected or frozen blood samples stored in PAXGene tubes can be used without altering gene expression profiles. PMID:19123946

  4. Bioinformatics approaches for cross-species liver cancer analysis based on microarray gene expression profiling

    PubMed Central

    Fang, H; Tong, W; Perkins, R; Shi, L; Hong, H; Cao, X; Xie, Q; Yim, SH; Ward, JM; Pitot, HC; Dragan, YP

    2005-01-01

    Background The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer. Results In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism. Conclusion The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and clinical research in human liver cancer. The bioinformatics tools presented in this paper are essential for cross species extrapolation and mapping of microarray data, its analysis and interpretation. PMID:16026603

  5. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    PubMed Central

    Menzel, Ralph; Swain, Suresh C; Hoess, Sebastian; Claus, Evelyn; Menzel, Stefanie; Steinberg, Christian EW; Reifferscheid, Georg; Stürzenbaum, Stephen R

    2009-01-01

    Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments. PMID:19366437

  6. Digital gene expression analysis of the zebra finch genome

    PubMed Central

    2010-01-01

    Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates. PMID:20359325

  7. MicroRNA signature of the human developing pancreas

    PubMed Central

    2010-01-01

    Background MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. Results The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase altgorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. Conclusions We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the understanding of gene expression regulation in the human developing pancreas. PMID:20860821

  8. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing

    PubMed Central

    2011-01-01

    Background The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Results Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Conclusions Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism. PMID:21435219

  9. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  10. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    PubMed Central

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects. PMID:23894529

  11. Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

    PubMed Central

    Kim, Su-Hwan; Kim, Young-Sung; Lee, Su-Yeon; Kim, Kyoung-Hwa; Lee, Yong-Moo; Kim, Won-Kyung

    2011-01-01

    Purpose The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions This study demonstrated the genome-wide gene expression patterns of STRO-1+ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells. PMID:21954424

  12. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts

    PubMed Central

    2014-01-01

    Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159

  13. MicroRNAs expression profile in solid and unicystic ameloblastomas

    PubMed Central

    Setién-Olarra, A.; Bediaga, N. G.; Aguirre-Echebarria, P.; Aguirre-Urizar, J. M.; Mosqueda-Taylor, A.

    2017-01-01

    Objectives Odontogenic tumors (OT) represent a specific pathological category that includes some lesions with unpredictable biological behavior. Although most of these lesions are benign, some, such as the ameloblastoma, exhibit local aggressiveness and high recurrence rates. The most common types of ameloblastoma are the solid/multicystic (SA) and the unicystic ameloblastoma (UA); the latter considered a much less aggressive entity as compared to the SA. The microRNA system regulates the expression of many human genes while its deregulation has been associated with neoplastic development. The aim of the current study was to determine the expression profiles of microRNAs present in the two most common types of ameloblastomas. Material & methods MicroRNA expression profiles were assessed using TaqMan® Low Density Arrays (TLDAs) in 24 samples (8 SA, 8 UA and 8 control samples). The findings were validated using quantitative RTqPCR in an independent cohort of 19 SA, 8 UA and 19 dentigerous cysts as controls. Results We identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process. Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to UA, 7 in relation to SA and 1 (miR-489) that was related to both types. Conclusion We identified a new microRNA signature for the ameloblastoma and for its main types, which may be useful to better understand the etiopathogenesis of this neoplasm. In addition, we identified a microRNA (miR-489) that is suggestive of differentiating among solid from unicystic ameloblastoma. PMID:29053755

  14. Prediction of cardioembolic, arterial and lacunar causes of cryptogenic stroke by gene expression and infarct location

    PubMed Central

    Jickling, Glen C; Stamova, Boryana; Ander, Bradley P; Zhan, Xinhua; Liu, Dazhi; Sison, Shara-Mae; Verro, Piero; Sharp, Frank R

    2012-01-01

    Background and Purpose The cause of ischemic stroke remains unclear, or cryptogenic, in as many as 35% of stroke patients. Not knowing the cause of stroke restricts optimal implementation of prevention therapy and limits stroke research. We demonstrate how gene expression profiles in blood can be used in conjunction with a measure of infarct location on neuroimaging to predict a probable cause in cryptogenic stroke. Methods The cause of cryptogenic stroke was predicted using previously described profiles of differentially expressed genes characteristic of patients with cardioembolic, arterial and lacunar stroke. RNA was isolated from peripheral blood of 131 cryptogenic strokes and compared to profiles derived from 149 strokes of known cause. Each sample was run on Affymetrix U133 Plus2.0 microarrays. Cause of cryptogenic stroke was predicted using gene expression in blood and infarct location. Results Cryptogenic strokes were predicted to be 58% cardioembolic, 18% arterial, 12% lacunar and 12% unclear etiology. Cryptogenic stroke of predicted cardioembolic etiology had more prior myocardial infarction and higher CHA2DS2-VASc scores compared to stroke of predicted arterial etiology. Predicted lacunar strokes had higher systolic and diastolic blood pressures and lower NIHSS compared to predicted arterial and cardioembolic strokes. Cryptogenic strokes of unclear predicted etiology were less likely to have a prior TIA or ischemic stroke. Conclusions Gene expression in conjunction with a measure of infarct location can predict a probable cause in cryptogenic strokes. Predicted groups require further evaluation to determine whether relevant clinical, imaging, or therapeutic differences exist for each group. PMID:22627989

  15. Transcriptome Profile Reveals that Pu-Erh Tea Represses the Expression of Vitellogenin Family to Reduce Fat Accumulation in Caenorhabditis elegans.

    PubMed

    Xiao, Ru-Yue; Hao, Junjun; Ding, Yi-Hong; Che, Yan-Yun; Zou, Xiao-Ju; Liang, Bin

    2016-10-17

    Due to misbalanced energy surplus and expenditure, obesity has become a common chronic disorder that is highly associated with many metabolic diseases. Pu-erh tea, a traditional Chinese beverage, has been believed to have numerous health benefits, such as anti-obesity. However, the underlying mechanisms of its anti-obesity effect are yet to be understood. Here, we take the advantages of transcriptional profile by RNA sequencing (RNA-Seq) to view the global gene expression of Pu-erh tea. The model organism Caenorhabditis elegans was treated with different concentrations of Pu-erh tea water extract (PTE, 0 g/mL, 0.025 g/mL, and 0.05 g/mL). Compared with the control, PTE indeed decreases lipid droplets size and fat accumulation. The high-throughput RNA-Sequence technique detected 18073 and 18105 genes expressed in 0.025 g/mL and 0.05 g/mL PTE treated groups, respectively. Interestingly, the expression of the vitellogenin family ( vit-1 , vit-2 , vit-3, vit-4 and vit-5 ) was significantly decreased by PTE, which was validated by qPCR analysis. Furthermore, vit-1(ok2616) , vit-3(ok2348) and vit-5(ok3239) mutants are insensitive to PTE triggered fat reduction. In conclusion, our transcriptional profile by RNA-Sequence suggests that Pu-erh tea lowers the fat accumulation primarily through repression of the expression of vit (vitellogenin) family, in addition to our previously reported (sterol regulatory element binding protein) SREBP-SCD (stearoyl-CoA desaturase) axis.

  16. Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer

    PubMed Central

    ZHANG, HAITAO; DONG, YAN; ZHAO, HONGJUAN; BROOKS, JAMES D.; HAWTHORN, LESLEYANN; NOWAK, NORMA; MARSHALL, JAMES R.; GAO, ALLEN C.; IP, CLEMENT

    2008-01-01

    Background A previous clinical trial showed that selenium supplementation significantly reduced the incidence of prostate cancer. We report here a bioinformatics approach to gain new insights into selenium molecular targets that might be relevant to prostate cancer chemoprevention. Materials and Methods We first performed data mining analysis to identify genes which are consistently dysregulated in prostate cancer using published datasets from gene expression profiling of clinical prostate specimens. We then devised a method to systematically analyze three selenium microarray datasets from the LNCaP human prostate cancer cells, and to match the analysis to the cohort of genes implicated in prostate carcinogenesis. Moreover, we compared the selenium datasets with two datasets obtained from expression profiling of androgen-stimulated LNCaP cells. Results We found that selenium reverses the expression of genes implicated in prostate carcinogenesis. In addition, we found that selenium could counteract the effect of androgen on the expression of a subset obtained from androgen-regulated genes. Conclusions The above information provides us with a treasure of new clues to investigate the mechanism of selenium chemoprevention of prostate cancer. Furthermore, these selenium target genes could also serve as biomarkers in future clinical trials to gauge the efficacy of selenium intervention. PMID:18548127

  17. Investigating a multigene prognostic assay based on significant pathways for Luminal A breast cancer through gene expression profile analysis.

    PubMed

    Gao, Haiyan; Yang, Mei; Zhang, Xiaolan

    2018-04-01

    The present study aimed to investigate potential recurrence-risk biomarkers based on significant pathways for Luminal A breast cancer through gene expression profile analysis. Initially, the gene expression profiles of Luminal A breast cancer patients were downloaded from The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were identified using a Limma package and the hierarchical clustering analysis was conducted for the DEGs. In addition, the functional pathways were screened using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and rank ratio calculation. The multigene prognostic assay was exploited based on the statistically significant pathways and its prognostic function was tested using train set and verified using the gene expression data and survival data of Luminal A breast cancer patients downloaded from the Gene Expression Omnibus. A total of 300 DEGs were identified between good and poor outcome groups, including 176 upregulated genes and 124 downregulated genes. The DEGs may be used to effectively distinguish Luminal A samples with different prognoses verified by hierarchical clustering analysis. There were 9 pathways screened as significant pathways and a total of 18 DEGs involved in these 9 pathways were identified as prognostic biomarkers. According to the survival analysis and receiver operating characteristic curve, the obtained 18-gene prognostic assay exhibited good prognostic function with high sensitivity and specificity to both the train and test samples. In conclusion the 18-gene prognostic assay including the key genes, transcription factor 7-like 2, anterior parietal cortex and lymphocyte enhancer factor-1 may provide a new method for predicting outcomes and may be conducive to the promotion of precision medicine for Luminal A breast cancer.

  18. Hesperidin Displays Relevant Role in the Nutrigenomic Effect of Orange Juice on Blood Leukocytes in Human Volunteers: A Randomized Controlled Cross-Over Study

    PubMed Central

    Milenkovic, Dragan; Deval, Christiane; Dubray, Claude; Mazur, Andrzej; Morand, Christine

    2011-01-01

    Background We previously showed, in healthy, middle-aged, moderately overweight men, that orange juice decreases diastolic blood pressure and significantly improves postprandial microvascular endothelial reactivity and that hesperidin could be causally linked to the observed beneficial effect of orange juice. The objective was to determine the effect of chronic consumption of orange juice on the gene expression profile of leukocytes in healthy volunteers and to assess to what extent hesperidin is involved in the effect of orange juice. Methodology/Principal Findings Volunteers were included in a randomized, controlled, crossover study. Throughout three 4-week periods, volunteers consumed daily: 500 ml orange juice, 500 ml control drink plus hesperidin or 500 ml control drink and placebo. Blood samplings were performed on 10 overnight-fasted subjects after the 4-week treatment period. Global gene expression profiles were determined using human whole genome cDNA microarrays. Both orange juice and hesperidin consumption significantly affected leukocyte gene expression. Orange juice consumption induced changes in expression of, 3,422 genes, while hesperidin intake modulated the expression of 1,819 genes. Between the orange juice and hesperidin consumption groups, 1,582 regulated genes were in common. Many of these genes are implicated in chemotaxis, adhesion, infiltration and lipid transport, which is suggestive of lower recruitment and infiltration of circulating cells to vascular wall and lower lipid accumulation. Conclusions This study shows that regular consumption of orange juice for 4 weeks alters leukocyte gene expression to an anti-inflammatory and anti-atherogenic profile, and hesperidin displays a relevant role in the genomic effect of this beverage. Trial Registration ClinicalTrials.gov NCT 00983086 PMID:22110589

  19. Compensation for intracellular environment in expression levels of mammalian circadian clock genes

    PubMed Central

    Matsumura, Ritsuko; Okamoto, Akihiko; Node, Koichi; Akashi, Makoto

    2014-01-01

    The circadian clock is driven by transcriptional oscillation of clock genes in almost all body cells. To investigate the effect of cell type-specific intracellular environment on the circadian machinery, we examined gene expression profiles in five peripheral tissues. As expected, the phase relationship between expression rhythms of nine clock genes was similar in all tissues examined. We also compared relative expression levels of clock genes among tissues, and unexpectedly found that quantitative variation remained within an approximately three-fold range, which was substantially smaller than that of metabolic housekeeping genes. Interestingly, circadian gene expression was little affected even when fibroblasts were cultured with different concentrations of serum. Together, these findings support a hypothesis that expression levels of clock genes are quantitatively compensated for the intracellular environment, such as redox potential and metabolite composition. However, more comprehensive studies are required to reach definitive conclusions. PMID:24504324

  20. Differential Gene Expression Profiling of Functionally and Developmentally Distinct Human Prostate Epithelial Populations

    PubMed Central

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-01-01

    BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. CONCLUSIONS Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. Prostate 75: 764–776, 2015. © The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25663004

  1. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice

    PubMed Central

    2012-01-01

    Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts distinct effects on adipocyte cytokine and angiogenesis profiles in obese and lean mice. Our study also underscores the importance of angiogenesis-related proteins and cytokines in adipose tissue remodeling and development of obesity. PMID:22748184

  2. Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates

    PubMed Central

    Matsui, Toshiaki; Yamamoto, Toshiyuki; Wyder, Stefan; Zdobnov, Evgeny M; Kadowaki, Tatsuhiko

    2009-01-01

    Background Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. Results We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. Conclusion These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes. PMID:19138430

  3. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  4. A Practical Platform for Blood Biomarker Study by Using Global Gene Expression Profiling of Peripheral Whole Blood

    PubMed Central

    Schmid, Patrick; Yao, Hui; Galdzicki, Michal; Berger, Bonnie; Wu, Erxi; Kohane, Isaac S.

    2009-01-01

    Background Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study. Methods and Findings We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal. Conclusion We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study. PMID:19381341

  5. The altered liver microRNA profile in hepatotoxicity induced by rhizome Dioscorea bulbifera in mice.

    PubMed

    Yang, Rui; Bai, Qingyun; Zhang, Jiaqi; Sheng, Yuchen; Ji, Lili

    2017-08-01

    MicroRNA (miRNA) has been reported to play important roles in regulating drug-induced liver injury. Ethyl acetate extract isolated from rhizoma Dioscoreae bulbifera (EF) has been reported to induce hepatotoxicity in our previous studies. This study aims to observe the altered liver miRNA profile and its related signalling pathway involved in EF-induced hepatotoxicity. Serum alanine/aspartate aminotransferase assay showed that EF (450 mg/kg)-induced hepatotoxicity in mice. Results of miRNA chip analysis showed that the expression of eight miRNAs was up-regulated and of other nine miRNAs was down-regulated in livers from EF-treated mice. Further, the altered expression of miR-200a-3p, miR-5132-5p and miR-5130 was validated using real-time polymerase chain reaction (PCR) assay. There were total seven predicted target genes of miR-200a-3p, miR-5132-5p and miR-5130. Only one kyoto encyclopedia genes and genomes pathway was annotated using those target genes, which is protein processing in endoplasmic reticulum (ER). Furthermore, liver expression of DnaJ subfamily A member 1, a key gene involved in protein processing in ER based on the altered miRNAs, was increased in EF-treated mice. In conclusion, the results demonstrated that EF altered the expression of liver miRNA profile and its related signalling pathway, which may be involved in EF-induced hepatotoxicity.

  6. Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry

    PubMed Central

    Qi, Yanxiang; Liu, Xiaomei; Pu, Jinji

    2018-01-01

    The NAC transcription factors involved plant development and response to various stress stimuli. However, little information is available concerning the NAC family in the woodland strawberry. Herein, 37 NAC genes were identified from the woodland strawberry genome and were classified into 13 groups based on phylogenetic analysis. And further analyses of gene structure and conserved motifs showed closer relationship of them in every subgroup. Quantitative real-time PCR evaluation different tissues revealed distinct spatial expression profiles of the FvNAC genes. The comprehensive expression of FvNAC genes revealed under abiotic stress (cold, heat, drought, salt), signal molecule treatments (H2O2, ABA, melatonin, rapamycin), biotic stress (Colletotrichum gloeosporioides and Ralstonia solanacearum). Expression profiles derived from quantitative real-time PCR suggested that 5 FvNAC genes responded dramatically to the various abiotic and biotic stresses, indicating their contribution to abiotic and biotic stresses resistance in woodland strawberry. Interestingly, FvNAC genes showed greater extent responded to the cold treatment than other abiotic stress, and H2O2 exhibited a greater response than ABA, melatonin, and rapamycin. For biotic stresses, 3 FvNAC genes were up-regulated during infection with C. gloeosporioides, while 6 FvNAC genes were down-regulated during infection with R. solanacearum. In conclusion, this study identified candidate FvNAC genes to be used for the genetic improvement of abiotic and biotic stress tolerance in woodland strawberry. PMID:29897926

  7. Doxycycline affects gene expression profiles in aortic tissues in a rat model of vascular calcification.

    PubMed

    Lu, Hailin; Jiang, Wenhong; Yang, Han; Qin, Zhong; Guo, Si-En; Hu, Ming; Qin, Xiao

    2017-11-01

    Vitamin D 3 -induced vascular calcification (VC) in rats shares many phenotypical similarities with calcification occurring in human atherosclerosis, diabetes mellitus and chronic kidney disease, thereby it is a reliable model for identifying chemopreventive agents. Doxycycline has been shown to effectively attenuated VC. This study aimed to explore the effects of doxycycline on gene expression profiles in VC rats. The model of VC in rats was established by subcutaneous injection of vitamin D3 for 3days. Doxycycline at 120mgkg -1 day -1 was given via subcutaneous injection for 14days. Rat pathological changes, calcium deposition and calcium content in aortic tissues were measured by Hematoxylin-eosin, von Kossa staining and colorimetry, respectively. The gene change profile of aortic tissues after doxycycline treatment was assessed by Gene Microarray analysis using the Agilent Whole Rat Genome Oligo Microarray. The results showed that doxycycline significantly decreased the deposition of calcium, reduced the relative calcification area and alleviated pathological injury in aortic tissues. In addition, doxycycline treatment altered 88 gene expressions compared with untreated VD group. Of these, 61 genes were down-regulated and 27 genes were up-regulated. The functions of differentially expressed (DE) genes were involved in neutrophil chemotaxis, chronic inflammatory response, negative regulation of apoptotic process, cellular response to mechanical stimulus and immune response, etc. In conclusions, this study might provide the potential novel insights into the molecular mechanisms of doxycycline on VC. Copyright © 2017. Published by Elsevier Inc.

  8. Effect of Pioglitazone on Cardio-Metabolic Risk in Patients with Obstructive Sleep Apnea

    PubMed Central

    Liu, Alice; Abbasi, Fahim; Kim, Sun H.; Ariel, Danit; Lamendola, Cindy; Cardell, James; Xu, Shiming; Patel, Shailja; Tomasso, Vanessa; Mojaddidi, Hafasa; Grove, Kaylene; Tsao, Philip S.; Kushida, Clete A.; Reaven, Gerald M.

    2017-01-01

    Prevalence of insulin resistance is increased in patients with obstructive sleep apnea (OSA). Since insulin resistance is an independent predictor of cardiovascular disease (CVD), this study was initiated to see if pioglitazone administration would improve insulin sensitivity, and thereby decrease risk of CVD in overweight/obese, nondiabetic, insulin-resistant patients with untreated OSA. Patients (n=30) were administered pioglitazone (45 mg/day) for 8 weeks, and measurements were made before and after intervention of insulin action (insulin-mediated glucose uptake by the insulin suppression test), C-reactive protein, lipid/lipoprotein profile, and gene expression profile of peri-umbilical subcutaneous fat tissue. Insulin sensitivity increased 31% (p<0.001) among pioglitazone-treated individuals, associated with a decrease in C-reactive protein concentration (p≤ 0.001), a decrease in plasma triglyceride and increase in high-density lipoprotein cholesterol concentrations (p≤ 0.001), accompanied by significant changes in apolipoprotein A1 and B concentrations and lipoprotein subclasses known to decrease CVD risk. In addition, subcutaneous adipose tissue gene expression profile showed a 1.6-fold (p<0.01) increase in GLUT4 expression, as well as decreased expression in 5 of 9 inflammatory genes (p<0.05). In conclusion, enhanced insulin sensitivity can significantly decrease multiple cardio-metabolic risk factors in patients with untreated OSA, consistent with the view that coexisting insulin resistance plays an important role in the association between OSA and increased risk of CVD. PMID:28219664

  9. Profile of microRNA in Giant Panda Blood: A Resource for Immune-Related and Novel microRNAs

    PubMed Central

    Yang, Mingyu; Du, Lianming; Li, Wujiao; Shen, Fujun; Fan, Zhenxin; Jian, Zuoyi; Hou, Rong; Shen, Yongmei; Yue, Bisong; Zhang, Xiuyue

    2015-01-01

    The giant panda (Ailuropoda melanoleuca) is one of the world’s most beloved endangered mammals. Although the draft genome of this species had been assembled, little was known about the composition of its microRNAs (miRNAs) or their functional profiles. Recent studies demonstrated that changes in the expression of miRNAs are associated with immunity. In this study, miRNAs were extracted from the blood of four healthy giant pandas and sequenced by Illumina next generation sequencing technology. As determined by miRNA screening, a total of 276 conserved miRNAs and 51 novel putative miRNAs candidates were detected. After differential expression analysis, we noticed that the expressions of 7 miRNAs were significantly up-regulated in young giant pandas compared with that of adults. Moreover, 2 miRNAs were up-regulated in female giant pandas and 1 in the male individuals. Target gene prediction suggested that the miRNAs of giant panda might be relevant to the expressions of 4,602 downstream genes. Subseuqently, the predicted target genes were conducted to KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and we found that these genes were mainly involved in host immunity, including the Ras signaling pathway, the PI3K-Akt signaling pathway, and the MAPK signaling pathway. In conclusion, our results provide the first miRNA profiles of giant panda blood, and the predicted functional analyses may open an avenue for further study of giant panda immunity. PMID:26599861

  10. Profile of microRNA in Giant Panda Blood: A Resource for Immune-Related and Novel microRNAs.

    PubMed

    Yang, Mingyu; Du, Lianming; Li, Wujiao; Shen, Fujun; Fan, Zhenxin; Jian, Zuoyi; Hou, Rong; Shen, Yongmei; Yue, Bisong; Zhang, Xiuyue

    2015-01-01

    The giant panda (Ailuropoda melanoleuca) is one of the world's most beloved endangered mammals. Although the draft genome of this species had been assembled, little was known about the composition of its microRNAs (miRNAs) or their functional profiles. Recent studies demonstrated that changes in the expression of miRNAs are associated with immunity. In this study, miRNAs were extracted from the blood of four healthy giant pandas and sequenced by Illumina next generation sequencing technology. As determined by miRNA screening, a total of 276 conserved miRNAs and 51 novel putative miRNAs candidates were detected. After differential expression analysis, we noticed that the expressions of 7 miRNAs were significantly up-regulated in young giant pandas compared with that of adults. Moreover, 2 miRNAs were up-regulated in female giant pandas and 1 in the male individuals. Target gene prediction suggested that the miRNAs of giant panda might be relevant to the expressions of 4,602 downstream genes. Subseuqently, the predicted target genes were conducted to KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and we found that these genes were mainly involved in host immunity, including the Ras signaling pathway, the PI3K-Akt signaling pathway, and the MAPK signaling pathway. In conclusion, our results provide the first miRNA profiles of giant panda blood, and the predicted functional analyses may open an avenue for further study of giant panda immunity.

  11. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.

  12. Global preamplification simplifies targeted mRNA quantification

    PubMed Central

    Kroneis, Thomas; Jonasson, Emma; Andersson, Daniel; Dolatabadi, Soheila; Ståhlberg, Anders

    2017-01-01

    The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification. PMID:28332609

  13. Acute myeloid leukaemia: expression of MYC protein and its association with cytogenetic risk profile and overall survival.

    PubMed

    Mughal, Muhammad Kashif; Akhter, Ariz; Street, Lesley; Pournazari, Payam; Shabani-Rad, Meer-Taher; Mansoor, Adnan

    2017-09-01

    Acute myeloid leukaemia (AML) is a clinically aggressive disease with marked genetic heterogeneity. Cytogenetic abnormalities provide the basis for risk stratification into clinically favourable, intermediate, and unfavourable groups. There are additional genetic mutations, which further influence the prognosis of patients with AML. Most of these result in molecular aberrations whose downstream target is MYC. It is therefore logical to study the relationship between MYC protein expression and cytogenetic risk groups. We studied MYC expression by immunohistochemistry in a large cohort (n = 199) of AML patients and correlated these results with cytogenetic risk profile and overall survival (OS). We illustrated differential expression of MYC protein across various cytogenetic risk groups (p = 0.03). Highest expression of MYC was noted in AML patients with favourable cytogenetic risk group. In univariate analysis, MYC expression showed significant negative influence of OS in favourable and intermediate cytogenetic risk group (p = 0.001). Interestingly, MYC expression had a protective effect in the unfavourable cytogenetic risk group. In multivariate analysis, while age and cytogenetic risk group were significant factors influencing survival, MYC expression by immunohistochemistry methods also showed some marginal impact (p = 0.069). In conclusion, we have identified differential expression of MYC protein in relation to cytogenetic risk groups in AML patients and documented its possible impact on OS in favourable and intermediate cytogenetic risk groups. These preliminary observations mandate additional studies to further investigate the routine clinical use of MYC protein expression in AML risk stratification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Impact of STAT/SOCS mRNA Expression Levels after Major Injury

    PubMed Central

    Brumann, M.; Matz, M.; Kusmenkov, T.; Stegmaier, J.; Biberthaler, P.; Kanz, K.-G.; Mutschler, W.; Bogner, V.

    2014-01-01

    Background. Fulminant changes in cytokine receptor signalling might provoke severe pathological alterations after multiple trauma. The aim of this study was to evaluate the posttraumatic imbalance of the innate immune system with a special focus on the STAT/SOCS family. Methods. 20 polytraumatized patients were included. Blood samples were drawn 0 h–72 h after trauma; mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3 were quantified by qPCR. Results. IL-10 mRNA expression increased significantly in the early posttraumatic period. STAT 3 mRNA expressions showed a significant maximum at 6 h after trauma. SOCS 1 levels significantly decreased 6 h–72 h after trauma. SOCS 3 levels were significantly higher in nonsurvivors 6 h after trauma. Conclusion. We present a serial, sequential investigation in human neutrophil granulocytes of major trauma patients evaluating mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3. Posttraumatically, immune disorder was accompanied by a significant increase of IL-10 and STAT 3 mRNA expression, whereas SOCS 1 mRNA levels decreased after injury. We could demonstrate that death after trauma was associated with higher SOCS 3 mRNA levels already at 6 h after trauma. To support our results, further investigations have to evaluate protein levels of STAT/SOCS family in terms of posttraumatic immune imbalance. PMID:24648661

  15. SERUM THYROTROPIN CONCENTRATIONS ARE NOT PREDICTIVE OF AGGRESSIVE BREAST CANCER BIOLOGY IN EUTHYROID INDIVIDUALS

    PubMed Central

    Villa, Natalie M.; Li, Ning; Yeh, Michael W.; Hurvitz, Sara A.; Dawson, Nicole A.; Leung, Angela M.

    2015-01-01

    Objective The potential influence of hypothyroidism on breast cancer remains incompletely understood. The objective of this study was to investigate the relationship between serum thyrotropin [thyroid-stimulating hormone (TSH)] concentration and markers of aggressive breast cancer biology, as defined by receptor expression profile, tumor grade, and American Joint Committee on Cancer (AJCC) stage characteristics. Methods This was a retrospective cohort study of patients from 2002–2014. All breast cancer patients who had complete receptor (estrogen receptor, ER; progesterone receptor, PR; and Her2/neu) and pre-diagnosis serum TSH data (n=437) were included. All patients had one of six receptor profiles: ER+ PR+ Her2/neu −, ER+ PR− Her2/neu−, ER+ PR+ Her2/neu+, ER+ PRHer2/ neu+, ER− PR− Her2/neu+, ER− PR− Her2/neu−. Log-transformed serum TSH concentrations were analyzed using multinomial and logistic regressions for a potential relationship with markers of breast cancer aggressiveness. Results Increasing serum TSH concentration was associated with a lower probability of having the receptor expression profile ER+ PR+ Her2/neu+ compared to patients with the ER+ PR+ Her2/neu− profile (OR=0.52, p=0.0045). No significant associations between other receptor expression profiles and serum TSH concentration were found. All time-weighted and unweighted median serum TSH concentrations were within normal limits. No significant associations between serum TSH concentration and tumor grade, overall AJCC stage, or tumor size (T), lymph node positivity (N), or presence of metastasis (M) were observed. Conclusions Serum TSH was not associated with markers of breast cancer aggressiveness in our cohort. PMID:26121443

  16. Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis

    PubMed Central

    Li, Shang-Wei; Yang, Hong; Liu, Yue-Feng; Liao, Qi-Rong; Du, Juan; Jin, Dao-Chao

    2012-01-01

    Background The rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), is one of the most destructive pests affecting rice in Asia. Although several studies have been performed on the ecological and physiological aspects of this species, the molecular mechanisms underlying its developmental regulation, behavior, and insecticide resistance remain largely unknown. Presently, there is a lack of genomic information for RLF; therefore, studies aimed at profiling the RLF transcriptome expression would provide a better understanding of its biological function at the molecular level. Principal Findings De novo assembly of the RLF transcriptome was performed via the short read sequencing technology (Illumina). In a single run, we produced more than 23 million sequencing reads that were assembled into 44,941 unigenes (mean size = 474 bp) by Trinity. Through a similarity search, 25,281 (56.82%) unigenes matched known proteins in the NCBI Nr protein database. The transcriptome sequences were annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). Additionally, we profiled gene expression during RLF development using a tag-based digital gene expression (DGE) system. Five DGE libraries were constructed, and variations in gene expression were compared between collected samples: eggs vs. 3rd instar larvae, 3rd instar larvae vs. pupae, pupae vs. adults. The results demonstrated that thousands of genes were significantly differentially expressed during various developmental stages. A number of the differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The RLF transcriptome and DGE data provide a comprehensive and global gene expression profile that would further promote our understanding of the molecular mechanisms underlying various biological characteristics, including development, elevated fecundity, flight, sex differentiation, olfactory behavior, and insecticide resistance in RLF. Therefore, these findings could help elucidate the intrinsic factors involved in the RLF-mediated destruction of rice and offer sustainable insect pest management. PMID:23185238

  17. Increased Bisecting N-Acetylglucosamine and Decreased Branched Chain Glycans of N-linked Glycoproteins in Expressed Prostatic Secretions Associated with Prostate Cancer Progression

    PubMed Central

    Nyalwidhe, Julius O.; Betesh, Lucy R.; Powers, Thomas W.; Jones, E. Ellen; White, Krista Y.; Burch, Tanya C.; Brooks, Jasmin; Watson, Megan T.; Lance, Raymond S.; Troyer, Dean A.; Semmes, O. John; Mehta, Anand; Drake, Richard R.

    2013-01-01

    Purpose Using prostatic fluids rich in glycoproteins like prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) , the goal of this study was to identify the structural types and relative abundance of glycans associated with prostate cancer status for subsequent use in emerging mass spectrometry-based glycopeptide analysis platforms. Experimental Design A series of pooled samples of expressed prostatic secretions (EPS) and exosomes reflecting different stages of prostate cancer disease were used for N-linked glycan profiling by three complementary methods, MALDI-TOF profiling, normal-phase HPLC separation, and triple quadropole MS analysis of PAP glycopeptides. Results Glycan profiling of N-linked glycans from different EPS fluids indicated a global decrease in larger branched tri- and tetra-antennary glycans. Differential exoglycosidase treatments indicated a substantial increase in bisecting N-acetylglucosamines correlated with disease severity. A triple quadrupole MS analysis of the N-linked glycopeptides sites from PAP in aggressive prostate cancer pools was done to cross-reference with the glycan profiling data. Conclusion and clinical relevance Changes in glycosylation as detected in EPS fluids reflect the clinical status of prostate cancer. Defining these molecular signatures at the glycopeptide level in individual samples could improve current approaches of diagnosis and prognosis. PMID:23775902

  18. ALDH1 is an immunohistochemical diagnostic marker for solitary fibrous tumours and haemangiopericytomas of the meninges emerging from gene profiling study

    PubMed Central

    2013-01-01

    Background Solitary Fibrous Tumours (SFT) and haemangiopericytomas (HPC) are rare meningeal tumours that have to be distinguished from meningiomas and more rarely from synovial sarcomas. We recently found that ALDH1A1 was overexpressed in SFT and HPC as compared to soft tissue sarcomas. Using whole-genome DNA microarrays, we defined the gene expression profiles of 16 SFT/HPC (9 HPC and 7 SFT). Expression profiles were compared to publicly available expression profiles of additional SFT or HPC, meningiomas and synovial sarcomas. We also performed an immunohistochemical (IHC) study with anti-ALDH1 and anti-CD34 antibodies on Tissue Micro-Arrays including 38 SFT (25 meningeal and 13 extrameningeal), 55 meningeal haemangiopericytomas (24 grade II, 31 grade III), 163 meningiomas (86 grade I, 62 grade II, 15 grade III) and 98 genetically confirmed synovial sarcomas. Results ALDH1A1 gene was overexpressed in SFT/HPC, as compared to meningiomas and synovial sarcomas. These findings were confirmed at the protein level. 84% of the SFT and 85.4% of the HPC were positive with anti-ALDH1 antibody, while only 7.1% of synovial sarcomas and 1.2% of meningiomas showed consistent expression. Positivity was usually more diffuse in SFT/HPC compared to other tumours with more than 50% of tumour cells immunostained in 32% of SFT and 50.8% of HPC. ALDH1 was a sensitive and specific marker for the diagnosis of SFT (SE = 84%, SP = 98.8%) and HPC (SE = 84.5%, SP = 98.7%) of the meninges. In association with CD34, ALDH1 expression had a specificity and positive predictive value of 100%. Conclusion We show that ALDH1, a stem cell marker, is an accurate diagnostic marker for SFT and HPC, which improves the diagnostic value of CD34. ALDH1 could also be a new therapeutic target for these tumours which are not sensitive to conventional chemotherapy. PMID:24252471

  19. Transcriptome Analysis of Chlorantraniliprole Resistance Development in the Diamondback Moth Plutella xylostella

    PubMed Central

    Hu, Zhendi; Chen, Huanyu; Yin, Fei; Li, Zhenyu; Dong, Xiaolin; Zhang, Deyong; Ren, Shunxiang; Feng, Xia

    2013-01-01

    Background The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella’s resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. Principal Findings To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. Conclusions The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide comprehensive insights into the gene expression profiles of the different chlorantraniliprole-resistant stains. These genes are specifically related to insecticide resistance, with different expressional profiles facilitating the study of the role of each gene in chlorantraniliprole resistance development. PMID:23977278

  20. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy

    PubMed Central

    Bhuvaneswari, Ramaswamy; Gan, Yik Y; Lucky, Sasidharan S; Chin, William WL; Ali, Seyed M; Soo, Khee C; Olivo, Malini

    2008-01-01

    Background Photodynamic therapy (PDT) involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h) and long (6 h) drug light interval (DLI) hypericin-PDT (HY-PDT) treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC) results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF), tumor necrosis growth factor-α (TNF-α), interferon-α (IFN-α) and basic fibroblast growth factor (bFGF) were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF) and Ephrin-A3 (EFNA3) were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT. PMID:18549507

  1. Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie

    PubMed Central

    2014-01-01

    Background Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease. PMID:24450868

  2. EMMPRIN (CD147) is induced by C/EBPβ and is differentially expressed in ALK+ and ALK- anaplastic large-cell lymphoma.

    PubMed

    Schmidt, Janine; Bonzheim, Irina; Steinhilber, Julia; Montes-Mojarro, Ivonne A; Ortiz-Hidalgo, Carlos; Klapper, Wolfram; Fend, Falko; Quintanilla-Martínez, Leticia

    2017-09-01

    Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is characterized by expression of oncogenic ALK fusion proteins due to the translocation t(2;5)(p23;q35) or variants. Although genotypically a T-cell lymphoma, ALK+ ALCL cells frequently show loss of T-cell-specific surface antigens and expression of monocytic markers. C/EBPβ, a transcription factor constitutively overexpressed in ALK+ ALCL cells, has been shown to play an important role in the activation and differentiation of macrophages and is furthermore capable of transdifferentiating B-cell and T-cell progenitors to macrophages in vitro. To analyze the role of C/EBPβ for the unusual phenotype of ALK+ ALCL cells, C/EBPβ was knocked down by RNA interference in two ALK+ ALCL cell lines, and surface antigen expression profiles of these cell lines were generated using a Human Cell Surface Marker Screening Panel (BD Biosciences). Interesting candidate antigens were further analyzed by immunohistochemistry in primary ALCL ALK+ and ALK- cases. Antigen expression profiling revealed marked changes in the expression of the activation markers CD25, CD30, CD98, CD147, and CD227 after C/EBPβ knockdown. Immunohistochemical analysis confirmed a strong, membranous CD147 (EMMPRIN) expression in ALK+ ALCL cases. In contrast, ALK- ALCL cases showed a weaker CD147 expression. CD274 or PD-L1, an immune inhibitory receptor ligand, was downregulated after C/EBPβ knockdown. PD-L1 also showed stronger expression in ALK+ ALCL compared with ALK- ALCL, suggesting an additional role of C/EBPβ in ALK+ ALCL in generating an immunosuppressive environment. Finally, no expression changes of T-cell or monocytic markers were detected. In conclusion, surface antigen expression profiling demonstrates that C/EBPβ plays a critical role in the activation state of ALK+ ALCL cells and reveals CD147 and PD-L1 as important downstream targets. The multiple roles of CD147 in migration, adhesion, and invasion, as well as T-cell activation and proliferation suggest its involvement in the pathogenesis of ALCL.

  3. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiac allograft gene expression profiling test... Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a) Identification. A cardiac allograft gene expression profiling test system is a device that measures the...

  4. Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland

    PubMed Central

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2012-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12–15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland. PMID:22649398

  5. Transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland.

    PubMed

    St-Amand, Jonny; Yoshioka, Mayumi; Tanaka, Keitaro; Nishida, Yuichiro

    2011-01-01

    To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12-15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland.

  6. Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro.

    PubMed

    Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gahete, Manuel D; Jiménez-Reina, Luis; Venegas-Moreno, Eva; de la Riva, Andrés; Arráez, Miguel Ángel; González-Molero, Inmaculada; Schmid, Herbert A; Maraver-Selfa, Silvia; Gavilán-Villarejo, Inmaculada; García-Arnés, Juan Antonio; Japón, Miguel A; Soto-Moreno, Alfonso; Gálvez, María A; Luque, Raúl M; Castaño, Justo P

    2016-11-01

    Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca 2+ signaling ([Ca 2+ ] i ), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca 2+ ] i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca 2+ ] i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response. © 2016 Society for Endocrinology.

  7. Changes in the Peripheral Blood Gene Expression Profile Induced by 3 Months of Valproate Treatment in Patients with Newly Diagnosed Epilepsy

    PubMed Central

    Rakitin, Aleksei; Kõks, Sulev; Reimann, Ene; Prans, Ele; Haldre, Sulev

    2015-01-01

    Valproic acid (VPA) is a widely used antiepileptic drug with a broad range of effects and broad clinical efficacy. As a well-known histone deacetylase (HDAC) inhibitor, VPA regulates epigenetic programming by altering the expression of many genes. The aim of study was to analyze differences in gene expression profiles before and after the start of VPA treatment in patients with newly diagnosed epilepsy. RNA sequencing was used to compare whole-genome gene expression patterns of peripheral blood from nine patients with epilepsy before and 3 months after the start of treatment with VPA. Of the 23,099 analyzed genes, only 11 showed statistically significant differential expression with false discovery rate-adjusted p-values below 0.1. Functional annotation and network analyses showed activation of only one genetic network (enrichment score = 30), which included genes for cardiovascular system development and function, cell morphology, and hematological system development and function. The finding of such a small number of differently expressed genes between before and after the start of treatment suggests a lack of HDAC inhibition in these patients, which could be explained by the relatively low doses of VPA that were used. In conclusion, VPA at standard therapeutic dosages modulates the expression of a small number of genes. Therefore, to minimize the potential side effects of HDAC inhibition, it is recommended that the lowest effective dose of VPA be used for treating epilepsy. PMID:26379622

  8. Cyclophosphamide Alters the Gene Expression Profile in Patients Treated with High Doses Prior to Stem Cell Transplantation

    PubMed Central

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173

  9. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications

    PubMed Central

    Nugoli, Mélanie; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale; Theillet, Charles

    2003-01-01

    Background Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. Methods In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. Results MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. Conclusions The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved in a node like pattern, rather than according to a linear progression model. Due to their capacity to undergo rapid genetic changes MCF-7 cells could represent an interesting model for genetic evolution of breast tumors. PMID:12713671

  10. Simultaneous monitoring of independent gene expression patterns in two types of cocultured fibroblasts with different color-emitting luciferases

    PubMed Central

    Noguchi, Takako; Ikeda, Masaaki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro

    2008-01-01

    Background Luciferase assay systems enable the real-time monitoring of gene expression in living cells. We have developed a dual-color luciferase assay system in which the expression of multiple genes can be tracked simultaneously using green- and red-emitting beetle luciferases. We have applied the system to monitoring independent gene expressions in two types of cocultured fibroblasts in real time. Results Two Rat-1 cell lines were established that stably express either green- or red-emitting luciferases under the control of the mBmal1 promoter, a canonical clock gene. We cocultured these cell lines, and gene expression profiles in both were monitored simultaneously. The circadian rhythms of these cell lines are independent, oscillating following their intrinsic circadian phases, even when cocultured. Furthermore, the independent rhythms were synchronized by medium change as an external stimulus. Conclusion Using this system, we successfully monitored independent gene expression patterns in two lines of cocultured fibroblasts. PMID:18416852

  11. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse.

    PubMed

    Wright, Craig Robert; Allsopp, Giselle Larissa; Addinsall, Alex Bernard; McRae, Natasha Lee; Andrikopoulos, Sofianos; Stupka, Nicole

    2017-01-01

    Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD). There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S ( Seps1 ) are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion ( mdx : Seps1 -/+ ) were generated. The mdx:Seps1 -/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL) muscles, mRNA expression of monocyte chemoattractant protein 1 ( Mcp-1 ) ( P = 0.034), macrophage marker F4/80 ( P = 0.030), and transforming growth factor-β1 ( Tgf-β1 ) ( P = 0.056) were increased in mdx:Seps1 -/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  12. Gene expression profiles in chondrosarcoma cells subjected to cyclic stretching and hydrostatic pressure. A cDNA array study.

    PubMed

    Karjalainen, Hannu M; Sironen, Reijo K; Elo, Mika A; Kaarniranta, Kai; Takigawa, Masaharu; Helminen, Heikki J; Lammi, Mikko J

    2003-01-01

    Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.

  13. In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandi, Narayanan Sathiya, E-mail: sathiyapandi@gmail.com; Suganya, Sivagurunathan; Rajendran, Suriliyandi

    Highlights: •Identified stomach lineage specific gene set (SLSGS) was found to be under expressed in gastric tumors. •Elevated expression of SLSGS in gastric tumor is a molecular predictor of metabolic type gastric cancer. •In silico pathway scanning identified estrogen-α signaling is a putative regulator of SLSGS in gastric cancer. •Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. -- Abstract: Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However,more » the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC.« less

  14. Gene expression patterns combined with bioinformatics analysis identify genes associated with cholangiocarcinoma.

    PubMed

    Li, Chen; Shen, Weixing; Shen, Sheng; Ai, Zhilong

    2013-12-01

    To explore the molecular mechanisms of cholangiocarcinoma (CC), microarray technology was used to find biomarkers for early detection and diagnosis. The gene expression profiles from 6 patients with CC and 5 normal controls were downloaded from Gene Expression Omnibus and compared. As a result, 204 differentially co-expressed genes (DCGs) in CC patients compared to normal controls were identified using a computational bioinformatics analysis. These genes were mainly involved in coenzyme metabolic process, peptidase activity and oxidation reduction. A regulatory network was constructed by mapping the DCGs to known regulation data. Four transcription factors, FOXC1, ZIC2, NKX2-2 and GCGR, were hub nodes in the network. In conclusion, this study provides a set of targets useful for future investigations into molecular biomarker studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The Non-linear Trajectory of Change in Play Profiles of Three Children in Psychodynamic Play Therapy.

    PubMed

    Halfon, Sibel; Çavdar, Alev; Orsucci, Franco; Schiepek, Gunter K; Andreassi, Silvia; Giuliani, Alessandro; de Felice, Giulio

    2016-01-01

    Aim: Even though there is substantial evidence that play based therapies produce significant change, the specific play processes in treatment remain unexamined. For that purpose, processes of change in long-term psychodynamic play therapy are assessed through a repeated systematic assessment of three children's "play profiles," which reflect patterns of organization among play variables that contribute to play activity in therapy, indicative of the children's coping strategies, and an expression of their internal world. The main aims of the study are to investigate the kinds of play profiles expressed in treatment, and to test whether there is emergence of new and more adaptive play profiles using dynamic systems theory as a methodological framework. Methods and Procedures: Each session from the long-term psychodynamic treatment (mean number of sessions = 55) of three 6-year-old good outcome cases presenting with Separation Anxiety were recorded, transcribed and coded using items from the Children's Play Therapy Instrument (CPTI), created to assess the play activity of children in psychotherapy, generating discrete and measurable units of play activity arranged along a continuum of four play profiles: "Adaptive," "Inhibited," "Impulsive," and "Disorganized." The play profiles were clustered through K -means Algorithm, generating seven discrete states characterizing the course of treatment and the transitions between these states were analyzed by Markov Transition Matrix, Recurrence Quantification Analysis (RQA) and odds ratios comparing the first and second halves of psychotherapy. Results: The Markov Transitions between the states scaled almost perfectly and also showed the ergodicity of the system, meaning that the child can reach any state or shift to another one in play. The RQA and odds ratios showed two trends of change, first concerning the decrease in the use of "less adaptive" strategies, second regarding the reduction of play interruptions. Conclusion: The results support that these children express different psychic states in play, which can be captured through the lens of play profiles, and begin to modify less dysfunctional profiles over the course of treatment. The methodology employed showed the productivity of treating psychodynamic play therapy as a complex system, taking advantage of non-linear methods to study psychotherapeutic play activity.

  16. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach

    PubMed Central

    2012-01-01

    Background Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. Results We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. Conclusions Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology. PMID:22439894

  17. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general. PMID:23245313

  18. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum

    PubMed Central

    Widana Gamage, Shirani M. K.; McGrath, Desmond J.; Persley, Denis M.

    2016-01-01

    Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops. PMID:27398596

  19. Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin.

    PubMed

    Ghaffari, Abdi; Li, Yunyaun; Karami, Ali; Ghaffari, Mazyar; Tredget, Edward E; Ghahary, Aziz

    2006-05-15

    Termination of wound-healing process requires a fine balance between connective tissue deposition and its hydrolysis. Previously, we have demonstrated that keratinocyte-releasable stratifin, also known as 14-3-3 sigma protein, stimulates collagenase (MMP-1) expression in dermal fibroblasts. However, role of extracellular stratifin in regulation of extracellular matrix (ECM) factors and other matrix metalloproteinases (MMPs) in dermal fibroblast remains unexplored. To address this question, large-scale ECM gene expression profile were analyzed in human dermal fibroblasts co-cultured with keratinocytes or treated with recombinant stratifin. Superarray pathway-specific microarrays were utilized to identify upregulation or downregulation of 96 human ECM and adhesion molecule genes. RT-PCR and Western blot were used to validate microarray expression profiles of selected genes. Comparison of gene profiles with the appropriate controls showed a significant (more than twofold) increase in expression of collagenase-1, stromelysin-1 and -2, neutrophil collagenase, and membrane type 5 MMP in dermal fibroblasts treated with stratifin or co-cultured with keratinocytes. Expression of type I collagen and fibronectin genes decreased in the same fibroblasts. The results of a dose-response experiment showed that stratifin stimulates the expression of stromelysin-1 (MMP-3) mRNA by dermal fibroblasts in a concentration-dependent fashion. Furthermore, Western blot analysis of fibroblast-conditioned medium showed a peak in MMP-3 protein levels 48 h following treatment with recombinant stratifin. In a lasting-effect study, MMP-3 protein was detected in fibroblast-condition medium for up to 72 h post removal of stratifin. In conclusion, our results suggest that keratinocyte-releasable stratifin plays a major role in induction of ECM degradation by dermal fibroblasts through stimulation of key MMPs, such as MMP-1 and MMP-3. Therefore, stratifin protein may prove to be a useful target for clinical intervention in controlling excessive wound healing in fibrotic conditions. Copyright 2006 Wiley-Liss, Inc.

