Sample records for expression profiling performed

  1. A microcosm of musical expression: II. Quantitative analysis of pianists' dynamics in the initial measures of Chopin's Etude in E major.

    PubMed

    Repp, B H

    1999-03-01

    Patterns of expressive dynamics were measured in bars 1-5 of 115 commercially recorded performances of Chopin's Etude in E major, op. 10, No. 3. The grand average pattern (or dynamic profile) was representative of many performances and highly similar to the average dynamic profile of a group of advanced student performances, which suggests a widely shared central norm of expressive dynamics. The individual dynamic profiles were subjected to principal components analysis, which yielded Varimax-rotated components, each representing a different, nonstandard dynamic profile associated with a small subset of performances. Most performances had dynamic patterns resembling a mixture of several components, and no clustering of of performances into distinct groups was apparent. Some weak relationships of dynamic profiles with sociocultural variables were found, most notably a tendency of female pianists to exhibit a greater dynamic range in the melody. Within the melody, there were no significant relationships between expressive timing [Repp, J. Acoust. Soc. Am. 104, 1085-1100 (1998)] and expressive dynamics. These two important dimensions seemed to be controlled independently at this local level and thus offer the artist many degrees of freedom in giving a melody expressive shape.

  2. Expression signature as a biomarker for prenatal diagnosis of trisomy 21.

    PubMed

    Volk, Marija; Maver, Aleš; Lovrečić, Luca; Juvan, Peter; Peterlin, Borut

    2013-01-01

    A universal biomarker panel with the potential to predict high-risk pregnancies or adverse pregnancy outcome does not exist. Transcriptome analysis is a powerful tool to capture differentially expressed genes (DEG), which can be used as biomarker-diagnostic-predictive tool for various conditions in prenatal setting. In search of biomarker set for predicting high-risk pregnancies, we performed global expression profiling to find DEG in Ts21. Subsequently, we performed targeted validation and diagnostic performance evaluation on a larger group of case and control samples. Initially, transcriptomic profiles of 10 cultivated amniocyte samples with Ts21 and 9 with normal euploid constitution were determined using expression microarrays. Datasets from Ts21 transcriptomic studies from GEO repository were incorporated. DEG were discovered using linear regression modelling and validated using RT-PCR quantification on an independent sample of 16 cases with Ts21 and 32 controls. The classification performance of Ts21 status based on expression profiling was performed using supervised machine learning algorithm and evaluated using a leave-one-out cross validation approach. Global gene expression profiling has revealed significant expression changes between normal and Ts21 samples, which in combination with data from previously performed Ts21 transcriptomic studies, were used to generate a multi-gene biomarker for Ts21, comprising of 9 gene expression profiles. In addition to biomarker's high performance in discriminating samples from global expression profiling, we were also able to show its discriminatory performance on a larger sample set 2, validated using RT-PCR experiment (AUC=0.97), while its performance on data from previously published studies reached discriminatory AUC values of 1.00. Our results show that transcriptomic changes might potentially be used to discriminate trisomy of chromosome 21 in the prenatal setting. As expressional alterations reflect both, causal and reactive cellular mechanisms, transcriptomic changes may thus have future potential in the diagnosis of a wide array of heterogeneous diseases that result from genetic disturbances.

  3. Molecular profiles of pre- and postoperative breast cancer tumours reveal differentially expressed genes.

    PubMed

    Riis, Margit L H; Lüders, Torben; Markert, Elke K; Haakensen, Vilde D; Nesbakken, Anne-Jorun; Kristensen, Vessela N; Bukholm, Ida R K

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology.

  4. Molecular Profiles of Pre- and Postoperative Breast Cancer Tumours Reveal Differentially Expressed Genes

    PubMed Central

    Riis, Margit L. H.; Lüders, Torben; Markert, Elke K.; Haakensen, Vilde D.; Nesbakken, Anne-Jorun; Kristensen, Vessela N.; Bukholm, Ida R. K.

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology. PMID:23227362

  5. Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data

    PubMed Central

    Zeng, Beiyan; Chen, Yiping P.; Smith, Oscar H.

    2003-01-01

    Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for analysing GEP data and compare its performance with the three most widely-used clustering methods: hierarchical clustering, K-means clustering, and multivariate mixture model-based clustering. Using several methods to measure agreement, between-cluster isolation, and withincluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r2 test, and the profile plot, we have assessed the effectiveness of kernel density clustering for recovering clusters, and its robustness against noise on clustering both simulated and real GEP data. Our results show that the kernel density clustering method has excellent performance in recovering clusters from simulated data and in grouping large real expression profile data sets into compact and well-isolated clusters, and that it is the most robust clustering method for analysing noisy expression profile data compared to the other three methods assessed. PMID:18629292

  6. Leader personality and crew effectiveness - A full-mission simulation experiment

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Foushee, H. Clayton

    1989-01-01

    A full-mission simulation research study was completed to assess the impact of individual personality on crew performance. Using a selection algorithm described by Chidester (1987), captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one and one-half day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, Verbal Aggressiveness, and Impatience and Irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  7. Gene expression inference with deep learning.

    PubMed

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Gene expression inference with deep learning

    PubMed Central

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-01-01

    Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929

  9. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients.

    PubMed

    Hezova, Renata; Slaby, Ondrej; Faltejskova, Petra; Mikulkova, Zuzana; Buresova, Ivana; Raja, K R Muthu; Hodek, Jan; Ovesna, Jaroslava; Michalek, Jaroslav

    2010-01-01

    Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs' function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25(hi)+ and CD127- by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p=0.05) and decreased expression of both miRNA-342 (p<0.0001) and miRNA-191 (p=0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.

  10. Gene Expression Profiling of Peripheral Blood From Kidney Transplant Recipients for the Early Detection of Digestive System Cancer.

    PubMed

    Kusaka, M; Okamoto, M; Takenaka, M; Sasaki, H; Fukami, N; Kataoka, K; Ito, T; Kenmochi, T; Hoshinaga, K; Shiroki, R

    2017-06-01

    Kidney transplant recipients are at increased risk of developing cancer in comparison with the general population. To effectively manage post-transplantation malignancies, it is essential to proactively monitor patients. A long-term intensive screening program was associated with a reduced incidence of cancer after transplantation. This study evaluated the usefulness of the gene expression profiling of peripheral blood samples obtained from kidney transplant patients and adopted a screening test for detecting cancer of the digestive system (gastric, colon, pancreas, and biliary tract). Nineteen patients were included in this study and a total of 53 gene expression screening tests were performed. The gene expression profiles of blood-delivered total RNA and whole genome human gene expression profiles were obtained. We investigated the expression levels of 2665 genes associated with digestive cancers and counted the number of genes in which expression was altered. A hierarchical clustering analysis was also performed. The final prediction of the cancer possibility was determined according to an algorithm. The number of genes in which expression was altered was significantly increased in the kidney transplant recipients in comparison with the general population (1091 ± 63 vs 823 ± 94; P = .0024). The number of genes with altered expression decreased after the induction of mechanistic target of rapamycin (mTOR) inhibitor (1484 ± 227 vs 883 ± 154; P = .0439). No cases of possible digestive cancer were detected in this study period. The gene expression profiling of peripheral blood samples may be a useful and noninvasive diagnostic tool that allows for the early detection of cancer of the digestive system. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Leader personality and crew effectiveness: Factors influencing performance in full-mission air transport simulation

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Foushee, H. Clayton

    1989-01-01

    A full mission simulation research study was completed to assess the potential for selection along dimensions of personality. Using a selection algorithm described by Chidester (1987), captains were classified as fitting one of three profiles using a battery of personality assessment scales, and the performances of 23 crews led by captains fitting each profile were contrasted over a one and one-half day simulated trip. Crews led by captains fitting a Positive Instrumental Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Communion profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of Competitiveness, Verbal Aggressiveness, and Impatience and Irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  12. Variation-preserving normalization unveils blind spots in gene expression profiling

    PubMed Central

    Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.

    2017-01-01

    RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435

  13. Personality factors in flight operations. Volume 1: Leader characteristics and crew performance in a full-mission air transport simulation

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Kanki, Barbara G.; Foushee, H. Clayton; Dickinson, Cortlandt L.; Bowles, Stephen V.

    1990-01-01

    Crew effectiveness is a joint product of the piloting skills, attitudes, and personality characteristics of team members. As obvious as this point might seem, both traditional approaches to optimizing crew performance and more recent training development highlighting crew coordination have emphasized only the skill and attitudinal dimensions. This volume is the first in a series of papers on this simulation. A subsequent volume will focus on patterns of communication within crews. The results of a full-mission simulation research study assessing the impact of individual personality on crew performance is reported. Using a selection algorithm described in previous research, captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one-and-one-half-day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, verbal aggressiveness, and impatience and irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  14. Gene-expression profiling for rejection surveillance after cardiac transplantation.

    PubMed

    Pham, Michael X; Teuteberg, Jeffrey J; Kfoury, Abdallah G; Starling, Randall C; Deng, Mario C; Cappola, Thomas P; Kao, Andrew; Anderson, Allen S; Cotts, William G; Ewald, Gregory A; Baran, David A; Bogaev, Roberta C; Elashoff, Barbara; Baron, Helen; Yee, James; Valantine, Hannah A

    2010-05-20

    Endomyocardial biopsy is the standard method of monitoring for rejection in recipients of a cardiac transplant. However, this procedure is uncomfortable, and there are risks associated with it. Gene-expression profiling of peripheral-blood specimens has been shown to correlate with the results of an endomyocardial biopsy. We randomly assigned 602 patients who had undergone cardiac transplantation 6 months to 5 years previously to be monitored for rejection with the use of gene-expression profiling or with the use of routine endomyocardial biopsies, in addition to clinical and echocardiographic assessment of graft function. We performed a noninferiority comparison of the two approaches with respect to the composite primary outcome of rejection with hemodynamic compromise, graft dysfunction due to other causes, death, or retransplantation. During a median follow-up period of 19 months, patients who were monitored with gene-expression profiling and those who underwent routine biopsies had similar 2-year cumulative rates of the composite primary outcome (14.5% and 15.3%, respectively; hazard ratio with gene-expression profiling, 1.04; 95% confidence interval, 0.67 to 1.68). The 2-year rates of death from any cause were also similar in the two groups (6.3% and 5.5%, respectively; P=0.82). Patients who were monitored with the use of gene-expression profiling underwent fewer biopsies per person-year of follow-up than did patients who were monitored with the use of endomyocardial biopsies (0.5 vs. 3.0, P<0.001). Among selected patients who had received a cardiac transplant more than 6 months previously and who were at a low risk for rejection, a strategy of monitoring for rejection that involved gene-expression profiling, as compared with routine biopsies, was not associated with an increased risk of serious adverse outcomes and resulted in the performance of significantly fewer biopsies. (ClinicalTrials.gov number, NCT00351559.) 2010 Massachusetts Medical Society

  15. Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas.

    PubMed

    Hiramatsu, Kosuke; Yoshino, Kiyoshi; Serada, Satoshi; Yoshihara, Kosuke; Hori, Yumiko; Fujimoto, Minoru; Matsuzaki, Shinya; Egawa-Takata, Tomomi; Kobayashi, Eiji; Ueda, Yutaka; Morii, Eiichi; Enomoto, Takayuki; Naka, Tetsuji; Kimura, Tadashi

    2016-03-01

    Ovarian and endometrial high-grade serous carcinomas (HGSCs) have similar clinical and pathological characteristics; however, exhaustive protein expression profiling of these cancers has yet to be reported. We performed protein expression profiling on 14 cases of HGSCs (7 ovarian and 7 endometrial) and 18 endometrioid carcinomas (9 ovarian and 9 endometrial) using iTRAQ-based exhaustive and quantitative protein analysis. We identified 828 tumour-expressed proteins and evaluated the statistical similarity of protein expression profiles between ovarian and endometrial HGSCs using unsupervised hierarchical cluster analysis (P<0.01). Using 45 statistically highly expressed proteins in HGSCs, protein ontology analysis detected two enriched terms and proteins composing each term: IMP2 and MCM2. Immunohistochemical analyses confirmed the higher expression of IMP2 and MCM2 in ovarian and endometrial HGSCs as well as in tubal and peritoneal HGSCs than in endometrioid carcinomas (P<0.01). The knockdown of either IMP2 or MCM2 by siRNA interference significantly decreased the proliferation rate of ovarian HGSC cell line (P<0.01). We demonstrated the statistical similarity of the protein expression profiles of ovarian and endometrial HGSC beyond the organs. We suggest that increased IMP2 and MCM2 expression may underlie some of the rapid HGSC growth observed clinically.

  16. Two different protein expression profiles of oral squamous cell carcinoma analyzed by immunoprecipitation high-performance liquid chromatography.

    PubMed

    Kim, Soung Min; Jeong, Dasul; Kim, Min Keun; Lee, Sang Shin; Lee, Suk Keun

    2017-08-08

    Oral squamous cell carcinoma (OSCC) is one of the most dangerous cancers in the body, producing serious complications with individual behaviors. Many different pathogenetic factors are involved in the carcinogenesis of OSCC. Cancer cells derived from oral keratinocytes can produce different carcinogenic signaling pathways through differences in protein expression, but their protein expression profiles cannot be easily explored with ordinary detection methods. The present study compared the protein expression profiles between two different types of OSCCs, which were analyzed through immunoprecipitation high-performance liquid chromatography (IP-HPLC). Two types of squamous cell carcinoma (SCC) occurred in a mandibular (SCC-1) and maxillary gingiva (SCC-2), but their clinical features and progression were quite different from each other. SCC-1 showed a large gingival ulceration with severe halitosis and extensive bony destruction, while SCC-2 showed a relatively small papillary gingival swelling but rapidly grew to form a large submucosal mass, followed by early cervical lymph node metastasis. In the histological observation, SCC-1 was relatively well differentiated with a severe inflammatory reaction, while SCC-2 showed severely infiltrative growth of each cancer islets accompanied with a mild inflammatory reaction. IP-HPLC analysis revealed contrary protein expression profiles analyzed by 72 different oncogenic proteins. SCC-1 showed more cellular apoptosis and invasive growth than SCC-2 through increased expression of caspases, MMPs, p53 signaling, FAS signaling, TGF-β1 signaling, and angiogenesis factors, while SCC-2 showed more cellular growth and survival than SCC-1 through the increased expression of proliferating factors, RAS signaling, eIF5A signaling, WNT signaling, and survivin. The increased trends of cellular apoptosis and invasiveness in the protein expression profiles of SCC-1 were implicative of its extensive gingival ulceration and bony destruction, while the increased trends of cellular proliferation and survival in the protein profile of SCC-2 were implicative of its rapid growing tumor mass and early lymph node metastasis. These analyses of the essential oncogenic protein expression profiles in OSCC provide important information for genetic counseling or customized gene therapy in cancer treatment. Therefore, protein expression profile analysis through IP-HPLC is helpful not only for the molecular genetic diagnosis of cancer but also in identifying target molecules for customized gene therapy in near future.

  17. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

    PubMed Central

    Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W

    2007-01-01

    Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588

  18. Organic trace mineral levels in the first 96-h post-hatch impact growth performance and intestinal gene expression in broiler chicks.

    PubMed

    Brennan, K M; Samuel, R S; Graugnard, T Ao; Xiao, R; Cantor, A H; Pescatore, A J

    2013-12-01

    Alterations in nutrient intake in the avian neonatal posthatch period can impact development, performance, and metabolism in adulthood. Very little is known about how mineral levels during the post-hatch period affect or “program” gene expression patterns later in life. The objective of this study was to determine the effect of post-hatch (0 to 96 h) dietary mineral supplementation on performance, tissue mineral content, and intestinal gene expression profiles in 21-day-old broiler chicks. One-day-old chicks were randomly assigned to one of two treatment groups consisting of N (organic Zn, Cu, and Mn provided at 100 % of recommendations (National Research Council 1994)) and/or L (organic Zn, Cu, and Mn provided at 20 % of recommendations (National Research Council 1994)) diets fed in two intervals (days 1–4, days 5–21) as follows: (1)N–Lor (2)L–L. Performance parameters did not differ between treatments except that body weight gain was greater (P < 0.05) in L–L birds than N–L birds over the experimental period. Bone mineral content was similar for both treatments at day 21. Intestinal gene expression profiling was examined using the Affymetrix GeneChip Chicken genome array. Ingenuity pathway analysis revealed differences in gene expression profiles between N and L treatments at day 5. At day 21, profiles were unique between N–L and L–L, suggesting that the diet fed until day 4 had an impact on gene expression patterns at day 21 even when birds were fed the same diets day 5–day 21. In this study, we demonstrated that diets fed for the 96 h post-hatch had long-term effects on gene expression, providing unique information as to why post-hatch diets are so important for the longterm bird health and productivity.

  19. Network-Induced Classification Kernels for Gene Expression Profile Analysis

    PubMed Central

    Dror, Gideon; Shamir, Ron

    2012-01-01

    Abstract Computational classification of gene expression profiles into distinct disease phenotypes has been highly successful to date. Still, robustness, accuracy, and biological interpretation of the results have been limited, and it was suggested that use of protein interaction information jointly with the expression profiles can improve the results. Here, we study three aspects of this problem. First, we show that interactions are indeed relevant by showing that co-expressed genes tend to be closer in the network of interactions. Second, we show that the improved performance of one extant method utilizing expression and interactions is not really due to the biological information in the network, while in another method this is not the case. Finally, we develop a new kernel method—called NICK—that integrates network and expression data for SVM classification, and demonstrate that overall it achieves better results than extant methods while running two orders of magnitude faster. PMID:22697242

  20. Determination of differential gene expression profiles in superficial and deeper zones of mature rat articular cartilage using RNA sequencing of laser microdissected tissue specimens.

    PubMed

    Mori, Yoshifumi; Chung, Ung-Il; Tanaka, Sakae; Saito, Taku

    2014-01-01

    Superficial zone (SFZ) cells, which are morphologically and functionally distinct from chondrocytes in deeper zones, play important roles in the maintenance of articular cartilage. Here, we established an easy and reliable method for performance of laser microdissection (LMD) on cryosections of mature rat articular cartilage using an adhesive membrane. We further examined gene expression profiles in the SFZ and the deeper zones of articular cartilage by performing RNA sequencing (RNA-seq). We validated sample collection methods, RNA amplification and the RNA-seq data using real-time RT-PCR. The combined data provide comprehensive information regarding genes specifically expressed in the SFZ or deeper zones, as well as a useful protocol for expression analysis of microsamples of hard tissues.

  1. Altered Expression of Diabetes-Related Genes in Alzheimer's Disease Brains: The Hisayama Study

    PubMed Central

    Hokama, Masaaki; Oka, Sugako; Leon, Julio; Ninomiya, Toshiharu; Honda, Hiroyuki; Sasaki, Kensuke; Iwaki, Toru; Ohara, Tomoyuki; Sasaki, Tomio; LaFerla, Frank M.; Kiyohara, Yutaka; Nakabeppu, Yusaku

    2014-01-01

    Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM. PMID:23595620

  2. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    PubMed Central

    2014-01-01

    Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Conclusions Our findings demonstrate that unique miRNA expression profiles correlate with the biological behavior of canine MCTs. Furthermore, dysregulation of miR-9 is associated with MCT metastasis potentially through the induction of an invasive phenotype, identifying a potentially novel pathway for therapeutic intervention. PMID:24517413

  3. Dietary Lactobacillus acidophilus modulated skin mucus protein profile, immune and appetite genes expression in gold fish (Carassius auratus gibelio).

    PubMed

    Hosseini, Marjan; Kolangi Miandare, Hamed; Shabani, Ali; Hoseinifar, Seyed Hossein; Yarahmadi, Peyman

    2016-12-01

    The objective of the present study was to investigate the effect of dietary Lactobacillus acidophilus on skin mucus protein pattern, immune and appetite related genes expression as well as growth performance in gold fish (Carassius auratus gibelio). Three hundred healthy gold fish (2.5 ± 0.05) juveniles were randomly distributed in 12 glass aquariums (400-L; 25 fish per aquaria) and fed experimental diets contain different levels of L. acidophilus (0, 1.5 × 10 8 , 3 × 10 8 and 6 × 10 8 ) for 8 weeks. SDS-PAGE analysis of skin mucus protein profile at the end of the feeding trial revealed differences in protein profile of probiotic fed fish and control group; even three new bands were observed in L. acidophilus treated groups. Furthermore, fish fed 6 × 10 8  CFU g -1 supplemented diet showed up-regulation of both TNF-1α and TNF-2α gene expression (P < 0.05). Evaluation of appetite related gene expression showed down-regulation of ghrelin in probiotic fed fish compared those of control treatment (P < 0.05). However, administration of different levels of L. acidophilus had no significant effects on growth performance (P > 0.05). These results demonstrated that while no beneficial effects on growth performance, dietary L. acidophilus affects immune and appetite related genes expression as well as skin mucus protein profile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Comparative Genomic Study in Schizophrenic and in Bipolar Disorder Patients, Based on Microarray Expression Profiling Meta-Analysis

    PubMed Central

    Logotheti, Marianthi; Papadodima, Olga; Venizelos, Nikolaos; Chatziioannou, Aristotelis; Kolisis, Fragiskos

    2013-01-01

    Schizophrenia affecting almost 1% and bipolar disorder affecting almost 3%–5% of the global population constitute two severe mental disorders. The catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar disorder, and other related psychiatric disorders. The aim of the study was to perform and interpret the results of a comparative genomic profiling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes. In particular we have focused on genes and mechanisms involved in amino acid transport through cell membranes from whole genome expression profiling data. We performed bioinformatic analysis on raw data derived from four different published studies. In two studies postmortem samples from prefrontal cortices, derived from patients with bipolar disorder, schizophrenia, and control subjects, have been used. In another study we used samples from postmortem orbitofrontal cortex of bipolar subjects while the final study was performed based on raw data from a gene expression profiling dataset in the postmortem superior temporal cortex of schizophrenics. The data were downloaded from NCBI's GEO datasets. PMID:23554570

  5. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    PubMed

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  6. Molecular profiling identifies prognostic markers of stage IA lung adenocarcinoma.

    PubMed

    Zhang, Jie; Shao, Jinchen; Zhu, Lei; Zhao, Ruiying; Xing, Jie; Wang, Jun; Guo, Xiaohui; Tu, Shichun; Han, Baohui; Yu, Keke

    2017-09-26

    We previously showed that different pathologic subtypes were associated with different prognostic values in patients with stage IA lung adenocarcinoma (AC). We hypothesize that differential gene expression profiles of different subtypes may be valuable factors for prognosis in stage IA lung adenocarcinoma. We performed microarray gene expression profiling on tumor tissues micro-dissected from patients with acinar and solid predominant subtypes of stage IA lung adenocarcinoma. These patients had undergone a lobectomy and mediastinal lymph node dissection at the Shanghai Chest Hospital, Shanghai, China in 2012. No patient had preoperative treatment. We performed the Gene Set Enrichment Analysis (GSEA) analysis to look for gene expression signatures associated with tumor subtypes. The histologic subtypes of all patients were classified according to the 2015 WHO lung Adenocarcinoma classification. We found that patients with the solid predominant subtype are enriched for genes involved in RNA polymerase activity as well as inactivation of the p53 pathway. Further, we identified a list of genes that may serve as prognostic markers for stage IA lung adenocarcinoma. Validation in the TCGA database shows that these genes are correlated with survival, suggesting that they are novel prognostic factors for stage IA lung adenocarcinoma. In conclusion, we have uncovered novel prognostic factors for stage IA lung adenocarcinoma using gene expression profiling in combination with histopathology subtyping.

  7. Cell-specific prediction and application of drug-induced gene expression profiles.

    PubMed

    Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David; Dudley, Joel

    2018-01-01

    Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes.

  8. Cell-specific prediction and application of drug-induced gene expression profiles

    PubMed Central

    Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R.; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David

    2017-01-01

    Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes. PMID:29218867

  9. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells

    PubMed Central

    Peters, Derek T.; Henderson, Christopher A.; Warren, Curtis R.; Friesen, Max; Xia, Fang; Becker, Caroline E.; Musunuru, Kiran; Cowan, Chad A.

    2016-01-01

    ABSTRACT Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754

  10. Integrated lipidomics and transcriptomic analysis of peripheral blood reveals significantly enriched pathways in type 2 diabetes mellitus.

    PubMed

    Zhao, Chen; Mao, Jinghe; Ai, Junmei; Shenwu, Ming; Shi, Tieliu; Zhang, Daqing; Wang, Xiaonan; Wang, Yunliang; Deng, Youping

    2013-01-01

    Insulin resistance is a key element in the pathogenesis of type 2 diabetes mellitus. Plasma free fatty acids were assumed to mediate the insulin resistance, while the relationship between lipid and glucose disposal remains to be demonstrated across liver, skeletal muscle and blood. We profiled both lipidomics and gene expression of 144 total peripheral blood samples, 84 from patients with T2D and 60 from healthy controls. Then, factor and partial least squares models were used to perform a combined analysis of lipidomics and gene expression profiles to uncover the bioprocesses that are associated with lipidomic profiles in type 2 diabetes. According to factor analysis of the lipidomic profile, several species of lipids were found to be correlated with different phenotypes, including diabetes-related C23:2CE, C23:3CE, C23:4CE, ePE36:4, ePE36:5, ePE36:6; race-related (African-American) PI36:1; and sex-related PE34:1 and LPC18:2. The major variance of gene expression profile was not caused by known factors and no significant difference can be directly derived from differential gene expression profile. However, the combination of lipidomic and gene expression analyses allows us to reveal the correlation between the altered lipid profile with significantly enriched pathways, such as one carbon pool by folate, arachidonic acid metabolism, insulin signaling pathway, amino sugar and nucleotide sugar metabolism, propanoate metabolism, and starch and sucrose metabolism. The genes in these pathways showed a good capability to classify diabetes samples. Combined analysis of gene expression and lipidomic profiling reveals type 2 diabetes-associated lipid species and enriched biological pathways in peripheral blood, while gene expression profile does not show direct correlation. Our findings provide a new clue to better understand the mechanism of disordered lipid metabolism in association with type 2 diabetes.

  11. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

    PubMed Central

    2012-01-01

    Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182

  12. Gene set differential analysis of time course expression profiles via sparse estimation in functional logistic model with application to time-dependent biomarker detection.

    PubMed

    Kayano, Mitsunori; Matsui, Hidetoshi; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2016-04-01

    High-throughput time course expression profiles have been available in the last decade due to developments in measurement techniques and devices. Functional data analysis, which treats smoothed curves instead of originally observed discrete data, is effective for the time course expression profiles in terms of dimension reduction, robustness, and applicability to data measured at small and irregularly spaced time points. However, the statistical method of differential analysis for time course expression profiles has not been well established. We propose a functional logistic model based on elastic net regularization (F-Logistic) in order to identify the genes with dynamic alterations in case/control study. We employ a mixed model as a smoothing method to obtain functional data; then F-Logistic is applied to time course profiles measured at small and irregularly spaced time points. We evaluate the performance of F-Logistic in comparison with another functional data approach, i.e. functional ANOVA test (F-ANOVA), by applying the methods to real and synthetic time course data sets. The real data sets consist of the time course gene expression profiles for long-term effects of recombinant interferon β on disease progression in multiple sclerosis. F-Logistic distinguishes dynamic alterations, which cannot be found by competitive approaches such as F-ANOVA, in case/control study based on time course expression profiles. F-Logistic is effective for time-dependent biomarker detection, diagnosis, and therapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. DMirNet: Inferring direct microRNA-mRNA association networks.

    PubMed

    Lee, Minsu; Lee, HyungJune

    2016-12-05

    MicroRNAs (miRNAs) play important regulatory roles in the wide range of biological processes by inducing target mRNA degradation or translational repression. Based on the correlation between expression profiles of a miRNA and its target mRNA, various computational methods have previously been proposed to identify miRNA-mRNA association networks by incorporating the matched miRNA and mRNA expression profiles. However, there remain three major issues to be resolved in the conventional computation approaches for inferring miRNA-mRNA association networks from expression profiles. 1) Inferred correlations from the observed expression profiles using conventional correlation-based methods include numerous erroneous links or over-estimated edge weight due to the transitive information flow among direct associations. 2) Due to the high-dimension-low-sample-size problem on the microarray dataset, it is difficult to obtain an accurate and reliable estimate of the empirical correlations between all pairs of expression profiles. 3) Because the previously proposed computational methods usually suffer from varying performance across different datasets, a more reliable model that guarantees optimal or suboptimal performance across different datasets is highly needed. In this paper, we present DMirNet, a new framework for identifying direct miRNA-mRNA association networks. To tackle the aforementioned issues, DMirNet incorporates 1) three direct correlation estimation methods (namely Corpcor, SPACE, Network deconvolution) to infer direct miRNA-mRNA association networks, 2) the bootstrapping method to fully utilize insufficient training expression profiles, and 3) a rank-based Ensemble aggregation to build a reliable and robust model across different datasets. Our empirical experiments on three datasets demonstrate the combinatorial effects of necessary components in DMirNet. Additional performance comparison experiments show that DMirNet outperforms the state-of-the-art Ensemble-based model [1] which has shown the best performance across the same three datasets, with a factor of up to 1.29. Further, we identify 43 putative novel multi-cancer-related miRNA-mRNA association relationships from an inferred Top 1000 direct miRNA-mRNA association network. We believe that DMirNet is a promising method to identify novel direct miRNA-mRNA relations and to elucidate the direct miRNA-mRNA association networks. Since DMirNet infers direct relationships from the observed data, DMirNet can contribute to reconstructing various direct regulatory pathways, including, but not limited to, the direct miRNA-mRNA association networks.

  14. Individuality in harpsichord performance: disentangling performer- and piece-specific influences on interpretive choices

    PubMed Central

    Gingras, Bruno; Asselin, Pierre-Yves; McAdams, Stephen

    2013-01-01

    Although a growing body of research has examined issues related to individuality in music performance, few studies have attempted to quantify markers of individuality that transcend pieces and musical styles. This study aims to identify such meta-markers by discriminating between influences linked to specific pieces or interpretive goals and performer-specific playing styles, using two complementary statistical approaches: linear mixed models (LMMs) to estimate fixed (piece and interpretation) and random (performer) effects, and similarity analyses to compare expressive profiles on a note-by-note basis across pieces and expressive parameters. Twelve professional harpsichordists recorded three pieces representative of the Baroque harpsichord repertoire, including three interpretations of one of these pieces, each emphasizing a different melodic line, on an instrument equipped with a MIDI console. Four expressive parameters were analyzed: articulation, note onset asynchrony, timing, and velocity. LMMs showed that piece-specific influences were much larger for articulation than for other parameters, for which performer-specific effects were predominant, and that piece-specific influences were generally larger than effects associated with interpretive goals. Some performers consistently deviated from the mean values for articulation and velocity across pieces and interpretations, suggesting that global measures of expressivity may in some cases constitute valid markers of artistic individuality. Similarity analyses detected significant associations among the magnitudes of the correlations between the expressive profiles of different performers. These associations were found both when comparing across parameters and within the same piece or interpretation, or on the same parameter and across pieces or interpretations. These findings suggest the existence of expressive meta-strategies that can manifest themselves across pieces, interpretive goals, or expressive devices. PMID:24348446

  15. Synthesis of national risk profile

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The methodology used and results obtained in computing the national risk profile for carbon fibers (CF) released after an aircraft accident (fire or explosion) are presented. The computation was performed by use of twenty-six individual conditional risk profiles, together with the extrapolation of these profiles to other U.S. airports. The risk profile was obtained using 1993 CF utilization forecasts, but numbers of facilities were taken from 1972 and 1975 census data, while losses were expressed in 1977 dollars.

  16. Analyzing gene expression time-courses based on multi-resolution shape mixture model.

    PubMed

    Li, Ying; He, Ye; Zhang, Yu

    2016-11-01

    Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence.

    PubMed

    Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun

    2015-01-01

    There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.

  18. Individual differences in airline captains' personalities, communication strategies, and crew performance

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith

    1991-01-01

    Aircrew effectiveness in coping with emergencies has been linked to captain's personality profile. The present study analyzed cockpit communication during simulated flight to examine the relation between captains' discourse strategies, personality profiles, and crew performance. Positive Instrumental/Expressive captains and Instrumental-Negative captains used very similar communication strategies and their crews made few errors. Their talk was distinguished by high levels of planning and strategizing, gathering information, predicting/alerting, and explaining, especially during the emergency flight phase. Negative-Expressive captains talked less overall, and engaged in little problem solving talk, even during emergencies. Their crews made many errors. Findings support the theory that high crew performance results when captains use language to build shared mental models for problem situations.

  19. Lung tumor diagnosis and subtype discovery by gene expression profiling.

    PubMed

    Wang, Lu-yong; Tu, Zhuowen

    2006-01-01

    The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.

  20. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages.

    PubMed

    Zhan, Siyuan; Zhao, Wei; Song, Tianzeng; Dong, Yao; Guo, Jiazhong; Cao, Jiaxue; Zhong, Tao; Wang, Linjie; Li, Li; Zhang, Hongping

    2018-01-01

    Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.

  1. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    PubMed

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.

  2. Conditional clustering of temporal expression profiles

    PubMed Central

    Wang, Ling; Montano, Monty; Rarick, Matt; Sebastiani, Paola

    2008-01-01

    Background Many microarray experiments produce temporal profiles in different biological conditions but common cluster techniques are not able to analyze the data conditional on the biological conditions. Results This article presents a novel technique to cluster data from time course microarray experiments performed across several experimental conditions. Our algorithm uses polynomial models to describe the gene expression patterns over time, a full Bayesian approach with proper conjugate priors to make the algorithm invariant to linear transformations, and an iterative procedure to identify genes that have a common temporal expression profile across two or more experimental conditions, and genes that have a unique temporal profile in a specific condition. Conclusion We use simulated data to evaluate the effectiveness of this new algorithm in finding the correct number of clusters and in identifying genes with common and unique profiles. We also use the algorithm to characterize the response of human T cells to stimulations of antigen-receptor signaling gene expression temporal profiles measured in six different biological conditions and we identify common and unique genes. These studies suggest that the methodology proposed here is useful in identifying and distinguishing uniquely stimulated genes from commonly stimulated genes in response to variable stimuli. Software for using this clustering method is available from the project home page. PMID:18334028

  3. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.

    PubMed

    Chen, Yunshun; Lun, Aaron T L; Smyth, Gordon K

    2016-01-01

    In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.

  4. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells.

    PubMed

    Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund

    2017-05-31

    Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.

  5. Lex-SVM: exploring the potential of exon expression profiling for disease classification.

    PubMed

    Yuan, Xiongying; Zhao, Yi; Liu, Changning; Bu, Dongbo

    2011-04-01

    Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon in a gene. Compared with gene expression profiling technologies like 3' array, exon expression profiling technologies could detect alterations in both transcription and alternative splicing, therefore they are expected to be more sensitive in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant correlation among features. Ignoring the correlation structure among exons of a gene, a popular classification method like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation, we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm, including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can select features group-wisely, force features in a subgroup to take equal weihts and exclude the features that contradict the majority in the subgroup. Experimental results suggest that on exon expression profile, Lex-SVM is more accurate than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a gene as possible, lending itself easier for further interpretation.

  6. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing twodimensional...

  7. Determination of absolute expression profiles using multiplexed miRNA analysis

    PubMed Central

    Song, Jee Hoon; Cheng, Yulan; Saeui, Christopher T.; Cheung, Douglas G.; Croce, Carlo M.; Yarema, Kevin J.; Meltzer, Stephen J.; Liu, Kelvin J.; Wang, Tza-Huei

    2017-01-01

    Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes. PMID:28704432

  8. [Preliminary analysis of retinal gene expression profile of diabetic rat].

    PubMed

    Mei, Yan; Zhou, Hong-ying; Xiang, Tao; Lu, You-guang; Li, Ai-dong; Tang, En-jie; Yang, Hui-jun

    2005-10-01

    Establishing the retinal gene expression profiles of non-diabetic rat and diabetic rat and comparing the profiles in order to analyze the possible genes related with diabetic retinopathy. The whole retinal transcriptional fragments of non-diabetic rat and 8-week diabetic rat were obtained by restriction fragments differential display-PCR (RFDD-PCR). Bioinformatic analysis of retinal gene expression was performed using soft wares, including Fragment Analysis. After comparison of the expression profiles, the related gene fragments of diabetic retinopathy were initially selected as the target gene of further approach. A total of 3639 significant fragments were obtained. By means of more than 3-fold contrast of fluorescent intensity as the differential expression standard, the authors got 840 differential fragments, accounting for 23.08% of the expressed numbers and including 5 visual related genes, 13 excitatory neruotransmitter genes and 3 inhibitory neurotransmitter genes. At the 8th week, the expression of Rhodopsin kinase, beta-arrestin, Phosducinìrod photoreceptor cGMP-gated channel and Rpe65 as well as iGlu R1-4 were down-regulated. mGluRs and GABA-Rs were all up-regulated, whereas the expression of GlyR was unchanged. These results prompt again that the changes in retinal nervous layer of rat have occurred at an early stage of diabetes. The genes expression pattern of visual related genes and excitatory and inhibitory neurotransmitters in rat diabetic retina have been involved in neuro-dysfunctions of diabetic retina.

  9. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles

    PubMed Central

    Uddin, Monica; Wildman, Derek E.; Liu, Guozhen; Xu, Wenbo; Johnson, Robert M.; Hof, Patrick R.; Kapatos, Gregory; Grossman, Lawrence I.; Goodman, Morris

    2004-01-01

    Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000–15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. PMID:14976249

  10. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.

    PubMed

    Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A

    2016-05-01

    Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. © 2016. Published by The Company of Biologists Ltd.

  11. Music psychopathology. V. Objective features of instrumental performance and psychopathology.

    PubMed

    Steinberg, R; Fani, M; Raith, L

    1992-01-01

    Mental disease systematically impairs musical expression according to nosologic classification. This was demonstrated with a polarity profile of the instrumental performances of 60 inpatients and 14 controls matched for musical aptitude. Objective performance characteristics such as irregularities and playing faults were analyzed too. No meaningful correlation between these features and psychopathology resulted. This indicates that even in severe psychopathologic alterations performance features, which depend mainly on education and actual training, are not altered in a systematic manner, in contrast to expressive qualities.

  12. Systemic bioinformatics analysis of skeletal muscle gene expression profiles of sepsis

    PubMed Central

    Yang, Fang; Wang, Yumei

    2018-01-01

    Sepsis is a type of systemic inflammatory response syndrome with high morbidity and mortality. Skeletal muscle dysfunction is one of the major complications of sepsis that may also influence the outcome of sepsis. The aim of the present study was to explore and identify potential mechanisms and therapeutic targets of sepsis. Systemic bioinformatics analysis of skeletal muscle gene expression profiles from the Gene Expression Omnibus was performed. Differentially expressed genes (DEGs) in samples from patients with sepsis and control samples were screened out using the limma package. Differential co-expression and coregulation (DCE and DCR, respectively) analysis was performed based on the Differential Co-expression Analysis package to identify differences in gene co-expression and coregulation patterns between the control and sepsis groups. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of DEGs were identified using the Database for Annotation, Visualization and Integrated Discovery, and inflammatory, cancer and skeletal muscle development-associated biological processes and pathways were identified. DCE and DCR analysis revealed several potential therapeutic targets for sepsis, including genes and transcription factors. The results of the present study may provide a basis for the development of novel therapeutic targets and treatment methods for sepsis. PMID:29805480

  13. Proteomic Analysis of Propiconazole Responses in Mouse Liver-Comparison of Genomic and Proteomic Profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this commonly used fungicide. Utilizing t...

  14. A Dynamic Bronchial Airway Gene Expression Signature of Chronic Obstructive Pulmonary Disease and Lung Function Impairment

    PubMed Central

    Steiling, Katrina; van den Berge, Maarten; Hijazi, Kahkeshan; Florido, Roberta; Campbell, Joshua; Liu, Gang; Xiao, Ji; Zhang, Xiaohui; Duclos, Grant; Drizik, Eduard; Si, Huiqing; Perdomo, Catalina; Dumont, Charles; Coxson, Harvey O.; Alekseyev, Yuriy O.; Sin, Don; Pare, Peter; Hogg, James C.; McWilliams, Annette; Hiemstra, Pieter S.; Sterk, Peter J.; Timens, Wim; Chang, Jeffrey T.; Sebastiani, Paola; O’Connor, George T.; Bild, Andrea H.; Postma, Dirkje S.; Lam, Stephen

    2013-01-01

    Rationale: Molecular phenotyping of chronic obstructive pulmonary disease (COPD) has been impeded in part by the difficulty in obtaining lung tissue samples from individuals with impaired lung function. Objectives: We sought to determine whether COPD-associated processes are reflected in gene expression profiles of bronchial airway epithelial cells obtained by bronchoscopy. Methods: Gene expression profiling of bronchial brushings obtained from 238 current and former smokers with and without COPD was performed using Affymetrix Human Gene 1.0 ST Arrays. Measurements and Main Results: We identified 98 genes whose expression levels were associated with COPD status, FEV1% predicted, and FEV1/FVC. In silico analysis identified activating transcription factor 4 (ATF4) as a potential transcriptional regulator of genes with COPD-associated airway expression, and ATF4 overexpression in airway epithelial cells in vitro recapitulates COPD-associated gene expression changes. Genes with COPD-associated expression in the bronchial airway epithelium had similarly altered expression profiles in prior studies performed on small-airway epithelium and lung parenchyma, suggesting that transcriptomic alterations in the bronchial airway epithelium reflect molecular events found at more distal sites of disease activity. Many of the airway COPD-associated gene expression changes revert toward baseline after therapy with the inhaled corticosteroid fluticasone in independent cohorts. Conclusions: Our findings demonstrate a molecular field of injury throughout the bronchial airway of active and former smokers with COPD that may be driven in part by ATF4 and is modifiable with therapy. Bronchial airway epithelium may ultimately serve as a relatively accessible tissue in which to measure biomarkers of disease activity for guiding clinical management of COPD. PMID:23471465

  15. Small RNA-based prediction of hybrid performance in maize.

    PubMed

    Seifert, Felix; Thiemann, Alexander; Schrag, Tobias A; Rybka, Dominika; Melchinger, Albrecht E; Frisch, Matthias; Scholten, Stefan

    2018-05-21

    Small RNA (sRNA) sequences are known to have a broad impact on gene regulation by various mechanisms. Their performance for the prediction of hybrid traits has not yet been analyzed. Our objective was to analyze the relation of parental sRNA expression with the performance of their hybrids, to develop a sRNA-based prediction approach, and to compare it to more common SNP and mRNA transcript based predictions using a factorial mating scheme of a maize hybrid breeding program. Correlation of genomic differences and messenger RNA (mRNA) or sRNA expression differences between parental lines with hybrid performance of their hybrids revealed that sRNAs showed an inverse relationship in contrast to the other two data types. We associated differences for SNPs, mRNA and sRNA expression between parental inbred lines with the performance of their hybrid combinations and developed two prediction approaches using distance measures based on associated markers. Cross-validations revealed parental differences in sRNA expression to be strong predictors for hybrid performance for grain yield in maize, comparable to genomic and mRNA data. The integration of both positively and negatively associated markers in the prediction approaches enhanced the prediction accurary. The associated sRNAs belong predominantly to the canonical size classes of 22- and 24-nt that show specific genomic mapping characteristics. Expression profiles of sRNA are a promising alternative to SNPs or mRNA expression profiles for hybrid prediction, especially for plant species without reference genome or transcriptome information. The characteristics of the sRNAs we identified suggest that association studies based on breeding populations facilitate the identification of sRNAs involved in hybrid performance.

  16. Circulating Long Noncoding RNAs as Potential Biomarkers of Sepsis: A Preliminary Study.

    PubMed

    Dai, Yu; Liang, Zhixin; Li, Yulin; Li, Chunsun; Chen, Liangan

    2017-11-01

    Long noncoding RNAs (lncRNAs) are becoming promising biomarker candidates in various diseases as assessed via sequencing technologies. Sepsis is a life-threatening disease without ideal biomarkers. The aim of this study was to investigate the expression profile of lncRNAs in the peripheral blood of sepsis patients and to find potential biomarkers of sepsis. A lncRNA expression profile was performed using peripheral blood from three sepsis patients and three healthy volunteers using microarray screening. The differentially expressed lncRNAs were validated by real-time quantitative polymerase chain reaction (qRT-PCR) in a further set of 22 sepsis patients and 22 healthy volunteers. Among 1316 differentially expressed lncRNAs, 771 were downregulated and 545 were upregulated. Results of the qRT-PCR were consistent with the microarray data. lncRNA ENST00000452391.1, uc001vji.1, and uc021zxw.1 were significantly differentially expressed between sepsis patients and healthy volunteers. Moreover, lncRNA ENST00000504301.1 and ENST00000452391.1 were significantly differentially expressed between sepsis survivors and nonsurvivors. The lncRNA expression profile in the peripheral blood of sepsis patients significantly differed from that of healthy volunteers. Circulating lncRNAs may be good candidates for sepsis biomarkers.

  17. Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis.

    PubMed

    Niedoszytko, M; Bruinenberg, M; van Doormaal, J J; de Monchy, J G R; Nedoszytko, B; Koppelman, G H; Nawijn, M C; Wijmenga, C; Jassem, E; Elberink, J N G Oude

    2011-05-01

    Anaphylaxis to insect venom (Hymenoptera) is most severe in patients with mastocytosis and may even lead to death. However, not all patients with mastocytosis suffer from anaphylaxis. The aim of the study was to analyze differences in gene expression between patients with indolent systemic mastocytosis (ISM) and a history of insect venom anaphylaxis (IVA) compared to those patients without a history of anaphylaxis, and to determine the predictive use of gene expression profiling. Whole-genome gene expression analysis was performed in peripheral blood cells. Twenty-two adults with ISM were included: 12 with a history of IVA and 10 without a history of anaphylaxis of any kind. Significant differences in single gene expression corrected for multiple testing were found for 104 transcripts (P < 0.05). Gene ontology analysis revealed that the differentially expressed genes were involved in pathways responsible for the development of cancer and focal and cell adhesion suggesting that the expression of genes related to the differentiation state of cells is higher in patients with a history of anaphylaxis. Based on the gene expression profiles, a naïve Bayes prediction model was built identifying patients with IVA. In ISM, gene expression profiles are different between patients with a history of IVA and those without. These findings might reflect a more pronounced mast cells dysfunction in patients without a history of anaphylaxis. Gene expression profiling might be a useful tool to predict the risk of anaphylaxis on insect venom in patients with ISM. Prospective studies are needed to substantiate any conclusions. © 2010 John Wiley & Sons A/S.

  18. Genomics of NSCLC patients both affirm PD-L1 expression and predict their clinical responses to anti-PD-1 immunotherapy.

    PubMed

    Brogden, Kim A; Parashar, Deepak; Hallier, Andrea R; Braun, Terry; Qian, Fang; Rizvi, Naiyer A; Bossler, Aaron D; Milhem, Mohammed M; Chan, Timothy A; Abbasi, Taher; Vali, Shireen

    2018-02-27

    Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses. We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses. Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses. Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies.

  19. [Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].

    PubMed

    Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing

    2012-10-01

    To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.

  20. Cross-wind profiling based on the scattered wave scintillation in a telescope focus.

    PubMed

    Banakh, V A; Marakasov, D A; Vorontsov, M A

    2007-11-20

    The problem of wind profile reconstruction from scintillation of an optical wave scattered off a rough surface in a telescope focus plane is considered. Both the expression for the spatiotemporal correlation function and the algorithm of cross-wind velocity and direction profiles reconstruction based on the spatiotemporal spectrum of intensity of an optical wave scattered by a diffuse target in a turbulent atmosphere are presented. Computer simulations performed under conditions of weak optical turbulence show wind profiles reconstruction by the developed algorithm.

  1. Music psychopathology. III. Musical expression and psychiatric disease.

    PubMed

    Steinberg, R; Raith, L; Rossnagl, G; Eben, E

    1985-01-01

    Musical expression of the instrumental playing of 61 mentally ill patients and 29 controls recorded several times was assessed by means of a short polarity profile. The performances were reversibly impaired in correlation with the psychopathology. Musical expression followed a systematic variation according to nosological classification. Endogenous-depressive patients could be clearly distinguished from neurotic-depressive patients due to weakened motoric qualities in their playing. In schizophrenia, motoricity did not seem to be so much involved, although the performances were altered in the dimension of musical logic and order. Maniform syndromes had the least effect on musical expression.

  2. Metatranscriptomic profiles of Eastern subterranean termites, Reticulitermes flavipes (Kollar) fed on second generation feedstocks.

    PubMed

    Rajarapu, Swapna Priya; Shreve, Jacob T; Bhide, Ketaki P; Thimmapuram, Jyothi; Scharf, Michael E

    2015-04-22

    Second generation lignocellulosic feedstocks are being considered as an alternative to first generation biofuels that are derived from grain starches and sugars. However, the current pre-treatment methods for second generation biofuel production are inefficient and expensive due to the recalcitrant nature of lignocellulose. In this study, we used the lower termite Reticulitermes flavipes (Kollar), as a model to identify potential pretreatment genes/enzymes specifically adapted for use against agricultural feedstocks. Metatranscriptomic profiling was performed on worker termite guts after feeding on corn stover (CS), soybean residue (SR), or 98% pure cellulose (paper) to identify (i) microbial community, (ii) pathway level and (iii) gene-level responses. Microbial community profiles after CS and SR feeding were different from the paper feeding profile, and protist symbiont abundance decreased significantly in termites feeding on SR and CS relative to paper. Functional profiles after CS feeding were similar to paper and SR; whereas paper and SR showed different profiles. Amino acid and carbohydrate metabolism pathways were downregulated in termites feeding on SR relative to paper and CS. Gene expression analyses showed more significant down regulation of genes after SR feeding relative to paper and CS. Stereotypical lignocellulase genes/enzymes were not differentially expressed, but rather were among the most abundant/constitutively-expressed genes. These results suggest that the effect of CS and SR feeding on termite gut lignocellulase composition is minimal and thus, the most abundantly expressed enzymes appear to encode the best candidate catalysts for use in saccharification of these and related second-generation feedstocks. Further, based on these findings we hypothesize that the most abundantly expressed lignocellulases, rather than those that are differentially expressed have the best potential as pretreatment enzymes for CS and SR feedstocks.

  3. Non-small cell lung cancer detection using microRNA expression profiling of bronchoalveolar lavage fluid and sputum.

    PubMed

    Kim, Julian O; Gazala, Sayf; Razzak, Rene; Guo, Linghong; Ghosh, Sunita; Roa, Wilson H; Bédard, Eric L R

    2015-04-01

    To assess if miRNA expression profiling of bronchoalveolar lavage (BAL) fluid and sputum could be used to detect early-stage non-small cell lung cancer (NSCLC). Hierarchical cluster analysis was performed on the expression levels of 5 miRNAs (miR-21, miR-143, miR-155, miR-210, and miR-372) which were quantified using RNA reverse transcription and quantitative real-time polymerase chain reaction in sputum and BAL samples from NSCLC cases and cancer-free controls. Cluster analysis of the miRNA expression levels in BAL samples from 21 NSCLC cases and sputum samples from 10 cancer-free controls yielded a diagnostic sensitivity of 85.7% and specificity of 100%. Cluster analysis of sputum samples from the same patients yielded a diagnostic sensitivity of 67.8% and specificity of 90%. miRNA expression profiling of sputum and BAL fluids represent a potential means to detect early-stage NSCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)

    PubMed Central

    Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou

    2009-01-01

    Background MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Results Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). Conclusion We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal. PMID:19785751

  5. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori).

    PubMed

    Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou

    2009-09-28

    MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.

  6. Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee.

    PubMed

    González-Alvarez, Rafael; Garza-Rodríguez, María de Lourdes; Delgado-Enciso, Iván; Treviño-Alvarado, Víctor Manuel; Canales-Del-Castillo, Ricardo; Martínez-De-Villarreal, Laura Elia; Lugo-Trampe, Ángel; Tejero, María Elizabeth; Schlabritz-Loutsevitch, Natalia E; Rocha-Pizaña, María Del Refugio; Cole, Shelley A; Reséndez-Pérez, Diana; Moises-Alvarez, Mario; Comuzzie, Anthony G; Barrera-Saldaña, Hugo Alberto; Garza-Guajardo, Raquel; Barboza-Quintana, Oralia; Rodríguez-Sánchez, Irám Pablo

    2015-06-12

    Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expression profile and orthology in RARRES2 genes are unknown aspects in the biology of this multigene family in primates. Thus; we attempt to describe expression profile and phylogenetic relationship as complementary knowledge in the function of this gene in primates. To do that, we performed A RT-PCR from different tissues obtained during necropsies. Also we tested the hypotheses of positive evolution, purifying selection, and neutrality. And finally a phylogenetic analysis was made between primates RARRES2 protein. RARRES2 transcripts were present in liver, lung, adipose tissue, ovary, pancreas, heart, hypothalamus and pituitary tissues. Expression in kidney and leukocytes were not detectable in either species. It was determined that the studied genes are orthologous. RARRES2 evolution fits the hypothesis of purifying selection. Expression profiles of the RARRES2 gene are similar in baboons and chimpanzees and are also phylogenetically related.

  7. Emergent literacy profiles of preschool-age children with specific language impairment.

    PubMed

    Cabell, Sonia Q; Lomax, Richard G; Justice, Laura M; Breit-Smith, Allison; Skibbe, Lori E; McGinty, Anita S

    2010-12-01

    The primary aim of the present study was to explore the heterogeneity of emergent literacy skills among preschool-age children with specific language impairment (SLI) through examination of profiles of performance. Fifty-nine children with SLI were assessed on a battery of emergent literacy skills (i.e., alphabet knowledge, print concepts, emergent writing, rhyme awareness) and oral language skills (i.e., receptive/expressive vocabulary and grammar). Cluster analysis techniques identified three emergent literacy profiles: (1) Highest Emergent Literacy, Strength in Alphabet Knowledge; (2) Average Emergent Literacy, Strength in Print Concepts; and (3) Lowest Emergent Literacy across Skills. After taking into account the contribution of child age, receptive and expressive language skills made a small contribution to the prediction of profile membership. The present findings, which may be characterized as exploratory given the relatively modest sample size, suggest that preschool-age children with SLI display substantial individual differences with regard to their emergent literacy skills and that these differences cannot be fully determined by children's age or oral language performance. Replication of the present findings with a larger sample of children is needed.

  8. Evaluation of external RNA controls for the standardisation of gene expression biomarker measurements.

    PubMed

    Devonshire, Alison S; Elaswarapu, Ramnath; Foy, Carole A

    2010-11-24

    Gene expression profiling is an important approach for detecting diagnostic and prognostic biomarkers, and predicting drug safety. The development of a wide range of technologies and platforms for measuring mRNA expression makes the evaluation and standardization of transcriptomic data problematic due to differences in protocols, data processing and analysis methods. Thus, universal RNA standards, such as those developed by the External RNA Controls Consortium (ERCC), are proposed to aid validation of research findings from diverse platforms such as microarrays and RT-qPCR, and play a role in quality control (QC) processes as transcriptomic profiling becomes more commonplace in the clinical setting. Panels of ERCC RNA standards were constructed in order to test the utility of these reference materials (RMs) for performance characterization of two selected gene expression platforms, and for discrimination of biomarker profiles between groups. The linear range, limits of detection and reproducibility of microarray and RT-qPCR measurements were evaluated using panels of RNA standards. Transcripts of low abundance (≤ 10 copies/ng total RNA) showed more than double the technical variability compared to higher copy number transcripts on both platforms. Microarray profiling of two simulated 'normal' and 'disease' panels, each consisting of eight different RNA standards, yielded robust discrimination between the panels and between standards with varying fold change ratios, showing no systematic effects due to different labelling and hybridization runs. Also, comparison of microarray and RT-qPCR data for fold changes showed agreement for the two platforms. ERCC RNA standards provide a generic means of evaluating different aspects of platform performance, and can provide information on the technical variation associated with quantification of biomarkers expressed at different levels of physiological abundance. Distinct panels of standards serve as an ideal quality control tool kit for determining the accuracy of fold change cut-off threshold and the impact of experimentally-derived noise on the discrimination of normal and disease profiles.

  9. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  10. Gene expression profiles of Aspergillus flavus isolates responding to oxidative stress in different culture media

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of peanut by Aspergillus flavus is exacerbated by drought stress. Drought also stimulates the production of reactive oxygen species (ROS) in plant tissues implying a correlation between ROS and aflatoxin production. Here, we performed gene expression analysis by RNAseq of tox...

  11. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  12. Generation of novel pharmacogenomic candidates in the response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype

    PubMed Central

    Moncrieffe, Halima; Hinks, Anne; Ursu, Simona; Kassoumeri, Laura; Etheridge, Angela; Hubank, Mike; Martin, Paul; Weiler, Tracey; Glass, David N; Thompson, Susan D.; Thomson, Wendy; Wedderburn, Lucy R

    2010-01-01

    Objectives Little is known about mechanisms of efficacy of methotrexate (MTX) in childhood arthritis, or genetic influences upon response to MTX. The aims of this study were to use gene expression profiling to identify novel pathways/genes altered by MTX and then investigate these genes for genotype associations with response to MTX treatment. Methods Gene expression profiling before and after MTX treatment was performed on 11 children with juvenile idiopathic arthritis (JIA) treated with MTX, in whom response at 6 months of treatment was defined. Genes showing the most differential gene expression after treatment were selected for SNP genotyping. Genotype frequencies were compared between non-responders and responders (ACR-Ped70). An independent cohort was available for validation. Results Gene expression profiling before and after MTX treatment revealed 1222 differentially expressed probes sets (fold change >1.7, p< 0.05) and 1065 when restricted to full responder cases only. Six highly differentially expressed genes were analysed for genetic association to response to MTX. Three SNPs in the SLC16A7 gene showed significant association with MTX response. One SNP showed validated association in an independent cohort. Conclusions This study is the first, to our knowledge, to evaluate gene expression profiles in children with JIA before and after MTX, and to analyse genetic variation in differentially expressed genes. We have identified a gene which may contribute to genetic variability in MTX response in JIA, and established as proof of principle that genes which are differentially expressed at mRNA level after drug administration may also be good candidates for genetic analysis. PMID:20827233

  13. Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.

    PubMed

    Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P

    Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  14. Dissecting modes of action of non-genotoxic carcinogens in primary mouse hepatocytes.

    PubMed

    Schaap, Mirjam M; Zwart, Edwin P; Wackers, Paul F K; Huijskens, Ilse; van de Water, Bob; Breit, Timo M; van Steeg, Harry; Jonker, Martijs J; Luijten, Mirjam

    2012-11-01

    Under REACH, the European Community Regulation on chemicals, the testing strategy for carcinogenicity is based on in vitro and in vivo genotoxicity assays. Given that non-genotoxic carcinogens are negative for genotoxicity and chronic bioassays are no longer regularly performed, this class of carcinogens will go undetected. Therefore, test systems detecting non-genotoxic carcinogens, or even better their modes of action, are required. Here, we investigated whether gene expression profiling in primary hepatocytes can be used to distinguish different modes of action of non-genotoxic carcinogens. For this, primary mouse hepatocytes were exposed to 16 non-genotoxic carcinogens with diverse modes of action. Upon profiling, pathway analysis was performed to obtain insight into the biological relevance of the observed changes in gene expression. Subsequently, both a supervised and an unsupervised comparison approach were applied to recognize the modes of action at the transcriptomic level. These analyses resulted in the detection of three of eight compound classes, that is, peroxisome proliferators, metalloids and skin tumor promotors. In conclusion, gene expression profiles in primary hepatocytes, at least in rodent hepatocytes, appear to be useful to detect some, certainly not all, modes of action of non-genotoxic carcinogens.

  15. Gene expression profiles in peripheral blood mononuclear cells of Chinese nickel refinery workers with high exposures to nickel and control subjects

    PubMed Central

    Arita, Adriana; Muñoz, Alexandra; Chervona, Yana; Niu, Jingping; Qu, Qingshan; Zhao, Najuan; Ruan, Ye; Kiok, Kathrin; Kluz, Thomas; Sun, Hong; Clancy, Hailey A.; Shamy, Magdy; Costa, Max

    2012-01-01

    Background Occupational exposure to nickel (Ni) is associated with an increased risk of lung and nasal cancers. Ni compounds exhibit weak mutagenic activity, alter the cell’s epigenetic homeostasis, and activate signaling pathways. However, changes in gene expression associated with Ni exposure have only been investigated in vitro. This study was conducted in a Chinese population to determine whether occupational exposure to Ni was associated with differential gene expression profiles in the peripheral blood mononuclear cells (PBMCs) of Ni-refinery workers when compared to referents. Methods Eight Ni-refinery workers and ten referents were selected. PBMC RNA was extracted and gene expression profiling was performed using Affymetrix exon arrays. Differentially expressed genes between both groups were identified in a global analysis. Results There were a total of 2756 differentially expressed genes (DEG) in the Ni-refinery workers relative to the control subjects (FDR adjusted p<0.05) with 770 up-regulated genes and 1986 down-regulated genes. DNA repair and epigenetic genes were significantly overrepresented (p< 0.0002) among the DEG. Of 31 DNA repair genes, 29 were repressed in the high exposure group and two were overexpressed. Of the 16 epigenetic genes 12 were repressed in the high exposure group and 4 were overexpressed. Conclusions The results of this study indicate that occupational exposure to Ni is associated with alterations in gene expression profiles in PBMCs of subjects. Impact Gene expression may be useful in identifying patterns of deregulation that precede clinical identification of Ni-induced cancers. PMID:23195993

  16. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landmark-Hoyvik, Hege, E-mail: hblandma@rr-research.n; Institute for Clinical Medicine, University of Oslo, Oslo; Dumeaux, Vanessa

    2011-03-01

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0more » and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-{beta}1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-{beta}1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.« less

  17. Gene Expression Signatures Based on Variability can Robustly Predict Tumor Progression and Prognosis

    PubMed Central

    Dinalankara, Wikum; Bravo, Héctor Corrada

    2015-01-01

    Gene expression signatures are commonly used to create cancer prognosis and diagnosis methods, yet only a small number of them are successfully deployed in the clinic since many fail to replicate performance on subsequent validation. A primary reason for this lack of reproducibility is the fact that these signatures attempt to model the highly variable and unstable genomic behavior of cancer. Our group recently introduced gene expression anti-profiles as a robust methodology to derive gene expression signatures based on the observation that while gene expression measurements are highly heterogeneous across tumors of a specific cancer type relative to the normal tissue, their degree of deviation from normal tissue expression in specific genes involved in tissue differentiation is a stable tumor mark that is reproducible across experiments and cancer types. Here we show that constructing gene expression signatures based on variability and the anti-profile approach yields classifiers capable of successfully distinguishing benign growths from cancerous growths based on deviation from normal expression. We then show that this same approach generates stable and reproducible signatures that predict probability of relapse and survival based on tumor gene expression. These results suggest that using the anti-profile framework for the discovery of genomic signatures is an avenue leading to the development of reproducible signatures suitable for adoption in clinical settings. PMID:26078586

  18. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes

    PubMed Central

    Shvedova, Anna A.; Yanamala, Naveena; Kisin, Elena R.; Khailullin, Timur O.; Birch, M. Eileen; Fatkhutdinova, Liliya M.

    2016-01-01

    Background As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. Methods In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. Results Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. Conclusion This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and miRNAs as prognostic markers of MWCNT exposures in humans. PMID:26930275

  19. Serum miRNAs Signature Plays an Important Role in Keloid Disease.

    PubMed

    Luan, Y; Liu, Y; Liu, C; Lin, Q; He, F; Dong, X; Xiao, Z

    2016-01-01

    The molecular mechanism underlying the pathogenesis of keloid is largely unknown. MicroRNA (miRNA) is a class of small regulatory RNA that has emerged as a group of posttranscriptional gene repressors, participating in diverse pathophysiological processes of skin diseases. We investigated the expression profiles of miRNAs in the sera of patients to decipher the complicated factors involved in the development of keloid disease. MiRNA expression profiling in the sera from 9 keloid patients and 7 normal controls were characterized using a miRNA microarray containing established human mature and precursor miRNA sequences. Quantitative real-time PCR was performed to confirm the expression of miRNAs. The putative targets of differentially expressed miRNAs were functionally annotated by bioinformatics. MiRNA microarray analysis identified 37 differentially expressed miRNAs (17 upregulated and 20 downregulated) in keloid patients, compared to the healthy controls. Functional annotations revealed that the targets of those differentially expressed miRNAs were enriched in signaling pathways essential for scar formation and wound healing. The expression profiling of miRNAs is altered in the keloid, providing a clue for the molecular mechanisms underlying its initiation and progression. MiRNAs may partly contribute to the etiology of keloids by affecting the critical signaling pathways relevant to keloid pathogenesis.

  20. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    PubMed

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

  1. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope.

    PubMed

    Huang, Yu-Juan; Zhou, Zai-wei; Xu, Miao; Ma, Qing-wen; Yan, Jing-bin; Wang, Jian-yi; Zhang, Quo-qin; Huang, Min; Bao, Liming

    2015-03-01

    Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.

  2. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface.

    PubMed

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-08-25

    Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms.

  3. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    PubMed Central

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  4. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  5. Multi-targeted priming for genome-wide gene expression assays.

    PubMed

    Adomas, Aleksandra B; Lopez-Giraldez, Francesc; Clark, Travis A; Wang, Zheng; Townsend, Jeffrey P

    2010-08-17

    Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.

  6. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  7. Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism.

    PubMed

    Nemenman, Ilya; Escola, G Sean; Hlavacek, William S; Unkefer, Pat J; Unkefer, Clifford J; Wall, Michael E

    2007-12-01

    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For benchmarking purposes, we generate synthetic metabolic profiles based on a well-established model for red blood cell metabolism. A variety of data sets are generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We use ARACNE, a mainstream algorithm for reverse engineering of transcriptional regulatory networks from gene expression data, to predict metabolic interactions from these data sets. We find that the performance of ARACNE on metabolic data is comparable to that on gene expression data.

  8. BeadArray Expression Analysis Using Bioconductor

    PubMed Central

    Ritchie, Matthew E.; Dunning, Mark J.; Smith, Mike L.; Shi, Wei; Lynch, Andy G.

    2011-01-01

    Illumina whole-genome expression BeadArrays are a popular choice in gene profiling studies. Aside from the vendor-provided software tools for analyzing BeadArray expression data (GenomeStudio/BeadStudio), there exists a comprehensive set of open-source analysis tools in the Bioconductor project, many of which have been tailored to exploit the unique properties of this platform. In this article, we explore a number of these software packages and demonstrate how to perform a complete analysis of BeadArray data in various formats. The key steps of importing data, performing quality assessments, preprocessing, and annotation in the common setting of assessing differential expression in designed experiments will be covered. PMID:22144879

  9. Pathway activity inference for multiclass disease classification through a mathematical programming optimisation framework.

    PubMed

    Yang, Lingjian; Ainali, Chrysanthi; Tsoka, Sophia; Papageorgiou, Lazaros G

    2014-12-05

    Applying machine learning methods on microarray gene expression profiles for disease classification problems is a popular method to derive biomarkers, i.e. sets of genes that can predict disease state or outcome. Traditional approaches where expression of genes were treated independently suffer from low prediction accuracy and difficulty of biological interpretation. Current research efforts focus on integrating information on protein interactions through biochemical pathway datasets with expression profiles to propose pathway-based classifiers that can enhance disease diagnosis and prognosis. As most of the pathway activity inference methods in literature are either unsupervised or applied on two-class datasets, there is good scope to address such limitations by proposing novel methodologies. A supervised multiclass pathway activity inference method using optimisation techniques is reported. For each pathway expression dataset, patterns of its constituent genes are summarised into one composite feature, termed pathway activity, and a novel mathematical programming model is proposed to infer this feature as a weighted linear summation of expression of its constituent genes. Gene weights are determined by the optimisation model, in a way that the resulting pathway activity has the optimal discriminative power with regards to disease phenotypes. Classification is then performed on the resulting low-dimensional pathway activity profile. The model was evaluated through a variety of published gene expression profiles that cover different types of disease. We show that not only does it improve classification accuracy, but it can also perform well in multiclass disease datasets, a limitation of other approaches from the literature. Desirable features of the model include the ability to control the maximum number of genes that may participate in determining pathway activity, which may be pre-specified by the user. Overall, this work highlights the potential of building pathway-based multi-phenotype classifiers for accurate disease diagnosis and prognosis problems.

  10. Microarray profiles reveal that circular RNA hsa_circ_0007385 functions as an oncogene in non-small cell lung cancer tumorigenesis.

    PubMed

    Jiang, Ming-Ming; Mai, Zhi-Tao; Wan, Shan-Zhi; Chi, Yu-Min; Zhang, Xin; Sun, Bao-Hua; Di, Qing-Guo

    2018-04-01

    Circular RNAs (circRNAs) are a novel class of non-protein-coding RNA. Emerging evidence indicates that circRNAs participate in the regulation of many pathophysiological processes. This study aims to explore the expression profiles and pathological effects of circRNAs in non-small cell lung cancer (NSCLC). Human circRNAs microarray analysis was performed to screen the expression profile of circRNAs in NSCLC tissue. Expressions of circRNA and miRNA in NSCLC tissues and cells were quantified by qRTPCR. Functional experiments were performed to investigate the biological functions of circRNA, including CCK-8 assay, colony formation assay, transwell assay and xenograft in vivo assay. Human circRNAs microarray revealed a total 957 abnormally expressed circRNAs (> twofold, P < 0.05) in NSCLC tissue compared with adjacent normal tissue. In further studies, hsa_circ_0007385 was significantly up regulated in NSCLC tissue and cells. In vitro experiments with hsa_circ_0007385 knockdown resulted in significant suppression of the proliferation, migration and invasion of NSCLC cells. In vivo xenograft assay using hsa_circ_0007385 knockdown, significantly reduced tumor growth. Bioinformatics analysis and luciferase reporter assay verified the potential target miR-181, suggesting a possible regulatory pathway for hsa_circ_0007385. In summary, results suggest hsa_circ_0007385 plays a role in NSCLC tumorigenesis, providing a potential therapeutic target for NSCLC.

  11. Quality Assurance of RNA Expression Profiling in Clinical Laboratories

    PubMed Central

    Tang, Weihua; Hu, Zhiyuan; Muallem, Hind; Gulley, Margaret L.

    2012-01-01

    RNA expression profiles are increasingly used to diagnose and classify disease, based on expression patterns of as many as several thousand RNAs. To ensure quality of expression profiling services in clinical settings, a standard operating procedure incorporates multiple quality indicators and controls, beginning with preanalytic specimen preparation and proceeding thorough analysis, interpretation, and reporting. Before testing, histopathological examination of each cellular specimen, along with optional cell enrichment procedures, ensures adequacy of the input tissue. Other tactics include endogenous controls to evaluate adequacy of RNA and exogenous or spiked controls to evaluate run- and patient-specific performance of the test system, respectively. Unique aspects of quality assurance for array-based tests include controls for the pertinent outcome signatures that often supersede controls for each individual analyte, built-in redundancy for critical analytes or biochemical pathways, and software-supported scrutiny of abundant data by a laboratory physician who interprets the findings in a manner facilitating appropriate medical intervention. Access to high-quality reagents, instruments, and software from commercial sources promotes standardization and adoption in clinical settings, once an assay is vetted in validation studies as being analytically sound and clinically useful. Careful attention to the well-honed principles of laboratory medicine, along with guidance from government and professional groups on strategies to preserve RNA and manage large data sets, promotes clinical-grade assay performance. PMID:22020152

  12. Differential gene expression related to Nora virus infection of Drosophila melanogaster

    PubMed Central

    Cordes, Ethan J.; Licking-Murray, Kellie D; Carlson, Kimberly A.

    2013-01-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. PMID:23603562

  13. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  14. Single-cell genomic profiling of acute myeloid leukemia for clinical use: A pilot study

    PubMed Central

    Yan, Benedict; Hu, Yongli; Ban, Kenneth H.K.; Tiang, Zenia; Ng, Christopher; Lee, Joanne; Tan, Wilson; Chiu, Lily; Tan, Tin Wee; Seah, Elaine; Ng, Chin Hin; Chng, Wee-Joo; Foo, Roger

    2017-01-01

    Although bulk high-throughput genomic profiling studies have led to a significant increase in the understanding of cancer biology, there is increasing awareness that bulk profiling approaches do not completely elucidate tumor heterogeneity. Single-cell genomic profiling enables the distinction of tumor heterogeneity, and may improve clinical diagnosis through the identification and characterization of putative subclonal populations. In the present study, the challenges associated with a single-cell genomics profiling workflow for clinical diagnostics were investigated. Single-cell RNA-sequencing (RNA-seq) was performed on 20 cells from an acute myeloid leukemia bone marrow sample. Putative blasts were identified based on their gene expression profiles and principal component analysis was performed to identify outlier cells. Variant calling was performed on the single-cell RNA-seq data. The present pilot study demonstrates a proof of concept for clinical single-cell genomic profiling. The recognized limitations include significant stochastic RNA loss and the relatively low throughput of the current proposed platform. Although the results of the present study are promising, further technological advances and protocol optimization are necessary for single-cell genomic profiling to be clinically viable. PMID:28454300

  15. Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches.

    PubMed

    Oh, Sunghee; Song, Seongho

    2017-01-01

    In gene expression profile, data analysis pipeline is categorized into four levels, major downstream tasks, i.e., (1) identification of differential expression; (2) clustering co-expression patterns; (3) classification of subtypes of samples; and (4) detection of genetic regulatory networks, are performed posterior to preprocessing procedure such as normalization techniques. To be more specific, temporal dynamic gene expression data has its inherent feature, namely, two neighboring time points (previous and current state) are highly correlated with each other, compared to static expression data which samples are assumed as independent individuals. In this chapter, we demonstrate how HMMs and hierarchical Bayesian modeling methods capture the horizontal time dependency structures in time series expression profiles by focusing on the identification of differential expression. In addition, those differential expression genes and transcript variant isoforms over time detected in core prerequisite steps can be generally further applied in detection of genetic regulatory networks to comprehensively uncover dynamic repertoires in the aspects of system biology as the coupled framework.

  16. Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma

    PubMed Central

    De Giorgi, Valeria; Monaco, Alessandro; Worchech, Andrea; Tornesello, MariaLina; Izzo, Francesco; Buonaguro, Luigi; Marincola, Francesco M; Wang, Ena; Buonaguro, Franco M

    2009-01-01

    Background Hepatitis C virus (HCV) infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The molecular mechanisms of HCV-induced hepatocarcinogenesis are not yet fully elucidated. Besides indirect effects as tissue inflammation and regeneration, a more direct oncogenic activity of HCV can be postulated leading to an altered expression of cellular genes by early HCV viral proteins. In the present study, a comparison of gene expression patterns has been performed by microarray analysis on liver biopsies from HCV-positive HCC patients and HCV-negative controls. Methods Gene expression profiling of liver tissues has been performed using a high-density microarray containing 36'000 oligos, representing 90% of the human genes. Samples were obtained from 14 patients affected by HCV-related HCC and 7 HCV-negative non-liver-cancer patients, enrolled at INT in Naples. Transcriptional profiles identified in liver biopsies from HCC nodules and paired non-adjacent non-HCC liver tissue of the same HCV-positive patients were compared to those from HCV-negative controls by the Cluster program. The pathway analysis was performed using the BRB-Array- Tools based on the "Ingenuity System Database". Significance threshold of t-test was set at 0.001. Results Significant differences were found between the expression patterns of several genes falling into different metabolic and inflammation/immunity pathways in HCV-related HCC tissues as well as the non-HCC counterpart compared to normal liver tissues. Only few genes were found differentially expressed between HCV-related HCC tissues and paired non-HCC counterpart. Conclusion In this study, informative data on the global gene expression pattern of HCV-related HCC and non-HCC counterpart, as well as on their difference with the one observed in normal liver tissues have been obtained. These results may lead to the identification of specific biomarkers relevant to develop tools for detection, diagnosis, and classification of HCV-related HCC. PMID:19821982

  17. Global Gene Expression Profiling in Omental Adipose Tissue of Morbidly Obese Diabetic African Americans.

    PubMed

    Doumatey, Ayo P; Xu, Huichun; Huang, Hanxia; Trivedi, Niraj S; Lei, Lin; Elkahloun, Abdel; Adeyemo, Adebowale; Rotimi, Charles N

    2015-06-01

    Adipose tissues play important role in the pathophysiology of obesity-related diseases including type 2 diabetes (T2D). To describe gene expression patterns and functional pathways in obesity-related T2D, we performed global transcript profiling of omental adipose tissue (OAT) in morbidly obese individuals with or without T2D. Twenty morbidly obese (mean BMI: about 54 kg/m 2 ) subjects were studied, including 14 morbidly obese individuals with T2D (cases) and 6 morbidly obese individuals without T2D (reference group). Gene expression profiling was performed using the Affymetrix U133 Plus 2.0 human genome expression array. Analysis of covariance was performed to identify differentially expressed genes (DEGs). Bioinformatics tools including PANTHER and Ingenuity Pathway Analysis (IPA) were applied to the DEGs to determine biological functions, networks and canonical pathways that were overrepresented in these individuals. At an absolute fold-change threshold of 2 and false discovery rate (FDR) < 0.05, 68 DEGs were identified in cases compared to the reference group. Myosin X (MYO10) and transforming growth factor beta regulator 1 (TBRG1) were upregulated. MYO10 encodes for an actin-based motor protein that has been associated with T2D. Telomere extension by telomerase ( HNRNPA1, TNKS2 ), D-myo-inositol (1, 4, 5)-trisphosphate biosynthesis (PIP5K1A, PIP4K2A), and regulation of actin-based motility by Rho (ARPC3) were the most significant canonical pathways and overlay with T2D signaling pathway. Upstream regulator analysis predicted 5 miRNAs (miR-320b, miR-381-3p, miR-3679-3p, miR-494-3p, and miR-141-3p,) as regulators of the expression changes identified. This study identified a number of transcripts and miRNAs in OAT as candidate novel players in the pathophysiology of T2D in African Americans.

  18. Differential gene expression profiling of endometrium during the mid-luteal phase of the estrous cycle between a repeat breeder (RB) and non-RB cows.

    PubMed

    Hayashi, Ken-Go; Hosoe, Misa; Kizaki, Keiichiro; Fujii, Shiori; Kanahara, Hiroko; Takahashi, Toru; Sakumoto, Ryosuke

    2017-03-23

    Repeat breeding directly affects reproductive efficiency in cattle due to an increase in services per conception and calving interval. This study aimed to investigate whether changes in endometrial gene expression profile are involved in repeat breeding in cows. Differential gene expression profiles of the endometrium were investigated during the mid-luteal phase of the estrous cycle between repeat breeder (RB) and non-RB cows using microarray analysis. The caruncular (CAR) and intercaruncular (ICAR) endometrium of both ipsilateral and contralateral uterine horns to the corpus luteum were collected from RB (inseminated at least three times but not pregnant) and non-RB cows on Day 15 of the estrous cycle (4 cows/group). Global gene expression profiles of these endometrial samples were analyzed with a 15 K custom-made oligo-microarray for cattle. Immunohistochemistry was performed to investigate the cellular localization of proteins of three identified transcripts in the endometrium. Microarray analysis revealed that 405 and 397 genes were differentially expressed in the CAR and ICAR of the ipsilateral uterine horn of RB, respectively when compared with non-RB cows. In the contralateral uterine horn, 443 and 257 differentially expressed genes were identified in the CAR and ICAR of RB, respectively when compared with non-RB cows. Gene ontology analysis revealed that genes involved in development and morphogenesis were mainly up-regulated in the CAR of RB cows. In the ICAR of both the ipsilateral and contralateral uterine horns, genes related to the metabolic process were predominantly enriched in the RB cows when compared with non-RB cows. In the analysis of the whole uterus (combining the data above four endometrial compartments), RB cows showed up-regulation of 37 genes including PRSS2, GSTA3 and PIPOX and down-regulation of 39 genes including CHGA, KRT35 and THBS4 when compared with non-RB cows. Immunohistochemistry revealed that CHGA, GSTA3 and PRSS2 proteins were localized in luminal and glandular epithelial cells and stroma of the endometrium. The present study showed that endometrial gene expression profiles are different between RB and non-RB cows. The identified candidate endometrial genes and functions in each endometrial compartment may contribute to bovine reproductive performance.

  19. Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng

    2016-01-01

    Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509

  20. Comparative Transcriptional Profiling of the Axolotl Limb Identifies a Tripartite Regeneration-Specific Gene Program

    PubMed Central

    Knapp, Dunja; Schulz, Herbert; Rascon, Cynthia Alexander; Volkmer, Michael; Scholz, Juliane; Nacu, Eugen; Le, Mu; Novozhilov, Sergey; Tazaki, Akira; Protze, Stephanie; Jacob, Tina; Hubner, Norbert; Habermann, Bianca; Tanaka, Elly M.

    2013-01-01

    Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression – early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation. PMID:23658691

  1. The chemiluminescence based Ziplex automated workstation focus array reproduces ovarian cancer Affymetrix GeneChip expression profiles.

    PubMed

    Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N

    2009-07-06

    As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.

  2. Profound Effect of Profiling Platform and Normalization Strategy on Detection of Differentially Expressed MicroRNAs – A Comparative Study

    PubMed Central

    Meyer, Swanhild U.; Kaiser, Sebastian; Wagner, Carola; Thirion, Christian; Pfaffl, Michael W.

    2012-01-01

    Background Adequate normalization minimizes the effects of systematic technical variations and is a prerequisite for getting meaningful biological changes. However, there is inconsistency about miRNA normalization performances and recommendations. Thus, we investigated the impact of seven different normalization methods (reference gene index, global geometric mean, quantile, invariant selection, loess, loessM, and generalized procrustes analysis) on intra- and inter-platform performance of two distinct and commonly used miRNA profiling platforms. Methodology/Principal Findings We included data from miRNA profiling analyses derived from a hybridization-based platform (Agilent Technologies) and an RT-qPCR platform (Applied Biosystems). Furthermore, we validated a subset of miRNAs by individual RT-qPCR assays. Our analyses incorporated data from the effect of differentiation and tumor necrosis factor alpha treatment on primary human skeletal muscle cells and a murine skeletal muscle cell line. Distinct normalization methods differed in their impact on (i) standard deviations, (ii) the area under the receiver operating characteristic (ROC) curve, (iii) the similarity of differential expression. Loess, loessM, and quantile analysis were most effective in minimizing standard deviations on the Agilent and TLDA platform. Moreover, loess, loessM, invariant selection and generalized procrustes analysis increased the area under the ROC curve, a measure for the statistical performance of a test. The Jaccard index revealed that inter-platform concordance of differential expression tended to be increased by loess, loessM, quantile, and GPA normalization of AGL and TLDA data as well as RGI normalization of TLDA data. Conclusions/Significance We recommend the application of loess, or loessM, and GPA normalization for miRNA Agilent arrays and qPCR cards as these normalization approaches showed to (i) effectively reduce standard deviations, (ii) increase sensitivity and accuracy of differential miRNA expression detection as well as (iii) increase inter-platform concordance. Results showed the successful adoption of loessM and generalized procrustes analysis to one-color miRNA profiling experiments. PMID:22723911

  3. [Differentially expressed genes of cell signal transduction associated with benzene poisoning by cDNA microarray].

    PubMed

    Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong

    2005-08-01

    To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.

  4. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    NASA Astrophysics Data System (ADS)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  5. Language and affective facial expression in children with perinatal stroke.

    PubMed

    Lai, Philip T; Reilly, Judy S

    2015-08-01

    Children with perinatal stroke (PS) provide a unique opportunity to understand developing brain-behavior relations. Previous research has noted distinctive differences in behavioral sequelae between children with PS and adults with acquired stroke: children fare better, presumably due to the plasticity of the developing brain for adaptive reorganization. Whereas we are beginning to understand language development, we know little about another communicative domain, emotional expression. The current study investigates the use and integration of language and facial expression during an interview. As anticipated, the language performance of the five and six year old PS group is comparable to their typically developing (TD) peers, however, their affective profiles are distinctive: those with right hemisphere injury are less expressive with respect to affective language and affective facial expression than either those with left hemisphere injury or TD group. The two distinctive profiles for language and emotional expression in these children suggest gradients of neuroplasticity in the developing brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    PubMed

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluation of commercially available small RNASeq library preparation kits using low input RNA.

    PubMed

    Yeri, Ashish; Courtright, Amanda; Danielson, Kirsty; Hutchins, Elizabeth; Alsop, Eric; Carlson, Elizabeth; Hsieh, Michael; Ziegler, Olivia; Das, Avash; Shah, Ravi V; Rozowsky, Joel; Das, Saumya; Van Keuren-Jensen, Kendall

    2018-05-05

    Evolving interest in comprehensively profiling the full range of small RNAs present in small tissue biopsies and in circulating biofluids, and how the profile differs with disease, has launched small RNA sequencing (RNASeq) into more frequent use. However, known biases associated with small RNASeq, compounded by low RNA inputs, have been both a significant concern and a hurdle to widespread adoption. As RNASeq is becoming a viable choice for the discovery of small RNAs in low input samples and more labs are employing it, there should be benchmark datasets to test and evaluate the performance of new sequencing protocols and operators. In a recent publication from the National Institute of Standards and Technology, Pine et al., 2018, the investigators used a commercially available set of three tissues and tested performance across labs and platforms. In this paper, we further tested the performance of low RNA input in three commonly used and commercially available RNASeq library preparation kits; NEB Next, NEXTFlex, and TruSeq small RNA library preparation. We evaluated the performance of the kits at two different sites, using three different tissues (brain, liver, and placenta) with high (1 μg) and low RNA (10 ng) input from tissue samples, or 5.0, 3.0, 2.0, 1.0, 0.5, and 0.2 ml starting volumes of plasma. As there has been a lack of robust validation platforms for differentially expressed miRNAs, we also compared low input RNASeq data with their expression profiles on three different platforms (Abcam Fireplex, HTG EdgeSeq, and Qiagen miRNome). The concordance of RNASeq results on these three platforms was dependent on the RNA expression level; the higher the expression, the better the reproducibility. The results provide an extensive analysis of small RNASeq kit performance using low RNA input, and replication of these data on three downstream technologies.

  8. Molecular Markers in Patients with Chronic Wounds to Guide Surgical Debridement

    PubMed Central

    Brem, Harold; Stojadinovic, Olivera; Diegelmann, Robert F; Entero, Hyacinth; Lee, Brian; Pastar, Irena; Golinko, Michael; Rosenberg, Harvey; Tomic-Canic, Marjana

    2007-01-01

    Chronic wounds, such as venous ulcers, are characterized by physiological impairments manifested by delays in healing, resulting in severe morbidity. Surgical debridement is routinely performed on chronic wounds because it stimulates healing. However, procedures are repeated many times on the same patient because, in contrast to tumor excision, there are no objective biological/molecular markers to guide the extent of debridement. To develop bioassays that can potentially guide surgical debridement, we assessed the pathogenesis of the patients’ wound tissue before and after wound debridement. We obtained biopsies from three patients at two locations, the nonhealing edge (prior to debridement) and the adjacent, nonulcerated skin of the venous ulcers (post debridement), and evaluated their histology, biological response to wounding (migration) and gene expression profile. We found that biopsies from the nonhealing edges exhibit distinct pathogenic morphology (hyperproliferative/hyperkeratotic epidermis; dermal fibrosis; increased procollagen synthesis). Fibroblasts deriving from this location exhibit impaired migration in comparison to the cells from adjacent nonulcerated biopsies, which exhibit normalization of morphology and normal migration capacity. The nonhealing edges have a specific, identifiable, and reproducible gene expression profile. The adjacent nonulcerated biopsies have their own distinctive reproducible gene expression profile, signifying that particular wound areas can be identified by gene expression profiling. We conclude that chronic ulcers contain distinct subpopulations of cells with different capacity to heal and that gene expression profiling can be utilized to identify them. In the future, molecular markers will be developed to identify the nonimpaired tissue, thereby making surgical debridement more accurate and more efficacious. PMID:17515955

  9. Two-pass imputation algorithm for missing value estimation in gene expression time series.

    PubMed

    Tsiporkova, Elena; Boeva, Veselka

    2007-10-01

    Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.