  20. Electric pulses used in electrochemotherapy and electrogene therapy do not significantly change the expression profile of genes involved in the development of cancer in malignant melanoma cells

    PubMed Central

    2009-01-01

    Background Electroporation is a versatile method for in vitro or in vivo delivery of different molecules into cells. However, no study so far has analysed the effects of electric pulses used in electrochemotherapy (ECT pulses) or electric pulses used in electrogene therapy (EGT pulses) on malignant cells. We studied the effect of ECT and EGT pulses on human malignant melanoma cells in vitro in order to understand and predict the possible effect of electric pulses on gene expression and their possible effect on cell behaviour. Methods We used microarrays with 2698 different oligonucleotides to obtain the expression profile of genes involved in apoptosis and cancer development in a malignant melanoma cell line (SK-MEL28) exposed to ECT pulses and EGT pulses. Results Cells exposed to ECT pulses showed a 68.8% average survival rate, while cells exposed to EGT pulses showed a 31.4% average survival rate. Only seven common genes were found differentially expressed in cells 16 h after exposure to ECT and EGT pulses. We found that ECT and EGT pulses induce an HSP70 stress response mechanism, repress histone protein H4, a major protein involved in chromatin assembly, and down-regulate components involved in protein synthesis. Conclusion Our results show that electroporation does not significantly change the expression profile of major tumour suppressor genes or oncogenes of the cell cycle. Moreover, electroporation also does not changes the expression of genes involved in the stability of DNA, supporting current evidence that electroporation is a safe method that does not promote tumorigenesis. However, in spite of being considered an isothermal method, it does to some extent induce stress, which resulted in the expression of the environmental stress response mechanism, HSP70. PMID:19709437

  1. RNA-Seq Reveals Dynamic Changes of Gene Expression in Key Stages of Intestine Regeneration in the Sea Cucumber Apostichopus japonicas

    PubMed Central

    Sun, Lina; Yang, Hongsheng; Chen, Muyan; Ma, Deyou; Lin, Chenggang

    2013-01-01

    Background Sea cucumbers (Holothuroidea; Echinodermata) have the capacity to regenerate lost tissues and organs. Although the histological and cytological aspects of intestine regeneration have been extensively studied, little is known of the genetic mechanisms involved. There has, however, been a renewed effort to develop a database of Expressed Sequence Tags (ESTs) in Apostichopus japonicus, an economically-important species that occurs in China. This is important for studies on genetic breeding, molecular markers and special physiological phenomena. We have also constructed a library of ESTs obtained from the regenerative body wall and intestine of A. japonicus. The database has increased to ∼30000 ESTs. Results We used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe). This was compared to profiles obtained from a normally-functioning intestine. Approximately 5 million (M) reads were sequenced in every library. Over 2400 up-regulated genes (>10%) and over 1000 down-regulated genes (∼5%) were observed at 3 and 7dpe (log2Ratio≥1, FDR≤0.001). Specific “Go terms” revealed that the DEGs (Differentially Expressed Genes) performed an important function at every regeneration stage. Besides some expected pathways (for example, Ribosome and Spliceosome pathway term), the “Notch signaling pathway,” the “ECM-receptor interaction” and the “Cytokine-cytokine receptor interaction” were significantly enriched. We also investigated the expression profiles of developmental genes, ECM-associated genes and Cytoskeletal genes. Twenty of the most important differentially expressed genes (DEGs) were verified by Real-time PCR, which resulted in a trend concordance of almost 100% between the two techniques. Conclusion Our studies demonstrated dynamic changes in global gene expression during intestine regeneration and presented a series of candidate genes and enriched pathways that contribute to intestine regeneration in sea cucumbers. This provides a foundation for future studies on the genetics/molecular mechanisms associated with intestine regeneration. PMID:23936330

  2. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury

    PubMed Central

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Purpose: Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). Methods: In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. Results: The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. Conclusion: The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI. PMID:26823722

  3. Genome-Wide Analysis of Soybean HD-Zip Gene Family and Expression Profiling under Salinity and Drought Treatments

    PubMed Central

    Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan

    2014-01-01

    Background Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. Methods and Findings An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. Conclusions This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development. PMID:24498296

  4. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells

    PubMed Central

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N.; Glenn, Sean T.; Liu, Song; Trump, Donald L.; Johnson, Candace S.

    2014-01-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. MiRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253 J and 253J-BV cells express endogenous vitamin D receptor (VDR) which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253 J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. PMID:25263658

  5. Triple-Negative or HER2-Positive Status Predicts Higher Rates of Locoregional Recurrence in Node-Positive Breast Cancer Patients After Mastectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shulian; Li Yexiong, E-mail: yexiong@yahoo.com; Song Yongwen

    2011-07-15

    Purpose: To evaluate the prognostic value of determining estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression in node-positive breast cancer patients treated with mastectomy. Methods and Materials: The records of 835 node-positive breast cancer patients who had undergone mastectomy between January 2000 and December 2004 were analyzed retrospectively. Of these, 764 patients (91.5%) received chemotherapy; 68 of 398 patients (20.9%) with T1-2N1 disease and 352 of 437 patients (80.5%) with T3-4 or N2-3 disease received postoperative radiotherapy. Patients were classified into four subgroups according to hormone receptor (Rec+ or Rec-) and HER2 expression profiles:more » Rec-/HER2- (triple negative; n = 141), Rec-/HER2+ (n = 99), Rec+/HER2+ (n = 157), and Rec+/HER2- (n = 438). The endpoints were the duration of locoregional recurrence-free survival, distant metastasis-free survival, disease-free survival, and overall survival. Results: Patients with triple-negative, Rec-/HER2+, and Rec+/HER2+ expression profiles had a significantly lower 5-year locoregional recurrence-free survival than those with Rec+/HER2- profiles (86.5% vs. 93.6%, p = 0.002). Compared with those with Rec+/HER2+ and Rec+/HER2- profiles, patients with Rec-/HER2- and Rec-/HER2+ profiles had significantly lower 5-year distant metastasis-free survival (69.1% vs. 78.5%, p = 0.000), lower disease-free survival (66.6% vs. 75.6%, p = 0.000), and lower overall survival (71.4% vs. 84.2%, p = 0.000). Triple-negative or Rec-/HER2+ breast cancers had an increased likelihood of relapse and death within the first 3 years after treatment. Conclusions: Triple-negative and HER2-positive profiles are useful markers of prognosis for locoregional recurrence and survival in node-positive breast cancer patients treated with mastectomy.« less

  6. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    PubMed Central

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes, such as GPC3 that are distinctly expressed in liver CD90+CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. PMID:22606345

  7. Comparative Gene Expression Profiles Induced by PPARγ and PPARα/γ Agonists in Human Hepatocytes

    PubMed Central

    Rogue, Alexandra; Lambert, Carine; Jossé, Rozenn; Antherieu, Sebastien; Spire, Catherine; Claude, Nancy; Guillouzo, André

    2011-01-01

    Background Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. Methodology/Principal Findings Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. Conclusions/Significance This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby supporting the occurrence of idiosyncratic toxicity in some patients. PMID:21533120

  8. Genomic profiling of CHEK2*1100delC-mutated breast carcinomas.

    PubMed

    Massink, Maarten P G; Kooi, Irsan E; Martens, John W M; Waisfisz, Quinten; Meijers-Heijboer, Hanne

    2015-11-09

    CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, these samples mostly have very few copy number aberrations and no detectable regions of LOH. By unsupervised hierarchical clustering of copy number data we observed a great degree of heterogeneity amongst the CHEK2*1100delC breast cancers, comparable to the BRCAX breast cancers. Furthermore, copy number aberrations were mostly seen at low frequencies in both the CHEK2*1100delC and BRCAX group of breast cancers. However, supervised class comparison identified copy number loss of chromosomal arm 1p to be associated with CHEK2*1100delC status. In conclusion, in contrast to basal-like BRCA1 mutated breast cancers, no apparent specific somatic copy number aberration (CNA) profile for CHEK2*1100delC breast cancers was found. With the possible exception of copy number loss of chromosomal arm 1p in a subset of tumors, which might be involved in CHEK2 tumorigenesis. This difference in CNAs profiles might be explained by the need for BRCA1-deficient tumor cells to acquire survival factors, by for example specific copy number aberrations, to expand. Such factors may not be needed for breast tumors with a defect in a non-essential gene such as CHEK2.

  9. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus

    PubMed Central

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that act as regulators of gene expression in eukaryotes modulating a large diversity of biological processes. The discovery of miRNAs has provided new opportunities to understand the biology of a number of species. The cattle tick, Rhipicephalus (Boophilus) microplus, causes significant economic losses in cattle production worldwide and this drives us to further understand their biology so that effective control measures can be developed. To be able to provide new insights into the biology of cattle ticks and to expand the repertoire of tick miRNAs we utilized Illumina technology to sequence the small RNA transcriptomes derived from various life stages and selected organs of R. microplus. Results To discover and profile cattle tick miRNAs we employed two complementary approaches, one aiming to find evolutionary conserved miRNAs and another focused on the discovery of novel cattle-tick specific miRNAs. We found 51 evolutionary conserved R. microplus miRNA loci, with 36 of these previously found in the tick Ixodes scapularis. The majority of the R. microplus miRNAs are perfectly conserved throughout evolution with 11, 5 and 15 of these conserved since the Nephrozoan (640 MYA), Protostomian (620MYA) and Arthropoda (540 MYA) ancestor, respectively. We then employed a de novo computational screening for novel tick miRNAs using the draft genome of I. scapularis and genomic contigs of R. microplus as templates. This identified 36 novel R. microplus miRNA loci of which 12 were conserved in I. scapularis. Overall we found 87 R. microplus miRNA loci, of these 15 showed the expression of both miRNA and miRNA* sequences. R. microplus miRNAs showed a variety of expression profiles, with the evolutionary-conserved miRNAs mainly expressed in all life stages at various levels, while the expression of novel tick-specific miRNAs was mostly limited to particular life stages and/or tick organs. Conclusions Anciently acquired miRNAs in the R. microplus lineage not only tend to accumulate the least amount of nucleotide substitutions as compared to those recently acquired miRNAs, but also show ubiquitous expression profiles through out tick life stages and organs contrasting with the restricted expression profiles of novel tick-specific miRNAs. PMID:21699734

  10. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens

    PubMed Central

    2012-01-01

    Background A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. Results At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3′ untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. Conclusions There is a critical miRNA, let-7b, involved in the regulation of GHR. SOCS3 plays a critical role in regulating skeletal muscle growth and fat deposition via let-7b-mediated GHR expression. PMID:22781587

  11. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival

    PubMed Central

    2012-01-01

    Background Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. Methods Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. Results Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). Conclusions These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors. PMID:23046790

  12. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines

    PubMed Central

    2011-01-01

    Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Conclusion Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the glabrous CG line. RNA-Seq and DGE data are compared and provide experimental data on the expression of predicted soybean gene models as well as an overview of the genes expressed in young shoot tips of two closely related isolines. PMID:22029708

  13. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

    PubMed Central

    Xiao, Han; Radovich, Cheryll; Welty, Nicholas; Hsu, Jason; Li, Dongmei; Meulia, Tea; van der Knaap, Esther

    2009-01-01

    Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7), anthesis-stage flowers (floral landmark 10 and fruit landmark 1), and 5 days post anthesis fruit (fruit landmark 3). To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in the NILs that differ at the sun locus, higher or lower transcript levels for many genes involved in phytohormone biosynthesis or signaling as well as organ identity and patterning of tomato fruit were found between developmental time points. PMID:19422692

  14. Expression of p53 and Bcl-xL as predictive markers for larynx preservation in advanced laryngeal cancer

    PubMed Central

    Kumar, Bhavna; Cordell, Kitrina G.; D’Silva, Nisha; Prince, Mark E.; Adams, Meredith E.; Fisher, Susan G.; Wolf, Gregory T.; Carey, Thomas E.; Bradford, Carol R.

    2012-01-01

    Objective To assess tumor markers in advanced laryngeal cancer. Design Marker expression and clinical outcome. Setting Laboratory. Patients Pretreatment tumor biopsies were analyzed from patients enrolled in the Department of Veterans Affairs laryngeal cancer trial. Main Outcome Measures Expression of p53 and Bcl-xL in pretreatment biopsies was assessed for correlation with chemotherapy response, laryngeal preservation, and survival. Results Higher rates of larynx preservation were observed in patients whose tumors expressed p53 versus those that did not (73% versus 53%, p = 0.0304). Higher rates of larynx preservation were also observed in patients whose tumors expressed low levels of Bcl-xL versus those that expressed high levels (90% versus 60%, p = 0.02). Patients were then categorized into 3 risk groups (low, intermediate and high risk) based on their tumor p53 and Bcl-xL expression status. We observed that patients whose tumors had the high risk biomarker profile (low p53 and high Bcl-xL) were less likely to preserve their larynx than patients whose tumors had the intermediate risk (high p53 and low or high Bcl-xL) or low risk (low p53 and low Bcl-xL) biomarker profile. The larynx preservation rates were 100%, 76% and 54% for the low, intermediate and high risk groups respectively (Fisher exact 0.039). Conclusions Tumor expression of p53 and Bcl-xL is a strong predictor of successful organ preservation in patients treated with induction chemotherapy followed by radiation in responding tumors. PMID:18427001

  15. Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs

    PubMed Central

    Wu, Miaomiao; Liao, Peng; Deng, Dun; Liu, Gang; Wen, Qingqi; Wang, Yongfei; Qiu, Wei; Liu, Yan; Wu, Xingli; Ren, Wenkai; Tan, Bie; Chen, Minghong; Xiao, Hao; Wu, Li; Li, Tiejun; Nyachoti, Charles M.; Adeola, Olayiwola; Yin, Yulong

    2014-01-01

    The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins. PMID:25405987

  16. Designing Dietary Recommendations Using System Level Interactomics Analysis and Network-Based Inference

    PubMed Central

    Zheng, Tingting; Ni, Yueqiong; Li, Jun; Chow, Billy K. C.; Panagiotou, Gianni

    2017-01-01

    Background: A range of computational methods that rely on the analysis of genome-wide expression datasets have been developed and successfully used for drug repositioning. The success of these methods is based on the hypothesis that introducing a factor (in this case, a drug molecule) that could reverse the disease gene expression signature will lead to a therapeutic effect. However, it has also been shown that globally reversing the disease expression signature is not a prerequisite for drug activity. On the other hand, the basic idea of significant anti-correlation in expression profiles could have great value for establishing diet-disease associations and could provide new insights into the role of dietary interventions in disease. Methods: We performed an integrated analysis of publicly available gene expression profiles for foods, diseases and drugs, by calculating pairwise similarity scores for diet and disease gene expression signatures and characterizing their topological features in protein-protein interaction networks. Results: We identified 485 diet-disease pairs where diet could positively influence disease development and 472 pairs where specific diets should be avoided in a disease state. Multiple evidence suggests that orange, whey and coconut fat could be beneficial for psoriasis, lung adenocarcinoma and macular degeneration, respectively. On the other hand, fructose-rich diet should be restricted in patients with chronic intermittent hypoxia and ovarian cancer. Since humans normally do not consume foods in isolation, we also applied different algorithms to predict synergism; as a result, 58 food pairs were predicted. Interestingly, the diets identified as anti-correlated with diseases showed a topological proximity to the disease proteins similar to that of the corresponding drugs. Conclusions: In conclusion, we provide a computational framework for establishing diet-disease associations and additional information on the role of diet in disease development. Due to the complexity of analyzing the food composition and eating patterns of individuals our in silico analysis, using large-scale gene expression datasets and network-based topological features, may serve as a proof-of-concept in nutritional systems biology for identifying diet-disease relationships and subsequently designing dietary recommendations. PMID:29033850

  17. Coexposure of mice to trovafloxacin and lipopolysaccharide, a model of idiosyncratic hepatotoxicity, results in a unique gene expression profile and interferon gamma-dependent liver injury.

    PubMed

    Shaw, Patrick J; Ditewig, Amy C; Waring, Jeffrey F; Liguori, Michael J; Blomme, Eric A; Ganey, Patricia E; Roth, Robert A

    2009-01-01

    The antibiotic trovafloxacin (TVX) has caused severe idiosyncratic hepatotoxicity in people, whereas levofloxacin (LVX) has not. Mice cotreated with TVX and lipopolysaccharide (LPS), but not with LVX and LPS, develop severe hepatocellular necrosis. Mice were treated with TVX and/or LPS, and hepatic gene expression changes were measured before liver injury using gene array. Hepatic gene expression profiles from mice treated with TVX/LPS clustered differently from those treated with LPS or TVX alone. Several of the probe sets expressed differently in TVX/LPS-treated mice were involved in interferon (IFN) signaling and the janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. A time course of plasma concentrations of IFN-gamma and interleukin (IL)-18, which directly induces IFN-gamma production, revealed that both cytokines were selectively increased in TVX/LPS-treated mice. Both IL-18(-/-) and IFN-gamma(-/-) mice were significantly protected from TVX/LPS-induced liver injury. In addition, IFN-gamma(-/-) mice had decreased plasma concentrations of tumor necrosis factor-alpha, IL-18, and IL-1beta when compared to wild-type mice. In conclusion, the altered expression of genes involved in IFN signaling in TVX/LPS-treated mice led to the finding that IL-18 and IFN-gamma play a critical role in TVX/LPS-induced liver injury.

  18. An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer

    PubMed Central

    2010-01-01

    Background Gene expression profiling may improve prognostic accuracy in patients with early breast cancer. Our objective was to demonstrate that it is possible to develop a simple molecular signature to predict distant relapse. Methods We included 153 patients with stage I-II hormonal receptor-positive breast cancer. RNA was isolated from formalin-fixed paraffin-embedded samples and qRT-PCR amplification of 83 genes was performed with gene expression assays. The genes we analyzed were those included in the 70-Gene Signature, the Recurrence Score and the Two-Gene Index. The association among gene expression, clinical variables and distant metastasis-free survival was analyzed using Cox regression models. Results An 8-gene prognostic score was defined. Distant metastasis-free survival at 5 years was 97% for patients defined as low-risk by the prognostic score versus 60% for patients defined as high-risk. The 8-gene score remained a significant factor in multivariate analysis and its performance was similar to that of two validated gene profiles: the 70-Gene Signature and the Recurrence Score. The validity of the signature was verified in independent cohorts obtained from the GEO database. Conclusions This study identifies a simple gene expression score that complements histopathological prognostic factors in breast cancer, and can be determined in paraffin-embedded samples. PMID:20584321

  19. Revealing New Mouse Epicardial Cell Markers through Transcriptomics

    PubMed Central

    Bochmann, Lars; Sarathchandra, Padmini; Mori, Federica; Lara-Pezzi, Enrique; Lazzaro, Domenico; Rosenthal, Nadia

    2010-01-01

    Background The epicardium has key functions during myocardial development, by contributing to the formation of coronary endothelial and smooth muscle cells, cardiac fibroblasts, and potentially cardiomyocytes. The epicardium plays a morphogenetic role by emitting signals to promote and maintain cardiomyocyte proliferation. In a regenerative context, the adult epicardium might comprise a progenitor cell population that can be induced to contribute to cardiac repair. Although some genes involved in epicardial function have been identified, a detailed molecular profile of epicardial gene expression has not been available. Methodology Using laser capture microscopy, we isolated the epicardial layer from the adult murine heart before or after cardiac infarction in wildtype mice and mice expressing a transgenic IGF-1 propeptide (mIGF-1) that enhances cardiac repair, and analyzed the transcription profile using DNA microarrays. Principal Findings Expression of epithelial genes such as basonuclin, dermokine, and glycoprotein M6A are highly enriched in the epicardial layer, which maintains expression of selected embryonic genes involved in epicardial development in mIGF-1 transgenic hearts. After myocardial infarct, a subset of differentially expressed genes are down-regulated in the epicardium representing an epicardium-specific signature that responds to injury. Conclusion This study presents the description of the murine epicardial transcriptome obtained from snap frozen tissues, providing essential information for further analysis of this important cardiac cell layer. PMID:20596535

  20. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    PubMed Central

    2012-01-01

    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600

  1. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways is a secondary benefit to identifying differential GPCR expression patterns in medulloblastoma tumors. PMID:24252460

  2. Somatostatin is required for masculinization of growth hormone–regulated hepatic gene expression but not of somatic growth

    PubMed Central

    Low, Malcolm J.; Otero-Corchon, Veronica; Parlow, Albert F.; Ramirez, Jose L.; Kumar, Ujendra; Patel, Yogesh C.; Rubinstein, Marcelo

    2001-01-01

    Pulsatile growth hormone (GH) secretion differs between males and females and regulates the sex-specific expression of cytochrome P450s in liver. Sex steroids influence the secretory dynamics of GH, but the neuroendocrine mechanisms have not been conclusively established. Because periventricular hypothalamic somatostatin (SST) expression is greater in males than in females, we generated knockout (Smst–/–) mice to investigate whether SST peptides are necessary for sexually differentiated GH secretion and action. Despite marked increases in nadir and median plasma GH levels in both sexes of Smst–/– compared with Smst+/+ mice, the mutant mice had growth curves identical to their sibling controls and retained a normal sexual dimorphism in weight and length. In contrast, the liver of male Smst–/– mice was feminized, resulting in an identical profile of GH-regulated hepatic mRNAs between male and female mutants. Male Smst-/- mice show higher expression of two SST receptors in the hypothalamus and pituitary than do females. These data indicate that SST is required to masculinize the ultradian GH rhythm by suppressing interpulse GH levels. In the absence of SST, male and female mice exhibit similarly altered plasma GH profiles that eliminate sexually dimorphic liver function but do not affect dimorphic growth. PMID:11413165

  3. Early indicators of exposure to biological threat agents using host gene profiles in peripheral blood mononuclear cells

    PubMed Central

    Das, Rina; Hammamieh, Rasha; Neill, Roger; Ludwig, George V; Eker, Steven; Lincoln, Patrick; Ramamoorthy, Preveen; Dhokalia, Apsara; Mani, Sachin; Mendis, Chanaka; Cummings, Christiano; Kearney, Brian; Royaee, Atabak; Huang, Xiao-Zhe; Paranavitana, Chrysanthi; Smith, Leonard; Peel, Sheila; Kanesa-Thasan, Niranjan; Hoover, David; Lindler, Luther E; Yang, David; Henchal, Erik; Jett, Marti

    2008-01-01

    Background Effective prophylaxis and treatment for infections caused by biological threat agents (BTA) rely upon early diagnosis and rapid initiation of therapy. Most methods for identifying pathogens in body fluids and tissues require that the pathogen proliferate to detectable and dangerous levels, thereby delaying diagnosis and treatment, especially during the prelatent stages when symptoms for most BTA are indistinguishable flu-like signs. Methods To detect exposures to the various pathogens more rapidly, especially during these early stages, we evaluated a suite of host responses to biological threat agents using global gene expression profiling on complementary DNA arrays. Results We found that certain gene expression patterns were unique to each pathogen and that other gene changes occurred in response to multiple agents, perhaps relating to the eventual course of illness. Nonhuman primates were exposed to some pathogens and the in vitro and in vivo findings were compared. We found major gene expression changes at the earliest times tested post exposure to aerosolized B. anthracis spores and 30 min post exposure to a bacterial toxin. Conclusion Host gene expression patterns have the potential to serve as diagnostic markers or predict the course of impending illness and may lead to new stage-appropriate therapeutic strategies to ameliorate the devastating effects of exposure to biothreat agents. PMID:18667072

  4. Global gene expression profiling of oral cavity cancers suggests molecular heterogeneity within anatomic subsites

    PubMed Central

    Severino, Patricia; Alvares, Adriana M; Michaluart, Pedro; Okamoto, Oswaldo K; Nunes, Fabio D; Moreira-Filho, Carlos A; Tajara, Eloiza H

    2008-01-01

    Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies. PMID:19014556

  5. Differentially Expressed Proteins Associated with Fusarium Head Blight Resistance in Wheat

    PubMed Central

    Zhang, Xianghui; Fu, Jianming; Hiromasa, Yasuaki; Pan, Hongyu; Bai, Guihua

    2013-01-01

    Background Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1. Methods The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1+NIL were also compared to identify pathogen-responsive proteins. Results Eight proteins were either induced or upregulated in inoculated Fhb1+NIL when compared with mock-inoculated Fhb1+NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1+NIL when compared with Fusarium-inoculated Fhb1−NIL. Proteins that were differentially expressed in the Fhb1+NIL, not in the Fhb1−NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification. Conclusions Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1+NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance. PMID:24376514

  6. Expression Profiling of Transcriptome and Its Associated Disease Risk in Yang Deficiency Constitution of Healthy Subjects

    PubMed Central

    Yu, Ruoxi; Yang, Yin; Han, Yuanyuan; Hou, Pengwei; Li, Yingshuai; Li, Siqi

    2016-01-01

    Objectives. Differences among healthy subjects and associated disease risks are of substantial interest in clinical medicine. According to the theory of “constitution-disease correlation” in traditional Chinese medicine, we try to find out if there is any connection between intolerance of cold in Yang deficiency constitution and molecular evidence and if there is any gene expression basis in specific disorders. Methods. Peripheral blood mononuclear cells were collected from Chinese Han individuals with Yang deficiency constitution (n = 20) and balanced constitution (n = 8) (aged 18–28) and global gene expression profiles were determined between them using the Affymetrix HG-U133 Plus 2.0 array. Results. The results showed that when the fold change was ≥1.2 and q ≤ 0.05, 909 genes were upregulated in the Yang deficiency constitution, while 1189 genes were downregulated. According to our research differential genes found in Yang deficiency constitution were usually related to lower immunity, metabolic disorders, and cancer tendency. Conclusion. Gene expression disturbance exists in Yang deficiency constitution, which corresponds to the concept of constitution and gene classification. It also suggests people with Yang deficiency constitution are susceptible to autoimmune diseases, enteritis, arthritis, metabolism disorders, and cancer, which provides molecular evidence for the theory of “constitution-disease correlation.” PMID:28484499

  7. Classification of ductal carcinoma in situ by gene expression profiling

    PubMed Central

    Hannemann, Juliane; Velds, Arno; Halfwerk, Johannes BG; Kreike, Bas; Peterse, Johannes L; van de Vijver, Marc J

    2006-01-01

    Introduction Ductal carcinoma in situ (DCIS) is characterised by the intraductal proliferation of malignant epithelial cells. Several histological classification systems have been developed, but assessing the histological type/grade of DCIS lesions is still challenging, making treatment decisions based on these features difficult. To obtain insight in the molecular basis of the development of different types of DCIS and its progression to invasive breast cancer, we have studied differences in gene expression between different types of DCIS and between DCIS and invasive breast carcinomas. Methods Gene expression profiling using microarray analysis has been performed on 40 in situ and 40 invasive breast cancer cases. Results DCIS cases were classified as well- (n = 6), intermediately (n = 18), and poorly (n = 14) differentiated type. Of the 40 invasive breast cancer samples, five samples were grade I, 11 samples were grade II, and 24 samples were grade III. Using two-dimensional hierarchical clustering, the basal-like type, ERB-B2 type, and the luminal-type tumours originally described for invasive breast cancer could also be identified in DCIS. Conclusion Using supervised classification, we identified a gene expression classifier of 35 genes, which differed between DCIS and invasive breast cancer; a classifier of 43 genes could be identified separating between well- and poorly differentiated DCIS samples. PMID:17069663

  8. Effects of soluble and particulate Cr(VI) on genome-wide DNA methylation in human B lymphoblastoid cells.

    PubMed

    Lou, Jianlin; Wang, Yu; Chen, Junqiang; Ju, Li; Yu, Min; Jiang, Zhaoqiang; Feng, Lingfang; Jin, Lingzhi; Zhang, Xing

    2015-10-01

    Several previous studies highlighted the potential epigenetic effects of Cr(VI), especially DNA methylation. However, few studies have compared the effects of Cr(VI) on DNA methylation profiles between soluble and particulate chromate in vitro. Accordingly, Illumina Infinium Human Methylation 450K BeadChip array was used to analyze DNA methylation profiles of human B lymphoblastoid cells exposed to potassium dichromate or lead chromate, and the cell viability was also studied. Array based DNA methylation analysis showed that the impacts of Cr(VI) on DNA methylation were limited, only about 40 differentially methylated CpG sites, with an overlap of 15CpG sites, were induced by both potassium dichromate and lead chromate. The results of mRNA expression showed that after Cr(VI) treatment, mRNA expression changes of four genes (TBL1Y, FZD5, IKZF2, and KIAA1949) were consistent with their DNA methylation alteration, but DNA methylation changes of other six genes did not correlate with mRNA expression. In conclusion, both of soluble and particulate Cr(VI) could induce a small amount of differentially methylated sites in human B lymphoblastoid cells, and the correlations between DNA methylation changes and mRNA expression varied between different genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Discovery of genes implicated in whirling disease infection and resistance in rainbow trout using genome-wide expression profiling

    PubMed Central

    Baerwald, Melinda R; Welsh, Amy B; Hedrick, Ronald P; May, Bernie

    2008-01-01

    Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection. PMID:18218127

  10. Identification of Chiari Type I Malformation subtypes using whole genome expression profiles and cranial base morphometrics

    PubMed Central

    2014-01-01

    Background Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum at the base of the skull, resulting in significant neurologic morbidity. As CMI patients display a high degree of clinical variability and multiple mechanisms have been proposed for tonsillar herniation, it is hypothesized that this heterogeneous disorder is due to multiple genetic and environmental factors. The purpose of the present study was to gain a better understanding of what factors contribute to this heterogeneity by using an unsupervised statistical approach to define disease subtypes within a case-only pediatric population. Methods A collection of forty-four pediatric CMI patients were ascertained to identify disease subtypes using whole genome expression profiles generated from patient blood and dura mater tissue samples, and radiological data consisting of posterior fossa (PF) morphometrics. Sparse k-means clustering and an extension to accommodate multiple data sources were used to cluster patients into more homogeneous groups using biological and radiological data both individually and collectively. Results All clustering analyses resulted in the significant identification of patient classes, with the pure biological classes derived from patient blood and dura mater samples demonstrating the strongest evidence. Those patient classes were further characterized by identifying enriched biological pathways, as well as correlated cranial base morphological and clinical traits. Conclusions Our results implicate several strong biological candidates warranting further investigation from the dura expression analysis and also identified a blood gene expression profile corresponding to a global down-regulation in protein synthesis. PMID:24962150

  11. Assessing the co-occurrence of intimate partner violence domains across the life-course: relating typologies to mental health

    PubMed Central

    Armour, Cherie; Sleath, Emma

    2014-01-01

    Background The inter-generational transmission of violence (ITV) hypothesis and polyvictimisation have been studied extensively. The extant evidence suggests that individuals from violent families are at increased risk of subsequent intimate partner violence (IPV) and that a proportion of individuals experience victimisation across multiple rather than single IPV domains. Both ITV and polyvictimisation are shown to increase the risk of psychiatric morbidity, alcohol use, and anger expression. Objective The current study aimed to 1) ascertain if underlying typologies of victimisation across the life-course and over multiple victimisation domains were present and 2) ascertain if groupings differed on mean scores of posttraumatic stress disorder (PTSD), depression, alcohol use, and anger expression. Method University students (N=318) were queried in relation to victimisation experiences and psychological well-being. Responses across multiple domains of IPV spanning the life-course were used in a latent profile analysis. ANOVA was subsequently used to determine if profiles differed in their mean scores on PTSD, depression, alcohol use, and anger expression. Results Three distinct profiles were identified; one of which comprised individuals who experienced “life-course polyvictimisation,” another showing individuals who experienced “witnessing parental victimisation,” and one which experienced “psychological victimisation only.” Life-course polyvictims scored the highest across most assessed measures. Conclusion Witnessing severe physical aggression and injury in parental relationships as a child has an interesting impact on the ITV into adolescence and adulthood. Life-course polyvictims are shown to experience increased levels of psychiatric morbidity and issues with alcohol misuse and anger expression. PMID:25279106

  12. [Expression profiles of the exosomal miRNAs in the chronic hepatitis B patients with persistently normal ALT].

    PubMed

    Li, Ronghua; Fu, Xiaoyu; Tang, Yujing; Fu, Lei; Tan, Deming; Ouyang, Yi; Peng, Shifang

    2018-05-28

    To investigate expression profiles of the plasma exosomal miRNAs of the chronic hepatitis B (CHB) patients with persistently normal alamine aminotransferase (PNALT) for the first time and try to find exosomal miRNAs which could reflect liver inflammation better. 
 Methods: Five CHB patients with liver tissue inflammation grade ≥A2 of PNALT and 5 CHB patients with liver tissue inflammation grade

  13. Long Noncoding RNAs and mRNA Regulation in Peripheral Blood Mononuclear Cells of Patients with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Wang, Weijia; Xu, Dan

    2018-01-01

    Background Inflammation plays a pivotal role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We evaluated the lncRNA and mRNA expression profile of peripheral blood mononuclear cells (PBMCs) from healthy nonsmokers, smokers without airflow limitation, and COPD patients. Methods lncRNA and mRNA profiling of PBMCs from 17 smokers and 14 COPD subjects was detected by high-throughput microarray. The expression of dysregulated lncRNAs was validated by qPCR. The lncRNA targets in dysregulated mRNAs were predicted and the GO enrichment was analyzed. The regulatory role of lncRNA ENST00000502883.1 on CXCL16 expression and consequently the effect on PBMC recruitment were investigated by siRNA knockdown and chemotaxis analysis. Results We identified 158 differentially expressed lncRNAs in PBMCs from COPD subjects compared with smokers. The dysregulated expression of 5 selected lncRNAs NR_026891.1 (FLJ10038), ENST00000502883.1 (RP11-499E18.1), HIT000648516, XR_429541.1, and ENST00000597550.1 (CTD-2245F17.3), was validated. The GO enrichment showed that leukocyte migration, immune response, and apoptosis are the main enriched processes that previously reported to be involved in the pathogenesis of COPD. The regulatory role of ENST00000502883.1 on CXCL16 expression and consequently the effect on PBMC recruitment was confirmed. Conclusion This study may provide clues for further studies targeting lncRNAs to control inflammation in COPD. PMID:29725270

  14. MicroRNA profiling of the murine hematopoietic system

    PubMed Central

    Monticelli, Silvia; Ansel, K Mark; Xiao, Changchun; Socci, Nicholas D; Krichevsky, Anna M; Thai, To-Ha; Rajewsky, Nikolaus; Marks, Debora S; Sander, Chris; Rajewsky, Klaus; Rao, Anjana; Kosik, Kenneth S

    2005-01-01

    Background MicroRNAs (miRNAs) are a class of recently discovered noncoding RNA genes that post-transcriptionally regulate gene expression. It is becoming clear that miRNAs play an important role in the regulation of gene expression during development. However, in mammals, expression data are principally based on whole tissue analysis and are still very incomplete. Results We used oligonucleotide arrays to analyze miRNA expression in the murine hematopoietic system. Complementary oligonucleotides capable of hybridizing to 181 miRNAs were immobilized on a membrane and probed with radiolabeled RNA derived from low molecular weight fractions of total RNA from several different hematopoietic and neuronal cells. This method allowed us to analyze cell type-specific patterns of miRNA expression and to identify miRNAs that might be important for cell lineage specification and/or cell effector functions. Conclusion This is the first report of systematic miRNA gene profiling in cells of the hematopoietic system. As expected, miRNA expression patterns were very different between hematopoietic and non-hematopoietic cells, with further subtle differences observed within the hematopoietic group. Interestingly, the most pronounced similarities were observed among fully differentiated effector cells (Th1 and Th2 lymphocytes and mast cells) and precursors at comparable stages of differentiation (double negative thymocytes and pro-B cells), suggesting that in addition to regulating the process of commitment to particular cellular lineages, miRNAs might have an important general role in the mechanism of cell differentiation and maintenance of cell identity. PMID:16086853

  15. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses

    PubMed Central

    2013-01-01

    Background Water and nitrogen are two of the most critical inputs required to achieve the high yield potential of modern corn varieties. Under most agricultural settings however they are often scarce and costly. Fortunately, tremendous progress has been made in the past decades in terms of modeling to assist growers in the decision making process and many tools are now available to achieve more sustainable practices both environmentally and economically. Nevertheless large gaps remain between our empirical knowledge of the physiological changes observed in the field in response to nitrogen and water stresses, and our limited understanding of the molecular processes leading to those changes. Results This work examines in particular the impact of simultaneous stresses on the transcriptome. In a greenhouse setting, corn plants were grown under tightly controlled nitrogen and water conditions, allowing sampling of various tissues and stress combinations. A microarray profiling experiment was performed using this material and showed that the concomitant presence of nitrogen and water limitation affects gene expression to an extent much larger than anticipated. A clustering analysis also revealed how the interaction between the two stresses shapes the patterns of gene expression over various levels of water stresses and recovery. Conclusions Overall, this study suggests that the molecular signature of a specific combination of stresses on the transcriptome might be as unique as the impact of individual stresses, and hence underlines the difficulty to extrapolate conclusions obtained from the study of individual stress responses to more complex settings. PMID:23324127

  16. Treatment with captopril abrogates the altered expression of alpha1 macroglobulin and alpha1 antiproteinase in sera of spontaneously hypertensive rats

    PubMed Central

    2012-01-01

    Background Proteins that are associated with hypertension may be identified by comparing the 2-dimensional gel electrophoresis (2-DE) profiles of the sera of spontaneously hypertensive rats (SHR) with those generated from normotensive Spraque-Dawley rats (SDR). Results Five proteins of high abundance were found to be significantly altered when the 2-DE serum profiles of the SHR were compared to those that were similarly generated from the SDR. Analysis by mass spectrometry and database search identified the proteins as retinol binding protein 4, complement C3, albumin (19.9 kDa fragment), alpha1 macroglobulin and alpha1 antiproteinase, which are all known to be associated with hypertension. The altered expression of the two latter proteins was found to be abrogated when similar analysis was performed on sera of the SHR that were treated with captopril. Conclusion Our data suggests that serum alpha1 macroglobulin and alpha1 antiproteinase are potentially useful complementary biomolecular indicators for monitoring of hypertension. PMID:22416803

  17. High-intensity interval training improves inflammatory and adipokine profiles in postmenopausal women with metabolic syndrome.

    PubMed

    Steckling, Flávia Mariel; Farinha, Juliano Boufleur; Figueiredo, Felipe da Cunha; Santos, Daniela Lopes Dos; Bresciani, Guilherme; Kretzmann, Nélson Alexandre; Stefanello, Sílvio Terra; Courtes, Aline Alves; Beck, Maristela de Oliveira; Sangoi Cardoso, Manuela; Duarte, Marta Maria Medeiros Frescura; Moresco, Rafael Noal; Soares, Félix Alexandre Antunes

    2018-02-12

    This study investigate the effects of high-intensity interval training (HIIT) on systemic levels of inflammatory and hormonal markers in postmenopausal women with metabolic syndrome (MS). Fifteen postmenopausal women with MS completed the training on treadmills. Functional, body composition parameters, maximal oxygen uptake (VO 2 max), and lipid profile were assessed before and after HIIT. Serum or plasma levels of cytokines and hormonal markers were measured along the intervention. The analysis of messenger RNA (mRNA) expression of these cytokines was performed in peripheral blood mononuclear cells (PBMC). VO 2 max and some anthropometric parameters were improved after HIIT, while decreased levels of proinflammatory markers and increased levels of interleukin-10 (IL-10) were also found. Adipokines were also modulated after 12 weeks or training. The mRNA expression of the studied genes was unchanged after HIIT. In conclusion, HIIT benefits inflammatory and hormonal axis on serum or plasma samples, without changes on PBMC of postmenopausal MS patients.

  18. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer

    PubMed Central

    Jędroszka, Dorota; Hamouz, Raneem; Górniak, Karolina; Bednarek, Andrzej K.

    2017-01-01

    Introduction Prostate carcinoma (PRAD) is one of the most frequently diagnosed malignancies amongst men worldwide. It is well-known that androgen receptor (AR) plays a pivotal role in a vast majority of prostate tumors. However, recent evidence emerged stating that estrogen receptors (ERs) may also contribute to prostate tumor development. Moreover, progression and aggressiveness of prostate cancer may be associated with differential expression genes of epithelial-to-mesenchymal transition (EMT). Therefore we aimed to assess the significance of receptors status as well as EMT marker genes expression among PRAD patients in accordance to their age and Gleason score. Materials and methods We analyzed TCGA gene expression profiles of 497 prostate tumor samples according to 43 genes involved in EMT and 3 hormone receptor genes (AR, ESR1, ESR2) as well as clinical characteristic of cancer patients. Then patients were divided into four groups according to their age and 5 groups according to Gleason score. Next, we evaluated PRAD samples according to relationship between the set of variables in different combinations and compared differential expression in subsequent groups of patients. The analysis was applied using R packages: FactoMineR, gplots, RColorBrewer and NMF. Results MFA analysis resulted in distinct grouping of PRAD patients into four age categories according to expression level of AR, ESR1 and ESR2 with the most distinct group of age less than 50 years old. Further investigations indicated opposite expression profiles of EMT markers between different age groups as well as strong association of EMT gene expression with Gleason score. We found that depending on age of prostate cancer patients and Gleason score EMT genes with distinctly altered expression are: KRT18, KRT19, MUC1 and COL4A1, CTNNB1, SNAI2, ZEB1 and MMP3. Conclusions Our major observation is that prostate cancer from patients under 50 years old compared to older ones has entirely different EMT gene expression profiles showing potentially more aggressive invasive phenotype, despite Gleason score classification. PMID:29206234

  19. The daily timing of gene expression and physiology in mammals

    PubMed Central

    Schibler, Ueli

    2007-01-01

    Mammalian behavior and physiology undergo daily rhythms that are coordinated by an endogenous circadian timing system. This system has a hierarchical structure, in that a master pacemaker, residing in the suprachiasmatic nucleus of the ventral hypothalamus, synchronizes peripheral oscillators in virtually all body cells. While the basic molecular mechanisms generating the daily rhythms are similar in aIl cells, most clock out-puts are cell-specific. This conclusion is based on genomewide transcriptome profiling studies in several tissues that have revealed hundreds of rhythmically expressed genes. Cyclic gene expression in the various organs governs overt rhythms in behavior and physiology, encompassing sleep-wake cycles, metabolism, xenobiotic detoxification, and cellularproliferation. As a consequence, chronic perturbation of this temporal organization may lead to increased morbidity and reduced lifespan. PMID:17969863

  20. Connecting rules from paired miRNA and mRNA expression data sets of HCV patients to detect both inverse and positive regulatory relationships

    PubMed Central

    2015-01-01

    Background Intensive research based on the inverse expression relationship has been undertaken to discover the miRNA-mRNA regulatory modules involved in the infection of Hepatitis C virus (HCV), the leading cause of chronic liver diseases. However, biological studies in other fields have found that inverse expression relationship is not the only regulatory relationship between miRNAs and their targets, and some miRNAs can positively regulate a mRNA by binding at the 5' UTR of the mRNA. Results This work focuses on the detection of both inverse and positive regulatory relationships from a paired miRNA and mRNA expression data set of HCV patients through a 'change-to-change' method which can derive connected discriminatory rules. Our study uncovered many novel miRNA-mRNA regulatory modules. In particular, it was revealed that GFRA2 is positively regulated by miR-557, miR-765 and miR-17-3p that probably bind at different locations of the 5' UTR of this mRNA. The expression relationship between GFRA2 and any of these three miRNAs has not been studied before, although separate research for this gene and these miRNAs have all drawn conclusions linked to hepatocellular carcinoma. This suggests that the binding of mRNA GFRA2 with miR-557, miR-765, or miR-17-3p, or their combinations, is worthy of further investigation by experimentation. We also report another mRNA QKI which has a strong inverse expression relationship with miR-129 and miR-493-3p which may bind at the 3' UTR of QKI with a perfect sequence match. Furthermore, the interaction between hsa-miR-129-5p (previous ID: hsa-miR-129) and QKI is supported with CLIP-Seq data from starBase. Our method can be easily extended for the expression data analysis of other diseases. Conclusion Our rule discovery method is useful for integrating binding information and expression profile for identifying HCV miRNA-mRNA regulatory modules and can be applied to the study of the expression profiles of other complex human diseases. PMID:25707620

  1. Chronic sucrose intake decreases concentrations of n6 fatty acids, but not docosahexaenoic acid in the rat brain phospholipids.

    PubMed

    Mašek, Tomislav; Starčević, Kristina

    2017-07-13

    We investigated the influence of high sucrose intake, administered in drinking water, on the lipid profile of the brain and on the expression of SREBP1c and Δ-desaturase genes. Adult male rats received 30% sucrose solution for 20 weeks (Sucrose group), or plain water (Control group). After the 20th week of sucrose treatment, the Sucrose group showed permanent hyperglycemia. Sucrose treatment also increased the amount of total lipids and fatty acids in the brain. The brain fatty acid profile of total lipids as well as phosphatidylethanolamine, phosphatidylcholine and cardiolipin of the Sucrose group was extensively changed. The most interesting change was a significant decrease in n6 fatty acids, including the important arachidonic acid, whereas the content of oleic and docosahexaenoic acid remained unchanged. RT-qPCR revealed an increase in Δ-5-desaturase and SREBP1c gene expression. In conclusion, high sucrose intake via drinking water extensively changes rat brain fatty acid profile by decreasing n6 fatty acids, including arachidonic acid. In contrast, the content of docosahexaenoic acid remains constant in the brain total lipids as well as in phospholipids. Changes in the brain fatty acid profile reflect changes in the lipid metabolism of the rat lipogenic tissues and concentrations in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Global Expression Profiling in Atopic Eczema Reveals Reciprocal Expression of Inflammatory and Lipid Genes

    PubMed Central

    Sääf, Annika M.; Tengvall-Linder, Maria; Chang, Howard Y.; Adler, Adam S.; Wahlgren, Carl-Fredrik; Scheynius, Annika; Nordenskjöld, Magnus; Bradley, Maria

    2008-01-01

    Background Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic background several linkage and genetic association studies have been performed. Yet very little is known about specific genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood. Methodology/Findings We used human DNA microarrays to identify a molecular picture of the programmed responses of the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE. Conclusions/Significance Through genome-wide expression profiling, we were able to discover a distinct reciprocal expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema. PMID:19107207

  3. Tobacco exposure-related alterations in DNA methylation and gene expression in human monocytes: the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Reynolds, Lindsay M.; Lohman, Kurt; Pittman, Gary S.; Barr, R. Graham; Chi, Gloria C.; Kaufman, Joel; Wan, Ma; Bell, Douglas A.; Blaha, Michael J.; Rodriguez, Carlos J.; Liu, Yongmei

    2017-01-01

    ABSTRACT Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (P value<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression of P2RY6 (Beta ± standard error = 0.078 ± 0.008, P = 1.99 × 10−22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking. PMID:29166816

  4. Technical variables in high-throughput miRNA expression profiling: much work remains to be done.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang

    2008-11-01

    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.

  5. Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation.

    PubMed

    Masè, Michela; Grasso, Margherita; Avogaro, Laura; D'Amato, Elvira; Tessarolo, Francesco; Graffigna, Angelo; Denti, Michela Alessandra; Ravelli, Flavia

    2017-01-24

    MicroRNAs (miRNAs) are emerging as key regulators of complex biological processes in several cardiovascular diseases, including atrial fibrillation (AF). Reverse transcription-quantitative polymerase chain reaction is a powerful technique to quantitatively assess miRNA expression profile, but reliable results depend on proper data normalization by suitable reference genes. Despite the increasing number of studies assessing miRNAs in cardiac disease, no consensus on the best reference genes has been reached. This work aims to assess reference genes stability in human cardiac tissue with a focus on AF investigation. We evaluated the stability of five reference genes (U6, SNORD48, SNORD44, miR-16, and 5S) in atrial tissue samples from eighteen cardiac-surgery patients in sinus rhythm and AF. Stability was quantified by combining BestKeeper, delta-C q , GeNorm, and NormFinder statistical tools. All methods assessed SNORD48 as the best and U6 as the worst reference gene. Applications of different normalization strategies significantly impacted miRNA expression profiles in the study population. Our results point out the necessity of a consensus on data normalization in AF studies to avoid the emergence of divergent biological conclusions.

  6. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    PubMed Central

    2009-01-01

    Background Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion. PMID:20034395

  7. Comparative Transcriptomic Characterization of the Early Development in Pacific White Shrimp Litopenaeus vannamei

    PubMed Central

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Huang, Hao; Li, Fuhua; Xiang, Jianhai

    2014-01-01

    Penaeid shrimp has a distinctive metamorphosis stage during early development. Although morphological and biochemical studies about this ontogeny have been developed for decades, researches on gene expression level are still scarce. In this study, we have investigated the transcriptomes of five continuous developmental stages in Pacific white shrimp (Litopenaeus vannamei) with high throughput Illumina sequencing technology. The reads were assembled and clustered into 66,815 unigenes, of which 32,398 have putative homologues in nr database, 14,981 have been classified into diverse functional categories by Gene Ontology (GO) annotation and 26,257 have been associated with 255 pathways by KEGG pathway mapping. Meanwhile, the differentially expressed genes (DEGs) between adjacent developmental stages were identified and gene expression patterns were clustered. By GO term enrichment analysis, KEGG pathway enrichment analysis and functional gene profiling, the physiological changes during shrimp metamorphosis could be better understood, especially histogenesis, diet transition, muscle development and exoskeleton reconstruction. In conclusion, this is the first study that characterized the integrated transcriptomic profiles during early development of penaeid shrimp, and these findings will serve as significant references for shrimp developmental biology and aquaculture research. PMID:25197823

  8. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes

    PubMed Central

    Atilano, Shari R.; Malik, Deepika; Chwa, Marilyn; Cáceres-Del-Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin; Kenney, M. Cristina

    2015-01-01

    Mitochondrial (mt) DNA can be classified into haplogroups representing different geographic and/or racial origins of populations. The H haplogroup is protective against age-related macular degeneration (AMD), while the J haplogroup is high risk for AMD. In the present study, we performed comparison analyses of human retinal cell cybrids, which possess identical nuclei, but mtDNA from subjects with either the H or J haplogroups, and demonstrate differences in total global methylation, and expression patterns for two genes related to acetylation and five genes related to methylation. Analyses revealed that untreated-H and -J cybrids have different expression levels for nuclear genes (CFH, EFEMP1, VEGFA and NFkB2). However, expression levels for these genes become equivalent after treatment with a methylation inhibitor, 5-aza-2′-deoxycytidine. Moreover, sequencing of the entire mtDNA suggests that differences in epigenetic status found in cybrids are likely due to single nucleotide polymorphisms (SNPs) within the haplogroup profiles rather than rare variants or private SNPs. In conclusion, our findings indicate that mtDNA variants can mediate methylation profiles and transcription for inflammation, angiogenesis and various signaling pathways, which are important in several common diseases. PMID:25964427

  9. Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis

    PubMed Central

    Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando

    2008-01-01

    Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433

  10. Classification of Genes and Putative Biomarker Identification Using Distribution Metrics on Expression Profiles

    PubMed Central

    Huang, Hung-Chung; Jupiter, Daniel; VanBuren, Vincent

    2010-01-01

    Background Identification of genes with switch-like properties will facilitate discovery of regulatory mechanisms that underlie these properties, and will provide knowledge for the appropriate application of Boolean networks in gene regulatory models. As switch-like behavior is likely associated with tissue-specific expression, these gene products are expected to be plausible candidates as tissue-specific biomarkers. Methodology/Principal Findings In a systematic classification of genes and search for biomarkers, gene expression profiles (GEPs) of more than 16,000 genes from 2,145 mouse array samples were analyzed. Four distribution metrics (mean, standard deviation, kurtosis and skewness) were used to classify GEPs into four categories: predominantly-off, predominantly-on, graded (rheostatic), and switch-like genes. The arrays under study were also grouped and examined by tissue type. For example, arrays were categorized as ‘brain group’ and ‘non-brain group’; the Kolmogorov-Smirnov distance and Pearson correlation coefficient were then used to compare GEPs between brain and non-brain for each gene. We were thus able to identify tissue-specific biomarker candidate genes. Conclusions/Significance The methodology employed here may be used to facilitate disease-specific biomarker discovery. PMID:20140228

  11. Impact of Ischemia and Procurement Conditions on Gene Expression in Renal Cell Carcinoma

    PubMed Central

    Liu, Nick W.; Sanford, Thomas; Srinivasan, Ramaprasad; Liu, Jack L.; Khurana, Kiranpreet; Aprelikova, Olga; Valero, Vladimir; Bechert, Charles; Worrell, Robert; Pinto, Peter A.; Yang, Youfeng; Merino, Maria; Linehan, W. Marston; Bratslavsky, Gennady

    2013-01-01

    Purpose Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma. Experimental Design Ten renal tumors were resected without renal hilar clamping from 10 patients with renal clear cell carcinoma. Immediately after tumor resection, a piece of tumor was snap frozen. Remaining tumor samples were stored at 4C, 22C and 37C and frozen at 5, 30, 60, 120, and 240 minutes. Histopathologic evaluation was performed on all tissue samples, and only those with greater than 80% tumor were selected for further analysis. RNA integrity was confirmed by electropherograms and quantitated using RIN index. Altered gene expression was assessed by paired, two-sample t-test between the zero time point and aliquots from various conditions obtained from the same tumor. Results One hundred and forty microarrays were performed. Some RNA degradation was observed 240 mins after resection at 37C. The expression of over 4,000 genes was significantly altered by ischemia times or storage conditions. The greatest gene expression changes were observed with longer ischemia time and warmer tissue procurement conditions. Conclusion RNA from kidney cancer remains intact for up to 4 hours post surgical resection regardless of storage conditions. Despite excellent RNA preservation, time after resection and procurement conditions significantly influence gene expression profiles. Meticulous attention to pre-acquisition variables is of paramount importance for accurate tumor profiling. PMID:23136194

  12. Gene profiling reveals a role for stress hormones in the molecular and behavioral response to food restriction

    PubMed Central

    Guarnieri, Douglas J.; Brayton, Catherine E.; Richards, Sarah M.; Maldonado-Aviles, Jaime; Trinko, Joseph R.; Nelson, Jessica; Taylor, Jane R.; Gourley, Shannon L.; DiLeone, Ralph J.