  10. Blood-Based Gene Expression Profiles Models for Classification of Subsyndromal Symptomatic Depression and Major Depressive Disorder

    PubMed Central

    Yu, Shunying; Yuan, Chengmei; Hong, Wu; Wang, Zuowei; Cui, Jian; Shi, Tieliu; Fang, Yiru

    2012-01-01

    Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and also lead to significant psychosocial functional impairment as same as major depressive disorder (MDD). Several studies have suggested that SSD is a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group). Support vector machines (SVMs) were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (P< = 5.0E-4) and 30 differentially expressed MDD signatures in contrast to control, respectively. Then, 123 gene signatures were identified with significantly differential expression level between SSD and MDD. Secondly, in order to conduct priority selection for biomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome signature with peripheral blood leukocyte, and blood cell–derived RNA of these 48 gene models may have significant value for performing diagnostic functions and classifying SSD, MDD, and healthy controls. PMID:22348066

  11. Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions

    PubMed Central

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest. PMID:25774904

  12. Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions.

    PubMed

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference--ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)--along with two novel candidates--HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.

  13. Comprehensive Profiling of the Androgen Receptor in Liquid Biopsies from Castration-resistant Prostate Cancer Reveals Novel Intra-AR Structural Variation and Splice Variant Expression Patterns.

    PubMed

    De Laere, Bram; van Dam, Pieter-Jan; Whitington, Tom; Mayrhofer, Markus; Diaz, Emanuela Henao; Van den Eynden, Gert; Vandebroek, Jean; Del-Favero, Jurgen; Van Laere, Steven; Dirix, Luc; Grönberg, Henrik; Lindberg, Johan

    2017-08-01

    Expression of the androgen receptor splice variant 7 (AR-V7) is associated with poor response to second-line endocrine therapy in castration-resistant prostate cancer (CRPC). However, a large fraction of nonresponding patients are AR-V7-negative. To investigate if a comprehensive liquid biopsy-based AR profile may improve patient stratification in the context of second-line endocrine therapy. Peripheral blood was collected from patients with CRPC (n=30) before initiation of a new line of systemic therapy. We performed profiling of circulating tumour DNA via low-pass whole-genome sequencing and targeted sequencing of the entire AR gene, including introns. Targeted RNA sequencing was performed on enriched circulating tumour cell fractions to assess the expression levels of seven AR splice variants (ARVs). Somatic AR variations, including copy-number alterations, structural variations, and point mutations, were combined with ARV expression patterns and correlated to clinicopathologic parameters. Collectively, any AR perturbation, including ARV, was detected in 25/30 patients. Surprisingly, intra-AR structural variation was present in 15/30 patients, of whom 14 expressed ARVs. The majority of ARV-positive patients expressed multiple ARVs, with AR-V3 the most abundantly expressed. The presence of any ARV was associated with progression-free survival after second-line endocrine treatment (hazard ratio 4.53, 95% confidence interval 1.424-14.41; p=0.0105). Six out of 17 poor responders were AR-V7-negative, but four carried other AR perturbations. Comprehensive AR profiling, which is feasible using liquid biopsies, is necessary to increase our understanding of the mechanisms underpinning resistance to endocrine treatment. Alterations in the androgen receptor are associated with endocrine treatment outcomes. This study demonstrates that it is possible to identify different types of alterations via simple blood draws. Follow-up studies are needed to determine the effect of such alterations on hormonal therapy. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  14. Characterization and Prediction of Early Reading Abilities in Children on the Autism Spectrum

    PubMed Central

    Davidson, Meghan M.; Weismer, Susan Ellis

    2013-01-01

    Many children with autism spectrum disorder (ASD) have reading profiles characterized by higher decoding skills and lower reading comprehension. This study assessed whether this profile was apparent in young children with ASD and examined concurrent and longitudinal predictors of early reading. A discrepant profile of reading (higher alphabet and lower meaning) was found in 62% of this sample. Concurrent analyses revealed that reading proficiency was associated with higher nonverbal cognition and expressive language, and that social ability was negatively related to alphabet knowledge. Nonverbal cognition and expressive language at mean age 2½ years predicted later reading performance at mean age 5½ years. These results support the importance of early language skills as a foundation for reading in children with ASD. PMID:24022730

  15. Diffusion Profiling via a Histogram Approach Distinguishes Low-grade from High-grade Meningiomas, Can Reflect the Respective Proliferative Potential and Progesterone Receptor Status.

    PubMed

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Garnov, Nikita; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Meyer, Hans Jonas; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-02-01

    Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.

  16. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii)

    PubMed Central

    Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R.; Zhou, Qicun

    2017-01-01

    An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics. PMID:28430821

  17. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii).

    PubMed

    Jin, Min; Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R; Zhou, Qicun

    2017-01-01

    An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics.

  18. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    PubMed

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  19. A transcriptional profile of the decidua in preeclampsia

    PubMed Central

    LØSET, Mari; MUNDAL, Siv B.; JOHNSON, Matthew P.; FENSTAD, Mona H.; FREED, Katherine A.; LIAN, Ingrid A.; EIDE, Irina P.; BJØRGE, Line; BLANGERO, John; MOSES, Eric K.; AUSTGULEN, Rigmor

    2010-01-01

    OBJECTIVE To obtain insight into possible mechanisms underlying preeclampsia using genome-wide transcriptional profiling in decidua basalis. STUDY DESIGN Genome-wide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n = 37) and normal pregnancies (n = 58). Differentially expressed genes were identified and merged into canonical pathways and networks. RESULTS Of the 26,504 expressed transcripts detected, 455 were differentially expressed (P <0.05, FDR P <0.1). Both novel (ARL5B, SLITRK4) and previously reported preeclampsia-associated genes (PLA2G7, HMOX1) were identified. Pathway analysis revealed that ‘tryptophan metabolism’, ‘endoplasmic reticulum stress’, ‘linoleic acid metabolism’, ‘notch signaling’, ‘fatty acid metabolism’, ‘arachidonic acid metabolism’ and ‘NRF2-mediated oxidative stress response’ were overrepresented canonical pathways. CONCLUSION In the present study single genes, canonical pathways and gene-gene networks that are likely to play an important role in the pathogenesis of preeclampsia, have been identified. Future functional studies are needed to accomplish a greater understanding of the mechanisms involved. PMID:20934677

  20. Validation of reference genes aiming accurate normalization of qRT-PCR data in Dendrocalamus latiflorus Munro.

    PubMed

    Liu, Mingying; Jiang, Jing; Han, Xiaojiao; Qiao, Guirong; Zhuo, Renying

    2014-01-01

    Dendrocalamus latiflorus Munro distributes widely in subtropical areas and plays vital roles as valuable natural resources. The transcriptome sequencing for D. latiflorus Munro has been performed and numerous genes especially those predicted to be unique to D. latiflorus Munro were revealed. qRT-PCR has become a feasible approach to uncover gene expression profiling, and the accuracy and reliability of the results obtained depends upon the proper selection of stable reference genes for accurate normalization. Therefore, a set of suitable internal controls should be validated for D. latiflorus Munro. In this report, twelve candidate reference genes were selected and the assessment of gene expression stability was performed in ten tissue samples and four leaf samples from seedlings and anther-regenerated plants of different ploidy. The PCR amplification efficiency was estimated, and the candidate genes were ranked according to their expression stability using three software packages: geNorm, NormFinder and Bestkeeper. GAPDH and EF1α were characterized to be the most stable genes among different tissues or in all the sample pools, while CYP showed low expression stability. RPL3 had the optimal performance among four leaf samples. The application of verified reference genes was illustrated by analyzing ferritin and laccase expression profiles among different experimental sets. The analysis revealed the biological variation in ferritin and laccase transcript expression among the tissues studied and the individual plants. geNorm, NormFinder, and BestKeeper analyses recommended different suitable reference gene(s) for normalization according to the experimental sets. GAPDH and EF1α had the highest expression stability across different tissues and RPL3 for the other sample set. This study emphasizes the importance of validating superior reference genes for qRT-PCR analysis to accurately normalize gene expression of D. latiflorus Munro.

  1. Music psychopathology. II. Assessment of musical expression.

    PubMed

    Steinberg, R; Raith, L

    1985-01-01

    A short polarity profile which was well suited for the assessment of the musical expression of performances recorded from mentally ill patients and controls is described. 9 out of 12 polarities showed sufficient differentiating qualities, ranging from professional to poor amateur performances. Only 3 polarities had to be reformulated. The assessments of the 3 experts had a high interrater reliability and retest stability. The very significant correlation between the results of the experts and 50 independent subjects indicates the validity of the experiment.

  2. Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis

    PubMed Central

    Li, Shang-Wei; Yang, Hong; Liu, Yue-Feng; Liao, Qi-Rong; Du, Juan; Jin, Dao-Chao

    2012-01-01

    Background The rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), is one of the most destructive pests affecting rice in Asia. Although several studies have been performed on the ecological and physiological aspects of this species, the molecular mechanisms underlying its developmental regulation, behavior, and insecticide resistance remain largely unknown. Presently, there is a lack of genomic information for RLF; therefore, studies aimed at profiling the RLF transcriptome expression would provide a better understanding of its biological function at the molecular level. Principal Findings De novo assembly of the RLF transcriptome was performed via the short read sequencing technology (Illumina). In a single run, we produced more than 23 million sequencing reads that were assembled into 44,941 unigenes (mean size = 474 bp) by Trinity. Through a similarity search, 25,281 (56.82%) unigenes matched known proteins in the NCBI Nr protein database. The transcriptome sequences were annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). Additionally, we profiled gene expression during RLF development using a tag-based digital gene expression (DGE) system. Five DGE libraries were constructed, and variations in gene expression were compared between collected samples: eggs vs. 3rd instar larvae, 3rd instar larvae vs. pupae, pupae vs. adults. The results demonstrated that thousands of genes were significantly differentially expressed during various developmental stages. A number of the differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The RLF transcriptome and DGE data provide a comprehensive and global gene expression profile that would further promote our understanding of the molecular mechanisms underlying various biological characteristics, including development, elevated fecundity, flight, sex differentiation, olfactory behavior, and insecticide resistance in RLF. Therefore, these findings could help elucidate the intrinsic factors involved in the RLF-mediated destruction of rice and offer sustainable insect pest management. PMID:23185238

  3. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression.

    PubMed

    Nilsson, Emil K; Boström, Adrian E; Mwinyi, Jessica; Schiöth, Helgi B

    2016-06-01

    Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.

  4. CLUSFAVOR 5.0: hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles

    PubMed Central

    Peterson, Leif E

    2002-01-01

    CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816

  5. High-throughput deep screening and identification of four peripheral leucocyte microRNAs as novel potential combination biomarkers for preeclampsia

    PubMed Central

    Wang, Yonghong; Yang, Xukui; Yang, Yuanyuan; Wang, Wenjun; Zhao, Meiling; Liu, Huiqiang; Li, Dongyan; Hao, Min

    2016-01-01

    Objective: To identify the specific microRNA (miRNA) biomarkers of preeclampsia (PE), the miRNA profiles analysis were performed. Study Design: The blood samples were obtained from five PE patients and five normal healthy pregnant women. The small RNA profiles were analyzed to identify miRNA expression levels and find out miRNAs that may associate with PE. The quantitative reverse transcriptase–PCR (qRT-PCR) assay was used to validate differentially expressed peripheral leucocyte miRNAs in a new cohort. Result: The data analysis showed that 10 peripheral leucocyte miRNAs were significantly differently expressed in severe PE patients. Four differently expressed miRNAs were successfully validated using qRT-PCR method. Conclusion: We successfully constructed a model with high accuracy to predict PE. A combination of four peripheral leucocyte miRNAs has great potential to serve as diagnostic biomarkers of PE. PMID:26675000

  6. A Gene Expression Profile of BRCAness that Predicts for Responsiveness to Platinum and PARP Inhibitors

    DTIC Science & Technology

    2013-08-01

    like ( NBL ) corresponding to tumors predicted to have a BRCAness phenotype (BL tumors) or not ( NBL tumors). In the previous years we performed a...TCGA EOC project that have been characterized as BL or NBL by our profile to identify 3 candidate miRNAs (let-7f-2*, miR-744*, miR-342-5p) that may be

  7. Transcriptome Profiling of Bovine Milk Oligosaccharide Metabolism Genes Using RNA-Sequencing

    PubMed Central

    Wickramasinghe, Saumya; Hua, Serenus; Rincon, Gonzalo; Islas-Trejo, Alma; German, J. Bruce; Lebrilla, Carlito B.; Medrano, Juan F.

    2011-01-01

    This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk. PMID:21541029

  8. Early gene expression profiles of patients with chronic hepatitis C treated with pegylated interferon-alfa and ribavirin.

    PubMed

    Younossi, Zobair M; Baranova, Ancha; Afendy, Arian; Collantes, Rochelle; Stepanova, Maria; Manyam, Ganiraju; Bakshi, Anita; Sigua, Christopher L; Chan, Joanne P; Iverson, Ayuko A; Santini, Christopher D; Chang, Sheng-Yung P

    2009-03-01

    Responsiveness to hepatitis C virus (HCV) therapy depends on viral and host factors. Our aim was to assess sustained virologic response (SVR)-associated early gene expression in patients with HCV receiving pegylated interferon-alpha2a (PEG-IFN-alpha2a) or PEG-IFN-alpha2b and ribavirin with the duration based on genotypes. Blood samples were collected into PAXgene tubes prior to treatment as well as 1, 7, 28, and 56 days after treatment. From the peripheral blood cells, total RNA was extracted, quantified, and used for one-step reverse transcription polymerase chain reaction to profile 154 messenger RNAs. Expression levels of messenger RNAs were normalized with six "housekeeping" genes and a reference RNA. Multiple regression and stepwise selection were performed to assess differences in gene expression at different time points, and predictive performance was evaluated for each model. A total of 68 patients were enrolled in the study and treated with combination therapy. The results of gene expression showed that SVR could be predicted by the gene expression of signal transducer and activator of transcription-6 (STAT-6) and suppressor of cytokine signaling-1 in the pretreatment samples. After 24 hours, SVR was predicted by the expression of interferon-dependent genes, and this dependence continued to be prominent throughout the treatment. Early gene expression during anti-HCV therapy may elucidate important molecular pathways that may be influencing the probability of achieving virologic response.

  9. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiac allograft gene expression profiling test... Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a) Identification. A cardiac allograft gene expression profiling test system is a device that measures the...

  10. Integrative Analysis of miRNA and mRNA Profiles in Response to Ethylene in Rose Petals during Flower Opening

    PubMed Central

    Pei, Haixia; Ma, Nan; Chen, Jiwei; Zheng, Yi; Tian, Ji; Li, Jing; Zhang, Shuai; Fei, Zhangjun; Gao, Junping

    2013-01-01

    MicroRNAs play an important role in plant development and plant responses to various biotic and abiotic stimuli. As one of the most important ornamental crops, rose (Rosa hybrida) possesses several specific morphological and physiological features, including recurrent flowering, highly divergent flower shapes, colors and volatiles. Ethylene plays an important role in regulating petal cell expansion during rose flower opening. Here, we report the population and expression profiles of miRNAs in rose petals during flower opening and in response to ethylene based on high throughput sequencing. We identified a total of 33 conserved miRNAs, as well as 47 putative novel miRNAs were identified from rose petals. The conserved and novel targets to those miRNAs were predicted using the rose floral transcriptome database. Expression profiling revealed that expression of 28 known (84.8% of known miRNAs) and 39 novel (83.0% of novel miRNAs) miRNAs was substantially changed in rose petals during the earlier opening period. We also found that 28 known and 22 novel miRNAs showed expression changes in response to ethylene treatment. Furthermore, we performed integrative analysis of expression profiles of miRNAs and their targets. We found that ethylene-caused expression changes of five miRNAs (miR156, miR164, miR166, miR5139 and rhy-miRC1) were inversely correlated to those of their seven target genes. These results indicate that these miRNA/target modules might be regulated by ethylene and were involved in ethylene-regulated petal growth. PMID:23696879

  11. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis.

    PubMed

    Wang, Wenyu; Liu, Yang; Hao, Jingcan; Zheng, Shuyu; Wen, Yan; Xiao, Xiao; He, Awen; Fan, Qianrui; Zhang, Feng; Liu, Ruiyu

    2016-10-10

    Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Seasonal Changes in Bacterial and Archaeal Gene Expression Patterns across Salinity Gradients in the Columbia River Coastal Margin

    PubMed Central

    Smith, Maria W.; Herfort, Lydie; Tyrol, Kaitlin; Suciu, Dominic; Campbell, Victoria; Crump, Byron C.; Peterson, Tawnya D.; Zuber, Peter; Baptista, Antonio M.; Simon, Holly M.

    2010-01-01

    Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April) and late summer (August). Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean) relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition. Furthermore, our results suggest that highly-active particle-attached microbiota in the Columbia River water column may perform dissimilatory nitrate reduction (both dentrification and DNRA) within anoxic particle microniches. PMID:20967204

  13. The Role of Vitamin D in the Transcriptional Program of Human Pregnancy

    PubMed Central

    Al-Garawi, Amal; Carey, Vincent J.; Chhabra, Divya; Morrow, Jarrett; Lasky-Su, Jessica; Qiu, Weiliang; Laranjo, Nancy; Litonjua, Augusto A.; Weiss, Scott T.

    2016-01-01

    Background Patterns of gene expression of human pregnancy are poorly understood. In a trial of vitamin D supplementation in pregnant women, peripheral blood transcriptomes were measured longitudinally on 30 women and used to characterize gene co-expression networks. Objective Studies suggest that increased maternal Vitamin D levels may reduce the risk of asthma in early life, yet the underlying mechanisms have not been examined. In this study, we used a network-based approach to examine changes in gene expression profiles during the course of normal pregnancy and evaluated their association with maternal Vitamin D levels. Design The VDAART study is a randomized clinical trial of vitamin D supplementation in pregnancy for reduction of pediatric asthma risk. The trial enrolled 881 women at 10–18 weeks of gestation. Longitudinal gene expression measures were obtained on thirty pregnant women, using RNA isolated from peripheral blood samples obtained in the first and third trimesters. Differentially expressed genes were identified using significance of analysis of microarrays (SAM), and clustered using a weighted gene co-expression network analysis (WGCNA). Gene-set enrichment was performed to identify major biological pathways. Results Comparison of transcriptional profiles between first and third trimesters of pregnancy identified 5839 significantly differentially expressed genes (FDR<0.05). Weighted gene co-expression network analysis clustered these transcripts into 14 co-expression modules of which two showed significant correlation with maternal vitamin D levels. Pathway analysis of these two modules revealed genes enriched in immune defense pathways and extracellular matrix reorganization as well as genes enriched in notch signaling and transcription factor networks. Conclusion Our data show that gene expression profiles of healthy pregnant women change during the course of pregnancy and suggest that maternal Vitamin D levels influence transcriptional profiles. These alterations of the maternal transcriptome may contribute to fetal immune imprinting and reduce allergic sensitization in early life. Trial Registration clinicaltrials.gov NCT00920621 PMID:27711190

  14. A Practical Platform for Blood Biomarker Study by Using Global Gene Expression Profiling of Peripheral Whole Blood

    PubMed Central

    Schmid, Patrick; Yao, Hui; Galdzicki, Michal; Berger, Bonnie; Wu, Erxi; Kohane, Isaac S.

    2009-01-01

    Background Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study. Methods and Findings We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal. Conclusion We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study. PMID:19381341

  15. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

    PubMed Central

    Thaden, Joshua T; Mogno, Ilaria; Wierzbowski, Jamey; Cottarel, Guillaume; Kasif, Simon; Collins, James J; Gardner, Timothy S

    2007-01-01

    Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. PMID:17214507

  16. Cytokeratin expression in mouse lacrimal gland germ epithelium.

    PubMed

    Hirayama, Masatoshi; Liu, Ying; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo

    2016-05-01

    The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Expression of MIF and TNFA in psoriatic arthritis: relationship with Th1/Th2/Th17 cytokine profiles and clinical variables.

    PubMed

    Bautista-Herrera, L A; De la Cruz-Mosso, U; Morales-Zambrano, R; Villanueva-Quintero, G D; Hernández-Bello, J; Ramírez-Dueñas, M G; Martínez-López, E; Brennan-Bourdon, L M; Baños-Hernández, C J; Muñoz-Valle, J F

    2018-05-01

    Psoriatic arthritis (PsA) is an autoimmune inflammatory disease associated with psoriasis. The cause of this pathology is still unknown, but research suggests the diseases are caused by a deregulated cytokine production. MIF is a cytokine associated with immunomodulation of Th1, Th2, and Th17 cytokine profiles in inflammatory diseases. Based on this knowledge, the aim of this study was to determine the association of MIF and TNFA expression with Th1, Th2, and Th17 cytokine profiles in serum levels of PsA patients. A cross-sectional study was performed in 50 PsA patients and 30 control subjects (CS). The cytokine profiles were quantified by BioPlex MagPix system and the mRNA expression levels by real-time PCR. TNFA mRNA expression was 138.81-folds higher in PsA patients than CS (p < 0.001). Regarding MIF mRNA expression, no significant differences were observed; however, a positive correlation was identified between MIF mRNA expression and PsA time of evolution (r = - 0.53, p = 0.009). An increase of Th1 (IFNγ: PsA = 37.1 pg/mL vs. CS = 17 pg/mL, p < 0.05; TNFα: PsA = 24.6 pg/mL vs. CS = 9.8 pg/mL, p < 0.0001) and Th17 cytokine profiles (IL-17: PsA = 6.4 pg/mL vs. CS = 2.7 pg/mL, p < 0.05; IL-22: PsA = 8.4 pg/mL vs. CS = 1.8 pg/mL, p < 0.001), were found in PsA patients. Th2 cytokines were not significantly different in both groups. In conclusion, a high expression of TNFA mRNA, as well as an increase of Th1 and Th17 cytokine profiles evaluated by IFNγ, TNFα, IL-17, and IL-22 cytokines, was observed in PsA patients.

  18. Diets high in corn oil or extra-virgin olive oil differentially modify the gene expression profile of the mammary gland and influence experimental breast cancer susceptibility.

    PubMed

    Moral, Raquel; Escrich, Raquel; Solanas, Montserrat; Vela, Elena; Ruiz de Villa, M Carme; Escrich, Eduard

    2016-06-01

    Nutritional factors, especially dietary lipids, may have a role in the etiology of breast cancer. We aimed to analyze the effects of high-fat diets on the susceptibility of the mammary gland to experimental malignant transformation. Female Sprague-Dawley rats were fed a low-fat, high-corn-oil, or high-extra-virgin olive oil (EVOO) diet from weaning or from induction. Animals were induced with 7,12-dimethylbenz[a]anthracene at 53 days and euthanized at 36, 51, 100 and 246 days. Gene expression profiles of mammary glands were determined by microarrays. Further molecular analyses were performed by real-time PCR, TUNEL and immunohistochemistry. Carcinogenesis parameters were determined at 105 and 246 days. High-corn-oil diet increased body weight and mass when administered from weaning. The EVOO diet did not modify these parameters and increased the hepatic expression of UCP2, suggesting a decrease in intake/expenditure balance. Both diets differentially modified the gene expression profile of the mammary gland, especially after short dietary intervention. Corn oil down-regulated the expression of genes related to immune system and apoptosis, whereas EVOO modified the expression of metabolism genes. Further analysis suggested an increase in proliferation and lower apoptosis in the mammary glands by effect of the high-corn-oil diet, which may be one of the mechanisms of its clear stimulating effect on carcinogenesis. The high-corn-oil diet strongly stimulates mammary tumorigenesis in association with modifications in the expression profile and an increased proliferation/apoptosis balance of the mammary gland.

  19. Gene signatures of postoperative atrial fibrillation in atrial tissue after coronary artery bypass grafting surgery in patients receiving β-blockers.

    PubMed

    Kertai, Miklos D; Qi, Wenjing; Li, Yi-Ju; Lombard, Frederick W; Liu, Yutao; Smith, Michael P; Stafford-Smith, Mark; Newman, Mark F; Milano, Carmelo A; Mathew, Joseph P; Podgoreanu, Mihai V

    2016-03-01

    Atrial tissue gene expression profiling may help to determine how differentially expressed genes in the human atrium before cardiopulmonary bypass (CPB) are related to subsequent biologic pathway activation patterns, and whether specific expression profiles are associated with an increased risk for postoperative atrial fibrillation (AF) or altered response to β-blocker (BB) therapy after coronary artery bypass grafting (CABG) surgery. Right atrial appendage (RAA) samples were collected from 45 patients who were receiving perioperative BB treatment, and underwent CABG surgery. The isolated RNA samples were used for microarray gene expression analysis, to identify probes that were expressed differently in patients with and without postoperative AF. Gene expression analysis was performed to identify probes that were expressed differently in patients with and without postoperative AF. Gene set enrichment analysis (GSEA) was performed to determine how sets of genes might be systematically altered in patients with postoperative AF. Of the 45 patients studied, genomic DNA from 42 patients was used for target sequencing of 66 candidate genes potentially associated with AF, and 2,144 single-nucleotide polymorphisms (SNPs) were identified. We then performed expression quantitative trait loci (eQTL) analysis to determine the correlation between SNPs identified in the genotyped patients, and RAA expression. Probes that met a false discovery rate<0.25 were selected for eQTL analysis. Of the 17,678 gene expression probes analyzed, 2 probes met our prespecified significance threshold of false discovery rate<0.25. The most significant probe corresponded to vesicular overexpressed in cancer - prosurvival protein 1 gene (VOPP1; 1.83 fold change; P=3.47×10(-7)), and was up-regulated in patients with postoperative AF, whereas the second most significant probe, which corresponded to the LOC389286 gene (0.49 fold change; P=1.54×10(-5)), was down-regulated in patients with postoperative AF. GSEA highlighted the role of VOPP1 in pathways with biologic relevance to myocardial homeostasis, and oxidative stress and redox modulation. Candidate gene eQTL showed a trans-acting association between variants of G protein-coupled receptor kinase 5 gene, previously linked to altered BB response, and high expression of VOPP1. In patients undergoing CABG surgery, RAA gene expression profiling, and pathway and eQTL analysis suggested that VOPP1 plays a novel etiological role in postoperative AF despite perioperative BB therapy. Copyright © 2016. Published by Elsevier Ltd.

  20. Genomic profiling of CHEK2*1100delC-mutated breast carcinomas.

    PubMed

    Massink, Maarten P G; Kooi, Irsan E; Martens, John W M; Waisfisz, Quinten; Meijers-Heijboer, Hanne

    2015-11-09

    CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, these samples mostly have very few copy number aberrations and no detectable regions of LOH. By unsupervised hierarchical clustering of copy number data we observed a great degree of heterogeneity amongst the CHEK2*1100delC breast cancers, comparable to the BRCAX breast cancers. Furthermore, copy number aberrations were mostly seen at low frequencies in both the CHEK2*1100delC and BRCAX group of breast cancers. However, supervised class comparison identified copy number loss of chromosomal arm 1p to be associated with CHEK2*1100delC status. In conclusion, in contrast to basal-like BRCA1 mutated breast cancers, no apparent specific somatic copy number aberration (CNA) profile for CHEK2*1100delC breast cancers was found. With the possible exception of copy number loss of chromosomal arm 1p in a subset of tumors, which might be involved in CHEK2 tumorigenesis. This difference in CNAs profiles might be explained by the need for BRCA1-deficient tumor cells to acquire survival factors, by for example specific copy number aberrations, to expand. Such factors may not be needed for breast tumors with a defect in a non-essential gene such as CHEK2.

  1. Music psychopathology. VI. The course objective instrumental performance characteristics with psychiatric inpatients.

    PubMed

    Steinberg, R; Fani, M; Raith, L

    1992-01-01

    The impairment of musical expression due to mental disease is reversible with growing remission. This finding resulted from follow-up examinations of instrumental playings assessed by means of a polarity profile with 60 psychiatric inpatients and 14 controls. A follow-up comparison of objective performance characteristics as defined by careful analysis of the recordings did not reveal a meaningful variation. This is taken as a strong indication that even in severe psychopathologic alterations, learned motor patterns of music performance are fairly stable. A simple reduction in playing irregularities cannot explain the systematic influence of psychopathology on musical expression.

  2. Cassava (Manihot esculenta Krantz) genome harbors KNOX genes differentially expressed during storage root development.

    PubMed

    Guo, D; Li, H L; Tang, X; Peng, S Q

    2014-12-18

    In plants, homeodomain proteins play a critical role in regulating various aspects of plant growth and development. KNOX proteins are members of the homeodomain protein family. The KNOX transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of cassava (Manihot esculenta Krantz) has allowed a genome-wide search for M. esculenta KNOX (MeKNOX) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. In the present study, we identified 12 MeKNOX genes in the cassava genome and grouped them into two distinct subfamilies based on their domain composition and phylogenetic analysis. Furthermore, semi-quantitative reverse transcription polymerase chain reaction analysis was performed to elucidate the expression profiles of these genes in different tissues and during various stages of root development. The analysis of MeKNOX expression profiles of indicated that 12 MeKNOX genes display differential expressions either in their transcript abundance or expression patterns.

  3. Differential gene expression related to Nora virus infection of Drosophila melanogaster.

    PubMed

    Cordes, Ethan J; Licking-Murray, Kellie D; Carlson, Kimberly A

    2013-08-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. Copyright © 2013. Published by Elsevier B.V.

  4. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling.

    PubMed

    Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A

    2010-05-01

    Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

  5. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  6. DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken.

    PubMed

    Gao, Qingqing; Xia, Le; Liu, Juanhua; Wang, Xiaobo; Gao, Song; Liu, Xiufan

    2016-11-01

    Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A comprehensive sensitivity analysis of microarray breast cancer classification under feature variability

    PubMed Central

    2009-01-01

    Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical. Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments. PMID:19941644

  8. Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of Type 1 Diabetes progression

    DOE PAGES

    Liu, Chih-Wei; Bramer, Lisa; Webb-Robertson, Bobbie-Jo; ...

    2017-10-07

    We report that blood markers other than islet autoantibodies are greatly needed to indicate the pancreatic beta cell destruction process as early as possible, and more accurately reflect the progression of Type 1 Diabetes Mellitus (T1D). To this end, a longitudinal proteomic profiling of human plasma using TMT-10plex-based LC-MS/MS analysis was performed to track temporal proteomic changes of T1D patients (n = 11) across 9 serial time points, spanning the period of T1D natural progression, in comparison with those of the matching healthy controls (n = 10). To our knowledge, the current study represents the largest (> 2000 proteins measured)more » longitudinal expression profiles of human plasma proteome in T1D research. By applying statistical trend analysis on the temporal expression patterns between T1D and controls, and Benjamini-Hochberg procedure for multiple-testing correction, 13 protein groups were regarded as having statistically significant differences during the entire follow-up period. Moreover, 16 protein groups, which play pivotal roles in response to oxidative stress, have consistently abnormal expression trend before seroconversion to islet autoimmunity. Importantly, the expression trends of two key reactive oxygen species-decomposing enzymes, Catalase and Superoxide dismutase were verified independently by ELISA.« less

  9. Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of Type 1 Diabetes progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chih-Wei; Bramer, Lisa; Webb-Robertson, Bobbie-Jo

    We report that blood markers other than islet autoantibodies are greatly needed to indicate the pancreatic beta cell destruction process as early as possible, and more accurately reflect the progression of Type 1 Diabetes Mellitus (T1D). To this end, a longitudinal proteomic profiling of human plasma using TMT-10plex-based LC-MS/MS analysis was performed to track temporal proteomic changes of T1D patients (n = 11) across 9 serial time points, spanning the period of T1D natural progression, in comparison with those of the matching healthy controls (n = 10). To our knowledge, the current study represents the largest (> 2000 proteins measured)more » longitudinal expression profiles of human plasma proteome in T1D research. By applying statistical trend analysis on the temporal expression patterns between T1D and controls, and Benjamini-Hochberg procedure for multiple-testing correction, 13 protein groups were regarded as having statistically significant differences during the entire follow-up period. Moreover, 16 protein groups, which play pivotal roles in response to oxidative stress, have consistently abnormal expression trend before seroconversion to islet autoimmunity. Importantly, the expression trends of two key reactive oxygen species-decomposing enzymes, Catalase and Superoxide dismutase were verified independently by ELISA.« less

  10. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles.

    PubMed

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection.

  11. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection. PMID:25664019

  12. Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins.

    PubMed

    Evans, Tyler G; Watson-Wynn, Priscilla

    2014-06-01

    Sea urchins are ecologically and economically important calcifying organisms threatened by acidification of the global ocean caused by anthropogenic CO2 emissions. Propelled by the sequencing of the purple sea urchin (Strongylocentrotus purpuratus) genome, profiling changes in gene expression during exposure to high pCO2 seawater has emerged as a powerful and increasingly common method to infer the response of urchins to ocean change. However, analyses of gene expression are sensitive to experimental methodology, and comparisons between studies of genes regulated by ocean acidification are most often made in the context of major caveats. Here we perform meta-analyses as a means of minimizing experimental discrepancies and resolving broader-scale trends regarding the effects of ocean acidification on gene expression in urchins. Analyses across eight studies and four urchin species largely support prevailing hypotheses about the impact of ocean acidification on marine calcifiers. The predominant expression pattern involved the down-regulation of genes within energy-producing pathways, a clear indication of metabolic depression. Genes with functions in ion transport were significantly over-represented and are most plausibly contributing to intracellular pH regulation. Expression profiles provided extensive evidence for an impact on biomineralization, epitomized by the down-regulation of seven spicule matrix proteins. In contrast, expression profiles provided limited evidence for CO2-mediated developmental delay or induction of a cellular stress response. Congruence between studies of gene expression and the ocean acidification literature in general validates the accuracy of gene expression in predicting the consequences of ocean change and justifies its continued use in future studies. © 2014 Marine Biological Laboratory.

  13. Coordinated transcriptional regulation patterns associated with infertility phenotypes in men

    PubMed Central

    Ellis, Peter J I; Furlong, Robert A; Conner, Sarah J; Kirkman‐Brown, Jackson; Afnan, Masoud; Barratt, Christopher; Griffin, Darren K; Affara, Nabeel A

    2007-01-01

    Introduction Microarray gene‐expression profiling is a powerful tool for global analysis of the transcriptional consequences of disease phenotypes. Understanding the genetic correlates of particular pathological states is important for more accurate diagnosis and screening of patients, and thus for suggesting appropriate avenues of treatment. As yet, there has been little research describing gene‐expression profiling of infertile and subfertile men, and thus the underlying transcriptional events involved in loss of spermatogenesis remain unclear. Here we present the results of an initial screen of 33 patients with differing spermatogenic phenotypes. Methods Oligonucleotide array expression profiling was performed on testis biopsies for 33 patients presenting for testicular sperm extraction. Significantly regulated genes were selected using a mixed model analysis of variance. Principle components analysis and hierarchical clustering were used to interpret the resulting dataset with reference to the patient history, clinical findings and histological composition of the biopsies. Results Striking patterns of coordinated gene expression were found. The most significant contains multiple germ cell‐specific genes and corresponds to the degree of successful spermatogenesis in each patient, whereas a second pattern corresponds to inflammatory activity within the testis. Smaller‐scale patterns were also observed, relating to unique features of the individual biopsies. PMID:17496197

  14. Transcriptional network inference from functional similarity and expression data: a global supervised approach.

    PubMed

    Ambroise, Jérôme; Robert, Annie; Macq, Benoit; Gala, Jean-Luc

    2012-01-06

    An important challenge in system biology is the inference of biological networks from postgenomic data. Among these biological networks, a gene transcriptional regulatory network focuses on interactions existing between transcription factors (TFs) and and their corresponding target genes. A large number of reverse engineering algorithms were proposed to infer such networks from gene expression profiles, but most current methods have relatively low predictive performances. In this paper, we introduce the novel TNIFSED method (Transcriptional Network Inference from Functional Similarity and Expression Data), that infers a transcriptional network from the integration of correlations and partial correlations of gene expression profiles and gene functional similarities through a supervised classifier. In the current work, TNIFSED was applied to predict the transcriptional network in Escherichia coli and in Saccharomyces cerevisiae, using datasets of 445 and 170 affymetrix arrays, respectively. Using the area under the curve of the receiver operating characteristics and the F-measure as indicators, we showed the predictive performance of TNIFSED to be better than unsupervised state-of-the-art methods. TNIFSED performed slightly worse than the supervised SIRENE algorithm for the target genes identification of the TF having a wide range of yet identified target genes but better for TF having only few identified target genes. Our results indicate that TNIFSED is complementary to the SIRENE algorithm, and particularly suitable to discover target genes of "orphan" TFs.

  15. Integrated analysis of gene expression and methylation profiles of 48 candidate genes in breast cancer patients.

    PubMed

    Li, Zibo; Heng, Jianfu; Yan, Jinhua; Guo, Xinwu; Tang, Lili; Chen, Ming; Peng, Limin; Wu, Yepeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Wang, Jun

    2016-11-01

    Gene-specific methylation and expression have shown biological and clinical importance for breast cancer diagnosis and prognosis. Integrated analysis of gene methylation and gene expression may identify genes associated with biology mechanism and clinical outcome of breast cancer and aid in clinical management. Using high-throughput microfluidic quantitative PCR, we analyzed the expression profiles of 48 candidate genes in 96 Chinese breast cancer patients and investigated their correlation with gene methylation and associations with breast cancer clinical parameters. Breast cancer-specific gene expression alternation was found in 25 genes with significant expression difference between paired tumor and normal tissues. A total of 9 genes (CCND2, EGFR, GSTP1, PGR, PTGS2, RECK, SOX17, TNFRSF10D, and WIF1) showed significant negative correlation between methylation and gene expression, which were validated in the TCGA database. Total 23 genes (ACADL, APC, BRCA2, CADM1, CAV1, CCND2, CST6, EGFR, ESR2, GSTP1, ICAM5, NPY, PGR, PTGS2, RECK, RUNX3, SFRP1, SOX17, SYK, TGFBR2, TNFRSF10D, WIF1, and WRN) annotated with potential TFBSs in the promoter regions showed negative correlation between methylation and expression. In logistics regression analysis, 31 of the 48 genes showed improved performance in disease prediction with combination of methylation and expression coefficient. Our results demonstrated the complex correlation and the possible regulatory mechanisms between DNA methylation and gene expression. Integration analysis of methylation and expression of candidate genes could improve performance in breast cancer prediction. These findings would contribute to molecular characterization and identification of biomarkers for potential clinical applications.

  16. Ezrin and E-cadherin expression profile in cervical cytology: a prognostic marker for tumor progression in cervical cancer.

    PubMed

    Zacapala-Gómez, Ana E; Navarro-Tito, Napoleón; Alarcón-Romero, Luz Del C; Ortuño-Pineda, Carlos; Illades-Aguiar, Berenice; Castañeda-Saucedo, Eduardo; Ortiz-Ortiz, Julio; Garibay-Cerdenares, Olga L; Jiménez-López, Marco A; Mendoza-Catalán, Miguel A

    2018-03-27

    Cervical cancer (CC) is the fourth cause of mortality by neoplasia in women worldwide. The use of immunomarkers is an alternative tool to complement currently used algorithms for detection of cancer, and to improve selection of therapeutic schemes. Aberrant expression of Ezrin and E-cadherin play an important role in tumor invasion. In this study we analyzed Ezrin and E-cadherin expression in liquid-based cervical cytology samples, and evaluated their potential use as prognostic immunomarkers. Immunocytochemical staining of Ezrin and E-cadherin was performed in cervical samples of 125 patients. The cytological or histological diagnostic was performed by Papanicolaou staining or H&E staining, respectively. HPV genotyping was determined using INNO-LIPA Genotyping Extra kit and the HPV physical status by in situ hybridization. Ezrin expression in HaCaT, HeLa and SiHa cell lines was determined by immunocytochemistry, immunofluorescence and Western blot. High Ezrin expression was observed in cervical cancer samples (70%), samples with multiple infection by HR-HPV (43%), and samples with integrated viral genome (47%). High Ezrin expression was associated with degree of SIL, viral genotype and physical status. In contrast, low E-cadherin expression was found in cervical cancer samples (95%), samples with multiple infection by HR-HPV/LR-HPV (87%) and integrated viral genome (72%). Low E-cadherin expression was associated with degree of SIL and viral genotype. Interestingly, Ezrin nuclear staining was associated with degree of SIL and viral genotype. High Ezrin expression, high percent of nuclear Ezrin and low E-cadherin expression behaved as risk factors for progression to HSIL and cervical cancer. Ezrin and E-cadherin expression profile in cervical cytology samples could be a potential prognostic marker, useful for identifying cervical lesions with a high-risk of progression to cervical cancer.

  17. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma.

    PubMed

    Feng, Ling; Wang, Ru; Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao

    2016-01-01

    Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.

  18. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells.

    PubMed

    Gardiner, Erin J; Cairns, Murray J; Liu, Bing; Beveridge, Natalie J; Carr, Vaughan; Kelly, Brian; Scott, Rodney J; Tooney, Paul A

    2013-04-01

    Peripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian Schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Screening for genes and subnetworks associated with pancreatic cancer based on the gene expression profile.

    PubMed

    Long, Jin; Liu, Zhe; Wu, Xingda; Xu, Yuanhong; Ge, Chunlin

    2016-05-01

    The present study aimed to screen for potential genes and subnetworks associated with pancreatic cancer (PC) using the gene expression profile. The expression profile GSE 16515 was downloaded from the Gene Expression Omnibus database, which included 36 PC tissue samples and 16 normal samples. Limma package in R language was used to screen differentially expressed genes (DEGs), which were grouped as up‑ and downregulated genes. Then, PFSNet was applied to perform subnetwork analysis for all the DEGs. Moreover, Gene Ontology (GO) and REACTOME pathway enrichment analysis of up‑ and downregulated genes was performed, followed by protein‑protein interaction (PPI) network construction using Search Tool for the Retrieval of Interacting Genes Search Tool for the Retrieval of Interacting Genes. In total, 1,989 DEGs including 1,461 up‑ and 528 downregulated genes were screened out. Subnetworks including pancreatic cancer in PC tissue samples and intercellular adhesion in normal samples were identified, respectively. A total of 8 significant REACTOME pathways for upregulated DEGs, such as hemostasis and cell cycle, mitotic were identified. Moreover, 4 significant REACTOME pathways for downregulated DEGs, including regulation of β‑cell development and transmembrane transport of small molecules were screened out. Additionally, DEGs with high connectivity degrees, such as CCNA2 (cyclin A2) and PBK (PDZ binding kinase), of the module in the protein‑protein interaction network were mainly enriched with cell‑division cycle. CCNA2 and PBK of the module and their relative pathway cell‑division cycle, and two subnetworks (pancreatic cancer and intercellular adhesion subnetworks) may be pivotal for further understanding of the molecular mechanism of PC.

  20. Development and validation of a gene profile predicting benefit of postmastectomy radiotherapy in patients with high-risk breast cancer: a study of gene expression in the DBCG82bc cohort.

    PubMed

    Tramm, Trine; Mohammed, Hayat; Myhre, Simen; Kyndi, Marianne; Alsner, Jan; Børresen-Dale, Anne-Lise; Sørlie, Therese; Frigessi, Arnoldo; Overgaard, Jens

    2014-10-15

    To identify genes predicting benefit of radiotherapy in patients with high-risk breast cancer treated with systemic therapy and randomized to receive or not receive postmastectomy radiotherapy (PMRT). The study was based on the Danish Breast Cancer Cooperative Group (DBCG82bc) cohort. Gene-expression analysis was performed in a training set of frozen tumor tissue from 191 patients. Genes were identified through the Lasso method with the endpoint being locoregional recurrence (LRR). A weighted gene-expression index (DBCG-RT profile) was calculated and transferred to quantitative real-time PCR (qRT-PCR) in corresponding formalin-fixed, paraffin-embedded (FFPE) samples, before validation in FFPE from 112 additional patients. Seven genes were identified, and the derived DBCG-RT profile divided the 191 patients into "high LRR risk" and "low LRR risk" groups. PMRT significantly reduced risk of LRR in "high LRR risk" patients, whereas "low LRR risk" patients showed no additional reduction in LRR rate. Technical transfer of the DBCG-RT profile to FFPE/qRT-PCR was successful, and the predictive impact was successfully validated in another 112 patients. A DBCG-RT gene profile was identified and validated, identifying patients with very low risk of LRR and no benefit from PMRT. The profile may provide a method to individualize treatment with PMRT. ©2014 American Association for Cancer Research.

  1. Effects of Simulated Microgravity on the Expression Profile of Microrna in Human Lymphoblastoid Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu; Ramesh, Govindarajan; Rohde, Larry; Story, Michael; Mangala, Lingegowda

    2012-07-01

    EFFECTS OF SIMULATED MICROGRAVITY ON THE EXPRESSION PROFILE OF MICRORNA IN HUMAN LYMPHOBLASTOID CELLS Lingegowda S. Mangala1,2, Ye Zhang1,3, Zhenhua He2, Kamal Emami1, Govindarajan T. Ramesh4, Michael Story 5, Larry H. Rohde2, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 University of Houston Clear Lake, Houston, Texas, USA 3 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 4 Norfolk State University, Norfolk, VA, USA 5 University of Texas, Southwestern Medical Center, Dallas, Texas, USA This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison to static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a High Aspect Ratio Vessel (HARV; bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNA was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22 and miR-141, miR-618 and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using q-RT PCR. Network and pathway analysis of gene and miRNA expression profiles indicates that the regulation of cell communication and catalytic activities, as well as pathways involved in immune response_IL-15 signaling and NGF mediated NF-kB activation were significantly altered under the simulated microgravity condition.

  2. Global preamplification simplifies targeted mRNA quantification

    PubMed Central

    Kroneis, Thomas; Jonasson, Emma; Andersson, Daniel; Dolatabadi, Soheila; Ståhlberg, Anders

    2017-01-01

    The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification. PMID:28332609

  3. Analysis of high-throughput biological data using their rank values.

    PubMed

    Dembélé, Doulaye

    2018-01-01

    High-throughput biological technologies are routinely used to generate gene expression profiling or cytogenetics data. To achieve high performance, methods available in the literature become more specialized and often require high computational resources. Here, we propose a new versatile method based on the data-ordering rank values. We use linear algebra, the Perron-Frobenius theorem and also extend a method presented earlier for searching differentially expressed genes for the detection of recurrent copy number aberration. A result derived from the proposed method is a one-sample Student's t-test based on rank values. The proposed method is to our knowledge the only that applies to gene expression profiling and to cytogenetics data sets. This new method is fast, deterministic, and requires a low computational load. Probabilities are associated with genes to allow a statistically significant subset selection in the data set. Stability scores are also introduced as quality parameters. The performance and comparative analyses were carried out using real data sets. The proposed method can be accessed through an R package available from the CRAN (Comprehensive R Archive Network) website: https://cran.r-project.org/web/packages/fcros .

  4. Isoflavone supplement composition and equol producer status affect gene expression in adipose tissue: a double-blind, randomized, placebo-controlled crossover trial in postmenopausal women.

    PubMed

    van der Velpen, Vera; Geelen, Anouk; Hollman, Peter C H; Schouten, Evert G; van 't Veer, Pieter; Afman, Lydia A

    2014-11-01

    Isoflavone supplements, consumed by women experiencing menopausal symptoms, are suggested to have positive effects on menopause-related adiposity and cardiovascular disease risk profile, but discussions about their safety are still ongoing. The objective was to study the effects of an 8-wk consumption of 2 different isoflavone supplements compared with placebo on whole-genome gene expression in the adipose tissue of postmenopausal women. This double-blind, randomized, placebo-controlled crossover intervention consisted of 2 substudies, one with a low-genistein (LG) supplement (56% daidzein + daidzin, 16% genistein + genistin, and 28% glycitein + glycitin) and the other with a high-genistein (HG) supplement (49% daidzein + daidzin, 41% genistein + genistin, and 10% glycitein + glycitin). Both supplements provided ∼ 100 mg isoflavones/d (aglycone equivalents). After the 8-wk isoflavone and placebo period, whole-genome arrays were performed in subcutaneous adipose tissue of postmenopausal women (n = 26 after LG, n = 31 after HG). Participants were randomized by equol-producing phenotype, and data analysis was performed per substudy for equol producers and nonproducers separately. Gene set enrichment analysis showed downregulation of expression of energy metabolism-related genes after LG supplementation (n = 24) in both equol-producing phenotypes and oppositely regulated expression for equol producers (down) and nonproducers (up) after HG supplementation (n = 31). Expression of inflammation-related genes was upregulated in equol producers but downregulated in nonproducers, independent of supplement type. Only 4.4-7.0% of the genes with significantly changed expression were estrogen responsive. Body weight, adipocyte size, and plasma lipid profile were not affected by isoflavone supplementation. Effects of isoflavones on adipose tissue gene expression were influenced by supplement composition and equol-producing phenotype, whereas estrogen-responsive effects were lacking. LG isoflavone supplementation resulted in a caloric restriction-like gene expression profile for both producer phenotypes and pointed toward a potential beneficial effect, whereas both supplements induced anti-inflammatory gene expression in equol producers. The study was registered at clinicaltrials.gov as NCT01556737. © 2014 American Society for Nutrition.

  5. Cell and tissue microarray technologies for protein and nucleic acid expression profiling.

    PubMed

    Cardano, Marina; Diaferia, Giuseppe R; Falavigna, Maurizio; Spinelli, Chiara C; Sessa, Fausto; DeBlasio, Pasquale; Biunno, Ida

    2013-02-01

    Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform.

  6. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

    PubMed

    Zhang, Wenqian; Yu, Ying; Hertwig, Falk; Thierry-Mieg, Jean; Zhang, Wenwei; Thierry-Mieg, Danielle; Wang, Jian; Furlanello, Cesare; Devanarayan, Viswanath; Cheng, Jie; Deng, Youping; Hero, Barbara; Hong, Huixiao; Jia, Meiwen; Li, Li; Lin, Simon M; Nikolsky, Yuri; Oberthuer, André; Qing, Tao; Su, Zhenqiang; Volland, Ruth; Wang, Charles; Wang, May D; Ai, Junmei; Albanese, Davide; Asgharzadeh, Shahab; Avigad, Smadar; Bao, Wenjun; Bessarabova, Marina; Brilliant, Murray H; Brors, Benedikt; Chierici, Marco; Chu, Tzu-Ming; Zhang, Jibin; Grundy, Richard G; He, Min Max; Hebbring, Scott; Kaufman, Howard L; Lababidi, Samir; Lancashire, Lee J; Li, Yan; Lu, Xin X; Luo, Heng; Ma, Xiwen; Ning, Baitang; Noguera, Rosa; Peifer, Martin; Phan, John H; Roels, Frederik; Rosswog, Carolina; Shao, Susan; Shen, Jie; Theissen, Jessica; Tonini, Gian Paolo; Vandesompele, Jo; Wu, Po-Yen; Xiao, Wenzhong; Xu, Joshua; Xu, Weihong; Xuan, Jiekun; Yang, Yong; Ye, Zhan; Dong, Zirui; Zhang, Ke K; Yin, Ye; Zhao, Chen; Zheng, Yuanting; Wolfinger, Russell D; Shi, Tieliu; Malkas, Linda H; Berthold, Frank; Wang, Jun; Tong, Weida; Shi, Leming; Peng, Zhiyu; Fischer, Matthias

    2015-06-25

    Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.

  7. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  8. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  9. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    PubMed

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Gene expression profiling demonstrates WNT/β-catenin pathway genes alteration in Mexican patients with colorectal cancer and diabetes mellitus.

    PubMed

    Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica

    2017-01-01

    Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.

  11. Initial leukemic gene expression profiles of patients with poor in vivo prednisone response are similar to those of blasts persisting under prednisone treatment in childhood acute lymphoblastic leukemia.

    PubMed

    Cario, Gunnar; Fetz, Andrea; Bretscher, Christian; Möricke, Anja; Schrauder, Andre; Stanulla, Martin; Schrappe, Martin

    2008-09-01

    Response to initial glucocorticoid (GC) treatment is a strong prognostic factor in childhood acute lymphoblastic leukemia (ALL). Patients with a poor prednisone response (PPR) have a poor event-free survival as compared to those with a good prednisone response (PGR). Causes of prednisone resistance are still not well understood. We hypothesized that GC resistance is an intrinsic feature of ALL cells which is reflected in the gene expression pattern and analyzed genome-wide gene expression using microarrays. A case-control study was performed comparing gene expression profiles from initial ALL samples of 20 patients with PPR and those of 20 patients with PGR. Differential gene expression of a subset of genes was confirmed by real-time quantitative polymerase chain reaction analysis and validation was performed in a second independent patient sample (n=20). We identified 121 genes that clearly distinguished prednisone-resistant from sensitive ALL samples (FDR<5%, fold change>or=1.5). Differential gene expression of 21 of these genes could be validated in a second independent set. Of importance, there was a remarkable concordance of genes identified by comparing expression signatures of PPR and PGR cells at diagnosis and those previously described to be up- or downregulated in leukemic cells persisting under GC treatment. Thus, GC resistance seems at least in part to be an intrinsic feature of leukemic cells. Leukemic cells of patients with PPR are characterized by gene expression pattern which are similar to those of resistant cells persisting under glucocorticoid treatment.

  12. Expression of the G72/G30 gene in transgenic mice induces behavioral changes

    PubMed Central

    Cheng, Lijun; Hattori, Eiji; Nakajima, Akira; Woehrle, Nancy S.; Opal, Mark D.; Zhang, Chunling; Grennan, Kay; Dulawa, Stephanie C.; Tang, Ya-Ping; Gershon, Elliot S.; Liu, Chunyu

    2012-01-01

    The G72/G30 gene complex is a candidate gene for schizophrenia and bipolar disorder. However, G72 and G30 mRNAs are expressed at very low levels in human brain, with only rare splicing forms observed. We report here G72/G30 expression profiles and behavioral changes in a G72/G30 transgenic mouse model. A human BAC clone containing the G72/G30 genomic region was used to establish the transgenic mouse model, on which gene expression studies, Western blot and behavioral tests were performed. Relative to their minimal expression in humans, G72 and G30 mRNAs were highly expressed in the transgenic mice, and had a more complex splicing pattern. The highest G72 transcript levels were found in testis, followed by cerebral cortex, with very low or undetectable levels in other tissues. No LG72 (the long putative isoform of G72) protein was detected in the transgenic mice. Whole-genome expression profiling identified 361 genes differentially-expressed in transgenic mice compared to wild-type, including genes previously implicated in neurological and psychological disorders. Relative to wild-type mice, the transgenic mice exhibited fewer stereotypic movements in the open field test, higher baseline startle responses in the course of the prepulse inhibition test, and lower hedonic responses in the sucrose preference test. The transcriptome profile changes and multiple mouse behavioral effects suggest that the G72 gene may play a role in modulating behaviors relevant to psychiatric disorders. PMID:23337943

  13. Unique gene expression profiles of donor-matched human retinal and choroidal vascular endothelial cells.

    PubMed

    Smith, Justine R; Choi, Dongseok; Chipps, Timothy J; Pan, Yuzhen; Zamora, David O; Davies, Michael H; Babra, Bobby; Powers, Michael R; Planck, Stephen R; Rosenbaum, James T

    2007-06-01

    Consistent with clinical observations that posterior uveitis frequently involves the retinal vasculature and recent recognition of vascular heterogeneity, the hypothesis for this study was that retinal vascular endothelium was a cell population of unique molecular phenotype. Donor-matched cultures of primary retinal and choroidal endothelial cells from six human cadavers were incubated with either Toxoplasma gondii tachyzoites (10:1, parasites per cell) or Escherichia coli lipopolysaccharide (100 ng/mL); control cultures were simultaneously incubated with medium. Gene expression profiling of endothelial cells was performed using oligonucleotide arrays containing probes designed to detect 8746 human transcripts. After normalization, differential gene expression was assessed by the significance analysis of microarrays, with the false-discovery rate set at 5%. For selected genes, differences in the level of expression between retinal and choroidal cells were evaluated by real-time RT-PCR. Graphic descriptive analysis demonstrated a strong correlation between gene expression of unstimulated retinal and choroidal endothelial cells, but also highlighted distinctly different patterns of expression that were greater than differences noted between donors or between unstimulated and stimulated cells. Overall, 779 (8.9%) of 8746 transcripts were differentially represented. Of note, the 330 transcripts that were present at higher levels in retinal cells included a larger percentage of transcripts encoding molecules involved in the immune response. Differential gene expression was confirmed for 12 transcripts by RT-PCR. Retinal and choroidal vascular endothelial cells display distinctive gene expression profiles. The findings suggest the possibility of treating posterior uveitis by targeting specific interactions between the retinal endothelial cell and an infiltrating leukocyte.

  14. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase

    PubMed Central

    Kohlmann, Alexander; Kipps, Thomas J; Rassenti, Laura Z; Downing, James R; Shurtleff, Sheila A; Mills, Ken I; Gilkes, Amanda F; Hofmann, Wolf-Karsten; Basso, Giuseppe; Dell’Orto, Marta Campo; Foà, Robin; Chiaretti, Sabina; De Vos, John; Rauhut, Sonja; Papenhausen, Peter R; Hernández, Jesus M; Lumbreras, Eva; Yeoh, Allen E; Koay, Evelyn S; Li, Rachel; Liu, Wei-min; Williams, Paul M; Wieczorek, Lothar; Haferlach, Torsten

    2008-01-01

    Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r2 correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability. PMID:18573112

  15. Estimation of the uncertainty of analyte concentration from the measurement uncertainty.

    PubMed

    Brown, Simon; Cooke, Delwyn G; Blackwell, Leonard F

    2015-09-01

    Ligand-binding assays, such as immunoassays, are usually analysed using standard curves based on the four-parameter and five-parameter logistic models. An estimate of the uncertainty of an analyte concentration obtained from such curves is needed for confidence intervals or precision profiles. Using a numerical simulation approach, it is shown that the uncertainty of the analyte concentration estimate becomes significant at the extremes of the concentration range and that this is affected significantly by the steepness of the standard curve. We also provide expressions for the coefficient of variation of the analyte concentration estimate from which confidence intervals and the precision profile can be obtained. Using three examples, we show that the expressions perform well.

  16. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia.

    PubMed

    Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding

    2016-04-01

    Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; <34 weeks), and late-onset (n = 8; >36 weeks) preeclampsia and their controls who delivered preterm (n = 5; <34 weeks) or at term (n = 5; >36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value < 0.05. Quantitative real-time reverse transcriptase PCR was used to verify the results. Western blotting was performed to verify the expressions of secreted genes at the protein level. Six hundred twenty-seven genes were differentially expressed in early-compared with late-onset preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Technical variables in high-throughput miRNA expression profiling: much work remains to be done.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang

    2008-11-01

    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.

  18. [Effect of genetics, epigenetics and variations in the transcriptional expression of cadherin-E in breast cancer susceptibility].

    PubMed

    Aristizábal-Pachón, Andrés Felipe; Takahashi, Catarina Satie

    2016-12-01

    Cadherin-E (CDH1) is an important regulator of epithelial-mesenchymal transition, invasion and metastasis in many carcinomas. However, germinal epimutations and mutations effect in breast cancer susceptibility is not clear. To evaluate rs334558 polymorphism, promoter methylation status and CDH1 expression profile in breast cancer patients. We collected peripheral blood samples from 102 breast cancer patients and 102 healthy subjects. The identification of rs334558 polymorphism was performed using PCR-RFLP, while methylation-specific PCR (MSP) and methylation-sensitive high-resolution melting (MS-HRM) were used to explore CDH1 methylation status; finally, CDH1 transcriptional expression profile was evaluated using RT-qPCR. We found no association between rs334558 polymorphism and breast cancer. Aberrant promoter methylation profile was found in breast cancer patients and it was related with early cancer stages. CDH1 down-regulation was significantly associated with metastasis and promoter methylation. CDH1 alterations were associated with invasion and metastasis in breast cancer. Our results offer further evidence of CDH1 relevance in breast cancer development and progression.

  19. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens

    PubMed Central

    Liu, Yong; Xu, Zhiqiang; Duan, Xiaohua; Li, Qihua; Dou, Tengfei; Gu, Dahai; Rong, Hua; Wang, Kun; Li, Zhengtian; Talpur, Mir Zulqarnain; Huang, Ying; Wang, Shanrong; Yan, Shixiong; Tong, Huiquan; Zhao, Sumei; Zhao, Guiping; Su, Zhengchang; Ge, Changrong

    2018-01-01

    The growth hormone / insulin-like growth factor-1 (GH/IGF-1) pathway of the somatotropic axis is the major controller for growth rate and body size in vertebrates, but the effect of selection on the expression of GH/IGF-1 somatotropic axis genes and their association with body size and growth performance in farm animals is not fully understood. We analyzed a time series of expression profiles of GH/IGF-1 somatotropic axis genes in two chicken breeds, the Daweishan mini chickens and Wuding chickens, and the commercial Avian broilers hybrid exhibiting markedly different body sizes and growth rates. We found that growth rate and feed conversion efficiency in Daweishan mini chickens were significantly lower than those in Wuding chickens and Avian broilers. The Wuding and Daweishan mini chickens showed higher levels of plasma GH, pituitary GH mRNA but lower levels of hepatic growth hormone receptor (GHR) mRNA than in Avian broilers. Daweishan mini chickens showed significantly lower levels of plasma IGF-1, thigh muscle and hepatic IGF-1 mRNA than did Avian broilers and Wuding chickens. These results suggest that the GH part of the somatotropic axis is the main regulator of growth rate, while IGF-1 may regulate both growth rate and body weight. Selection for growth performance and body size have altered the expression profiles of somatotropic axis genes in a breed-, age-, and tissue-specific manner, and manner, and alteration of regulatory mechanisms of these genes might play an important role in the developmental characteristics of chickens. PMID:29630644

  20. Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus.

    PubMed

    Ni, Zixin; Yang, Fan; Cao, Weijun; Zhang, Xiangle; Jin, Ye; Mao, Ruoqing; Du, Xiaoli; Li, Weiwei; Guo, Jianhong; Liu, Xiangtao; Zhu, Zixiang; Zheng, Haixue

    2016-06-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase L(pro) of FMDV is involved in pathogenicity, and mutation of the L(pro) SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing L(pro) with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV L(pro).

  1. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress

    PubMed Central

    Li, Changning; Nong, Qian; Solanki, Manoj Kumar; Liang, Qiang; Xie, Jinlan; Liu, Xiaoyan; Li, Yijie; Wang, Weizan; Yang, Litao; Li, Yangrui

    2016-01-01

    Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane. PMID:27170459

  2. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress.

    PubMed

    Singh, Roshan Kumar; Jaishankar, Jananee; Muthamilarasan, Mehanathan; Shweta, Shweta; Dangi, Anand; Prasad, Manoj

    2016-09-02

    Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance.

  3. An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer

    PubMed Central

    2010-01-01

    Background Gene expression profiling may improve prognostic accuracy in patients with early breast cancer. Our objective was to demonstrate that it is possible to develop a simple molecular signature to predict distant relapse. Methods We included 153 patients with stage I-II hormonal receptor-positive breast cancer. RNA was isolated from formalin-fixed paraffin-embedded samples and qRT-PCR amplification of 83 genes was performed with gene expression assays. The genes we analyzed were those included in the 70-Gene Signature, the Recurrence Score and the Two-Gene Index. The association among gene expression, clinical variables and distant metastasis-free survival was analyzed using Cox regression models. Results An 8-gene prognostic score was defined. Distant metastasis-free survival at 5 years was 97% for patients defined as low-risk by the prognostic score versus 60% for patients defined as high-risk. The 8-gene score remained a significant factor in multivariate analysis and its performance was similar to that of two validated gene profiles: the 70-Gene Signature and the Recurrence Score. The validity of the signature was verified in independent cohorts obtained from the GEO database. Conclusions This study identifies a simple gene expression score that complements histopathological prognostic factors in breast cancer, and can be determined in paraffin-embedded samples. PMID:20584321

  4. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay.

    PubMed

    Trypsteen, Wim; Mohammadi, Pejman; Van Hecke, Clarissa; Mestdagh, Pieter; Lefever, Steve; Saeys, Yvan; De Bleser, Pieter; Vandesompele, Jo; Ciuffi, Angela; Vandekerckhove, Linos; De Spiegelaere, Ward

    2016-10-26

    Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell's molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.

  5. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation.

    PubMed

    Kulterer, Birgit; Friedl, Gerald; Jandrositz, Anita; Sanchez-Cabo, Fatima; Prokesch, Andreas; Paar, Christine; Scheideler, Marcel; Windhager, Reinhard; Preisegger, Karl-Heinz; Trajanoski, Zlatko

    2007-03-12

    Human mesenchymal stem cells (MSC) with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts. The results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-beta2 and BMPs. With a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.

  6. A novel FY*A allele with the 265T and 298A SNPs formerly associated exclusively with the FY*B allele and weak Fy(b) antigen expression: implication for genotyping interpretative algorithms.

    PubMed

    Lopez, G H; Condon, J A; Wilson, B; Martin, J R; Liew, Y-W; Flower, R L; Hyland, C A

    2015-01-01

    An Australian Caucasian blood donor consistently presented a serology profile for the Duffy blood group as Fy(a+b+) with Fy(a) antigen expression weaker than other examples of Fy(a+b+) red cells. Molecular typing studies were performed to investigate the reason for the observed serology profile. Blood group genotyping was performed using a commercial SNP microarray platform. Sanger sequencing was performed using primer sets to amplify across exons 1 and 2 of the FY gene and using allele-specific primers. The propositus was genotyped as FY*A/B, FY*X heterozygote that predicted the Fy(a+b+(w) ) phenotype. Sequencing identified the 265T and 298A variants on the FY*A allele. This link between FY*A allele and 265T was confirmed by allele-specific PCR. The reduced Fy(a) antigen reactivity is attributed to a FY*A allele-carrying 265T and 298A variants previously defined in combination only with the FY*B allele and associated with weak Fy(b) antigen expression. This novel allele should be considered in genotyping interpretative algorithms for generating a predicted phenotype. © 2014 International Society of Blood Transfusion.

  7. [Expression profiles of miRNA-182 and Clock mRNA in the pineal gland of neonatal rats with hypoxic-ischemic brain damage].

    PubMed

    Han, Xing; Ding, Xin; Xu, Li-Xiao; Liu, Ming-Hua; Feng, Xing

    2016-03-01

    To study the changes of miRNA expression in the pineal gland of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible roles of miRNA in the pathogenesis of circadian rhythm disturbance after HIBD. Seven-day-old Sprague-Dawley (SD) rats were randomly divided into 2 groups: HIBD and sham-operated. HIBD was induced according to the Rice-Vannucci method. The pineal glands were obtained 24 hours after the HIBD event. The expression profiles of miRNAs were determined using GeneChip technigue and quantitative real-time PCR (RT-PCR). Then the miRNA which was highly expressed was selected. The expression levels of the chosen miRNA were detected in different tissues (lungs, intestines, stomach, kidneys, cerebral cortex, pineal gland). RT-PCR analysis was performed to measure the expression profiles of the chosen miRNA and the targeted gene Clock mRNA in the pineal gland at 0, 24, 48 and 72 hours after HIBD. miRNA-182 that met the criteria was selected by GeneChip and RT-PCR. miRNA-182 was highly expressed in the pineal gland. Compared with the sham-operated group, the expression of miRNA-182 was significantly up-regulated in the pineal gland at 24 and 48 hours after HIBD (P<0.05). Compared with the sham-operated group, Clock mRNA expression in the HIBD group increased at 0 hour after HIBD, decreased at 48 hours after HIBD and increased at 72 hours after HIBD (P<0.05). miRNA-182 may be involved in the pathogenesis of circadian rhythm disturbance after HIBD.

  8. Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling.

    PubMed

    Łabaj, Paweł P; Leparc, Germán G; Linggi, Bryan E; Markillie, Lye Meng; Wiley, H Steven; Kreil, David P

    2011-07-01

    Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, <30% of all transcripts could be quantified reliably with a relative error<20%. Based on established tools, we then introduce a new approach for mapping and analysing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision. rnaseq10@boku.ac.at

  9. Inhibition of Thrombopoietin/Mpl Signaling in Adult Hematopoiesis Identifies New Candidates for Hematopoietic Stem Cell Maintenance.

    PubMed

    Kohlscheen, Saskia; Wintterle, Sabine; Schwarzer, Adrian; Kamp, Christel; Brugman, Martijn H; Breuer, Daniel C; Büsche, Guntram; Baum, Christopher; Modlich, Ute

    2015-01-01

    Thrombopoietin (Thpo) signals via its receptor Mpl and regulates megakaryopoiesis, hematopoietic stem cell (HSC) maintenance and post-transplant expansion. Mpl expression is tightly controlled and deregulation of Thpo/Mpl-signaling is linked to hematological disorders. Here, we constructed an intracellular-truncated, signaling-deficient Mpl protein which is presented on the cell surface (dnMpl). The transplantation of bone marrow cells retrovirally transduced to express dnMpl into wildtype mice induced thrombocytopenia, and a progressive loss of HSC. The aplastic BM allowed the engraftment of a second BM transplant without further conditioning. Functional analysis of the truncated Mpl in vitro and in vivo demonstrated no internalization after Thpo binding and the inhibition of Thpo/Mpl-signaling in wildtype cells due to dominant-negative (dn) effects by receptor competition with wildtype Mpl for Thpo binding. Intracellular inhibition of Mpl could be excluded as the major mechanism by the use of a constitutive-dimerized dnMpl. To further elucidate the molecular changes induced by Thpo/Mpl-inhibition on the HSC-enriched cell population in the BM, we performed gene expression analysis of Lin-Sca1+cKit+ (LSK) cells isolated from mice transplanted with dnMpl transduced BM cells. The gene expression profile supported the exhaustion of HSC due to increased cell cycle progression and identified new and known downstream effectors of Thpo/Mpl-signaling in HSC (namely TIE2, ESAM1 and EPCR detected on the HSC-enriched LSK cell population). We further compared gene expression profiles in LSK cells of dnMpl mice with human CD34+ cells of aplastic anemia patients and identified similar deregulations of important stemness genes in both cell populations. In summary, we established a novel way of Thpo/Mpl inhibition in the adult mouse and performed in depth analysis of the phenotype including gene expression profiling.

  10. Inhibition of Thrombopoietin/Mpl Signaling in Adult Hematopoiesis Identifies New Candidates for Hematopoietic Stem Cell Maintenance

    PubMed Central

    Schwarzer, Adrian; Kamp, Christel; Brugman, Martijn H.; Breuer, Daniel C.; Büsche, Guntram; Baum, Christopher; Modlich, Ute

    2015-01-01

    Thrombopoietin (Thpo) signals via its receptor Mpl and regulates megakaryopoiesis, hematopoietic stem cell (HSC) maintenance and post-transplant expansion. Mpl expression is tightly controlled and deregulation of Thpo/Mpl-signaling is linked to hematological disorders. Here, we constructed an intracellular-truncated, signaling-deficient Mpl protein which is presented on the cell surface (dnMpl). The transplantation of bone marrow cells retrovirally transduced to express dnMpl into wildtype mice induced thrombocytopenia, and a progressive loss of HSC. The aplastic BM allowed the engraftment of a second BM transplant without further conditioning. Functional analysis of the truncated Mpl in vitro and in vivo demonstrated no internalization after Thpo binding and the inhibition of Thpo/Mpl-signaling in wildtype cells due to dominant-negative (dn) effects by receptor competition with wildtype Mpl for Thpo binding. Intracellular inhibition of Mpl could be excluded as the major mechanism by the use of a constitutive-dimerized dnMpl. To further elucidate the molecular changes induced by Thpo/Mpl-inhibition on the HSC-enriched cell population in the BM, we performed gene expression analysis of Lin-Sca1+cKit+ (LSK) cells isolated from mice transplanted with dnMpl transduced BM cells. The gene expression profile supported the exhaustion of HSC due to increased cell cycle progression and identified new and known downstream effectors of Thpo/Mpl-signaling in HSC (namely TIE2, ESAM1 and EPCR detected on the HSC-enriched LSK cell population). We further compared gene expression profiles in LSK cells of dnMpl mice with human CD34+ cells of aplastic anemia patients and identified similar deregulations of important stemness genes in both cell populations. In summary, we established a novel way of Thpo/Mpl inhibition in the adult mouse and performed in depth analysis of the phenotype including gene expression profiling. PMID:26147434

  11. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the up-regulation of metaplasia markers in the stomach

    PubMed Central

    Sousa, Josane F.; Nam, Ki Taek; Petersen, Christine P.; Lee, Hyuk-Joon; Yang, Han-Kwang; Kim, Woo Ho; Goldenring, James R.

    2016-01-01

    Objective Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. Design We performed miRNA profiling using a qRT-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. Results We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were down-regulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by down-regulation of NR2F2. Conclusion The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia. PMID:25800782

  12. Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine.

    PubMed

    Glass, Leslie L; Calero-Nieto, Fernando J; Jawaid, Wajid; Larraufie, Pierre; Kay, Richard G; Göttgens, Berthold; Reimann, Frank; Gribble, Fiona M

    2017-10-01

    To identify sub-populations of intestinal preproglucagon-expressing (PPG) cells producing Glucagon-like Peptide-1, and their associated expression profiles of sensory receptors, thereby enabling the discovery of therapeutic strategies that target these cell populations for the treatment of diabetes and obesity. We performed single cell RNA sequencing of PPG-cells purified by flow cytometry from the upper small intestine of 3 GLU-Venus mice. Cells from 2 mice were sequenced at low depth, and from the third mouse at high depth. High quality sequencing data from 234 PPG-cells were used to identify clusters by tSNE analysis. qPCR was performed to compare the longitudinal and crypt/villus locations of cluster-specific genes. Immunofluorescence and mass spectrometry were used to confirm protein expression. PPG-cells formed 3 major clusters: a group with typical characteristics of classical L-cells, including high expression of Gcg and Pyy (comprising 51% of all PPG-cells); a cell type overlapping with Gip-expressing K-cells (14%); and a unique cluster expressing Tph1 and Pzp that was predominantly located in proximal small intestine villi and co-produced 5-HT (35%). Expression of G-protein coupled receptors differed between clusters, suggesting the cell types are differentially regulated and would be differentially targetable. Our findings support the emerging concept that many enteroendocrine cell populations are highly overlapping, with individual cells producing a range of peptides previously assigned to distinct cell types. Different receptor expression profiles across the clusters highlight potential drug targets to increase gut hormone secretion for the treatment of diabetes and obesity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Expression profiling identifies novel Hh/Gli regulated genes in developing zebrafish embryos.

    PubMed Central

    Bergeron, Sadie A.; Milla, Luis A.; Villegas, Rosario; Shen, Meng-Chieh; Burgess, Shawn M.; Allende, Miguel L.; Karlstrom, Rolf O.; Palma, Verónica

    2008-01-01

    The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Mis-regulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants have been identified affecting different components of the Hh/Gli signaling system. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified several known (e.g. ptc1 and nkx2.2a) as well as a large number of novel Hh regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of mis-regulation during tumorogenesis. PMID:18055165

  14. MicroRNA Expression Profiling to Identify and Validate Reference Genes for the Relative Quantification of microRNA in Rectal Cancer.

    PubMed

    Eriksen, Anne Haahr Mellergaard; Andersen, Rikke Fredslund; Pallisgaard, Niels; Sørensen, Flemming Brandt; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    MicroRNAs (miRNAs) play important roles in regulating biological processes at the post-transcriptional level. Deregulation of miRNAs has been observed in cancer, and miRNAs are being investigated as potential biomarkers regarding diagnosis, prognosis and prediction in cancer management. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used, when measuring miRNA expression. Appropriate normalisation of RT-qPCR data is important to ensure reliable results. The aim of the present study was to identify stably expressed miRNAs applicable as normaliser candidates in future studies of miRNA expression in rectal cancer. We performed high-throughput miRNA profiling (OpenArray®) on ten pairs of laser micro-dissected rectal cancer tissue and adjacent stroma. A global mean expression normalisation strategy was applied to identify the most stably expressed miRNAs for subsequent validation. In the first validation experiment, a panel of miRNAs were analysed on 25 pairs of micro dissected rectal cancer tissue and adjacent stroma. Subsequently, the same miRNAs were analysed in 28 pairs of rectal cancer tissue and normal rectal mucosa. From the miRNA profiling experiment, miR-645, miR-193a-5p, miR-27a and let-7g were identified as stably expressed, both in malignant and stromal tissue. In addition, NormFinder confirmed high expression stability for the four miRNAs. In the RT-qPCR based validation experiments, no significant difference between tumour and stroma/normal rectal mucosa was detected for the mean of the normaliser candidates miR-27a, miR-193a-5p and let-7g (first validation P = 0.801, second validation P = 0.321). MiR-645 was excluded from the data analysis, because it was undetected in 35 of 50 samples (first validation) and in 24 of 56 samples (second validation), respectively. Significant difference in expression level of RNU6B was observed between tumour and adjacent stromal (first validation), and between tumour and normal rectal mucosa (second validation). We recommend the mean expression of miR-27a, miR-193a-5p and let-7g as normalisation factor, when performing miRNA expression analyses by RT-qPCR on rectal cancer tissue.

  15. Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods.

    PubMed

    Wang, Liming; Zhu, L; Luan, R; Wang, L; Fu, J; Wang, X; Sui, L

    2016-10-10

    Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM.

  16. Analyzing gene expression profiles in dilated cardiomyopathy via bioinformatics methods

    PubMed Central

    Wang, Liming; Zhu, L.; Luan, R.; Wang, L.; Fu, J.; Wang, X.; Sui, L.

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by ventricular dilatation, and it is a common cause of heart failure and cardiac transplantation. This study aimed to explore potential DCM-related genes and their underlying regulatory mechanism using methods of bioinformatics. The gene expression profiles of GSE3586 were downloaded from Gene Expression Omnibus database, including 15 normal samples and 13 DCM samples. The differentially expressed genes (DEGs) were identified between normal and DCM samples using Limma package in R language. Pathway enrichment analysis of DEGs was then performed. Meanwhile, the potential transcription factors (TFs) and microRNAs (miRNAs) of these DEGs were predicted based on their binding sequences. In addition, DEGs were mapped to the cMap database to find the potential small molecule drugs. A total of 4777 genes were identified as DEGs by comparing gene expression profiles between DCM and control samples. DEGs were significantly enriched in 26 pathways, such as lymphocyte TarBase pathway and androgen receptor signaling pathway. Furthermore, potential TFs (SP1, LEF1, and NFAT) were identified, as well as potential miRNAs (miR-9, miR-200 family, and miR-30 family). Additionally, small molecules like isoflupredone and trihexyphenidyl were found to be potential therapeutic drugs for DCM. The identified DEGs (PRSS12 and FOXG1), potential TFs, as well as potential miRNAs, might be involved in DCM. PMID:27737314

  17. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    PubMed

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  18. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    PubMed Central

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  19. OP17MICRORNA PROFILING USING SMALL RNA-SEQ IN PAEDIATRIC LOW GRADE GLIOMAS

    PubMed Central

    Jeyapalan, Jennie N.; Jones, Tania A.; Tatevossian, Ruth G.; Qaddoumi, Ibrahim; Ellison, David W.; Sheer, Denise

    2014-01-01

    INTRODUCTION: MicroRNAs regulate gene expression by targeting mRNAs for translational repression or degradation at the post-transcriptional level. In paediatric low-grade gliomas a few key genetic mutations have been identified, including BRAF fusions, FGFR1 duplications and MYB rearrangements. Our aim in the current study is to profile aberrant microRNA expression in paediatric low-grade gliomas and determine the role of epigenetic changes in the aetiology and behaviour of these tumours. METHOD: MicroRNA profiling of tumour samples (6 pilocytic, 2 diffuse, 2 pilomyxoid astrocytomas) and normal brain controls (4 adult normal brain samples and a primary glial progenitor cell-line) was performed using small RNA sequencing. Bioinformatic analysis included sequence alignment, analysis of the number of reads (CPM, counts per million) and differential expression. RESULTS: Sequence alignment identified 695 microRNAs, whose expression was compared in tumours v. normal brain. PCA and hierarchical clustering showed separate groups for tumours and normal brain. Computational analysis identified approximately 400 differentially expressed microRNAs in the tumours compared to matched location controls. Our findings will then be validated and integrated with extensive genetic and epigenetic information we have previously obtained for the full tumour cohort. CONCLUSION: We have identified microRNAs that are differentially expressed in paediatric low-grade gliomas. As microRNAs are known to target genes involved in the initiation and progression of cancer, they provide critical information on tumour pathogenesis and are an important class of biomarkers.

  20. Long Noncoding RNA Profiling from Fasciola Gigantica Excretory/Secretory Product-Induced M2 to M1 Macrophage Polarization.

    PubMed

    Luo, Honglin; Zhang, Yaoyao; Sheng, Zhaoan; Luo, Tao; Chen, Jie; Liu, Junjie; Wang, Huifeng; Chen, Miao; Shi, Yunliang; Li, Lequn

    2018-05-22

    Long noncoding RNAs (lncRNAs) are well known regulators of gene expression that play essential roles in macrophage activation and polarization. However, the role of lncRNA in Fasciola gigantica excretory/secretory products (ESP)-induced M2 polarization into M1 macrophages is unclear. Herein, we performed lncRNA profiling of lncRNAs and mRNAs during the ESP-induced macrophage polarization process. F. gigantica ESP was used to induce peritoneal cavity M2 macrophages in BALB/c mice (5-6 weeks old) in vivo, and these cells were subsequently isolated and stimulated with IFN-γ + LPS to induce M1 cells in vitro. LncRNA and mRNA profiling was performed via microarray at the end of both polarization stages. In total, 2,844 lncRNAs (1,579 upregulated and 1,265 downregulated) and 1,782 mRNAs (789 upregulated and 993 downregulated) were differentially expressed in M2 macrophages compared to M1 macrophages, and six lncRNAs were identified during polarization. We selected 34 differentially expressed lncRNAs and mRNAs to validate the results of microarray analysis using quantitative real-time PCR (qPCR). Pathway and Gene Ontology (GO) analyses demonstrated that these altered transcripts were involved in multiple biological processes, particularly peptidase activity and carbohydrate metabolism. Furthermore, coding and non-coding gene (CNC) and mRNA-related ceRNA network analyses were conducted to predict lncRNA expression trends and the potential target genes of these lncRNAs and mRNAs. Moreover, we determined that four lncRNAs and four mRNAs might participate in F. gigantica ESP-induced M2 polarization into M1 macrophages. This study illustrates the basic profiling of lncRNAs and mRNAs during F. gigantica ESP-induced M2 polarization into M1 macrophages and deepens our understanding of the mechanism underlying this process. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Representing high throughput expression profiles via perturbation barcodes reveals compound targets.

    PubMed

    Filzen, Tracey M; Kutchukian, Peter S; Hermes, Jeffrey D; Li, Jing; Tudor, Matthew

    2017-02-01

    High throughput mRNA expression profiling can be used to characterize the response of cell culture models to perturbations such as pharmacologic modulators and genetic perturbations. As profiling campaigns expand in scope, it is important to homogenize, summarize, and analyze the resulting data in a manner that captures significant biological signals in spite of various noise sources such as batch effects and stochastic variation. We used the L1000 platform for large-scale profiling of 978 representative genes across thousands of compound treatments. Here, a method is described that uses deep learning techniques to convert the expression changes of the landmark genes into a perturbation barcode that reveals important features of the underlying data, performing better than the raw data in revealing important biological insights. The barcode captures compound structure and target information, and predicts a compound's high throughput screening promiscuity, to a higher degree than the original data measurements, indicating that the approach uncovers underlying factors of the expression data that are otherwise entangled or masked by noise. Furthermore, we demonstrate that visualizations derived from the perturbation barcode can be used to more sensitively assign functions to unknown compounds through a guilt-by-association approach, which we use to predict and experimentally validate the activity of compounds on the MAPK pathway. The demonstrated application of deep metric learning to large-scale chemical genetics projects highlights the utility of this and related approaches to the extraction of insights and testable hypotheses from big, sometimes noisy data.

  2. Representing high throughput expression profiles via perturbation barcodes reveals compound targets

    PubMed Central

    Kutchukian, Peter S.; Li, Jing; Tudor, Matthew

    2017-01-01

    High throughput mRNA expression profiling can be used to characterize the response of cell culture models to perturbations such as pharmacologic modulators and genetic perturbations. As profiling campaigns expand in scope, it is important to homogenize, summarize, and analyze the resulting data in a manner that captures significant biological signals in spite of various noise sources such as batch effects and stochastic variation. We used the L1000 platform for large-scale profiling of 978 representative genes across thousands of compound treatments. Here, a method is described that uses deep learning techniques to convert the expression changes of the landmark genes into a perturbation barcode that reveals important features of the underlying data, performing better than the raw data in revealing important biological insights. The barcode captures compound structure and target information, and predicts a compound’s high throughput screening promiscuity, to a higher degree than the original data measurements, indicating that the approach uncovers underlying factors of the expression data that are otherwise entangled or masked by noise. Furthermore, we demonstrate that visualizations derived from the perturbation barcode can be used to more sensitively assign functions to unknown compounds through a guilt-by-association approach, which we use to predict and experimentally validate the activity of compounds on the MAPK pathway. The demonstrated application of deep metric learning to large-scale chemical genetics projects highlights the utility of this and related approaches to the extraction of insights and testable hypotheses from big, sometimes noisy data. PMID:28182661

  3. Different HER2 protein expression profiles aid in the histologic differential diagnosis between urothelial carcinoma in situ (CIS) and non-CIS conditions (dysplasia and reactive atypia) of the urinary bladder mucosa.

    PubMed

    Gunia, Sven; Koch, Stefan; Hakenberg, Oliver W; May, Matthias; Kakies, Christoph; Erbersdobler, Andreas

    2011-12-01

    We evaluated HER2 expression profiles in 32 carcinoma in situ (CIS) and 31 non-CIS conditions (5 dysplasia and 26 reactive atypia) of the urinary bladder mucosa by applying breast cancer scoring rules. In situ hybridization was performed on tissue microarrays to assess HER2 gene amplification status. Our immunoprofiling data disclosed moderate to strong HER2 expression in CIS, including the basal layer of the urothelium, and absent to weak HER2 expression in non-CIS conditions. From the histologic differential diagnostic standpoint, immunostaining for HER2 protein represents a useful adjunct to aid in the delineation between CIS and non-CIS conditions of the bladder mucosa. Pathogenically, aberrant HER2 protein expression in CIS seems to be more commonly associated with polysomy than with gene amplification. From a therapeutic viewpoint, prospective clinical studies should investigate the potential benefit of HER2-targeted therapies in CIS, particularly in cases unresponsive to conventional therapeutic regimens.