    2011-01-01

    Background Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Methods Analysis of gene expression profiles in male C57BL6/J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a five day food restriction. Quantitative PCR was used to validate these findings and determine the time-course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by ELISA. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Results Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to non-restricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. Conclusions These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. PMID:21855858

  13. Adipose Gene Expression Prior to Weight Loss Can Differentiate and Weakly Predict Dietary Responders

    PubMed Central

    Mutch, David M.; Temanni, M. Ramzi; Henegar, Corneliu; Combes, Florence; Pelloux, Véronique; Holst, Claus; Sørensen, Thorkild I. A.; Astrup, Arne; Martinez, J. Alfredo; Saris, Wim H. M.; Viguerie, Nathalie; Langin, Dominique; Zucker, Jean-Daniel; Clément, Karine

    2007-01-01

    Background The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during dietary intervention using only a single gene expression snapshot. Methodology/Principal Findings The present study involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines (NUGENOB) trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression profiles of responders (8–12 kgs weight loss) could always be differentiated from non-responders (<4 kgs weight loss). We also assessed whether this differentiation was sufficient for prediction. Using a bottom-up (i.e. black-box) approach, standard class prediction algorithms were able to predict dietary responders with up to 61.1%±8.1% accuracy. Using a top-down approach (i.e. using differentially expressed genes to build a classifier) improved prediction accuracy to 80.9%±2.2%. Conclusion Adipose gene expression profiling prior to the consumption of a low-fat diet is able to differentiate responders from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition. PMID:18094752

  14. Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells.

    PubMed

    Sakharov, Dmitry A; Maltseva, Diana V; Riabenko, Evgeniy A; Shkurnikov, Maxim U; Northoff, Hinnak; Tonevitsky, Alexander G; Grigoriev, Anatoly I

    2012-03-01

    High and moderate intensity endurance exercise alters gene expression in human white blood cells (WBCs), but the understanding of how this effect occurs is limited. To increase our knowledge of the nature of this process, we investigated the effects of passing the anaerobic threshold (AnT) on the gene expression profile in WBCs of athletes. Nineteen highly trained skiers participated in a treadmill test with an incremental step protocol until exhaustion (ramp test to exhaustion, RTE). The average total time to exhaustion was 14:40 min and time after AnT was 4:50 min. Two weeks later, seven of these skiers participated in a moderate treadmill test (MT) at 80% peak O(2) uptake for 30 min, which was slightly below their AnTs. Blood samples were obtained before and immediately after both tests. RTE was associated with substantially greater leukocytosis and acidosis than MT. Gene expression in WBCs was measured using whole genome microarray expression analysis before and immediately after each test. A total of 310 upregulated genes were found after RTE, and 69 genes after MT of which 64 were identical to RTE. Both tests influenced a variety of known gene pathways related to inflammation, stress response, signal transduction and apoptosis. A large group of differentially expressed previously unknown small nucleolar RNA and small Cajal body RNA was found. In conclusion, a 15-min test to exhaustion was associated with substantially greater changes of gene expression than a 30-min test just below the AnT.

  15. Inhibiting MicroRNA-503 and MicroRNA-181d with Losartan Ameliorates Diabetic Nephropathy in KKAy Mice.

    PubMed

    Zhu, XinWang; Zhang, CongXiao; Fan, QiuLing; Liu, XiaoDan; Yang, Gang; Jiang, Yi; Wang, LiNing

    2016-10-22

    BACKGROUND Diabetic nephropathy (DN) is the most lethal diabetic microvascular complication; it is a major cause of renal failure, and an increasingly globally prominent healthcare problem. MATERIAL AND METHODS To identify susceptible microRNAs for the pathogenesis of DN and the targets of losartan treatment, microRNA arrays were employed to survey the glomerular microRNA expression profiles of KKAy mice treated with or without losartan. KKAy mice were assigned to either a losartan-treated group or a non-treatment group, with C57BL/6 mice used as a normal control. Twelve weeks after treatment, glomeruli from the mice were isolated. MicroRNA expression profiles were analyzed using microRNA arrays. Real-time PCR was used to confirm the results. RESULTS Losartan treatment improved albuminuria and the pathological lesions of KKAy mice. The expression of 10 microRNAs was higher, and the expression of 12 microRNAs was lower in the glomeruli of the KKAy untreated mice than that of the CL57BL/6 mice. The expression of 4 microRNAs was down-regulated in the glomeruli of the KKAy losartan-treated mice compared to that of the untreated mice. The expression of miRNA-503 and miRNA-181d was apparently higher in the glomeruli of the KKAy untreated mice, and was inhibited by losartan treatment. CONCLUSIONS The over-expression of miR-503 and miR-181d in glomeruli of KKAy mice may be responsible for the pathogenesis of DN and are potential therapeutic targets for DN.

  16. Panax Notoginseng Saponin Controls IL-17 Expression in Helper T Cells

    PubMed Central

    Wei, Jia-Ru; Wen, Xiaofeng; Bible, Paul W.; Li, Zhiyu; Nussenblatt, Robert B.

    2017-01-01

    Abstract Purpose: Panax Notoginseng, a traditional Chinese medicine, is known as an anti-inflammatory herb. However, the molecular mechanism by which it controls helper T cell mediated immune responses is largely unknown. Methods: Naive CD4+ T cells isolated from healthy donors, patients with Behcet's disease, and C57BL/6 mice were polarized into Th1, Th17, and Treg cells. Proliferation and cytokine expression were measured in these cells with the presence or absence of Panax Notoginseng saponins (PNS). Genomewide expression profiles of Th1, Th17, and Treg cells were assessed using Affymetrix microarray analysis. Results: We found that PNS control the proliferation and differentiation of Th17 cells by globally downregulating the expression of inflammatory cytokines and cell cycle genes. Conclusions: These findings demonstrated that PNS function as an anti-inflammatory agent through directly targeting Th17 cell mediated immune response. PMID:28051353

  17. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood

    PubMed Central

    Buckley, Lauren; Lacey, Michelle; Ehrlich, Melanie

    2016-01-01

    Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology. PMID:26756355

  18. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds

    PubMed Central

    Lehnert, Sigrid A; Reverter, Antonio; Byrne, Keren A; Wang, Yonghong; Nattrass, Greg S; Hudson, Nicholas J; Greenwood, Paul L

    2007-01-01

    Background The muscle fiber number and fiber composition of muscle is largely determined during prenatal development. In order to discover genes that are involved in determining adult muscle phenotypes, we studied the gene expression profile of developing fetal bovine longissimus muscle from animals with two different genetic backgrounds using a bovine cDNA microarray. Fetal longissimus muscle was sampled at 4 stages of myogenesis and muscle maturation: primary myogenesis (d 60), secondary myogenesis (d 135), as well as beginning (d 195) and final stages (birth) of functional differentiation of muscle fibers. All fetuses and newborns (total n = 24) were from Hereford dams and crossed with either Wagyu (high intramuscular fat) or Piedmontese (GDF8 mutant) sires, genotypes that vary markedly in muscle and compositional characteristics later in postnatal life. Results We obtained expression profiles of three individuals for each time point and genotype to allow comparisons across time and between sire breeds. Quantitative reverse transcription-PCR analysis of RNA from developing longissimus muscle was able to validate the differential expression patterns observed for a selection of differentially expressed genes, with one exception. We detected large-scale changes in temporal gene expression between the four developmental stages in genes coding for extracellular matrix and for muscle fiber structural and metabolic proteins. FSTL1 and IGFBP5 were two genes implicated in growth and differentiation that showed developmentally regulated expression levels in fetal muscle. An abundantly expressed gene with no functional annotation was found to be developmentally regulated in the same manner as muscle structural proteins. We also observed differences in gene expression profiles between the two different sire breeds. Wagyu-sired calves showed higher expression of fatty acid binding protein 5 (FABP5) RNA at birth. The developing longissimus muscle of fetuses carrying the Piedmontese mutation shows an emphasis on glycolytic muscle biochemistry and a large-scale up-regulation of the translational machinery at birth. We also document evidence for timing differences in differentiation events between the two breeds. Conclusion Taken together, these findings provide a detailed description of molecular events accompanying skeletal muscle differentiation in the bovine, as well as gene expression differences that may underpin the phenotype differences between the two breeds. In addition, this study has highlighted a non-coding RNA, which is abundantly expressed and developmentally regulated in bovine fetal muscle. PMID:17697390

  19. Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials

    PubMed Central

    2014-01-01

    Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272

  20. Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma

    PubMed Central

    De Giorgi, Valeria; Monaco, Alessandro; Worchech, Andrea; Tornesello, MariaLina; Izzo, Francesco; Buonaguro, Luigi; Marincola, Francesco M; Wang, Ena; Buonaguro, Franco M

    2009-01-01

    Background Hepatitis C virus (HCV) infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The molecular mechanisms of HCV-induced hepatocarcinogenesis are not yet fully elucidated. Besides indirect effects as tissue inflammation and regeneration, a more direct oncogenic activity of HCV can be postulated leading to an altered expression of cellular genes by early HCV viral proteins. In the present study, a comparison of gene expression patterns has been performed by microarray analysis on liver biopsies from HCV-positive HCC patients and HCV-negative controls. Methods Gene expression profiling of liver tissues has been performed using a high-density microarray containing 36'000 oligos, representing 90% of the human genes. Samples were obtained from 14 patients affected by HCV-related HCC and 7 HCV-negative non-liver-cancer patients, enrolled at INT in Naples. Transcriptional profiles identified in liver biopsies from HCC nodules and paired non-adjacent non-HCC liver tissue of the same HCV-positive patients were compared to those from HCV-negative controls by the Cluster program. The pathway analysis was performed using the BRB-Array- Tools based on the "Ingenuity System Database". Significance threshold of t-test was set at 0.001. Results Significant differences were found between the expression patterns of several genes falling into different metabolic and inflammation/immunity pathways in HCV-related HCC tissues as well as the non-HCC counterpart compared to normal liver tissues. Only few genes were found differentially expressed between HCV-related HCC tissues and paired non-HCC counterpart. Conclusion In this study, informative data on the global gene expression pattern of HCV-related HCC and non-HCC counterpart, as well as on their difference with the one observed in normal liver tissues have been obtained. These results may lead to the identification of specific biomarkers relevant to develop tools for detection, diagnosis, and classification of HCV-related HCC. PMID:19821982

  1. Ontogenetic Profile of the Expression of Thyroid Hormone Receptors in Rat and Human Corpora Cavernosa of the Penis

    PubMed Central

    Carosa, Eleonora; Di Sante, Stefania; Rossi, Simona; Castri, Alessandra; D'Adamo, Fabio; Gravina, Giovanni Luca; Ronchi, Piero; Kostrouch, Zdenek; Dolci, Susanna; Lenzi, Andrea; Jannini, Emmanuele A

    2010-01-01

    Introduction In the last few years, various studies have underlined a correlation between thyroid function and male sexual function, hypothesizing a direct action of thyroid hormones on the penis. Aim To study the spatiotemporal distribution of mRNA for the thyroid hormone nuclear receptors (TR) α1, α2 and β in the penis and smooth muscle cells (SMCs) of the corpora cavernosa of rats and humans during development. Methods We used several molecular biology techniques to study the TR expression in whole tissues or primary cultures from human and rodent penile tissues of different ages. Main Outcome Measure We measured our data by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) amplification, Northern blot and immunohistochemistry. Results We found that TRα1 and TRα2 are both expressed in the penis and in SMCs during ontogenesis without development-dependent changes. However, in the rodent model, TRβ shows an increase from 3 to 6 days post natum (dpn) to 20 dpn, remaining high in adulthood. The same expression profile was observed in humans. While the expression of TRβ is strictly regulated by development, TRα1 is the principal isoform present in corpora cavernosa, suggesting its importance in SMC function. These results have been confirmed by immunohistochemistry localization in SMCs and endothelial cells of the corpora cavernosa. Conclusions The presence of TRs in the penis provides the biological basis for the direct action of thyroid hormones on this organ. Given this evidence, physicians would be advised to investigate sexual function in men with thyroid disorders. Carosa E, Di Sante S, Rossi S, Castri A, D'Adamo F, Gravina GL, Ronchi P, Kostrouch Z, Dolci S, Lenzi A, and Jannini EA. Ontogenetic profile of the expression of thyroid hormone receptors in rat and human corpora cavernosa of the penis. J Sex Med 2010;7:1381–1390. PMID:20141582

  2. Proteomic expression profiling of Haemophilus influenzae grown in pooled human sputum from adults with chronic obstructive pulmonary disease reveal antioxidant and stress responses

    PubMed Central

    2010-01-01

    Background Nontypeable Haemophilus influenzae colonizes and infects the airways of adults with chronic obstructive pulmonary disease, the fourth most common cause of death worldwide.Thus, H. influenzae, an exclusively human pathogen, has adapted to survive in the hostile environment of the human airways.To characterize proteins expressed by H. influenzae in the airways, a prototype strain was grown in pooled human sputum to simulate conditions in the human respiratory tract.The proteins from whole bacterial cell lysates were solubilized with a strong buffer and then quantitatively cleaned with an optimized precipitation/on-pellet enzymatic digestion procedure.Proteomic profiling was accomplished by Nano-flow liquid chromatography/mass spectroscopy with low void volume and high separation efficiency with a shallow, long gradient. Results A total of 1402 proteins were identified with high confidence, including 170 proteins that were encoded by genes that are annotated as conserved hypothetical proteins.Thirty-one proteins were present in greater abundance in sputum-grown conditions at a ratio of > 1.5 compared to chemically defined media.These included 8 anti-oxidant and 5 stress-related proteins, suggesting that expression of antioxidant activity and stress responses is important for survival in the airways.Four proteins involved in uptake of divalent anions and 9 proteins that function in uptake of various molecules were present in greater abundance in sputum-grown conditions. Conclusions Proteomic expression profiling of H. influenzae grown in pooled human sputum revealed increased expression of antioxidant, stress-response proteins and cofactor and nutrient uptake systems compared to media grown cells.These observations suggest that H. influenzae adapts to the oxidative and nutritionally limited conditions of the airways in adults with chronic obstructive pulmonary disease by increasing expression of molecules necessary for survival in these conditions. PMID:20515494

  3. Global Analysis of Transcriptome Responses and Gene Expression Profiles to Cold Stress of Jatropha curcas L.

    PubMed Central

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Background Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. Results In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. Conclusions This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas. PMID:24349370

  4. The Gene Expression Profile of CD11c+CD8α− Dendritic Cells in the Pre-Diabetic Pancreas of the NOD Mouse

    PubMed Central

    Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2014-01-01

    Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904

  5. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the up-regulation of metaplasia markers in the stomach

    PubMed Central

    Sousa, Josane F.; Nam, Ki Taek; Petersen, Christine P.; Lee, Hyuk-Joon; Yang, Han-Kwang; Kim, Woo Ho; Goldenring, James R.

    2016-01-01

    Objective Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. Design We performed miRNA profiling using a qRT-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. Results We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were down-regulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by down-regulation of NR2F2. Conclusion The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia. PMID:25800782

  6. Molecular Phenotypes Distinguish Patients with Relatively Stable from Progressive Idiopathic Pulmonary Fibrosis (IPF)

    PubMed Central

    Boon, Kathy; Bailey, Nathaniel W.; Yang, Jun; Steel, Mark P.; Groshong, Steve; Kervitsky, Dolly; Brown, Kevin K.; Schwarz, Marvin I.; Schwartz, David A.

    2009-01-01

    Background Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic interstitial lung disease that is unresponsive to current therapy and often leads to death. However, the rate of disease progression differs among patients. We hypothesized that comparing the gene expression profiles between patients with stable disease and those in which the disease progressed rapidly will lead to biomarker discovery and contribute to the understanding of disease pathogenesis. Methodology and Principal Findings To begin to address this hypothesis, we applied Serial Analysis of Gene Expression (SAGE) to generate lung expression profiles from diagnostic surgical lung biopsies in 6 individuals with relatively stable (or slowly progressive) IPF and 6 individuals with progressive IPF (based on changes in DLCO and FVC over 12 months). Our results indicate that this comprehensive lung IPF SAGE transcriptome is distinct from normal lung tissue and other chronic lung diseases. To identify candidate markers of disease progression, we compared the IPF SAGE profiles in stable and progressive disease, and identified a set of 102 transcripts that were at least 5-fold up regulated and a set of 89 transcripts that were at least 5-fold down regulated in the progressive group (P-value≤0.05). The over expressed genes included surfactant protein A1, two members of the MAPK-EGR-1-HSP70 pathway that regulate cigarette-smoke induced inflammation, and Plunc (palate, lung and nasal epithelium associated), a gene not previously implicated in IPF. Interestingly, 26 of the up regulated genes are also increased in lung adenocarcinomas and have low or no expression in normal lung tissue. More importantly, we defined a SAGE molecular expression signature of 134 transcripts that sufficiently distinguished relatively stable from progressive IPF. Conclusions These findings indicate that molecular signatures from lung parenchyma at the time of diagnosis could prove helpful in predicting the likelihood of disease progression or possibly understanding the biological activity of IPF. PMID:19347046

  7. Human Disease-Drug Network Based on Genomic Expression Profiles

    PubMed Central

    Hu, Guanghui; Agarwal, Pankaj

    2009-01-01

    Background Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets, an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene expression, protein, metabolites and phenotypes. Methodology/Principal Findings We performed a systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the ∼24.5 million comparisons between ∼7,000 publicly available transcriptomic profiles. The network includes 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same disease area as determined by the Medical Subject Headings (MeSH) disease classification tree. The remaining can drive a molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008 disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some antimalaria drugs for Crohn's disease, and a variety of existing drugs for Huntington's disease; while the positive scoring connections can aid in drug side effect identification, such as tamoxifen's undesired carcinogenic property. From the ∼37K drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1) KCNMA1 as a potential molecular target of lobeline, and 2) both apoptotic DNA fragmentation and G2/M DNA damage checkpoint regulation as potential pathway targets of daunorubicin. Conclusions/Significance We have automatically generated thousands of disease and drug expression profiles using GEO datasets, and constructed a large scale disease-drug network for effective and efficient drug repositioning as well as drug target/pathway identification. PMID:19657382

  8. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles.

    PubMed

    Andreasen, Simon; Tan, Qihua; Agander, Tina Klitmøller; Steiner, Petr; Bjørndal, Kristine; Høgdall, Estrid; Larsen, Stine Rosenkilde; Erentaite, Daiva; Olsen, Caroline Holkmann; Ulhøi, Benedicte Parm; von Holstein, Sarah Linéa; Wessel, Irene; Heegaard, Steffen; Homøe, Preben

    2018-02-21

    Adenoid cystic carcinoma is among the most frequent malignancies in the salivary and lacrimal glands and has a grave prognosis characterized by frequent local recurrences, distant metastases, and tumor-related mortality. Conversely, adenoid cystic carcinoma of the breast is a rare type of triple-negative (estrogen and progesterone receptor, HER2) and basal-like carcinoma, which in contrast to other triple-negative and basal-like breast carcinomas has a very favorable prognosis. Irrespective of site, adenoid cystic carcinoma is characterized by gene fusions involving MYB, MYBL1, and NFIB, and the reason for the different clinical outcomes is unknown. In order to identify the molecular mechanisms underlying the discrepancy in clinical outcome, we characterized the phenotypic profiles, pattern of gene rearrangements, and global microRNA expression profiles of 64 salivary gland, 9 lacrimal gland, and 11 breast adenoid cystic carcinomas. All breast and lacrimal gland adenoid cystic carcinomas had triple-negative and basal-like phenotypes, while salivary gland tumors were indeterminate in 13% of cases. Aberrations in MYB and/or NFIB were found in the majority of cases in all three locations, whereas MYBL1 involvement was restricted to tumors in the salivary gland. Global microRNA expression profiling separated salivary and lacrimal gland adenoid cystic carcinoma from their respective normal glands but could not distinguish normal breast adenoid cystic carcinoma from normal breast tissue. Hierarchical clustering separated adenoid cystic carcinomas of salivary gland origin from those of the breast and placed lacrimal gland carcinomas in between these. Functional annotation of the microRNAs differentially expressed between salivary gland and breast adenoid cystic carcinoma showed these as regulating genes involved in metabolism, signal transduction, and genes involved in other cancers. In conclusion, microRNA dysregulation is the first class of molecules separating adenoid cystic carcinoma according to the site of origin. This highlights a novel venue for exploring the biology of adenoid cystic carcinoma.

  9. Profound Effect of Profiling Platform and Normalization Strategy on Detection of Differentially Expressed MicroRNAs – A Comparative Study

    PubMed Central

    Meyer, Swanhild U.; Kaiser, Sebastian; Wagner, Carola; Thirion, Christian; Pfaffl, Michael W.

    2012-01-01

    Background Adequate normalization minimizes the effects of systematic technical variations and is a prerequisite for getting meaningful biological changes. However, there is inconsistency about miRNA normalization performances and recommendations. Thus, we investigated the impact of seven different normalization methods (reference gene index, global geometric mean, quantile, invariant selection, loess, loessM, and generalized procrustes analysis) on intra- and inter-platform performance of two distinct and commonly used miRNA profiling platforms. Methodology/Principal Findings We included data from miRNA profiling analyses derived from a hybridization-based platform (Agilent Technologies) and an RT-qPCR platform (Applied Biosystems). Furthermore, we validated a subset of miRNAs by individual RT-qPCR assays. Our analyses incorporated data from the effect of differentiation and tumor necrosis factor alpha treatment on primary human skeletal muscle cells and a murine skeletal muscle cell line. Distinct normalization methods differed in their impact on (i) standard deviations, (ii) the area under the receiver operating characteristic (ROC) curve, (iii) the similarity of differential expression. Loess, loessM, and quantile analysis were most effective in minimizing standard deviations on the Agilent and TLDA platform. Moreover, loess, loessM, invariant selection and generalized procrustes analysis increased the area under the ROC curve, a measure for the statistical performance of a test. The Jaccard index revealed that inter-platform concordance of differential expression tended to be increased by loess, loessM, quantile, and GPA normalization of AGL and TLDA data as well as RGI normalization of TLDA data. Conclusions/Significance We recommend the application of loess, or loessM, and GPA normalization for miRNA Agilent arrays and qPCR cards as these normalization approaches showed to (i) effectively reduce standard deviations, (ii) increase sensitivity and accuracy of differential miRNA expression detection as well as (iii) increase inter-platform concordance. Results showed the successful adoption of loessM and generalized procrustes analysis to one-color miRNA profiling experiments. PMID:22723911

  10. Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets

    PubMed Central

    Chelh, Ilham; Meunier, Bruno; Picard, Brigitte; Reecy, Mark James; Chevalier, Catherine; Hocquette, Jean-François; Cassar-Malek, Isabelle

    2009-01-01

    Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. PMID:19397818

  11. DNA methylation-based reclassification of olfactory neuroblastoma.

    PubMed

    Capper, David; Engel, Nils W; Stichel, Damian; Lechner, Matt; Glöss, Stefanie; Schmid, Simone; Koelsche, Christian; Schrimpf, Daniel; Niesen, Judith; Wefers, Annika K; Jones, David T W; Sill, Martin; Weigert, Oliver; Ligon, Keith L; Olar, Adriana; Koch, Arend; Forster, Martin; Moran, Sebastian; Tirado, Oscar M; Sáinz-Japeado, Miguel; Mora, Jaume; Esteller, Manel; Alonso, Javier; Del Muro, Xavier Garcia; Paulus, Werner; Felsberg, Jörg; Reifenberger, Guido; Glatzel, Markus; Frank, Stephan; Monoranu, Camelia M; Lund, Valerie J; von Deimling, Andreas; Pfister, Stefan; Buslei, Rolf; Ribbat-Idel, Julika; Perner, Sven; Gudziol, Volker; Meinhardt, Matthias; Schüller, Ulrich

    2018-05-05

    Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of tumors. Expression of cytokeratin, chromogranin A, the mutational status of IDH2 as well as DNA methylation patterns may greatly aid in the precise classification of ONB.

  12. Comparative Expression Profiling of Distinct T Cell Subsets Undergoing Oxidative Stress

    PubMed Central

    Lichtenfels, Rudolf; Mougiakakos, Dimitrios; Johansson, C. Christian; Dressler, Sven P.; Recktenwald, Christian V.; Kiessling, Rolf; Seliger, Barbara

    2012-01-01

    The clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response. In order to better define the key pathways/proteins involved in the response to oxidative stress a comparative 2-DE-based proteome analysis of naïve CD45RA+ and their memory/effector CD45RO+ T cell counterparts in the presence and absence of low dose hydrogen peroxide (H2O2) was performed in this pilot study. Based on the profiling data of these T cell subpopulations under the various conditions, a series of differentially expressed spots were defined, members thereof identified by mass spectrometry and subsequently classified according to their cellular function and localization. Representative targets responding to oxidative stress including proteins involved in signaling pathways, in regulating the cellular redox status as well as in shaping/maintaining the structural cell integrity were independently verified at the transcript and protein level under the same conditions in both T cell subsets. In conclusion the resulting profiling data describe complex, oxidative stress-induced, but not strictly concordant changes within the respective expression profiles of CD45RA+ and CD45RO+ T cells. Some of the differentially expressed genes/proteins might be further exploited as potential targets toward modulating the redox capacity of the distinct lymphocyte subsets thereby providing the basis for further studies aiming at rendering them more resistant to tumor micromilieu-induced oxidative stress. PMID:22911781

  13. Recapitulation of Tumor Heterogeneity and Molecular Signatures in a 3D Brain Cancer Model with Decreased Sensitivity to Histone Deacetylase Inhibition

    PubMed Central

    Smith, Stuart J.; Wilson, Martin; Ward, Jennifer H.; Rahman, Cheryl V.; Peet, Andrew C.; Macarthur, Donald C.; Rose, Felicity R. A. J.; Grundy, Richard G.; Rahman, Ruman

    2012-01-01

    Introduction Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS). Methods CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. Results Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. Conclusions Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system. PMID:23272238

  14. Gene expression profiling and functional characterization of macrophages in response to circulatory microparticles produced during Trypanosoma cruzi infection and Chagas disease

    PubMed Central

    Chowdhury, Imran; Koo, Sue-jie; Gupta, Shivali; Liang, Lisa Yi; Bahar, Bojlul; Silla, Laura; Burgos, Julio Nuñez; Barrientos, Natalia; Zago, Maria Paola; Garg, Nisha Jain

    2016-01-01

    BACKGROUND Chronic inflammation and oxidative stress are hallmarks of chagasic cardiomyopathy (CCM). In this study, we determined if microparticles (MPs) generated during Trypanosoma cruzi (Tc) infection carry the host’s signature of inflammatory/oxidative state and provide information regarding the progression of clinical disease. METHDOS The MPs were harvested from supernatants of human PBMCs in vitro incubated with T. cruzi (control: LPS-treated), plasma of seropositive humans with clinically asymptomatic (CA) or symptomatic (CS) disease state (normal/healthy (NH) controls) and plasma of mice immunized with a protective vaccine before challenge infection (control: unvaccinated/infected). Macrophages (mφs) were incubated with MPs, and we probed the gene expression profile using the inflammatory signaling cascade and cytokine/chemokine arrays, phenotypic markers of macrophage activation by flow cytometry, cytokine profile by an ELISA and Bioplex assay, and oxidative/nitrosative stress and mitotoxicity by colorimetric and fluorometric assays. RESULTS Tc- and LPS-induced MPs stimulated proliferation, inflammatory gene expression profile and •NO release in human THP-1 mφs. LPS-MPs were more immunostimulatory than Tc-MPs. Endothelial cells, T lymphocytes and mφs were the major source of MPs shed in plasma of chagasic humans and experimentally infected mice. The CS-MPs and CA-MPs (vs. NH-MPs) elicited >2-fold increase in •NO and mitochondrial oxidative stress in THP-1 mφs; however, CS-MPs (vs. CA-MPs) elicited a more pronounced and disease-state-specific inflammatory gene expression profile (IKBKB, NR3C1, and TIRAP vs. CCR4, EGR2 and CCL3), cytokine release (IL2+IFNγ>GCSF), and surface markers of mφ activation (CD14 and CD16). The circulatory MPs of non-vaccinated/infected mice induced 7.5-fold and 40% increase in •NO and IFNγ production, respectively, while these responses were abolished when RAW264.7 mφs were incubated with circulatory MPs of vaccinated/infected mice. CONCLUSION Circulating MPs reflect in vivo levels of oxidative, nitrosative, and inflammatory state and have potential utility in evaluating disease severity and efficacy of vaccines and drug therapies against CCM. PMID:27902980

  15. Comparing genotoxic signatures in cord blood cells from neonates exposed in utero to zidovudine or tenofovir

    PubMed Central

    Vivanti, Alexandre; Soheili, Tayebeh S.; Cuccuini, Wendy; Luce, Sonia; Mandelbrot, Laurent; Lechenadec, Jerome; Cordier, Anne-Gael; Azria, Elie; Soulier, Jean; Cavazzana, Marina; Blanche, Stéphane; André-Schmutz, Isabelle

    2015-01-01

    Objectives: Zidovudine and tenofovir are the two main nucleos(t)ide analogs used to prevent mother-to-child transmission of HIV. In vitro, both drugs bind to and integrate into human DNA and inhibit telomerase. The objective of the present study was to assess the genotoxic effects of either zidovudine or tenofovir-based combination therapies on cord blood cells in newborns exposed in utero. Design: We compared the aneuploid rate and the gene expression profiles in cord blood samples from newborns exposed either to zidovudine or tenofovir-based combination therapies during pregnancy and from unexposed controls (n = 8, 9, and 8, respectively). Methods: The aneuploidy rate was measured on the cord blood T-cell karyotype. Gene expression profiles of cord blood T cells and hematopoietic stem and progenitor cells were determined with microarrays, analyzed in a gene set enrichment analysis and confirmed by real-time quantitative PCRs. Results: Aneuploidy was more frequent in the zidovudine-exposed group (26.3%) than in the tenofovir-exposed group (14.2%) or in controls (13.3%; P < 0.05 for both). The transcription of genes involved in DNA repair, telomere maintenance, nucleotide metabolism, DNA/RNA synthesis, and the cell cycle was deregulated in samples from both the zidovudine and the tenofovir-exposed groups. Conclusion: Although tenofovir has a lower clastogenic impact than zidovudine, gene expression profiling showed that both drugs alter the transcription of DNA repair and telomere maintenance genes. PMID:25513819

  16. Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: A report from the International DLBCL Rituximab-CHOP Consortium Program Study

    PubMed Central

    Visco, Carlo; Li, Yan; Xu-Monette, Zijun Y.; Miranda, Roberto N.; Green, Tina M.; Li, Yong; Tzankov, Alexander; Wen, Wei; Liu, Wei-min; Kahl, Brad S.; d’Amore, Emanuele S. G.; Montes-Moreno, Santiago; Dybkær, Karen; Chiu, April; Tam, Wayne; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Winter, Jane N.; Wang, Huan-You; O’Neill, Stacey; Dunphy, Cherie H.; Hsi, Eric D.; Zhao, X. Frank; Go, Ronald S.; Choi, William W. L.; Zhou, Fan; Czader, Magdalena; Tong, Jiefeng; Zhao, Xiaoying; van Krieken, J. Han; Huang, Qing; Ai, Weiyun; Etzell, Joan; Ponzoni, Maurilio; Ferreri, Andres J. M.; Piris, Miguel A.; Møller, Michael B.; Bueso-Ramos, Carlos E.; Medeiros, L. Jeffrey; Wu, Lin; Young, Ken H.

    2013-01-01

    Gene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development - namely germinal center B-cell-like and activated B-cell-like. This classification has prognostic significance, but GEP is expensive and not readily applicable into daily practice, which has lead to immunohistochemical algorithms proposed as a surrogate for GEP analysis. We assembled tissue microarrays from 475 de novo DLBCL patients who were treated with rituximab-CHOP chemotherapy. All cases were successfully profiled by GEP on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1, and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B-cells. Cutoffs for each marker were obtained using receiver operating characteristic curves, obviating the need for any arbitrary method. An algorithm based on the expression of CD10, FOXP1, and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP. In multivariate analysis, both the International Prognostic Index and our proposed algorithm were significant independent predictors of progression-free and overall survival. In conclusion, this algorithm effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy. PMID:22437443

  17. Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells

    PubMed Central

    Ledur, Pítia F.; He, Hua; Harris, Alexandra R.; Minussi, Darlan C.; Zhou, Hai-Yan; Shaffrey, Mark E.; Asthagiri, Ashok; Lopes, Maria Beatriz S.; Schiff, David; Lu, Yi-Cheng; Mandell, James W.; Lenz, Guido; Zong, Hui

    2016-01-01

    Background Cell culture plays a pivotal role in cancer research. However, culture-induced changes in biological properties of tumor cells profoundly affect research reproducibility and translational potential. Establishing culture conditions tailored to the cancer cell of origin could resolve this problem. For glioma research, it has been previously shown that replacing serum with defined growth factors for neural stem cells (NSCs) greatly improved the retention of gene expression profile and tumorigenicity. However, among all molecular subtypes of glioma, our laboratory and others have previously shown that the oligodendrocyte precursor cell (OPC) rather than the NSC serves as the cell of origin for the proneural subtype, raising questions regarding the suitability of NSC-tailored media for culturing proneural glioma cells. Methods OPC-originated mouse glioma cells were cultured in conditions for normal OPCs or NSCs, respectively, for multiple passages. Gene expression profiles, morphologies, tumorigenicity, and drug responsiveness of cultured cells were examined in comparison with freshly isolated tumor cells. Results OPC media-cultured glioma cells maintained tumorigenicity, gene expression profiles, and morphologies similar to freshly isolated tumor cells. In contrast, NSC-media cultured glioma cells gradually lost their OPC features and most tumor-initiating ability and acquired heightened sensitivity to temozolomide. Conclusions To improve experimental reproducibility and translational potential of glioma research, it is important to identify the cell of origin, and subsequently apply this knowledge to establish culture conditions that allow the retention of native properties of tumor cells. PMID:27106408

  18. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle

    PubMed Central

    2010-01-01

    Background Two types of horns are evident in cattle - fixed horns attached to the skull and a variation called scurs, which refers to small loosely attached horns. Cattle lacking horns are referred to as polled. Although both the Poll and Scurs loci have been mapped to BTA1 and 19 respectively, the underlying genetic basis of these phenotypes is unknown, and so far, no candidate genes regulating these developmental processes have been described. This study is the first reported attempt at transcript profiling to identify genes and pathways contributing to horn and scurs development in Brahman cattle, relative to polled counterparts. Results Expression patterns in polled, horned and scurs tissues were obtained using the Agilent 44 k bovine array. The most notable feature when comparing transcriptional profiles of developing horn tissues against polled was the down regulation of genes coding for elements of the cadherin junction as well as those involved in epidermal development. We hypothesize this as a key event involved in keratinocyte migration and subsequent horn development. In the polled-scurs comparison, the most prevalent differentially expressed transcripts code for genes involved in extracellular matrix remodelling, which were up regulated in scurs tissues relative to polled. Conclusion For this first time we describe networks of genes involved in horn and scurs development. Interestingly, we did not observe differential expression in any of the genes present on the fine mapped region of BTA1 known to contain the Poll locus. PMID:20537189

  19. Transcriptome profile of a bovine respiratory disease pathogen: Mannheimia haemolytica PHL213

    PubMed Central

    2012-01-01

    Background Computational methods for structural gene annotation have propelled gene discovery but face certain drawbacks with regards to prokaryotic genome annotation. Identification of transcriptional start sites, demarcating overlapping gene boundaries, and identifying regulatory elements such as small RNA are not accurate using these approaches. In this study, we re-visit the structural annotation of Mannheimia haemolytica PHL213, a bovine respiratory disease pathogen. M. haemolytica is one of the causative agents of bovine respiratory disease that results in about $3 billion annual losses to the cattle industry. We used RNA-Seq and analyzed the data using freely-available computational methods and resources. The aim was to identify previously unannotated regions of the genome using RNA-Seq based expression profile to complement the existing annotation of this pathogen. Results Using the Illumina Genome Analyzer, we generated 9,055,826 reads (average length ~76 bp) and aligned them to the reference genome using Bowtie. The transcribed regions were analyzed using SAMTOOLS and custom Perl scripts in conjunction with BLAST searches and available gene annotation information. The single nucleotide resolution map enabled the identification of 14 novel protein coding regions as well as 44 potential novel sRNA. The basal transcription profile revealed that 2,506 of the 2,837 annotated regions were expressed in vitro, at 95.25% coverage, representing all broad functional gene categories in the genome. The expression profile also helped identify 518 potential operon structures involving 1,086 co-expressed pairs. We also identified 11 proteins with mutated/alternate start codons. Conclusions The application of RNA-Seq based transcriptome profiling to structural gene annotation helped correct existing annotation errors and identify potential novel protein coding regions and sRNA. We used computational tools to predict regulatory elements such as promoters and terminators associated with the novel expressed regions for further characterization of these novel functional elements. Our study complements the existing structural annotation of Mannheimia haemolytica PHL213 based on experimental evidence. Given the role of sRNA in virulence gene regulation and stress response, potential novel sRNA described in this study can form the framework for future studies to determine the role of sRNA, if any, in M. haemolytica pathogenesis. PMID:23046475

  20. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks

    PubMed Central

    2013-01-01

    Background A co-ordinated tissue-independent gene expression profile associated with growth is present in rodent models and this is hypothesised to extend to all mammals. Growth in humans has similarities to other mammals but the return to active long bone growth in the pubertal growth spurt is a distinctly human growth event. The aim of this study was to describe gene expression and biological pathways associated with stages of growth in children and to assess tissue-independent expression patterns in relation to human growth. Results We conducted gene expression analysis on a library of datasets from normal children with age annotation, collated from the NCBI Gene Expression Omnibus (GEO) and EBI Arrayexpress databases. A primary data set was generated using cells of lymphoid origin from normal children; the expression of 688 genes (ANOVA false discovery rate modified p-value, q < 0.1) was associated with age, and subsets of these genes formed clusters that correlated with the phases of growth – infancy, childhood, puberty and final height. Network analysis on these clusters identified evolutionarily conserved growth pathways (NOTCH, VEGF, TGFB, WNT and glucocorticoid receptor – Hyper-geometric test, q < 0.05). The greatest degree of network ‘connectivity’ and hence functional significance was present in infancy (Wilcoxon test, p < 0.05), which then decreased through to adulthood. These observations were confirmed in a separate validation data set from lymphoid tissue. Similar biological pathways were observed to be associated with development-related gene expression in other tissues (conjunctival epithelia, temporal lobe brain tissue and bone marrow) suggesting the existence of a tissue-independent genetic program for human growth and maturation. Conclusions Similar evolutionarily conserved pathways have been associated with gene expression and child growth in multiple tissues. These expression profiles associate with the developmental phases of growth including the return to active long bone growth in puberty, a distinctly human event. These observations also have direct medical relevance to pathological changes that induce disease in children. Taking into account development-dependent gene expression profiles for normal children will be key to the appropriate selection of genes and pathways as potential biomarkers of disease or as drug targets. PMID:23941278

  1. Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature

    PubMed Central

    Swindell, William R.; Johnston, Andrew; Sun, Liou; Xing, Xianying; Fisher, Gary J.; Bulyk, Martha L.; Elder, James T.; Gudjonsson, Johann E.

    2012-01-01

    Background Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific. PMID:22413003

  2. Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients

    PubMed Central

    Lu, Yingmin; Hou, Shuxin; Huang, Damin; Luo, Xiaohan; Zhang, Jinchun; Chen, Jian; Xu, Weiping

    2015-01-01

    Objective: To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. Methods: 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients’ blood samples. Differentially expressed miRNA-1s were transfected into primary-cultured neonatal rat cardiac myocytes. Results: Compared with control group, significant differences were observed in 15 kinds of miRNAs in observation group. Down-regulation of the expression of miRNAs included hsa-miR-328, hsa-miR-145, hsa-miR-222, hsa-miR-1, hsa-miR-162, hsa-miR-432, and hsa-miR-493b; Up-regulation of the expression included hsa-miR634, hsa-miR-664, hsa-miR-9, hsa-miR-152, hsa-miR-19, hsa-miR-454, hsa-miR-146, and hsa-miR-374a. The expression level of CACNB2 protein in miRNA-1 group was significantly lower than that in blank control group, negative control group, MTmiRNA-1 group, AMO-1 group and miRNA-1+AMO-1 cotransfection group (P < 0.05), while in AMO-1 group, the expression level of CACNB2 protein was significantly higher than that in other groups (P < 0.05). These results indicated that transfected miRNA-1 could significantly inhibit the expression of CACNB2 protein. Conclusions: Circulating miRNAs can be used in studies concerning on the regulation mechanism of the occurrence and development of AF. MiRNA-1 can decrease the intracellular Ca2+ concentration and prevent the AF. PMID:25785065

  3. Pan-Cancer Analysis of the Mediator Complex Transcriptome Identifies CDK19 and CDK8 as Therapeutic Targets in Advanced Prostate Cancer.

    PubMed

    Brägelmann, Johannes; Klümper, Niklas; Offermann, Anne; von Mässenhausen, Anne; Böhm, Diana; Deng, Mario; Queisser, Angela; Sanders, Christine; Syring, Isabella; Merseburger, Axel S; Vogel, Wenzel; Sievers, Elisabeth; Vlasic, Ignacija; Carlsson, Jessica; Andrén, Ove; Brossart, Peter; Duensing, Stefan; Svensson, Maria A; Shaikhibrahim, Zaki; Kirfel, Jutta; Perner, Sven

    2017-04-01

    Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches. Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities ( n = 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer ( n = 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq. Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19 In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro , inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion. Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer. Clin Cancer Res; 23(7); 1829-40. ©2016 AACR . ©2016 American Association for Cancer Research.

  4. Unraveling the Oral Cancer lncRNAome: Identification of Novel lncRNAs Associated with Malignant Progression and HPV Infection

    PubMed Central

    Nohata, Nijiro; Abba, Martin C.; Gutkind, J. Silvio

    2017-01-01

    Objectives The role of long non-coding RNA (lncRNA) expression in human head and neck squamous cell carcinoma (HNSCC) is still poorly understood. In this study, we aimed at establishing the onco-lncRNAome profiling of HNSCC and to identify lncRNAs correlating with prognosis and patient survival. Materials and Methods The Atlas of Noncoding RNAs in Cancer (TANRIC) database was employed to retrieve the lncRNA expression information generated from The Cancer Genome Atlas (TCGA) HNSCC RNA-sequencing data. RNA-sequencing data from HNSCC cell lines were also considered for this study. Bioinformatics approaches, such as differential gene expression analysis, survival analysis, principal component analysis, and Co-LncRNA enrichment analysis were performed. Results Using TCGA HNSCC RNA-sequencing data from 426 HNSCC and 42 adjacent normal tissues, we found 728 lncRNA transcripts significantly and differentially expressed in HNSCC. Among the 728 lncRNAs, 55 lncRNAs were significantly associated with poor prognosis, such as overall survival and/or disease-free survival. Next, we found 140 lncRNA transcripts significantly and differentially expressed between Human Papilloma Virus (HPV) positive tumors and HPV negative tumors. Thirty lncRNA transcripts were differentially expressed between TP53 mutated and TP53 wild type tumors. Co-LncRNA analysis suggested that protein-coding genes that are co-expressed with these deregulated lncRNAs might be involved in cancer associated molecular events. With consideration of differential expression of lncRNAs in a HNSCC cell lines panel (n=22), we found several lncRNAs that may represent potential targets for diagnosis, therapy and prevention of HNSCC. Conclusion LncRNAs profiling could provide novel insights into the potential mechanisms of HNSCC oncogenesis. PMID:27424183

  5. Current to the ionosphere following a lightning stroke

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Baginski, M. E.

    1987-01-01

    A simple analytical expression for calculating the total current waveform to the ionosphere after a lightning stroke is derived. The validity of this expression is demonstrated by comparison with a more rigorous computer solution of Maxwell's equations. The analytic model demonstrates that the temporal variation of the current induced in the ionosphere and global circuit and the corresponding return current in the earth depends on the conductivity profile at intervening altitudes in the middle atmosphere. A conclusion is that capacitative coupling may provide tighter coupling between the lower atmosphere and the ionosphere than usually considered, in both directions, which may help to explain observations which seem to indicate that magnetospheric phenomena may in some instances trigger lightning.

  6. Immunological profile in a family with nephrogenic diabetes insipidus with a novel 11 kb deletion in AVPR2 and ARHGAP4 genes

    PubMed Central

    Fujimoto, Masaya; Imai, Kohsuke; Hirata, Kenji; Kashiwagi, Reiichi; Morinishi, Yoichi; Kitazawa, Katsuhiko; Sasaki, Sei; Arinami, Tadao; Nonoyama, Shigeaki; Noguchi, Emiko

    2008-01-01

    Background Congenital nephrogenic diabetes insipidus (NDI) is characterised by an inability to concentrate urine despite normal or elevated plasma levels of the antidiuretic hormone arginine vasopressin. We report a Japanese extended family with NDI caused by an 11.2-kb deletion that includes the entire AVPR2 locus and approximately half of the Rho GTPase-activating protein 4 (ARHGAP4) locus. ARHGAP4 belongs to the RhoGAP family, Rho GTPases are critical regulators of many cellular activities, such as motility and proliferation which enhances intrinsic GTPase activity. ARHGAP4 is expressed at high levels in hematopoietic cells, and it has been reported that an NDI patient lacking AVPR2 and all of ARHGAP4 showed immunodeficiency characterised by a marked reduction in the number of circulating CD3+ cells and almost complete absence of CD8+ cells. Methods PCR and sequencing were performed to identify the deleted region in the Japanese NDI patients. Immunological profiles of the NDI patients were analysed by flow cytometry. We also investigated the gene expression profiles of peripheral blood mononuclear cells (PBMC) from NDI patients and healthy controls in microarray technique. Results We evaluated subjects (one child and two adults) with 11.2-kb deletion that includes the entire AVPR2 locus and approximately half of the ARHGAP4. Hematologic tests showed a reduction of CD4+ cells in one adult patient, a reduction in CD8+ cells in the paediatric patient, and a slight reduction in the serum IgG levels in the adult patients, but none of them showed susceptibility to infection. Gene expression profiling of PBMC lacking ARHGAP4 revealed that expression of RhoGAP family genes was not influenced greatly by the lack of ARHGAP4. Conclusion These results suggest that loss of ARHGAP4 expression is not compensated for by other family members. ARHGAP4 may play some role in lymphocyte differentiation but partial loss of ARHGAP4 does not result in clinical immunodeficiency. PMID:18489790

  7. The combined expression patterns of Ikaros isoforms characterize different hematological tumor subtypes.

    PubMed

    Orozco, Carlos A; Acevedo, Andrés; Cortina, Lazaro; Cuellar, Gina E; Duarte, Mónica; Martín, Liliana; Mesa, Néstor M; Muñoz, Javier; Portilla, Carlos A; Quijano, Sandra M; Quintero, Guillermo; Rodriguez, Miriam; Saavedra, Carlos E; Groot, Helena; Torres, María M; López-Segura, Valeriano

    2013-01-01

    A variety of genetic alterations are considered hallmarks of cancer development and progression. The Ikaros gene family, encoding for key transcription factors in hematopoietic development, provides several examples as genetic defects in these genes are associated with the development of different types of leukemia. However, the complex patterns of expression of isoforms in Ikaros family genes has prevented their use as clinical markers. In this study, we propose the use of the expression profiles of the Ikaros isoforms to classify various hematological tumor diseases. We have standardized a quantitative PCR protocol to estimate the expression levels of the Ikaros gene exons. Our analysis reveals that these levels are associated with specific types of leukemia and we have found differences in the levels of expression relative to five interexonic Ikaros regions for all diseases studied. In conclusion, our method has allowed us to precisely discriminate between B-ALL, CLL and MM cases. Differences between the groups of lymphoid and myeloid pathologies were also identified in the same way.

  8. The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells

    PubMed Central

    Ghatge, Radhika P; Jacobsen, Britta M; Schittone, Stephanie A; Horwitz, Kathryn B

    2005-01-01

    Introduction Medroxyprogesterone acetate (MPA), the major progestin used for oral contraception and hormone replacement therapy, has been implicated in increased breast cancer risk. Is this risk due to its progestational or androgenic properties? To address this, we assessed the transcriptional effects of MPA as compared with those of progesterone and dihydrotestosterone (DHT) in human breast cancer cells. Method A new progesterone receptor-negative, androgen receptor-positive human breast cancer cell line, designated Y-AR, was engineered and characterized. Transcription assays using a synthetic promoter/reporter construct, as well as endogenous gene expression profiling comparing progesterone, MPA and DHT, were performed in cells either lacking or containing progesterone receptor and/or androgen receptor. Results In progesterone receptor-positive cells, MPA was found to be an effective progestin through both progesterone receptor isoforms in transient transcription assays. Interestingly, DHT signaled through progesterone receptor type B. Expression profiling of endogenous progesterone receptor-regulated genes comparing progesterone and MPA suggested that although MPA may be a somewhat more potent progestin than progesterone, it is qualitatively similar to progesterone. To address effects of MPA through androgen receptor, expression profiling was performed comparing progesterone, MPA and DHT using Y-AR cells. These studies showed extensive gene regulatory overlap between DHT and MPA through androgen receptor and none with progesterone. Interestingly, there was no difference between pharmacological MPA and physiological MPA, suggesting that high-dose therapeutic MPA may be superfluous. Conclusion Our comparison of the gene regulatory profiles of MPA and progesterone suggests that, for physiologic hormone replacement therapy, the actions of MPA do not mimic those of endogenous progesterone alone. Clinically, the complex pharmacology of MPA not only influences its side-effect profile; but it is also possible that the increased breast cancer risk and/or the therapeutic efficacy of MPA in cancer treatment is in part mediated by androgen receptor. PMID:16457685

  9. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    PubMed

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  10. Sustained Exendin-4 Secretion through Gene Therapy Targeting Salivary Glands in Two Different Rodent Models of Obesity/Type 2 Diabetes

    PubMed Central

    Raimondi, Laura; Pagano, Claudio; Egan, Josephine M.; Cozzi, Andrea; Cinci, Lorenzo; Loreto, Andrea; Manni, Maria E.; Berretti, Silvia; Morelli, Annamaria; Zheng, Changyu; Michael, Drew G.; Maggi, Mario; Vettor, Roberto; Chiorini, John A.; Mannucci, Edoardo; Rotella, Carlo M.