  4. Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs

    PubMed Central

    Wu, Miaomiao; Liao, Peng; Deng, Dun; Liu, Gang; Wen, Qingqi; Wang, Yongfei; Qiu, Wei; Liu, Yan; Wu, Xingli; Ren, Wenkai; Tan, Bie; Chen, Minghong; Xiao, Hao; Wu, Li; Li, Tiejun; Nyachoti, Charles M.; Adeola, Olayiwola; Yin, Yulong

    2014-01-01

    The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins. PMID:25405987

  5. Investigating pianists' individuality in the performance of five timbral nuances through patterns of articulation, touch, dynamics, and pedaling

    PubMed Central

    Bernays, Michel; Traube, Caroline

    2014-01-01

    Timbre is an essential expressive feature in piano performance. Concert pianists use a vast palette of timbral nuances to color their performances at the microstructural level. Although timbre is generally envisioned in the pianistic community as an abstract concept carried through an imaged vocabulary, performers may share some common strategies of timbral expression in piano performance. Yet there may remain further leeway for idiosyncratic processes in the production of piano timbre nuances. In this study, we examined the patterns of timbral expression in performances by four expert pianists. Each pianist performed four short pieces, each with five different timbral intentions (bright, dark, dry, round, and velvety). The performances were recorded with the high-accuracy Bösendorfer CEUS system. Fine-grained performance features of dynamics, touch, articulation and pedaling were extracted. Reduced PCA performance spaces and descriptive performance portraits confirmed that pianists exhibited unique, specific profiles for different timbral intentions, derived from underlying traits of general individuality, while sharing some broad commonalities of dynamics and articulation for each timbral intention. These results confirm that pianists' abstract notions of timbre correspond to reliable patterns of performance technique. Furthermore, these effects suggest that pianists can express individual styles while complying with specific timbral intentions. PMID:24624099

  6. Impact of Ischemia and Procurement Conditions on Gene Expression in Renal Cell Carcinoma

    PubMed Central

    Liu, Nick W.; Sanford, Thomas; Srinivasan, Ramaprasad; Liu, Jack L.; Khurana, Kiranpreet; Aprelikova, Olga; Valero, Vladimir; Bechert, Charles; Worrell, Robert; Pinto, Peter A.; Yang, Youfeng; Merino, Maria; Linehan, W. Marston; Bratslavsky, Gennady

    2013-01-01

    Purpose Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma. Experimental Design Ten renal tumors were resected without renal hilar clamping from 10 patients with renal clear cell carcinoma. Immediately after tumor resection, a piece of tumor was snap frozen. Remaining tumor samples were stored at 4C, 22C and 37C and frozen at 5, 30, 60, 120, and 240 minutes. Histopathologic evaluation was performed on all tissue samples, and only those with greater than 80% tumor were selected for further analysis. RNA integrity was confirmed by electropherograms and quantitated using RIN index. Altered gene expression was assessed by paired, two-sample t-test between the zero time point and aliquots from various conditions obtained from the same tumor. Results One hundred and forty microarrays were performed. Some RNA degradation was observed 240 mins after resection at 37C. The expression of over 4,000 genes was significantly altered by ischemia times or storage conditions. The greatest gene expression changes were observed with longer ischemia time and warmer tissue procurement conditions. Conclusion RNA from kidney cancer remains intact for up to 4 hours post surgical resection regardless of storage conditions. Despite excellent RNA preservation, time after resection and procurement conditions significantly influence gene expression profiles. Meticulous attention to pre-acquisition variables is of paramount importance for accurate tumor profiling. PMID:23136194

  7. Developmental Progression in the Coral Acropora digitifera Is Controlled by Differential Expression of Distinct Regulatory Gene Networks

    PubMed Central

    Reyes-Bermudez, Alejandro; Villar-Briones, Alejandro; Ramirez-Portilla, Catalina; Hidaka, Michio; Mikheyev, Alexander S.

    2016-01-01

    Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis during Acropora digitifera’s development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression in A. digitifera is regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages. PMID:26941230

  8. Distinctive gene expression profiles characterize donor biopsies from HCV-positive kidney donors.

    PubMed

    Mas, Valeria R; Archer, Kellie J; Suh, Lacey; Scian, Mariano; Posner, Marc P; Maluf, Daniel G

    2010-12-15

    Because of the shortage of organs for transplantation, procurement of kidneys from extended criteria donors is inevitable. Frequently, donors infected with hepatitis C virus (HCV) are used. To elucidate an initial compromise of molecular pathways in HCV graft, gene expression profiles were evaluated. Twenty-four donor allograft biopsies (n=12 HCV positive (+) and n=12 HCV negative (-)) were collected at preimplantation time and profiled using microarrays. Donors were age, race, gender, and cold and warm ischemia time matched between groups. Probe level data were read into the R programming environment using the affy Bioconductor package, and the robust multiarray average method was used to obtain probe set expression summaries. To identify probe sets exhibiting differential expression, a two sample t test was performed. Molecular and biologic functions were analyzed using Interaction Networks and Functional Analysis. Fifty-eight probe sets were differentially expressed between HCV (+) versus HCV (-) donors (P<0.001). The molecular functions associated with the two top scored networks from the analysis of the differentially expressed genes were connective tissue development and function and tissue morphology (score 34), cell death, cell signaling, cellular assembly, and organization (score 32). Among the differentially affected top canonical pathways, we found the role of RIG1-like receptors in antiviral innate immunity (P<0.001), natural killer cell signaling (P=0.007), interleukin-8 signaling (P=0.048), interferon signaling (P=0.0 11; INFA21, INFGR1, and MED14), ILK signaling (P=0.001), and apoptosis signaling. A unique gene expression pattern was identified in HCV (+) kidney grafts. Innate immune system and inflammatory pathways were the most affected.

  9. Discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2) is a novel biomarker of myxofibrosarcoma invasion identified by global protein expression profiling.

    PubMed

    Kikuta, Kazutaka; Kubota, Daisuke; Yoshida, Akihiko; Qiao, Zhiwei; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Chuman, Hirokazu; Kawai, Akira; Kondo, Tadashi

    2017-09-01

    Myxofibrosarcoma (MFS) is a mesenchymal malignancy characterized by frequent recurrence even after radical wide resection. To optimize therapy for MFS patients, we aimed to identify candidate tissue biomarkers of MFS invasion potential. Invasion characteristics of MFS were evaluated by magnetic resonance imaging and protein expression profiling of primary tumor tissues performed using two-dimensional difference gel electrophoresis (2D-DIGE). Protein expression profiles were compared between invasive and non-invasive tumors surgically resected from 11 patients. Among the 3453 protein spots observed, 59 demonstrated statistically significant difference in intensity (≥2-fold) between invasive and non-invasive tumors (p<0.01 by Wilkoxon test), and were identified by mass spectrometry as 47 individual proteins. Among them, we further focused on discoidin, CUB and LCCL domain-containing protein 2 (DCBLD2), a receptor tyrosine kinase with aberrant expression in malignant tumors. Immunohistochemistry analysis of 21 additional MFS cases revealed that higher DCBLD2 expression was significantly associated with invasive properties of tumor cells. DCBLD2 sensitivity and specificity, and positive and negative predictive values for MFS invasion were 69.2%, 87.5%, 90%, and 63.6%, respectively. The expression level of DCBLD2 was consistent in different portions of tumor tissues. Thus, DCBLD2 expression can be a useful biomarker to evaluate invasive properties of MFS. Further validation studies based on multi-institutional collaboration and comprehensive analysis of DCBLD2 biological functions in MFS are required to confirm its prognostic utility for clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dissociation between facial and bodily expressions in emotion recognition: A case study.

    PubMed

    Leiva, Samanta; Margulis, Laura; Micciulli, Andrea; Ferreres, Aldo

    2017-12-21

    Existing single-case studies have reported deficit in recognizing basic emotions through facial expression and unaffected performance with body expressions, but not the opposite pattern. The aim of this paper is to present a case study with impaired emotion recognition through body expressions and intact performance with facial expressions. In this single-case study we assessed a 30-year-old patient with autism spectrum disorder, without intellectual disability, and a healthy control group (n = 30) with four tasks of basic and complex emotion recognition through face and body movements, and two non-emotional control tasks. To analyze the dissociation between facial and body expressions, we used Crawford and Garthwaite's operational criteria, and we compared the patient and the control group performance with a modified one-tailed t-test designed specifically for single-case studies. There were no statistically significant differences between the patient's and the control group's performances on the non-emotional body movement task or the facial perception task. For both kinds of emotions (basic and complex) when the patient's performance was compared to the control group's, statistically significant differences were only observed for the recognition of body expressions. There were no significant differences between the patient's and the control group's correct answers for emotional facial stimuli. Our results showed a profile of impaired emotion recognition through body expressions and intact performance with facial expressions. This is the first case study that describes the existence of this kind of dissociation pattern between facial and body expressions of basic and complex emotions.

  11. Cell and Tissue Microarray Technologies for Protein and Nucleic Acid Expression Profiling

    PubMed Central

    Cardano, Marina; Diaferia, Giuseppe R.; Falavigna, Maurizio; Spinelli, Chiara C.; Sessa, Fausto; DeBlasio, Pasquale

    2013-01-01

    Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform. PMID:23172795

  12. The Application of Gene Expression Profiling in Predictions of Occult Lymph Node Metastasis in Colorectal Cancer Patients

    PubMed Central

    Peyravian, Noshad; Larki, Pegah; Gharib, Ehsan; Nazemalhosseini-Mojarad, Ehsan; Anaraki, Fakhrosadate; Young, Chris; McClellan, James; Ashrafian Bonab, Maziar; Asadzadeh-Aghdaei, Hamid; Zali, Mohammad Reza

    2018-01-01

    A key factor in determining the likely outcome for a patient with colorectal cancer is whether or not the tumour has metastasised to the lymph nodes—information which is also important in assessing any possibilities of lymph node resection so as to improve survival. In this review we perform a wide-range assessment of literature relating to recent developments in gene expression profiling (GEP) of the primary tumour, to determine their utility in assessing node status. A set of characteristic genes seems to be involved in the prediction of lymph node metastasis (LNM) in colorectal patients. Hence, GEP is applicable in personalised/individualised/tailored therapies and provides insights into developing novel therapeutic targets. Not only is GEP useful in prediction of LNM, but it also allows classification based on differences such as sample size, target gene expression, and examination method. PMID:29498671

  13. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    PubMed

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival.

    PubMed

    Noorbakhsh, Farshid; Ramachandran, Rithwik; Barsby, Nicola; Ellestad, Kristofor K; LeBlanc, Andrea; Dickie, Peter; Baker, Glen; Hollenberg, Morley D; Cohen, Eric A; Power, Christopher

    2010-06-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules, which are known to regulate gene expression in physiological and pathological conditions. miRNA profiling was performed using brain tissue from patients with HIV encephalitis (HIVE), a neuroinflammatory/degenerative disorder caused by HIV infection of the brain. Microarray analysis showed differential expression of multiple miRNAs in HIVE compared to control brains. Target prediction and gene ontology enrichment analysis disclosed targeting of several gene families/biological processes by differentially expressed miRNAs (DEMs), with cell death-related genes, including caspase-6, showing a bias toward down-regulated DEMs. Consistent with the miRNA data, HIVE brains exhibited higher levels of caspase-6 transcripts compared with control patients. Immunohistochemical analysis showed localization of the cleaved form of caspase-6 in astrocytes in HIVE brain sections. Exposure of cultured human primary astrocytes to HIV viral protein R (Vpr) induced p53 up-regulation, loss of mitochondrial membrane potential, and caspase-6 activation followed by cell injury. Transgenic mice, expressing Vpr in microglial cells, demonstrated astrocyte apoptosis in brain, which was associated with caspase-6 activation and neurobehavioral abnormalities. Overall, these data point to previously unrecognized alterations in miRNA profile in the brain during HIV infection, which contribute to cell death through dysregulation of cell death machinery.

  15. Gene Expression Profiling in Pachyonychia Congenita Skin

    PubMed Central

    Cao, Yu-An; Hickerson, Robyn P.; Seegmiller, Brandon L.; Grapov, Dmitry; Gross, Maren M.; Bessette, Marc R.; Phinney, Brett S.; Flores, Manuel A.; Speaker, Tycho J.; Vermeulen, Annaleen; Bravo, Albert A.; Bruckner, Anna L.; Milstone, Leonard M.; Schwartz, Mary E.; Rice, Robert H.; Kaspar, Roger L.

    2015-01-01

    Background Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. Objective To better understand PC pathogenesis. Methods RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. Results A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. Conclusion Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics. PMID:25656049

  16. Behavioral profiling as a translational approach in an animal model of posttraumatic stress disorder.

    PubMed

    Ardi, Ziv; Albrecht, Anne; Richter-Levin, Alon; Saha, Rinki; Richter-Levin, Gal

    2016-04-01

    Diagnosis of psychiatric disorders in humans is based on comparing individuals to the normal population. However, many animal models analyze averaged group effects, thus compromising their translational power. This discrepancy is particularly relevant in posttraumatic stress disorder (PTSD), where only a minority develop the disorder following a traumatic experience. In our PTSD rat model, we utilize a novel behavioral profiling approach that allows the classification of affected and unaffected individuals in a trauma-exposed population. Rats were exposed to underwater trauma (UWT) and four weeks later their individual performances in the open field and elevated plus maze were compared to those of the control group, allowing the identification of affected and resilient UWT-exposed rats. Behavioral profiling revealed that only a subset of the UWT-exposed rats developed long-lasting behavioral symptoms. The proportion of affected rats was further enhanced by pre-exposure to juvenile stress, a well-described risk factor of PTSD. For a biochemical proof of concept we analyzed the expression levels of the GABAA receptor subunits α1 and α2 in the ventral, dorsal hippocampus and basolateral amygdala. Increased expression, mainly of α1, was observed in ventral but not dorsal hippocampus of exposed animals, which would traditionally be interpreted as being associated with the exposure-resultant psychopathology. However, behavioral profiling revealed that this increased expression was confined to exposed-unaffected individuals, suggesting a resilience-associated expression regulation. The results provide evidence for the importance of employing behavioral profiling in animal models of PTSD, in order to better understand the neural basis of stress vulnerability and resilience. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    PubMed

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  18. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments

    PubMed Central

    2013-01-01

    Background High-throughput RNA sequencing (RNA-seq) offers unprecedented power to capture the real dynamics of gene expression. Experimental designs with extensive biological replication present a unique opportunity to exploit this feature and distinguish expression profiles with higher resolution. RNA-seq data analysis methods so far have been mostly applied to data sets with few replicates and their default settings try to provide the best performance under this constraint. These methods are based on two well-known count data distributions: the Poisson and the negative binomial. The way to properly calibrate them with large RNA-seq data sets is not trivial for the non-expert bioinformatics user. Results Here we show that expression profiles produced by extensively-replicated RNA-seq experiments lead to a rich diversity of count data distributions beyond the Poisson and the negative binomial, such as Poisson-Inverse Gaussian or Pólya-Aeppli, which can be captured by a more general family of count data distributions called the Poisson-Tweedie. The flexibility of the Poisson-Tweedie family enables a direct fitting of emerging features of large expression profiles, such as heavy-tails or zero-inflation, without the need to alter a single configuration parameter. We provide a software package for R called tweeDEseq implementing a new test for differential expression based on the Poisson-Tweedie family. Using simulations on synthetic and real RNA-seq data we show that tweeDEseq yields P-values that are equally or more accurate than competing methods under different configuration parameters. By surveying the tiny fraction of sex-specific gene expression changes in human lymphoblastoid cell lines, we also show that tweeDEseq accurately detects differentially expressed genes in a real large RNA-seq data set with improved performance and reproducibility over the previously compared methodologies. Finally, we compared the results with those obtained from microarrays in order to check for reproducibility. Conclusions RNA-seq data with many replicates leads to a handful of count data distributions which can be accurately estimated with the statistical model illustrated in this paper. This method provides a better fit to the underlying biological variability; this may be critical when comparing groups of RNA-seq samples with markedly different count data distributions. The tweeDEseq package forms part of the Bioconductor project and it is available for download at http://www.bioconductor.org. PMID:23965047

  19. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  20. CHESS (CgHExpreSS): a comprehensive analysis tool for the analysis of genomic alterations and their effects on the expression profile of the genome.

    PubMed

    Lee, Mikyung; Kim, Yangseok

    2009-12-16

    Genomic alterations frequently occur in many cancer patients and play important mechanistic roles in the pathogenesis of cancer. Furthermore, they can modify the expression level of genes due to altered copy number in the corresponding region of the chromosome. An accumulating body of evidence supports the possibility that strong genome-wide correlation exists between DNA content and gene expression. Therefore, more comprehensive analysis is needed to quantify the relationship between genomic alteration and gene expression. A well-designed bioinformatics tool is essential to perform this kind of integrative analysis. A few programs have already been introduced for integrative analysis. However, there are many limitations in their performance of comprehensive integrated analysis using published software because of limitations in implemented algorithms and visualization modules. To address this issue, we have implemented the Java-based program CHESS to allow integrative analysis of two experimental data sets: genomic alteration and genome-wide expression profile. CHESS is composed of a genomic alteration analysis module and an integrative analysis module. The genomic alteration analysis module detects genomic alteration by applying a threshold based method or SW-ARRAY algorithm and investigates whether the detected alteration is phenotype specific or not. On the other hand, the integrative analysis module measures the genomic alteration's influence on gene expression. It is divided into two separate parts. The first part calculates overall correlation between comparative genomic hybridization ratio and gene expression level by applying following three statistical methods: simple linear regression, Spearman rank correlation and Pearson's correlation. In the second part, CHESS detects the genes that are differentially expressed according to the genomic alteration pattern with three alternative statistical approaches: Student's t-test, Fisher's exact test and Chi square test. By successive operations of two modules, users can clarify how gene expression levels are affected by the phenotype specific genomic alterations. As CHESS was developed in both Java application and web environments, it can be run on a web browser or a local machine. It also supports all experimental platforms if a properly formatted text file is provided to include the chromosomal position of probes and their gene identifiers. CHESS is a user-friendly tool for investigating disease specific genomic alterations and quantitative relationships between those genomic alterations and genome-wide gene expression profiling.

  1. The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells

    PubMed Central

    Ghatge, Radhika P; Jacobsen, Britta M; Schittone, Stephanie A; Horwitz, Kathryn B

    2005-01-01

    Introduction Medroxyprogesterone acetate (MPA), the major progestin used for oral contraception and hormone replacement therapy, has been implicated in increased breast cancer risk. Is this risk due to its progestational or androgenic properties? To address this, we assessed the transcriptional effects of MPA as compared with those of progesterone and dihydrotestosterone (DHT) in human breast cancer cells. Method A new progesterone receptor-negative, androgen receptor-positive human breast cancer cell line, designated Y-AR, was engineered and characterized. Transcription assays using a synthetic promoter/reporter construct, as well as endogenous gene expression profiling comparing progesterone, MPA and DHT, were performed in cells either lacking or containing progesterone receptor and/or androgen receptor. Results In progesterone receptor-positive cells, MPA was found to be an effective progestin through both progesterone receptor isoforms in transient transcription assays. Interestingly, DHT signaled through progesterone receptor type B. Expression profiling of endogenous progesterone receptor-regulated genes comparing progesterone and MPA suggested that although MPA may be a somewhat more potent progestin than progesterone, it is qualitatively similar to progesterone. To address effects of MPA through androgen receptor, expression profiling was performed comparing progesterone, MPA and DHT using Y-AR cells. These studies showed extensive gene regulatory overlap between DHT and MPA through androgen receptor and none with progesterone. Interestingly, there was no difference between pharmacological MPA and physiological MPA, suggesting that high-dose therapeutic MPA may be superfluous. Conclusion Our comparison of the gene regulatory profiles of MPA and progesterone suggests that, for physiologic hormone replacement therapy, the actions of MPA do not mimic those of endogenous progesterone alone. Clinically, the complex pharmacology of MPA not only influences its side-effect profile; but it is also possible that the increased breast cancer risk and/or the therapeutic efficacy of MPA in cancer treatment is in part mediated by androgen receptor. PMID:16457685

  2. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.

    PubMed

    Lim, Daniel A; Suárez-Fariñas, Mayte; Naef, Felix; Hacker, Coleen R; Menn, Benedicte; Takebayashi, Hirohide; Magnasco, Marcelo; Patil, Nila; Alvarez-Buylla, Arturo

    2006-01-01

    Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.

  3. Gene expression changes in chronic inflammatory demyelinating polyneuropathy skin biopsies.

    PubMed

    Puttini, Stefania; Panaite, Petrica-Adrian; Mermod, Nicolas; Renaud, Susanne; Steck, Andreas J; Kuntzer, Thierry

    2014-05-15

    Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease with no known biomarkers for diagnosing the disease or assessing its prognosis. We performed transcriptional profiling microarray analysis on skin punch biopsies from 20 CIDP patients and 17 healthy controls to identify disease-associated gene expression changes. We demonstrate changes in expression of genes involved in immune and chemokine regulation, growth and repair. We also found a combination of two upregulated genes that can be proposed as a novel biomarker of the disorder. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    PubMed Central

    2011-01-01

    Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046

  5. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer.

    PubMed

    Peraldo-Neia, Caterina; Migliardi, Giorgia; Mello-Grand, Maurizia; Montemurro, Filippo; Segir, Raffaella; Pignochino, Ymera; Cavalloni, Giuliana; Torchio, Bruno; Mosso, Luciano; Chiorino, Giovanna; Aglietta, Massimo

    2011-01-25

    Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.

  6. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.

    PubMed

    He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang

    2017-11-06

    Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  7. CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses.

    PubMed

    Proost, Sebastian; Mutwil, Marek

    2018-05-01

    The recent accumulation of gene expression data in the form of RNA sequencing creates unprecedented opportunities to study gene regulation and function. Furthermore, comparative analysis of the expression data from multiple species can elucidate which functional gene modules are conserved across species, allowing the study of the evolution of these modules. However, performing such comparative analyses on raw data is not feasible for many biologists. Here, we present CoNekT (Co-expression Network Toolkit), an open source web server, that contains user-friendly tools and interactive visualizations for comparative analyses of gene expression data and co-expression networks. These tools allow analysis and cross-species comparison of (i) gene expression profiles; (ii) co-expression networks; (iii) co-expressed clusters involved in specific biological processes; (iv) tissue-specific gene expression; and (v) expression profiles of gene families. To demonstrate these features, we constructed CoNekT-Plants for green alga, seed plants and flowering plants (Picea abies, Chlamydomonas reinhardtii, Vitis vinifera, Arabidopsis thaliana, Oryza sativa, Zea mays and Solanum lycopersicum) and thus provide a web-tool with the broadest available collection of plant phyla. CoNekT-Plants is freely available from http://conekt.plant.tools, while the CoNekT source code and documentation can be found at https://github.molgen.mpg.de/proost/CoNekT/.

  8. Molecular profiling of single circulating tumor cells from lung cancer patients.

    PubMed

    Park, Seung-Min; Wong, Dawson J; Ooi, Chin Chun; Kurtz, David M; Vermesh, Ophir; Aalipour, Amin; Suh, Susie; Pian, Kelsey L; Chabon, Jacob J; Lee, Sang Hun; Jamali, Mehran; Say, Carmen; Carter, Justin N; Lee, Luke P; Kuschner, Ware G; Schwartz, Erich J; Shrager, Joseph B; Neal, Joel W; Wakelee, Heather A; Diehn, Maximilian; Nair, Viswam S; Wang, Shan X; Gambhir, Sanjiv S

    2016-12-27

    Circulating tumor cells (CTCs) are established cancer biomarkers for the "liquid biopsy" of tumors. Molecular analysis of single CTCs, which recapitulate primary and metastatic tumor biology, remains challenging because current platforms have limited throughput, are expensive, and are not easily translatable to the clinic. Here, we report a massively parallel, multigene-profiling nanoplatform to compartmentalize and analyze hundreds of single CTCs. After high-efficiency magnetic collection of CTC from blood, a single-cell nanowell array performs CTC mutation profiling using modular gene panels. Using this approach, we demonstrated multigene expression profiling of individual CTCs from non-small-cell lung cancer (NSCLC) patients with remarkable sensitivity. Thus, we report a high-throughput, multiplexed strategy for single-cell mutation profiling of individual lung cancer CTCs toward minimally invasive cancer therapy prediction and disease monitoring.

  9. Early diffusion of gene expression profiling in breast cancer patients associated with areas of high income inequality.

    PubMed

    Ponce, Ninez A; Ko, Michelle; Liang, Su-Ying; Armstrong, Joanne; Toscano, Michele; Chanfreau-Coffinier, Catherine; Haas, Jennifer S

    2015-04-01

    With the Affordable Care Act reducing coverage disparities, social factors could prominently determine where and for whom innovations first diffuse in health care markets. Gene expression profiling is a potentially cost-effective innovation that guides chemotherapy decisions in early-stage breast cancer, but adoption has been uneven across the United States. Using a sample of commercially insured women, we evaluated whether income inequality in metropolitan areas was associated with receipt of gene expression profiling during its initial diffusion in 2006-07. In areas with high income inequality, gene expression profiling receipt was higher than elsewhere, but it was associated with a 10.6-percentage-point gap between high- and low-income women. In areas with low rates of income inequality, gene expression profiling receipt was lower, with no significant differences by income. Even among insured women, income inequality may indirectly shape diffusion of gene expression profiling, with benefits accruing to the highest-income patients in the most unequal places. Policies reducing gene expression profiling disparities should address low-inequality areas and, in unequal places, practice settings serving low-income patients. Project HOPE—The People-to-People Health Foundation, Inc.

  10. Comparison of growth-related traits and gene expression profiles between the offspring of neomale (XX) and normal male (XY) rainbow trout.

    PubMed

    Kocmarek, Andrea L; Ferguson, Moira M; Danzmann, Roy G

    2015-04-01

    All-female lines of fish are created by crossing sex reversed (XX genotype) males with normal females. All-female lines avoid the deleterious phenotypic effects that are typical of precocious maturation in males. To determine whether all-female and mixed sex populations of rainbow trout (Oncorhynchus mykiss) differ in performance, we compared the growth and gene expression profiles in progeny groups produced by crossing a XX male and a XY male to the same five females. Body weight and length were measured in the resulting all-female (XX) and mixed sex (XX/XY) offspring groups. Microarray experiments with liver and white muscle were used to determine if the gene expression profiles of large and small XX offspring differ from those in large and small XX/XY offspring. We detected no significant differences in body length and weight between offspring groups but XX offspring were significantly less variable in the value of these traits. A large number of upregulated genes were shared between the large XX and large XX/XY offspring; the small XX and small XX/XY offspring also shared similar expression profiles. No GO category differences were seen in the liver or between the large XX and large XX/XY offspring in the muscle. The greatest differences between the small XX and small XX/XY offspring were in the genes assigned to the "small molecule metabolic process" and "cellular metabolic process" GO level 3 categories. Similarly, genes within these categories as well as the category "macromolecule metabolic process" were more highly expressed in small compared to large XX fish.

  11. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

    PubMed Central

    Wang, Kehua; Liu, Yanrong; Tian, Jinli; Huang, Kunyong; Shi, Tianran; Dai, Xiaoxia; Zhang, Wanjun

    2017-01-01

    Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants. PMID:28680431

  12. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less

  13. A gene profiling deconvolution approach to estimating immune cell composition from complex tissues.

    PubMed

    Chen, Shu-Hwa; Kuo, Wen-Yu; Su, Sheng-Yao; Chung, Wei-Chun; Ho, Jen-Ming; Lu, Henry Horng-Shing; Lin, Chung-Yen

    2018-05-08

    A new emerged cancer treatment utilizes intrinsic immune surveillance mechanism that is silenced by those malicious cells. Hence, studies of tumor infiltrating lymphocyte populations (TILs) are key to the success of advanced treatments. In addition to laboratory methods such as immunohistochemistry and flow cytometry, in silico gene expression deconvolution methods are available for analyses of relative proportions of immune cell types. Herein, we used microarray data from the public domain to profile gene expression pattern of twenty-two immune cell types. Initially, outliers were detected based on the consistency of gene profiling clustering results and the original cell phenotype notation. Subsequently, we filtered out genes that are expressed in non-hematopoietic normal tissues and cancer cells. For every pair of immune cell types, we ran t-tests for each gene, and defined differentially expressed genes (DEGs) from this comparison. Equal numbers of DEGs were then collected as candidate lists and numbers of conditions and minimal values for building signature matrixes were calculated. Finally, we used v -Support Vector Regression to construct a deconvolution model. The performance of our system was finally evaluated using blood biopsies from 20 adults, in which 9 immune cell types were identified using flow cytometry. The present computations performed better than current state-of-the-art deconvolution methods. Finally, we implemented the proposed method into R and tested extensibility and usability on Windows, MacOS, and Linux operating systems. The method, MySort, is wrapped as the Galaxy platform pluggable tool and usage details are available at https://testtoolshed.g2.bx.psu.edu/view/moneycat/mysort/e3afe097e80a .

  14. Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes.

    PubMed

    Daskalakis, Nikolaos P; Cohen, Hagit; Cai, Guiqing; Buxbaum, Joseph D; Yehuda, Rachel

    2014-09-16

    Delineating the molecular basis of individual differences in the stress response is critical to understanding the pathophysiology and treatment of posttraumatic stress disorder (PTSD). In this study, 7 d after predator-scent-stress (PSS) exposure, male and female rats were classified into vulnerable (i.e., "PTSD-like") and resilient (i.e., minimally affected) phenotypes on the basis of their performance on a variety of behavioral measures. Genome-wide expression profiling in blood and two limbic brain regions (amygdala and hippocampus), followed by quantitative PCR validation, was performed in these two groups of animals, as well as in an unexposed control group. Differentially expressed genes were identified in blood and brain associated with PSS-exposure and with distinct behavioral profiles postexposure. There was a small but significant between-tissue overlap (4-21%) for the genes associated with exposure-related individual differences, indicating convergent gene expression in both sexes. To uncover convergent signaling pathways across tissue and sex, upstream activated/deactivated transcription factors were first predicted for each tissue and then the respective pathways were identified. Glucocorticoid receptor (GR) signaling was the only convergent pathway associated with individual differences when using the most stringent statistical threshold. Corticosterone treatment 1 h after PSS-exposure prevented anxiety and hyperarousal 7 d later in both sexes, confirming the GR involvement in the PSS behavioral response. In conclusion, genes and pathways associated with extreme differences in the traumatic stress behavioral response can be distinguished from those associated with trauma exposure. Blood-based biomarkers can predict aspects of brain signaling. GR signaling is a convergent signaling pathway, associated with trauma-related individual differences in both sexes.

  15. GTA: a game theoretic approach to identifying cancer subnetwork markers.

    PubMed

    Farahmand, S; Goliaei, S; Ansari-Pour, N; Razaghi-Moghadam, Z

    2016-03-01

    The identification of genetic markers (e.g. genes, pathways and subnetworks) for cancer has been one of the most challenging research areas in recent years. A subset of these studies attempt to analyze genome-wide expression profiles to identify markers with high reliability and reusability across independent whole-transcriptome microarray datasets. Therefore, the functional relationships of genes are integrated with their expression data. However, for a more accurate representation of the functional relationships among genes, utilization of the protein-protein interaction network (PPIN) seems to be necessary. Herein, a novel game theoretic approach (GTA) is proposed for the identification of cancer subnetwork markers by integrating genome-wide expression profiles and PPIN. The GTA method was applied to three distinct whole-transcriptome breast cancer datasets to identify the subnetwork markers associated with metastasis. To evaluate the performance of our approach, the identified subnetwork markers were compared with gene-based, pathway-based and network-based markers. We show that GTA is not only capable of identifying robust metastatic markers, it also provides a higher classification performance. In addition, based on these GTA-based subnetworks, we identified a new bonafide candidate gene for breast cancer susceptibility.

  16. RNA-Stabilized Whole Blood Samples but Not Peripheral Blood Mononuclear Cells Can Be Stored for Prolonged Time Periods Prior to Transcriptome Analysis

    PubMed Central

    Debey-Pascher, Svenja; Hofmann, Andrea; Kreusch, Fatima; Schuler, Gerold; Schuler-Thurner, Beatrice; Schultze, Joachim L.; Staratschek-Jox, Andrea

    2011-01-01

    Microarray-based transcriptome analysis of peripheral blood as surrogate tissue has become an important approach in clinical implementations. However, application of gene expression profiling in routine clinical settings requires careful consideration of the influence of sample handling and RNA isolation methods on gene expression profile outcome. We evaluated the effect of different sample preservation strategies (eg, cryopreservation of peripheral blood mononuclear cells or freezing of PAXgene-stabilized whole blood samples) on gene expression profiles. Expression profiles obtained from cryopreserved peripheral blood mononuclear cells differed substantially from those of their nonfrozen counterpart samples. Furthermore, expression profiles in cryopreserved peripheral blood mononuclear cell samples were found to undergo significant alterations with increasing storage period, whereas long-term freezing of PAXgene RNA stabilized whole blood samples did not significantly affect stability of gene expression profiles. This report describes important technical aspects contributing toward the establishment of robust and reliable guidance for gene expression studies using peripheral blood and provides a promising strategy for reliable implementation in routine handling for diagnostic purposes. PMID:21704280

  17. Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children.

    PubMed

    Keustermans, Genoveva; van der Heijden, Laila B; Boer, Berlinda; Scholman, Rianne; Nuboer, Roos; Pasterkamp, Gerard; Prakken, Berent; de Jager, Wilco; Kalkhoven, Eric; Janse, Arieke J; Schipper, Henk S

    2017-01-01

    Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.

  18. Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis.

    PubMed

    Laffaire, Julien; Everhard, Sibille; Idbaih, Ahmed; Crinière, Emmanuelle; Marie, Yannick; de Reyniès, Aurelien; Schiappa, Renaud; Mokhtari, Karima; Hoang-Xuan, Khê; Sanson, Marc; Delattre, Jean-Yves; Thillet, Joëlle; Ducray, François

    2011-01-01

    Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis.

  19. Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis

    PubMed Central

    Laffaire, Julien; Everhard, Sibille; Idbaih, Ahmed; Crinière, Emmanuelle; Marie, Yannick; de Reyniès, Aurelien; Schiappa, Renaud; Mokhtari, Karima; Hoang-Xuan, Khê; Sanson, Marc; Delattre, Jean-Yves; Thillet, Joëlle; Ducray, François

    2011-01-01

    Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis. PMID:20926426

  20. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis.

    PubMed

    Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin

    2010-12-01

    Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.

  1. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179

  2. Transcriptome profiling in engrailed-2 mutant mice reveals common molecular pathways associated with autism spectrum disorders.

    PubMed

    Sgadò, Paola; Provenzano, Giovanni; Dassi, Erik; Adami, Valentina; Zunino, Giulia; Genovesi, Sacha; Casarosa, Simona; Bozzi, Yuri

    2013-12-19

    Transcriptome analysis has been used in autism spectrum disorder (ASD) to unravel common pathogenic pathways based on the assumption that distinct rare genetic variants or epigenetic modifications affect common biological pathways. To unravel recurrent ASD-related neuropathological mechanisms, we took advantage of the En2-/- mouse model and performed transcriptome profiling on cerebellar and hippocampal adult tissues. Cerebellar and hippocampal tissue samples from three En2-/- and wild type (WT) littermate mice were assessed for differential gene expression using microarray hybridization followed by RankProd analysis. To identify functional categories overrepresented in the differentially expressed genes, we used integrated gene-network analysis, gene ontology enrichment and mouse phenotype ontology analysis. Furthermore, we performed direct enrichment analysis of ASD-associated genes from the SFARI repository in our differentially expressed genes. Given the limited number of animals used in the study, we used permissive criteria and identified 842 differentially expressed genes in En2-/- cerebellum and 862 in the En2-/- hippocampus. Our functional analysis revealed that the molecular signature of En2-/- cerebellum and hippocampus shares convergent pathological pathways with ASD, including abnormal synaptic transmission, altered developmental processes and increased immune response. Furthermore, when directly compared to the repository of the SFARI database, our differentially expressed genes in the hippocampus showed enrichment of ASD-associated genes significantly higher than previously reported. qPCR was performed for representative genes to confirm relative transcript levels compared to those detected in microarrays. Despite the limited number of animals used in the study, our bioinformatic analysis indicates the En2-/- mouse is a valuable tool for investigating molecular alterations related to ASD.

  3. Constrained clusters of gene expression profiles with pathological features.

    PubMed

    Sese, Jun; Kurokawa, Yukinori; Monden, Morito; Kato, Kikuya; Morishita, Shinichi

    2004-11-22

    Gene expression profiles should be useful in distinguishing variations in disease, since they reflect accurately the status of cells. The primary clustering of gene expression reveals the genotypes that are responsible for the proximity of members within each cluster, while further clustering elucidates the pathological features of the individual members of each cluster. However, since the first clustering process and the second classification step, in which the features are associated with clusters, are performed independently, the initial set of clusters may omit genes that are associated with pathologically meaningful features. Therefore, it is important to devise a way of identifying gene expression clusters that are associated with pathological features. We present the novel technique of 'itemset constrained clustering' (IC-Clustering), which computes the optimal cluster that maximizes the interclass variance of gene expression between groups, which are divided according to the restriction that only divisions that can be expressed using common features are allowed. This constraint automatically labels each cluster with a set of pathological features which characterize that cluster. When applied to liver cancer datasets, IC-Clustering revealed informative gene expression clusters, which could be annotated with various pathological features, such as 'tumor' and 'man', or 'except tumor' and 'normal liver function'. In contrast, the k-means method overlooked these clusters.

  4. Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury.

    PubMed

    Bijangi-Vishehsaraei, Khadijeh; Blum, Kevin; Zhang, Hongji; Safa, Ahmad R; Halum, Stacey L

    2016-03-01

    The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries. © The Author(s) 2015.

  5. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses.

    PubMed

    Dardick, Christopher

    2007-08-01

    Plant viruses cause a wide array of disease symptoms and cytopathic effects. Although some of these changes are virus specific, many appear to be common even among diverse viruses. Currently, little is known about the underlying molecular determinants. To identify gene expression changes that are concomitant with virus symptoms, we performed comparative expression profiling experiments on Nicotiana benthamiana leaves infected with one of three different fruit tree viruses that produce distinct symptoms: Plum pox potyvirus (PPV; leaf distortion and mosaic), Tomato ringspot nepovirus (ToRSV; tissue necrosis and general chlorosis), and Prunus necrotic ringspot ilarvirus (PNRSV; subtle chlorotic mottling). The numbers of statistically significant genes identified were consistent with the severity of the observed symptoms: 1,082 (ToRSV), 744 (PPV), and 89 (PNRSV). In all, 56% of the gene expression changes found in PPV-infected leaves also were altered by ToRSV, 87% of which changed in the same direction. Both PPV- and ToRSV-infected leaves showed widespread repression of genes associated with plastid functions. PPV uniquely induced the expression of large numbers of cytosolic ribosomal genes whereas ToRSV repressed the expression of plastidic ribosomal genes. How these and other observed expression changes might be associated with symptom development are discussed.

  6. Global miRNA expression profile reveals novel molecular players in aneurysmal subarachnoid haemorrhage.

    PubMed

    Lopes, Katia de Paiva; Vinasco-Sandoval, Tatiana; Vialle, Ricardo Assunção; Paschoal, Fernando Mendes; Bastos, Vanessa Albuquerque P Aviz; Bor-Seng-Shu, Edson; Teixeira, Manoel Jacobsen; Yamada, Elizabeth Sumi; Pinto, Pablo; Vidal, Amanda Ferreira; Ribeiro-Dos-Santos, Arthur; Moreira, Fabiano; Santos, Sidney; Paschoal, Eric Homero Albuquerque; Ribeiro-Dos-Santos, Ândrea

    2018-06-08

    The molecular mechanisms behind aneurysmal subarachnoid haemorrhage (aSAH) are still poorly understood. Expression patterns of miRNAs may help elucidate the post-transcriptional gene expression in aSAH. Here, we evaluate the global miRNAs expression profile (miRnome) of patients with aSAH to identify potential biomarkers. We collected 33 peripheral blood samples (27 patients with cerebral aneurysm, collected 7 to 10 days after the haemorrhage, when usually is the cerebral vasospasm risk peak, and six controls). Then, were performed small RNA sequencing using an Illumina Next Generation Sequencing (NGS) platform. Differential expression analysis identified eight differentially expressed miRNAs. Among them, three were identified being up-regulated, and five down-regulated. miR-486-5p was the most abundant expressed and is associated with poor neurological admission status. In silico miRNA gene target prediction showed 148 genes associated with at least two differentially expressed miRNAs. Among these, THBS1 and VEGFA, known to be related to thrombospondin and vascular endothelial growth factor. Moreover, MYC gene was found to be regulated by four miRNAs, suggesting an important role in aneurysmal subarachnoid haemorrhage. Additionally, 15 novel miRNAs were predicted being expressed only in aSAH, suggesting possible involvement in aneurysm pathogenesis. These findings may help the identification of novel biomarkers of clinical interest.

  7. Long non-coding RNA expression profile in cervical cancer tissues

    PubMed Central

    Zhu, Hua; Chen, Xiangjian; Hu, Yan; Shi, Zhengzheng; Zhou, Qing; Zheng, Jingjie; Wang, Yifeng

    2017-01-01

    Cervical cancer (CC), one of the most common types of cancer of the female population, presents an enormous challenge in diagnosis and treatment. Long non-coding (lnc)RNAs, non-coding (nc)RNAs with length >200 nucleotides, have been identified to be associated with multiple types of cancer, including CC. This class of nc transcripts serves an important role in tumor suppression and oncogenic signaling pathways. In the present study, the microarray method was used to obtain the expression profile of lncRNAs and protein-coding mRNAs and to compare the expression of lncRNAs between CC tissues and corresponding adjacent non-cancerous tissues in order to screen potential lncRNAs for associations with CC. Overall, 3356 lncRNAs with significantly different expression pattern in CC tissues compared with adjacent non-cancerous tissues were identified, while 1,857 of them were upregulated. These differentially expressed lncRNAs were additionally classified into 5 subgroups. Reverse transcription quantitative polymerase chain reactions were performed to validate the expression pattern of 5 random selected lncRNAs, and 2lncRNAs were identified to have significantly different expression in CC samples compared with adjacent non-cancerous tissues. This finding suggests that those lncRNAs with different expression may serve important roles in the development of CC, and the expression data may provide information for additional study on the involvement of lncRNAs in CC. PMID:28789353

  8. Statistical Test of Expression Pattern (STEPath): a new strategy to integrate gene expression data with genomic information in individual and meta-analysis studies.

    PubMed

    Martini, Paolo; Risso, Davide; Sales, Gabriele; Romualdi, Chiara; Lanfranchi, Gerolamo; Cagnin, Stefano

    2011-04-11

    In the last decades, microarray technology has spread, leading to a dramatic increase of publicly available datasets. The first statistical tools developed were focused on the identification of significant differentially expressed genes. Later, researchers moved toward the systematic integration of gene expression profiles with additional biological information, such as chromosomal location, ontological annotations or sequence features. The analysis of gene expression linked to physical location of genes on chromosomes allows the identification of transcriptionally imbalanced regions, while, Gene Set Analysis focuses on the detection of coordinated changes in transcriptional levels among sets of biologically related genes. In this field, meta-analysis offers the possibility to compare different studies, addressing the same biological question to fully exploit public gene expression datasets. We describe STEPath, a method that starts from gene expression profiles and integrates the analysis of imbalanced region as an a priori step before performing gene set analysis. The application of STEPath in individual studies produced gene set scores weighted by chromosomal activation. As a final step, we propose a way to compare these scores across different studies (meta-analysis) on related biological issues. One complication with meta-analysis is batch effects, which occur because molecular measurements are affected by laboratory conditions, reagent lots and personnel differences. Major problems occur when batch effects are correlated with an outcome of interest and lead to incorrect conclusions. We evaluated the power of combining chromosome mapping and gene set enrichment analysis, performing the analysis on a dataset of leukaemia (example of individual study) and on a dataset of skeletal muscle diseases (meta-analysis approach). In leukaemia, we identified the Hox gene set, a gene set closely related to the pathology that other algorithms of gene set analysis do not identify, while the meta-analysis approach on muscular disease discriminates between related pathologies and correlates similar ones from different studies. STEPath is a new method that integrates gene expression profiles, genomic co-expressed regions and the information about the biological function of genes. The usage of the STEPath-computed gene set scores overcomes batch effects in the meta-analysis approaches allowing the direct comparison of different pathologies and different studies on a gene set activation level.

  9. Parallel affinity-based isolation of leukocyte subsets using microfluidics: application for stroke diagnosis.

    PubMed

    Pullagurla, Swathi R; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hupert, Mateusz L; Nesterova, Irina V; Baird, Alison E; Soper, Steven A

    2014-04-15

    We report the design and performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of mRNA isolated from these cells. The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 μm wide and 80 μm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. As an example of the performance of these devices, CD4+ T-cells and neutrophils were selected from whole blood as these cells are known to express genes found in stroke-related expression profiles that can be used for the diagnosis of this disease. CD4+ T-cells and neutrophils were simultaneously isolated with purities >90% using affinity-based capture in cyclic olefin copolymer (COC) devices with a processing time of ∼3 min. In addition, sufficient quantities of the cells could be recovered from a 50 μL whole blood input to allow for reverse transcription-polymerase chain reaction (RT-PCR) following cell lysis. The expression of genes from isolated T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR. The modification and isolation procedures demonstrated here can also be used to analyze other cell types as well where multiple subsets must be interrogated.

  10. Survey of potential factors involved in the low frequency of CP5 and CP8 expression in Staphylococcus aureus isolates from mastitis of dairy cattle from Argentina, Chile, and Uruguay.

    PubMed

    Ambroggio, Maria Belen; Perrig, Melina Soledad; Camussone, Cecilia; Pujato, Nazarena; Bertón, Alicia; Gianneechini, Edgardo; Alvarez, Silvia; Marcipar, Ivan Sergio; Calvinho, Luis Fernando; Barbagelata, Maria Sol

    2018-05-03

    Staphylococcus aureus produces capsular polysaccharides (CPs) both in vivo and under defined culture conditions being serotypes 5 and 8 the most prevalent. S. aureus isolates that fail to produce CP5 or CP8 are defined as non-typeable (NT). Loss of capsule expression, however, may lead to S. aureus persistence in a chronically infected host. The prevalence of NT strains of S. aureus isolated from bovine mastitis varies according to the geographic origin of the strain. The aims of this work were to detect phenotypically and genotypically the capsular profile of 144 S. aureus isolated from bovine mastitis in Argentina, Chile, and Uruguay and explore the factors that are considered to be associated with capsule expression as presence of IS257, IScap, and agr typing of non-related collection. The detection of the IS257, IScap, cap genes, and agr typing was performed using PCR. The detection and quantification of capsular polysaccharide production were performed by ELISA assays. We found that 96% of the S. aureus isolates investigated carried cap5(8) genes but over 75% of strains do not express capsule in the three countries studied. However, only 6 isolates from Argentina carried the IScap element that totally suppressed the expression of the capsule, suggesting that other factors could influence on CP expression. Moreover, the agrI/NT association was statistically significant suggesting that this profile is a phenomenon observed not only in other parts of the world but also in our region.

  11. Protein Expression Profile using Two-Dimensional Gel Analysis in Squamous Cervical Cancer Patients

    PubMed Central

    Bae, Su-Mi; Min, Hyun-Jin; Ding, Guo Hua; Kwak, Sun-Young; Cho, Young-Lae; Nam, Kye-Hyun; Park, Choong Hak; Kim, Yong-Wan; Kim, Chong-Kook; Han, Byoung-Don; Lee, Young-Joo; Kim, Do Kang

    2006-01-01

    Purpose Screening in cervical cancer is now progressing to discover candidate genes and proteins that may serve as biological markers and that play a role in tumor progression. We examined the protein expression patterns of the squamous cell carcinoma (SCC) tissues from Korean women with using two- dimensional polyacrylamide gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight (MALDI- TOF) mass spectrometer. Materials and Methods Normal cervix and SCC tissues were solubilized and 2-DE was performed using pH 3~10 linear IPG strips of 17 cm length. The protein expression was evaluated using PDQuest 2-D software™. The differentially expressed protein spots were identified with a MALDI-TOF mass spectrometer, and the peptide mass spectra identifications were performed using the Mascot program and by searching the Swiss-prot or NCBInr databases. Results A total of 35 proteins were detected in SCC. 17 proteins were up-regulated and 18 proteins weredown-regulated. Among the proteins that were identified, 12 proteins (pigment epithelium derived factor, annexin A2 and A5, keratin 19 and 20, heat shock protein 27, smooth muscle protein 22 alpha, α-enolase, squamous cell carcinoma antigen 1 and 2, glutathione S-transferase and apolipoprotein a1) were protein previously known to be involved in tumor, and 21 proteins were newly identified in this study. Conclusion 2-DE offers the total protein expression profiles of SCC tissues; further characterization of these differentially expressed proteins will give a chance to identify the badly needed tumor-specific diagnostic markers for SCC. PMID:19771267

  12. Gene expression profiling of whole blood: Comparison of target preparation methods for accurate and reproducible microarray analysis

    PubMed Central

    Vartanian, Kristina; Slottke, Rachel; Johnstone, Timothy; Casale, Amanda; Planck, Stephen R; Choi, Dongseok; Smith, Justine R; Rosenbaum, James T; Harrington, Christina A

    2009-01-01

    Background Peripheral blood is an accessible and informative source of transcriptomal information for many human disease and pharmacogenomic studies. While there can be significant advantages to analyzing RNA isolated from whole blood, particularly in clinical studies, the preparation of samples for microarray analysis is complicated by the need to minimize artifacts associated with highly abundant globin RNA transcripts. The impact of globin RNA transcripts on expression profiling data can potentially be reduced by using RNA preparation and labeling methods that remove or block globin RNA during the microarray assay. We compared four different methods for preparing microarray hybridization targets from human whole blood collected in PAXGene tubes. Three of the methods utilized the Affymetrix one-cycle cDNA synthesis/in vitro transcription protocol but varied treatment of input RNA as follows: i. no treatment; ii. treatment with GLOBINclear; or iii. treatment with globin PNA oligos. In the fourth method cDNA targets were prepared with the Ovation amplification and labeling system. Results We find that microarray targets generated with labeling methods that reduce globin mRNA levels or minimize the impact of globin transcripts during hybridization detect more transcripts in the microarray assay compared with the standard Affymetrix method. Comparison of microarray results with quantitative PCR analysis of a panel of genes from the NF-kappa B pathway shows good correlation of transcript measurements produced with all four target preparation methods, although method-specific differences in overall correlation were observed. The impact of freezing blood collected in PAXGene tubes on data reproducibility was also examined. Expression profiles show little or no difference when RNA is extracted from either fresh or frozen blood samples. Conclusion RNA preparation and labeling methods designed to reduce the impact of globin mRNA transcripts can significantly improve the sensitivity of the DNA microarray expression profiling assay for whole blood samples. While blockage of globin transcripts during first strand cDNA synthesis with globin PNAs resulted in the best overall performance in this study, we conclude that selection of a protocol for expression profiling studies in blood should depend on several factors, including implementation requirements of the method and study design. RNA isolated from either freshly collected or frozen blood samples stored in PAXGene tubes can be used without altering gene expression profiles. PMID:19123946

  13. Single-cell gene expression analysis reveals diversity among human spermatogonia.

    PubMed

    Neuhaus, N; Yoon, J; Terwort, N; Kliesch, S; Seggewiss, J; Huge, A; Voss, R; Schlatt, S; Grindberg, R V; Schöler, H R

    2017-02-10

    Is the molecular profile of human spermatogonia homogeneous or heterogeneous when analysed at the single-cell level? Heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the existence of a heterogeneous stem cell population. Despite the fact that many studies have sought to identify specific markers for human spermatogonia, the molecular fingerprint of these cells remains hitherto unknown. Testicular tissues from patients with spermatogonial arrest (arrest, n = 1) and with qualitatively normal spermatogenesis (normal, n = 7) were selected from a pool of 179 consecutively obtained biopsies. Gene expression analyses of cell populations and single-cells (n = 105) were performed. Two OCT4-positive individual cells were selected for global transcriptional capture using shallow RNA-seq. Finally, expression of four candidate markers was assessed by immunohistochemistry. Histological analysis and blood hormone measurements for LH, FSH and testosterone were performed prior to testicular sample selection. Following enzymatic digestion of testicular tissues, differential plating and subsequent micromanipulation of individual cells was employed to enrich and isolate human spermatogonia, respectively. Endpoint analyses were qPCR analysis of cell populations and individual cells, shallow RNA-seq and immunohistochemical analyses. Unexpectedly, single-cell expression data from the arrest patient (20 cells) showed heterogeneous expression profiles. Also, from patients with normal spermatogenesis, heterogeneous expression patterns of undifferentiated (OCT4, UTF1 and MAGE A4) and differentiated marker genes (BOLL and PRM2) were obtained within each spermatogonia cluster (13 clusters with 85 cells). Shallow RNA-seq analysis of individual human spermatogonia was validated, and a spermatogonia-specific heterogeneous protein expression of selected candidate markers (DDX5, TSPY1, EEF1A1 and NGN3) was demonstrated. The heterogeneity of human spermatogonia at the RNA and protein levels is a snapshot. To further assess the functional meaning of this heterogeneity and the dynamics of stem cell populations, approaches need to be developed to facilitate the repeated analysis of individual cells. Our data suggest that heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the model of a heterogeneous stem cell population. Future studies will assess the dynamics of spermatogonial populations in fertile and infertile patients. RNA-seq data is published in the GEO database: GSE91063. This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft DFG-Research Unit FOR 1041 Germ Cell Potential (grant numbers SCHO 340/7-1, SCHL394/11-2). The authors declare that there is no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Predicting survival times for neuroblastoma patients using RNA-seq expression profiles.

    PubMed

    Grimes, Tyler; Walker, Alejandro R; Datta, Susmita; Datta, Somnath

    2018-05-30

    Neuroblastoma is the most common tumor of early childhood and is notorious for its high variability in clinical presentation. Accurate prognosis has remained a challenge for many patients. In this study, expression profiles from RNA-sequencing are used to predict survival times directly. Several models are investigated using various annotation levels of expression profiles (genes, transcripts, and introns), and an ensemble predictor is proposed as a heuristic for combining these different profiles. The use of RNA-seq data is shown to improve accuracy in comparison to using clinical data alone for predicting overall survival times. Furthermore, clinically high-risk patients can be subclassified based on their predicted overall survival times. In this effort, the best performing model was the elastic net using both transcripts and introns together. This model separated patients into two groups with 2-year overall survival rates of 0.40±0.11 (n=22) versus 0.80±0.05 (n=68). The ensemble approach gave similar results, with groups 0.42±0.10 (n=25) versus 0.82±0.05 (n=65). This suggests that the ensemble is able to effectively combine the individual RNA-seq datasets. Using predicted survival times based on RNA-seq data can provide improved prognosis by subclassifying clinically high-risk neuroblastoma patients. This article was reviewed by Subharup Guha and Isabel Nepomuceno.

  15. Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing

    PubMed Central

    Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2012-01-01

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519

  16. Gene expression profiling at birth characterizing the preterm infant with early onset infection.

    PubMed

    Hilgendorff, Anne; Windhorst, Anita; Klein, Manuel; Tchatalbachev, Svetlin; Windemuth-Kieselbach, Christine; Kreuder, Joachim; Heckmann, Matthias; Gkatzoflia, Anna; Ehrhardt, Harald; Mysliwietz, Josef; Maier, Michael; Izar, Benjamin; Billion, Andre; Gortner, Ludwig; Chakraborty, Trinad; Hossain, Hamid

    2017-02-01

    Early onset infection (EOI) in preterm infants <32 weeks gestational age (GA) is associated with a high mortality rate and the development of severe acute and long-term complications. The pathophysiology of EOI is not fully understood and clinical and laboratory signs of early onset infections in this patient cohort are often not conclusive. Thus, the aim of this study was to identify signatures characterizing preterm infants with EOI by using genome-wide gene expression (GWGE) analyses from umbilical arterial blood of preterm infants. This prospective cohort study was conducted in preterm infants <32 weeks GA. GWGE analyses using CodeLink human microarrays were performed from umbilical arterial blood of preterm infants with and without EOI. GWGE analyses revealed differential expression of 292 genes in preterm infants with EOI as compared to infants without EOI. Infants with EOI could be further differentiated into two subclasses and were distinguished by the magnitude of the expression of genes involved in both neutrophil and T cell activation. A hallmark activity for both subclasses of EOI was a common suppression of genes involved in natural killer (NK) cell function, which was independent from NK cell numbers. Significant results were recapitulated in an independent validation cohort. Gene expression profiling may enable early and more precise diagnosis of EOI in preterm infants. Gene expression (GE) profiling at birth characterizes preterm infants with EOI. GE analysis indicates dysregulation of NK cell activity. NK cell activity at birth may be a useful marker to improve early diagnosis of EOI.

  17. Integrated genome-wide Alu methylation and transcriptome profiling analyses reveal novel epigenetic regulatory networks associated with autism spectrum disorder.

    PubMed

    Saeliw, Thanit; Tangsuwansri, Chayanin; Thongkorn, Surangrat; Chonchaiya, Weerasak; Suphapeetiporn, Kanya; Mutirangura, Apiwat; Tencomnao, Tewin; Hu, Valerie W; Sarachana, Tewarit

    2018-01-01

    Alu elements are a group of repetitive elements that can influence gene expression through CpG residues and transcription factor binding. Altered gene expression and methylation profiles have been reported in various tissues and cell lines from individuals with autism spectrum disorder (ASD). However, the role of Alu elements in ASD remains unclear. We thus investigated whether Alu elements are associated with altered gene expression profiles in ASD. We obtained five blood-based gene expression profiles from the Gene Expression Omnibus database and human Alu-inserted gene lists from the TranspoGene database. Differentially expressed genes (DEGs) in ASD were identified from each study and overlapped with the human Alu-inserted genes. The biological functions and networks of Alu-inserted DEGs were then predicted by Ingenuity Pathway Analysis (IPA). A combined bisulfite restriction analysis of lymphoblastoid cell lines (LCLs) derived from 36 ASD and 20 sex- and age-matched unaffected individuals was performed to assess the global DNA methylation levels within Alu elements, and the Alu expression levels were determined by quantitative RT-PCR. In ASD blood or blood-derived cells, 320 Alu-inserted genes were reproducibly differentially expressed. Biological function and pathway analysis showed that these genes were significantly associated with neurodevelopmental disorders and neurological functions involved in ASD etiology. Interestingly, estrogen receptor and androgen signaling pathways implicated in the sex bias of ASD, as well as IL-6 signaling and neuroinflammation signaling pathways, were also highlighted. Alu methylation was not significantly different between the ASD and sex- and age-matched control groups. However, significantly altered Alu methylation patterns were observed in ASD cases sub-grouped based on Autism Diagnostic Interview-Revised scores compared with matched controls. Quantitative RT-PCR analysis of Alu expression also showed significant differences between ASD subgroups. Interestingly, Alu expression was correlated with methylation status in one phenotypic ASD subgroup. Alu methylation and expression were altered in LCLs from ASD subgroups. Our findings highlight the association of Alu elements with gene dysregulation in ASD blood samples and warrant further investigation. Moreover, the classification of ASD individuals into subgroups based on phenotypes may be beneficial and could provide insights into the still unknown etiology and the underlying mechanisms of ASD.

  18. An Interoperability Framework and Capability Profiling for Manufacturing Software

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Arai, E.; Nakano, N.; Wakai, H.; Takeda, H.; Takata, M.; Sasaki, H.

    ISO/TC184/SC5/WG4 is working on ISO16100: Manufacturing software capability profiling for interoperability. This paper reports on a manufacturing software interoperability framework and a capability profiling methodology which were proposed and developed through this international standardization activity. Within the context of manufacturing application, a manufacturing software unit is considered to be capable of performing a specific set of function defined by a manufacturing software system architecture. A manufacturing software interoperability framework consists of a set of elements and rules for describing the capability of software units to support the requirements of a manufacturing application. The capability profiling methodology makes use of the domain-specific attributes and methods associated with each specific software unit to describe capability profiles in terms of unit name, manufacturing functions, and other needed class properties. In this methodology, manufacturing software requirements are expressed in terns of software unit capability profiles.

  19. Application of carbon-ion beams or gamma-rays on primary tumors does not change the expression profiles of metastatic tumors in an in vivo murine model.

    PubMed

    Tamaki, Tomoaki; Iwakawa, Mayumi; Ohno, Tatsuya; Imadome, Kaori; Nakawatari, Miyako; Sakai, Minako; Tsujii, Hirohiko; Nakano, Takashi; Imai, Takashi

    2009-05-01

    To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.

  20. Differential Gene Expression Profiling of Functionally and Developmentally Distinct Human Prostate Epithelial Populations

    PubMed Central

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-01-01

    BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. CONCLUSIONS Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. Prostate 75: 764–776, 2015. © The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25663004

  1. Differential gene expression profiling of functionally and developmentally distinct human prostate epithelial populations.

    PubMed

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-05-01

    Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44⁻ CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44⁻ CD49f(Hi) FC, adult Epcam⁺ CD44⁻ CD49f(Hi) TIC, Epcam⁺ CD44⁺ CD49f(Hi) basal cells (BC), and Epcam⁺ CD44⁻ CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.

  2. Characterization of an acute molecular marker of nongenotoxic rodent hepatocarcinogenesis by gene expression profiling in a long term clofibric acid study.

    PubMed

    Michel, Cécile; Roberts, Ruth A; Desdouets, Chantal; Isaacs, Kevin R; Boitier, Eric

    2005-04-01

    Evaluation of the nongenotoxic potential early during the development of a drug presents a major challenge. Recently, two genes were identified as potential molecular markers of rodent hepatic carcinogenesis: transforming growth factor-beta stimulated clone 22 (TSC-22) and NAD(P)H cytochrome P450 oxidoreductase (CYP-R) (1). They were identified after comparing the gene expression profiles obtained from the livers of Sprague-Dawley rats treated with different genotoxic and nongenotoxic compounds in a 5 day repeat dose in vivo study. To assess the potential of these two genes as acute markers of carcinogenesis, we investigated their modulation during a long-term nongenotoxic study in the rat using a classic initiation-promotion regime. Clofibric acid (CLO), which belongs to the broad class of chemicals known as peroxisome proliferators, was used as a nongenotoxic hepatocarcinogen. Male F344 rats were given a single nonnecrogenic injection of diethylnitrosamine (0 or 30 mg/kg) and fed a diet containing none or 5000 ppm CLO for up to 20 months. Necropsies of five rats per groups were performed at 18, 46, 102, 264, 377, 447 (control, DEN, and DEN + CLO rats), 524, and 608 days (for the CLO and control rats). Gross macroscopic and microscopic evaluation and gene expression profiling (on Affymetrix microarrays) were performed in peritumoral and tumoral liver tissues. Bioanalysis of the liver gene expression data revealed that TSC-22 was strongly down-regulated early in the study. Its underexpression was maintained throughout the study but disappeared upon CLO withdrawal. These modulations were confirmed by real-time polymerase chain reaction. However, CYP-R gene expression was not significantly altered in our study. Taken together, our results showed that TSC-22, but not CYP-R, has the potential to be an acute early molecular marker for nongenotoxic hepatocarcinogenesis in rodents.

  3. Comprehensive Assessments of RNA-seq by the SEQC Consortium: FDA-Led Efforts Advance Precision Medicine.

    PubMed

    Xu, Joshua; Gong, Binsheng; Wu, Leihong; Thakkar, Shraddha; Hong, Huixiao; Tong, Weida

    2016-03-15

    Studies on gene expression in response to therapy have led to the discovery of pharmacogenomics biomarkers and advances in precision medicine. Whole transcriptome sequencing (RNA-seq) is an emerging tool for profiling gene expression and has received wide adoption in the biomedical research community. However, its value in regulatory decision making requires rigorous assessment and consensus between various stakeholders, including the research community, regulatory agencies, and industry. The FDA-led SEquencing Quality Control (SEQC) consortium has made considerable progress in this direction, and is the subject of this review. Specifically, three RNA-seq platforms (Illumina HiSeq, Life Technologies SOLiD, and Roche 454) were extensively evaluated at multiple sites to assess cross-site and cross-platform reproducibility. The results demonstrated that relative gene expression measurements were consistently comparable across labs and platforms, but not so for the measurement of absolute expression levels. As part of the quality evaluation several studies were included to evaluate the utility of RNA-seq in clinical settings and safety assessment. The neuroblastoma study profiled tumor samples from 498 pediatric neuroblastoma patients by both microarray and RNA-seq. RNA-seq offers more utilities than microarray in determining the transcriptomic characteristics of cancer. However, RNA-seq and microarray-based models were comparable in clinical endpoint prediction, even when including additional features unique to RNA-seq beyond gene expression. The toxicogenomics study compared microarray and RNA-seq profiles of the liver samples from rats exposed to 27 different chemicals representing multiple toxicity modes of action. Cross-platform concordance was dependent on chemical treatment and transcript abundance. Though both RNA-seq and microarray are suitable for developing gene expression based predictive models with comparable prediction performance, RNA-seq offers advantages over microarray in profiling genes with low expression. The rat BodyMap study provided a comprehensive rat transcriptomic body map by performing RNA-Seq on 320 samples from 11 organs in either sex of juvenile, adolescent, adult and aged Fischer 344 rats. Lastly, the transferability study demonstrated that signature genes of predictive models are reciprocally transferable between microarray and RNA-seq data for model development using a comprehensive approach with two large clinical data sets. This result suggests continued usefulness of legacy microarray data in the coming RNA-seq era. In conclusion, the SEQC project enhances our understanding of RNA-seq and provides valuable guidelines for RNA-seq based clinical application and safety evaluation to advance precision medicine.

  4. Gene Expression Differences in Peripheral Blood of Parkinson’s Disease Patients with Distinct Progression Profiles

    PubMed Central

    Soreq, Lilach; Lobo, Patrícia P.; Mestre, Tiago; Coelho, Miguel; Rosa, Mário M.; Gonçalves, Nilza; Wales, Pauline; Mendes, Tiago; Gerhardt, Ellen; Fahlbusch, Christiane; Bonifati, Vincenzo; Bonin, Michael; Miltenberger-Miltényi, Gabriel; Borovecki, Fran; Soreq, Hermona; Ferreira, Joaquim J.; F. Outeiro, Tiago

    2016-01-01

    The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson’s disease (PD) progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression analysis in aiding patient stratification and therapeutic intervention. PMID:27322389

  5. Gene expression profile associated with superimposed non-alcoholic fatty liver disease and hepatic fibrosis in patients with chronic hepatitis C.

    PubMed

    Younossi, Zobair M; Afendy, Arian; Stepanova, Maria; Hossain, Noreen; Younossi, Issah; Ankrah, Kathy; Gramlich, Terry; Baranova, Ancha

    2009-10-01

    Hepatic steatosis occurs in 40-70% of patients chronically infected with hepatitis C virus [chronic hepatitis C (CH-C)]. Hepatic steatosis in CH-C is associated with progressive liver disease and a low response rate to antiviral therapy. Gene expression profiles were examined in CH-C patients with and without hepatic steatosis, non-alcoholic steatohepatitis (NASH) and fibrosis. This study included 65 CH-C patients who were not receiving antiviral treatment. Total RNA was extracted from peripheral blood mononuclear cells, quantified and used for one-step reverse transcriptase-polymerase chain reaction to profile 153 mRNAs that were normalized with six 'housekeeping' genes and a reference RNA. Multiple regression and stepwise selection assessed differences in gene expression and the models' performances were evaluated. Models predicting the grade of hepatic steatosis in patients with CH-C genotype 3 involved two genes: SOCS1 and IFITM1, which progressively changed their expression level with the increasing grade of steatosis. On the other hand, models predicting hepatic steatosis in non-genotype 3 patients highlighted MIP-1 cytokine encoding genes: CCL3 and CCL4 as well as IFNAR and PRKRIR. Expression levels of PRKRIR and SMAD3 differentiated patients with and without superimposed NASH only in the non-genotype 3 cohort (area under the receiver operating characteristic curve=0.822, P-value 0.006]. Gene expression signatures related to hepatic fibrosis were not genotype specific. Gene expression might predict moderate to severe hepatic steatosis, NASH and fibrosis in patients with CH-C, providing potential insights into the pathogenesis of hepatic steatosis and fibrosis in these patients.

  6. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    PubMed

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  7. A long non-coding RNA expression profile can predict early recurrence in hepatocellular carcinoma after curative resection.

    PubMed

    Lv, Yufeng; Wei, Wenhao; Huang, Zhong; Chen, Zhichao; Fang, Yuan; Pan, Lili; Han, Xueqiong; Xu, Zihai

    2018-06-20

    The aim of this study was to develop a novel long non-coding RNA (lncRNA) expression signature to accurately predict early recurrence for patients with hepatocellular carcinoma (HCC) after curative resection. Using expression profiles downloaded from The Cancer Genome Atlas database, we identified multiple lncRNAs with differential expression between early recurrence (ER) group and non-early recurrence (non-ER) group of HCC. Least absolute shrinkage and selection operator (LASSO) for logistic regression models were used to develop a lncRNA-based classifier for predicting ER in the training set. An independent test set was used to validated the predictive value of this classifier. Futhermore, a co-expression network based on these lncRNAs and its highly related genes was constructed and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of genes in the network were performed. We identified 10 differentially expressed lncRNAs, including 3 that were upregulated and 7 that were downregulated in ER group. The lncRNA-based classifier was constructed based on 7 lncRNAs (AL035661.1, PART1, AC011632.1, AC109588.1, AL365361.1, LINC00861 and LINC02084), and its accuracy was 0.83 in training set, 0.87 in test set and 0.84 in total set. And ROC curve analysis showed the AUROC was 0.741 in training set, 0.824 in the test set and 0.765 in total set. A functional enrichment analysis suggested that the genes of which is highly related to 4 lncRNAs were involved in immune system. This 7-lncRNA expression profile can effectively predict the early recurrence after surgical resection for HCC. This article is protected by copyright. All rights reserved.

  8. The Involvement of Hepatocyte Growth Factor-MET-Matrix Metalloproteinase 1 Signaling in Bladder Cancer Invasiveness and Proliferation. Effect of the MET Inhibitor, Cabozantinib (XL184), on Bladder Cancer Cells.

    PubMed

    Shintani, Terumichi; Kusuhara, Yoshito; Daizumoto, Kei; Dondoo, Tsogt-Ochir; Yamamoto, Hiroki; Mori, Hidehisa; Fukawa, Tomoya; Nakatsuji, Hiroyoshi; Fukumori, Tomoharu; Takahashi, Masayuki; Kanayama, Hiroomi

    2017-03-01

    To clarify the invasive mechanisms of muscle-invasive bladder cancer (BCa) would be useful for the determination of appropriate treatment strategies. We previously showed that hepatocyte growth factor (HGF)-MET signaling is correlated with invasiveness of BCa cells. Here, we investigated the effects of the MET inhibitor, cabozantinib (XL184), on BCa cells. We first conducted Western blot analysis to investigate MET expression in BCa cell lines. Next, we examined the effect of cabozantinib on their proliferation and invasive abilities using MTT and Matrigel invasion assays, respectively. Invasion assays were performed using the xCELLigence system. Additionally, to investigate the biological function of HGF-MET signaling, we analyzed gene expression profiles and performed real-time polymerase chain reaction analyses of 5637 cells that were cultivated with or without HGF stimulation, with or without cabozantinib. MET was highly expressed in 4 of 5 BCa cell lines, and 5637 and T24 cells showed especially high protein expression of MET. Cabozantinib suppressed cell proliferation and invasion (cell index; mock, 1.49 vs HGF, 2.26 vs HGF + XL184, 1.47, P < .05). Gene expression profile analysis indicated that matrix metalloproteinase 1 (MMP1) was significantly elevated at the mRNA level with addition of HGF. Moreover, cabozantinib suppressed HGF-induced MMP1 expression in 5637 T24 cells. These data indicate that cabozantinib suppressed MMP1 expression by blocking HGF-MET signaling and that HGF-MET-MMP1 signaling is involved in the invasiveness and proliferation of BCa cells. These results suggest that cabozantinib might prove useful for future treatment of muscle-invasive BCa. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Bone Metastasis in Advanced Breast Cancer: Analysis of Gene Expression Microarray.

    PubMed

    Cosphiadi, Irawan; Atmakusumah, Tubagus D; Siregar, Nurjati C; Muthalib, Abdul; Harahap, Alida; Mansyur, Muchtarruddin

    2018-03-08

    Approximately 30% to 40% of breast cancer recurrences involve bone metastasis (BM). Certain genes have been linked to BM; however, none have been able to predict bone involvement. In this study, we analyzed gene expression profiles in advanced breast cancer patients to elucidate genes that can be used to predict BM. A total of 92 advanced breast cancer patients, including 46 patients with BM and 46 patients without BM, were identified for this study. Immunohistochemistry and gene expression analysis was performed on 81 formalin-fixed paraffin-embedded samples. Data were collected through medical records, and gene expression of 200 selected genes compiled from 6 previous studies was performed using NanoString nCounter. Genetic expression profiles showed that 22 genes were significantly differentially expressed between breast cancer patients with metastasis in bone and other organs (BM+) and non-BM, whereas subjects with only BM showed 17 significantly differentially expressed genes. The following genes were associated with an increasing incidence of BM in the BM+ group: estrogen receptor 1 (ESR1), GATA binding protein 3 (GATA3), and melanophilin with an area under the curve (AUC) of 0.804. In the BM group, the following genes were associated with an increasing incidence of BM: ESR1, progesterone receptor, B-cell lymphoma 2, Rab escort protein, N-acetyltransferase 1, GATA3, annexin A9, and chromosome 9 open reading frame 116. ESR1 and GATA3 showed an increased strength of association with an AUC of 0.928. A combination of the identified 3 genes in BM+ and 8 genes in BM showed better prediction than did each individual gene, and this combination can be used as a training set. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The Rice B-Box Zinc Finger Gene Family: Genomic Identification, Characterization, Expression Profiling and Diurnal Analysis

    PubMed Central

    Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo

    2012-01-01

    Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960

  11. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone

    PubMed Central

    Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P

    2009-01-01

    Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908

  12. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis

    PubMed Central

    Luo, Shouling; Cao, Nannan; Tang, Yao; Gu, Weirong

    2017-01-01

    Preeclampsia is a leading cause of perinatal maternal–foetal mortality and morbidity. The aim of this study is to identify the key microRNAs and genes in preeclampsia and uncover their potential functions. We downloaded the miRNA expression profile of GSE84260 and the gene expression profile of GSE73374 from the Gene Expression Omnibus database. Differentially expressed miRNAs and genes were identified and compared to miRNA-target information from MiRWalk 2.0, and a total of 65 differentially expressed miRNAs (DEMIs), including 32 up-regulated miRNAs and 33 down-regulated miRNAs, and 91 differentially expressed genes (DEGs), including 83 up-regulated genes and 8 down-regulated genes, were identified. The pathway enrichment analyses of the DEMIs showed that the up-regulated DEMIs were enriched in the Hippo signalling pathway and MAPK signalling pathway, and the down-regulated DEMIs were enriched in HTLV-I infection and miRNAs in cancers. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses of the DEGs were performed using Multifaceted Analysis Tool for Human Transcriptome. The up-regulated DEGs were enriched in biological processes (BPs), including the response to cAMP, response to hydrogen peroxide and cell-cell adhesion mediated by integrin; no enrichment of down-regulated DEGs was identified. KEGG analysis showed that the up-regulated DEGs were enriched in the Hippo signalling pathway and pathways in cancer. A PPI network of the DEGs was constructed by using Cytoscape software, and FOS, STAT1, MMP14, ITGB1, VCAN, DUSP1, LDHA, MCL1, MET, and ZFP36 were identified as the hub genes. The current study illustrates a characteristic microRNA profile and gene profile in preeclampsia, which may contribute to the interpretation of the progression of preeclampsia and provide novel biomarkers and therapeutic targets for preeclampsia. PMID:28594854

  13. Natural history of left ventricular mechanics in transplanted hearts: relationships with clinical variables and genetic expression profiles of allograft rejection.

    PubMed

    Eleid, Mackram F; Caracciolo, Giuseppe; Cho, Eun Joo; Scott, Robert L; Steidley, D Eric; Wilansky, Susan; Arabia, Francisco A; Khandheria, Bijoy K; Sengupta, Partho P

    2010-10-01

    The aim of this study was to explore the temporal evolution of left ventricular (LV) mechanics in relation to clinical variables and genetic expression profiles implicated in cardiac allograft function. Considerable uncertainty exists regarding the range and determinants of variability in LV systolic performance in transplanted hearts (TXH). Fifty-one patients (mean age 53 ± 12 years; 37 men) underwent serial assessment of echocardiograms, cardiac catheterization, gene expression profiles, and endomyocardial biopsy data within 2 weeks and at 3, 6, 12, and 24 months after transplantation. Two-dimensional speckle-tracking data were compared between patients with TXH and 37 controls (including 12 post-coronary artery bypass patients). Post-transplantation mortality and hospitalizations were recorded with a median follow-up period of 944 days. Global longitudinal strain (LS) and radial strain remained attenuated in patients with TXH at all time points (p < 0.001 and p = 0.005), independent of clinical rejection episodes. Failure to improve global LS at 3 months (≥ 1 SD) was associated with higher incidence of death and cardiac events (hazard ratio: 5.92; 95% confidence interval: 1.96 to 17.91; p = 0.049). Multivariate analysis revealed gene expression score as the only independent predictor of global LS (R(2) = 0.53, p = 0.005), with SEMA7A gene expression having the highest correlation with global LS (r = -0.84, p < 0.001). Speckle tracking-derived LV strains are helpful in estimating the burden of LV dysfunction in patients with TXH that evolves independent of biopsy-detected cellular rejection. Failure to improve global LS at 3 months after transplantation is associated with a higher incidence of death and cardiac events. Serial changes in LV mechanics correlate with peripheral blood gene expression profiles and may affect the clinical assessment of long-term prognosis in patients with TXH. Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. [Study on action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis based on techniques of gene expression profile and molecular fingerprint].

    PubMed

    Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang

    2015-08-01

    Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.

  15. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height.

    PubMed

    Guo, Michael; Liu, Zun; Willen, Jessie; Shaw, Cameron P; Richard, Daniel; Jagoda, Evelyn; Doxey, Andrew C; Hirschhorn, Joel; Capellini, Terence D

    2017-12-05

    GWAS have identified hundreds of height-associated loci. However, determining causal mechanisms is challenging, especially since height-relevant tissues (e.g. growth plates) are difficult to study. To uncover mechanisms by which height GWAS variants function, we performed epigenetic profiling of murine femoral growth plates. The profiled open chromatin regions recapitulate known chondrocyte and skeletal biology, are enriched at height GWAS loci, particularly near differentially expressed growth plate genes, and enriched for binding motifs of transcription factors with roles in chondrocyte biology. At specific loci, our analyses identified compelling mechanisms for GWAS variants. For example, at CHSY1 , we identified a candidate causal variant (rs9920291) overlapping an open chromatin region. Reporter assays demonstrated that rs9920291 shows allelic regulatory activity, and CRISPR/Cas9 targeting of human chondrocytes demonstrates that the region regulates CHSY1 expression. Thus, integrating biologically relevant epigenetic information (here, from growth plates) with genetic association results can identify biological mechanisms important for human growth.

  16. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    PubMed Central

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  17. paraGSEA: a scalable approach for large-scale gene expression profiling

    PubMed Central

    Peng, Shaoliang; Yang, Shunyun

    2017-01-01

    Abstract More studies have been conducted using gene expression similarity to identify functional connections among genes, diseases and drugs. Gene Set Enrichment Analysis (GSEA) is a powerful analytical method for interpreting gene expression data. However, due to its enormous computational overhead in the estimation of significance level step and multiple hypothesis testing step, the computation scalability and efficiency are poor on large-scale datasets. We proposed paraGSEA for efficient large-scale transcriptome data analysis. By optimization, the overall time complexity of paraGSEA is reduced from O(mn) to O(m+n), where m is the length of the gene sets and n is the length of the gene expression profiles, which contributes more than 100-fold increase in performance compared with other popular GSEA implementations such as GSEA-P, SAM-GS and GSEA2. By further parallelization, a near-linear speed-up is gained on both workstations and clusters in an efficient manner with high scalability and performance on large-scale datasets. The analysis time of whole LINCS phase I dataset (GSE92742) was reduced to nearly half hour on a 1000 node cluster on Tianhe-2, or within 120 hours on a 96-core workstation. The source code of paraGSEA is licensed under the GPLv3 and available at http://github.com/ysycloud/paraGSEA. PMID:28973463

  18. Dynamics of Viral and Host Immune Cell MicroRNA Expression during Acute Infectious Mononucleosis

    PubMed Central

    Kaul, Vandana; Weinberg, Kenneth I.; Boyd, Scott D.; Bernstein, Daniel; Esquivel, Carlos O.; Martinez, Olivia M.; Krams, Sheri M.

    2018-01-01

    Epstein–Barr virus (EBV) is the etiological agent of acute infectious mononucleosis (IM). Since acute IM is a self-resolving disease with most patients regaining health in 1–3 weeks there have been few studies examining molecular signatures in early acute stages of the disease. MicroRNAs (miRNAs) have been shown, however, to influence immune cell function and consequently the generation of antibody responses in IM. In this study, we performed a comprehensive analysis of differentially expressed miRNAs in early stage uncomplicated acute IM. miRNAs were profiled from patient peripheral blood obtained at the time of IM diagnosis and at subsequent time points, and pathway analysis performed to identify important immune and cell signaling pathways. We identified 215 differentially regulated miRNAs at the most acute stage of infection when the patients initially sought medical help. The number of differentially expressed miRNAs decreased to 148 and 68 at 1 and 2 months post-primary infection, with no significantly changed miRNAs identified at 7 months post-infection. Interferon signaling, T and B cell signaling and antigen presentation were the top pathways influenced by the miRNAs associated with IM. Thus, a dynamic and regulated expression profile of miRNA accompanies the early acute immune response, and resolution of infection, in IM. PMID:29379474

  19. Circular RNA Expression Profile of Pancreatic Ductal Adenocarcinoma Revealed by Microarray.

    PubMed

    Li, Haimin; Hao, Xiaokun; Wang, Huimin; Liu, Zhengcai; He, Yong; Pu, Meng; Zhang, Hongtao; Yu, Hengchao; Duan, Juanli; Qu, Shibin

    2016-01-01

    Circular RNAs (circRNAs) are a special novel type of a stable, diverse and conserved noncoding RNA in mammalian cells. Particularly in cancer, circRNAs have been reported to be widely involved in the physiological/pathological process of life. However, it is unclear whether circRNAs are specifically involved in pancreatic ductal adenocarcinoma (PDAC). We investigated the expression profile of circRNAs in six PDAC cancer samples and paired adjacent normal tissues using microarray. A high-throughput circRNA microarray was used to identify dysregulated circular RNAs in six PDAC patients. Bioinformatic analyses were applied to study these differentially expressed circRNAs. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to confirm these results. We revealed and confirmed that a number of circRNAs were dysregulated, which suggests a potential role in pancreatic cancer. this study demonstrates that clusters of circRNAs are aberrantly expressed in PDAC compared with normal samples and provides new potential targets for the future treatment of PDAC and novel insights into PDAC biology. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Integrated analyses for genetic markers of polycystic ovary syndrome with 9 case-control studies of gene expression profiles.

    PubMed

    Lu, Chenqi; Liu, Xiaoqin; Wang, Lin; Jiang, Ning; Yu, Jun; Zhao, Xiaobo; Hu, Hairong; Zheng, Saihua; Li, Xuelian; Wang, Guiying

    2017-01-10

    Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.

  1. Analysis of chronic lymphotic leukemia transcriptomic profile: differences between molecular subgroups.

    PubMed

    Jantus Lewintre, Eloisa; Reinoso Martín, Cristina; Montaner, David; Marín, Miguel; José Terol, María; Farrás, Rosa; Benet, Isabel; Calvete, Juan J; Dopazo, Joaquín; García-Conde, Javier

    2009-01-01

    B cell chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder with a variable clinical course. Patients with unmutated IgV(H) gene show a shorter progression-free and overall survival than patients with immunoglobulin heavy chain variable regions (IgV(H)) gene mutated. In addition, BCL6 mutations identify a subgroup of patients with high risk of progression. Gene expression was analysed in 36 early-stage patients using high-density microarrays. Around 150 genes differentially expressed were found according to IgV(H) mutations, whereas no difference was found according to BCL6 mutations. Functional profiling methods allowed us to distinguish KEGG and gene ontology terms showing coordinated gene expression changes across subgroups of CLL. We validated a set of differentially expressed genes according to IgV(H) status, scoring them as putative prognostic markers in CLL. Among them, CRY1, LPL, CD82 and DUSP22 are the ones with at least equal or superior performance to ZAP70 which is actually the most used surrogate marker of IgV(H) status.

  2. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages

    PubMed Central

    Yu, Ying; Fuscoe, James C.; Zhao, Chen; Guo, Chao; Jia, Meiwen; Qing, Tao; Bannon, Desmond I.; Lancashire, Lee; Bao, Wenjun; Du, Tingting; Luo, Heng; Su, Zhenqiang; Jones, Wendell D.; Moland, Carrie L.; Branham, William S.; Qian, Feng; Ning, Baitang; Li, Yan; Hong, Huixiao; Guo, Lei; Mei, Nan; Shi, Tieliu; Wang, Kevin Y.; Wolfinger, Russell D.; Nikolsky, Yuri; Walker, Stephen J.; Duerksen-Hughes, Penelope; Mason, Christopher E.; Tong, Weida; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Shi, Leming; Wang, Charles

    2014-01-01

    The rat has been used extensively as a model for evaluating chemical toxicities and for understanding drug mechanisms. However, its transcriptome across multiple organs, or developmental stages, has not yet been reported. Here we show, as part of the SEQC consortium efforts, a comprehensive rat transcriptomic BodyMap created by performing RNA-Seq on 320 samples from 11 organs of both sexes of juvenile, adolescent, adult and aged Fischer 344 rats. We catalogue the expression profiles of 40,064 genes, 65,167 transcripts, 31,909 alternatively spliced transcript variants and 2,367 non-coding genes/non-coding RNAs (ncRNAs) annotated in AceView. We find that organ-enriched, differentially expressed genes reflect the known organ-specific biological activities. A large number of transcripts show organ-specific, age-dependent or sex-specific differential expression patterns. We create a web-based, open-access rat BodyMap database of expression profiles with crosslinks to other widely used databases, anticipating that it will serve as a primary resource for biomedical research using the rat model. PMID:24510058

  3. Identification of pathogenic genes related to rheumatoid arthritis through integrated analysis of DNA methylation and gene expression profiling.

    PubMed

    Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie

    2017-11-15

    The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.

  4. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  5. Molecular Profiling of Glatiramer Acetate Early Treatment Effects in Multiple Sclerosis

    PubMed Central

    Achiron, Anat; Feldman, Anna; Gurevich, Michael

    2009-01-01

    Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood. Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC). Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS. Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation. Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity. PMID:19893201

  6. A stochastic model for optimizing composite predictors based on gene expression profiles.

    PubMed

    Ramanathan, Murali

    2003-07-01

    This project was done to develop a mathematical model for optimizing composite predictors based on gene expression profiles from DNA arrays and proteomics. The problem was amenable to a formulation and solution analogous to the portfolio optimization problem in mathematical finance: it requires the optimization of a quadratic function subject to linear constraints. The performance of the approach was compared to that of neighborhood analysis using a data set containing cDNA array-derived gene expression profiles from 14 multiple sclerosis patients receiving intramuscular inteferon-beta1a. The Markowitz portfolio model predicts that the covariance between genes can be exploited to construct an efficient composite. The model predicts that a composite is not needed for maximizing the mean value of a treatment effect: only a single gene is needed, but the usefulness of the effect measure may be compromised by high variability. The model optimized the composite to yield the highest mean for a given level of variability or the least variability for a given mean level. The choices that meet this optimization criteria lie on a curve of composite mean vs. composite variability plot referred to as the "efficient frontier." When a composite is constructed using the model, it outperforms the composite constructed using the neighborhood analysis method. The Markowitz portfolio model may find potential applications in constructing composite biomarkers and in the pharmacogenomic modeling of treatment effects derived from gene expression endpoints.

  7. Peritoneal fluid modifies the microRNA expression profile in endometrial and endometriotic cells from women with endometriosis.