    2012-01-01

    Exendin-4 (Ex-4) is a Glucagon-like peptide 1 (GLP-1) receptor agonist approved for the treatment of Type 2 Diabetes (T2DM), which requires daily subcutaneous administration. In T2DM patients, GLP-1 administration is reported to reduce glycaemia and HbA1c in association with a modest, but significant weight loss. The aim of present study was to characterize the site-specific profile and metabolic effects of Ex-4 levels expressed from salivary glands (SG) in vivo, following adeno-associated virus-mediated (AAV) gene therapy in two different animal models of obesity prone to impaired glucose tolerance and T2DM, specifically, Zucker fa/fa rats and high fed diet (HFD) mice. Following percutaneous injection of AAV5 into the salivary glands, biologically active Ex-4 was detected in the blood of both animal models and expression persisted in salivary gland ductal cell until the end of the study. In treated mice, Ex-4 levels averaged 138.9±42.3 pmol/L on week 6 and in treated rats, mean circulating Ex-4 levels were 238.2±72 pmol/L on week 4 and continued to increase through week 8. Expression of Ex-4 resulted in a significant decreased weight gain in both mice and rats, significant improvement in glycemic control and/or insulin sensitivity as well as visceral adipose tissue adipokine profile. In conclusion, these results suggest that sustained site-specific expression of Ex-4 following AAV5-mediated gene therapy is feasible and may be useful in the treatment of obesity as well as trigger improved metabolic profile. PMID:22808093

  11. Changes in intestinal immunity, gut microbiota, and expression of energy metabolism-related genes explain adenoma growth in bilberry and cloudberry-fed ApcMin mice.

    PubMed

    Päivärinta, Essi; Niku, Mikael; Maukonen, Johanna; Storvik, Markus; Heiman-Lindh, Anu; Saarela, Maria; Pajari, Anne-Maria; Mutanen, Marja

    2016-11-01

    We showed previously that ellagitannin-rich cloudberries and anthocyanin-rich bilberries reduce the number of intestinal adenomas in multiple intestinal neoplasia/+ (Apc Min ) mice. We also found that cloudberries decreased the size of adenomas, whereas bilberries increased it. Here we hypothesized that the difference in adenoma growth could be explained by dissimilar effects of the berries on intestinal immune responses and gut microbiota, potentially driven by the distinct polyphenol compositions of the 2 berries. Our objectives were to investigate lymphocyte subtypes and the predominant cecal bacterial diversity in mice fed with bilberries and cloudberries, and to analyze global gene expression profiles in the intestinal mucosa. Immunostainings of CD3 + T lymphocytes, FoxP3 + regulatory T lymphocytes, and CD45R + B lymphocytes revealed a smaller ratio of intraepithelial to all mucosal CD3 + T lymphocytes in the cloudberry-fed mice compared with controls, suggesting an attenuation of inflammation. Bilberry feeding induced no changes in the density of any of the lymphocyte subtypes. The predominant bacterial diversity in cecal contents, analyzed using polymerase chain reaction-denaturating gradient gel electrophoresis, was higher in the bilberry group than in the control or cloudberry groups. The microbial profiles of cloudberry-fed mice clustered together and were associated with small adenoma size. Pathway analyses of gene expression data showed that cloudberry down-regulated and bilberry up-regulated the expression of energy metabolism-related genes in the intestinal mucosa. In conclusion, attenuation of intestinal inflammation, changes in microbial profiles, and down-regulation of mucosal energy metabolism may account for the smaller adenoma size in cloudberry-fed mice in comparison to bilberry-fed mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  13. Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes.

    PubMed

    Daskalakis, Nikolaos P; Cohen, Hagit; Cai, Guiqing; Buxbaum, Joseph D; Yehuda, Rachel

    2014-09-16

    Delineating the molecular basis of individual differences in the stress response is critical to understanding the pathophysiology and treatment of posttraumatic stress disorder (PTSD). In this study, 7 d after predator-scent-stress (PSS) exposure, male and female rats were classified into vulnerable (i.e., "PTSD-like") and resilient (i.e., minimally affected) phenotypes on the basis of their performance on a variety of behavioral measures. Genome-wide expression profiling in blood and two limbic brain regions (amygdala and hippocampus), followed by quantitative PCR validation, was performed in these two groups of animals, as well as in an unexposed control group. Differentially expressed genes were identified in blood and brain associated with PSS-exposure and with distinct behavioral profiles postexposure. There was a small but significant between-tissue overlap (4-21%) for the genes associated with exposure-related individual differences, indicating convergent gene expression in both sexes. To uncover convergent signaling pathways across tissue and sex, upstream activated/deactivated transcription factors were first predicted for each tissue and then the respective pathways were identified. Glucocorticoid receptor (GR) signaling was the only convergent pathway associated with individual differences when using the most stringent statistical threshold. Corticosterone treatment 1 h after PSS-exposure prevented anxiety and hyperarousal 7 d later in both sexes, confirming the GR involvement in the PSS behavioral response. In conclusion, genes and pathways associated with extreme differences in the traumatic stress behavioral response can be distinguished from those associated with trauma exposure. Blood-based biomarkers can predict aspects of brain signaling. GR signaling is a convergent signaling pathway, associated with trauma-related individual differences in both sexes.

  14. Errors in CGAP xProfiler and cDNA DGED: the importance of library parsing and gene selection algorithms

    PubMed Central

    2011-01-01

    Background The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. Results We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Conclusion Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used. PMID:21496233

  15. Rice Phospholipase A Superfamily: Organization, Phylogenetic and Expression Analysis during Abiotic Stresses and Development

    PubMed Central

    Singh, Amarjeet; Baranwal, Vinay; Shankar, Alka; Kanwar, Poonam; Ranjan, Rajeev; Yadav, Sandeep; Pandey, Amita; Kapoor, Sanjay; Pandey, Girdhar K.

    2012-01-01

    Background Phospholipase A (PLA) is an important group of enzymes responsible for phospholipid hydrolysis in lipid signaling. PLAs have been implicated in abiotic stress signaling and developmental events in various plants species. Genome-wide analysis of PLA superfamily has been carried out in dicot plant Arabidopsis. A comprehensive genome-wide analysis of PLAs has not been presented yet in crop plant rice. Methodology/Principal Findings A comprehensive bioinformatics analysis identified a total of 31 PLA encoding genes in the rice genome, which are divided into three classes; phospholipase A1 (PLA1), patatin like phospholipases (pPLA) and low molecular weight secretory phospholipase A2 (sPLA2) based on their sequences and phylogeny. A subset of 10 rice PLAs exhibited chromosomal duplication, emphasizing the role of duplication in the expansion of this gene family in rice. Microarray expression profiling revealed a number of PLA members expressing differentially and significantly under abiotic stresses and reproductive development. Comparative expression analysis with Arabidopsis PLAs revealed a high degree of functional conservation between the orthologs in two plant species, which also indicated the vital role of PLAs in stress signaling and plant development across different plant species. Moreover, sub-cellular localization of a few candidates suggests their differential localization and functional role in the lipid signaling. Conclusion/Significance The comprehensive analysis and expression profiling would provide a critical platform for the functional characterization of the candidate PLA genes in crop plants. PMID:22363522

  16. Analysis of plasma microRNA expression profiles revealed different cancer susceptibility in healthy young adult smokers and middle-aged smokers

    PubMed Central

    Shi, Bing; Gao, Hongmin; Zhang, Tianyang; Cui, Qinghua

    2016-01-01

    Cigarette smoking is a world-wide habit and an important risk factor for cancer. It was known that cigarette smoking can change the expression of circulating microRNAs (miRNAs) in healthy middle-aged adults. However, it remains unclear whether cigarette smoking can change the levels of circulating miRNAs in young healthy smokers and whether there are differences in cancer susceptibility for the two cases. In this study, the miRNA expression profiles of 28 smokers and 12 non-smokers were determined by Agilent human MicroRNA array. We further performed bioinformatics analysis for the differentially expressed miRNAs. The result showed that 35 miRNAs were differentially expressed. Among them, 24 miRNAs were up-regulated and 11 miRNAs were down-regulated in smokers. Functional enrichment analysis showed that the deregulated miRNAs are related to immune system and hormones regulation. Strikingly, the up-regulated miRNAs are mostly associated with hematologic cancers, such as lymphoma, leukemia. As a comparison, the up-regulated plasma miRNAs in middle-aged smokers are mostly associated with solid cancers, such as hepatocellular carcinoma and lung cancer, suggesting that smoking could have different influences on young adults and middle-aged adults. In a conclusion, we identified the circulating miRNAs deregulated by cigarette smoking and revealed that the age-dependent deregulated miRNAs tend to be mainly involved in different types of human cancers. PMID:26943588

  17. Analysis of plasma microRNA expression profiles revealed different cancer susceptibility in healthy young adult smokers and middle-aged smokers.

    PubMed

    Shi, Bing; Gao, Hongmin; Zhang, Tianyang; Cui, Qinghua

    2016-04-19

    Cigarette smoking is a world-wide habit and an important risk factor for cancer. It was known that cigarette smoking can change the expression of circulating microRNAs (miRNAs) in healthy middle-aged adults. However, it remains unclear whether cigarette smoking can change the levels of circulating miRNAs in young healthy smokers and whether there are differences in cancer susceptibility for the two cases. In this study, the miRNA expression profiles of 28 smokers and 12 non-smokers were determined by Agilent human MicroRNA array. We further performed bioinformatics analysis for the differentially expressed miRNAs. The result showed that 35 miRNAs were differentially expressed. Among them, 24 miRNAs were up-regulated and 11 miRNAs were down-regulated in smokers. Functional enrichment analysis showed that the deregulated miRNAs are related to immune system and hormones regulation. Strikingly, the up-regulated miRNAs are mostly associated with hematologic cancers, such as lymphoma, leukemia. As a comparison, the up-regulated plasma miRNAs in middle-aged smokers are mostly associated with solid cancers, such as hepatocellular carcinoma and lung cancer, suggesting that smoking could have different influences on young adults and middle-aged adults. In a conclusion, we identified the circulating miRNAs deregulated by cigarette smoking and revealed that the age-dependent deregulated miRNAs tend to be mainly involved in different types of human cancers.

  18. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    PubMed Central

    Pfeifer, N.; Baston-Büst, D. M.; Hirchenhain, J.; Friebe-Hoffmann, U.; Rein, D. T.; Krüssel, J. S.; Hess, A. P.

    2012-01-01

    Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies. PMID:22919324

  19. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    PubMed Central

    2013-01-01

    Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826

  20. MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia

    PubMed Central

    Verboon, Lonneke J.; Obulkasim, Askar; de Rooij, Jasmijn D.E.; Katsman, Jenny E.; Sonneveld, Edwin; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Pieters, Rob; Cloos, Jacqueline; Kaspers, Gertjan J.L.; Klusmann, Jan-Henning; Zwaan, Christian Michel; Fornerod, Maarten; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    The most important reason for therapy failure in pediatric acute myeloid leukemia (AML) is relapse. In order to identify miRNAs that contribute to the clonal evolution towards relapse in pediatric AML, miRNA expression profiling of 127 de novo pediatric AML cases were used. In the diagnostic phase, no miRNA signatures could be identified that were predictive for relapse occurrence, in a large pediatric cohort, nor in a nested mixed lineage leukemia (MLL)-rearranged pediatric cohort. AML with MLL- rearrangements are found in 15-20% of all pediatric AML samples, and reveal a relapse rate up to 50% for certain translocation partner subgroups. Therefore, microRNA expression profiling of six paired initial diagnosis-relapse MLL-rearranged pediatric AML samples (test cohort) and additional eight paired initial diagnosis-relapse samples with MLL-rearrangements (validation cohort) was performed. A list of 53 differentially expressed miRNAs was identified of which the miR-106b~25 cluster, located in intron 13 of MCM7, was the most prominent. These differentially expressed miRNAs however could not predict a relapse in de novo AML samples with MLL-rearrangements at diagnosis. Furthermore, higher mRNA expression of both MCM7 and its upstream regulator E2F1 was found in relapse samples with MLL-rearrangements. In conclusion, we identified the miR-106b~25 cluster to be upregulated in relapse pediatric AML with MLL-rearrangements. PMID:27351222

  1. Expression of NK Cell Surface Receptors in Breast Cancer Tissue as Predictors of Resistance to Antineoplastic Treatment

    PubMed Central

    Mariel, Garcia-Chagollan; Edith, Carranza-Torres Irma; Pilar, Carranza-Rosales; Elena, Guzmán-Delgado Nancy; Humberto, Ramírez-Montoya; Guadalupe, Martínez-Silva María; Ignacio, Mariscal-Ramirez; Alfredo, Barrón-Gallardo Carlos; Laura, Pereira-Suárez Ana; Adriana, Aguilar-Lemarroy; Felipe, Jave-Suárez Luis

    2018-01-01

    Background: Currently, one of the most used strategies for the treatment of newly diagnosed patients with breast cancer is neoadjuvant chemotherapy based on the application of taxanes and anthracyclines. However, despite the high number of patients who develop a complete pathological clinical response, resistance and relapse following this therapy continue to be a clinical challenge. As a component of the innate immune system, the cytotoxic function of Natural Killer (NK) cells plays an important role in the elimination of tumor cells. However, the role of NK cells in resistance to systemic therapy in breast cancer remains unclear. The present project aims to evaluate the gene expression profile of human NK cells in breast cancer tissue resistant to treatment with taxanes–anthracyclines. Methods: Biopsies from tumor tissues were obtained from patients with breast cancer without prior treatment. Histopathological analysis and ex vivo exposure to antineoplastic chemotherapeutics were carried out. Alamar blue and lactate dehydrogenase release assays were performed for quantitative analysis of tumor viability. Gene expression profiles from tumor tissues without prior exposure to therapeutic drugs were analyzed by gene expression microarrays and verified by polymerase chain reaction. Results: A significant decrease in gene expression of cell-surface receptors related to NK cells was observed in tumor samples resistant to antineoplastic treatment compared with those that were sensitive to treatment. Conclusion: A decrease in NK cell infiltration into tumor tissue might be a predictive marker for failure of chemotherapeutic treatment in breast cancer. PMID:29558872

  2. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line

    PubMed Central

    2011-01-01

    Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699

  3. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.

    PubMed

    He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang

    2017-11-06

    Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  4. The Non-linear Trajectory of Change in Play Profiles of Three Children in Psychodynamic Play Therapy

    PubMed Central

    Halfon, Sibel; Çavdar, Alev; Orsucci, Franco; Schiepek, Gunter K.; Andreassi, Silvia; Giuliani, Alessandro; de Felice, Giulio

    2016-01-01

    Aim: Even though there is substantial evidence that play based therapies produce significant change, the specific play processes in treatment remain unexamined. For that purpose, processes of change in long-term psychodynamic play therapy are assessed through a repeated systematic assessment of three children’s “play profiles,” which reflect patterns of organization among play variables that contribute to play activity in therapy, indicative of the children’s coping strategies, and an expression of their internal world. The main aims of the study are to investigate the kinds of play profiles expressed in treatment, and to test whether there is emergence of new and more adaptive play profiles using dynamic systems theory as a methodological framework. Methods and Procedures: Each session from the long-term psychodynamic treatment (mean number of sessions = 55) of three 6-year-old good outcome cases presenting with Separation Anxiety were recorded, transcribed and coded using items from the Children’s Play Therapy Instrument (CPTI), created to assess the play activity of children in psychotherapy, generating discrete and measurable units of play activity arranged along a continuum of four play profiles: “Adaptive,” “Inhibited,” “Impulsive,” and “Disorganized.” The play profiles were clustered through K-means Algorithm, generating seven discrete states characterizing the course of treatment and the transitions between these states were analyzed by Markov Transition Matrix, Recurrence Quantification Analysis (RQA) and odds ratios comparing the first and second halves of psychotherapy. Results: The Markov Transitions between the states scaled almost perfectly and also showed the ergodicity of the system, meaning that the child can reach any state or shift to another one in play. The RQA and odds ratios showed two trends of change, first concerning the decrease in the use of “less adaptive” strategies, second regarding the reduction of play interruptions. Conclusion: The results support that these children express different psychic states in play, which can be captured through the lens of play profiles, and begin to modify less dysfunctional profiles over the course of treatment. The methodology employed showed the productivity of treating psychodynamic play therapy as a complex system, taking advantage of non-linear methods to study psychotherapeutic play activity. PMID:27777561

  5. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor), Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    PubMed Central

    Harris, Rebecca Louise; van den Berg, Carmen Wilma; Bowen, Derrick John

    2012-01-01

    Background. The asialoglycoprotein receptor (ASGPR) is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2), encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR), expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver. PMID:22919488

  6. Prognostic impact of a compartment-specific angiogenic marker profile in patients with pancreatic cancer.

    PubMed

    Kahlert, Christoph; Fiala, Maria; Musso, Gabriel; Halama, Niels; Keim, Sophia; Mazzone, Massimiliano; Lasitschka, Felix; Pecqueux, Mathieu; Klupp, Fee; Schmidt, Thomas; Rahbari, Nuh; Schölch, Sebastian; Pilarsky, Christian; Ulrich, Alexis; Schneider, Martin; Weitz, Juergen; Koch, Moritz

    2014-12-30

    Pancreatic cancer consists of a heterogenous bulk of tumor cells and stroma cells which contribute to tumor progression by releasing angiogenic factors. Those factors can be detected as circulating serum factors. We performed a compartment-specific analysis of tumor-derived and stroma-derived angiogenic factors to identify biomarkers and molecular targets for the treatment of pancreatic cancer. Kryo-frozen tissue from primary ductal adenocarcinomas (n = 51) was laser-microdissected to isolate tumor and stroma tissue. Expression of 17 angiogenic factors (angiopoietin-2, follistatin, GCSF, HGF, interleukin-8, leptin, PDGF-BB, PECAM-1, VEGF, matrix metalloproteinase -1, -2, -3, -7, -9, -10, -12, and -13) was analyzed using a multiplex elisa assay for tissue-derived proteins and corresponding serum. Our study reveals a compartment-specific expression profile for several angiogenic factors and matrix metalloproteinases. ROC analysis of corresponding serum samples reveals MMP-7 and MMP-12 as strong classifiers for the diagnosis of patients with pancreatic cancer vs. healthy control donors. High expression of tumor-derived PDGF-BB and MMP-1 correlates with prolonged survival in univariate and multivariate analysis. In conclusion, a distinct expression patterns for angiogenic cytokines and MMPs in pancreatic cancer and surrounding stroma may implicate them as novel targets for cancer treatment. Tumor-derived PDGF-BB and MMP-1 are significant and independent prognostic markers for poor survival.

  7. Activation of choline kinase drives aberrant choline metabolism in esophageal squamous cell carcinomas.

    PubMed

    Ma, Wang; Wang, Shuangyuan; Zhang, Tengfei; Zhang, Erik Y; Zhou, Lina; Hu, Chunxiu; Yu, Jane J; Xu, Guowang

    2018-06-05

    Esophageal squamous cell carcinoma (ESCC) is a major health threat worldwide. Research focused on molecular events associated with ESCC carcinogenesis for diagnosis, treatment and prevention is needed. Our goal is to discover novel biomarkers and investigate the underlying molecular mechanisms of ESCC progression by employing a global metabolomic approach. Sera from 34 ESCC patients and 32 age and sex matched healthy controls were profiled using two-dimensional liquid chromatography-mass spectrometry (2D LC-MS). We identified 120 differential metabolites in ESCC patient serums compared to healthy controls. Several amino acids, serine, arginine, lysine and histidine were significantly changed in ESCC patients. Most importantly, we found dysregulated lipid metabolism as an important characteristic in ESCC patients. Several free fat acids (FFA) and carnitines were found down-regulated in ESCC patients. Choline was significantly increased and phosphatidylcholines (PC) were significantly decreased in ESCC serum. The high expression of choline and low expression of total PC in patient serum were associated with the high expression of choline kinase (Chok) and activated Kennedy pathway in ESCC cells. Chok expression can serve as a significant biomarker for ESCC prognosis. In conclusion, metabolite profiles in the ESCC patient serum were significantly different from those in the healthy controls. Phosphatidylcholines and Chok, the key enzyme in the PC metabolism pathway, may serve as novel biomarkers for ESCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The Profile of Heparanase Expression Distinguishes Differentiated Thyroid Carcinoma from Benign Neoplasms

    PubMed Central

    Matos, Leandro Luongo; Suarez, Eloah Rabello; Theodoro, Thérèse Rachell; Trufelli, Damila Cristina; Melo, Carina Mucciolo; Garcia, Larissa Ferraz; Oliveira, Olivia Capela Grimaldi; Matos, Maria Graciela Luongo; Kanda, Jossi Ledo; Nader, Helena Bonciani; Martins, João Roberto Maciel; Pinhal, Maria Aparecida Silva

    2015-01-01

    Introduction The search for a specific marker that could help to distinguish between differentiated thyroid carcinoma and benign lesions remains elusive in clinical practice. Heparanase (HPSE) is an endo-beta-glucoronidase implicated in the process of tumor invasion, and the heparanase-2 (HPSE2) modulates HPSE activity. The aim of this study was to evaluate the role of heparanases in the development and differential diagnosis of follicular pattern thyroid lesions. Methods HPSE and HPSE2 expression by qRT-PCR, immunohistochemistry evaluation, western blot analysis and HPSE enzymatic activity were evaluated. Results The expression of heparanases by qRT-PCR showed an increase of HPSE2 in thyroid carcinoma (P = 0.001). HPSE activity was found to be higher in the malignant neoplasms than in the benign tumors (P<0.0001). On Western blot analysis, HPSE2 isoforms were detected only in malignant tumors. The immunohistochemical assay allowed us to establish a distinct pattern for malignant and benign tumors. Carcinomas showed a typical combination of positive labeling for neoplastic cells and negative immunostaining in colloid, when compared to benign tumors (P<0.0001). The proposed diagnostic test presents sensitivity and negative predictive value of around 100%, showing itself to be an accurate test for distinguishing between malignant and benign lesions. Conclusions This study shows, for the first time, a distinct profile of HPSE expression in thyroid carcinoma suggesting its role in carcinogenesis. PMID:26488476

  9. Early diffusion of gene expression profiling in breast cancer patients associated with areas of high income inequality.

    PubMed

    Ponce, Ninez A; Ko, Michelle; Liang, Su-Ying; Armstrong, Joanne; Toscano, Michele; Chanfreau-Coffinier, Catherine; Haas, Jennifer S

    2015-04-01

    With the Affordable Care Act reducing coverage disparities, social factors could prominently determine where and for whom innovations first diffuse in health care markets. Gene expression profiling is a potentially cost-effective innovation that guides chemotherapy decisions in early-stage breast cancer, but adoption has been uneven across the United States. Using a sample of commercially insured women, we evaluated whether income inequality in metropolitan areas was associated with receipt of gene expression profiling during its initial diffusion in 2006-07. In areas with high income inequality, gene expression profiling receipt was higher than elsewhere, but it was associated with a 10.6-percentage-point gap between high- and low-income women. In areas with low rates of income inequality, gene expression profiling receipt was lower, with no significant differences by income. Even among insured women, income inequality may indirectly shape diffusion of gene expression profiling, with benefits accruing to the highest-income patients in the most unequal places. Policies reducing gene expression profiling disparities should address low-inequality areas and, in unequal places, practice settings serving low-income patients. Project HOPE—The People-to-People Health Foundation, Inc.

  10. Effect of Korean Red Ginseng treatment on the gene expression profile of diabetic rat retina

    PubMed Central

    Yang, Hana; Son, Gun Woo; Park, Hye Rim; Lee, Seung Eun; Park, Yong Seek

    2015-01-01

    Background Korean Red Ginseng (KRG) is a herbal medicine used in Asian countries and is very popular for its beneficial biological properties. Diabetes mellitus (DM) and its complications are rapidly becoming a global public health concern. The literature on transcriptional changes induced by KRG in rat models of diabetic retinopathy is limited. Considering these facts, we designed this study to determine whether retinopathy-associated genes are altered in retinas of rats with DM and whether the induced changes are reversed by KRG. Methods Male Sprague–Dawley rats were intravenously injected with streptozotocin (50 mg/kg body weight) to induce DM, following which, KRG powder (200 mg/kg body weight) was orally administered to the KRG-treated DM rat group for 10 wks. The rats were then sacrificed, and their retinas were harvested for total RNA extraction. Microarray gene expression profiling was performed on the extracted RNA samples. Results From among > 31,000 genes investigated, the expression of 268 genes was observed to be upregulated and that of 58 genes was downregulated, with twofold altered expression levels in the DM group compared with those in the control group. Moreover, 39 genes were upregulated more than twofold and 84 genes were downregulated in the KRG-treated group compared to the DM group. The expression of the genes was significantly reversed by KRG treatment; some of these genes were analyzed further to verify the results of the microarray experiments. Conclusion Taken together, our data suggest that reversed changes in the gene expression may mediate alleviating activities of KRG in rats with diabetic retinopathy. PMID:26843816

  11. TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    PubMed Central

    2010-01-01

    Background Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis. PMID:20799941

  12. Cadmium modifies the cell cycle and apoptotic profiles of human breast cancer cells treated with 5-fluorouracil.

    PubMed

    Asara, Yolande; Marchal, Juan A; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-08-12

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  13. Modification of N6-methyladenosine RNA methylation on heat shock protein expression.

    PubMed

    Yu, Jiayao; Li, Yi; Wang, Tian; Zhong, Xiang

    2018-01-01

    This study was conducted to investigate effect of N6-methyladenosine (m6A) RNA methylation on Heat shock proteins (HSPs) and dissect the profile of HSP RNA methylation. The results showed that m6A methyltransferases METTL3 mRNA was decreased in responses to heat shock stress in HepG2 cells, but m6A-specific binding protein YTHDF2 mRNA was upregulated in a manner similar to HSP70 induction. Immunofluorescence staining showed that the majority of YTHDF2 was present in the cytosol, however, nearly all YTHDF2 translocated from the cytosol into the nucleus after heat shock. METTL3 knockdown significantly changed HSP70, HSP60, and HSP27 mRNA expression in HepG2 cells using siRNA, however, mRNA lifetime was not impacted. Silence of YTHDF2 using siRNA did not change expression of HSP70, but significantly increased HSP90, HSP60, and HSPB1 mRNA expression. In addition, m6A-seq revealed that HSP m6A methylation peaks are mainly enriched on exons and around stop codons, and shows a unique distribution profile in the 5'UTR and 3'UTR. Knockdown of METTL3 changed the methylation patterns of HSPs transcript. In conclusion, m6A RNA methylation regulates HSP gene expression. Differential expression of HSPs modulated by m6A may depend on the m6A site and abundance of the target gene. This finding provides insights into new regulatory mechanisms of HSPs in normal and stress situations.

  14. Protein Expression Profile using Two-Dimensional Gel Analysis in Squamous Cervical Cancer Patients

    PubMed Central

    Bae, Su-Mi; Min, Hyun-Jin; Ding, Guo Hua; Kwak, Sun-Young; Cho, Young-Lae; Nam, Kye-Hyun; Park, Choong Hak; Kim, Yong-Wan; Kim, Chong-Kook; Han, Byoung-Don; Lee, Young-Joo; Kim, Do Kang

    2006-01-01

    Purpose Screening in cervical cancer is now progressing to discover candidate genes and proteins that may serve as biological markers and that play a role in tumor progression. We examined the protein expression patterns of the squamous cell carcinoma (SCC) tissues from Korean women with using two- dimensional polyacrylamide gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight (MALDI- TOF) mass spectrometer. Materials and Methods Normal cervix and SCC tissues were solubilized and 2-DE was performed using pH 3~10 linear IPG strips of 17 cm length. The protein expression was evaluated using PDQuest 2-D software™. The differentially expressed protein spots were identified with a MALDI-TOF mass spectrometer, and the peptide mass spectra identifications were performed using the Mascot program and by searching the Swiss-prot or NCBInr databases. Results A total of 35 proteins were detected in SCC. 17 proteins were up-regulated and 18 proteins weredown-regulated. Among the proteins that were identified, 12 proteins (pigment epithelium derived factor, annexin A2 and A5, keratin 19 and 20, heat shock protein 27, smooth muscle protein 22 alpha, α-enolase, squamous cell carcinoma antigen 1 and 2, glutathione S-transferase and apolipoprotein a1) were protein previously known to be involved in tumor, and 21 proteins were newly identified in this study. Conclusion 2-DE offers the total protein expression profiles of SCC tissues; further characterization of these differentially expressed proteins will give a chance to identify the badly needed tumor-specific diagnostic markers for SCC. PMID:19771267

  15. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    PubMed Central

    Asara, Yolande; Marchal, Juan A.; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A.; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-01-01

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd. PMID:23941782

  16. Expression profile of circular RNAs in human gastric cancer tissues

    PubMed Central

    Huang, You-Sheng; Jie, Na; Zou, Ke-Jian; Weng, Yang

    2017-01-01

    Circular RNAs (circRNAs) represent a newly identified class of non-coding RNA molecules, which interfere with gene transcription by adsorbing microRNAs (miRNAs). CircRNAs serve important roles in disease development and have the potential to serve as a novel class of biomarkers for clinical diagnosis. However, the role of circRNAs in the occurrence and development of gastric cancer (GC) remains unclear. In the present study, the expression profiles of circRNAs were compared between GC and adjacent normal tissues using a circRNA microarray, following which quantitative polymerase chain reaction (qPCR) was used to confirm the results of the circRNA microarray. Compared with the adjacent, normal mucosal tissues, 16 circRNAs were upregulated and 84 circRNAs were downregulated in GC. A total of 10 circRNAs were selected for validation in three pairs of GC and adjacent noncancerous tissues. The qPCR results were consistent with the findings of the microarray-based expression analysis. Of the circRNAs studied, only circRNA-0026 (hsa_circ_0000026) exhibited significantly different expression in GC (2.8-fold, P=0.001). Furthermore, online Database for Annotation, Visualization and Integrated Discovery annotation was used to predict circRNA-targeted miRNA-gene interactions. The analysis revealed that circRNA-0026 may regulate RNA transcription, RNA metabolism, gene expression, gene silencing and other biological functions in GC. In conclusion, differential expression of circRNAs may be associated with GC tumorigenesis, and circRNA-0026 is a promising biomarker for GC diagnosis and targeted therapy. PMID:28737829

  17. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    PubMed Central

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  18. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice

    PubMed Central

    2012-01-01

    Background WD40 proteins represent a large family in eukaryotes, which have been involved in a broad spectrum of crucial functions. Systematic characterization and co-expression analysis of OsWD40 genes enable us to understand the networks of the WD40 proteins and their biological processes and gene functions in rice. Results In this study, we identify and analyze 200 potential OsWD40 genes in rice, describing their gene structures, genome localizations, and evolutionary relationship of each member. Expression profiles covering the whole life cycle in rice has revealed that transcripts of OsWD40 were accumulated differentially during vegetative and reproductive development and preferentially up or down-regulated in different tissues. Under phytohormone treatments, 25 OsWD40 genes were differentially expressed with treatments of one or more of the phytohormone NAA, KT, or GA3 in rice seedlings. We also used a combined analysis of expression correlation and Gene Ontology annotation to infer the biological role of the OsWD40 genes in rice. The results suggested that OsWD40 genes may perform their diverse functions by complex network, thus were predictive for understanding their biological pathways. The analysis also revealed that OsWD40 genes might interact with each other to take part in metabolic pathways, suggesting a more complex feedback network. Conclusions All of these analyses suggest that the functions of OsWD40 genes are diversified, which provide useful references for selecting candidate genes for further functional studies. PMID:22429805

  19. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments

    PubMed Central

    2013-01-01

    Background High-throughput RNA sequencing (RNA-seq) offers unprecedented power to capture the real dynamics of gene expression. Experimental designs with extensive biological replication present a unique opportunity to exploit this feature and distinguish expression profiles with higher resolution. RNA-seq data analysis methods so far have been mostly applied to data sets with few replicates and their default settings try to provide the best performance under this constraint. These methods are based on two well-known count data distributions: the Poisson and the negative binomial. The way to properly calibrate them with large RNA-seq data sets is not trivial for the non-expert bioinformatics user. Results Here we show that expression profiles produced by extensively-replicated RNA-seq experiments lead to a rich diversity of count data distributions beyond the Poisson and the negative binomial, such as Poisson-Inverse Gaussian or Pólya-Aeppli, which can be captured by a more general family of count data distributions called the Poisson-Tweedie. The flexibility of the Poisson-Tweedie family enables a direct fitting of emerging features of large expression profiles, such as heavy-tails or zero-inflation, without the need to alter a single configuration parameter. We provide a software package for R called tweeDEseq implementing a new test for differential expression based on the Poisson-Tweedie family. Using simulations on synthetic and real RNA-seq data we show that tweeDEseq yields P-values that are equally or more accurate than competing methods under different configuration parameters. By surveying the tiny fraction of sex-specific gene expression changes in human lymphoblastoid cell lines, we also show that tweeDEseq accurately detects differentially expressed genes in a real large RNA-seq data set with improved performance and reproducibility over the previously compared methodologies. Finally, we compared the results with those obtained from microarrays in order to check for reproducibility. Conclusions RNA-seq data with many replicates leads to a handful of count data distributions which can be accurately estimated with the statistical model illustrated in this paper. This method provides a better fit to the underlying biological variability; this may be critical when comparing groups of RNA-seq samples with markedly different count data distributions. The tweeDEseq package forms part of the Bioconductor project and it is available for download at http://www.bioconductor.org. PMID:23965047

  20. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    PubMed

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.

  1. Mucin gene expression in human male urogenital tract epithelia

    PubMed Central

    Russo, Cindy Leigh; Spurr-Michaud, Sandra; Tisdale, Ann; Pudney, Jeffrey; Anderson, Deborah; Gipson, Ilene K.

    2010-01-01

    BACKGROUND Mucins are large, hydrophilic glycoproteins that protect wet-surfaced epithelia from pathogen invasion as well as provide lubrication. At least 17 mucin genes have been cloned to date. This study sought to determine the mucin gene expression profile of the human male urogenital tract epithelia, to determine if mucins are present in seminal fluid, and to assess the effect of androgens on mucin expression. METHODS AND RESULTS Testis, epididymis, vas deferens, seminal vesicle, prostate, bladder, urethra and foreskin were assessed for mucin expression by RT-PCR and immunohistochemistry. Epithelia of the vas deferens, prostate and urethra expressed the greatest number of mucins, each expressing 5–8 mucins. Messenger RNA of MUC1 and MUC20, both membrane-associated mucins, were detected in most tissues analyzed. Conversely, MUC6 was predominantly detected in seminal vesicle. MUC1, MUC5B and MUC6 were detected in seminal fluid samples by immunoblot analysis. Androgens had no effect on mucin expression by cultured human prostatic epithelial cells. CONCLUSIONS Each region of urogenital tract epithelium expressed a unique mucin gene repertoire. Secretory mucins are present in seminal fluid, and androgens do not appear to regulate mucin gene expression. PMID:16997931

  2. RNA-Stabilized Whole Blood Samples but Not Peripheral Blood Mononuclear Cells Can Be Stored for Prolonged Time Periods Prior to Transcriptome Analysis

    PubMed Central

    Debey-Pascher, Svenja; Hofmann, Andrea; Kreusch, Fatima; Schuler, Gerold; Schuler-Thurner, Beatrice; Schultze, Joachim L.; Staratschek-Jox, Andrea

    2011-01-01

    Microarray-based transcriptome analysis of peripheral blood as surrogate tissue has become an important approach in clinical implementations. However, application of gene expression profiling in routine clinical settings requires careful consideration of the influence of sample handling and RNA isolation methods on gene expression profile outcome. We evaluated the effect of different sample preservation strategies (eg, cryopreservation of peripheral blood mononuclear cells or freezing of PAXgene-stabilized whole blood samples) on gene expression profiles. Expression profiles obtained from cryopreserved peripheral blood mononuclear cells differed substantially from those of their nonfrozen counterpart samples. Furthermore, expression profiles in cryopreserved peripheral blood mononuclear cell samples were found to undergo significant alterations with increasing storage period, whereas long-term freezing of PAXgene RNA stabilized whole blood samples did not significantly affect stability of gene expression profiles. This report describes important technical aspects contributing toward the establishment of robust and reliable guidance for gene expression studies using peripheral blood and provides a promising strategy for reliable implementation in routine handling for diagnostic purposes. PMID:21704280

  3. Molecular profiling of ETS and non‐ETS aberrations in prostate cancer patients from northern India

    PubMed Central

    Kunju, Lakshmi P.; Carskadon, Shannon L.; Pandey, Swaroop K.; Singh, Geetika; Pradeep, Immanuel; Tandon, Vini; Singhai, Atin; Goel, Apul; Amit, Sonal; Agarwal, Asha; Dinda, Amit K.; Seth, Amlesh; Tsodikov, Alexander; Chinnaiyan, Arul M.; Palanisamy, Nallasivam

    2015-01-01

    Abstract BACKGROUND Molecular stratification of prostate cancer (PCa) based on genetic aberrations including ETS or RAF gene‐rearrangements, PTEN deletion, and SPINK1 over‐expression show clear prognostic and diagnostic utility. Gene rearrangements involving ETS transcription factors are frequent pathogenetic somatic events observed in PCa. Incidence of ETS rearrangements in Caucasian PCa patients has been reported, however, occurrence in Indian population is largely unknown. The aim of this study was to determine the prevalence of the ETS and RAF kinase gene rearrangements, SPINK1 over‐expression, and PTEN deletion in this cohort. METHODS In this multi‐center study, formalin‐fixed paraffin embedded (FFPE) PCa specimens (n = 121) were procured from four major medical institutions in India. The tissues were sectioned and molecular profiling was done using immunohistochemistry (IHC), RNA in situ hybridization (RNA‐ISH) and/or fluorescence in situ hybridization (FISH). RESULTS ERG over‐expression was detected in 48.9% (46/94) PCa specimens by IHC, which was confirmed in a subset of cases by FISH. Among other ETS family members, while ETV1 transcript was detected in one case by RNA‐ISH, no alteration in ETV4 was observed. SPINK1 over‐expression was observed in 12.5% (12/96) and PTEN deletion in 21.52% (17/79) of the total PCa cases. Interestingly, PTEN deletion was found in 30% of the ERG‐positive cases (P = 0.017) but in only one case with SPINK1 over‐expression (P = 0.67). BRAF and RAF1 gene rearrangements were detected in ∼1% and ∼4.5% of the PCa cases, respectively. CONCLUSIONS This is the first report on comprehensive molecular profiling of the major spectrum of the causal aberrations in Indian men with PCa. Our findings suggest that ETS gene rearrangement and SPINK1 over‐expression patterns in North Indian population largely resembled those observed in Caucasian population but differed from Japanese and Chinese PCa patients. The molecular profiling data presented in this study could help in clinical decision‐making for the pursuit of surgery, diagnosis, and in selection of therapeutic intervention. Prostate 75:1051–1062, 2015. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25809148

  4. Identification of GRB2 and GAB1 Coexpression as an Unfavorable Prognostic Factor for Hepatocellular Carcinoma by a Combination of Expression Profile and Network Analysis

    PubMed Central

    Yang, Mei; Wang, Danhua; Yu, Lingxiang; Guo, Chaonan; Guo, Xiaodong; Lin, Na

    2013-01-01

    Aim To screen novel markers for hepatocellular carcinoma (HCC) by a combination of expression profile, interaction network analysis and clinical validation. Methods HCC significant molecules which are differentially expressed or had genetic variations in HCC tissues were obtained from five existing HCC related databases (OncoDB.HCC, HCC.net, dbHCCvar, EHCO and Liverome). Then, the protein-protein interaction (PPI) network of these molecules was constructed. Three topological features of the network ('Degree', 'Betweenness', and 'Closeness') and the k-core algorithm were used to screen candidate HCC markers which play crucial roles in tumorigenesis of HCC. Furthermore, the clinical significance of two candidate HCC markers growth factor receptor-bound 2 (GRB2) and GRB2-associated-binding protein 1 (GAB1) was validated. Results In total, 6179 HCC significant genes and 977 HCC significant proteins were collected from existing HCC related databases. After network analysis, 331 candidate HCC markers were identified. Especially, GAB1 has the highest k-coreness suggesting its central localization in HCC related network, and the interaction between GRB2 and GAB1 has the largest edge-betweenness implying it may be biologically important to the function of HCC related network. As the results of clinical validation, the expression levels of both GRB2 and GAB1 proteins were significantly higher in HCC tissues than those in their adjacent nonneoplastic tissues. More importantly, the combined GRB2 and GAB1 protein expression was significantly associated with aggressive tumor progression and poor prognosis in patients with HCC. Conclusion This study provided an integrative analysis by combining expression profile and interaction network analysis to identify a list of biologically significant HCC related markers and pathways. Further experimental validation indicated that the aberrant expression of GRB2 and GAB1 proteins may be strongly related to tumor progression and prognosis in patients with HCC. The overexpression of GRB2 in combination with upregulation of GAB1 may be an unfavorable prognostic factor for HCC. PMID:24391994

  5. Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum

    PubMed Central

    Montalvillo, Enrique; Bernardo, David; Martínez-Abad, Beatriz; Allegretti, Yessica; Fernández-Salazar, Luis; Calvo, Carmen; Chirdo, Fernando G.; Garrote, José A.; Arranz, Eduardo

    2015-01-01

    Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum. PMID:26529008

  6. Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum.

    PubMed

    Montalvillo, Enrique; Bernardo, David; Martínez-Abad, Beatriz; Allegretti, Yessica; Fernández-Salazar, Luis; Calvo, Carmen; Chirdo, Fernando G; Garrote, José A; Arranz, Eduardo

    2015-10-30

    Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum.

  7. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    PubMed

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. HIV-1 Infection of Primary CD4+ T Cells Regulates the Expression of Specific Human Endogenous Retrovirus HERV-K (HML-2) Elements.

    PubMed

    Young, George R; Terry, Sandra N; Manganaro, Lara; Cuesta-Dominguez, Alvaro; Deikus, Gintaras; Bernal-Rubio, Dabeiba; Campisi, Laura; Fernandez-Sesma, Ana; Sebra, Robert; Simon, Viviana; Mulder, Lubbertus C F

    2018-01-01

    Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathological states, such as viral infections and certain cancers, coincide with ERV expression, suggesting that transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic. Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1-infected primary human CD4 + T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read single-molecule real-time sequencing. We show that three HML-2 proviruses-6q25.1, 8q24.3, and 19q13.42-are upregulated on average between 3- and 5-fold in HIV-1-infected CD4 + T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication. In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4 + T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication. IMPORTANCE Endogenous retroviruses inhabit big portions of our genome. Moreover, although they are mainly inert, some of the evolutionarily younger members maintain the ability to express both RNA and proteins. We have developed an approach using long-read single-molecule real-time (SMRT) sequencing that produces long reads that allow us to obtain detailed and accurate HERV-K HML-2 expression profiles. We applied this approach to study HERV-K expression in the presence or absence of productive HIV-1 infection of primary human CD4 + T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results presented here provide a blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1. Copyright © 2017 American Society for Microbiology.

  9. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls

    PubMed Central

    Titulaer, Mark K; Siccama, Ivar; Dekker, Lennard J; van Rijswijk, Angelique LCT; Heeren, Ron MA; Sillevis Smitt, Peter A; Luider, Theo M

    2006-01-01

    Background Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. Results A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. Conclusion The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry experiments. It is expected that the higher resolution and mass accuracy of the FT-ICR mass spectrometry prevents the clustering of peaks of different peptides and allows the identification of differentially expressed proteins from the peptide profiles. PMID:16953879

  10. Identification of Fibroblast Growth Factor-18 as a Molecule to Protect Adult Articular Cartilage by Gene Expression Profiling*

    PubMed Central

    Mori, Yoshifumi; Saito, Taku; Chang, Song Ho; Kobayashi, Hiroshi; Ladel, Christoph H.; Guehring, Hans; Chung, Ung-il; Kawaguchi, Hiroshi

    2014-01-01

    To identify genes that maintain the homeostasis of adult articular cartilage and regenerate its lesions, we initially compared four types of chondrocytes: articular (AA) versus growth plate (AG) cartilage chondrocytes in adult rats, and superficial layer (IS) versus deep layer (ID) chondrocytes of epiphyseal cartilage in infant rats. Microarray analyses revealed that 40 and 186 genes had ≥10-fold higher expression ratios of AA/AG and IS/ID, respectively, and 16 genes showed ≥10-fold of both AA/AG and IS/ID ratios. The results were validated by real-time RT-PCR analysis. Among them, Hoxd1, Fgf18, and Esm1 were expressed more strongly in AA than in IS. Fgf18 was the extracellular and secreted factor that decreased glycosaminoglycan release and depletion from the cartilage, and enhanced proliferation of articular chondrocytes. Fgf18 was strongly expressed in the articular cartilage chondrocytes of adult rats. In a surgical rat osteoarthritis model, a once-weekly injection of recombinant human FGF18 (rhFGF18) given 3 weeks after surgery prevented cartilage degeneration in a dose-dependent manner at 6 and 9 weeks after surgery, with significant effect at 10 μg/week of rhFGF18. As the underlying mechanism, rhFGF18 strongly up-regulated Timp1 expression in the cell and organ cultures, and inhibition of aggrecan release by rhFGF18 was restored by addition of an antibody to Timp1. In conclusion, we have identified Fgf18 as a molecule that protects articular cartilage by gene expression profiling, and the anticatabolic effects may at least partially be mediated by the Timp1 expression. PMID:24577103

  11. Preimplantation Kidney Biopsies of Extended Criteria Donors Have a Heavier Inflammatory Burden Than Kidneys From Standard Criteria Donors

    PubMed Central

    Mazeti-Felicio, Camila M.; Caldas, Heloisa C.; Fernandes-Charpiot, Ida M.M.; Dezotti, Camila Z.; Baptista, Maria A.S.F.; Abbud-Filho, Mario

    2017-01-01

    Background Donors after brain death develop a systemic proinflammatory state that may predispose the kidneys to injury after transplantation. Because it is not known whether this inflammatory environment similarly affects the kidneys from expanded criteria donor (ECD) and standard criteria donors (SCD), we sought to evaluate differences in the gene expression of inflammatory cytokines in preimplantation biopsies (PIBx) from ECD and SCD kidneys. Methods Cytokines gene expression was measured in 80 PIBx (SCD, 52; ECD, 28) and associated with donor variables. Results Normal histology and chronic histological lesions were not different between both types of kidneys. ECD kidneys showed significant increase in the transcripts of MCP-1, RANTES, TGF-β1, and IL-10 when compared with SCD. Kidneys presenting normal histology had similar inflammatory profile except by a higher expression of RANTES observed in ECD (P = 0.04). Interstitial fibrosis and tubular atrophy (interstitial fibrosis and tubular atrophy ≥ 1) were associated with higher expression of TGF-β1, RANTES, and IL-10 in ECD compared with SCD kidneys. Cold ischemia time of 24 hours or longer was significantly associated with upregulation of FOXP3, MCP-1, RANTES, and IL10, whereas longer duration of donor hospitalization significantly increased gene expression of all markers. High FOXP3 expression was also associated with lower level of serum creatinine at 1 year. Donor age was not associated with any of the transcripts studied. Conclusions PIBx of ECD exhibit a higher gene expression of inflammatory cytokines when compared with SCD kidneys. This molecular profile may be a specific ECD kidney response to brain death and may help to predict the posttransplant outcomes of ECD recipients. PMID:28706983

  12. Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis

    PubMed Central

    Voelckel, Claudia; Borevitz, Justin O.; Kramer, Elena M.; Hodges, Scott A.

    2010-01-01

    Background The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels. Methodology/Principal Findings We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource). Conclusions/Significance Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology. PMID:20352114

  13. Transgenic Muscle-Specific Nor-1 Expression Regulates Multiple Pathways That Effect Adiposity, Metabolism, and Endurance

    PubMed Central

    Pearen, Michael A.; Goode, Joel M.; Fitzsimmons, Rebecca L.; Eriksson, Natalie A.; Thomas, Gethin P.; Cowin, Gary J.; Wang, S.-C. Mary; Tuong, Zewen K.

    2013-01-01

    The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD+/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance. PMID:24065705

  14. Prenatal Nutritional Deficiency Reprogrammed Postnatal Gene Expression in Mammal Brains: Implications for Schizophrenia

    PubMed Central

    Xu, Jiawei; He, Guang; Zhu, Jingde; Zhou, Xinyao; St Clair, David; Wang, Teng; Xiang, Yuqian; Zhao, Qingzhu; Xing, Qinghe; Liu, Yun; Wang, Lei; Li, Qiaoli

    2015-01-01

    Background: Epidemiological studies have identified prenatal exposure to famine as a risk factor for schizophrenia, and animal models of prenatal malnutrition display structural and functional brain abnormalities implicated in schizophrenia. Methods: The offspring of the RLP50 rat, a recently developed animal model of prenatal famine malnutrition exposure, was used to investigate the changes of gene expression and epigenetic modifications in the brain regions. Microarray gene expression analysis was carried out in the prefrontal cortex and the hippocampus from 8 RLP50 offspring rats and 8 controls. MBD-seq was used to test the changes in DNA methylation in hippocampus depending on prenatal malnutrition exposure. Results: In the prefrontal cortex, offspring of RLP50 exhibit differences in neurotransmitters and olfactory-associated gene expression. In the hippocampus, the differentially-expressed genes are related to synaptic function and transcription regulation. DNA methylome profiling of the hippocampus also shows widespread but systematic epigenetic changes; in most cases (87%) this involves hypermethylation. Remarkably, genes encoded for the plasma membrane are significantly enriched for changes in both gene expression and DNA methylome profiling screens (p = 2.37×10–9 and 5.36×10–9, respectively). Interestingly, Mecp2 and Slc2a1, two genes associated with cognitive impairment, show significant down-regulation, and Slc2a1 is hypermethylated in the hippocampus of the RLP50 offspring. Conclusions: Collectively, our results indicate that prenatal exposure to malnutrition leads to the reprogramming of postnatal brain gene expression and that the epigenetic modifications contribute to the reprogramming. The process may impair learning and memory ability and result in higher susceptibility to schizophrenia. PMID:25522397

  15. Genome-wide profiling of gene expression in the epididymis of alpha-chlorohydrin-induced infertile rats using an oligonucleotide microarray

    PubMed Central

    2010-01-01

    Background As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals. Methods Rats were treated with ACH for ten consecutive days, and then each male rat copulated with two female rats in proestrus. Then sperm maturation and other fertility parameters were analyzed. Furthermore, we identified epididymal-specific genes that are associated with fertility between control and ACH groups using an Affymetrix Rat 230 2.0 oligo-microarray. Finally, we performed RT-PCR analysis for several differentially expressed genes to validate the alteration in gene expression observed by oligonucleotide microarray. Results Among all the differentially expressed genes, we analyzed and screened the down-regulated genes associated with metabolism processes, which are considered the major targets of ACH action. Simultaneously, the genes that were up-regulated by chlorohydrin were detected. The genes that negatively regulate sperm maturation and fertility include apoptosis and immune-related genes and have not been reported previously. The overall results of PCR analysis for selected genes were consistent with the array data. Conclusions In this study, we have described the genome-wide profiles of gene expression in the epididymides of infertile rats induced by ACH, which could become potential epididymal specific targets for male contraception and infertility treatment. PMID:20409345

  16. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179

  17. Liver microRNA profile of induced allograft tolerance

    PubMed Central

    Vitalone, Matthew James; Wai, Liang; Fujiki, Masato; Lau, Audrey H.; Littau, Erik; Esquivel, Carlos; Martinez, Olivia M.; Krams, Sheri M.

    2016-01-01

    Introduction Although the liver is less immunogenic than other solid organs, most liver transplant recipients receive lifelong immunosuppression. In both experimental models and clinical transplantation, total Lymphoid Irradiation (TLI) has been shown to induce allograft tolerance. Our goal was to identify the microRNAs (miRNAs) expressed in tolerant liver allograft recipients in an experimental model of TLI-induced tolerance. Methods To identify the miRNAs associated with TLI-induced tolerance we examined syngeneic recipients (Lewis→Lewis) and allogeneic recipients (DA→Lewis) of orthotropic liver transplants that received post-transplant TLI, allogeneic recipients that were not treated post-transplantation and experienced acute rejection, and native DA livers. QPCR miRNA array cards were used to profile liver grafts. Results We identified 12 miRNAs that were specifically and significantly increased during acute rejection. In early tolerance, 33 miRNAs were altered compared to syngeneic livers, with 80% of the miRNAs increased. In established tolerance 42 miRNAs were altered. In addition, miR-142-5p and miR-181a demonstrated increased expression in tolerant livers (both early and established tolerance) as compared to syngeneic livers. A principal component analysis of all miRNAs assayed, demonstrated a profile in established tolerance that was closely related to that seen in syngeneic livers. Conclusions The miRNA profile of established tolerant allografts is very similar to syngeneic grafts suggesting tolerance may be a return to an immunological state of quiescence. PMID:26950716

  18. Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis

    PubMed Central

    2013-01-01

    Background Qualitative alterations or abnormal expression of microRNAs (miRNAs) in colon cancer have mainly been demonstrated in primary tumors. Poorly overlapping sets of oncomiRs, tumor suppressor miRNAs and metastamiRs have been linked with distinct stages in the progression of colorectal cancer. To identify changes in both miRNA and gene expression levels among normal colon mucosa, primary tumor and liver metastasis samples, and to classify miRNAs into functional networks, in this work miRNA and gene expression profiles in 158 samples from 46 patients were analysed. Results Most changes in miRNA and gene expression levels had already manifested in the primary tumors while these levels were almost stably maintained in the subsequent primary tumor-to-metastasis transition. In addition, comparing normal tissue, tumor and metastasis, we did not observe general impairment or any rise in miRNA biogenesis. While only few mRNAs were found to be differentially expressed between primary colorectal carcinoma and liver metastases, miRNA expression profiles can classify primary tumors and metastases well, including differential expression of miR-10b, miR-210 and miR-708. Of 82 miRNAs that were modulated during tumor progression, 22 were involved in EMT. qRT-PCR confirmed the down-regulation of miR-150 and miR-10b in both primary tumor and metastasis compared to normal mucosa and of miR-146a in metastases compared to primary tumor. The upregulation of miR-201 in metastasis compared both with normal and primary tumour was also confirmed. A preliminary survival analysis considering differentially expressed miRNAs suggested a possible link between miR-10b expression in metastasis and patient survival. By integrating miRNA and target gene expression data, we identified a combination of interconnected miRNAs, which are organized into sub-networks, including several regulatory relationships with differentially expressed genes. Key regulatory interactions were validated experimentally. Specific mixed circuits involving miRNAs and transcription factors were identified and deserve further investigation. The suppressor activity of miR-182 on ENTPD5 gene was identified for the first time and confirmed in an independent set of samples. Conclusions Using a large dataset of CRC miRNA and gene expression profiles, we describe the interplay of miRNA groups in regulating gene expression, which in turn affects modulated pathways that are important for tumor development. PMID:23987127

  19. The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells

    PubMed Central

    Bressan, Eriberto; Gardin, Chiara; Ferroni, Letizia; Soldini, Maria Costanza; Mandelli, Federico; Soldini, Claudio

    2017-01-01

    Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI) surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC). MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells) were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment. PMID:29149082

  20. Estrogen treatment up-regulates female genes but does not suppress all early testicular markers during rainbow trout male-to-female gonadal transdifferentiation.

    PubMed

    Vizziano-Cantonnet, Denise; Baron, Daniel; Mahè, Sophie; Cauty, Chantal; Fostier, Alexis; Guiguen, Yann

    2008-11-01

    In non-mammalian vertebrates, estrogens are key players in ovarian differentiation, but the mechanisms by which they act remain poorly understood. The present study on rainbow trout was designed to investigate whether estrogens trigger the female pathway by activating a group of early female genes (i.e. cyp19a1, foxl2a, foxl2b, fst, bmp4, and fshb) and by repressing early testicular markers (i.e. dmrt1, nr0b1, sox9a1 and sox9a2). Feminization was induced in genetically all-male populations using 17alpha-ethynylestradiol (EE2, 20 mg/kg of food during 2 months). The expression profiles of 100 candidate genes were obtained by real-time RT-PCR and 45 expression profiles displayed a significant differential expression between control populations (males and females) and EE2-treated populations. These expression profiles were grouped in five temporally correlated expression clusters. The estrogen treatment induced most of the early ovarian differentiation genes (foxl2a, foxl2b, fst, bmp4, and fshb) and in particular foxl2a, which was strongly and quickly up-regulated. Simultaneously, Leydig cell genes, involved in androgen synthesis, as well as some Sertoli cell markers (amh, sox9a2) were strongly repressed. However, in contrast to our initial hypothesis, some genes considered as essential for mammalian and fish testis differentiation were not suppressed during the early process of estrogen-induced feminization (dmrt1, nr0b1, sox9a1 and pax2a) and some were even strongly up-regulated (nr0b1, sox9a1and pax2a). In conclusion, estrogens trigger male-to-female transdifferentiation by up-regulating most ovarian specific genes and this up-regulation appears to be crucial for an effective feminization, but estrogens do not concomitantly down-regulate all the testicular differentiation markers.

  1. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    PubMed Central

    2009-01-01

    Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical. Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments. PMID:19941644

  2. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients

    PubMed Central

    Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A.; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut

    2016-01-01

    Background Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Methods Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Results Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). Conclusions We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation. PMID:26863016

  3. Gene expression profiles of breast biopsies from healthy women identify a group with claudin-low features

    PubMed Central

    2011-01-01

    Background Increased understanding of the variability in normal breast biology will enable us to identify mechanisms of breast cancer initiation and the origin of different subtypes, and to better predict breast cancer risk. Methods Gene expression patterns in breast biopsies from 79 healthy women referred to breast diagnostic centers in Norway were explored by unsupervised hierarchical clustering and supervised analyses, such as gene set enrichment analysis and gene ontology analysis and comparison with previously published genelists and independent datasets. Results Unsupervised hierarchical clustering identified two separate clusters of normal breast tissue based on gene-expression profiling, regardless of clustering algorithm and gene filtering used. Comparison of the expression profile of the two clusters with several published gene lists describing breast cells revealed that the samples in cluster 1 share characteristics with stromal cells and stem cells, and to a certain degree with mesenchymal cells and myoepithelial cells. The samples in cluster 1 also share many features with the newly identified claudin-low breast cancer intrinsic subtype, which also shows characteristics of stromal and stem cells. More women belonging to cluster 1 have a family history of breast cancer and there is a slight overrepresentation of nulliparous women in cluster 1. Similar findings were seen in a separate dataset consisting of histologically normal tissue from both breasts harboring breast cancer and from mammoplasty reductions. Conclusion This is the first study to explore the variability of gene expression patterns in whole biopsies from normal breasts and identified distinct subtypes of normal breast tissue. Further studies are needed to determine the specific cell contribution to the variation in the biology of normal breasts, how the clusters identified relate to breast cancer risk and their possible link to the origin of the different molecular subtypes of breast cancer. PMID:22044755

  4. A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid

    PubMed Central

    2013-01-01

    Background Microarray profiling is a powerful technique to investigate expression changes of large amounts of genes in response to specific environmental conditions. The majority of the studies investigating gene expression changes in virus-infected plants are limited to interactions between a virus and a model host plant, which usually is Arabidopsis thaliana or Nicotiana benthamiana. In the present work, we performed microarray profiling to explore changes in the expression profile of field-grown Prunus persica (peach) originating from Chile upon single and double infection with Prunus necrotic ringspot virus (PNRSV) and Peach latent mosaic viroid (PLMVd), worldwide natural pathogens of peach trees. Results Upon single PLMVd or PNRSV infection, the number of statistically significant gene expression changes was relatively low. By contrast, doubly-infected fruits presented a high number of differentially regulated genes. Among these, down-regulated genes were prevalent. Functional categorization of the gene expression changes upon double PLMVd and PNRSV infection revealed protein modification and degradation as the functional category with the highest percentage of repressed genes whereas induced genes encoded mainly proteins related to phosphate, C-compound and carbohydrate metabolism and also protein modification. Overrepresentation analysis upon double infection with PLMVd and PNRSV revealed specific functional categories over- and underrepresented among the repressed genes indicating active counter-defense mechanisms of the pathogens during infection. Conclusions Our results identify a novel synergistic effect of PLMVd and PNRSV on the transcriptome of peach fruits. We demonstrate that mixed infections, which occur frequently in field conditions, result in a more complex transcriptional response than that observed in single infections. Thus, our data demonstrate for the first time that the simultaneous infection of a viroid and a plant virus synergistically affect the host transcriptome in infected peach fruits. These field studies can help to fully understand plant-pathogen interactions and to develop appropriate crop protection strategies. PMID:23710752

  5. Amygdala activation in response to facial expressions in pediatric obsessive-compulsive disorder

    PubMed Central

    Britton, Jennifer C.; Stewart, S. Evelyn; Killgore, William D.S.; Rosso, Isabelle M.; Price, Lauren M.; Gold, Andrea L.; Pine, Daniel S.; Wilhelm, Sabine; Jenike, Michael A.; Rauch, Scott L.

    2010-01-01

    Background Exaggerated amygdala activation to threatening faces has been detected in adults and children with anxiety disorders, compared to healthy comparison subjects. However, the profile of amygdala activation in response to facial expressions in obsessive-compulsive disorder (OCD) may be a distinguishing feature; a prior study found that compared with healthy adults, adults with OCD exhibited less amygdala activation to emotional and neutral faces, relative to fixation (Cannistraro et al., 2004). Methods In the current event-related functional magnetic resonance imaging (fMRI) study, a pediatric OCD sample (N=12) and a healthy comparison sample (HC, N=17) performed a gender discrimination task while viewing emotional faces (happy, fear, disgust) and neutral faces. Results Compared to the HC group, the OCD group showed less amygdala/hippocampus activation in all emotion and neutral conditions relative to fixation. Conclusions Like previous reports in adult OCD, pediatric OCD may have a distinct neural profile from other anxiety disorders, with respect to amygdala activation in response to emotional stimuli that are not disorder-specific. PMID:20602430

  6. Gene expression analysis of a Helicobacter pylori-infected and high-salt diet-treated mouse gastric tumor model: identification of CD177 as a novel prognostic factor in patients with gastric cancer

    PubMed Central

    2013-01-01

    Background Helicobacter pylori (H. pylori) infection and excessive salt intake are known as important risk factors for stomach cancer in humans. However, interactions of these two factors with gene expression profiles during gastric carcinogenesis remain unclear. In the present study, we investigated the global gene expression associated with stomach carcinogenesis and prognosis of human gastric cancer using a mouse model. Methods To find candidate genes involved in stomach carcinogenesis, we firstly constructed a carcinogen-induced mouse gastric tumor model combined with H. pylori infection and high-salt diet. C57BL/6J mice were given N-methyl-N-nitrosourea in their drinking water and sacrificed after 40 weeks. Animals of a combination group were inoculated with H. pylori and fed a high-salt diet. Gene expression profiles in glandular stomach of the mice were investigated by oligonucleotide microarray. Second, we examined an availability of the candidate gene as prognostic factor for human patients. Immunohistochemical analysis of CD177, one of the up-regulated genes, was performed in human advanced gastric cancer specimens to evaluate the association with prognosis. Results The multiplicity of gastric tumor in carcinogen-treated mice was significantly increased by combination of H. pylori infection and high-salt diet. In the microarray analysis, 35 and 31 more than two-fold up-regulated and down-regulated genes, respectively, were detected in the H. pylori-infection and high-salt diet combined group compared with the other groups. Quantitative RT-PCR confirmed significant over-expression of two candidate genes including Cd177 and Reg3g. On immunohistochemical analysis of CD177 in human advanced gastric cancer specimens, over-expression was evident in 33 (60.0%) of 55 cases, significantly correlating with a favorable prognosis (P = 0.0294). Multivariate analysis including clinicopathological factors as covariates revealed high expression of CD177 to be an independent prognostic factor for overall survival. Conclusions These results suggest that our mouse model combined with H. pylori infection and high-salt diet is useful for gene expression profiling in gastric carcinogenesis, providing evidence that CD177 is a novel prognostic factor for stomach cancer. This is the first report showing a prognostic correlation between CD177 expression and solid tumor behavior. PMID:23899160

  7. Statistical Test of Expression Pattern (STEPath): a new strategy to integrate gene expression data with genomic information in individual and meta-analysis studies.

    PubMed

    Martini, Paolo; Risso, Davide; Sales, Gabriele; Romualdi, Chiara; Lanfranchi, Gerolamo; Cagnin, Stefano

    2011-04-11

    In the last decades, microarray technology has spread, leading to a dramatic increase of publicly available datasets. The first statistical tools developed were focused on the identification of significant differentially expressed genes. Later, researchers moved toward the systematic integration of gene expression profiles with additional biological information, such as chromosomal location, ontological annotations or sequence features. The analysis of gene expression linked to physical location of genes on chromosomes allows the identification of transcriptionally imbalanced regions, while, Gene Set Analysis focuses on the detection of coordinated changes in transcriptional levels among sets of biologically related genes. In this field, meta-analysis offers the possibility to compare different studies, addressing the same biological question to fully exploit public gene expression datasets. We describe STEPath, a method that starts from gene expression profiles and integrates the analysis of imbalanced region as an a priori step before performing gene set analysis. The application of STEPath in individual studies produced gene set scores weighted by chromosomal activation. As a final step, we propose a way to compare these scores across different studies (meta-analysis) on related biological issues. One complication with meta-analysis is batch effects, which occur because molecular measurements are affected by laboratory conditions, reagent lots and personnel differences. Major problems occur when batch effects are correlated with an outcome of interest and lead to incorrect conclusions. We evaluated the power of combining chromosome mapping and gene set enrichment analysis, performing the analysis on a dataset of leukaemia (example of individual study) and on a dataset of skeletal muscle diseases (meta-analysis approach). In leukaemia, we identified the Hox gene set, a gene set closely related to the pathology that other algorithms of gene set analysis do not identify, while the meta-analysis approach on muscular disease discriminates between related pathologies and correlates similar ones from different studies. STEPath is a new method that integrates gene expression profiles, genomic co-expressed regions and the information about the biological function of genes. The usage of the STEPath-computed gene set scores overcomes batch effects in the meta-analysis approaches allowing the direct comparison of different pathologies and different studies on a gene set activation level.

  8. Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation

    PubMed Central

    Masè, Michela; Grasso, Margherita; Avogaro, Laura; D’Amato, Elvira; Tessarolo, Francesco; Graffigna, Angelo; Denti, Michela Alessandra; Ravelli, Flavia

    2017-01-01

    MicroRNAs (miRNAs) are emerging as key regulators of complex biological processes in several cardiovascular diseases, including atrial fibrillation (AF). Reverse transcription-quantitative polymerase chain reaction is a powerful technique to quantitatively assess miRNA expression profile, but reliable results depend on proper data normalization by suitable reference genes. Despite the increasing number of studies assessing miRNAs in cardiac disease, no consensus on the best reference genes has been reached. This work aims to assess reference genes stability in human cardiac tissue with a focus on AF investigation. We evaluated the stability of five reference genes (U6, SNORD48, SNORD44, miR-16, and 5S) in atrial tissue samples from eighteen cardiac-surgery patients in sinus rhythm and AF. Stability was quantified by combining BestKeeper, delta-Cq, GeNorm, and NormFinder statistical tools. All methods assessed SNORD48 as the best and U6 as the worst reference gene. Applications of different normalization strategies significantly impacted miRNA expression profiles in the study population. Our results point out the necessity of a consensus on data normalization in AF studies to avoid the emergence of divergent biological conclusions. PMID:28117343

  9. Protein Expression Profile of Twenty-Week-Old Diabetic db/db and Non-Diabetic Mice Livers: A Proteomic and Bioinformatic Analysis.

    PubMed

    Guzmán-Flores, Juan Manuel; Flores-Pérez, Elsa Cristina; Hernández-Ortiz, Magdalena; Vargas-Ortiz, Katya; Ramírez-Emiliano, Joel; Encarnación-Guevara, Sergio; Pérez-Vázquez, Victoriano

    2018-06-01

    Type 2 diabetes mellitus is characterized by insulin resistance in the liver. Insulin is not only involved in carbohydrate metabolism, it also regulates protein synthesis. This work describes the expression of proteins in the liver of a diabetic mouse and identifies the metabolic pathways involved. Twenty-week-old diabetic db/db mice were hepatectomized, after which proteins were separated by 2D-Polyacrylamide Gel Electrophoresis (2D-PAGE). Spots varying in intensity were analyzed using mass spectrometry, and biological function was assigned by the Database for Annotation, Visualization and Integrated Discovery (DAVID) software. A differential expression of 26 proteins was identified; among these were arginase-1, pyruvate carboxylase, peroxiredoxin-1, regucalcin, and sorbitol dehydrogenase. Bioinformatics analysis indicated that many of these proteins are mitochondrial and participate in metabolic pathways, such as the citrate cycle, the fructose and mannose metabolism, and glycolysis or gluconeogenesis. In addition, these proteins are related to oxidation⁻reduction reactions and molecular function of vitamin binding and amino acid metabolism. In conclusion, the proteomic profile of the liver of diabetic mouse db/db exhibited mainly alterations in the metabolism of carbohydrates and nitrogen. These differences illustrate the heterogeneity of diabetes in its different stages and under different conditions and highlights the need to improve treatments for this disease.

  10. Decreased Apoptotic Rate of Alveolar Macrophages of Patients with Idiopathic Pulmonary Fibrosis

    PubMed Central

    Drakopanagiotakis, Fotios; Xifteri, Areti; Tsiambas, Evaggelos; Karameris, Andreas; Tsakanika, Konstantina; Karagiannidis, Napoleon; Mermigkis, Demetrios; Polychronopoulos, Vlasis; Bouros, Demosthenes

    2012-01-01

    Introduction. Increased apoptosis of epithelial cells and decreased apoptosis of myofibroblasts are involved in the pathogenesis of IPF. The apoptotic profile of alveolar macrophages (AMs) in IPF is unclear. Aim. To investigate whether AMs of patients with IPF exhibit a different apoptotic profile compared to normal subjects. Methods. We analyzed, by immunohistochemistry, the expression of the apoptotic markers fas, fas ligand , bcl-2, and bax in AM obtained from bronchoalveolar lavage fluid (BALF) of 20 newly diagnosed, treatment-naive IPF patients and of 16 controls. Apoptosis of AM was evaluated by Apoptag immunohistochemistry. IPF patients received either interferon-g and corticosteroids or azathioprine and corticosteroids for six months. Results. BALF AMs undergoing apoptosis were significantly less in IPF patients. No difference was found in the expression of fas or fas ligand, bcl-2 and bax between IPF and control group. No difference was found between the respiratory function parameters of the two treatment groups after six months. A positive correlation was found between the number of bcl-2 positive stained macrophages and DLCO after treatment. Conclusions. The decreased apoptotic rate of AM of patients with IPF is not associated with decreased expression of apoptosis mediators involved in the external or internal apoptotic pathway. PMID:22792456

  11. Satellite DNA methylation status and expression of selected genes in Bos indicus blastocysts produced in vivo and in vitro.

    PubMed

    Urrego, R; Bernal-Ulloa, S M; Chavarría, N A; Herrera-Puerta, E; Lucas-Hahn, A; Herrmann, D; Winkler, S; Pache, D; Niemann, H; Rodriguez-Osorio, N

    2017-04-01

    Bovine embryos produced in vivo and in vitro differ with respect to molecular profiles, including epigenetic marks and gene expression profiles. This study investigated the CpG methylation status in bovine testis satellite I (BTS) and Bos taurus alpha satellite I (BTαS) DNA sequences, and concomitantly the relative abundance of transcripts, critically involved in DNA methylation (DNMT1 and DNMT3A), growth and development (IGF2R) and pluripotency (POU5F1) in Bos indicus embryos produced in vitro or in vivo. Results revealed that methylation of BTS were higher (P < 0.05) in embryos produced in vitro compared with their in vivo produced counterparts, while the methylation status of BTαS was similar in both groups. There were no significant differences in transcript abundance for DNMT3A, IGF2R and POU5F1 between blastocysts produced in vivo and in vitro. However, a significantly lower amount of DNMT1 transcripts was found in the in vitro cultured embryos (P < 0.05) compared with their in vivo derived counterparts. In conclusion, this study reported only minor changes in the expression of developmentally important genes and satellite DNA methylation related to the in vitro embryo production system.

  12. Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats.

    PubMed

    Tuzcu, Zeynep; Orhan, Cemal; Sahin, Nurhan; Juturu, Vijaya; Sahin, Kazim

    2017-01-01

    We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR- α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile ( P < 0.05) and reduced serum and liver MDA concentration compared to HFD rats ( P < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR- α , ACLY, FAS, and NF- κ B p65 expressions and enhanced the PPAR- α , IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers ( P < 0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver.

  13. Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats

    PubMed Central

    Tuzcu, Zeynep; Orhan, Cemal; Sahin, Nurhan; Juturu, Vijaya

    2017-01-01

    We evaluated the effects of cinnamon polyphenol extract on hepatic transcription factors expressions including SREBP-1c and LXR-α in rats fed high fat diet (HFD). Twenty-eight Wistar rats were allocated into four groups: (i) normal control: animals fed with normal chow; (ii) cinnamon: animals supplemented with cinnamon polyphenol; (iii) HFD: animals fed a high-fat diet; and (iv) HFD + cinnamon: animals fed a high-fat diet and treated with cinnamon polyphenol. Obesity was linked to hyperglycemia, hyperlipidemia, and oxidative stress as imitated by elevated serum glucose, lipid profile, and serum and liver malondialdehyde (MDA) concentrations. Cinnamon polyphenol decreased body weight, visceral fat, liver weight and serum glucose and insulin concentrations, liver antioxidant enzymes, and lipid profile (P < 0.05) and reduced serum and liver MDA concentration compared to HFD rats (P < 0.05). Cinnamon polyphenol also suppressed the hepatic SREBP-1c, LXR-α, ACLY, FAS, and NF-κB p65 expressions and enhanced the PPAR-α, IRS-1, Nrf2, and HO-1 expressions in the HFD rat livers (P < 0.05). In conclusion, cinnamon polyphenol reduces the hyperlipidemia, inflammation, and oxidative stress through activating transcription factors and antioxidative defense signaling pathway in HFD rat liver. PMID:28396714

  14. HERVs Expression in Autism Spectrum Disorders

    PubMed Central

    Balestrieri, Emanuela; Arpino, Carla; Matteucci, Claudia; Sorrentino, Roberta; Pica, Francesca; Alessandrelli, Riccardo; Coniglio, Antonella; Curatolo, Paolo; Rezza, Giovanni; Macciardi, Fabio; Garaci, Enrico; Gaudi, Simona; Sinibaldi-Vallebona, Paola

    2012-01-01

    Background Autistic Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder, resulting from complex interactions among genetic, genomic and environmental factors. Here we have studied the expression of Human Endogenous Retroviruses (HERVs), non-coding DNA elements with potential regulatory functions, and have tested their possible implication in autism. Methods The presence of retroviral mRNAs from four HERV families (E, H, K and W), widely implicated in complex diseases, was evaluated in peripheral blood mononuclear cells (PBMCs) from ASD patients and healthy controls (HCs) by qualitative RT-PCR. We also analyzed the expression of the env sequence from HERV-H, HERV-W and HERV-K families in PBMCs at the time of sampling and after stimulation in culture, in both ASD and HC groups, by quantitative Real-time PCR. Differences between groups were evaluated using statistical methods. Results The percentage of HERV-H and HERV-W positive samples was higher among ASD patients compared to HCs, while HERV-K was similarly represented and HERV-E virtually absent in both groups. The quantitative evaluation shows that HERV-H and HERV-W are differentially expressed in the two groups, with HERV-H being more abundantly expressed and, conversely, HERV-W, having lower abundance, in PBMCs from ASDs compared to healthy controls. PMBCs from ASDs also showed an increased potential to up-regulate HERV-H expression upon stimulation in culture, unlike HCs. Furthermore we report a negative correlation between expression levels of HERV-H and age among ASD patients and a statistically significant higher expression in ASD patients with Severe score in Communication and Motor Psychoeducational Profile-3. Conclusions Specific HERV families have a distinctive expression profile in ASD patients compared to HCs. We propose that HERV-H expression be explored in larger samples of individuals with autism spectrum in order to determine its utility as a novel biological trait of this complex disorder. PMID:23155411

  15. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone

    PubMed Central

    Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P

    2009-01-01

    Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908

  16. Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia.

    PubMed

    Peghini, Bethânea Crema; Abdalla, Douglas Reis; Barcelos, Ana Cristina Macedo; Teodoro, Lívia das Graças Vieito Lombardi; Murta, Eddie Fernando Candido; Michelin, Márcia Antoniazi

    2012-09-01

    Several studies have suggested that patients with cervical intraepithelial and invasive neoplasia have reduced levels of Th1 cytokines, and increased levels of Th2 cytokines. Thus, the aim of this study was to delineate the immunological profile associated with lesion progression. Biopsies were obtained from 28 patients with low grade cervical intraepithelial lesions (LSILs), 53 patients with high grade cervical intraepithelial lesions (HSILs), 25 patients with invasive cancer (CA), and 20 healthy controls. Levels of IFN-γ, TNF-α, IL-2, IL-4, IL-10, IL-12, TGF-β1 and TGF-β2 were then assayed by RT-PCR and ELISA for each biopsy sample. For LSILs, higher levels of Th1 cytokines were detected, while HSILs were associated with a Th2 cytokine profile. In contrast, CA tissues were associated with the strongest expression of a Treg cytokine profile. In conclusion the most important contribution of these work is identification of the Treg cytokine profile in HPV progression lesions and in combination, these results suggested that tumor progression is dependent on suppression of cellular immunity. Copyright © 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  17. DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity

    PubMed Central

    Donà, M.; Balestrazzi, A.; Mondoni, A.; Rossi, G.; Ventura, L.; Buttafava, A.; Macovei, A.; Sabatini, M. E.; Valassi, A.; Carbonera, D.

    2013-01-01

    Background and Aims The germination test currently represents the most used method to assess seed viability in germplasm banks, despite the difficulties caused by the occurrence of seed dormancy. Furthermore, seed longevity can vary considerably across species and populations from different environments, and studies related to the eco-physiological processes underlying such variations are still limited in their depth. The aim of the present work was the identification of reliable molecular markers that might help in monitoring seed deterioration. Methods Dry seeds were subjected to artificial ageing and collected at different time points for molecular/biochemical analyses. DNA damage was measured using the RAPD (random amplified polymorphic DNA) approach while the seed antioxidant profile was obtained using both the DPPH (1,1-diphenyl, 2-picrylhydrazyl) assay and the Folin–Ciocalteu reagent method. Electron paramagnetic resonance (EPR) provided profiles of free radicals. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to assess the expression profiles of the antioxidant genes MT2 (type 2 metallothionein) and SOD (superoxide dismutase). A modified QRT-PCR protocol was used to determine telomere length. Key Results The RAPD profiles highlighted different capacities of the two Silene species to overcome DNA damage induced by artificial ageing. The antioxidant profiles of dry and rehydrated seeds revealed that the high-altitude taxon Silene acaulis was characterized by a lower antioxidant specific activity. Significant upregulation of the MT2 and SOD genes was observed only in the rehydrated seeds of the low-altitude species. Rehydration resulted in telomere lengthening in both Silene species. Conclusions Different seed viability markers have been selected for plant species showing inherent variation of seed longevity. RAPD analysis, quantification of redox activity of non-enzymatic antioxidant compounds and gene expression profiling provide deeper insights to study seed viability during storage. Telomere lengthening is a promising tool to discriminate between short- and long-lived species. PMID:23532044

  18. Proteomic Analysis of Matched Formalin-Fixed, Paraffin-Embedded Specimens in Patients with Advanced Serous Ovarian Carcinoma

    PubMed Central

    Smith, Ashlee L.; Sun, Mai; Bhargava, Rohit; Stewart, Nicolas A.; Flint, Melanie S.; Bigbee, William L.; Krivak, Thomas C.; Strange, Mary A.; Cooper, Kristine L.; Zorn, Kristin K.

    2013-01-01

    Objective: The biology of high grade serous ovarian carcinoma (HGSOC) is poorly understood. Little has been reported on intratumoral homogeneity or heterogeneity of primary HGSOC tumors and their metastases. We evaluated the global protein expression profiles of paired primary and metastatic HGSOC from formalin-fixed, paraffin-embedded (FFPE) tissue samples. Methods: After IRB approval, six patients with advanced HGSOC were identified with tumor in both ovaries at initial surgery. Laser capture microdissection (LCM) was used to extract tumor for protein digestion. Peptides were extracted and analyzed by reversed-phase liquid chromatography coupled to a linear ion trap mass spectrometer. Tandem mass spectra were searched against the UniProt human protein database. Differences in protein abundance between samples were assessed and analyzed by Ingenuity Pathway Analysis software. Immunohistochemistry (IHC) for select proteins from the original and an additional validation set of five patients was performed. Results: Unsupervised clustering of the abundance profiles placed the paired specimens adjacent to each other. IHC H-score analysis of the validation set revealed a strong correlation between paired samples for all proteins. For the similarly expressed proteins, the estimated correlation coefficients in two of three experimental samples and all validation samples were statistically significant (p < 0.05). The estimated correlation coefficients in the experimental sample proteins classified as differentially expressed were not statistically significant. Conclusion: A global proteomic screen of primary HGSOC tumors and their metastatic lesions identifies tumoral homogeneity and heterogeneity and provides preliminary insight into these protein profiles and the cellular pathways they constitute. PMID:28250404

  19. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa

    PubMed Central

    2010-01-01

    Background Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant Arabidopsis. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots. Results We used Affymetrix GeneChip® Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each. Conclusions Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and Arabidopsis. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination. PMID:20507633

  20. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles

    PubMed Central

    2011-01-01

    Background Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. Results We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. Conclusion We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology. PMID:21936920

  1. Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-Led Efforts Advance Precision Medicine.

    PubMed

    Xu, Joshua; Gong, Binsheng; Wu, Leihong; Thakkar, Shraddha; Hong, Huixiao; Tong, Weida

    2016-03-15

    Studies on gene expression in response to therapy have led to the discovery of pharmacogenomics biomarkers and advances in precision medicine. Whole transcriptome sequencing (RNA-seq) is an emerging tool for profiling gene expression and has received wide adoption in the biomedical research community. However, its value in regulatory decision making requires rigorous assessment and consensus between various stakeholders, including the research community, regulatory agencies, and industry. The FDA-led SEquencing Quality Control (SEQC) consortium has made considerable progress in this direction, and is the subject of this review. Specifically, three RNA-seq platforms (Illumina HiSeq, Life Technologies SOLiD, and Roche 454) were extensively evaluated at multiple sites to assess cross-site and cross-platform reproducibility. The results demonstrated that relative gene expression measurements were consistently comparable across labs and platforms, but not so for the measurement of absolute expression levels. As part of the quality evaluation several studies were included to evaluate the utility of RNA-seq in clinical settings and safety assessment. The neuroblastoma study profiled tumor samples from 498 pediatric neuroblastoma patients by both microarray and RNA-seq. RNA-seq offers more utilities than microarray in determining the transcriptomic characteristics of cancer. However, RNA-seq and microarray-based models were comparable in clinical endpoint prediction, even when including additional features unique to RNA-seq beyond gene expression. The toxicogenomics study compared microarray and RNA-seq profiles of the liver samples from rats exposed to 27 different chemicals representing multiple toxicity modes of action. Cross-platform concordance was dependent on chemical treatment and transcript abundance. Though both RNA-seq and microarray are suitable for developing gene expression based predictive models with comparable prediction performance, RNA-seq offers advantages over microarray in profiling genes with low expression. The rat BodyMap study provided a comprehensive rat transcriptomic body map by performing RNA-Seq on 320 samples from 11 organs in either sex of juvenile, adolescent, adult and aged Fischer 344 rats. Lastly, the transferability study demonstrated that signature genes of predictive models are reciprocally transferable between microarray and RNA-seq data for model development using a comprehensive approach with two large clinical data sets. This result suggests continued usefulness of legacy microarray data in the coming RNA-seq era. In conclusion, the SEQC project enhances our understanding of RNA-seq and provides valuable guidelines for RNA-seq based clinical application and safety evaluation to advance precision medicine.

  2. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome.

    PubMed

    Haebig, Eileen; Sterling, Audra

    2017-02-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD.

  3. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome

    PubMed Central

    Sterling, Audra

    2016-01-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD. PMID:27796729

  4. Separate enrichment analysis of pathways for up- and downregulated genes.

    PubMed

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  5. Expression Profiling Analysis Reveals Key MicroRNA–mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa

    PubMed Central

    Anasagasti, Ander; Ezquerra-Inchausti, Maitane; Barandika, Olatz; Muñoz-Culla, Maider; Caffarel, María M.; Otaegui, David; López de Munain, Adolfo

    2018-01-01

    Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration. PMID:29847644

  6. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery

    PubMed Central

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-01-01

    Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. Conclusion GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at . PMID:19728865

  7. Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids.

    PubMed

    Strajhar, Petra; Tonoli, David; Jeanneret, Fabienne; Imhof, Raphaella M; Malagnino, Vanessa; Patt, Melanie; Kratschmar, Denise V; Boccard, Julien; Rudaz, Serge; Odermatt, Alex

    2017-04-15

    The validated OECD test guideline 456 based on human adrenal H295R cells promotes measurement of testosterone and estradiol production as read-out to identify potential endocrine disrupting chemicals. This study aimed to establish optimal conditions for using H295R cells to detect chemicals interfering with the production of key adrenal steroids. H295R cells' supernatants were characterized by liquid chromatography-mass spectrometry (LC-MS)-based steroid profiling, and the influence of experimental conditions including time and serum content was assessed. Steroid profiles were determined before and after incubation with reference compounds and chemicals to be tested for potential disruption of adrenal steroidogenesis. The H295R cells cultivated according to the OECD test guideline produced progestins, glucocorticoids, mineralocorticoids and adrenal androgens but only very low amounts of testosterone. However, testosterone contained in Nu-serum was metabolized during the 48h incubation. Thus, inclusion of positive and negative controls and a steroid profile of the complete medium prior to the experiment (t=0h) was necessary to characterize H295R cells' steroid production and indicate alterations caused by exposure to chemicals. Among the tested chemicals, octyl methoxycinnamate and acetyl tributylcitrate resembled the corticosteroid induction pattern of the positive control torcetrapib. Gene expression analysis revealed that octyl methoxycinnamate and acetyl tributylcitrate enhanced CYP11B2 expression, although less pronounced than torcetrapib. Further experiments need to assess the toxicological relevance of octyl methoxycinnamate- and acetyl tributylcitrate-induced corticosteroid production. In conclusion, the extended profiling and appropriate controls allow detecting chemicals that act on steroidogenesis and provide initial mechanistic evidence for prioritizing chemicals for further investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs)

    PubMed Central

    2013-01-01

    Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation. PMID:24088245

  9. Identification and characterization of microRNAs in white and brown alpaca skin

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are small, non-coding 21–25 nt RNA molecules that play an important role in regulating gene expression. Little is known about the expression profiles and functions of miRNAs in skin and their role in pigmentation. Alpacas have more than 22 natural coat colors, more than any other fiber producing species. To better understand the role of miRNAs in control of coat color we performed a comprehensive analysis of miRNA expression profiles in skin of white versus brown alpacas. Results Two small RNA libraries from white alpaca (WA) and brown alpaca (BA) skin were sequenced with the aid of Illumina sequencing technology. 272 and 267 conserved miRNAs were obtained from the WA and BA skin libraries, respectively. Of these conserved miRNAs, 35 and 13 were more abundant in WA and BA skin, respectively. The targets of these miRNAs were predicted and grouped based on Gene Ontology and KEGG pathway analysis. Many predicted target genes for these miRNAs are involved in the melanogenesis pathway controlling pigmentation. In addition to the conserved miRNAs, we also obtained 22 potentially novel miRNAs from the WA and BA skin libraries. Conclusion This study represents the first comprehensive survey of miRNAs expressed in skin of animals of different coat colors by deep sequencing analysis. We discovered a collection of miRNAs that are differentially expressed in WA and BA skin. The results suggest important potential functions of miRNAs in coat color regulation. PMID:23067000

  10. Does the Clock Make the Poison? Circadian Variation in Response to Pesticides

    PubMed Central

    Hooven, Louisa A.; Sherman, Katherine A.; Butcher, Shawn; Giebultowicz, Jadwiga M.

    2009-01-01

    Background Circadian clocks govern daily physiological and molecular rhythms, and putative rhythms in expression of xenobiotic metabolizing (XM) genes have been described in both insects and mammals. Such rhythms could have important consequences for outcomes of chemical exposures at different times of day. To determine whether reported XM gene expression rhythms result in functional rhythms, we examined daily profiles of enzyme activity and dose responses to the pesticides propoxur, deltamethrin, fipronil, and malathion. Methodology/Principal Findings Published microarray expression data were examined for temporal patterns. Male Drosophila were collected for ethoxycoumarin-O-deethylase (ECOD), esterase, glutathione-S-transferase (GST), and, and uridine 5′-diphosphoglucosyltransferase (UGT) enzyme activity assays, or subjected to dose-response tests at four hour intervals throughout the day in both light/dark and constant light conditions. Peak expression of several XM genes cluster in late afternoon. Significant diurnal variation was observed in ECOD and UGT enzyme activity, however, no significant daily variation was observed in esterase or GST activity. Daily profiles of susceptibility to lethality after acute exposure to propoxur and fipronil showed significantly increased resistance in midday, while susceptibility to deltamethrin and malathion varied little. In constant light, which interferes with clock function, the daily variation in susceptibility to propoxur and in ECOD and UGT enzyme activity was depressed. Conclusions/Significance Expression and activities of specific XM enzymes fluctuate during the day, and for specific insecticides, the concentration resulting in 50% mortality varies significantly during the day. Time of day of chemical exposure should be an important consideration in experimental design, use of pesticides, and human risk assessment. PMID:19649249

  11. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera

    PubMed Central

    2010-01-01

    Background The AP2/ERF protein family contains transcription factors that play a crucial role in plant growth and development and in response to biotic and abiotic stress conditions in plants. Grapevine (Vitis vinifera) is the only woody crop whose genome has been fully sequenced. So far, no detailed expression profile of AP2/ERF-like genes is available for grapevine. Results An exhaustive search for AP2/ERF genes was carried out on the Vitis vinifera genome and their expression profile was analyzed by Real-Time quantitative PCR (qRT-PCR) in different vegetative and reproductive tissues and under two different ripening stages. One hundred and forty nine sequences, containing at least one ERF domain, were identified. Specific clusters within the AP2 and ERF families showed conserved expression patterns reminiscent of other species and grapevine specific trends related to berry ripening. Moreover, putative targets of group IX ERFs were identified by co-expression and protein similarity comparisons. Conclusions The grapevine genome contains an amount of AP2/ERF genes comparable to that of other dicot species analyzed so far. We observed an increase in the size of specific groups within the ERF family, probably due to recent duplication events. Expression analyses in different aerial tissues display common features previously described in other plant systems and introduce possible new roles for members of some ERF groups during fruit ripening. The presented analysis of AP2/ERF genes in grapevine provides the bases for studying the molecular regulation of berry development and the ripening process. PMID:21171999

  12. High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients.

    PubMed

    De Iudicibus, Sara; Lucafò, Marianna; Vitulo, Nicola; Martelossi, Stefano; Zimbello, Rosanna; De Pascale, Fabio; Forcato, Claudio; Naviglio, Samuele; Di Silvestre, Alessia; Gerdol, Marco; Stocco, Gabriele; Valle, Giorgio; Ventura, Alessandro; Bramuzzo, Matteo; Decorti, Giuliana

    2018-05-08

    The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.

  13. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth.

    PubMed

    Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J

    2015-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. Copyright © 2015 the American Physiological Society.

  14. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth

    PubMed Central

    Chaillou, Thomas; Jackson, Janna R.; England, Jonathan H.; Kirby, Tyler J.; Richards-White, Jena; Esser, Karyn A.; Dupont-Versteegden, Esther E.

    2014-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. PMID:25554798

  15. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel

    PubMed Central

    2012-01-01

    Background Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. Results To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. Conclusions Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production. PMID:23009661

  16. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation

    PubMed Central

    2013-01-01

    Background Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed. Results This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples. Conclusion Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata. PMID:23651472

  17. The Peripheral Whole Blood Transcriptome of Acute Pyelonephritis in Human Pregnancy

    PubMed Central

    Madan, Ichchha; Than, Nandor Gabor; Romero, Roberto; Chaemsaithong, Piya; Miranda, Jezid; Tarca, Adi L.; Bhatti, Gaurav; Draghici, Sorin; Yeo, Lami; Mazor, Moshe; Hassan, Sonia S.; Chaiworapongsa, Tinnakorn

    2018-01-01

    Objective Human pregnancy is characterized by activation of the innate immune response and suppression of adaptive immunity. The former is thought to provide protection against infection to the mother, and the latter, tolerance against paternal antigens expressed in fetal cells. Acute pyelonephritis is associated with an increased risk of acute respiratory distress syndrome and sepsis in pregnant (vs. nonpregnant) women. The objective of this study was to describe the gene expression profile (transcriptome) of maternal whole blood in acute pyelonephritis. Method A case-control study was conducted to include pregnant women with acute pyelonephritis (n=15) and women with a normal pregnancy (n=34). Affymetrix HG-U133 Plus 2.0 arrays (Affymetrix, Santa Clara, CA, USA) were used for gene expression profiling. A linear model was used to test the association between the presence of pyelonephritis and gene expression levels while controlling for white blood cell count and gestational age. A fold change of 1.5 was considered significant at a false discovery rate of 0.1. A subset of differentially expressed genes (n=56) was tested with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (cases, n=19; controls, n=59). Gene ontology and pathway analysis were applied. Results A total of 983 genes were differentially expressed in acute pyelonephritis: 457 were up-regulated and 526 were down-regulated. Significant enrichment of 300 biological processes and 63 molecular functions was found in pyelonephritis. Significantly impacted pathways in pyelonephritis included a) cytokine-cytokine receptor interaction; b) T-cell receptor signaling; c) Jak-STAT signaling; and d) complement and coagulation cascades. Of 56 genes tested by qRT-PCR, 48 (85.7%) had confirmation of differential expression. Conclusion This is the first study of the transcriptomic signature of whole blood in pregnant women with acute pyelonephritis. Acute infection during pregnancy is associated with the increased expression of genes involved in innate immunity and the decreased expression of genes involved in lymphocyte function. PMID:24293448

  18. Molecular Mechanisms of Increased Heart Rate in Shenxianshengmai-treated Bradycardia Rabbits

    PubMed Central

    Liu, Zhou-Ying; Huang, Jian; Liu, Na-Na; Zheng, Min; Zhao, Tao; Zhao, Bu-Chang; Wang, Yi-Min; Pu, Jie-Lin

    2017-01-01

    Background: The molecular mechanisms of Shenxianshengmai (SXSM), a traditional Chinese medicine, on bradycardia have been incompletely understood. The study tried to investigate the gene expression profile and proteomics of bradycardia rabbits’ hearts after SXSM treatment. Methods: Twenty-four adult rabbits were randomly assigned in four groups: sham, model, model plus SXSM treatment, and sham plus SXSM treatment groups. Heart rate was recorded in all rabbits. Then, total RNA of atria and proteins of ventricle were isolated and quantified, respectively. Gene expression profiling was conducted by gene expression chip, and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the results of gene expression chip. We used isobaric tags for elative and absolute quantitation and Western blotting to identify altered proteins after SXSM treatment. Results: There was a constant decrease in the mean heart rate (32%, from 238 ± 6 beats/min to 149 ± 12 beats/min) after six weeks in model compared with that in sham group. This effect was partially reversed by 4-week SXSM treatment. Complementary DNA microarray demonstrated that the increased acetylcholinesterase and reduced nicotinic receptor were take responsibility for the increased heart rate. In addition, proteins involved in calcium handling and signaling were affected by SXSM treatment. Real-time RT-PCR verified the results from gene chip. Results from proteomics demonstrated that SXSM enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle in ventricular myocardium to improve ATP generation. Conclusions: Long-term SXSM stimulates sympathetic transmission by increasing the expression of acetylcholinesterase and reduces the expression of nicotinic receptor to increase heart rate. SXSM also restored the calcium handling genes and altered genes involved in signaling. In addition, SXSM improves the ATP supply of ventricular myocardium by increasing proteins involved in TCA cycle and oxidation-respiratory chain. PMID:28091410

  19. High resolution array CGH and gene expression profiling of alveolar soft part sarcoma

    PubMed Central

    Selvarajah, Shamini; Pyne, Saumyadipta; Chen, Eleanor; Sompallae, Ramakrishna; Ligon, Azra H.; Nielsen, Gunnlaugur P.; Dranoff, Glenn; Stack, Edward; Loda, Massimo; Flavin, Richard

    2014-01-01

    Purpose Alveolar soft part sarcoma (ASPS) is a soft tissue sarcoma with poor prognosis, and little molecular evidence for its origin, initiation and progression. The aim of this study was to elucidate candidate molecular pathways involved in tumor pathogenesis. Experimental Design We employed high-throughput array comparative genomic hybridization and cDNA-Mediated Annealing, Selection, Ligation, and Extension Assay to profile the genomic and expression signatures of primary and metastatic ASPS from 17 tumors derived from 11 patients. We used an integrative bioinformatics approach to elucidate the molecular pathways associated with ASPS progression. Fluorescence in situ hybridization was performed to validate the presence of the t(X;17)(p11.2;q25) ASPL-TFE3 fusion and hence confirm the aCGH observations. Results FISH analysis identified the ASPL-TFE3 fusion in all cases. ArrayCGH revealed a higher number of numerical aberrations in metastatic tumors relative to primaries, but failed to identify consistent alterations in either group. Gene expression analysis highlighted 1,063 genes which were differentially expressed between the two groups. Gene set enrichment analysis identified 16 enriched gene sets (p < 0.1) associated with differentially expressed genes. Notable among these were several stem cell gene expression signatures and pathways related to differentiation. In particular, the paired box transcription factor PAX6 was up-regulated in the primary tumors, along with several genes whose mouse orthologs have previously been implicated in Pax6-DNA binding during neural stem cell differentiation. Conclusion In addition to suggesting a tentative neural line of differentiation for ASPS, these results implicate transcriptional deregulation from fusion genes in the pathogenesis of ASPS. PMID:24493828

  20. Genome-wide analysis of WRKY gene family in Cucumis sativus

    PubMed Central

    2011-01-01

    Background WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. Results We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Conclusions Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes. PMID:21955985

  1. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression

    PubMed Central

    Echavarría-Consuegra, Liliana; Flipse, Jacky; Fernández, Geysson Javier; Kluiver, Joost; van den Berg, Anke; Urcuqui-Inchima, Silvio; Smit, Jolanda M.