    PubMed

    Braza-Boïls, Aitana; Salloum-Asfar, Salam; Marí-Alexandre, Josep; Arroyo, Ana Belén; González-Conejero, Rocío; Barceló-Molina, Moisés; García-Oms, Javier; Vicente, Vicente; Estellés, Amparo; Gilabert-Estellés, Juan; Martínez, Constantino

    2015-10-01

    Could peritoneal fluid (PF) from patients with endometriosis alter the microRNA (miRNA) expression profile in endometrial and endometriotic cells from patients? PF from patients with endometriosis modifies the miRNA expression profile in endometrial cells from patients. Angiogenesis is a pivotal system in the development of endometriosis, and dysregulated miRNA expression in this disease has been reported. However, to our knowledge, the effect of PF from patients on the miRNA expression profile of patient endometrial cells has not been reported. Moreover, an effect of three miRNAs (miR-16-5p, miR-29c-3p and miR-424-5p) on the regulation of vascular endothelial growth factor (VEGF)-A mRNA translation in endometrial cells from patients with endometriosis has not been demonstrated. Primary cultures of stromal cells from endometrium from 8 control women (control cells) and 11 patients with endometriosis (eutopic cells) and ovarian endometriomas (ectopic cells) were treated with PF from control women (CPF) and patients (EPF) or not treated (0PF) in order to evaluate the effect of PF on miRNA expression in these cells. MiRNA expression arrays (Affymetrix platform) were prepared from cells (control, eutopic, ectopic) treated with CPF, EPF or 0PF. Results from arrays were validated by quantitative reverse transcription-polymerase chain reaction in cultures from 8 control endometrium, 11 eutopic endometrium and 11 ovarian endometriomas. Functional experiments were performed in primary cell cultures using mimics for miRNAs miR-16-5p, miR-29c-3p and miR-424-5p to assess their effect as VEGF-A expression regulators. To confirm a repressive action of miR-29c-3p through forming miRNA:VEGFA duplexes, we performed luciferase expression assays. EPF modified the miRNA expression profile in eutopic cells. A total of 267 miRNAs were modified in response to EPF compared with 0PF in eutopic cells. Nine miRNAs (miR-16-5p, miR-21-5p, miR-29c-3p, miR-106b-5p, miR-130a-5p, miR-149-5p, miR-185-5p, miR-195-5p, miR-424-5p) that were differently expressed in response to EPF, and which were potential targets involved in angiogenesis, proteolysis or endometriosis, were validated in further experiments (control = 8, eutopic = 11, ectopic = 11). Except for miR-149-5p, all validated miRNAs showed significantly lower levels (miR-16-5p, miR-106b-5p, miR-130a-5p; miR-195-5p and miR-424-5p, P < 0.05; miR-21-5p, miR-29c-3p and miR-185-5p, P < 0.01) after EPF treatment in primary cell cultures from eutopic endometrium from patients in comparison with 0PF. Transfection of stromal cells with mimics of miRNAs miR-16-5p, miR-29c-3p and miR-424-5p showed a significant down-regulation of VEGF-A protein expression. However, VEGFA mRNA expression after mimic transfection was not significantly modified, indicating the miRNAs inhibited VEGF-A mRNA translation rather than degrading VEGFA mRNA. Luciferase experiments also corroborated VEGF-A as a target gene of miR-29c-3p. The study was performed in an in vitro model of endometriosis using stromal cells. This model is just a representation to try to elucidate the molecular mechanisms involved in the development of endometriosis. Further studies to identify the pathways involved in this miRNA expression modification in response to PF from patients are needed. This is the first study describing a modified miRNA expression profile in eutopic cells from patients in response to PF from patients. These promising results improve the body of knowledge on endometriosis pathogenesis and could open up new therapeutic strategies for the treatment of endometriosis through the use of miRNAs. This work was supported by research grants by ISCIII and FEDER (PI11/00091, PI11/00566, PI14/01309, PI14/00253 and FI12/00012), RIC (RD12/0042/0029 and RD12/0042/0050), IIS La Fe 2011-211, Prometeo 2011/027 and Contrato Sara Borrell CD13/0005. There are no conflicts of interest to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Linguistic profile of individuals with Down syndrome: comparing the linguistic performance of three developmental disorders.

    PubMed

    Ypsilanti, A; Grouios, G

    2008-03-01

    An increasing number of studies, addressing the linguistic abilities of individuals with Down syndrome (DS) suggest that they exhibit strengths and weaknesses within the linguistic domain. This article critically reviews the literature on the linguistic profile of individuals with DS, with particular emphasis on the expression and reception of vocabulary and grammar, including nonverbal linguistic expression during infant development. In doing so, attention is given to recent comparative studies of the linguistic abilities of individuals with DS, Specific Language Impairment (SLI), and Williams syndrome (WS). The possibility that deficits in one cognitive system may have consequences in another cognitive system, and that these consequences may define the nature of the impairment in each clinical syndrome is further discussed with suggestions for future research.

  9. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome.

    PubMed

    Haebig, Eileen; Sterling, Audra

    2017-02-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD.

  10. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome

    PubMed Central

    Sterling, Audra

    2016-01-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD. PMID:27796729

  11. Label-free Quantitative Protein Profiling of vastus lateralis Muscle During Human Aging*

    PubMed Central

    Théron, Laëtitia; Gueugneau, Marine; Coudy, Cécile; Viala, Didier; Bijlsma, Astrid; Butler-Browne, Gillian; Maier, Andrea; Béchet, Daniel; Chambon, Christophe

    2014-01-01

    Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers. PMID:24217021

  12. Label-free quantitative protein profiling of vastus lateralis muscle during human aging.

    PubMed

    Théron, Laëtitia; Gueugneau, Marine; Coudy, Cécile; Viala, Didier; Bijlsma, Astrid; Butler-Browne, Gillian; Maier, Andrea; Béchet, Daniel; Chambon, Christophe

    2014-01-01

    Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers.

  13. Multiparameter immune profiling of operational tolerance in liver transplantation.

    PubMed

    Martínez-Llordella, M; Puig-Pey, I; Orlando, G; Ramoni, M; Tisone, G; Rimola, A; Lerut, J; Latinne, D; Margarit, C; Bilbao, I; Brouard, S; Hernández-Fuentes, M; Soulillou, J-P; Sánchez-Fueyo, A

    2007-02-01

    Immunosuppressive drugs can be completely withdrawn in up to 20% of liver transplant recipients, commonly referred to as 'operationally' tolerant. Immune characterization of these patients, however, has not been performed in detail, and we lack tests capable of identifying tolerant patients among recipients receiving maintenance immunosuppression. In the current study we have analyzed a variety of biological traits in peripheral blood of operationally tolerant liver recipients in an attempt to define a multiparameter 'fingerprint' of tolerance. Thus, we have performed peripheral blood gene expression profiling and extensive blood cell immunophenotyping on 16 operationally tolerant liver recipients, 16 recipients requiring on-going immunosuppressive therapy, and 10 healthy individuals. Microarray profiling identified a gene expression signature that could discriminate tolerant recipients from immunosuppression-dependent patients with high accuracy. This signature included genes encoding for gammadelta T-cell and NK receptors, and for proteins involved in cell proliferation arrest. In addition, tolerant recipients exhibited significantly greater numbers of circulating potentially regulatory T-cell subsets (CD4+ CD25+ T-cells and Vdelta1+ T cells) than either non-tolerant patients or healthy individuals. Our data provide novel mechanistic insight on liver allograft operational tolerance, and constitute a first step in the search for a non-invasive diagnostic signature capable of predicting tolerance before undergoing drug weaning.

  14. Functional genomic mRNA profiling of a large cancer data base demonstrates mesothelin overexpression in a broad range of tumor types.

    PubMed

    Lamberts, Laetitia E; de Groot, Derk Jan A; Bense, Rico D; de Vries, Elisabeth G E; Fehrmann, Rudolf S N

    2015-09-29

    The membrane bound glycoprotein mesothelin (MSLN) is a highly specific tumor marker, which is currently exploited as target for drugs. There are only limited data available on MSLN expression by human tumors. Therefore we determined overexpression of MSLN across different tumor types with Functional Genomic mRNA (FGM) profiling of a large cancer database. Results were compared with data in articles reporting immunohistochemical (IHC) MSLN tumor expression. FGM profiling is a technique that allows prediction of biologically relevant overexpression of proteins from a robust data set of mRNA microarrays. This technique was used in a database comprising 19,746 tumors to identify for 41 tumor types the percentage of samples with an overexpression of MSLN compared to a normal background. A literature search was performed to compare the FGM profiling data with studies reporting IHC MSLN tumor expression. FGM profiling showed MSLN overexpression in gastrointestinal (12-36%) and gynecological tumors (20-66%), non-small cell lung cancer (21%) and synovial sarcomas (30%). The overexpression found in thyroid cancers (5%) and renal cell cancers (10%) was not yet reported with IHC analyses. We observed that MSLN amplification rate within esophageal cancer depends on the histotype (31% for adenocarcinomas versus 3% for squamous-cell carcinomas). Subset analysis in breast cancer showed MSLN amplification rates of 28% in triple-negative breast cancer (TNBC) and 33% in basal-like breast cancer. Further subtype analysis of TNBCs showed the highest amplification rate (42%) in the basal-like 1 subtype and the lowest amplification rate (9%) in the luminal androgen receptor subtype.

  15. Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans

    PubMed Central

    MJ, Falk; Z, Zhang; Rosenjack; Nissim; E, Daikhin; Nissim; MM, Sedensky; M, Yudkoff; PG, Morgan

    2008-01-01

    C. elegans affords a model of primary mitochondrial dysfunction that provides insight into cellular adaptations which accompany mutations in nuclear gene that encode mitochondrial proteins. To this end, we characterized genome-wide expression profiles of C. elegans strains with mutations in nuclear-encoded subunits of respiratory chain complexes. Our goal was to detect concordant changes among clusters of genes that comprise defined metabolic pathways. Results indicate that respiratory chain mutants significantly upregulate a variety of basic cellular metabolic pathways involved in carbohydrate, amino acid, and fatty acid metabolism, as well as cellular defense pathways such as the metabolism of P450 and glutathione. To further confirm and extend expression analysis findings, quantitation of whole worm free amino acid levels was performed in C. elegans mitochondrial mutants for subunits of complexes I, II, and III. Significant differences were seen for 13 of 16 amino acid levels in complex I mutants compared with controls, as well as overarching similarities among profiles of complex I, II, and III mutants compared with controls. The specific pattern of amino acid alterations observed provides novel evidence to suggest that an increase in glutamate-linked transamination reactions caused by the failure of NAD+ dependent oxidation of ketoacids occurs in primary mitochondrial respiratory chain mutants. Recognition of consistent alterations among patterns of nuclear gene expression for multiple biochemical pathways and in quantitative amino acid profiles in a translational genetic model of mitochondrial dysfunction allows insight into the complex pathogenesis underlying primary mitochondrial disease. Such knowledge may enable the development of a metabolomic profiling diagnostic tool applicable to human mitochondrial disease. PMID:18178500

  16. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees.

    PubMed

    Sen Sarma, Moushumi; Whitfield, Charles W; Robinson, Gene E

    2007-06-29

    Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9-10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p < 0.001). Principal Components Analysis revealed dominant patterns of expression that clearly distinguished between the four species but did not reflect known differences in behavior and ecology. There were species differences in brain expression profiles for functionally related groups of genes. We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in brain expression profiles for functionally related groups of genes provide possible clues to the basis of behavioral variation in the genus.

  17. Circular RNA expression in basal cell carcinoma.

    PubMed

    Sand, Michael; Bechara, Falk G; Sand, Daniel; Gambichler, Thilo; Hahn, Stephan A; Bromba, Michael; Stockfleth, Eggert; Hessam, Schapoor

    2016-05-01

    Circular RNAs (circRNAs), are nonprotein coding RNAs consisting of a circular loop with multiple miRNA, binding sites called miRNA response elements (MREs), functioning as miRNA sponges. This study was performed to identify differentially expressed circRNAs and their MREs in basal cell carcinoma (BCC). Microarray circRNA expression profiles were acquired from BCC and control followed by qRT-PCR validation. Bioinformatical target prediction revealed multiple MREs. Sequence analysis was performed concerning MRE interaction potential with the BCC miRNome. We identified 23 upregulated and 48 downregulated circRNAs with 354 miRNA response elements capable of sequestering miRNA target sequences of the BCC miRNome. The present study describes a variety of circRNAs that are potentially involved in the molecular pathogenesis of BCC.

  18. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.

    PubMed

    Obudulu, Ogonna; Bygdell, Joakim; Sundberg, Björn; Moritz, Thomas; Hvidsten, Torgeir R; Trygg, Johan; Wingsle, Gunnar

    2016-02-18

    Wood development is of outstanding interest both to basic research and industry due to the associated cellulose and lignin biomass production. Efforts to elucidate wood formation (which is essential for numerous aspects of both pure and applied plant science) have been made using transcriptomic analyses and/or low-resolution sampling. However, transcriptomic data do not correlate perfectly with levels of expressed proteins due to effects of post-translational modifications and variations in turnover rates. In addition, high-resolution analysis is needed to characterize key transitions. In order to identify protein profiles across the developmental region of wood formation, an in-depth and tissue specific sampling was performed. We examined protein profiles, using an ultra-performance liquid chromatography/quadrupole time of flight mass spectrometry system, in high-resolution tangential sections spanning all wood development zones in Populus tremula from undifferentiated cambium to mature phloem and xylem, including cell expansion and cell death zones. In total, we analyzed 482 sections, 20-160 μm thick, from four 47-year-old trees growing wild in Sweden. We obtained high quality expression profiles for 3,082 proteins exhibiting consistency across the replicates, considering that the trees were growing in an uncontrolled environment. A combination of Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures (OPLS) modeling and an enhanced stepwise linear modeling approach identified several major transitions in global protein expression profiles, pinpointing (for example) locations of the cambial division leading to phloem and xylem cells, and secondary cell wall formation zones. We also identified key proteins and associated pathways underlying these developmental landmarks. For example, many of the lignocellulosic related proteins were upregulated in the expansion to the early developmental xylem zone, and for laccases with a rapid decrease in early xylem zones. We observed upregulation of two forms of xylem cysteine protease (Potri.002G005700.1 and Potri.005G256000.2; Pt-XCP2.1) in early xylem and their downregulation in late maturing xylem. Our data also show that Pt-KOR1.3 (Potri.003G151700.2) exhibits an expression pattern that supports the hypothesis put forward in previous studies that this is a key xyloglucanase involved in cellulose biosynthesis in primary cell walls and reduction of cellulose crystallinity in secondary walls. Our novel multivariate approach highlights important processes and provides confirmatory insights into the molecular foundations of wood development.

  19. Brightness analysis of an electron beam with a complex profile

    NASA Astrophysics Data System (ADS)

    Maesaka, Hirokazu; Hara, Toru; Togawa, Kazuaki; Inagaki, Takahiro; Tanaka, Hitoshi

    2018-05-01

    We propose a novel analysis method to obtain the core bright part of an electron beam with a complex phase-space profile. This method is beneficial to evaluate the performance of simulation data of a linear accelerator (linac), such as an x-ray free electron laser (XFEL) machine, since the phase-space distribution of a linac electron beam is not simple, compared to a Gaussian beam in a synchrotron. In this analysis, the brightness of undulator radiation is calculated and the core of an electron beam is determined by maximizing the brightness. We successfully extracted core electrons from a complex beam profile of XFEL simulation data, which was not expressed by a set of slice parameters. FEL simulations showed that the FEL intensity was well remained even after extracting the core part. Consequently, the FEL performance can be estimated by this analysis without time-consuming FEL simulations.

  20. eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes.

    PubMed

    Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen

    2014-01-01

    Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice.

  1. eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes

    PubMed Central

    Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen

    2014-01-01

    Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice. PMID:25374455

  2. Expression profiles of mRNA and long noncoding RNA in the ovaries of letrozole-induced polycystic ovary syndrome rat model through deep sequencing.

    PubMed

    Fu, Lu-Lu; Xu, Ying; Li, Dan-Dan; Dai, Xiao-Wei; Xu, Xin; Zhang, Jing-Shun; Ming, Hao; Zhang, Xue-Ying; Zhang, Guo-Qing; Ma, Ya-Lan; Zheng, Lian-Wen

    2018-05-30

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-aged women. However, the exact pathophysiology of PCOS remains largely unclear. We performed deep sequencing to investigate the mRNA and long noncoding RNA (lncRNA) expression profiles in the ovarian tissues of letrozole-induced PCOS rat model and control rats. A total of 2147 mRNAs and 158 lncRNAs were differentially expressed between the PCOS models and control. Gene ontology analysis indicated that differentially expressed mRNAs were associated with biological adhesion, reproduction, and metabolic process. Pathway analysis results indicated that these aberrantly expressed mRNAs were related to several specific signaling pathways, including insulin resistance, steroid hormone biosynthesis, PPAR signaling pathway, cell adhesion molecules, autoimmune thyroid disease, and AMPK signaling pathway. The relative expression levels of mRNAs and lncRNAs were validated through qRT-PCR. LncRNA-miRNA-mRNA network was constructed to explore ceRNAs involved in the PCOS model and were also verified by qRTPCR experiment. These findings may provide insight into the pathogenesis of PCOS and clues to find key diagnostic and therapeutic roles of lncRNA in PCOS. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Functional expression of dental plaque microbiota.

    PubMed

    Peterson, Scott N; Meissner, Tobias; Su, Andrew I; Snesrud, Erik; Ong, Ana C; Schork, Nicholas J; Bretz, Walter A

    2014-01-01

    Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota.

  4. Functional expression of dental plaque microbiota

    PubMed Central

    Peterson, Scott N.; Meissner, Tobias; Su, Andrew I.; Snesrud, Erik; Ong, Ana C.; Schork, Nicholas J.; Bretz, Walter A.

    2014-01-01

    Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota. PMID:25177549

  5. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  6. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray.

    PubMed

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-03-01

    To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.

  7. microRNA analysis of Taenia crassiceps cysticerci under praziquantel treatment and genome-wide identification of Taenia solium miRNAs.

    PubMed

    Pérez, Matías Gastón; Macchiaroli, Natalia; Lichtenstein, Gabriel; Conti, Gabriela; Asurmendi, Sebastián; Milone, Diego Humberto; Stegmayer, Georgina; Kamenetzky, Laura; Cucher, Marcela; Rosenzvit, Mara Cecilia

    2017-09-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression and perform critical functions in development and disease. In spite of the increased interest in miRNAs from helminth parasites, no information is available on miRNAs from Taenia solium, the causative agent of cysticercosis, a neglected disease affecting millions of people worldwide. Here we performed a comprehensive analysis of miRNAs from Taenia crassiceps, a laboratory model for T. solium studies, and identified miRNAs in the T. solium genome. Moreover, we analysed the effect of praziquantel, one of the two main drugs used for cysticercosis treatment, on the miRNA expression profile of T. crassiceps cysticerci. Using small RNA-seq and two independent algorithms for miRNA prediction, as well as northern blot validation, we found transcriptional evidence of 39 miRNA loci in T. crassiceps. Since miRNAs were mapped to the T. solium genome, these miRNAs are considered common to both parasites. The miRNA expression profile of T. crassiceps was biased to the same set of highly expressed miRNAs reported in other cestodes. We found a significant altered expression of miR-7b under praziquantel treatment. In addition, we searched for miRNAs predicted to target genes related to drug response. We performed a detailed target prediction for miR-7b and found genes related to drug action. We report an initial approach to study the effect of sub-lethal drug treatment on miRNA expression in a cestode parasite, which provides a platform for further studies of miRNA involvement in drug effects. The results of our work could be applied to drug development and provide basic knowledge of cysticercosis and other neglected helminth infections. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  8. Valine Supplementation in a Reduced Protein Diet Regulates Growth Performance Partially through Modulation of Plasma Amino Acids Profile, Metabolic Responses, Endocrine, and Neural Factors in Piglets.

    PubMed

    Zhang, Xiaoya; Liu, Xutong; Jia, Hongmin; He, Pingli; Mao, Xiangbing; Qiao, Shiyan; Zeng, Xiangfang

    2018-03-28

    The objective of this study was to investigate whether valine (Val) supplementation in a reduced protein (RP) diet regulates growth performance associated with the changes in plasma amino acids (AAs) profile, metabolism, endocrine, and neural system in piglets. Piglets or piglets with a catheter in the precaval vein were randomly assigned to two treatments, including two RP diets with standardized ileal digestible (SID) Val:Lysine (Lys) ratio of 0.45 and 0.65, respectively. The results indicated that piglets in the higher Val:Lys ratio treatment had higher average daily feed intake (ADFI) ( P < 0.001), average daily gain (ADG) ( P = 0.001), feed conversion ratio (FCR) ( P = 0.004), lower plasma urea nitrogen ( P = 0.032), expression of gastric cholecystokinin (CCK), and hypothalamic pro-opiomelanocortin (POMC). Plasma AAs profiles including postprandial plasma essential AAs (EAAs) profile and in serum, muscle, and liver involved in metabolism of AAs and fatty acids were significantly different between two treatments. In conclusion, Val influenced growth performance associated with metabolism of AAs and fatty acids and both endocrine and neural system in piglets.

  9. Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect

    NASA Astrophysics Data System (ADS)

    Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos

    1997-05-01

    The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.

  10. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes.

    PubMed

    Stigliani, Sara; Moretti, Stefano; Anserini, Paola; Casciano, Ida; Venturini, Pier Luigi; Scaruffi, Paola

    2015-11-01

    Does storage time have any impact on the transcriptome of slowly frozen cryopreserved human metaphase II (MII) oocytes? The length of cryostorage has no effect on the gene expression profile of human MII oocytes. Oocyte cryopreservation is a widely used technique in IVF for storage of surplus oocytes, as well as for fertility preservation (i.e. women undergoing gonadotoxic therapies) and oocyte donation programs. Although cryopreservation has negative impacts on oocyte physiology and it is associated with decrease of transcripts, no experimental data about the effect of storage time on the oocyte molecular profile are available to date. This study included 27 women, ≤38 years aged, without any ovarian pathology, undergoing IVF treatment. Surplus MII oocytes were donated after written informed consent. A total of 31 non-cryopreserved oocytes and 68 surviving slow-frozen/rapid-thawed oocytes (32 oocytes cryostored for 3 years and 36 cryostored for 6 years) were analyzed. Pools of ≈10 oocytes for each group were prepared. Total RNA was extracted from each pool, amplified, labeled and hybridized on oligonucleotide microarrays. Analyses were performed by R software using the limma package. Comparison of gene expression profiles between surviving thawed oocytes after 3 and 6 years of storage in liquid nitrogen found no differently expressed genes. The expression profiles of cryopreserved MII oocytes significantly differed from those of non-cryopreserved oocytes in 107 probe sets corresponding to 73 down-regulated and 29 up-regulated unique transcripts. Gene Ontology analysis by DAVID bioinformatics resource disclosed that cryopreservation deregulates genes involved in oocyte function and early embryo development, such as chromosome organization, RNA splicing and processing, cell cycle, cellular response to DNA damage and to stress, DNA repair, calcium ion binding, malate dehydrogenase activity and mitochondrial activity. Among the probes significantly up-regulated in cryopreserved oocytes, two corresponded to ovary-specific expressed large intergenic noncoding (linc)RNAs. Data validation in a larger cohort of samples would be beneficial, although we applied stringent criteria for gene selection (fold-change >3 or <1/3 and FDR < 0.1). Further research should be undertaken to verify experimentally that the length of cryostorage has no effect on gene expression profile of vitrified/warmed MII oocytes, as well as to include in analyses 'older' frozen oocytes. Confirmation that the length of storage does not alter the gene expression profile of frozen oocytes is noteworthy for the safety issue of long-term oocyte banking, i.e. fertility preservation, gamete donation. This study was supported by a grant of the Italian Ministry of Health (CCM 2012) and by Ferring Pharmaceutical company. The authors have no conflicts of interest to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Profiling of Benign and Malignant Nerve Sheath

    DTIC Science & Technology

    2007-05-01

    Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients PRINCIPAL INVESTIGATOR: Matt van de Rijn, M.D., Ph.D. Torsten...Annual 3. DATES COVERED 1 May 2006 –30 Apr 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genomic and Expression Profiling of Benign and Malignant Nerve...Award Number: DAMD17-03-1-0297 Title: Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis

  13. Global gene profiling of aging lungs in Atp8b1 mutant mice.

    PubMed

    Soundararajan, Ramani; Stearns, Timothy M; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F; King, Benjamin L; Kolliputi, Narasaiah

    2016-09-29

    Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases.

  14. Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression.

    PubMed

    Kratochvilova, Monika; Raudenska, Martina; Heger, Zbynek; Richtera, Lukas; Cernei, Natalia; Adam, Vojtech; Babula, Petr; Novakova, Marie; Masarik, Michal; Gumulec, Jaromir

    2017-05-01

    Failure in intracellular zinc accumulation is a key process in prostate carcinogenesis. Nevertheless, epidemiological studies of zinc administration have provided contradicting results. In order to examine the impact of the artificial intracellular increase of zinc(II) ions on prostate cancer metabolism, PNT1A, 22Rv1, and PC-3 prostatic cell lines-depicting different stages of cancer progression-and their zinc-resistant counterparts were used. To determine "benign" and "malignant" metabolic profiles, amino acid patterns, gene expression, and antioxidant capacity of these cell lines were assessed. Amino acid profiles were examined using an ion-exchange liquid chromatography. Intracellular zinc content was measured by atomic absorption spectrometry. Metallothionein was quantified using differential pulse voltammetry. The content of reduced glutathione was determined using high performance liquid chromatography coupled with an electrochemical detector. Cellular antioxidant capacity was determined by the ABTS test and gene expression analysis was performed by qRT-PCR. Long-term zinc treatment was shown to reroute cell metabolism from benign to more malignant type. Long-term application of high concentration of zinc(II) significantly enhanced cisplatin resistance, invasiveness, cellular antioxidant capacity, synthesis of glutathione, and expression of treatment resistance- and stemness-associated genes (SOX2, POU5F1, BIRC5). Tumorous cell lines universally displayed high accumulation of aspartate and sarcosine and depletion of essential amino acids. Increased aspartate/threonine, aspartate/methionine, and sarcosine/serine ratios were associated with cancer phenotype with high levels of sensitivity and specificity. Prostate 77: 604-616, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Geometry of the Gene Expression Space of Individual Cells

    PubMed Central

    Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E.; Kalisky, Tomer; Alon, Uri

    2015-01-01

    There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the vertices represent specialists at key tasks. PMID:26161936

  16. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes

    NASA Astrophysics Data System (ADS)

    Zhang, Hong

    2016-07-01

    We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signalling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and cosmic radiation

  17. CsGOGAT Is Important in Dynamic Changes of Theanine Content in Postharvest Tea Plant Leaves under Different Temperature and Shading Spreadings.

    PubMed

    Liu, Zhi-Wei; Li, Hui; Wang, Wen-Li; Wu, Zhi-Jun; Cui, Xin; Zhuang, Jing

    2017-11-08

    We analyzed the changes of theanine content in postharvest tea leaves under high temperature (38 °C), low temperature (4 °C), and shading spreadings by using ultrahigh-performance liquid chromatography. The differentially expressed proteins (DEPs), CsFd-GOGAT and CsNADH-GOGAT, which are involved in theanine biosynthesis pathway, were identified from the corresponding proteome data. The protein-protein interactions of CsFd-GOGAT and CsNADH-GOGAT, CsTS1, or CsNiR were verified by yeast two-hybrid technology. The expression profiles of 17 genes in theanine metabolism, including CsFd-GOGAT and CsNADH-GOGAT, were analyzed by quantitative real-time polymerase chain reaction. The correlations between the dynamic changes of theanine content and expression profiles of related genes and DEPs were analyzed. This study preliminarily proved the importance of CsGOGAT in dynamic changes of theanine content in postharvest tea leaves during spreading.

  18. Diffusion profiling of tumor volumes using a histogram approach can predict proliferation and further microarchitectural features in medulloblastoma.

    PubMed

    Schob, Stefan; Beeskow, Anne; Dieckow, Julia; Meyer, Hans-Jonas; Krause, Matthias; Frydrychowicz, Clara; Hirsch, Franz-Wolfgang; Surov, Alexey

    2018-05-31

    Medulloblastomas are the most common central nervous system tumors in childhood. Treatment and prognosis strongly depend on histology and transcriptomic profiling. However, the proliferative potential also has prognostical value. Our study aimed to investigate correlations between histogram profiling of diffusion-weighted images and further microarchitectural features. Seven patients (age median 14.6 years, minimum 2 years, maximum 20 years; 5 male, 2 female) were included in this retrospective study. Using a Matlab-based analysis tool, histogram analysis of whole apparent diffusion coefficient (ADC) volumes was performed. ADC entropy revealed a strong inverse correlation with the expression of the proliferation marker Ki67 (r = - 0.962, p = 0.009) and with total nuclear area (r = - 0.888, p = 0.044). Furthermore, ADC percentiles, most of all ADCp90, showed significant correlations with Ki67 expression (r = 0.902, p = 0.036). Diffusion histogram profiling of medulloblastomas provides valuable in vivo information which potentially can be used for risk stratification and prognostication. First of all, entropy revealed to be the most promising imaging biomarker. However, further studies are warranted.

  19. Characterization of growth and reproduction performance, transgene integration, expression and transmission patterns in transgenic pigs produced by piggyBac transposition-mediated gene transfer

    PubMed Central

    Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2016-01-01

    Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance, and characterized the transgene insertion, transmission and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favourable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition. PMID:27565868

  20. Personalized comprehensive molecular profiling of high risk osteosarcoma: Implications and limitations for precision medicine.

    PubMed

    Subbiah, Vivek; Wagner, Michael J; McGuire, Mary F; Sarwari, Nawid M; Devarajan, Eswaran; Lewis, Valerae O; Westin, Shanon; Kato, Shumei; Brown, Robert E; Anderson, Pete

    2015-12-01

    Despite advances in molecular medicine over recent decades, there has been little advancement in the treatment of osteosarcoma. We performed comprehensive molecular profiling in two cases of metastatic and chemotherapy-refractory osteosarcoma to guide molecularly targeted therapy. Hybridization capture of >300 cancer-related genes plus introns from 28 genes often rearranged or altered in cancer was applied to >50 ng of DNA extracted from tumor samples from two patients with recurrent, metastatic osteosarcoma. The DNA from each sample was sequenced to high, uniform coverage. Immunohistochemical probes and morphoproteomics analysis were performed, in addition to fluorescence in situ hybridization. All analyses were performed in CLIA-certified laboratories. Molecularly targeted therapy based on the resulting profiles was offered to the patients. Biomedical analytics were performed using QIAGEN's Ingenuity® Pathway Analysis. In Patient #1, comprehensive next-generation exome sequencing showed MET amplification, PIK3CA mutation, CCNE1 amplification, and PTPRD mutation. Immunohistochemistry-based morphoproteomic analysis revealed c-Met expression [(p)-c-Met (Tyr1234/1235)] and activation of mTOR/AKT pathway [IGF-1R (Tyr1165/1166), p-mTOR [Ser2448], p-Akt (Ser473)] and expression of SPARC and COX2. Targeted therapy was administered to match the P1K3CA, c-MET, and SPARC and COX2 aberrations with sirolimus+ crizotinib and abraxane+ celecoxib. In Patient #2, aberrations included NF2 loss in exons 2-16, PDGFRα amplification, and TP53 mutation. This patient was enrolled on a clinical trial combining targeted agents temsirolimus, sorafenib and bevacizumab, to match NF2, PDGFRα and TP53 aberrations. Both the patients did not benefit from matched therapy. Relapsed osteosarcoma is characterized by complex signaling and drug resistance pathways. Comprehensive molecular profiling holds great promise for tailoring personalized therapies for cancer. Methods for such profiling are evolving and need to be refined to better assist clinicians in making treatment decisions based on the large amount of data that results from this type of testing. Further research in this area is warranted.

  1. Heterogeneous expression pattern of tandem duplicated sHsps genes during fruit ripening in two tomato species

    NASA Astrophysics Data System (ADS)

    Arce, DP; Krsticevic, FJ; Ezpeleta, J.; Ponce, SD; Pratta, GR; Tapia, E.

    2016-04-01

    The small heat shock proteins (sHSPs) have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the gene expression profile of four sHsps with a tandem gene structure arrangement in the domesticated Solanum lycopersicum (Heinz 1706) genome and its wild close relative Solanum pimpinellifolium (LA1589), differential gene expression analysis using RNA-Seq was conducted in three ripening stages in both cultivars fruits. Gene promoter analysis was performed to explain the heterogeneous pattern of gene expression found for these tandem duplicated sHsps. In silico analysis results contribute to refocus wet experiment analysis in tomato sHsp family proteins.

  2. Global transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao

    PubMed Central

    2015-01-01

    Background Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao (A. mongolicus, family Leguminosae) is one of the most important traditional Chinese herbs. Among many secondary metabolites it produces, the effective bioactive constituents include isoflavonoids and triterpene saponins. The genomic resources regarding the biosynthesis of these metabolites in A. mongolicus are limited. Although roots are the primary material harvested for medical use, the biosynthesis of the bioactive compounds and its regulation in A. mongolicus are not well understood. Therefore, a global transcriptome analysis on A. mongolicus tissues was performed to identify the genes essential for the metabolism and to profile their expression patterns in greater details. Results RNA-sequencing was performed for three different A. mongolicus tissues: leaf, stem, and root, using the Illumina Hiseq2000 platform. A total of 159.5 million raw sequence reads were generated, and assembled into 186,324 unigenes with an N50 of 1,524bp. Among them, 129,966 unigenes (~69.7%) were annotated using four public databases (Swiss-Prot, TrEMBL, CDD, Pfam), and 90,202, 63,946, and 78,326 unigenes were found to express in leaves, roots, and stems, respectively. A total of 8,025 transcription factors (TFs) were identified, in which the four largest families, bHLH, MYB, C3H, and WRKY, were implicated in regulation of tissue development, metabolisms, stress response, etc. Unigenes associated with secondary metabolism, especially those with isolavonoids and triterpene saponins biosynthesis were characterized and profiled. Most genes involved in the isoflavonoids biosynthesis had the lowest expression in the leaves, and the highest in the stems. For triterpene saponin biosynthesis, we found the genes in MVA and non-MVA pathways were differentially expressed among three examined tissues, indicating the parallel but compartmentally separated biosynthesis pathways of IPP and DMAPP in A. mongolicus. The first committed enzyme in triterpene saponin biosynthesis from A. mongolicus, cycloartenol synthase (AmCAS), which belongs to the oxidosqualene cyclase family, was cloned by us to study the astragalosides biosynthesis. Further co-expression analysis indicated the candidate CYP450s and glycosyltransferases (GTs) in the cascade of triterpene saponins biosynthesis. The presence of the large CYP450 families in A. mongolicus was further compared with those from Medicago truncatula and Arabidopsis thaliana, and the diversity and phylegenetic relationships of the CYP450 families were established. Conclusion A transcriptome study was performed for A. mongolicus tissues to construct and profile their metabolic pathways, especially for the important bioactive molecules. The results revealed a comprehensive profile for metabolic activities among tissues, pointing to the equal importance of leaf, stem, and root in A. mongolicus for the production of bioactive compounds. This work provides valuable resources for bioengineering and in vitro synthesis of the natural compounds for medical research and for potential drug development. PMID:26099797

  3. Transcript expression and genetic variability analysis of caspases in breast carcinomas suggests CASP9 as the most interesting target.

    PubMed

    Brynychova, Veronika; Hlavac, Viktor; Ehrlichova, Marie; Vaclavikova, Radka; Nemcova-Furstova, Vlasta; Pecha, Vaclav; Trnkova, Marketa; Mrhalova, Marcela; Kodet, Roman; Vrana, David; Gatek, Jiri; Bendova, Marie; Vernerova, Zdenka; Kovar, Jan; Soucek, Pavel

    2017-01-01

    Apoptosis plays a critical role in cancer cell survival and tumor development. We provide a hypothesis-generating screen for further research by exploring the expression profile and genetic variability of caspases (2, 3, 7, 8, 9, and 10) in breast carcinoma patients. This study addressed isoform-specific caspase transcript expression and genetic variability in regulatory sequences of caspases 2 and 9. Gene expression profiling was performed by quantitative real-time PCR in tumor and paired non-malignant tissues of two independent groups of patients. Genetic variability was determined by high resolution melting, allelic discrimination, and sequencing analysis in tumor and peripheral blood lymphocyte DNA of the patients. CASP3 A+B and S isoforms were over-expressed in tumors of both patient groups. The CASP9 transcript was down-regulated in tumors of both groups of patients and significantly associated with expression of hormonal receptors and with the presence of rs4645978-rs2020903-rs4646034 haplotype in the CASP9 gene. Patients with a low intratumoral CASP9A/B isoform expression ratio (predicted to shift equilibrium towards anti-apoptotic isoform) subsequently treated with adjuvant chemotherapy had a significantly shorter disease-free survival than those with the high ratio (p=0.04). Inheritance of CC genotype of rs2020903 in CASP9 was associated with progesterone receptor expression in tumors (p=0.003). Genetic variability in CASP9 and expression of its splicing variants present targets for further study.

  4. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression.

    PubMed

    Dobon, Albor; Bunting, Daniel C E; Cabrera-Quio, Luis Enrique; Uauy, Cristobal; Saunders, Diane G O

    2016-05-20

    Understanding how plants and pathogens modulate gene expression during the host-pathogen interaction is key to uncovering the molecular mechanisms that regulate disease progression. Recent advances in sequencing technologies have provided new opportunities to decode the complexity of such interactions. In this study, we used an RNA-based sequencing approach (RNA-seq) to assess the global expression profiles of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici (PST) and its host during infection. We performed a detailed RNA-seq time-course for a susceptible and a resistant wheat host infected with PST. This study (i) defined the global gene expression profiles for PST and its wheat host, (ii) substantially improved the gene models for PST, (iii) evaluated the utility of several programmes for quantification of global gene expression for PST and wheat, and (iv) identified clusters of differentially expressed genes in the host and pathogen. By focusing on components of the defence response in susceptible and resistant hosts, we were able to visualise the effect of PST infection on the expression of various defence components and host immune receptors. Our data showed sequential, temporally coordinated activation and suppression of expression of a suite of immune-response regulators that varied between compatible and incompatible interactions. These findings provide the framework for a better understanding of how PST causes disease and support the idea that PST can suppress the expression of defence components in wheat to successfully colonize a susceptible host.

  5. Role of WDHD1 in Human Papillomavirus-Mediated Oncogenesis Identified by Transcriptional Profiling of E7-Expressing Cells

    PubMed Central

    Zhou, Yunying; Zhang, Qishu; Gao, Ge; Zhang, Xiaoli; Liu, Yafei; Yuan, Shoudao

    2016-01-01

    ABSTRACT The E7 oncoprotein of the high-risk human papillomavirus (HPV) plays a major role in HPV-induced carcinogenesis. E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, but the mechanism is not fully understood. In this study, we performed RNA sequencing (RNA-seq) to characterize the transcriptional profile of keratinocytes expressing HPV 16 (HPV-16) E7. At the transcriptome level, 236 genes were differentially expressed between E7 and vector control cells. A subset of the differentially expressed genes, most of them novel to E7-expressing cells, was further confirmed by real-time PCR. Of interest, the activities of multiple transcription factors were altered in E7-expressing cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were investigated. The upregulated genes were enriched in cell cycle and DNA replication, as well as in the DNA metabolic process, transcription, DNA damage, DNA repair, and nucleotide metabolism. Specifically, we focused our studies on the gene encoding WDHD1 (WD repeat and high mobility group [HMG]-box DNA-binding protein), one of the genes that was upregulated in E7-expressing cells. WDHD1 is a component of the replisome that regulates DNA replication. Recent studies suggest that WDHD1 may also function as a DNA replication initiation factor as well as a G1 checkpoint regulator. We found that in E7-expressing cells, the steady-state level of WDHD1 protein was increased along with the half-life. Moreover, downregulation of WDHD1 reduced E7-induced G1 checkpoint abrogation and rereplication, demonstrating a novel function for WDHD1. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications. IMPORTANCE The high-risk HPV types induce cervical cancer and encode an E7 oncoprotein that plays a major role in HPV-induced carcinogenesis. However, the mechanism by which E7 induces carcinogenesis is not fully understood; specific anti-HPV agents are not available. In this study, we performed RNA-seq to characterize transcriptional profiling of keratinocytes expressing HPV-16 E7 and identified more than 200 genes that were differentially expressed between E7 and vector control cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were identified. Significantly, the WDHD1 gene, one of the genes that is upregulated in E7-expressing cells, was found to play an important role in E7-induced G1 checkpoint abrogation and rereplication. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications. PMID:27099318

  6. A New Gene Expression Signature for Triple-Negative Breast Cancer Using Frozen Fresh Tissue before Neoadjuvant Chemotherapy

    PubMed Central

    Santuario-Facio, Sandra K; Cardona-Huerta, Servando; Perez-Paramo, Yadira X; Trevino, Victor; Hernandez-Cabrera, Francisco; Rojas-Martinez, Augusto; Uscanga-Perales, Grecia; Martinez-Rodriguez, Jorge L; Martinez-Jacobo, Lizeth; Padilla-Rivas, Gerardo; Muñoz-Maldonado, Gerardo; Gonzalez-Guerrero, Juan Francisco; Valero-Gomez, Javier; Vazquez-Guerrero, Ana L; Martinez-Rodriguez, Herminia G; Barboza-Quintana, Alvaro; Barboza-Quintana, Oralia; Garza-Guajardo, Raquel; Ortiz-Lopez, Rocio

    2017-01-01

    Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer tumors. Comparisons between TNBC and non–triple-negative breast cancer (nTNBC) may help to differentiate key components involved in TNBC neoplasms. The purpose of the study was to analyze the expression profile of TNBC versus nTNBC tumors in a homogeneous population from northeastern Mexico. A prospective study of 50 patients (25 TNBC and 25 nTNBC) was conducted. Clinic parameters were equally distributed for TNBC and nTNBC: age at diagnosis (51 versus 47 years, p = 0.1), glucose level (107 mg/dl versus 104 mg/dl, p = 0.64), and body mass index (28 versus 29, p = 0.14). Core biopsies were collected for histopathological diagnosis and gene expression analysis. Total RNA was isolated and expression profiling was performed. Forty genes showed differential expression pattern in TNBC tumors. Among these, nine overexpressed genes (PRKX/PRKY, UGT8, HMGA1, LPIN1, HAPLN3, FAM171A1, BCL141A, FOXC1, and ANKRD11), and one underexpressed gene (ANX9) are involved in general metabolism. Based on this biochemical peculiarity and the overexpression of BCL11A and FOXC1 (involved in tumor growth and metastasis, respectively), we validated by quantitative polymerase chain reaction the expression profiles of seven genes out of the signature. In this report, a new gene signature for TNBC is proposed. To our knowledge, this is the first TNBC signature that describes genes involved in general metabolism. The findings may be pertinent for Mexican patients and require evaluation in other ethnic groups and populations. PMID:28474731

  7. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars

    PubMed Central

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of “Gala” apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties. PMID:25414708

  8. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    PubMed

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  9. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources

    PubMed Central

    Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong

    2017-01-01

    The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the “Gros Michel” banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. PMID:28468818

  10. Expression profiling of microRNAs in human bone tissue from postmenopausal women.

    PubMed

    De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia

    2018-01-01

    Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.

  11. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars.

    PubMed

    Wei, Xiaoyu; Liu, Fengli; Chen, Cheng; Ma, Fengwang; Li, Mingjun

    2014-01-01

    In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.

  12. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources.

    PubMed

    Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong

    2017-07-05

    The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. Copyright © 2017 Qin et al.

  13. Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer.

    PubMed

    Ebot, Ericka M; Gerke, Travis; Labbé, David P; Sinnott, Jennifer A; Zadra, Giorgia; Rider, Jennifer R; Tyekucheva, Svitlana; Wilson, Kathryn M; Kelly, Rachel S; Shui, Irene M; Loda, Massimo; Kantoff, Philip W; Finn, Stephen; Vander Heiden, Matthew G; Brown, Myles; Giovannucci, Edward L; Mucci, Lorelei A

    2017-11-01

    Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate < 0.25). Patients with high tumor expression of chromatin-related genes had worse clinical characteristics (Gleason grade > 7, 41% vs 17%; P = 2 × 10 -4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society. © 2017 American Cancer Society.