    2017-01-01

    Background Due to the high burden of dengue disease worldwide, a better understanding of the interactions between dengue virus (DENV) and its human host cells is of the utmost importance. Although microRNAs modulate the outcome of several viral infections, their contribution to DENV replication is poorly understood. Methods and principal findings We investigated the microRNA expression profile of primary human macrophages challenged with DENV and deciphered the contribution of microRNAs to infection. To this end, human primary macrophages were challenged with GFP-expressing DENV and sorted to differentiate between truly infected cells (DENV-positive) and DENV-exposed but non-infected cells (DENV-negative cells). The miRNAome was determined by small RNA-Seq analysis and the effect of differentially expressed microRNAs on DENV yield was examined. Five microRNAs were differentially expressed in human macrophages challenged with DENV. Of these, miR-3614-5p was found upregulated in DENV-negative cells and its overexpression reduced DENV infectivity. The cellular targets of miR-3614-5p were identified by liquid chromatography/mass spectrometry and western blot. Adenosine deaminase acting on RNA 1 (ADAR1) was identified as one of the targets of miR-3614-5p and was shown to promote DENV infectivity at early time points post-infection. Conclusion/Significance Overall, miRNAs appear to play a limited role in DENV replication in primary human macrophages. The miRNAs that were found upregulated in DENV-infected cells did not control the production of infectious virus particles. On the other hand, miR-3614-5p, which was upregulated in DENV-negative macrophages, reduced DENV infectivity and regulated ADAR1 expression, a protein that facilitates viral replication. PMID:29045406

  2. Distinct transcriptome profiles differentiate NSAID-dependent from NSAID-independent food anaphylaxis

    PubMed Central

    Muñoz-Cano, Rosa; Pascal, Mariona; Bartra, Joan; Picado, Cesar; Valero, Antonio; Kim, Do-Kyun; Brooks, Stephen; Ombrello, Michael; Metcalfe, Dean D.; Rivera, Juan; Olivera, Ana

    2015-01-01

    Background Lipid transfer protein (LTP), an abundant protein in fruits, vegetables and nuts, is a common food allergen in Mediterranean areas causing diverse allergic reactions. Approximately 40% of food anaphylaxis induced by LTP require non-steroidal anti-inflammatory drugs (NSAIDs) as a triggering cofactor. Objective To better understand the determinants of NSAID-dependent (NSAID-LTP-A) and NSAID-independent LTP-anaphylaxis (LTP-A) Methods Selection of patients was based on a proven clinical history of NSAID-dependent or -independent anaphylaxis to LTP, positive skin prick test to LTP and serum LTP-IgE. Whole transcriptome (RNA-Seq) analysis of blood cells from 14 individuals with NSAID-LTP-A, 7 with LTP-A and 13 healthy controls was performed to identify distinct gene expression signatures. Results Expression of genes regulating gastrointestinal epithelium renewal was altered in both patient sets, particularly in LTP-A, who also presented gene expression profiles characteristic of an inflammatory syndrome. These included altered B cell pathways, increased neutrophil activation markers and elevated levels of reactive oxygen species. Increased expression of the IgG receptor (CD64) in LTP-A patients was mirrored by the presence of LTP-specific IgG1 and 3. Conversely, NSAID-LTP-A patients were characterized by reduced expression of IFN-γ-regulated genes and IFN-γ levels as well as up-regulated adenosine receptor 3 (ADORA3) expression and genes related to adenosine metabolism. Conclusions Gene ontology analysis suggests disturbances in gut epithelium homeostasis in both LTP-related anaphylaxis groups with potential integrity breaches in LTP-A that may explain their distinct inflammatory signature. Differential regulation in LTP-A and NSAID-LTP-A of the IFN-γ pathway, IgG receptors and ADORA3 may provide the pathogenic basis of their distinct responses. PMID:26194548

  3. Gene Expression Changes in Cervical Squamous Cell Carcinoma After Initiation of Chemoradiation and Correlation With Clinical Outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopp, Ann H.; Jhingran, Anuja; Ramdas, Latha

    2008-05-01

    Purpose: The purpose of this study was to investigate early gene expression changes after chemoradiation in a human solid tumor, allowing identification of chemoradiation-induced gene expression changes in the tumor as well as the tumor microenvironment. In addition we aimed to identify a gene expression profile that was associated with clinical outcome. Methods and Materials: Microarray experiments were performed on cervical cancer specimens obtained before and 48 h after chemoradiation from 12 patients with Stage IB2 to IIIB squamous cell carcinoma of the cervix treated between April 2001 and August 2002. Results: A total of 262 genes were identified thatmore » were significantly changed after chemoradiation. Genes involved in DNA repair were identified including DDB2, ERCC4, GADD45A, and XPC. In addition, significantly regulated cell-to-cell signaling pathways included insulin-like growth factor-1 (IGF-1), interferon, and vascular endothelial growth factor signaling. At a median follow-up of 41 months, 5 of 12 patients had experienced either local or distant failure. Supervised clustering analysis identified a 58-gene set from the pretreatment samples that were differentially expressed between patients with and without recurrence. Genes involved in integrin signaling and apoptosis pathways were identified in this gene set. Immortalization-upregulated protein (IMUP), IGF-2, and ARHD had particularly marked differences in expression between patients with and without recurrence. Conclusions: Genetic profiling identified genes regulated by chemoradiation including DNA damage and cell-to-cell signaling pathways. Genes associated with recurrence were identified that will require validation in an independent patient data set to determine whether the 58-gene set associated with clinical outcome could be useful as a prognostic assay.« less

  4. Chronic effects of aerobic exercise on gene expression of LOX-1 receptor in the heart of rats fed with high fat diet

    PubMed Central

    Riahi, Simin; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Soleimany, Mansureh

    2015-01-01

    Objective(s): Lectin-like low density lipoprotein receptor (LOX-1) has pivot role in vascular complications, which is upregulated in numerous pathological conditions. Since exercise has beneficial effects in prevention of hyperlipidemic complications, present study examined protective effects of aerobic exercise through reduction of LOX-1 expression in heart during dyslipidemia. Materials and Methods: Four groups of rats were used (N=25): Normal, Normal and exercise, High fat and High fat and exercise. High fat diet (HFD) was made by adding 10% animal oil, 2% cholesterol and 0.5% colic acid to standard rodent chow. Exercise protocol consisted of swimming 1 hr/day, and 5 days/week for 8 weeks. Plasma lipids were evaluated at the end of experiment, 48 hr after final session of exercise. At the end, rats were sacrificed and heart was removed for determination of malondialdehyde (MDA) content, and LOX-1 expression. Results: HFD meaningfully changed lipid profile (>50%), but chronic exercise had no significant effects on lipid profile. LOX-1 expression was significantly increased in heart of rats fed with HFD, while swimming exercise considerably reduced gene expression of LOX-1. MDA content was significantly enhanced in rats fed with HFD (4.37±0.6 nmol/mg, P<0.01) compared to normal group (1.56±0.48 nmol/mg), whereas swimming exercise decreased MDA level of heart in rats fed with HFD (2.28±0.32, P<0.01). Conclusion: Findings indicated that swimming exercise is able to diminish heart expression of LOX-1 receptor concomitant reduction of oxidative stress. Since these parameters are involved in generation of dyslipidemic complications, swimming exercise is a good candidate to reduce these complications. PMID:26557970

  5. Microarray analysis to identify the similarities and differences of pathogenesis between aortic occlusive disease and abdominal aortic aneurysm.

    PubMed

    Wang, Guofu; Bi, Lechang; Wang, Gaofeng; Huang, Feilai; Lu, Mingjing; Zhu, Kai

    2018-06-01

    Objectives Expression profile of GSE57691 was analyzed to identify the similarities and differences between aortic occlusive disease and abdominal aortic aneurysm. Methods The expression profile of GSE57691 was downloaded from Gene Expression Omnibus database, including 20 small abdominal aortic aneurysm samples, 29 large abdominal aortic aneurysm samples, 9 aortic occlusive disease samples, and 10 control samples. Using the limma package in R, the differentially expressed genes were screened. Followed by enrichment analysis was performed for the differentially expressed genes using database for annotation, visualization, and integrated discovery online tool. Based on string online tool and Cytoscape software, protein-protein interaction network and module analyses were carried out. Moreover, integrated TF platform database and Cytoscape software were used for constructing transcriptional regulatory networks. Results As a result, 1757, 354, and 396 differentially expressed genes separately were identified in aortic occlusive disease, large abdominal aortic aneurysm, and small abdominal aortic aneurysm samples. UBB was significantly enriched in proteolysis related pathways with a high degree in three groups. SPARCL1 was another gene shared by these groups and regulated by NFIA, which had a high degree in transcriptional regulatory network. ACTB, a significant upregulated gene in abdominal aortic aneurysm samples, could be regulated by CLIC4, which was significantly enriched in cell motions. ACLY and NFIB were separately identified in aortic occlusive disease and small abdominal aortic aneurysm samples, and separately enriched in lipid metabolism and negative regulation of cell proliferation. Conclusions The downregulated UBB, NFIA, and SPARCL1 might play key roles in both aortic occlusive disease and abdominal aortic aneurysm, while the upregulated ACTB might only involve in abdominal aortic aneurysm. ACLY and NFIB were specifically involved in aortic occlusive disease and small abdominal aortic aneurysm separately.

  6. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq

    PubMed Central

    2010-01-01

    Background De novo assembly of transcript sequences produced by short-read DNA sequencing technologies offers a rapid approach to obtain expressed gene catalogs for non-model organisms. A draft genome sequence will be produced in 2010 for a Eucalyptus tree species (E. grandis) representing the most important hardwood fibre crop in the world. Genome annotation of this valuable woody plant and genetic dissection of its superior growth and productivity will be greatly facilitated by the availability of a comprehensive collection of expressed gene sequences from multiple tissues and organs. Results We present an extensive expressed gene catalog for a commercially grown E. grandis × E. urophylla hybrid clone constructed using only Illumina mRNA-Seq technology and de novo assembly. A total of 18,894 transcript-derived contigs, a large proportion of which represent full-length protein coding genes were assembled and annotated. Analysis of assembly quality, length and diversity show that this dataset represent the most comprehensive expressed gene catalog for any Eucalyptus tree. mRNA-Seq analysis furthermore allowed digital expression profiling of all of the assembled transcripts across diverse xylogenic and non-xylogenic tissues, which is invaluable for ascribing putative gene functions. Conclusions De novo assembly of Illumina mRNA-Seq reads is an efficient approach for transcriptome sequencing and profiling in Eucalyptus and other non-model organisms. The transcriptome resource (Eucspresso, http://eucspresso.bi.up.ac.za/) generated by this study will be of value for genomic analysis of woody biomass production in Eucalyptus and for comparative genomic analysis of growth and development in woody and herbaceous plants. PMID:21122097

  7. Comparative Profiling of Primary Colorectal Carcinomas and Liver Metastases Identifies LEF1 as a Prognostic Biomarker

    PubMed Central

    Lin, Albert Y.; Chua, Mei-Sze; Choi, Yoon-La; Yeh, William; Kim, Young H.; Azzi, Raymond; Adams, Gregg A.; Sainani, Kristin; van de Rijn, Matt; So, Samuel K.; Pollack, Jonathan R.

    2011-01-01

    Purpose We sought to identify genes of clinical significance to predict survival and the risk for colorectal liver metastasis (CLM), the most common site of metastasis from colorectal cancer (CRC). Patients and Methods We profiled gene expression in 31 specimens from primary CRC and 32 unmatched specimens of CLM, and performed Significance Analysis of Microarrays (SAM) to identify genes differentially expressed between these two groups. To characterize the clinical relevance of two highly-ranked differentially-expressed genes, we analyzed the expression of secreted phosphoprotein 1 (SPP1 or osteopontin) and lymphoid enhancer factor-1 (LEF1) by immunohistochemistry using a tissue microarray (TMA) representing an independent set of 154 patients with primary CRC. Results Supervised analysis using SAM identified 963 genes with significantly higher expression in CLM compared to primary CRC, with a false discovery rate of <0.5%. TMA analysis showed SPP1 and LEF1 protein overexpression in 60% and 44% of CRC cases, respectively. Subsequent occurrence of CLM was significantly correlated with the overexpression of LEF1 (chi-square p = 0.042), but not SPP1 (p = 0.14). Kaplan Meier analysis revealed significantly worse survival in patients with overexpression of LEF1 (p<0.01), but not SPP1 (p = 0.11). Both univariate and multivariate analyses identified stage (p<0.0001) and LEF1 overexpression (p<0.05) as important prognostic markers, but not tumor grade or SPP1. Conclusion Among genes differentially expressed between CLM and primary CRC, we demonstrate overexpression of LEF1 in primary CRC to be a prognostic factor for poor survival and increased risk for liver metastasis. PMID:21383983

  8. Meta-analysis of Clear Cell Renal Cell Carcinoma Gene Expression Defines a Variant Subgroup and Identifies Gender Influences on Tumor Biology

    PubMed Central

    Brannon, A. Rose; Haake, Scott M.; Hacker, Kathryn E.; Pruthi, Raj S.; Wallen, Eric M.; Nielsen, Matthew E.; Rathmell, W. Kimryn

    2011-01-01

    Background Clear cell renal cell carcinoma (ccRCC) displays molecular and histologic heterogeneity. Previously described subsets of this disease, ccA and ccB, were defined based on multigene expression profiles, but it is unclear whether these subgroupings reflect the full spectrum of disease or how these molecular subtypes relate to histologic descriptions or gender. Objective Determine whether additional subtypes of ccRCC exist and whether these subtypes are related to von Hippel-Lindau (VHL) inactivation, hypoxia-inducible factor (HIF) 1 and 2 expression, tumor histology, or gender. Design, setting, and participants Six large, publicly available ccRCC gene expression databases were identified that cumulatively provided data for 480 tumors for meta-analysis via meta-array compilation. Measurements Unsupervised consensus clustering was performed on the meta-arrays. Tumors were examined for the relationship of multigene-defined consensus subtypes and expression signatures of VHL mutation and HIF status, tumor histology, and gender. Results and limitations Two dominant subsets of ccRCC were observed. However, a minor third cluster was revealed that correlated strongly with a wild type (WT) VHL expression profile and indications of variant histologies. When variant histologies were removed, ccA tumors naturally divided by gender. This technique is limited by the potential for persistent batch effect, tumor sampling bias, and restrictions of annotated information. Conclusions The ccA and ccB subsets of ccRCC are robust in meta-analysis among histologically conventional ccRCC tumors. A third group of tumors was identified that may represent a new variant of ccRCC. Within definitively clear cell tumors, gender may delineate tumors in such a way that it could have implications regarding current treatments and future drug development. PMID:22030119

  9. Estrogen Receptor (ESR1) mRNA Expression and Benefit From Tamoxifen in the Treatment and Prevention of Estrogen Receptor–Positive Breast Cancer

    PubMed Central

    Kim, Chungyeul; Tang, Gong; Pogue-Geile, Katherine L.; Costantino, Joseph P.; Baehner, Frederick L.; Baker, Joffre; Cronin, Maureen T.; Watson, Drew; Shak, Steven; Bohn, Olga L.; Fumagalli, Debora; Taniyama, Yusuke; Lee, Ahwon; Reilly, Megan L.; Vogel, Victor G.; McCaskill-Stevens, Worta; Ford, Leslie G.; Geyer, Charles E.; Wickerham, D. Lawrence; Wolmark, Norman; Paik, Soonmyung

    2011-01-01

    Purpose Several mechanisms have been proposed to explain tamoxifen resistance of estrogen receptor (ER) –positive tumors, but a clinically useful explanation for such resistance has not been described. Because the ER is the treatment target for tamoxifen, a linear association between ER expression levels and the degree of benefit from tamoxifen might be expected. However, such an association has never been demonstrated with conventional clinical ER assays, and the ER is currently used clinically as a dichotomous marker. We used gene expression profiling and ER protein assays to help elucidate molecular mechanism(s) responsible for tamoxifen resistance in breast tumors. Patients and Methods We performed gene expression profiling of paraffin-embedded tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) trials that tested the worth of tamoxifen as an adjuvant systemic therapy (B-14) and as a preventive agent (P-1). This was a retrospective subset analysis based on available materials. Results In B-14, ESR1 was the strongest linear predictor of tamoxifen benefit among 16 genes examined, including PGR and ERBB2. On the basis of these data, we hypothesized that, in the P-1 trial, a lower level of ESR1 mRNA in the tamoxifen arm was the main difference between the two study arms. Only ESR1 was downregulated by more than two-fold in ER-positive cancer events in the tamoxifen arm (P < .001). Tamoxifen did not prevent ER-positive tumors with low levels of ESR1 expression. Conclusion These data suggest that low-level expression of ESR1 is a determinant of tamoxifen resistance in ER-positive breast cancer. Strategies should be developed to identify, treat, and prevent such tumors. PMID:21947828

  10. Defining the gene expression signature of rhabdomyosarcoma by meta-analysis

    PubMed Central

    Romualdi, Chiara; De Pittà, Cristiano; Tombolan, Lucia; Bortoluzzi, Stefania; Sartori, Francesca; Rosolen, Angelo; Lanfranchi, Gerolamo

    2006-01-01

    Background Rhabdomyosarcoma is a highly malignant soft tissue sarcoma in childhood and arises as a consequence of regulatory disruption of the growth and differentiation pathways of myogenic precursor cells. The pathogenic pathways involved in this tumor are mostly unknown and therefore a better characterization of RMS gene expression profile would represent a considerable advance. The availability of publicly available gene expression datasets have opened up new challenges especially for the integration of data generated by different research groups and different array platforms with the purpose of obtaining new insights on the biological process investigated. Results In this work we performed a meta-analysis on four microarray and two SAGE datasets of gene expression data on RMS in order to evaluate the degree of agreement of the biological results obtained by these different studies and to identify common regulatory pathways that could be responsible of tumor growth. Regulatory pathways and biological processes significantly enriched has been investigated and a list of differentially meta-profiles have been identified as possible candidate of aggressiveness of RMS. Conclusion Our results point to a general down regulation of the energy production pathways, suggesting a hypoxic physiology for RMS cells. This result agrees with the high malignancy of RMS and with its resistance to most of the therapeutic treatments. In this context, different isoforms of the ANT gene have been consistently identified for the first time as differentially expressed in RMS. This gene is involved in anti-apoptotic processes when cells grow in low oxygen conditions. These new insights in the biological processes responsible of RMS growth and development demonstrate the effective advantage of the use of integrated analysis of gene expression studies. PMID:17090319

  11. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium.

    PubMed

    Pelch, Katherine E; Tokar, Erik J; Merrick, B Alex; Waalkes, Michael P

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10μM Cd for 11weeks (CTPE) or 5μM iAs for 29weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (>25-fold) and S100P (>40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (>15-fold) and NTM (>1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. Published by Elsevier Inc.

  12. When action meets emotions: how facial displays of emotion influence goal-related behavior.

    PubMed

    Ferri, Francesca; Stoianov, Ivilin Peev; Gianelli, Claudia; D'Amico, Luigi; Borghi, Anna M; Gallese, Vittorio

    2010-10-01

    Many authors have proposed that facial expressions, by conveying emotional states of the person we are interacting with, influence the interaction behavior. We aimed at verifying how specific the effect is of the facial expressions of emotions of an individual (both their valence and relevance/specificity for the purpose of the action) with respect to how the action aimed at the same individual is executed. In addition, we investigated whether and how the effects of emotions on action execution are modulated by participants' empathic attitudes. We used a kinematic approach to analyze the simulation of feeding others, which consisted of recording the "feeding trajectory" by using a computer mouse. Actors could express different highly arousing emotions, namely happiness, disgust, anger, or a neutral expression. Response time was sensitive to the interaction between valence and relevance/specificity of emotion: disgust caused faster response. In addition, happiness induced slower feeding time and longer time to peak velocity, but only in blocks where it alternated with expressions of disgust. The kinematic profiles described how the effect of the specificity of the emotional context for feeding, namely a modulation of accuracy requirements, occurs. An early acceleration in kinematic relative-to-neutral feeding profiles occurred when actors expressed positive emotions (happiness) in blocks with specific-to-feeding negative emotions (disgust). On the other hand, the end-part of the action was slower when feeding happy with respect to neutral faces, confirming the increase of accuracy requirements and motor control. These kinematic effects were modulated by participants' empathic attitudes. In conclusion, the social dimension of emotions, that is, their ability to modulate others' action planning/execution, strictly depends on their relevance and specificity to the purpose of the action. This finding argues against a strict distinction between social and nonsocial emotions.

  13. Circular RNA Signature Predicts Gemcitabine Resistance of Pancreatic Ductal Adenocarcinoma.

    PubMed

    Shao, Feng; Huang, Mei; Meng, Futao; Huang, Qiang

    2018-01-01

    Gemcitabine resistance is currently the main problem of chemotherapy for advanced pancreatic cancer patients. The resistance is thought to be caused by altered drug metabolism or reduced apoptosis of cancer cells. However, the underlying mechanism of Gemcitabine resistance in pancreatic cancer remains unclear. In this study, we established Gemcitabine resistant PANC-1 (PANC-1-GR) cell lines and compared the circular RNAs (circRNAs) profiles between PANC-1 cells and PANC-1-GR cells by RNA sequencing. Differentially expressed circRNAs were demonstrated using scatter plot and cluster heatmap analysis. Gene ontology and pathway analysis were performed to systemically map the genes which are functionally associated to those differentially expressed circRNAs identified from our data. The expression of the differentially expressed circRNAs picked up by RNAseq in PANC-1-GR cells was further validated by qRT-PCR and two circRNAs were eventually identified as the most distinct targets. Consistently, by analyzing plasma samples form pancreatic ductal adenocarcinoma (PDAC) patients, the two circRNAs showed more significant expression in the Gemcitabine non-responsive patients than the responsive ones. In addition, we found that silencing of the two circRNAs could restore the sensitivity of PANC-1-GR cells to Gemcitabine treatment, while over-expression of them could increase the resistance of normal PANC-1 and MIA PACA-2 cells, suggesting that they might serve as drug targets for Gemcitabine resistance. Furthermore, the miRNA interaction networks were also explored based on the correlation analysis of the target microRNAs of these two circRNAs. In conclusion, we successfully established new PANC-1-GR cells, systemically characterized the circRNA and miRNA profiles, and identified two circRNAs as novel biomarkers and potential therapeutic targets for Gemcitabine non-responsive PDAC patients.

  14. Gene Expression Profiles in Stage I Uterine Serous Carcinoma in Comparison to Grade 3 and Grade 1 Stage I Endometrioid Adenocarcinoma

    PubMed Central

    Mhawech-Fauceglia, Paulette; Wang, Dan; Kesterson, Joshua; Syriac, Susanna; Clark, Kimberly; Frederick, Peter J.; Lele, Shashikant; Liu, Song

    2011-01-01

    Background Endometrial cancer is the most common gynecologic malignancy in the developed countries. Clinical studies have shown that early stage uterine serous carcinoma (USC) has outcomes similar to early stage high grade endometrioid adenocarcinoma (EAC-G3) than to early stage low grade endometrioid adenocarcinoma (EAC-G1). However, little is known about the origin of these different clinical outcomes. This study applied the whole genome expression profiling to explore the expression difference of stage I USC (n = 11) relative to stage I EAC-G3 (n = 11) and stage I EAC-G1 (n = 11), respectively. Methodology/Principal Finding We found that the expression difference between USC and EAC-G3, as measured by the number of differentially expressed genes (DEGs), is consistently less than that found between USC and EAC-G1. Pathway enrichment analyses suggested that DEGs specific to USC vs. EAC-G3 are enriched for genes involved in signaling transduction, while DEGs specific to USC vs. EAC-G1 are enriched for genes involved in cell cycle. Gene expression differences for selected DEGs are confirmed by quantitative RT-PCR with a high validation rate. Conclusion This data, although preliminary, indicates that stage I USC is genetically similar to stage I EAC-G3 compared to stage I EAC-G1. DEGs identified from this study might provide an insight in to the potential mechanisms that influence the clinical outcome differences between endometrial cancer subtypes. They might also have potential prognostic and therapeutic impacts on patients diagnosed with uterine cancer. PMID:21448288

  15. Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect

    NASA Astrophysics Data System (ADS)

    Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos

    1997-05-01

    The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.

  16. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Profiling of Benign and Malignant Nerve Sheath

    DTIC Science & Technology

    2007-05-01

    Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients PRINCIPAL INVESTIGATOR: Matt van de Rijn, M.D., Ph.D. Torsten...Annual 3. DATES COVERED 1 May 2006 –30 Apr 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genomic and Expression Profiling of Benign and Malignant Nerve...Award Number: DAMD17-03-1-0297 Title: Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis

  18. Analysis of miRNA and mRNA Expression Profiles Highlights Alterations in Ionizing Radiation Response of Human Lymphocytes under Modeled Microgravity

    PubMed Central

    Casara, Silvia; Sales, Gabriele; Lanfranchi, Gerolamo; Celotti, Lucia; Mognato, Maddalena

    2012-01-01

    Background Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. Methodology/Principal Findings We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of “Response to DNA damage” is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. Conclusions/Significance On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL. PMID:22347458

  19. Physiological Adjustments and Circulating MicroRNA Reprogramming Are Involved in Early Acclimatization to High Altitude in Chinese Han Males

    PubMed Central

    Liu, Bao; Huang, He; Wang, Shou-Xian; Wu, Gang; Xu, Gang; Sun, Bing-Da; Zhang, Er-Long; Gao, Yu-Qi

    2016-01-01

    Background: Altitude acclimatization is a physiological process that restores oxygen delivery to the tissues and promotes oxygen use under high altitude hypoxia. High altitude sickness occurs in individuals without acclimatization. Unraveling the molecular underpinnings of altitude acclimatization could help understand the beneficial body responses to high altitude hypoxia as well as the altered biological events in un-acclimatized individuals. This study assessed physiological adjustments and circulating microRNA (cmiRNA) profiles in individuals exposed to high altitude, aiming to explore altitude acclimatization in humans. Methods: Ninety volunteers were enrolled in this study. Among them, 22 individuals provided samples for microRNA arrays; 68 additional individuals constituted the validation set. Un-acclimatized individuals were identified by the Lake Louise Scoring System. Thirty-three phenotypes were recorded pre- and post-exposure to high altitude, including stress hormones, lipid profiles, hematological indices, myocardial enzyme spectrum, and liver and kidney function related enzymes. CmiRNA expression profiles were assessed using miRCURYTM LNA Array (v.18.0) screening, with data validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Then, associations of plasma microRNA expression with physiological adjustments were evaluated. The biological relevance of the main differentially expressed cmiRNAs was explored by bioinformatics prediction. Results: Nineteen of the 33 phenotypes were significantly altered during early altitude acclimatization, including hematological indices, lipid profiles, and stress hormones; meanwhile, 86 cmiRNAs (79 up-regulated and 7 down-regulated) showed differential expression with statistical significance. Among them, 32 and 25 microRNAs were strongly correlated with low-density lipoprotein-cholesterol and total cholesterol elevations, respectively. In addition, 22 microRNAs were closely correlated with cortisol increase. In un-acclimatized individuals, 55 cmiRNAs were up-regulated and 36 down-regulated, compared with acclimatized individuals. The HIF signaling pathway was suppressed in un-acclimatized individuals. Conclusion: Physiological adjustments, including the hematological system, stress hormones, and lipid molecules contributed to early altitude acclimatization, and showed strong correlations with cmiRNA reprogramming. Moreover, acclimatized and un-acclimatized individuals showed different cmiRNA profile. Suppression of the HIF-1 signaling pathway by microRNA regulation may play a key role in the pathogenesis of un-acclimatization with high altitude hypoxia. PMID:27994555

  20. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles

    PubMed Central

    2012-01-01

    Background Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypeable and therefore cannot be traced. Molecular typing methods have been used as alternatives to serotyping. This study was done to compare random amplified polymorphic DNA (RAPD) profiles and whole cell protein (WCP) lysate profiles as methods for distinguishing H. parasuis reference strains and field isolates. Results The DNA and WCP lysate profiles of 15 reference strains and 31 field isolates of H. parasuis were analyzed using the Dice and neighbor joining algorithms. The results revealed unique and reproducible DNA and protein profiles among the reference strains and field isolates studied. Simpson’s index of diversity showed significant discrimination between isolates when three 10mer primers were combined for the RAPD method and also when both the RAPD and WCP lysate typing methods were combined. Conclusions The RAPD profiles seen among the reference strains and field isolates did not appear to change over time which may reflect a lack of DNA mutations in the genes of the samples. The recent field isolates had different WCP lysate profiles than the reference strains, possibly because the number of passages of the type strains may affect their protein expression. PMID:22703293

  1. Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes

    PubMed Central

    2014-01-01

    Background Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Results Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Conclusions Gene expression profiling and trait-associated transcript analysis using an apple F1 population readily identified genes physically linked to powdery mildew disease resistance and woolly apple aphid resistance loci. This result was especially useful in apple, where extreme levels of heterozygosity make the development of reliable DNA markers quite difficult. The results suggest that this approach could prove effective in crops with complicated genetics, or for which few genomic information resources are available. PMID:24708064

  2. Biologically relevant effects of mRNA amplification on gene expression profiles

    PubMed Central

    van Haaften, Rachel IM; Schroen, Blanche; Janssen, Ben JA; van Erk, Arie; Debets, Jacques JM; Smeets, Hubert JM; Smits, Jos FM; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris TA

    2006-01-01

    Background Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. Results Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other. Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P <0.001). Those reporters were also predicted to form significantly more (0.76+/-0.07 versus 0.38+/-0.1) and longer (9.4+/-0.3 versus 8.4+/-0.4) hairpins as compared to representative control reporters present before and after amplification. Conclusion This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways. PMID:16608515

  3. Impairment of organ-specific T cell negative selection by diabetes susceptibility genes: genomic analysis by mRNA profiling

    PubMed Central

    Liston, Adrian; Hardy, Kristine; Pittelkow, Yvonne; Wilson, Susan R; Makaroff, Lydia E; Fahrer, Aude M; Goodnow, Christopher C

    2007-01-01

    Background T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection underlie organ-specific autoimmune disease in AIRE-deficient people and the non-obese diabetic (NOD) mouse strain Results Here we use homogeneous populations of T cells undergoing either positive or negative selection in vivo together with genome-wide transcription profiling on microarrays to identify the gene expression differences underlying negative selection to an Aire-dependent organ-specific antigen, including the upregulation of a genomic cluster in the cytogenetic band 2F. Analysis of defective negative selection in the autoimmune-prone NOD strain demonstrates a global impairment in the induction of the negative selection response gene set, but little difference in positive selection response genes. Combining expression differences with genetic linkage data, we identify differentially expressed candidate genes, including Bim, Bnip3, Smox, Pdrg1, Id1, Pdcd1, Ly6c, Pdia3, Trim30 and Trim12. Conclusion The data provide a molecular map of the negative selection response in vivo and, by analysis of deviations from this pathway in the autoimmune susceptible NOD strain, suggest that susceptibility arises from small expression differences in genes acting at multiple points in the pathway between the TCR and cell death. PMID:17239257

  4. Genetic alteration profiling of patients with resected squamous cell lung carcinomas

    PubMed Central

    Zhang, Ningning; Lin, Dongmei; Wu, Di; Zhu, Xinxin; Song, Wenya; Shi, Yuankai

    2016-01-01

    In this study, we analyzed the genetic profiles of squamous cell lung carcinoma (SqCLC) to identify potential therapeutic targets. Approximately 2,800 COSMIC mutations from 50 genes were determined by next-generation sequencing. Amplification/deletion of SOX2, CDKN2A, PTEN, FGFR1, EGFR, CCND1, HER2 and PDGFRA were detected by FISH and expression of VEGFR2, PD-L1 and PTEN were examined by IHC. One hundred and fifty-seven samples of SqCLC were collected. Somatic mutations was identified in 73.9% of cases, with TP53 (56.1%), CDKN2A (8.9%), PIK3CA (8.9%), KRAS (4.5%) and EGFR (3.2%). Gene copy number alterations were identified in 75.8% of cases, including SOX2 amplification (31.2%), CDKN2A deletion (21.7%), PTEN deletion (16.6%), FGFR1 amplification (15.9%), EGFR amplification (14.0%), CCND1 amplification (14.0%), HER2 amplification (9.6%) and PDGFRA amplification (7.6%). Positive expression of VEGFR2 and PD-L1 and loss of PTEN expression were observed in 80.5%, 47.2%, and 42.7% of cases, respectively. Multivariate analysis showed that positive expression of PD-L1 was an independent favorable prognostic factor for DFS (HR = 0.610; P = 0.044). In conclusion, nearly all (93.6%) SqCLC cases harbored at least one potential druggable target. The findings of this study could facilitate the identification of therapeutic target candidates for precision medicine of SqCLC. PMID:27145277

  5. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells

    PubMed Central

    2013-01-01

    Background A subset of breast cancer cells displays increased ability to self-renew and reproduce breast cancer heterogeneity. The characterization of these so-called putative breast tumor-initiating cells (BT-ICs) may open the road for novel therapeutic strategies. As microRNAs (miRNAs) control developmental programs in stem cells, BT-ICs may also rely on specific miRNA profiles for their sustained activity. To explore the notion that miRNAs may have a role in sustaining BT-ICs, we performed a comprehensive profiling of miRNA expression in a model of putative BT-ICs enriched by non-attachment growth conditions. Results We found breast cancer cells grown under non-attachment conditions display a unique pattern of miRNA expression, highlighted by a marked low expression of miR-30 family members relative to parental cells. We further show that miR-30a regulates non-attachment growth. A target screening revealed that miR-30 family redundantly modulates the expression of apoptosis and proliferation-related genes. At least one of these targets, the anti-apoptotic protein AVEN, was able to partially revert the effect of miR-30a overexpression. Finally, overexpression of miR-30a in vivo was associated with reduced breast tumor progression. Conclusions miR30-family regulates the growth of breast cancer cells in non-attachment conditions. This is the first analysis of target prediction in a whole family of microRNAs potentially involved in survival of putative BT-ICs. PMID:23445407

  6. Cellular profile of the peritumoral inflammatory infiltrate in squamous cells carcinoma of oral mucosa: Correlation with the expression of Ki67 and histologic grading

    PubMed Central

    Vieira, Fabricio LD; Vieira, Beatriz J; Guimaraes, Marco AM; Aarestrup, Fernando M

    2008-01-01

    Background Squamous cells carcinoma is the most important malignant tumor with primary site in the oral cavity and, given the great exposure of mucosa and lips to the etiologic factors of this neoplasm, its incidence is high. Investigation of the prognostic determinants is significant for the expectations of treatment proposal and cure of the patient. The local immune response represented by peritumoral inflammatory infiltrate is a possible prognostic factor. Methods In this study, oral mucosa samples of squamous cells carcinoma were analyzed, separated according to their histological classification as well as the phenotypical profile of the cells comprising the peritumoral inflammatory infiltrate was investigated by immunohistochemical method, in addiction, the cell proliferation index via protein Ki67 expression was determinated. Results The T lymphocytes made up most of this inflammatory infiltrate, and among these cells, there was a predominance of T CD8 lymphocytes relative to the T CD4 lymphocytes. The B lymhocytes were the second most visualized leucocyte cell type followed by macrophages and neutrophils. The immunohistochemical assessment of Ki-67 positive cells revealed a greater expression of this protein in samples of undifferentiated squamous cells carcinoma. Conclusion The results suggest that the cellular immune response is the main defense mechanism in squamous cells carcinoma of oral mucosa, expressed by the large number of T lymphocytes and macrophages, and that the greatest intensity of local response may be associated with the best prognosis. PMID:18764952

  7. The expression level of BAALC-associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia

    PubMed Central

    Díaz-Beyá, M; Brunet, S; Nomdedéu, J; Cordeiro, A; Tormo, M; Escoda, L; Ribera, J M; Arnan, M; Heras, I; Gallardo, D; Bargay, J; Queipo de Llano, M P; Salamero, O; Martí, J M; Sampol, A; Pedro, C; Hoyos, M; Pratcorona, M; Castellano, J J; Nomdedeu, M; Risueño, R M; Sierra, J; Monzó, M; Navarro, A; Esteve, J

    2015-01-01

    Acute myeloid leukemia (AML) is a heterogeneous disease whose prognosis is mainly related to the biological risk conferred by cytogenetics and molecular profiling. In elderly patients (⩾60 years) with normal karyotype AML miR-3151 have been identified as a prognostic factor. However, miR-3151 prognostic value has not been examined in younger AML patients. In the present work, we have studied miR-3151 alone and in combination with BAALC, its host gene, in a cohort of 181 younger intermediate-risk AML (IR-AML) patients. Patients with higher expression of miR-3151 had shorter overall survival (P=0.0025), shorter leukemia-free survival (P=0.026) and higher cumulative incidence of relapse (P=0.082). Moreover, in the multivariate analysis miR-3151 emerged as independent prognostic marker in both the overall series and within the unfavorable molecular prognostic category. Interestingly, the combined determination of both miR-3151 and BAALC improved this prognostic stratification, with patients with low levels of both parameters showing a better outcome compared with those patients harboring increased levels of one or both markers (P=0.003). In addition, we studied the microRNA expression profile associated with miR-3151 identifying a six-microRNA signature. In conclusion, the analysis of miR-3151 and BAALC expression may well contribute to an improved prognostic stratification of younger patients with IR-AML. PMID:26430723

  8. OmpR and RcsB abolish temporal and spatial changes in expression of flhD in Escherichia coli biofilm.

    PubMed

    Samanta, Priyankar; Clark, Emily R; Knutson, Katie; Horne, Shelley M; Prüß, Birgit M

    2013-08-02

    Biofilms are communities of bacteria that are characterized by specific phenotypes, including an increased resistance towards anti-microbials and the host immune system. This calls for the development of novel biofilm prevention and treatment options to combat infectious disease. In Escherichia coli, numerous global regulators have been implicated in the control of biofilm associated cell surface organelles. These include the flagellar regulator FlhD/FlhC, the osmoregulator EnvZ/OmpR, and the colanic acid activator RcsCDB. Using flow cell technology and fluorescence microscopy, we determined the temporal expression from flhD::gfp, ompR::gfp, and rcsB::gfp in E. coli biofilm, as well as the impact of the negative regulation of flhD by OmpR and RcsB. Spatial gene expression was investigated from flhD::gfp. The temporal gene expression profile for flhD yielded an early peak at 12 h, a minimum of expression at 35 h, and a second increase in expression towards 51 h of biofilm development. In contrast, the ompR profile showed a peak at 35 h. A mutation in ompR abolished time dependence of flhD expression after the initial growth period of 12 h. Intriguingly, rcsB expression did not correlate inversely with flhD expression, yet a mutation in rcsB abolished time dependence of flhD expression as well. Spatially, expression of flhD was highest in the outermost layer of the biofilm in the parent strain. In ompR and rcsB mutants, flhD was expressed throughout the biofilm. Mutations in both, ompR and rcsB increased flhD expression throughout all temporal and spatial experiments. This increase was paralleled by reductions in biofilm amounts at four tested time points. Our data lead to the conclusion that FlhD/FlhC and its regulation by OmpR and RcsB may be our first target mechanism for the development of novel biofilm prevention and treatment techniques.

  9. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  10. Gene expression inference with deep learning.

    PubMed

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Gene expression inference with deep learning

    PubMed Central

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-01-01

    Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929

  12. Magnetic bead-based salivary peptidome profiling for periodontal-orthodontic treatment

    PubMed Central

    2012-01-01

    Background Patients with periodontitis seek periodontal-orthodontic treatment to address certain functional and aesthetic problems. However, little is known of the effect of periodontitis on orthodontic treatment. Thus, we compared the differences in peptide mass fingerprints of orthodontic patients with and without periodontitis by MALDI-TOF MS using a magnetic bead-based peptidome analysis of saliva samples. In this way, we aimed to identify and explore a panel of differentially-expressed specific peptides. Results Saliva samples from 24 patients (eight orthodontic patients without periodontitis, eight with periodontitis and another eight with periodontitis but no orthodontic treatment) were analyzed, and peptide mass fingerprints were created by scanning MS signals using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) combined with magnetic beads. Nine mass peaks showed significant differences. Orthodontic patients in the group without periodontal disease showed higher mass peaks for seven peptides of the nine, whereas the mass peaks for the other two peptides were higher in the periodontal-orthodontic patients. Besides, these differentially-expressed peptides were sequenced. Conclusions The elucidated candidate biomarkers indicated interactions between periodontal condition and orthodontic treatment and their contributions to the changes of saliva protein profiles. Our results provide novel insight into the altered salivary protein profile during periodontal-orthodontic treatment, and may lead to the development of a therapeutic monitoring strategy for periodontics and orthodontics. PMID:23126675

  13. A network-based method to evaluate quality of reproducibility of differential expression in cancer genomics studies

    PubMed Central

    Geng, Haijiang; Li, Zhihui; Li, Jiabing; Lu, Tao; Yan, Fangrong

    2015-01-01

    BACKGROUND Personalized cancer treatments depend on the determination of a patient's genetic status according to known genetic profiles for which targeted treatments exist. Such genetic profiles must be scientifically validated before they is applied to general patient population. Reproducibility of findings that support such genetic profiles is a fundamental challenge in validation studies. The percentage of overlapping genes (POG) criterion and derivative methods produce unstable and misleading results. Furthermore, in a complex disease, comparisons between different tumor subtypes can produce high POG scores that do not capture the consistencies in the functions. RESULTS We focused on the quality rather than the quantity of the overlapping genes. We defined the rank value of each gene according to importance or quality by PageRank on basis of a particular topological structure. Then, we used the p-value of the rank-sum of the overlapping genes (PRSOG) to evaluate the quality of reproducibility. Though the POG scores were low in different studies of the same disease, the PRSOG was statistically significant, which suggests that sets of differentially expressed genes might be highly reproducible. CONCLUSIONS Evaluations of eight datasets from breast cancer, lung cancer and four other disorders indicate that quality-based PRSOG method performs better than a quantity-based method. Our analysis of the components of the sets of overlapping genes supports the utility of the PRSOG method. PMID:26556852

  14. PROFILES OF GENE EXPRESSION ASSOCIATED WITH TETRACYCLINE OVER EXPRESSION OF HSP70 IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory

    Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells.

    Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...

  15. Proteomic Profiling for Identification of Novel Biomarkers Differentially Expressed in Human Ovaries from Polycystic Ovary Syndrome Patients

    PubMed Central

    Li, Li; Zhang, Jiangyu; Deng, Qingshan; Li, Jieming; Li, Zhengfen; Xiao, Yao; Hu, Shuiwang; Li, Tiantian; Tan, Qiuxiao; Li, Xiaofang; Luo, Bingshu; Mo, Hui

    2016-01-01

    Objectives To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS). Methods Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE) analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB) and immunohistochemistry (IHC). Results DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1), retinol-binding protein 1 (RBP1), heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (P<0.05) higher expression of PGRMC1 and RBP1 in PCOS ovaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC. Conclusions The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions. PMID:27846214

  16. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl−/− retinal transcriptomes

    PubMed Central

    Brooks, Matthew J.; Rajasimha, Harsha K.; Roger, Jerome E.

    2011-01-01

    Purpose Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Methods Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl−/−) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl−/− mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl−/− retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. PMID:22162623

  17. Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants

    PubMed Central

    2013-01-01

    Background The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. Results In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. Conclusions Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy. PMID:23957588

  18. Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas.

    PubMed

    Hiramatsu, Kosuke; Yoshino, Kiyoshi; Serada, Satoshi; Yoshihara, Kosuke; Hori, Yumiko; Fujimoto, Minoru; Matsuzaki, Shinya; Egawa-Takata, Tomomi; Kobayashi, Eiji; Ueda, Yutaka; Morii, Eiichi; Enomoto, Takayuki; Naka, Tetsuji; Kimura, Tadashi

    2016-03-01

    Ovarian and endometrial high-grade serous carcinomas (HGSCs) have similar clinical and pathological characteristics; however, exhaustive protein expression profiling of these cancers has yet to be reported. We performed protein expression profiling on 14 cases of HGSCs (7 ovarian and 7 endometrial) and 18 endometrioid carcinomas (9 ovarian and 9 endometrial) using iTRAQ-based exhaustive and quantitative protein analysis. We identified 828 tumour-expressed proteins and evaluated the statistical similarity of protein expression profiles between ovarian and endometrial HGSCs using unsupervised hierarchical cluster analysis (P<0.01). Using 45 statistically highly expressed proteins in HGSCs, protein ontology analysis detected two enriched terms and proteins composing each term: IMP2 and MCM2. Immunohistochemical analyses confirmed the higher expression of IMP2 and MCM2 in ovarian and endometrial HGSCs as well as in tubal and peritoneal HGSCs than in endometrioid carcinomas (P<0.01). The knockdown of either IMP2 or MCM2 by siRNA interference significantly decreased the proliferation rate of ovarian HGSC cell line (P<0.01). We demonstrated the statistical similarity of the protein expression profiles of ovarian and endometrial HGSC beyond the organs. We suggest that increased IMP2 and MCM2 expression may underlie some of the rapid HGSC growth observed clinically.

  19. Onset of human preterm and term birth is related to unique inflammatory transcriptome profiles at the maternal fetal interface

    PubMed Central

    Sadovsky, Yoel; Goodarzi, Hani; Zhang, Heping; Biggio, Joseph R.; Varner, Michael; Parry, Samuel; Xiao, Feifei; Esplin, Sean M.; Andrews, William; Saade, George R.; Ilekis, John V.; Reddy, Uma M.; Baldwin, Donald A.

    2017-01-01

    Background Preterm birth is a main determinant of neonatal mortality and morbidity and a major contributor to the overall mortality and burden of disease. However, research of the preterm birth is hindered by the imprecise definition of the clinical phenotype and complexity of the molecular phenotype due to multiple pregnancy tissue types and molecular processes that may contribute to the preterm birth. Here we comprehensively evaluate the mRNA transcriptome that characterizes preterm and term labor in tissues comprising the pregnancy using precisely phenotyped samples. The four complementary phenotypes together provide comprehensive insight into preterm and term parturition. Methods Samples of maternal blood, chorion, amnion, placenta, decidua, fetal blood, and myometrium from the uterine fundus and lower segment (n = 183) were obtained during cesarean delivery from women with four complementary phenotypes: delivering preterm with (PL) and without labor (PNL), term with (TL) and without labor (TNL). Enrolled were 35 pregnant women with four precisely and prospectively defined phenotypes: PL (n = 8), PNL (n = 10), TL (n = 7) and TNL (n = 10). Gene expression data were analyzed using shrunken centroid analysis to identify a minimal set of genes that uniquely characterizes each of the four phenotypes. Expression profiles of 73 genes and non-coding RNA sequences uniquely identified each of the four phenotypes. The shrunken centroid analysis and 10 times 10-fold cross-validation was also used to minimize false positive finings and overfitting. Identified were the pathways and molecular processes associated with and the cis-regulatory elements in gene’s 5′ promoter or 3′-UTR regions of the set of genes which expression uniquely characterized the four phenotypes. Results The largest differences in gene expression among the four groups occurred at maternal fetal interface in decidua, chorion and amnion. The gene expression profiles showed suppression of chemokines expression in TNL, withdrawal of this suppression in TL, activation of multiple pathways of inflammation in PL, and an immune rejection profile in PNL. The genes constituting expression signatures showed over-representation of three putative regulatory elements in their 5′and 3′ UTR regions. Conclusions The results suggest that pregnancy is maintained by downregulation of chemokines at the maternal-fetal interface. Withdrawal of this downregulation results in the term birth and its overriding by the activation of multiple pathways of the immune system in the preterm birth. Complications of the pregnancy associated with impairment of placental function, which necessitated premature delivery of the fetus in the absence of labor, show gene expression patterns associated with immune rejection. PMID:28879060

  20. Structure-related clustering of gene expression fingerprints of thp-1 cells exposed to smaller polycyclic aromatic hydrocarbons.

    PubMed

    Wan, B; Yarbrough, J W; Schultz, T W

    2008-01-01

    This study was undertaken to test the hypothesis that structurally similar PAHs induce similar gene expression profiles. THP-1 cells were exposed to a series of 12 selected PAHs at 50 microM for 24 hours and gene expressions profiles were analyzed using both unsupervised and supervised methods. Clustering analysis of gene expression profiles revealed that the 12 tested chemicals were grouped into five clusters. Within each cluster, the gene expression profiles are more similar to each other than to the ones outside the cluster. One-methylanthracene and 1-methylfluorene were found to have the most similar profiles; dibenzothiophene and dibenzofuran were found to share common profiles with fluorine. As expression pattern comparisons were expanded, similarity in genomic fingerprint dropped off dramatically. Prediction analysis of microarrays (PAM) based on the clustering pattern generated 49 predictor genes that can be used for sample discrimination. Moreover, a significant analysis of Microarrays (SAM) identified 598 genes being modulated by tested chemicals with a variety of biological processes, such as cell cycle, metabolism, and protein binding and KEGG pathways being significantly (p < 0.05) affected. It is feasible to distinguish structurally different PAHs based on their genomic fingerprints, which are mechanism based.

  1. SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, J; Lin, H; Chow, J

    Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beammore » profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.« less

  2. Molecular subtype classification of urothelial carcinoma in Lynch syndrome.

    PubMed

    Therkildsen, Christina; Eriksson, Pontus; Höglund, Mattias; Jönsson, Mats; Sjödahl, Gottfrid; Nilbert, Mef; Liedberg, Fredrik

    2018-05-23

    Lynch syndrome confers an increased risk for urothelial carcinoma (UC). Molecular subtypes may be relevant to prognosis and therapeutic possibilities, but have to date not been defined in Lynch syndrome-associated urothelial cancer. We aimed to provide a molecular description of Lynch syndrome-associated UC. Thus, Lynch syndrome-associated UCs of the upper urinary tract and the urinary bladder were identified in the Danish hereditary nonpolyposis colorectal cancer (HNPCC) register and were transcriptionally and immunohistochemically profiled and further related to data from 307 sporadic urothelial carcinomas. Whole-genome mRNA expression profiles of 41 tumors and immunohistochemical stainings against FGFR3, KRT5, CCNB1, RB1, and CDKN2A (p16) of 37 tumors from patients with Lynch syndrome were generated. Pathological data, microsatellite instability, anatomic location, and overall survival data were analyzed and compared with sporadic bladder cancer. The 41 Lynch syndrome-associated UC developed at a mean age of 61 years with 59% women. mRNA expression profiling and immunostaining classified the majority of the Lynch syndrome-associated UC as urothelial-like tumors with only 20% being genomically unstable, basal/SCC-like, or other subtypes. The subtypes were associated with stage, grade, and microsatellite instability. Comparison to larger datasets revealed that Lynch syndrome-associated UC shares molecular similarities with sporadic UC. In conclusion, transcriptomic and immunohistochemical profiling identifies a predominance of the urothelial-like molecular subtype in Lynch syndrome and reveals that the molecular subtypes of sporadic bladder cancer are relevant also within this hereditary, mismatch-repair defective subset. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  3. Maternal Phthalate and Personal Care Products Exposure Alters Extracellular Placental miRNA Profile in Twin Pregnancies.

    PubMed

    Zhong, Jia; Baccarelli, Andrea A; Mansur, Abdallah; Adir, Michal; Nahum, Ravit; Hauser, Russ; Bollati, Valentina; Racowsky, Catherine; Machtinger, Ronit

    2018-01-01

    Prenatal exposure to endocrine-disrupting chemicals (EDCs) exerts both short- and long-term adverse effects on the developing fetus. However, the mechanisms underlying these effects have yet to be uncovered. Maternal-fetal signaling is mediated in part by signaling molecules (eg, microRNAs [miRNAs]) contained in extracellular vesicles (EVs) that are released by the placenta into the maternal circulation. We investigated whether maternal exposure to the EDCs phthalates and personal care products alters the miRNA profile of placental-derived EVs circulating in maternal blood. Blood and urine samples from pregnant women with uncomplicated term dichorionic, diamniotic twin pregnancies were analyzed as part of a larger study investigating correlations between exposure of phthalate and personal care products and epigenetic alterations in twin pregnancies. We explored correlations between maternal urinary levels of 13 phthalate and 12 personal care products metabolites and the miRNA profile of placental EVs (EV-miRNAs) circulating in maternal blood. The expression of miR-518e was highest among women with high urinary levels of monobenzyl phthalate and methyl paraben. miR-373-3p was the least expressed in women exposed to high levels of methyl paraben, and miR-543 was significantly downregulated in women exposed to high levels of paraben metabolites, dichlorophenol metabolites, and triclosan. In conclusion, this pilot study reveals that prenatal exposure to EDCs is associated with altered profile of circulating placenta-derived EV-miRNAs. Further studies are needed to generalize these results to singleton pregnancies and to assess whether these alterations are associated with pregnancy complications.

  4. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods.

    PubMed

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik

    2017-06-01

    The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.

  5. Characterization of leukemias with ETV6-ABL1 fusion

    PubMed Central

    Zaliova, Marketa; Moorman, Anthony V.; Cazzaniga, Giovanni; Stanulla, Martin; Harvey, Richard C.; Roberts, Kathryn G.; Heatley, Sue L.; Loh, Mignon L.; Konopleva, Marina; Chen, I-Ming; Zimmermannova, Olga; Schwab, Claire; Smith, Owen; Mozziconacci, Marie-Joelle; Chabannon, Christian; Kim, Myungshin; Frederik Falkenburg, J. H.; Norton, Alice; Marshall, Karen; Haas, Oskar A.; Starkova, Julia; Stuchly, Jan; Hunger, Stephen P.; White, Deborah; Mullighan, Charles G.; Willman, Cheryl L.; Stary, Jan; Trka, Jan; Zuna, Jan

    2016-01-01

    To characterize the incidence, clinical features and genetics of ETV6-ABL1 leukemias, representing targetable kinase-activating lesions, we analyzed 44 new and published cases of ETV6-ABL1-positive hematologic malignancies [22 cases of acute lymphoblastic leukemia (13 children, 9 adults) and 22 myeloid malignancies (18 myeloproliferative neoplasms, 4 acute myeloid leukemias)]. The presence of the ETV6-ABL1 fusion was ascertained by cytogenetics, fluorescence in-situ hybridization, reverse transcriptase-polymerase chain reaction and RNA sequencing. Genomic and gene expression profiling was performed by single nucleotide polymorphism and expression arrays. Systematic screening of more than 4,500 cases revealed that in acute lymphoblastic leukemia ETV6-ABL1 is rare in childhood (0.17% cases) and slightly more common in adults (0.38%). There is no systematic screening of myeloproliferative neoplasms; however, the number of ETV6-ABL1-positive cases and the relative incidence of acute lymphoblastic leukemia and myeloproliferative neoplasms suggest that in adulthood ETV6-ABL1 is more common in BCR-ABL1-negative chronic myeloid leukemia-like myeloproliferations than in acute lymphoblastic leukemia. The genomic profile of ETV6-ABL1 acute lymphoblastic leukemia resembled that of BCR-ABL1 and BCR-ABL1-like cases with 80% of patients having concurrent CDKN2A/B and IKZF1 deletions. In the gene expression profiling all the ETV6-ABL1-positive samples clustered in close vicinity to BCR-ABL1 cases. All but one of the cases of ETV6-ABL1 acute lymphoblastic leukemia were classified as BCR-ABL1-like by a standardized assay. Over 60% of patients died, irrespectively of the disease or age subgroup examined. In conclusion, ETV6-ABL1 fusion occurs in both lymphoid and myeloid leukemias; the genomic profile and clinical behavior resemble BCR-ABL1-positive malignancies, including the unfavorable prognosis, particularly of acute leukemias. The poor outcome suggests that treatment with tyrosine kinase inhibitors should be considered for patients with this fusion. PMID:27229714

  6. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    PubMed Central

    Selvarajah, Gayathri T; Kirpensteijn, Jolle; van Wolferen, Monique E; Rao, Nagesha AS; Fieten, Hille; Mol, Jan A

    2009-01-01

    Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS) accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST). They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months) and long survivors (dogs with better prognosis: surviving 6 months or longer). Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the dog a suitable pre-clinical model for future 'novel' therapeutic approaches where the current research has provided new insights on prognostic genes, molecular pathways and mechanisms involved in OS pathogenesis and disease progression. PMID:19735553

  7. Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

    PubMed Central

    Pan, Zhiqiang; Agarwal, Ameeta K; Xu, Tao; Feng, Qin; Baerson, Scott R; Duke, Stephen O; Rimando, Agnes M

    2008-01-01

    Background Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae. Methods S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 μM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene. Results Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment. Conclusion Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound. PMID:18366703

  8. Immunological network signatures of cancer progression and survival

    PubMed Central

    2011-01-01

    Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides. PMID:21453479

  9. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Esophageal squamous cell carcinoma (ESCC), the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB), normal differentiated squamous epithelium (ND), and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA) were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and molecular pathways mediating ESCC development and provide information potentially useful in designing novel therapeutic interventions for this tumor type. PMID:22280838

  10. Gene expression profiling of three different stressors in the water flea Daphnia magna.

    PubMed

    Jansen, Mieke; Vergauwen, Lucia; Vandenbrouck, Tine; Knapen, Dries; Dom, Nathalie; Spanier, Katina I; Cielen, Anke; De Meester, Luc

    2013-07-01

    Microarrays are an ideal tool to screen for differences in gene expression of thousands of genes simultaneously. However, often commercial arrays are not available. In this study, we performed microarray analyses to evaluate patterns of gene transcription following exposure to two natural and one anthropogenic stressor. cDNA microarrays compiled of three life stage specific and three stressor-specific EST libraries, yielding 1734 different EST sequences, were used. We exposed juveniles of the water flea Daphnia magna for 48, 96 and 144 h to three stressors known to exert strong selection in natural populations of this species i.e. a sublethal concentration of the pesticide carbaryl, infective spores of the endoparasite Pasteuria ramosa, and fish predation risk mimicked by exposure to fish kairomones. A total of 148 gene fragments were differentially expressed compared to the control. Based on a PCA, the exposure treatments were separated into two main groups based on the extent of the transcriptional response: a low and a high (144 h of fish or carbaryl exposure and 96 h of parasite exposure) stress group. Firstly, we observed a general stress-related transcriptional expression profile independent of the treatment characterized by repression of transcripts involved in transcription, translation, signal transduction and energy metabolism. Secondly, we observed treatment-specific responses including signs of migration to deeper water layers in response to fish predation, structural challenge of the cuticle in response to carbaryl exposure, and disturbance of the ATP production in parasite exposure. A third important conclusion is that transcription expression patterns exhibit stress-specific changes over time. Parasite exposure shows the most differentially expressed gene fragments after 96 h. The peak of differentially expressed transcripts came only after 144 h of fish exposure, while carbaryl exposure induced a more stable number of differently expressed gene fragments over time.

  11. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale)

    PubMed Central

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-01-01

    Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. Conclusion The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis. PMID:17118137

  12. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma

    PubMed Central

    Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong

    2007-01-01

    Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted therapeutics for HNSCC. PMID:17498291

  13. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6

    PubMed Central

    Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru

    2016-01-01

    AIM: To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. METHODS: Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. RESULTS: Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. CONCLUSION: MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection. PMID:27559432

  14. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    PubMed

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.

  15. Hippocampal CA1 Transcriptional Profile of Sleep Deprivation: Relation to Aging and Stress

    PubMed Central

    Porter, Nada M.; Bohannon, Julia H.; Curran-Rauhut, Meredith; Buechel, Heather M.; Dowling, Amy L. S.; Brewer, Lawrence D.; Popovic, Jelena; Thibault, Veronique; Kraner, Susan D.; Chen, Kuey Chu; Blalock, Eric M.

    2012-01-01

    Background Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses. Methodology/Principal Findings F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES), and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD -aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging. Conclusions/Significance We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter effects of SD in young subjects. PMID:22792227

  16. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.

    PubMed

    Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora

    2017-01-01

    Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.

  17. GENE EXPRESSION PROFILES IN ARSENIC-TREATED MCF-7 BREAST CANCER CELLS EXPRESSING DIFFERENT LEVELS OF HSP70

    EPA Science Inventory

    Gene expression profiles in arsenic-treated MCF-7 breast cancer cells expressing different levels of HSP70

    Gail Nelson, Susan Hester, Ernest Winkfield, Jill Barnes, James Allen
    Environmental Carcinogenesis Division, NHEERL, ORD, US Environmental Protection Agency, Rese...

  18. iPcc: a novel feature extraction method for accurate disease class discovery and prediction

    PubMed Central

    Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi

    2013-01-01

    Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440

  19. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  20. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  1. Cellular heterogeneity contributes to subtype-specific expression of ZEB1 in human glioblastoma.

    PubMed

    Euskirchen, Philipp; Radke, Josefine; Schmidt, Marc Sören; Schulze Heuling, Eva; Kadikowski, Eric; Maricos, Meron; Knab, Felix; Grittner, Ulrike; Zerbe, Norman; Czabanka, Marcus; Dieterich, Christoph; Miletic, Hrvoje; Mørk, Sverre; Koch, Arend; Endres, Matthias; Harms, Christoph

    2017-01-01

    The transcription factor ZEB1 has gained attention in tumor biology of epithelial cancers because of its function in epithelial-mesenchymal transition, DNA repair, stem cell biology and tumor-induced immunosuppression, but its role in gliomas with respect to invasion and prognostic value is controversial. We characterized ZEB1 expression at single cell level in 266 primary brain tumors and present a comprehensive dataset of high grade gliomas with Ki67, p53, IDH1, and EGFR immunohistochemistry, as well as EGFR FISH. ZEB1 protein expression in glioma stem cell lines was compared to their parental tumors with respect to gene expression subtypes based on RNA-seq transcriptomic profiles. ZEB1 is widely expressed in glial tumors, but in a highly variable fraction of cells. In glioblastoma, ZEB1 labeling index is higher in tumors with EGFR amplification or IDH1 mutation. Co-labeling studies showed that tumor cells and reactive astroglia, but not immune cells contribute to the ZEB1 positive population. In contrast, glioma cell lines constitutively express ZEB1 irrespective of gene expression subtype. In conclusion, our data indicate that immune infiltration likely contributes to differential labelling of ZEB1 and confounds interpretation of bulk ZEB1 expression data.

  2. A hierarchical approach employing metabolic and gene expression profiles to identify the pathways that confer cytotoxicity in HepG2 cells

    PubMed Central

    Li, Zheng; Srivastava, Shireesh; Yang, Xuerui; Mittal, Sheenu; Norton, Paul; Resau, James; Haab, Brian; Chan, Christina

    2007-01-01

    Background Free fatty acids (FFA) and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of many obesity-related metabolic disorders. When human hepatoblastoma cells (HepG2) were exposed to different types of FFA and TNF-α, saturated fatty acid was found to be cytotoxic and its toxicity was exacerbated by TNF-α. In order to identify the processes associated with the toxicity of saturated FFA and TNF-α, the metabolic and gene expression profiles were measured to characterize the cellular states. A computational model was developed to integrate these disparate data to reveal the underlying pathways and mechanisms involved in saturated fatty acid toxicity. Results A hierarchical framework consisting of three stages was developed to identify the processes and genes that regulate the toxicity. First, discriminant analysis identified that fatty acid oxidation and intracellular triglyceride accumulation were the most relevant in differentiating the cytotoxic phenotype. Second, gene set enrichment analysis (GSEA) was applied to the cDNA microarray data to identify the transcriptionally altered pathways and processes. Finally, the genes and gene sets that regulate the metabolic responses identified in step 1 were identified by integrating the expression of the enriched gene sets and the metabolic profiles with a multi-block partial least squares (MBPLS) regression model. Conclusion The hierarchical approach suggested potential mechanisms involved in mediating the cytotoxic and cytoprotective pathways, as well as identified novel targets, such as NADH dehydrogenases, aldehyde dehydrogenases 1A1 (ALDH1A1) and endothelial membrane protein 3 (EMP3) as modulator of the toxic phenotypes. These predictions, as well as, some specific targets that were suggested by the analysis were experimentally validated. PMID:17498300

  3. Petit-High Pressure Carbon Dioxide stress increases synthesis of S-Adenosylmethionine and phosphatidylcholine in yeast Saccharomyces cerevisiae.

    PubMed

    Niu, Liyuan; Nomura, Kazuki; Iwahashi, Hitoshi; Matsuoka, Hiroyuki; Kawachi, Satoshi; Suzuki, Yoshihisa; Tamura, Katsuhiro

    2017-12-01

    Petit-High Pressure Carbon Dioxide (p-HPCD) is a promising nonthermal technology for foods pasteurization. Cluster analysis of gene expression profiles of Saccharomyces cerevisiae exposed to various stresses exhibited that gene expression profile for p-HPCD stress (0.5MPa, 25°C) was grouped into a cluster including profiles for Sodium Dodecyl Sulfate and Roundup herbicide. Both are detergents that can disorder membrane structurally and functionally, which suggests that cell membrane may be a target of p-HPCD stress to cause cell growth inhibition. Through metabolomic analysis, amount of S-Adenosylmethionine (AdoMet) that is used as methyl donor to participate in phosphatidylcholine synthesis via phosphatidylethanolamine (PE) methylation pathway, was increased after p-HPCD treatment for 2h. The key gene OPI3 encoding phospholipid methyltransferase that catalyzes the last two steps in PE methylation pathway was confirmed significantly induced by RT-PCR. Transcriptional expression of genes (MET13, MET16, MET10, MET17, MET6 and SAM2) related to AdoMet biosynthesis was also significantly induced. Choline as the PC precursor and ethanolamine as PE precursor in Kennedy pathway were also found increased under p-HPCD condition. We also found that amounts of most of amino acids involving protein synthesis were found decreased after p-HPCD treatment for 2h. Moreover, morphological changes on cell surface were observed by scanning electron microscope. In conclusion, the effects of p-HPCD stress on cell membrane appear to be a very likely cause of yeast growth inhibition and the enhancement of PC synthesis could contribute to maintain optimum structure and functions of cell membrane and improve cell resistance to inactivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genomic Models of Short-Term Exposure Accurately Predict Long-Term Chemical Carcinogenicity and Identify Putative Mechanisms of Action

    PubMed Central

    Gusenleitner, Daniel; Auerbach, Scott S.; Melia, Tisha; Gómez, Harold F.; Sherr, David H.; Monti, Stefano

    2014-01-01

    Background Despite an overall decrease in incidence of and mortality from cancer, about 40% of Americans will be diagnosed with the disease in their lifetime, and around 20% will die of it. Current approaches to test carcinogenic chemicals adopt the 2-year rodent bioassay, which is costly and time-consuming. As a result, fewer than 2% of the chemicals on the market have actually been tested. However, evidence accumulated to date suggests that gene expression profiles from model organisms exposed to chemical compounds reflect underlying mechanisms of action, and that these toxicogenomic models could be used in the prediction of chemical carcinogenicity. Results In this study, we used a rat-based microarray dataset from the NTP DrugMatrix Database to test the ability of toxicogenomics to model carcinogenicity. We analyzed 1,221 gene-expression profiles obtained from rats treated with 127 well-characterized compounds, including genotoxic and non-genotoxic carcinogens. We built a classifier that predicts a chemical's carcinogenic potential with an AUC of 0.78, and validated it on an independent dataset from the Japanese Toxicogenomics Project consisting of 2,065 profiles from 72 compounds. Finally, we identified differentially expressed genes associated with chemical carcinogenesis, and developed novel data-driven approaches for the molecular characterization of the response to chemical stressors. Conclusion Here, we validate a toxicogenomic approach to predict carcinogenicity and provide strong evidence that, with a larger set of compounds, we should be able to improve the sensitivity and specificity of the predictions. We found that the prediction of carcinogenicity is tissue-dependent and that the results also confirm and expand upon previous studies implicating DNA damage, the peroxisome proliferator-activated receptor, the aryl hydrocarbon receptor, and regenerative pathology in the response to carcinogen exposure. PMID:25058030

  5. Isolation of tissues and preservation of RNA from intact, germinated barley grain.

    PubMed

    Betts, Natalie S; Berkowitz, Oliver; Liu, Ruijie; Collins, Helen M; Skadhauge, Birgitte; Dockter, Christoph; Burton, Rachel A; Whelan, James; Fincher, Geoffrey B

    2017-08-01

    Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma.

    PubMed

    Munding, Johanna B; Adai, Alex T; Maghnouj, Abdelouahid; Urbanik, Aleksandra; Zöllner, Hannah; Liffers, Sven T; Chromik, Ansgar M; Uhl, Waldemar; Szafranska-Schwarzbach, Anna E; Tannapfel, Andrea; Hahn, Stephan A

    2012-07-15

    Pancreatic ductal adenocarcinoma (PDAC) is known for its poor prognosis resulting from being diagnosed at an advanced stage. Accurate early diagnosis and new therapeutic modalities are therefore urgently needed. MicroRNAs (miRNAs), considered a new class of biomarkers and therapeutic targets, may be able to fulfill those needs. Combining tissue microdissection with global miRNA array analyses, cell type-specific miRNA expression profiles were generated for normal pancreatic ductal cells, acinar cells, PDAC cells derived from xenografts and also from macrodissected chronic pancreatitis (CP) tissues. We identified 78 miRNAs differentially expressed between ND and PDAC cells providing new insights into the miRNA-driven pathophysiological mechanisms involved in PDAC development. Having filtered miRNAs which are upregulated in the three pairwise comparisons of PDAC vs. ND, PDAC vs. AZ and PDAC vs. CP, we identified 15 miRNA biomarker candidates including miR-135b. Using relative qRT-PCR to measure miR-135b normalized to miR-24 in 75 FFPE specimens (42 PDAC and 33 CP) covering a broad range of tumor content, we discriminated CP from PDAC with a sensitivity and specificity of 92.9% [95% CI=(80.5, 98.5)] and 93.4% [95% CI=(79.8, 99.3)], respectively. Furthermore, the area under the curve (AUC) value reached of 0.97 was accompanied by positive and negative predictive values of 95% and 91%, respectively. In conclusion, we report pancreatic cell-specific global miRNA profiles, which offer new candidate miRNAs to be exploited for functional studies in PDAC. Furthermore, we provide evidence that miRNAs are well-suited analytes for development of sensitive and specific aid-in-diagnosis tests for PDAC. Copyright © 2011 UICC.

  7. Transcriptional profiles in liver from mice treated with hepatotumorigenic and nonhepatotumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.

    PubMed

    Ward, William O; Delker, Don A; Hester, Susan D; Thai, Sheau-Fung; Wolf, Douglas C; Allen, James W; Nesnow, Stephen

    2006-01-01

    Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays (Allen et al., 2006), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-beta-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their gene expression profiles.

  8. TAK-264 (MLN0264) in Previously Treated Asian Patients with Advanced Gastrointestinal Carcinoma Expressing Guanylyl Cyclase C: Results from an Open-Label, Non-randomized Phase 1 Study

    PubMed Central

    Bang, Yung-Jue; Takano, Toshimi; Lin, Chia-Chi; Fasanmade, Adedigbo; Yang, Huyuan; Danaee, Hadi; Asato, Takayuki; Kalebic, Thea; Wang, Hui; Doi, Toshihiko

    2018-01-01

    Purpose This phase 1 dose-escalation portion of the study evaluated the safety, pharmacokinetics (PK), and antitumor activity of TAK-264 in Asian patients with advanced gastrointestinal (GI) carcinoma or metastatic or recurrent gastric or gastroesophageal junction adenocarcinoma expressing guanylyl cyclase C (GCC). Materials and Methods Adult patients with advanced GI malignancies expressing GCC (H-score ≥ 10) received TAK-264 on day 1 of 3-week cycles as 30-minute intravenous infusions for up to 1 year or until disease progression or unacceptable toxicity. The primary objectives were to evaluate the safety profile including dose-limiting toxicities (DLTs) during cycle 1, determine the maximum tolerated dose (MTD), and characterize the PK profile of TAK-264. Results Twelve patients were enrolled and treated with 1.2 mg/kg (n=3), 1.5 mg/kg (n=3), or 1.8 mg/kg TAK-264 (n=6). Median number of treatment cycles received was two (range, 1 to 10). None of the patients experienced a DLT and the MTD was not determined. Ten patients (83%) experienced adverse events (AEs). The most common were neutropenia, anorexia, and nausea (each reported by four patients). Five patients (42%) experienced grade ≥ 3 AEs consisting of tumor hemorrhage and hypertension, ascites, adrenal insufficiency, neutropenia and asthenia. Serum exposure to TAK-264 increased proportionally with the dose and the median half-life was approximately 5.5-6.6 days. No patients experienced an objective response. Conclusion TAK-264 demonstrated a manageable safety profile with limited antitumor activity consistent with studies conducted in Western patients with advanced GI malignancies. TAK-264 exposure increased proportionally with the dose. PMID:28494535

  9. Recurrent seminomas: Clinical features and biologic implications

    PubMed Central

    Som, Avik; Zhu, Rui; Guo, Charles C.; Efstathiou, Eleni; Xiao, Li; Pisters, Louis L.; Matin, Angabin; Tu, Shi-Ming

    2013-01-01

    Objectives Certain patients with seminoma and clinically atypical phenotypes—visceral metastases, elevated levels of βhuman chorionic gonadotropin (βHCG), and/or recurrent disease— have a poor prognosis. The primary goal of this pilot study was to characterize the clinical characteristics and treatment profile of these rare patients. We also wished to test whether these tumors expressed any specific biomarkers that might distinguish them as a unique subtype of seminoma. Materials and methods We retrospectively identified 25 patients with a history of seminoma plus visceral metastases, βHCG levels >200 mU/ml, and/or recurrent disease. We reviewed these patients’ histories for treatment efficacy and clinical outcome. Tissue samples were available from 6 of those patients, and we studied them for expression of the markers OCT 3/4, PLAP, CD30, TRA-1-60, c-kit, and gp200. We compared our results with the expression of those markers in tissue samples from mixed seminoma/embryonal carcinomas and classic seminomas. Results Our analysis suggested that certain chemotherapeutic regimens (such as ifosfamide, paclitaxel, and cisplatin) are efficacious for the treatment of patients with these atypical seminomas. Further, specimens from the atypical seminomas generally had staining profiles that resembled those of classic seminomas and the seminoma components in mixed germ-cell tumors, but the profiles differed from those of the embryonal carcinoma components in the same mixed germ-cell tumors. Conclusions Although these atypical seminomas tend to be resistant to chemotherapy, they may still respond to certain chemotherapeutic regimens. Our pilot immunohistochemical study also suggested that the unique phenotypes associated with these atypical seminomas do not result from any relationship with embryonal carcinomas. More study is needed to confirm these initial findings. PMID:20822932

  10. Different DNA damage and cell cycle checkpoint control in low- and high-risk human papillomavirus infections of the vulva.

    PubMed

    Santegoets, Lindy A M; van Baars, Romy; Terlou, Annelinde; Heijmans-Antonissen, Claudia; Swagemakers, Sigrid M A; van der Spek, Peter J; Ewing, Patricia C; van Beurden, Marc; van der Meijden, Willem I; Helmerhorst, Theo J M; Blok, Leen J

    2012-06-15

    Human papillomavirus (HPV) infections may result in benign hyperplasia, caused by low-risk HPV types, or (pre)malignant lesions caused by high-risk HPV types. The molecular basis of this difference in malignant potential is not completely understood. Here, we performed gene profiling of different HPV infected vulvar tissues (condylomata acuminata (n = 5), usual type vulvar intraepithelial neoplasia (uVIN) (n = 9)) and control samples (n = 14) using Affymetrix Human U133A plus 2 GeneChips. Data were analyzed using OmniViz®, Partek® and Ingenuity® Software. Results were validated by real-time RT-PCR and immunostaining. Although similarities were observed between gene expression profiles of low- and high-risk HPV infected tissues (e.g., absence of estrogen receptor in condylomata and uVIN), high-risk HPV infected tissues showed more proliferation and displayed more DNA damage than tissues infected with low-risk HPV. These observations were confirmed by differential regulation of cell cycle checkpoints and by increased expression of DNA damage-biomarkers p53 and γH2AX. Furthermore, FANCA, FANCD2, BRCA1 and RAD51, key players in the DNA damage response, were significantly upregulated (p < 0.05). In addition, we compared our results with publicly available gene expression profiles of various other HPV-induced cancers (vulva, cervix and head-and-neck). This showed p16(INK4a) was the most significant marker to detect a high-risk HPV infection, but no other markers could be found. In conclusion, this study provides insight into the molecular basis of low- and high-risk HPV infections and indicates two main pathways (cell cycle and DNA damage response) that are much stronger affected by high-risk HPV as compared to low-risk HPV. Copyright © 2011 UICC.

  11. Biomarkers of Coordinate Metabolic Reprogramming in Colorectal Tumors in Mice and Humans

    PubMed Central

    Manna, Soumen K.; Tanaka, Naoki; Krausz, Kristopher W.; Haznadar, Majda; Xue, Xiang; Matsubara, Tsutomu; Bowman, Elise D.; Fearon, Eric R.; Harris, Curtis C.; Shah, Yatrik M.; Gonzalez, Frank J.

    2014-01-01

    BACKGROUND & AIMS There are no robust noninvasive methods for colorectal cancer screening and diagnosis. Metabolomic and gene expression analyses of urine and tissue samples from mice and humans were used to identify markers of colorectal carcinogenesis. METHODS Mass spectrometry-based metabolomic analyses of urine and tissues from wild-type C57BL/6J and ApcMin/+ mice, as well as from mice with azoxymethane-induced tumors, was employed in tandem with gene expression analysis. Metabolomics profiles were also determined on colon tumor and adjacent non-tumor tissues from 39 patients. The effects of β-catenin activity on metabolic profiles were assessed in mice with colon-specific disruption of Apc. RESULTS Thirteen markers were found in urine associated with development of colorectal tumors in ApcMin/+ mice. Metabolites related to polyamine metabolism, nucleic acid metabolism, and methylation, identified tumor-bearing mice with 100% accuracy, and also accurately identified mice with polyps. Changes in gene expression in tumor samples from mice reflected the observed changes in metabolic products detected in urine; similar changes were observed in mice with azoxymethane-induced tumors and mice with colon-specific activation of β-catenin. The metabolic alterations indicated by markers in urine therefore appear to occur during early stages of tumorigenesis, when cancer cells are proliferating. In tissues from patients, tumors had stage-dependent increases in 12 metabolites associated with the same metabolic pathways identified in mice (including amino acid metabolism and polyamine metabolism). Ten metabolites that were increased in tumor tissues, compared with non-tumor tissues (proline, threonine, glutamic acid, arginine, N1-acetylspermidine, xanthine, uracil, betaine, symmetric dimethylarginine, and asymmetric-dimethylarginine), were also increased in urine from tumor-bearing mice. CONCLUSIONS Gene expression and metabolomic profiles of urine and tissue samples from mice with colorectal tumors and of colorectal tumor samples from patients revealed metabolites associated with specific metabolic changes that are indicative of early-stage tumor development. These urine and tissue markers might be used in early detection of colorectal cancer. PMID:24440673

  12. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study12

    PubMed Central

    Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M

    2015-01-01

    Background: Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Objectives: Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients’ tumor stage and metabolic profiles was assessed. Design: Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I–IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina’s HumanHT-12 Expression BeadChips. Results: Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis–related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients’ adipose tissues, which were associated with CRC tumor stage. Conclusions: As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC tumor stage. We identified markers of inflammation in VAT, which supports prior evidence regarding the role of visceral adiposity and cancer. This trial was registered at clinicaltrials.gov as NCT02328677. PMID:26156741

  13. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis

    PubMed Central

    2014-01-01

    Background Brassica vegetables contain a class of secondary metabolites, the glucosinolates (GS), whose specific degradation products determine the characteristic flavor and smell. While some of the respective degradation products of particular GS are recognized as health promoting substances for humans, recent studies also show evidence that namely the 1-methoxy-indol-3-ylmethyl GS might be deleterious by forming characteristic DNA adducts. Therefore, a deeper knowledge of aspects involved in the biosynthesis of indole GS is crucial to design vegetables with an improved secondary metabolite profile. Results Initially the leafy Brassica vegetable pak choi (Brassica rapa ssp. chinensis) was established as suitable tool to elicit very high concentrations of 1-methoxy-indol-3-ylmethyl GS by application of methyl jasmonate. Differentially expressed candidate genes were discovered in a comparative microarray analysis using the 2 × 104 K format Brassica Array and compared to available gene expression data from the Arabidopsis AtGenExpress effort. Arabidopsis knock out mutants of the respective candidate gene homologs were subjected to a comprehensive examination of their GS profiles and confirmed the exclusive involvement of polypeptide 4 of the cytochrome P450 monooxygenase subfamily CYP81F in 1-methoxy-indol-3-ylmethyl GS biosynthesis. Functional characterization of the two identified isoforms coding for CYP81F4 in the Brassica rapa genome was performed using expression analysis and heterologous complementation of the respective Arabidopsis mutant. Conclusions Specific differences discovered in a comparative microarray and glucosinolate profiling analysis enables the functional attribution of Brassica rapa ssp. chinensis genes coding for polypeptide 4 of the cytochrome P450 monooxygenase subfamily CYP81F to their metabolic role in indole glucosinolate biosynthesis. These new identified Brassica genes will enable the development of genetic tools for breeding vegetables with improved GS composition in the near future. PMID:24886080

  14. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults

    PubMed Central

    Omosa-Manyonyi, Gloria; Mpendo, Juliet; Ruzagira, Eugene; Kilembe, William; Chomba, Elwyn; Roman, François; Bourguignon, Patricia; Koutsoukos, Marguerite; Collard, Alix; Voss, Gerald; Laufer, Dagna; Stevens, Gwynn; Hayes, Peter; Clark, Lorna; Cormier, Emmanuel; Dally, Len; Barin, Burc; Ackland, Jim; Syvertsen, Kristen; Zachariah, Devika; Anas, Kamaal; Sayeed, Eddy; Lombardo, Angela; Gilmour, Jill; Cox, Josephine; Fast, Patricia; Priddy, Frances

    2015-01-01

    Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445 PMID:25961283

  15. Expression profiling in canine osteosarcoma: identification of biomarkers and pathways associated with outcome

    PubMed Central

    2010-01-01

    Background Osteosarcoma (OSA) spontaneously arises in the appendicular skeleton of large breed dogs and shares many physiological and molecular biological characteristics with human OSA. The standard treatment for OSA in both species is amputation or limb-sparing surgery, followed by chemotherapy. Unfortunately, OSA is an aggressive cancer with a high metastatic rate. Characterization of OSA with regard to its metastatic potential and chemotherapeutic resistance will improve both prognostic capabilities and treatment modalities. Methods We analyzed archived primary OSA tissue from dogs treated with limb amputation followed by doxorubicin or platinum-based drug chemotherapy. Samples were selected from two groups: dogs with disease free intervals (DFI) of less than 100 days (n = 8) and greater than 300 days (n = 7). Gene expression was assessed with Affymetrix Canine 2.0 microarrays and analyzed with a two-tailed t-test. A subset of genes was confirmed using qRT-PCR and used in classification analysis to predict prognosis. Systems-based gene ontology analysis was conducted on genes selected using a standard J5 metric. The genes identified using this approach were converted to their human homologues and assigned to functional pathways using the GeneGo MetaCore platform. Results Potential biomarkers were identified using gene expression microarray analysis and 11 differentially expressed (p < 0.05) genes were validated with qRT-PCR (n = 10/group). Statistical classification models using the qRT-PCR profiles predicted patient outcomes with 100% accuracy in the training set and up to 90% accuracy upon stratified cross validation. Pathway analysis revealed alterations in pathways associated with oxidative phosphorylation, hedgehog and parathyroid hormone signaling, cAMP/Protein Kinase A (PKA) signaling, immune responses, cytoskeletal remodeling and focal adhesion. Conclusions This profiling study has identified potential new biomarkers to predict patient outcome in OSA and new pathways that may be targeted for therapeutic intervention. PMID:20860831

  16. Genome-Wide Profile of Pleural Mesothelioma versus Parietal and Visceral Pleura: The Emerging Gene Portrait of the Mesothelioma Phenotype

    PubMed Central

    Røe, Oluf Dimitri; Anderssen, Endre; Helge, Eli; Pettersen, Caroline Hild; Olsen, Karina Standahl; Sandeck, Helmut; Haaverstad, Rune; Lundgren, Steinar; Larsson, Erik

    2009-01-01

    Background Malignant pleural mesothelioma is considered an almost incurable tumour with increasing incidence worldwide. It usually develops in the parietal pleura, from mesothelial lining or submesothelial cells, subsequently invading the visceral pleura. Chromosomal and genomic aberrations of mesothelioma are diverse and heterogenous. Genome-wide profiling of mesothelioma versus parietal and visceral normal pleural tissue could thus reveal novel genes and pathways explaining its aggressive phenotype. Methodology and Principal Findings Well-characterised tissue from five mesothelioma patients and normal parietal and visceral pleural samples from six non-cancer patients were profiled by Affymetrix oligoarray of 38 500 genes. The lists of differentially expressed genes tested for overrepresentation in KEGG PATHWAYS (Kyoto Encyclopedia of Genes and Genomes) and GO (gene ontology) terms revealed large differences of expression between visceral and parietal pleura, and both tissues differed from mesothelioma. Cell growth and intrinsic resistance in tumour versus parietal pleura was reflected in highly overexpressed cell cycle, mitosis, replication, DNA repair and anti-apoptosis genes. Several genes of the “salvage pathway” that recycle nucleobases were overexpressed, among them TYMS, encoding thymidylate synthase, the main target of the antifolate drug pemetrexed that is active in mesothelioma. Circadian rhythm genes were expressed in favour of tumour growth. The local invasive, non-metastatic phenotype of mesothelioma, could partly be due to overexpression of the known metastasis suppressors NME1 and NME2. Down-regulation of several tumour suppressor genes could contribute to mesothelioma progression. Genes involved in cell communication were down-regulated, indicating that mesothelioma may shield itself from the immune system. Similarly, in non-cancer parietal versus visceral pleura signal transduction, soluble transporter and adhesion genes were down-regulated. This could represent a genetical platform of the parietal pleura propensity to develop mesothelioma. Conclusions Genome-wide microarray approach using complex human tissue samples revealed novel expression patterns, reflecting some important features of mesothelioma biology that should be further explored. PMID:19662092

  17. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet

    PubMed Central

    Ha, Ae Wha; Ying, Tian

    2015-01-01

    BACKGROUD/OBEJECTIVES The mechanism of how black garlic effects lipid metabolism remains unsolved. Therefore, the objectives of this study were to determine the effects of black garlic on lipid profiles and the expression of related genes in rats fed a high fat diet. MATERIALS/METHODS Thirty-two male Sqrague-Dawley rats aged 4 weeks were randomly divided into four groups (n=8) and fed the following diets for 5 weeks: normal food diet, (NF); a high-fat diet (HF); and a high-fat diet + 0.5% or 1.5% black garlic extract (HFBG0.5 or HFBG1.5). Body weights and blood biochemical parameters, including lipid profiles, and expressions of genes related to lipid metabolism were determined. RESULTS Significant differences were observed in the final weights between the HFBG1.5 and HF groups. All blood biochemical parameters measured in the HFBG1.5 group showed significantly lower values than those in the HF group. Significant improvements of the plasama lipid profiles as well as fecal excretions of total lipids and triglyceride (TG) were also observed in the HFBG1.5 group, when compared to the HF diet group. There were significant differences in the levels of mRNA of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (G6PDH) in the HFBG1.5 group compared to the HF group. In addition, the hepatic expression of (HMG-CoA) reductase and Acyl-CoA cholesterol acyltransferase (ACAT) mRNA was also significantly lower than the HF group. CONCLUSIONS Consumption of black garlic extract lowers SREBP-1C mRNA expression, which causes downregulation of lipid and cholestrol metahbolism. As a result, the blood levels of total lipids, TG, and cholesterol were decreased. PMID:25671065

  18. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants

    PubMed Central

    2012-01-01

    Background RNA-silencing is a conserved gene regulation and surveillance machinery, which in plants, is also used as major defence mechanism against viruses. Various virus-specific dsRNA structures are recognized by the silencing machinery leading to degradation of the viral RNAs or, as in case of begomoviruses, to methylation of their DNA genomes. Viruses produce specific RNA silencing suppressor (RSS) proteins to prevent these host defence mechanisms, and as these interfere with the silencing machinery they also disturb the endogenous silencing reactions. In this paper, we describe how expression of AC2 RSS, derived from African cassava mosaic geminivirus changes transcription profile in tobacco (Nicotiana tabacum) leaves and in flowers. Results Expression of AC2 RSS in transgenic tobacco plants induced clear phenotypic changes both in leaves and in flowers. Transcriptomes of these plants were strongly altered, with total of 1118 and 251 differentially expressed genes in leaves and flowers, respectively. The three most up-regulated transcript groups were related to stress, cell wall modifications and signalling, whereas the three most down-regulated groups were related to translation, photosynthesis and transcription. It appears that many of the gene expression alterations appeared to be related to enhanced biosynthesis of jasmonate and ethylene, and consequent enhancement of the genes and pathways that are regulated by these hormones, or to the retrograde signalling caused by the reduced photosynthetic activity and sugar metabolism. Comparison of these results to a previous transcriptional profiling of HC-Pro RSS-expressing plants revealed that some of same genes were induced by both RSSs, but their expression levels were typically higher in AC2 than in HC-Pro RSS expressing plants. All in all, a large number of transcript alterations were found to be specific to each of the RSS expressing transgenic plants. Conclusions AC2 RSS in transgenic tobacco plants interferes with the silencing machinery. It causes stress and defence reactions for instance via induction of the jasmonate and ethylene biosynthesis, and by consequent gene expression alteration regulated by these hormones. The changed sugar metabolism may cause significant down-regulation of genes encoding ribosomal proteins, thus reducing the general translation level. PMID:23130567

  19. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    PubMed Central

    2011-01-01

    Background Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion We present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance. PMID:21303543

  20. Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection

    PubMed Central

    Babu, Mohan; Griffiths, Jonathan S; Huang, Tyng-Shyan; Wang, Aiming

    2008-01-01

    Background Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV). To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Results Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q ≤ 0.05) up- (≥ 2.5 fold) and downregulated (≤ -2.5 fold), respectively. Genes associated with soluble sugar, starch and amino acid, intracellular membrane/membrane-bound organelles, chloroplast, and protein fate were upregulated, while genes related to development/storage proteins, protein synthesis and translation, and cell wall-associated components were downregulated. These gene expression changes were associated with PPV infection and symptom development. Further transcriptional profiling of protoplasts transfected with a PPV infectious clone revealed the upregulation of defence and cellular signalling genes as early as 6 hours post transfection. A cross sequence comparison analysis of genes differentially regulated by PPV-infected Arabidopsis leaves against uniEST sequences derived from PPV-infected leaves of Prunus persica, a natural host of PPV, identified orthologs related to defence, metabolism and protein synthesis. The cross comparison of genes differentially regulated by PPV infection and by the infections of other positive sense RNA viruses revealed a common set of 416 genes. These identified genes, particularly the early responsive genes, may be critical in virus infection. Conclusion Gene expression changes in PPV-infected Arabidopsis are the molecular basis of stress and defence-like responses, PPV pathogenesis and symptom development. The differentially regulated genes, particularly the early responsive genes, and a common set of genes regulated by infections of PPV and other positive sense RNA viruses identified in this study are candidates suitable for further functional characterization to shed lights on molecular virus-host interactions. PMID:18613973

  1. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients

    PubMed Central

    Liu, Qiwei; Li, Yumei; Feng, Yun; Liu, Chaojie; Ma, Jieliang; Li, Yifei; Xiang, Huifen; Ji, Yazhong; Cao, Yunxia; Tong, Xiaowen; Xue, Zhigang

    2016-01-01

    Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women. PMID:28004769

  2. AJAP1 is Dysregulated at an Early Stage of Gliomagenesis and Suppresses Invasion Through Cytoskeleton Reorganization

    PubMed Central

    Han, Lei; Zhang, Kai-Liang; Zhang, Jun-Xia; Zeng, Liang; Di, Chun-Hui; Fee, Brian E.; Rivas, Miriam; Bao, Zhao-Shi; Jiang, Tao; Bigner, Darrell; Kang, Chun-Sheng; Adamson, David Cory

    2015-01-01

    SUMMARY Aims Down-regulation of AJAP1 in glioblastoma multiforme (GBM) has been reported. However, the expression profiles of AJAP1 in gliomas and the underlying mechanisms of AJAP1 function on invasion are still poorly understood. Methods The gene profiles of AJAP1 in glioma patients were studied among four independent cohorts. Confocal imaging was used to analyze the AJAP1 localization. After AJAP1 overexpression in GBM cell lines, cellular polarity, cytoskeleton distribution, and antitumor effect were investigated in vitro and in vivo. Results AJAP1 expression was significantly decreased in gliomas compared with normal brain in REMBRANDT and CGCA cohorts. Additionally, low AJAP1 expression was associated with worse survival in GBMs in REMBRANDT and TCGA U133A cohorts and was significantly associated with classical and mesenchymal subtypes of GBMs among four cohorts. Confocal imaging indicated AJAP1 localized in cell membranes in low-grade gliomas and AJAP1-overexpressing GBM cells, but difficult to assess in high-grade gliomas due to its absence. AJAP1 overexpression altered the cytoskeleton and cellular polarity in vitro and inhibited the tumor growth in vivo. Conclusions AJAP1 is dysregulated at an early stage of gliomagenesis and may suppress glioma cell invasion and proliferation, which suggests that AJAP1 may be a potential diagnostic and prognostic marker for gliomas. PMID:24483339

  3. The Effect of Wenxin Keli on the mRNA Expression Profile of Rabbits with Myocardial Infarction.

    PubMed

    Zheng, Min; Liu, Zhouying; Liu, Nana; Hou, Cuihong; Pu, Jielin; Zhang, Shu

    2016-01-01

    Aims . The molecular mechanisms of Chinese traditional medicine Wenxin Keli (WXKL) were unknown. This study was aimed at exploring the effects of WXKL on the gene expression profile and pathological alteration of rabbits with myocardial infarction. Methods . Twenty male adult rabbits were randomly divided into 4 groups: sham, model, WXKL, and captopril groups. Model, WXKL, and captopril groups underwent the ligation of the left anterior descending coronary artery while sham group went through an identical procedure without ligation. WXKL (817 mg/kg/d), captopril (8 mg/kg/d), and distilled water (to model and sham groups) were administered orally to each group. After 4 weeks, the rabbits were examined with echocardiography and the hearts were taken for expression chip and pathological staining (H&E, Masson, and Tunel) studies. Results . The data revealed that WXKL downregulated genes associated with inflammation (CX3CR1, MRC1, and FPR1), apoptosis (CTSC and TTC5), and neurohumoral system (ACE and EDN1) and upregulated angiogenesis promoting genes such as RSPO3. Moreover, the results also showed that WXKL improved cardiac function and prevented histopathological injury and apoptosis. Conclusion . The present study demonstrated that WXKL might play an important role in inhibiting inflammation, renin-angiotensin system, and apoptosis. It might be a promising Chinese medicine in the treatment of patients with myocardial infarction.

  4. Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance

    PubMed Central

    Azimi, A; Pernemalm, M; Frostvik Stolt, M; Hansson, J; Lehtiö, J; Egyházi Brage, S; Hertzman Johansson, C

    2014-01-01

    Background: Disseminated cutaneous malignant melanoma (CMM) is commonly unresponsive to standard chemotherapies, and there are as yet no predictive markers of therapy response. Methods: In the present study we collected fresh-frozen pretreatment lymph-node metastasis samples (n=14) from melanoma patients with differential response to dacarbazine (DTIC) or temozolomide (TMZ) chemotherapy, to identify proteins with an impact on treatment response. We performed quantitative protein profiling using tandem mass spectrometry and compared the proteome differences between responders (R) and non-responders (NR), matched for age, gender and histopathological type of CMM. Results: Biological pathway analyses showed several signalling pathways differing between R vs NR, including Rho signalling. Gene expression profiling data was available for a subset of the samples, and the results were compared with the proteomics data. Four proteins with differential expression between R and NR were selected for technical validation by immunoblotting (ISYNA1, F13A1, CSTB and S100A13), and CSTB and S100A13 were further validated on a larger sample set by immunohistochemistry (n=48). The calcium binding protein S100A13 was found to be significantly overexpressed in NR compared with R in all analyses performed. Conclusions: Our results suggest that S100A13 is involved in CMM resistance to DTIC/TMZ. PMID:24722184

  5. Vildagliptin preserves the mass and function of pancreatic β cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes

    PubMed Central

    Hamamoto, S; Kanda, Y; Shimoda, M; Tatsumi, F; Kohara, K; Tawaramoto, K; Hashiramoto, M; Kaku, K

    2013-01-01

    Aim We investigated the molecular mechanisms by which vildagliptin preserved pancreatic β cell mass and function. Methods Morphological, biochemical and gene expression profiles of the pancreatic islets were investigated in male KK-Ay-TaJcl(KK-Ay) and C57BL/6JJcl (B6) mice aged 8 weeks which received either vildagliptin or a vehicle for 4 weeks. Results Body weight, food intake, fasting blood glucose, plasma insulin and active glucagon-like peptide-1 were unchanged with vildagliptin treatment in both mice. In KK-Ay mice treated with vildagliptin, increased plasma triglyceride (TG) level and islet TG content were decreased, insulin sensitivity significantly improved, and the glucose tolerance ameliorated with increases in plasma insulin levels. Furthermore, vildagliptin increased glucose-stimulated insulin secretion, islet insulin content and pancreatic β cell mass in both strains. By vildagliptin, the expression of genes involved in cell differentiation/proliferation was upregulated in both strains, those related to apoptosis, endoplasmic reticulum stress and lipid synthesis was decreased and those related to anti-apoptosis and anti-oxidative stress was upregulated, in KK-Ay mice. The morphological results were consistent with the gene expression profiles. Conclusion Vildagliptin increases β cell mass by not only directly affecting cell kinetics but also by indirectly reducing cell apoptosis, oxidative stress and endoplasmic reticulum stress in diabetic mice. PMID:22950702

  6. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients.

    PubMed

    Liu, Qiwei; Li, Yumei; Feng, Yun; Liu, Chaojie; Ma, Jieliang; Li, Yifei; Xiang, Huifen; Ji, Yazhong; Cao, Yunxia; Tong, Xiaowen; Xue, Zhigang

    2016-12-22

    Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women.

  7. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum

    PubMed Central

    2010-01-01

    Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs. PMID:20144196

  8. The Effect of Wenxin Keli on the mRNA Expression Profile of Rabbits with Myocardial Infarction

    PubMed Central

    Zheng, Min; Liu, Zhouying; Liu, Nana; Hou, Cuihong; Zhang, Shu

    2016-01-01

    Aims. The molecular mechanisms of Chinese traditional medicine Wenxin Keli (WXKL) were unknown. This study was aimed at exploring the effects of WXKL on the gene expression profile and pathological alteration of rabbits with myocardial infarction. Methods. Twenty male adult rabbits were randomly divided into 4 groups: sham, model, WXKL, and captopril groups. Model, WXKL, and captopril groups underwent the ligation of the left anterior descending coronary artery while sham group went through an identical procedure without ligation. WXKL (817 mg/kg/d), captopril (8 mg/kg/d), and distilled water (to model and sham groups) were administered orally to each group. After 4 weeks, the rabbits were examined with echocardiography and the hearts were taken for expression chip and pathological staining (H&E, Masson, and Tunel) studies. Results. The data revealed that WXKL downregulated genes associated with inflammation (CX3CR1, MRC1, and FPR1), apoptosis (CTSC and TTC5), and neurohumoral system (ACE and EDN1) and upregulated angiogenesis promoting genes such as RSPO3. Moreover, the results also showed that WXKL improved cardiac function and prevented histopathological injury and apoptosis. Conclusion. The present study demonstrated that WXKL might play an important role in inhibiting inflammation, renin-angiotensin system, and apoptosis. It might be a promising Chinese medicine in the treatment of patients with myocardial infarction. PMID:27843475

  9. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure

    PubMed Central

    Dong, Fan; Xu, Tianyuan; Shen, Yifan; Zhong, Shan; Chen, Shanwen; Ding, Qiang; Shen, Zhoujun

    2017-01-01

    Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease. PMID:28187437

  10. Molecular profiles of pre- and postoperative breast cancer tumours reveal differentially expressed genes.

    PubMed

    Riis, Margit L H; Lüders, Torben; Markert, Elke K; Haakensen, Vilde D; Nesbakken, Anne-Jorun; Kristensen, Vessela N; Bukholm, Ida R K

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology.

  11. Molecular Profiles of Pre- and Postoperative Breast Cancer Tumours Reveal Differentially Expressed Genes

    PubMed Central

    Riis, Margit L. H.; Lüders, Torben; Markert, Elke K.; Haakensen, Vilde D.; Nesbakken, Anne-Jorun; Kristensen, Vessela N.; Bukholm, Ida R. K.

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology. PMID:23227362

  12. Expression profiles of antimicrobial peptides (AMPs) and their regulation by Relish

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Fuhua; Li, Shihao; Wen, Rong; Xiang, Jianhai

    2012-07-01

    Antimicrobial peptides (AMPs), as key immune effectors, play important roles in the innate immune system of invertebrates. Different types of AMPs, including Penaeidin, Crustin, ALF (antilipopolysaccharide factor) have been identified in different penaeid shrimp; however, systematic analyses on the function of different AMPs in shrimp responsive to different types of bacteria are very limited. In this study, we analyzed the expression profiles of AMPs in the Chinese shrimps, Fenneropenaeus chinensis, simultaneously by real-time RT-PCR (reverse transcription-polymerase chain reaction) when shrimp were challenged with Micrococcus lysodeikticus (Gram-positive, G+) or Vibrio anguillarium (Gram-negative, G-). Different AMPs showed different expression profiles when shrimp were injected with one type of bacterium, and one AMP also showed different expression profiles when shrimp were challenged with different bacteria. Furthermore, the expression of these AMPs showed temporal expression profiles, suggesting that different AMPs function coordinately in bacteria-infected shrimp. An RNA interference approach was used to study the function of the Relish transcription factor in regulating the transcription of different AMPs. The current study showed that Relish could regulate the transcription of different AMPs in shrimp. Differential expression profiles of AMPs in shrimp injected with different types of bacteria indicated that a complicated antimicrobial response network existed in shrimp. These data contribute to our understanding of immunity in shrimp and may provide a strategy for the control of disease in shrimp.

  13. Baculovirus induced transcripts in hemocytes from Heliothis virescens

    USDA-ARS?s Scientific Manuscript database

    Using RNA-sequencing digital difference expression profiling methods we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcri...

  14. Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions

    PubMed Central

    Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.

    2005-01-01

    Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080

  15. [The profile of neonaticide mothers in legal expertise].

    PubMed

    Vellut, N; Simmat-Durand, L; Tursz, A

    2013-10-01

    Neonaticide is the term used to refer to the killing of newborn infants within the first 24 hours of life. A recent study conducted by Inserm Unit 750 found a frequency of 2.1 cases of neonaticide for 100,000 births in France. The persistence of these crimes raises serious issues, and scientists have attempted to explain this by the profile of neonaticidal mothers: young, or even teenage, single, primiparous, and socially deprived. The present study sought to question this profile, and to suggest a new profile for neonaticidal mothers. This retrospective study over the years 1996-2000 comprised 32 cases of neonaticide perpetrated in three French regions. Seventeen solved cases of these 32 cases generated 54 documents by expert consultants, mainly psychiatric and psychological expertise, studied and analysed here using Modalisa software for quantitative analyses and Nvivo software for qualitative data. No single socio-demographic profile was observed. The mothers were in contrasting situations at the time of the event. There were few psychotic profiles. The other psychopathological disturbances detected were very often related to the event. The most surprising feature in the expert reports describing the neonaticidal mothers was the existence of what we have termed "descriptive absent-factors". These mothers had not experienced major trauma in childhood such as the death of persons close or foster care. They were not living in an environment of family violence. They did not exhibit addictive or self-harm behaviour. Their parents before them had similar profiles, except three cases of alcoholism. Their parentage, and that of the infants, was not an issue. The most widely described personality features were immaturity, dependency on others, withdrawal, inhibition, emptiness, lack of affectivity, non-expressiveness, and devaluation of self-image. The very impoverished relational environment of these mothers also appears in the expertise data. Their affective and relational foundations were insecure. The "classic" profile of the neonaticidal mother as being young, single, and primiparous is not confirmed in this study. Recent American and European studies reach similar conclusions. More than half of these mothers already had other children; more than half were living with a partner. Nor did these mothers have an evident psychopathological profile, and even less so a psychopathic profile. This study suggests a "psycho-relational" profile for the neonaticidal mother: immature, affectively dependent, expressing herself very little, and experiencing considerable affective isolation. These neonaticidal mothers did not present any specific socio-demographic or evident psychopathological profile. The study nevertheless enabled definition of a "psycho-relational" profile. Copyright © 2012 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  16. Valine Supplementation in a Reduced Protein Diet Regulates Growth Performance Partially through Modulation of Plasma Amino Acids Profile, Metabolic Responses, Endocrine, and Neural Factors in Piglets.

    PubMed

    Zhang, Xiaoya; Liu, Xutong; Jia, Hongmin; He, Pingli; Mao, Xiangbing; Qiao, Shiyan; Zeng, Xiangfang

    2018-03-28

    The objective of this study was to investigate whether valine (Val) supplementation in a reduced protein (RP) diet regulates growth performance associated with the changes in plasma amino acids (AAs) profile, metabolism, endocrine, and neural system in piglets. Piglets or piglets with a catheter in the precaval vein were randomly assigned to two treatments, including two RP diets with standardized ileal digestible (SID) Val:Lysine (Lys) ratio of 0.45 and 0.65, respectively. The results indicated that piglets in the higher Val:Lys ratio treatment had higher average daily feed intake (ADFI) ( P < 0.001), average daily gain (ADG) ( P = 0.001), feed conversion ratio (FCR) ( P = 0.004), lower plasma urea nitrogen ( P = 0.032), expression of gastric cholecystokinin (CCK), and hypothalamic pro-opiomelanocortin (POMC). Plasma AAs profiles including postprandial plasma essential AAs (EAAs) profile and in serum, muscle, and liver involved in metabolism of AAs and fatty acids were significantly different between two treatments. In conclusion, Val influenced growth performance associated with metabolism of AAs and fatty acids and both endocrine and neural system in piglets.

  17. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  18. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Matatall, Katie A.; Kneass, Zachary T.; Onken, Michael D.; Lee, Ryan S.; Bowcock, Anne M.; Harbour, J. William

    2011-01-01

    Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM. PMID:22038994

  19. The genome-wide expression profile of Curcuma longa-treated cisplatin-stimulated HEK293 cells

    PubMed Central

    Sohn, Sung-Hwa; Ko, Eunjung; Chung, Hwan-Suck; Lee, Eun-Young; Kim, Sung-Hoon; Shin, Minkyu; Hong, Moochang; Bae, Hyunsu

    2010-01-01

    AIM The rhizome of turmeric, Curcuma longa (CL), is a herbal medicine used in many traditional prescriptions. It has previously been shown that CL treatment showed greater than 47% recovery from cisplatin-induced cell damage in human kidney HEK 293 cells. This study was conducted to evaluate the recovery mechanisms of CL that occur during cisplatin induced nephrotoxicity by examining the genome wide mRNA expression profiles of HEK 293 -cells. METHOD Recovery mechanisms of CL that occur during cisplatin-induced nephrotoxicity were determined by microarray, real-time PCR, immunofluorescent confocal microscopy and Western blot analysis. RESULTS The results of microarray analysis and real-time PCR revealed that NFκB pathway-related genes and apoptosis-related genes were down-regulated in CL-treated HEK 293 cells. In addition, immunofluorescent confocal microscopy and Western blot analysis revealed that NFκB p65 nuclear translocation was inhibited in CL-treated HEK 293 cells. Therefore, the mechanism responsible for the effects of CL on HEK 293 cells is closely associated with regulation of the NFκB pathway. CONCLUSION CL possesses novel therapeutic agents that can be used for the prevention or treatment of cisplatin-induced renal disorders. PMID:20840446

  20. Integrated analysis of long noncoding RNA and mRNA expression profile in children with obesity by microarray analysis.

    PubMed

    Liu, Yuesheng; Ji, Yuqiang; Li, Min; Wang, Min; Yi, Xiaoqing; Yin, Chunyan; Wang, Sisi; Zhang, Meizhen; Zhao, Zhao; Xiao, Yanfeng

    2018-06-08

    Long noncoding RNAs (lncRNAs) have an important role in adipose tissue function and energy metabolism homeostasis, and abnormalities may lead to obesity. To investigate whether lncRNAs are involved in childhood obesity, we investigated the differential expression profile of lncRNAs in obese children compared with non-obese children. A total number of 1268 differentially expressed lncRNAs and 1085 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis revealed that these lncRNAs were involved in varied biological processes, including the inflammatory response, lipid metabolic process, osteoclast differentiation and fatty acid metabolism. In addition, the lncRNA-mRNA co-expression network and the protein-protein interaction (PPI) network were constructed to identify hub regulatory lncRNAs and genes based on the microarray expression profiles. This study for the first time identifies an expression profile of differentially expressed lncRNAs in obese children and indicated hub lncRNA RP11-20G13.3 attenuated adipogenesis of preadipocytes, which is conducive to the search for new diagnostic and therapeutic strategies of childhood obesity.

  1. Comprehensive Genomic Analysis and Expression Profiling of Phospholipase C Gene Family during Abiotic Stresses and Development in Rice

    PubMed Central

    Singh, Amarjeet; Kanwar, Poonam; Pandey, Amita; Tyagi, Akhilesh K.; Sopory, Sudhir K.; Kapoor, Sanjay; Pandey, Girdhar K.

    2013-01-01

    Background Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. Methodology/Principal Findings An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. Conclusion/Significance The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future. PMID:23638098

  2. miR-205 and miR-200c: Predictive Micro RNAs for Lymph Node Metastasis in Triple Negative Breast Cancer

    PubMed Central

    Yilmaz, Ismail; Narli, Gizem; Haholu, Aptullah; Kucukodaci, Zafer; Demirel, Dilaver

    2014-01-01

    Purpose We examined expression profiles of 16 micro RNAs (miRNAs) in triple negative breast cancers to identify their potential as biomarkers for lymph node metastasis. Methods The expression profiles of miR-9, miR-21, miR-30a, miR-30d, miR-31, miR-34a, miR-34c, miR-100, miR-122, miR-125b, miR-146a, miR-146b, miR-155, miR-181a, miR-200c, and miR-205 were examined by using real-time quantitative reverse transcription polymerase chain reaction in tumor samples and corresponding benign breast tissues. Their associations with histopathological features and prognostic parameters were assessed. Results When compared with the expression in benign breast tissues, seven of the miRNAs (miR-31, miR-205, miR-34a, miR-146a, miR-125b, miR-34c, and miR-181a) were downregulated more than 1.5-fold in tumor tissues, whereas, only miR-21 was found to be upregulated more than 1.5-fold in tumor tissues. Although miR-200c levels were decreased only 1.12-fold in tumor tissues, the reduced expressions of miR-200c and miR-205 were significantly associated with lymph node metastasis (p=0.021 and p=0.016, respectively). Conclusion Our results demonstrate that miR-205 and miR-200c expression levels may be useful in predicting lymph node metastasis in triple negative breast cancer patients. PMID:25013435

  3. Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma

    PubMed Central

    2011-01-01

    Background Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer. PMID:21232125

  4. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome

    PubMed Central

    2013-01-01

    Background Birds have a ZZ male: ZW female sex chromosome system and while the Z-linked DMRT1 gene is necessary for testis development, the exact mechanism of sex determination in birds remains unsolved. This is partly due to the poor annotation of the W chromosome, which is speculated to carry a female determinant. Few genes have been mapped to the W and little is known of their expression. Results We used RNA-seq to produce a comprehensive profile of gene expression in chicken blastoderms and embryonic gonads prior to sexual differentiation. We found robust sexually dimorphic gene expression in both tissues pre-dating gonadogenesis, including sex-linked and autosomal genes. This supports the hypothesis that sexual differentiation at the molecular level is at least partly cell autonomous in birds. Different sets of genes were sexually dimorphic in the two tissues, indicating that molecular sexual differentiation is tissue specific. Further analyses allowed the assembly of full-length transcripts for 26 W chromosome genes, providing a view of the W transcriptome in embryonic tissues. This is the first extensive analysis of W-linked genes and their expression profiles in early avian embryos. Conclusion Sexual differentiation at the molecular level is established in chicken early in embryogenesis, before gonadal sex differentiation. We find that the W chromosome is more transcriptionally active than previously thought, expand the number of known genes to 26 and present complete coding sequences for these W genes. This includes two novel W-linked sequences and three small RNAs reassigned to the W from the Un_Random chromosome. PMID:23531366

  5. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  6. Systemic analysis of genome-wide expression profiles identified potential therapeutic targets of demethylation drugs for glioblastoma.

    PubMed

    Ning, Tongbo; Cui, Hao; Sun, Feng; Zou, Jidian

    2017-09-05

    Glioblastoma represents one of the most aggressive malignant brain tumors with high morbidity and motility. Demethylation drugs have been developed for its treatment with little efficacy has been observed. The purpose of this study was to screen therapeutic targets of demethylation drugs or bioactive molecules for glioblastoma through systemic bioinformatics analysis. We firstly downloaded genome-wide expression profiles from the Gene Expression Omnibus (GEO) and conducted the primary analysis through R software, mainly including preprocessing of raw microarray data, transformation between probe ID and gene symbol and identification of differential expression genes (DEGs). Secondly, functional enrichment analysis was conducted via the Database for Annotation, Visualization and Integrated Discovery (DAVID) to explore biological processes involved in the development of glioblastoma. Thirdly, we constructed protein-protein interaction (PPI) network of interested genes and conducted cross analysis for multi datasets to obtain potential therapeutic targets for glioblastoma. Finally, we further confirmed the therapeutic targets through real-time RT-PCR. As a result, biological processes that related to cancer development, amino metabolism, immune response and etc. were found to be significantly enriched in genes that differential expression in glioblastoma and regulated by 5'aza-dC. Besides, network and cross analysis identified ACAT2, UFC1 and CYB5R1 as novel therapeutic targets of demethylation drugs which also confirmed by real time RT-PCR. In conclusions, our study identified several biological processes and genes that involved in the development of glioblastoma and regulated by 5'aza-dC, which would be helpful for the treatment of glioblastoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Thiopurine treatment in patients with Crohn's disease leads to a selective reduction of an effector cytotoxic gene expression signature revealed by whole-genome expression profiling.

    PubMed

    Bouma, G; Baggen, J M; van Bodegraven, A A; Mulder, C J J; Kraal, G; Zwiers, A; Horrevoets, A J; van der Pouw Kraan, C T M

    2013-07-01

    Crohn's disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, as a result of aberrant activation of the innate immune system through TLR stimulation by bacterial products. The conventional immunosuppressive thiopurine derivatives (azathioprine and mercaptopurine) are used to treat CD. The effects of thiopurines on circulating immune cells and TLR responsiveness are unknown. To obtain a global view of affected gene expression of the immune system in CD patients and the treatment effect of thiopurine derivatives, we performed genome-wide transcriptome analysis on whole blood samples from 20 CD patients in remission, of which 10 patients received thiopurine treatment, compared to 16 healthy controls, before and after TLR4 stimulation with LPS. Several immune abnormalities were observed, including increased baseline interferon activity, while baseline expression of ribosomal genes was reduced. After LPS stimulation, CD patients showed reduced cytokine and chemokine expression. None of these effects were related to treatment. Strikingly, only one highly correlated set of 69 genes was affected by treatment, not influenced by LPS stimulation and consisted of genes reminiscent of effector cytotoxic NK cells. The most reduced cytotoxicity-related gene in CD was the cell surface marker CD160. Concordantly, we could demonstrate an in vivo reduction of circulating CD160(+)CD3(-)CD8(-) cells in CD patients after treatment with thiopurine derivatives in an independent cohort. In conclusion, using genome-wide profiling, we identified a disturbed immune activation status in peripheral blood cells from CD patients and a clear treatment effect of thiopurine derivatives selectively affecting effector cytotoxic CD160-positive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling

    PubMed Central

    2011-01-01

    Background Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA), a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. Results The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A) or by oral gavage (Group B), supplemented just during suckling (Group C) and control animals (Group D) was determined with the aid of the specific GeneChip® Rat Genome 230 2.0 (Affymettrix). Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf), tissue inhibitor of metalloproteinase 1 (Timp1), galanin (Gal), synaptotagmin 1 (Syt1), growth factor receptor bound protein 2 (Grb2), actin gamma 2 (Actg2) and smooth muscle alpha actin (Acta2), as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Conclusions Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life. PMID:21481241

  9. Immunological abnormalities as potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    PubMed Central

    2011-01-01

    Background Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) is characterised by severe prolonged fatigue, and decreases in cognition and other physiological functions, resulting in severe loss of quality of life, difficult clinical management and high costs to the health care system. To date there is no proven pathomechanism to satisfactorily explain this disorder. Studies have identified abnormalities in immune function but these data are inconsistent. We investigated the profile of markers of immune function (including novel markers) in CFS/ME patients. Methods We included 95 CFS/ME patients and 50 healthy controls. All participants were assessed on natural killer (NK) and CD8+T cell cytotoxic activities, Th1 and Th2 cytokine profile of CD4+T cells, expression of vasoactive intestinal peptide receptor 2 (VPACR2), levels of NK phenotypes (CD56bright and CD56dim) and regulatory T cells expressing FoxP3 transcription factor. Results Compared to healthy individuals, CFS/ME patients displayed significant increases in IL-10, IFN-γ, TNF-α, CD4+CD25+ T cells, FoxP3 and VPACR2 expression. Cytotoxic activity of NK and CD8+T cells and NK phenotypes, in particular the CD56bright NK cells were significantly decreased in CFS/ME patients. Additionally granzyme A and granzyme K expression were reduced while expression levels of perforin were significantly increased in the CFS/ME population relative to the control population. These data suggest significant dysregulation of the immune system in CFS/ME patients. Conclusions Our study found immunological abnormalities which may serve as biomarkers in CFS/ME patients with potential for an application as a diagnostic tool. PMID:21619669

  10. Mining Genes Involved in Insecticide Resistance of Liposcelis bostrychophila Badonnel by Transcriptome and Expression Profile Analysis

    PubMed Central

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Background Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. Methodology and Principal Findings In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. Conclusion The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids. PMID:24278202

  11. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy

    PubMed Central

    Chang, Tzu-Hao; Chen, Mien-Cheng; Chang, Jen-Ping; Huang, Hsien-Da; Ho, Wan-Chun; Lin, Yu-Sheng; Pan, Kuo-Li; Huang, Yao-Kuang; Liu, Wen-Hao; Wu, Chia-Chen

    2016-01-01

    Background Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown. Methods and Results This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC. Conclusions Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients. PMID:27907007

  12. Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis

    PubMed Central

    Zhao, Hongjuan; Hastie, Trevor; Whitfield, Michael L; Børresen-Dale, Anne-Lise; Jeffrey, Stefanie S

    2002-01-01

    Background T7 based linear amplification of RNA is used to obtain sufficient antisense RNA for microarray expression profiling. We optimized and systematically evaluated the fidelity and reproducibility of different amplification protocols using total RNA obtained from primary human breast carcinomas and high-density cDNA microarrays. Results Using an optimized protocol, the average correlation coefficient of gene expression of 11,123 cDNA clones between amplified and unamplified samples is 0.82 (0.85 when a virtual array was created using repeatedly amplified samples to minimize experimental variation). Less than 4% of genes show changes in expression level by 2-fold or greater after amplification compared to unamplified samples. Most changes due to amplification are not systematic both within one tumor sample and between different tumors. Amplification appears to dampen the variation of gene expression for some genes when compared to unamplified poly(A)+ RNA. The reproducibility between repeatedly amplified samples is 0.97 when performed on the same day, but drops to 0.90 when performed weeks apart. The fidelity and reproducibility of amplification is not affected by decreasing the amount of input total RNA in the 0.3–3 micrograms range. Adding template-switching primer, DNA ligase, or column purification of double-stranded cDNA does not improve the fidelity of amplification. The correlation coefficient between amplified and unamplified samples is higher when total RNA is used as template for both experimental and reference RNA amplification. Conclusion T7 based linear amplification reproducibly generates amplified RNA that closely approximates original sample for gene expression profiling using cDNA microarrays. PMID:12445333

  13. Gene Expression Profiling Predicts the Development of Oral Cancer

    PubMed Central

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develope multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinico-pathological risk factors. Based on the gene expression profile data, we also identified 2182 transcripts significantly associated with oral cancer risk associated genes (P-value<0.01, single variate Cox proportional hazards model). Functional pathway analysis revealed proteasome machinery, MYC, and ribosomes components as the top gene sets associated with oral cancer risk. In multiple independent datasets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. PMID:21292635

  14. Integrated lipidomics and transcriptomic analysis of peripheral blood reveals significantly enriched pathways in type 2 diabetes mellitus.

    PubMed

    Zhao, Chen; Mao, Jinghe; Ai, Junmei; Shenwu, Ming; Shi, Tieliu; Zhang, Daqing; Wang, Xiaonan; Wang, Yunliang; Deng, Youping

    2013-01-01

    Insulin resistance is a key element in the pathogenesis of type 2 diabetes mellitus. Plasma free fatty acids were assumed to mediate the insulin resistance, while the relationship between lipid and glucose disposal remains to be demonstrated across liver, skeletal muscle and blood. We profiled both lipidomics and gene expression of 144 total peripheral blood samples, 84 from patients with T2D and 60 from healthy controls. Then, factor and partial least squares models were used to perform a combined analysis of lipidomics and gene expression profiles to uncover the bioprocesses that are associated with lipidomic profiles in type 2 diabetes. According to factor analysis of the lipidomic profile, several species of lipids were found to be correlated with different phenotypes, including diabetes-related C23:2CE, C23:3CE, C23:4CE, ePE36:4, ePE36:5, ePE36:6; race-related (African-American) PI36:1; and sex-related PE34:1 and LPC18:2. The major variance of gene expression profile was not caused by known factors and no significant difference can be directly derived from differential gene expression profile. However, the combination of lipidomic and gene expression analyses allows us to reveal the correlation between the altered lipid profile with significantly enriched pathways, such as one carbon pool by folate, arachidonic acid metabolism, insulin signaling pathway, amino sugar and nucleotide sugar metabolism, propanoate metabolism, and starch and sucrose metabolism. The genes in these pathways showed a good capability to classify diabetes samples. Combined analysis of gene expression and lipidomic profiling reveals type 2 diabetes-associated lipid species and enriched biological pathways in peripheral blood, while gene expression profile does not show direct correlation. Our findings provide a new clue to better understand the mechanism of disordered lipid metabolism in association with type 2 diabetes.

  15. Expression profiling suggests a regulatory role of gallbladder in lipid homeostasis

    PubMed Central

    Yuan, Zuo-Biao; Han, Tian-Quan; Jiang, Zhao-Yan; Fei, Jian; Zhang, Yi; Qin, Jian; Tian, Zhi-Jie; Shang, Jun; Jiang, Zhi-Hong; Cai, Xing-Xing; Jiang, Yu; Zhang, Sheng-Dao; Jin, Gang

    2005-01-01

    AIM: To examine expression profile of gallbladder using microarray and to investigate the role of gallbladder in lipid homeostasis. METHODS: 33P-labelled cDNA derived from total RNA of gallbladder tissue was hybridized to a cDNA array representing 17000 cDNA clusters. Genes with intensities ≥2 and variation <0.33 between two samples were considered as positive signals with subtraction of background chosen from an area where no cDNA was spotted. The average gray level of two gallbladders was adopted to analyze its bioinformatics. Identified target genes were confirmed by touch-down polymerase chain reaction and sequencing. RESULTS: A total of 11 047 genes expressed in normal gallbladder, which was more than that predicted by another author, and the first 10 genes highly expressed (high gray level in hybridization image), e.g., ARPC5 (2225.88±90.46), LOC55972 (2220.32±446.51) and SLC20A2 (1865.21±98.02), were related to the function of smooth muscle contraction and material transport. Meanwhile, 149 lipid-related genes were expressed in the gallbladder, 89 of which were first identified (with gray level in hybridization image), e.g., FASN (11.42±2.62), APOD (92.61±8.90) and CYP21A2 (246.11±42.36), and they were involved in each step of lipid metabolism pathway. In addition, 19 of those 149 genes were gallstone candidate susceptibility genes (with gray level in hybridization image), e.g., HMGCR (10.98±0.31), NPC1 (34.88±12.12) and NR1H4 (16.8±0.65), which were previously thought to be expressed in the liver and/or intestine tissue only. CONCLUSION: Gallbladder expresses 11 047 genes and takes part in lipid homeostasis. PMID:15810076

  16. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence

    PubMed Central

    2010-01-01

    Background Cinnamyl Alcohol Dehydrogenase (CAD) proteins function in lignin biosynthesis and play a critical role in wood development and plant defense against stresses. Previous phylogenetic studies did not include genes from seedless plants and did not reflect the deep evolutionary history of this gene family. We reanalyzed the phylogeny of CAD and CAD-like genes using a representative dataset including lycophyte and bryophyte sequences. Many CAD/CAD-like genes do not seem to be associated with wood development under normal growth conditions. To gain insight into the functional evolution of CAD/CAD-like genes, we analyzed their expression in Populus plant tissues in response to feeding damage by gypsy moth larvae (Lymantria dispar L.). Expression of CAD/CAD-like genes in Populus tissues (xylem, leaves, and barks) was analyzed in herbivore-treated and non-treated plants by real time quantitative RT-PCR. Results CAD family genes were distributed in three classes based on sequence conservation. All the three classes are represented by seedless as well as seed plants, including the class of bona fide lignin pathway genes. The expression of some CAD/CAD-like genes that are not associated with xylem development were induced following herbivore damage in leaves, while other genes were induced in only bark or xylem tissues. Five of the CAD/CAD-like genes, however, showed a shift in expression from one tissue to another between non-treated and herbivore-treated plants. Systemic expression of the CAD/CAD-like genes was generally suppressed. Conclusions Our results indicated a correlation between the evolution of the CAD gene family and lignin and that the three classes of genes may have evolved in the ancestor of land plants. Our results also suggest that the CAD/CAD-like genes have evolved a diversity of expression profiles and potentially different functions, but that they are nonetheless co-regulated under stress conditions. PMID:20509918

  17. GSTP1 Loss Results in Accumulation of Oxidative DNA Base Damage and Promotes Prostate Cancer Cell Survival Following Exposure to Protracted Oxidative Stress

    PubMed Central

    Mian, Omar Y.; Khattab, Mohamed H.; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M.; Veeraswamy, Ravi K.; Brooks, James D.; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G.; Yegnasubramanian, Srinivasan; DeWeese, Theodore L.

    2016-01-01

    BACKGROUND Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). METHODS GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1-transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. RESULTS GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. CONCLUSIONS The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. PMID:26447830

  18. Expression Profile of Genes during Resistance Reversal in a Temephos Selected Strain of the Dengue Vector, Aedes aegypti

    PubMed Central

    Strode, Clare; de Melo-Santos, Maria; Magalhães, Tereza; Araújo, Ana; Ayres, Contancia

    2012-01-01

    Background The mosquito Aedes aegypti is one of the most important disease vectors because it transmits two major arboviruses, dengue and yellow fever, which cause significant global morbidity and mortality. Chemical insecticides form the cornerstone of vector control. The organophosphate temephos a larvicide recommended by WHO for controlling Ae. aegypti, however, resistance to this compound has been reported in many countries, including Brazil. Methodology/Principal Findings The aim of this study was to identify genes implicated in metabolic resistance in an Ae. aegypti temephos resistant strain, named RecR, through microarray analysis. We utilized a custom ‘Ae. aegypti detox chip’ and validated microarray data through RT-PCR comparing susceptible and resistant individuals. In addition, we analyzed gene expression in 4th instar larvae from a reversed susceptible strain (RecRev), exposed and unexposed to temephos. The results obtained revealed a set of 13 and 6 genes significantly over expressed in resistant adult mosquitoes and larvae, respectively. One of these genes, the cytochrome P450 CYP6N12, was up-regulated in both stages. RT-PCR confirmed the microarray results and, additionally, showed no difference in gene expression between temephos exposed and unexposed RecRev mosquitoes. This suggested that the differences in the transcript profiles among the strains are heritable due to a selection process and are not caused by immediate insecticide exposure. Reversal of temephos resistance was demonstrated and, importantly, there was a positive correlation between a decrease in the resistance ratio and an accompanying decrease in the expression levels of previously over expressed genes. Some of the genes identified here have also been implicated in metabolic resistance in other mosquito species and insecticide resistant populations of Ae. aegypti. Conclusions/Significance The identification of gene expression signatures associated to insecticide resistance and their suppression could greatly aid the development of improved strategies of vector control. PMID:22870187

  19. Deciphering defective amelogenesis using in vitro culture systems.

    PubMed

    Arinawati, Dian Yosi; Miyoshi, Keiko; Tanimura, Ayako; Horiguchi, Taigo; Hagita, Hiroko; Noma, Takafumi

    2018-04-01

    The conventional two-dimensional (2D) in vitro culture system is frequently used to analyze the gene expression with or without extracellular signals. However, the cells derived from primary culture and cell lines frequently deviate the gene expression profile compared to the corresponding in vivo samples, which sometimes misleads the actual gene regulation in vivo. To overcome this gap, we developed the comparative 2D and 3D in vitro culture systems and applied them to the genetic study of amelogenesis imperfecta (AI) as a model. Recently, we found specificity protein 6 (Sp6) mutation in an autosomal-recessive AI rat that was previously named AMI. We constructed 3D structure of ARE-B30 cells (AMI-derived rat dental epithelial cells) or G5 (control wild type cells) combined with RPC-C2A cells (rat pulp cell line) separated by the collagen membrane, while in 2D structure, ARE-B30 or G5 was cultured with or without the collagen membrane. Comparative analysis of amelogenesis-related gene expression in ARE-B30 and G5 using our 2D and 3D in vitro systems revealed distinct expression profiles, showing the causative outcomes. Bone morphogenetic protein 2 and follistatin were reciprocally expressed in G5, but not in ARE-B30 cells. All-or-none expression of amelotin, kallikrein-related peptidase 4, and nerve growth factor receptor was observed in both cell types. In conclusion, our in vitro culture systems detected the phenotypical differences in the expression of the stage-specific amelogenesis-related genes. Parallel analysis with 2D and 3D culture systems may provide a platform to understand the molecular basis for defective amelogenesis caused by Sp6 mutation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. A cross-species analysis method to analyze animal models' similarity to human's disease state

    PubMed Central

    2012-01-01

    Background Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible and useful to compare gene expression profiles across species in the studies of pathology, toxicology, drug repositioning, and drug action mechanism. Results We developed a cross-species analysis method to analyze animal models' similarity to human diseases and effectiveness in drug research by utilizing the existing animal gene expression data in the public database, and mined some meaningful information to help drug research, such as potential drug candidates, possible drug repositioning, side effects and analysis in pharmacology. New animal models could be evaluated by our method before they are used in drug discovery. We applied the method to several cases of known animal model expression profiles and obtained some useful information to help drug research. We found that trichostatin A and some other HDACs could have very similar response across cell lines and species at gene expression level. Mouse hypoxia model could accurately mimic the human hypoxia, while mouse diabetes drug model might have some limitation. The transgenic mouse of Alzheimer was a useful model and we deeply analyzed the biological mechanisms of some drugs in this case. In addition, all the cases could provide some ideas for drug discovery and drug repositioning. Conclusions We developed a new cross-species gene expression module comparison method to use animal models' expression data to analyse the effectiveness of animal models in drug research. Moreover, through data integration, our method could be applied for drug research, such as potential drug candidates, possible drug repositioning, side effects and information about pharmacology. PMID:23282076

  1. Pacific Ocean–Wide Profile of CYP1A1 Expression, Stable Carbon and Nitrogen Isotope Ratios, and Organic Contaminant Burden in Sperm Whale Skin Biopsies

    PubMed Central

    Godard-Codding, Céline A.J.; Clark, Rebecca; Fossi, Maria Cristina; Marsili, Letizia; Maltese, Silvia; West, Adam G.; Valenzuela, Luciano; Rowntree, Victoria; Polyak, Ildiko; Cannon, John C.; Pinkerton, Kim; Rubio-Cisneros, Nadia; Mesnick, Sarah L.; Cox, Stephen B.; Kerr, Iain; Payne, Roger; Stegeman, John J.

    2011-01-01

    Background Ocean pollution affects marine organisms and ecosystems as well as humans. The International Oceanographic Commission recommends ocean health monitoring programs to investigate the presence of marine contaminants and the health of threatened species and the use of multiple and early-warning biomarker approaches. Objective We explored the hypothesis that biomarker and contaminant analyses in skin biopsies of the threatened sperm whale (Physeter macrocephalus) could reveal geographical trends in exposure on an oceanwide scale. Methods We analyzed cytochrome P450 1A1 (CYP1A1) expression (by immunohistochemistry), stable nitrogen and carbon isotope ratios (as general indicators of trophic position and latitude, respectively), and contaminant burdens in skin biopsies to explore regional trends in the Pacific Ocean. Results Biomarker analyses revealed significant regional differences within the Pacific Ocean. CYP1A1 expression was highest in whales from the Galapagos, a United Nations Educational, Scientific, and Cultural Organization World Heritage marine reserve, and was lowest in the sampling sites farthest away from continents. We examined the possible influence of the whales’ sex, diet, or range and other parameters on regional variation in CYP1A1 expression, but data were inconclusive. In general, CYP1A1 expression was not significantly correlated with contaminant burdens in blubber. However, small sample sizes precluded detailed chemical analyses, and power to detect significant associations was limited. Conclusions Our large-scale monitoring study was successful at identifying regional differences in CYP1A1 expression, providing a baseline for this known biomarker of exposure to aryl hydrocarbon receptor agonists. However, we could not identify factors that explained this variation. Future oceanwide CYP1A1 expression profiles in cetacean skin biopsies are warranted and could reveal whether globally distributed chemicals occur at biochemically relevant concentrations on a global basis, which may provide a measure of ocean integrity. PMID:21134820

  2. Detection and comparison of microRNA expression in the serum of Doberman Pinschers with dilated cardiomyopathy and healthy controls

    PubMed Central

    2013-01-01

    Background Dilated cardiomyopathy (DCM) is the most common heart disease in Doberman Pinschers. MicroRNAs (miRNAs) are short non-coding RNAs playing important roles in gene regulation. Different miRNA expression patterns have been described for DCM in humans and might represent potential diagnostic markers. There are no studies investigating miRNA expression profiles in canine DCM. The aims of this study were to screen the miRNA expression profile of canine serum using miRNA microarray and to compare expression patterns of a group of Doberman Pinschers with DCM and healthy controls. Results Eight Doberman Pinschers were examined by echocardiography and 24-hour-ECG and classified as healthy (n = 4) or suffering from DCM (n = 4). Total RNA was extracted from serum and hybridized on a custom-designed 8x60k miRNA microarray (Agilent) containing probes for 1368 individual miRNAs. Although total RNA concentrations were very low in serum samples, 404 different miRNAs were detectable with sufficient signal intensity on miRNA microarray. 22 miRNAs were differentially expressed in the two groups (p < 0.05 and fold change (FC) > 1.5), but did not reach statistical significance after multiple testing correction (false discovery rate adjusted p > 0.05). Five miRNAs were selected for further analysis using quantitative Real-Time RT-PCR (qPCR) assays. No significant differences were found using specific miRNA qPCR assays (p > 0.05). Conclusions Numerous miRNAs can be detected in canine serum. Between healthy and DCM dogs, miRNA expression changes could be detected, but the results did not reach statistical significance most probably due to the small group size. miRNAs are potential new circulating biomarkers in veterinary medicine and should be investigated in larger patient groups and additional canine diseases. PMID:23327631

  3. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes.

    PubMed

    Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2017-04-25

    Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.

  4. Unique Gene Expression and MR T2 Relaxometry Patterns Define Chronic Murine Dextran Sodium Sulphate Colitis as a Model for Connective Tissue Changes in Human Crohn’s Disease

    PubMed Central

    Breynaert, Christine; Dresselaers, Tom; Perrier, Clémentine; Arijs, Ingrid; Cremer, Jonathan; Van Lommel, Leentje; Van Steen, Kristel; Ferrante, Marc; Schuit, Frans; Vermeire, Séverine; Rutgeerts, Paul; Himmelreich, Uwe; Ceuppens, Jan L.; Geboes, Karel; Van Assche, Gert

    2013-01-01

    Introduction Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease. Materials and Methods C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. Results Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. Conclusions Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis. PMID:23894361

  5. Transcript Profiling Identifies Dynamic Gene Expression Patterns and an Important Role for Nrf2/Keap1 Pathway in the Developing Mouse Esophagus

    PubMed Central

    Li, Haiyan; Hu, Yuhui; Tevebaugh, Whitney; Yamamoto, Masayuki; Que, Jianwen; Chen, Xiaoxin

    2012-01-01

    Background and Aims Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium. Methods Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2−/−, Keap1−/−, or Nrf2−/−Keap1−/− embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium. Results Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1−/− mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1−/− mice was due to activation of Pparβ/δ and the PI3K/Akt pathway. Conclusions Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium. PMID:22567161

  6. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis.

    PubMed

    Cochain, Clément; Vafadarnejad, Ehsan; Arampatzi, Panagiota; Jaroslav, Pelisek; Winkels, Holger; Ley, Klaus; Wolf, Dennis; Saliba, Antoine-Emmanuel; Zernecke, Alma

    2018-03-15

    Rationale: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they ha ve been defined by the expression of a restricted number of markers. Objective: We have applied single-cell RNA-seq as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. Methods and Results: We performed single-cell RNA sequencing of total aortic CD45 + cells extracted from the non-diseased (chow fed) and atherosclerotic (11 weeks of high fat diet) aorta of Ldlr -/- mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, Resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortae, whereas monocytes, monocyte-derived dendritic cells (MoDC), and two populations of macrophages were almost exclusively detectable in atherosclerotic aortae, comprising Inflammatory macrophages showing enrichment in I l1b , and previously undescribed TREM2 hi macrophages. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these three macrophage subsets and MoDC, and uncovered putative functions of each cell type. Notably, TREM2 hi macrophages appeared to be endowed with specialized functions in lipid metabolism and catabolism, and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe -/- aortae, indicating relevance of our findings in different stages of atherosclerosis and mouse models. Conclusions: These data unprecedentedly uncovered the transcriptional landscape and phenotypic heterogeneity of aortic macrophages and MoDCs in atherosclerotic and identified previously unrecognized macrophage populations and their gene expression signature, suggesting specialized functions. Our findings will open up novel opportunities to explore distinct myeloid cell populations and their functions in atherosclerosis.

  7. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice.

    PubMed

    Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L

    2014-10-21

    The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt genotype, PS exposure and their interaction.

  8. Divergence between motoneurons: gene expression profiling provides a molecular characterization of functionally discrete somatic and autonomic motoneurons

    PubMed Central

    Cui, Dapeng; Dougherty, Kimberly J.; Machacek, David W.; Sawchuk, Michael; Hochman, Shawn; Baro, Deborah J.

    2009-01-01

    Studies in the developing spinal cord suggest that different motoneuron (MN) cell types express very different genetic programs, but the degree to which adult programs differ is unknown. To compare genetic programs between adult MN columnar cell types, we used laser capture micro-dissection (LCM) and Affymetrix microarrays to create expression profiles for three columnar cell types: lateral and medial MNs from lumbar segments and sympathetic preganglionic motoneurons located in the thoracic intermediolateral nucleus. A comparison of the three expression profiles indicated that ~7% (813/11,552) of the genes showed significant differences in their expression levels. The largest differences were observed between sympathetic preganglionic MNs and the lateral motor column, with 6% (706/11,552) of the genes being differentially expressed. Significant differences in expression were observed for 1.8% (207/11,552) of the genes when comparing sympathetic preganglionic MNs with the medial motor column. Lateral and medial MNs showed the least divergence, with 1.3% (150/11,552) of the genes being differentially expressed. These data indicate that the amount of divergence in expression profiles between identified columnar MNs does not strictly correlate with divergence of function as defined by innervation patterns (somatic/muscle vs. autonomic/viscera). Classification of the differentially expressed genes with regard to function showed that they underpin all fundamental cell systems and processes, although most differentially expressed genes encode proteins involved in signal transduction. Mining the expression profiles to examine transcription factors essential for MN development suggested that many of the same transcription factors participatein combinatorial codes in embryonic and adult neurons, but patterns of expression change significantly. PMID:16317082

  9. Face in profile view reduces perceived facial expression intensity: an eye-tracking study.

    PubMed

    Guo, Kun; Shaw, Heather

    2015-02-01

    Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Expression of CB2 cannabinoid receptor in Pichia pastoris.

    PubMed

    Feng, Wenke; Cai, Jian; Pierce, William M; Song, Zhao-Hui

    2002-12-01

    To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.

  11. Malignant pleural mesothelioma and mesothelial hyperplasia: A new molecular tool for the differential diagnosis.

    PubMed

    Bruno, Rossella; Alì, Greta; Giannini, Riccardo; Proietti, Agnese; Lucchi, Marco; Chella, Antonio; Melfi, Franca; Mussi, Alfredo; Fontanini, Gabriella

    2017-01-10

    Malignant pleural mesothelioma (MPM) is a rare asbestos related cancer, aggressive and unresponsive to therapies. Histological examination of pleural lesions is the gold standard of MPM diagnosis, although it is sometimes hard to discriminate the epithelioid type of MPM from benign mesothelial hyperplasia (MH).This work aims to define a new molecular tool for the differential diagnosis of MPM, using the expression profile of 117 genes deregulated in this tumour.The gene expression analysis was performed by nanoString System on tumour tissues from 36 epithelioid MPM and 17 MH patients, and on 14 mesothelial pleural samples analysed in a blind way. Data analysis included raw nanoString data normalization, unsupervised cluster analysis by Pearson correlation, non-parametric Mann Whitney U-test and molecular classification by the Uncorrelated Shrunken Centroid (USC) Algorithm.The Mann-Whitney U-test found 35 genes upregulated and 31 downregulated in MPM. The unsupervised cluster analysis revealed two clusters, one composed only of MPM and one only of MH samples, thus revealing class-specific gene profiles. The Uncorrelated Shrunken Centroid algorithm identified two classifiers, one including 22 genes and the other 40 genes, able to properly classify all the samples as benign or malignant using gene expression data; both classifiers were also able to correctly determine, in a blind analysis, the diagnostic categories of all the 14 unknown samples.In conclusion we delineated a diagnostic tool combining molecular data (gene expression) and computational analysis (USC algorithm), which can be applied in the clinical practice for the differential diagnosis of MPM.

  12. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions

    PubMed Central

    Hendrickx, Debbie A. E.; van Scheppingen, Jackelien; van der Poel, Marlijn; Bossers, Koen; Schuurman, Karianne G.; van Eden, Corbert G.; Hol, Elly M.; Hamann, Jörg; Huitinga, Inge

    2017-01-01

    In multiple sclerosis (MS), activated microglia and infiltrating macrophages phagocytose myelin focally in (chronic) active lesions. These demyelinating sites expand in time, but at some point turn inactive into a sclerotic scar. To identify molecular mechanisms underlying lesion activity and halt, we analyzed genome-wide gene expression in rim and peri-lesional regions of chronic active and inactive MS lesions, as well as in control tissue. Gene clustering revealed patterns of gene expression specifically associated with MS and with the presumed, subsequent stages of lesion development. Next to genes involved in immune functions, we found regulation of novel genes in and around the rim of chronic active lesions, such as NPY, KANK4, NCAN, TKTL1, and ANO4. Of note, the presence of many foamy macrophages in active rims was accompanied by a congruent upregulation of genes related to lipid binding, such as MSR1, CD68, CXCL16, and OLR1, and lipid uptake, such as CHIT1, GPNMB, and CCL18. Except CCL18, these genes were already upregulated in regions around active MS lesions, showing that such lesions are indeed expanding. In vitro downregulation of the scavenger receptors MSR1 and CXCL16 reduced myelin uptake. In conclusion, this study provides the gene expression profile of different aspects of MS pathology and indicates that early demyelination, mediated by scavenger receptors, is already present in regions around active MS lesions. Genes involved in early demyelination events in regions surrounding chronic active MS lesions might be promising therapeutic targets to stop lesion expansion. PMID:29312322

  13. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions.

    PubMed

    Hendrickx, Debbie A E; van Scheppingen, Jackelien; van der Poel, Marlijn; Bossers, Koen; Schuurman, Karianne G; van Eden, Corbert G; Hol, Elly M; Hamann, Jörg; Huitinga, Inge

    2017-01-01

    In multiple sclerosis (MS), activated microglia and infiltrating macrophages phagocytose myelin focally in (chronic) active lesions. These demyelinating sites expand in time, but at some point turn inactive into a sclerotic scar. To identify molecular mechanisms underlying lesion activity and halt, we analyzed genome-wide gene expression in rim and peri-lesional regions of chronic active and inactive MS lesions, as well as in control tissue. Gene clustering revealed patterns of gene expression specifically associated with MS and with the presumed, subsequent stages of lesion development. Next to genes involved in immune functions, we found regulation of novel genes in and around the rim of chronic active lesions, such as NPY, KANK4, NCAN, TKTL1 , and ANO4 . Of note, the presence of many foamy macrophages in active rims was accompanied by a congruent upregulation of genes related to lipid binding, such as MSR1, CD68, CXCL16 , and OLR1 , and lipid uptake, such as CHIT1, GPNMB , and CCL18 . Except CCL18 , these genes were already upregulated in regions around active MS lesions, showing that such lesions are indeed expanding. In vitro downregulation of the scavenger receptors MSR1 and CXCL16 reduced myelin uptake. In conclusion, this study provides the gene expression profile of different aspects of MS pathology and indicates that early demyelination, mediated by scavenger receptors, is already present in regions around active MS lesions. Genes involved in early demyelination events in regions surrounding chronic active MS lesions might be promising therapeutic targets to stop lesion expansion.

  14. The MicroRNA-200 Family Is Upregulated in Endometrial Carcinoma

    PubMed Central

    Snowdon, Jaime; Zhang, Xiao; Childs, Tim; Tron, Victor A.; Feilotter, Harriet

    2011-01-01

    Background MicroRNAs (miRNAs, miRs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. MicroRNAs are dysregulated in cancer and may play essential roles in tumorigenesis. Additionally, miRNAs have been shown to have prognostic and diagnostic value in certain types of cancer. The objective of this study was to identify dysregulated miRNAs in endometrioid endometrial adenocarcinoma (EEC) and the precursor lesion, complex atypical hyperplasia (CAH). Methodology We compared the expression profiles of 723 human miRNAs from 14 cases of EEC, 10 cases of CAH, and 10 normal proliferative endometria controls using Agilent Human miRNA arrays following RNA extraction from formalin-fixed paraffin-embedded (FFPE) tissues. The expression of 4 dysregulated miRNAs was validated using real time reverse transcription-PCR. Results Forty-three miRNAs were dysregulated in EEC and CAH compared to normal controls (p<0.05). The entire miR-200 family (miR-200a/b/c, miR-141, and miR-429) was up-regulated in cases of EEC. Conclusions This information contributes to the candidate miRNA expression profile that has been generated for EEC and shows that certain miRNAs are dysregulated in the precursor lesion, CAH. These miRNAs in particular may play important roles in tumorigenesis. Examination of miRNAs that are consistently dysregulated in various studies of EEC, like the miR-200 family, will aid in the understanding of the role that miRNAs play in tumorigenesis in this tumour type. PMID:21897839

  15. Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars

    PubMed Central

    Sousa, Lisete; Pais, Maria Salomé; Kopka, Joachim; Fortes, Ana Margarida

    2013-01-01

    Background Grapes (Vitis species) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to ripening of berries as well as how aroma is developed are not fully understood. Methodology/Principal Findings In an attempt to identify the common mechanisms associated with the onset of ripening independently of the cultivar, grapes of Portuguese elite cultivars, Trincadeira, Aragonês, and Touriga Nacional, were studied. The mRNA expression profiles corresponding to veraison (EL35) and mature berries (EL36) were compared. Across the three varieties, 9,8% (2255) probesets corresponding to 1915 unigenes were robustly differentially expressed at EL 36 compared to EL 35. Eleven functional categories were represented in this differential gene set. Information on gene expression related to primary and secondary metabolism was verified by RT-qPCR analysis of selected candidate genes at four developmental stages (EL32, EL35, EL36 and EL 38). Gene expression data were integrated with metabolic profiling data from GC-EI-TOF/MS and headspace GC-EI-MS platforms. Conclusions/Significance Putative molecular and metabolic markers of grape pre-ripening and ripening related to primary and secondary metabolism were established and revealed a substantial developmental reprogramming of cellular metabolism. Altogether the results provide valuable new information on the main metabolic events leading to grape ripening. Furthermore, we provide first hints about how the development of a cultivar specific aroma is controlled at transcriptional level. PMID:23565246

  16. Protein Expression Profile of Rat Type Two Alveolar Epithelial Cells During Hyperoxic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Bhargava, Maneesh

    Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.

  17. Increased expression of pigment epithelium-derived factor in aged mesenchymal stem cells impairs their therapeutic efficacy for attenuating myocardial infarction injury‡

    PubMed Central

    Liang, Hongliang; Hou, Huiyuan; Yi, Wei; Yang, Guodong; Gu, Chunhu; Lau, Wayne Bond; Gao, Erhe; Ma, Xinliang; Lu, Zifan; Wei, Xufeng; Pei, Jianming; Yi, Dinghua

    2013-01-01

    Aims Mesenchymal stem cells (MSCs) can ameliorate myocardial infarction (MI) injury. However, older-donor MSCs seem less efficacious than those from younger donors, and the contributing underlying mechanisms remain unknown. Here, we determine how age-related expression of pigment epithelium-derived factor (PEDF) affects MSC therapeutic efficacy for MI. Methods and results Reverse transcriptase–polymerized chain reaction  and enzyme-linked immunosorbent assay analyses revealed dramatically increased PEDF expression in MSCs from old mice compared to young mice. Morphological and functional experiments demonstrated significantly impaired old MSC therapeutic efficacy compared with young MSCs in treatment of mice subjected to MI. Immunofluorescent staining demonstrated that administration of old MSCs compared with young MSCs resulted in an infarct region containing fewer endothelial cells, vascular smooth muscle cells, and macrophages, but more fibroblasts. Pigment epithelium-derived factor overexpression in young MSCs impaired the beneficial effects against MI injury, and induced cellular profile changes in the infarct region similar to administration of old MSCs. Knocking down PEDF expression in old MSCs improved MSC therapeutic efficacy, and induced a cellular profile similar to young MSCs administration. Studies in vitro showed that PEDF secreted by MSCs regulated the proliferation and migration of cardiac fibroblasts. Conclusions This is the first evidence that paracrine factor PEDF plays critical role in the regulatory effects of MSCs against MI injury. Furthermore, the impaired therapeutic ability of aged MSCs is predominantly caused by increased PEDF secretion. These findings indicate PEDF as a promising novel genetic modification target for improving aged MSC therapeutic efficacy. PMID:21606086

  18. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics

    PubMed Central

    Antoni, Michael H.; Lutgendorf, Susan K.; Blomberg, Bonnie; Carver, Charles S.; Lechner, Suzanne; Diaz, Alain; Stagl, Jamie; Arevalo, Jesusa M.G.; Cole, Steven W.

    2011-01-01

    Background Chronic threat and anxiety are associated with pro-inflammatory transcriptional profiles in circulating leukocytes, but the causal direction of that relationship has not been established. This study tested whether a Cognitive-Behavioral Stress Management (CBSM) intervention targeting negative affect and cognition might counteract anxiety-related transcriptional alterations in people confronting a major medical threat. Methods 199 women undergoing primary treatment of Stage 0–III breast cancer were randomized to a 10-week CBSM protocol or an active control condition. 79 provided peripheral blood leukocyte samples for genome-wide transcriptional profiling and bioinformatic analyses at baseline, 6-, and 12-month follow-ups. Results Baseline negative affect was associated with > 50% differential expression of 201 leukocyte transcripts, including up-regulated expression of pro-inflammatory and metastasis-related genes. CBSM altered leukocyte expression of 91 genes by > 50% at follow-up (Group × Time interaction), including down-regulation of pro-inflammatory and metastasis-related genes and up-regulation of Type I interferon response genes. Promoter-based bioinformatic analyses implicated decreased activity of NF-κB/Rel and GATA family transcription factors and increased activity of Interferon Response Factors and the Glucocorticoid Receptor (GR) as potential mediators of CBSM-induced transcriptional alterations. Conclusions In early stage breast cancer patients, a 10-week CBSM intervention can reverse anxiety-related up-regulation of pro-inflammatory gene expression in circulating leukocytes. These findings clarify the molecular signaling pathways by which behavioral interventions can influence physical health and alter peripheral inflammatory processes that may reciprocally affect brain affective and cognitive processes. PMID:22088795

  19. Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF

    PubMed Central

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2015-01-01

    Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS. PMID:25653590

  20. Tumour-associated and non-tumour-associated microbiota in colorectal cancer

    PubMed Central

    Flemer, Burkhardt; Lynch, Denise B; Brown, Jillian M R; Jeffery, Ian B; Ryan, Feargal J; Claesson, Marcus J; O'Riordain, Micheal; Shanahan, Fergus; O'Toole, Paul W

    2017-01-01

    Objective A signature that unifies the colorectal cancer (CRC) microbiota across multiple studies has not been identified. In addition to methodological variance, heterogeneity may be caused by both microbial and host response differences, which was addressed in this study. Design We prospectively studied the colonic microbiota and the expression of specific host response genes using faecal and mucosal samples (‘ON’ and ‘OFF’ the tumour, proximal and distal) from 59 patients undergoing surgery for CRC, 21 individuals with polyps and 56 healthy controls. Microbiota composition was determined by 16S rRNA amplicon sequencing; expression of host genes involved in CRC progression and immune response was quantified by real-time quantitative PCR. Results The microbiota of patients with CRC differed from that of controls, but alterations were not restricted to the cancerous tissue. Differences between distal and proximal cancers were detected and faecal microbiota only partially reflected mucosal microbiota in CRC. Patients with CRC can be stratified based on higher level structures of mucosal-associated bacterial co-abundance groups (CAGs) that resemble the previously formulated concept of enterotypes. Of these, Bacteroidetes Cluster 1 and Firmicutes Cluster 1 were in decreased abundance in CRC mucosa, whereas Bacteroidetes Cluster 2, Firmicutes Cluster 2, Pathogen Cluster and Prevotella Cluster showed increased abundance in CRC mucosa. CRC-associated CAGs were differentially correlated with the expression of host immunoinflammatory response genes. Conclusions CRC-associated microbiota profiles differ from those in healthy subjects and are linked with distinct mucosal gene-expression profiles. Compositional alterations in the microbiota are not restricted to cancerous tissue and differ between distal and proximal cancers. PMID:26992426

Top