  14. Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers: a randomized controlled cross-over study.

    PubMed

    Milenkovic, Dragan; Deval, Christiane; Dubray, Claude; Mazur, Andrzej; Morand, Christine

    2011-01-01

    We previously showed, in healthy, middle-aged, moderately overweight men, that orange juice decreases diastolic blood pressure and significantly improves postprandial microvascular endothelial reactivity and that hesperidin could be causally linked to the observed beneficial effect of orange juice. The objective was to determine the effect of chronic consumption of orange juice on the gene expression profile of leukocytes in healthy volunteers and to assess to what extent hesperidin is involved in the effect of orange juice. Volunteers were included in a randomized, controlled, crossover study. Throughout three 4-week periods, volunteers consumed daily: 500 ml orange juice, 500 ml control drink plus hesperidin or 500 ml control drink and placebo. Blood samplings were performed on 10 overnight-fasted subjects after the 4-week treatment period. Global gene expression profiles were determined using human whole genome cDNA microarrays. Both orange juice and hesperidin consumption significantly affected leukocyte gene expression. Orange juice consumption induced changes in expression of, 3,422 genes, while hesperidin intake modulated the expression of 1,819 genes. Between the orange juice and hesperidin consumption groups, 1,582 regulated genes were in common. Many of these genes are implicated in chemotaxis, adhesion, infiltration and lipid transport, which is suggestive of lower recruitment and infiltration of circulating cells to vascular wall and lower lipid accumulation. This study shows that regular consumption of orange juice for 4 weeks alters leukocyte gene expression to an anti-inflammatory and anti-atherogenic profile, and hesperidin displays a relevant role in the genomic effect of this beverage. ClinicalTrials.gov NCT 00983086.

  15. Hesperidin Displays Relevant Role in the Nutrigenomic Effect of Orange Juice on Blood Leukocytes in Human Volunteers: A Randomized Controlled Cross-Over Study

    PubMed Central

    Milenkovic, Dragan; Deval, Christiane; Dubray, Claude; Mazur, Andrzej; Morand, Christine

    2011-01-01

    Background We previously showed, in healthy, middle-aged, moderately overweight men, that orange juice decreases diastolic blood pressure and significantly improves postprandial microvascular endothelial reactivity and that hesperidin could be causally linked to the observed beneficial effect of orange juice. The objective was to determine the effect of chronic consumption of orange juice on the gene expression profile of leukocytes in healthy volunteers and to assess to what extent hesperidin is involved in the effect of orange juice. Methodology/Principal Findings Volunteers were included in a randomized, controlled, crossover study. Throughout three 4-week periods, volunteers consumed daily: 500 ml orange juice, 500 ml control drink plus hesperidin or 500 ml control drink and placebo. Blood samplings were performed on 10 overnight-fasted subjects after the 4-week treatment period. Global gene expression profiles were determined using human whole genome cDNA microarrays. Both orange juice and hesperidin consumption significantly affected leukocyte gene expression. Orange juice consumption induced changes in expression of, 3,422 genes, while hesperidin intake modulated the expression of 1,819 genes. Between the orange juice and hesperidin consumption groups, 1,582 regulated genes were in common. Many of these genes are implicated in chemotaxis, adhesion, infiltration and lipid transport, which is suggestive of lower recruitment and infiltration of circulating cells to vascular wall and lower lipid accumulation. Conclusions This study shows that regular consumption of orange juice for 4 weeks alters leukocyte gene expression to an anti-inflammatory and anti-atherogenic profile, and hesperidin displays a relevant role in the genomic effect of this beverage. Trial Registration ClinicalTrials.gov NCT 00983086 PMID:22110589

  16. PROFILES OF GENE EXPRESSION ASSOCIATED WITH TETRACYCLINE OVER EXPRESSION OF HSP70 IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory

    Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells.

    Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...

  17. Gene expression profiling of mucolipidosis type IV fibroblasts reveals deregulation of genes with relevant functions in lysosome physiology.

    PubMed

    Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe

    2008-04-01

    Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.

  18. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia | Office of Cancer Genomics

    Cancer.gov

    Publication Abstract:  Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR-ABL1-positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults. We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL.

  19. Profiling of the yak skeletal muscle tissue gene expression and comparison with the domestic cattle by genome array.

    PubMed

    Wang, H B; Zan, L S; Zhang, Y Y

    2014-01-01

    Of all the mammals of the world, the yak lives at the highest altitude area of more than 3000 m. Comparison between yak and cattle of the low-altitude areas will be informative in studying animal adaptation to higher altitudes. To investigate the molecular mechanism involved in meat quality differences between the two Chinese special varieties Qinghai yak and Qinchuan cattle, 12 chemical-physical characteristics of the longissimus dorsi muscle related to meat quality were compared at the age of 36 months, and the gene expression profiles were constructed by utilizing the bovine genome array. Significant analysis of microarrays was used to identify the differentially expressed genes. Gene ontology and pathway analysis were performed by a free Web-based Molecular Annotation System 2.0. The results reveal ~11 000 probes representing about 10 000 genes that were detected in both the Qinghai yak and Qinchuan cattle. A total of 1922 genes were shown to be differentially expressed, 633 probes were upregulated and 1259 probes were downregulated in the muscle tissue of Qinghai yak that were mainly involved in ubiquitin-mediated proteolysis, muscle growth regulation, glucose metabolism, immune response and so on. Quantitative real-time PCR (qRT-PCR) was performed to validate some differentially expressed genes identified by microarray. Further analysis implied that animals living at a high altitude may supply energy by more active protein catabolism and glycolysis compared with those living in the plain areas. Our results establish the groundwork for further studies on yaks' meat quality and will be beneficial in improving the yaks' breeding by molecular biotechnology.

  20. Gene Expression Profiling of Acute Lymphoblastic Leukemia in Children with Very Early Relapse.

    PubMed

    Núñez-Enríquez, Juan Carlos; Bárcenas-López, Diego Alberto; Hidalgo-Miranda, Alfredo; Jiménez-Hernández, Elva; Bekker-Méndez, Vilma Carolina; Flores-Lujano, Janet; Solis-Labastida, Karina Anastacia; Martínez-Morales, Gabriela Bibiana; Sánchez-Muñoz, Fausto; Espinoza-Hernández, Laura Eugenia; Velázquez-Aviña, Martha Margarita; Merino-Pasaye, Laura Elizabeth; García Velázquez, Alejandra Jimena; Pérez-Saldívar, María Luisa; Mojica-Espinoza, Raúl; Ramírez-Bello, Julián; Jiménez-Morales, Silvia; Mejía-Aranguré, Juan Manuel

    2016-11-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide. Mexican patients have high mortality rates, low frequency of good prognosis biomarkers (i.e., ETV6-RUNX1) and a high proportion is classified at the time of diagnosis with a high risk to relapse according to clinical features. In addition, very early relapses are more frequently observed than in other populations. The aim of the study was to identify new potential biomarkers associated with very early relapse in Mexican ALL children through transcriptome analysis. Microarray gene expression profiling on bone marrow samples of 54 pediatric ALL patients, collected at time of diagnosis and/or at relapse, was performed. Eleven patients presented relapse within the first 18 months after diagnosis. Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) was used to perform gene expression analysis. Annotation and functional enrichment analyses were carried out using Gene Ontology, KEGG pathway analysis and Ingenuity Pathway Analysis tools. BLVRB, ZCCHC7, PAX5, EBF1, TMOD1 and BLNK were differentially expressed (fold-change >2.0 and p value <0.01) between relapsed and non-relapsed patients. Functional analysis of abnormally expressed genes revealed their important role in cellular processes related to the development of hematological diseases, cancer, cell death and survival and in cell-to-cell signaling interaction. Our data support previous findings showing the relevance of PAX5, EBF1 and ZCCHC7 as potential biomarkers to identify a subgroup of ALL children in high risk to relapse. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  1. Metabolic Disturbances in Adult-Onset Still's Disease Evaluated Using Liquid Chromatography/Mass Spectrometry-Based Metabolomic Analysis.

    PubMed

    Chen, Der-Yuan; Chen, Yi-Ming; Chien, Han-Ju; Lin, Chi-Chen; Hsieh, Chia-Wei; Chen, Hsin-Hua; Hung, Wei-Ting; Lai, Chien-Chen

    2016-01-01

    Liquid chromatography/mass spectrometry (LC/MS)-based comprehensive analysis of metabolic profiles with metabolomics approach has potential diagnostic and predictive implications. However, no metabolomics data have been reported in adult-onset Still's disease (AOSD). This study investigated the metabolomic profiles in AOSD patients and examined their association with clinical characteristics and disease outcome. Serum metabolite profiles were determined on 32 AOSD patients and 30 healthy controls (HC) using ultra-performance liquid chromatography (UPLC)/MS analysis, and the differentially expressed metabolites were quantified using multiple reactions monitoring (MRM)/MS analysis in 44 patients and 42 HC. Pure standards were utilized to confirm the presence of the differentially expressed metabolites. Eighteen differentially expressed metabolites were identified in AOSD patents using LC/MS-based analysis, of which 13 metabolites were validated by MRM/MS analysis. Among them, serum levels of lysoPC(18:2), urocanic acid and indole were significantly lower, and L-phenylalanine levels were significantly higher in AOSD patients compared with HC. Moreover, serum levels of lysoPC(18:2), PhePhe, uridine, taurine, L-threonine, and (R)-3-Hydroxy-hexadecanoic acid were significantly correlated with disease activity scores (all p<0.05) in AOSD patients. A different clustering of metabolites was associated with a different disease outcome, with significantly lower levels of isovalerylsarcosine observed in patients with chronic articular pattern (median, 77.0AU/ml) compared with monocyclic (341.5AU/ml, p<0.01) or polycyclic systemic pattern (168.0AU/ml, p<0.05). Thirteen differentially expressed metabolites identified and validated in AOSD patients were shown to be involved in five metabolic pathways. Significant associations of metabolic profiles with disease activity and outcome of AOSD suggest their involvement in AOSD pathogenesis.

  2. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics.

    PubMed

    Xiao, Yinghua; van Hijum, Sacha A F T; Abee, Tjakko; Wells-Bennik, Marjon H J

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies.

  3. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics

    PubMed Central

    Xiao, Yinghua; van Hijum, Sacha A. F. T.; Abee, Tjakko; Wells-Bennik, Marjon H. J.

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies. PMID:25978838

  4. Histological analysis and identification of spermatogenesis-related genes in 2-, 6-, and 12-month-old sheep testes

    NASA Astrophysics Data System (ADS)

    Bai, Man; Sun, Limin; Zhao, Jia; Xiang, Lujie; Cheng, Xiaoyin; Li, Jiarong; Jia, Chao; Jiang, Huaizhi

    2017-10-01

    Testis development and spermatogenesis are vital factors that influence male animal fertility. In order to identify spermatogenesis-related genes and further provide a theory basis for finding biomarkers related to male sheep fertility, 2-, 6-, and 12-month-old Small Tail Han Sheep testes were selected to investigate the dynamic changes of sheep testis development. Hematoxylin-eosin routine staining and RNA-Seq technique were used to perform histological and transcriptome analysis for these testes. The results showed that 630, 102, and 322 differentially expressed genes (DEGs) were identified in 2- vs 6-month-old, 6- vs 12-month-old, and 2- vs 12-month-old testes, respectively. GO and KEGG analysis showed the following: DEGs in 2- vs 6-month-old testes were mainly related to the GO terms of sexual maturation and the pathways of multiple metabolism and biosynthesis; in 6- vs 12-month-old testes, most of the GO terms that DEGs involved in were related to metabolism and translation processes; the most significantly enriched pathway is the ribosome pathway. The union of DEGs in 2- vs 6-month-old, 6- vs 12-month-old, and 2- vs 12-month-old testes was categorized into eight profiles by series cluster. Subsequently, the eight profiles were classified into four model profiles and four co-expression networks were constructed based on the DEGs in these model profiles. Finally, 29 key regulatory genes related to spermatogenesis were identified in the four co-expression networks. The expression of 13 DEGs (CA3, APOH, MYOC, CATSPER4, SYT6, SERPINA10, DAZL, ADIPOR2, RAB13, CEP41, SPAG4, ODF1, and FRG1) was validated by RT-PCR.

  5. Kinetics of IFN-gamma and TNF-alpha gene expression and their relationship with disease progression after infection with Mycobacterium tuberculosis in guinea pigs.

    PubMed

    Roh, In Soon; Cho, Sungae; Eum, Seok-Yong; Cho, Sang-Nae

    2013-05-01

    Guinea pig is one of the most suitable animal models for Mycobacterium tuberculosis (M. tb) infection since it shows similarities to pulmonary infection in humans. Although guinea pig shows hematogenous spread of M. tb infection into the whole body, immunological studies have mainly focused on granulomatous tissues in lungs and spleens. In order to investigate the time-course of disease pathogenesis and immunological profiles in each infected organ, we performed the following approaches with guinea pigs experimentally infected with M. tb over a 22-week post-infection period. We examined body weight changes, M. tb growth curve, cytokine gene expression (IFN-γ and TNF-α), and histopathology in liver, spleen, lungs and lymph nodes of infected guinea pigs. The body weights of infected guinea pigs did not increase as much as uninfected ones and the number of M. tb bacilli in their organs increased except bronchotracheal lymph node during the experimental period. The gene expression of IFN-γ and TNF-α was induced between 3 and 6 weeks of infection; however, kinetic profiles of cytokine gene expression showed heterogeneity among organs over the study period. Histophathologically granulomatous lesions were developed in all four organs of infected guinea pigs. Although IFN-γ and TNF-α gene expression profiles showed heterogeneity, the granuloma formation was clearly observed in every organ regardless of whether the number of bacilli increased or decreased. However, this protective immunity was accompanied with severe tissue damage in all four organs, which may lead to the death of guinea pigs.

  6. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger

    PubMed Central

    Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; van den Hondel, Cees A.; Ram, Arthur F.; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes. PMID:27835655

  7. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger.

    PubMed

    Paege, Norman; Jung, Sascha; Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; Nitsche, Benjamin M; van den Hondel, Cees A; Ram, Arthur F; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes.

  8. Systematic gene microarray analysis of the lncRNA expression profiles in human uterine cervix carcinoma.

    PubMed

    Chen, Jie; Fu, Ziyi; Ji, Chenbo; Gu, Pingqing; Xu, Pengfei; Yu, Ningzhu; Kan, Yansheng; Wu, Xiaowei; Shen, Rong; Shen, Yan

    2015-05-01

    The human uterine cervix carcinoma is one of the most well-known malignancy reproductive system cancers, which threatens women health globally. However, the mechanisms of the oncogenesis and development process of cervix carcinoma are not yet fully understood. Long non-coding RNAs (lncRNAs) have been proved to play key roles in various biological processes, especially development of cancer. The function and mechanism of lncRNAs on cervix carcinoma is still rarely reported. We selected 3 cervix cancer and normal cervix tissues separately, then performed lncRNA microarray to detect the differentially expressed lncRNAs. Subsequently, we explored the potential function of these dysregulated lncRNAs through online bioinformatics databases. Finally, quantity real-time PCR was carried out to confirm the expression levels of these dysregulated lncRNAs in cervix cancer and normal tissues. We uncovered the profiles of differentially expressed lncRNAs between normal and cervix carcinoma tissues by using the microarray techniques, and found 1622 upregulated and 3026 downregulated lncRNAs (fold-change>2.0) in cervix carcinoma compared to the normal cervical tissue. Furthermore, we found HOXA11-AS might participate in cervix carcinogenesis by regulating HOXA11, which is involved in regulating biological processes of cervix cancer. This study afforded expression profiles of lncRNAs between cervix carcinoma tissue and normal cervical tissue, which could provide database for further research about the function and mechanism of key-lncRNAs in cervix carcinoma, and might be helpful to explore potential diagnosis factors and therapeutic targets for cervix carcinoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Structure-related clustering of gene expression fingerprints of thp-1 cells exposed to smaller polycyclic aromatic hydrocarbons.

    PubMed

    Wan, B; Yarbrough, J W; Schultz, T W

    2008-01-01

    This study was undertaken to test the hypothesis that structurally similar PAHs induce similar gene expression profiles. THP-1 cells were exposed to a series of 12 selected PAHs at 50 microM for 24 hours and gene expressions profiles were analyzed using both unsupervised and supervised methods. Clustering analysis of gene expression profiles revealed that the 12 tested chemicals were grouped into five clusters. Within each cluster, the gene expression profiles are more similar to each other than to the ones outside the cluster. One-methylanthracene and 1-methylfluorene were found to have the most similar profiles; dibenzothiophene and dibenzofuran were found to share common profiles with fluorine. As expression pattern comparisons were expanded, similarity in genomic fingerprint dropped off dramatically. Prediction analysis of microarrays (PAM) based on the clustering pattern generated 49 predictor genes that can be used for sample discrimination. Moreover, a significant analysis of Microarrays (SAM) identified 598 genes being modulated by tested chemicals with a variety of biological processes, such as cell cycle, metabolism, and protein binding and KEGG pathways being significantly (p < 0.05) affected. It is feasible to distinguish structurally different PAHs based on their genomic fingerprints, which are mechanism based.

  10. Feasibility of implementing molecular-guided therapy for the treatment of patients with relapsed or refractory neuroblastoma

    PubMed Central

    Saulnier Sholler, Giselle L; Bond, Jeffrey P; Bergendahl, Genevieve; Dutta, Akshita; Dragon, Julie; Neville, Kathleen; Ferguson, William; Roberts, William; Eslin, Don; Kraveka, Jacqueline; Kaplan, Joel; Mitchell, Deanna; Parikh, Nehal; Merchant, Melinda; Ashikaga, Takamaru; Hanna, Gina; Lescault, Pamela Jean; Siniard, Ashley; Corneveaux, Jason; Huentelman, Matthew; Trent, Jeffrey

    2015-01-01

    The primary objective of the study was to evaluate the feasibility and safety of a process which would utilize genome-wide expression data from tumor biopsies to support individualized treatment decisions. Current treatment options for recurrent neuroblastoma are limited and ineffective, with a survival rate of <10%. Molecular profiling may provide data which will enable the practitioner to select the most appropriate therapeutic option for individual patients, thus improving outcomes. Sixteen patients with neuroblastoma were enrolled of which fourteen were eligible for this study. Feasibility was defined as completion of tumor biopsy, pathological evaluation, RNA quality control, gene expression profiling, bioinformatics analysis, generation of a drug prediction report, molecular tumor board yielding a treatment plan, independent medical monitor review, and treatment initiation within a 21 day period. All eligible biopsies passed histopathology and RNA quality control. Expression profiling by microarray and RNA sequencing were mutually validated. The average time from biopsy to report generation was 5.9 days and from biopsy to initiation of treatment was 12.4 days. No serious adverse events were observed and all adverse events were expected. Clinical benefit was seen in 64% of patients as stabilization of disease for at least one cycle of therapy or partial response. The overall response rate was 7% and the progression free survival was 59 days. This study demonstrates the feasibility and safety of performing real-time genomic profiling to guide treatment decision making for pediatric neuroblastoma patients. PMID:25720842

  11. Proteomic Profiling and Differential Messenger RNA Expression Correlate HSP27 and Serpin Family B Member 1 to Apical Periodontitis Outcomes.

    PubMed

    Cavalla, Franco; Biguetti, Claudia; Jain, Sameer; Johnson, Cleverick; Letra, Ariadne; Garlet, Gustavo Pompermaier; Silva, Renato Menezes

    2017-09-01

    Understanding protein expression profiles of apical periodontitis may contribute to the discovery of novel diagnostic or therapeutic molecular targets. Periapical tissue samples (n = 5) of patients with lesions characterized as nonhealing were submitted for proteomic analysis. Two differentially expressed proteins (heat shock protein 27 [HSP27] and serpin family B member 1 [SERPINB1]) were selected for characterization, localization by immunofluorescence, and association with known biomarkers of acute inflammatory response in human apical periodontitis (n = 110) and healthy periodontal ligaments (n = 26). Apical periodontitis samples were categorized as stable/inactive (n = 70) or progressive/active (n = 40) based on the ratio of expression of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG). Next, the expression of HSP27, SERPINB1, C-X-C motif Chemokine Receptor 1 (CXCR1), matrix metalloproteinase 8 (MMP8), myeloperoxidase (MPO), and cathepsin G (CTSG) messenger RNA was evaluated using real-time polymerase chain reaction. Data analysis was performed using the Shapiro-Wilk test, analysis of variance, and the Pearson test. P values <.05 were considered statistically significant. Proteomic analysis revealed 48 proteins as differentially expressed in apical periodontitis compared with a healthy periodontium, with 30 of these proteins found to be expressed in all 4 lesions. The expression of HSP27 and SERPINB1 was ∼2-fold higher in apical periodontitis. Next, an increased expression of HSP27 was detected in epithelial cells, whereas SERPINB1 expression was noted in neutrophils and epithelial cells. HSP27 and SERPINB1 transcripts were highly expressed in stable/inactive lesions (P < .05). Significant negative correlations were found between the expression of HSP27 and SERPINB1 with biomarkers of acute inflammation including CXCR1, MPO, and CTSG. Our data suggest HSP27 and SERPINB1 as potential regulators of the inflammatory response in apical periodontitis. Additional functional studies should be performed to further characterize the role of these molecules during the development/progression of apical periodontitis. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells

    PubMed Central

    Bressan, Eriberto; Gardin, Chiara; Ferroni, Letizia; Soldini, Maria Costanza; Mandelli, Federico; Soldini, Claudio

    2017-01-01

    Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI) surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC). MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells) were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment. PMID:29149082

  13. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    PubMed

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  14. Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest.

    PubMed

    Salanova, Michele; Gambara, Guido; Moriggi, Manuela; Vasso, Michele; Ungethuem, Ute; Belavý, Daniel L; Felsenberg, Dieter; Cerretelli, Paolo; Gelfi, Cecilia; Blottner, Dieter

    2015-11-24

    Disuse-induced muscle atrophy is a major concern in aging, in neuromuscular diseases, post-traumatic injury and in microgravity life sciences affecting health and fitness also of crew members in spaceflight. By using a laboratory analogue to body unloading we perform for the first time global gene expression profiling joined to specific proteomic analysis to map molecular adaptations in disused (60 days of bed rest) human soleus muscle (CTR) and in response to a resistive exercise (RE) countermeasure protocol without and with superimposed vibration mechanosignals (RVE). Adopting Affymetrix GeneChip technology we identified 235 differently transcribed genes in the CTR group (end- vs. pre-bed rest). RE comprised 206 differentially expressed genes, whereas only 51 changed gene transcripts were found in RVE. Most gene transcription and proteomic changes were linked to various key metabolic pathways (glycolysis, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, lipid metabolism) and to functional contractile structures. Gene expression profiling in bed rest identified a novel set of genes explicitly responsive to vibration mechanosignals in human soleus. This new finding highlights the efficacy of RVE protocol in reducing key signs of disuse maladaptation and atrophy, and to maintain a close-to-normal skeletal muscle quality outcome following chronic disuse in bed rest.

  15. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    PubMed Central

    Menzel, Ralph; Swain, Suresh C; Hoess, Sebastian; Claus, Evelyn; Menzel, Stefanie; Steinberg, Christian EW; Reifferscheid, Georg; Stürzenbaum, Stephen R

    2009-01-01

    Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments. PMID:19366437

  16. Application of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry technology for the diagnosis of colorectal adenoma.

    PubMed

    Zhou, Zhong-Yin; Tao, DI-DI; Cao, Ji-Wang; Luo, He-Sheng

    2013-06-01

    The aim of the present study was to identify a specific biological marker for the diagnosis of colorectal adenomas through the analysis of variations in serum protein profiling in colorectal adenoma patients. The study was conducted at the Renmin Hospital of Wuhan University (Wuhan, China) between September 2011 and May 2012. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was performed to compare the serum protein profiles of 50 patients with colorectal adenoma and 50 healthy individuals. The obtained protein profiles were analyzed using Biomarker Wizard software. Twenty protein peaks were identified to exhibit differences in average intensity between colorectal adenomas compared with normal controls, including peaks 8,565.84, 8,694.51 and 5,910.50 Da, in which the intensity between the patients and control individuals was significantly different. Two peaks, 8,565.84 and 8,694.51 Da, were observed to be highly expressed in the colorectal adenomas, however, expression was low in the control samples. By contrast, 5,910.50 Da expression was low in the colorectal adenomas and high in the controls. The results of the current study indicate that the three protein peaks may represent specific biomarkers for colorectal adenomas.

  17. Transcriptomic Profiling of Central Nervous System Regions in Three Species of Honey Bee during Dance Communication Behavior

    PubMed Central

    Sen Sarma, Moushumi; Rodriguez-Zas, Sandra L.; Hong, Feng; Zhong, Sheng; Robinson, Gene E.

    2009-01-01

    Background We conducted a large-scale transcriptomic profiling of selected regions of the central nervous system (CNS) across three species of honey bees, in foragers that were performing dance behavior to communicate to their nestmates the location, direction and profitability of an attractive floral resource. We used microarrays to measure gene expression in bees from Apis mellifera, dorsata and florea, species that share major traits unique to the genus and also show striking differences in biology and dance communication. The goals of this study were to determine the extent of regional specialization in gene expression and to explore the molecular basis of dance communication. Principal Findings This “snapshot” of the honey bee CNS during dance behavior provides strong evidence for both species-consistent and species-specific differences in gene expression. Gene expression profiles in the mushroom bodies consistently showed the biggest differences relative to the other CNS regions. There were strong similarities in gene expression between the central brain and the second thoracic ganglion across all three species; many of the genes were related to metabolism and energy production. We also obtained gene expression differences between CNS regions that varied by species: A. mellifera differed the most, while dorsata and florea tended to be more similar. Significance Species differences in gene expression perhaps mirror known differences in nesting habit, ecology and dance behavior between mellifera, florea and dorsata. Species-specific differences in gene expression in selected CNS regions that relate to synaptic activity and motor control provide particularly attractive candidate genes to explain the differences in dance behavior exhibited by these three honey bee species. Similarities between central brain and thoracic ganglion provide a unique perspective on the potential coupling of these two motor-related regions during dance behavior and perhaps provide a snapshot of the energy intensive process of dance output generation. Mushroom body results reflect known roles for this region in the regulation of learning, memory and rhythmic behavior. PMID:19641619

  18. Transcriptomic profiling of central nervous system regions in three species of honey bee during dance communication behavior.

    PubMed

    Sen Sarma, Moushumi; Rodriguez-Zas, Sandra L; Hong, Feng; Zhong, Sheng; Robinson, Gene E

    2009-07-29

    We conducted a large-scale transcriptomic profiling of selected regions of the central nervous system (CNS) across three species of honey bees, in foragers that were performing dance behavior to communicate to their nestmates the location, direction and profitability of an attractive floral resource. We used microarrays to measure gene expression in bees from Apis mellifera, dorsata and florea, species that share major traits unique to the genus and also show striking differences in biology and dance communication. The goals of this study were to determine the extent of regional specialization in gene expression and to explore the molecular basis of dance communication. This "snapshot" of the honey bee CNS during dance behavior provides strong evidence for both species-consistent and species-specific differences in gene expression. Gene expression profiles in the mushroom bodies consistently showed the biggest differences relative to the other CNS regions. There were strong similarities in gene expression between the central brain and the second thoracic ganglion across all three species; many of the genes were related to metabolism and energy production. We also obtained gene expression differences between CNS regions that varied by species: A. mellifera differed the most, while dorsata and florea tended to be more similar. Species differences in gene expression perhaps mirror known differences in nesting habit, ecology and dance behavior between mellifera, florea and dorsata. Species-specific differences in gene expression in selected CNS regions that relate to synaptic activity and motor control provide particularly attractive candidate genes to explain the differences in dance behavior exhibited by these three honey bee species. Similarities between central brain and thoracic ganglion provide a unique perspective on the potential coupling of these two motor-related regions during dance behavior and perhaps provide a snapshot of the energy intensive process of dance output generation. Mushroom body results reflect known roles for this region in the regulation of learning, memory and rhythmic behavior.

  19. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications

    PubMed Central

    Nugoli, Mélanie; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale; Theillet, Charles

    2003-01-01

    Background Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. Methods In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. Results MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. Conclusions The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved in a node like pattern, rather than according to a linear progression model. Due to their capacity to undergo rapid genetic changes MCF-7 cells could represent an interesting model for genetic evolution of breast tumors. PMID:12713671

  20. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    PubMed

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.

  1. Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

    PubMed Central

    Pan, Zhiqiang; Agarwal, Ameeta K; Xu, Tao; Feng, Qin; Baerson, Scott R; Duke, Stephen O; Rimando, Agnes M

    2008-01-01

    Background Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae. Methods S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 μM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene. Results Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment. Conclusion Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound. PMID:18366703

  2. Cognitive Endophenotypes Inform Genome-Wide Expression Profiling in Schizophrenia

    PubMed Central

    Zheutlin, Amanda B.; Viehman, Rachael W.; Fortgang, Rebecca; Borg, Jacqueline; Smith, Desmond J.; Suvisaari, Jaana; Therman, Sebastian; Hultman, Christina M.; Cannon, Tyrone D.

    2015-01-01

    OBJECTIVE We performed a whole-genome expression study to clarify the nature of the biological processes mediating between inherited genetic variations and cognitive dysfunction in schizophrenia. METHOD Gene expression was assayed from peripheral blood mononuclear cells using Illumina Human WG6 v3.0 chips in twins discordant for schizophrenia or bipolar disorder and control twins. After quality control, expression levels of 18,559 genes were screened for association with California Verbal Learning Test (CVLT) performance, and any memory-related probes were then evaluated for variation by diagnostic status in the discovery sample (N = 190), and in an independent replication sample (N = 73). Heritability of gene expression using the twin design was also assessed. RESULTS After Bonferroni correction (p < 2.69 × 10−6), CVLT performance was significantly related to expression levels for 76 genes, 43 of which were differentially expressed in schizophrenia patients, with comparable effect sizes in the same direction in the replication sample. For 41 of these 43 transcripts, expression levels were heritable. Nearly all identified genes contain common or de novo mutations associated with schizophrenia in prior studies. CONCLUSION Genes increasing risk for schizophrenia appear to do so in part via effects on signaling cascades influencing memory. The genes implicated in these processes are enriched for those related to RNA processing and DNA replication and include genes influencing G-protein coupled signal transduction, cytokine signaling, and oligodendrocyte function. PMID:26710095

  3. Cognitive endophenotypes inform genome-wide expression profiling in schizophrenia.

    PubMed

    Zheutlin, Amanda B; Viehman, Rachael W; Fortgang, Rebecca; Borg, Jacqueline; Smith, Desmond J; Suvisaari, Jaana; Therman, Sebastian; Hultman, Christina M; Cannon, Tyrone D

    2016-01-01

    We performed a whole-genome expression study to clarify the nature of the biological processes mediating between inherited genetic variations and cognitive dysfunction in schizophrenia. Gene expression was assayed from peripheral blood mononuclear cells using Illumina Human WG6 v3.0 chips in twins discordant for schizophrenia or bipolar disorder and control twins. After quality control, expression levels of 18,559 genes were screened for association with the California Verbal Learning Test (CVLT) performance, and any memory-related probes were then evaluated for variation by diagnostic status in the discovery sample (N = 190), and in an independent replication sample (N = 73). Heritability of gene expression using the twin design was also assessed. After Bonferroni correction (p < 2.69 × 10-6), CVLT performance was significantly related to expression levels for 76 genes, 43 of which were differentially expressed in schizophrenia patients, with comparable effect sizes in the same direction in the replication sample. For 41 of these 43 transcripts, expression levels were heritable. Nearly all identified genes contain common or de novo mutations associated with schizophrenia in prior studies. Genes increasing risk for schizophrenia appear to do so in part via effects on signaling cascades influencing memory. The genes implicated in these processes are enriched for those related to RNA processing and DNA replication and include genes influencing G-protein coupled signal transduction, cytokine signaling, and oligodendrocyte function. (c) 2015 APA, all rights reserved).

  4. Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie

    PubMed Central

    2014-01-01

    Background Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease. PMID:24450868

  5. A Novel Persistence Associated EBV miRNA Expression Profile Is Disrupted in Neoplasia

    PubMed Central

    Qiu, Jin; Cosmopoulos, Katherine; Pegtel, Michiel; Hopmans, Erik; Murray, Paul; Middeldorp, Jaap; Shapiro, Michael; Thorley-Lawson, David A.

    2011-01-01

    We have performed the first extensive profiling of Epstein-Barr virus (EBV) miRNAs on in vivo derived normal and neoplastic infected tissues. We describe a unique pattern of viral miRNA expression by normal infected cells in vivo expressing restricted viral latency programs (germinal center: Latency II and memory B: Latency I/0). This includes the complete absence of 15 of the 34 miRNAs profiled. These consist of 12 BART miRNAs (including approximately half of Cluster 2) and 3 of the 4 BHRF1 miRNAs. All but 2 of these absent miRNAs become expressed during EBV driven growth (Latency III). Furthermore, EBV driven growth is accompanied by a 5–10 fold down regulation in the level of the BART miRNAs expressed in germinal center and memory B cells. Therefore, Latency III also expresses a unique pattern of viral miRNAs. We refer to the miRNAs that are specifically expressed in EBV driven growth as the Latency III associated miRNAs. In EBV associated tumors that employ Latency I or II (Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric carcinoma), the Latency III associated BART but not BHRF1 miRNAs are up regulated. Thus BART miRNA expression is deregulated in the EBV associated tumors. This is the first demonstration that Latency III specific genes (the Latency III associated BARTs) can be expressed in these tumors. The EBV associated tumors demonstrate very similar patterns of miRNA expression yet were readily distinguished when the expression data were analyzed either by heat-map/clustering or principal component analysis. Systematic analysis revealed that the information distinguishing the tumor types was redundant and distributed across all the miRNAs. This resembles “secret sharing” algorithms where information can be distributed among a large number of recipients in such a way that any combination of a small number of recipients is able to understand the message. Biologically, this may be a consequence of functional redundancy between the miRNAs. PMID:21901094

  6. Gene expression profile in cardiovascular disease and preeclampsia: a meta-analysis of the transcriptome based on raw data from human studies deposited in Gene Expression Omnibus.

    PubMed

    Sitras, V; Fenton, C; Acharya, G

    2015-02-01

    Cardiovascular disease (CVD) and preeclampsia (PE) share common clinical features. We aimed to identify common transcriptomic signatures involved in CVD and PE in humans. Meta-analysis of individual raw microarray data deposited in GEO, obtained from blood samples of patients with CVD versus controls and placental samples from women with PE versus healthy women with uncomplicated pregnancies. Annotation of cases versus control samples was taken directly from the microarray documentation. Genes that showed a significant differential expression in the majority of experiments were selected for subsequent analysis. Hypergeometric gene list analysis was performed using Bioconductor GOstats package. Bioinformatic analysis was performed in PANTHER. Seven studies in CVD and 5 studies in PE were eligible for meta-analysis. A total of 181 genes were found to be differentially expressed in microarray studies investigating gene expression in blood samples obtained from patients with CVD compared to controls and 925 genes were differentially expressed between preeclamptic and healthy placentas. Among these differentially expressed genes, 22 were common between CVD and PE. Bioinformatic analysis of these genes revealed oxidative stress, p-53 pathway feedback, inflammation mediated by chemokines and cytokines, interleukin signaling, B-cell activation, PDGF signaling, Wnt signaling, integrin signaling and Alzheimer disease pathways to be involved in the pathophysiology of both CVD and PE. Metabolism, development, response to stimulus, immune response and cell communication were the associated biologic processes in both conditions. Gene set enrichment analysis showed the following overlapping pathways between CVD and PE: TGF-β-signaling, apoptosis, graft-versus-host disease, allograft rejection, chemokine signaling, steroid hormone synthesis, type I and II diabetes mellitus, VEGF signaling, pathways in cancer, GNRH signaling, Huntingtons disease and Notch signaling. CVD and PE share same common traits in their gene expression profile indicating common pathways in their pathophysiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. ZAP-70 expression in B-cell chronic lymphocytic leukemia: evaluation by external (isotypic) or internal (T/NK cells) controls and correlation with IgV(H) mutations.

    PubMed

    Zucchetto, Antonella; Bomben, Riccardo; Bo, Michele Dal; Nanni, Paola; Bulian, Pietro; Rossi, Francesca Maria; Del Principe, Maria Ilaria; Santini, Simone; Del Poeta, Giovanni; Degan, Massimo; Gattei, Valter

    2006-07-15

    Expression of T cell specific zeta-associated protein 70 (ZAP-70) by B-cell chronic lymphocytic leukemia (B-CLL) cells, as investigated by flow cytometry, has both prognostic relevance and predictive power as surrogate for immunoglobulin heavy chain variable region (IgV(H)) mutations, although a standardization of the cytometric protocol is still lacking. Flow cytometric analyses for ZAP-70 were performed in peripheral blood samples from 145 B-CLL (124 with IgV(H) mutations) by a standard three-color protocol. Identification of ZAP-70(+) cell population was based on an external negative control, i.e., the isotypic control (ISO method) or an internal positive control, i.e., the population of residual normal T/NK cells (TNK method). A comparison between these two approaches was performed. While 86/145 cases were concordant as for ZAP-70 expression according to the two methods (ISO(+)TNK(+) or ISO(-)TNK(-)), 59/145 cases had discordant ZAP-70 expression, mainly (56/59) showing a ISO(+)TNK(-) profile. These latter cases express higher levels of ZAP-70 in their normal T cell component. Moreover, discordant ISO(+)TNK(-) cases had a IgV(H) gene mutation profile similar to that of concordantly positive cases and different from ZAP-70 concordantly negative B-CLL. Analysis of ZAP-70 expression by B-CLL cells by using the ISO method allows to overcome the variability in the expression of ZAP-70 by residual T cells and yields a better correlation with IgV(H) gene mutations. A receiver operating characteristic analysis suggests to employ a higher cut-off than the commonly used 20%. A parallel evaluation of the prognostic value of ZAP-70 expression, as determined according to the ISO and TNK methods, is still needed. (c) 2006 International Society for Analytical Cytology.

  8. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6.

    PubMed

    Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru

    2016-07-15

    To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection.

  9. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6

    PubMed Central

    Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru

    2016-01-01

    AIM: To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. METHODS: Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. RESULTS: Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. CONCLUSION: MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection. PMID:27559432

  10. Mutagen Structure and Transcriptional Response: Induction of Distinct Transcriptional Profiles in Salmonella TA100 by the Drinking-Water Mutagen MX and Its Homologues

    EPA Science Inventory

    The relationship between chemical structure and biological activity has been examined for various compounds and endpoints for decades. To explore this question relative to global gene expression, we performed microarray analysis of Salmonella TA100 after treatment under condition...

  11. Comparative Proteomic and Nutritional Composition Analysis of Independent Transgenic Pigeon Pea Seeds Harboring cry1AcF and cry2Aa Genes and Their Nontransgenic Counterparts.

    PubMed

    Mishra, Pragya; Singh, Shweta; Rathinam, Maniraj; Nandiganti, Muralimohan; Ram Kumar, Nikhil; Thangaraj, Arulprakash; Thimmegowda, Vinutha; Krishnan, Veda; Mishra, Vagish; Jain, Neha; Rai, Vandna; Pattanayak, Debasis; Sreevathsa, Rohini

    2017-02-22

    Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.

  12. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium

    PubMed Central

    2014-01-01

    We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. PMID:25150838

  13. Semi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification.

    PubMed

    Zhang, Xiang; Guan, Naiyang; Jia, Zhilong; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Advances in DNA microarray technologies have made gene expression profiles a significant candidate in identifying different types of cancers. Traditional learning-based cancer identification methods utilize labeled samples to train a classifier, but they are inconvenient for practical application because labels are quite expensive in the clinical cancer research community. This paper proposes a semi-supervised projective non-negative matrix factorization method (Semi-PNMF) to learn an effective classifier from both labeled and unlabeled samples, thus boosting subsequent cancer classification performance. In particular, Semi-PNMF jointly learns a non-negative subspace from concatenated labeled and unlabeled samples and indicates classes by the positions of the maximum entries of their coefficients. Because Semi-PNMF incorporates statistical information from the large volume of unlabeled samples in the learned subspace, it can learn more representative subspaces and boost classification performance. We developed a multiplicative update rule (MUR) to optimize Semi-PNMF and proved its convergence. The experimental results of cancer classification for two multiclass cancer gene expression profile datasets show that Semi-PNMF outperforms the representative methods.

  14. Match score affects activity profile and skill performance in professional Australian Football players.

    PubMed

    Sullivan, Courtney; Bilsborough, Johann C; Cianciosi, Michael; Hocking, Joel; Cordy, Justin; Coutts, Aaron J

    2014-05-01

    To examine the influence of quarter outcome and the margin of the score differential on both the physical activity profile and skill performance of players during professional Australian Football matches. Prospective, longitudinal. Physical activity profiles were assessed via microtechnology (Global Positioning System and accelerometer) from 40 professional AF players from the same team during 15 Australian Football League games. Skill performance measures (involvement and effectiveness) and player rank scores (Champion Data(©) Rank) were provided by a commercial statistical provider. The physical performance variables, skill involvements and individual player performance scores were expressed relative to playing time for each quarter. The influence of the quarter result (i.e. win vs. loss) and score margin (i.e. small: <9 points, moderate: 10-18 points, and large: >19 points) on activity profile and skill involvements and skill efficiency performance of players were examined. Skill involvements (total disposals/min, long kicks/min, marks/min, running bounces/min and player rank/min) were greater in quarters won (all p<0.01). In contrast, the players high speed running distance per minute (>14.5 km h(-1), HSR/min), sprints/min and peak speed were higher in losing quarters (all p<0.01). Smaller score margins were associated with increased physical activity (m/min, HSR/min, and body load/min, all p<0.05) and decreased skill efficiency (handball clangers/min and player rank/min, all p<0.05). Professional AF players are likely to have an increased physical activity profile and decreased skill involvement and proficiency when their team is less successful. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Strategies for crew selection for long duration missions

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Holland, Albert W.; Santy, Patricia A.; Rose, Robert M.; Mcfadden, Terry J.

    1990-01-01

    Issues surrounding psychological reactions to long duration spaceflight are discussed with respect to the definition of criteria for selecting crewmembers for such expeditions. Two broad dimensions of personality and behavior are defined - Instrumentality including achievement orientation, leadership, and ability to perform under pressure and Expressivity encompassing interpersonal sensitivity and competence. A strategy for validating techniques to select in candidates with the optimum psychological profile to perform successfully on long duration missions is described.

  16. TP53, STK11 and EGFR Mutations Predict Tumor Immune Profile and the Response to anti-PD-1 in Lung Adenocarcinoma.

    PubMed

    Biton, Jerome; Mansuet-Lupo, Audrey; Pécuchet, Nicolas; Alifano, Marco; Ouakrim, Hanane; Arrondeau, Jennifer; Boudou-Rouquette, Pascaline; Goldwasser, Francois; Leroy, Karen; Goc, Jeremy; Wislez, Marie; Germain, Claire; Laurent-Puig, Pierre; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Blons, Hélène F; Damotte, Diane

    2018-05-15

    By unlocking anti-tumor immunity, antibodies targeting programmed cell death 1 (PD-1) exhibit impressive clinical results in non-small cell lung cancer, underlining the strong interactions between tumor and immune cells. However, factors that can robustly predict long-lasting responses are still needed. We performed in depth immune profiling of lung adenocarcinoma using an integrative analysis based on immunohistochemistry, flow-cytometry and transcriptomic data. Tumor mutational status was investigated using next-generation sequencing. The response to PD-1 blockers was analyzed from a prospective cohort according to tumor mutational profiles and to PD-L1 expression, and a public clinical database was used to validate the results obtained. We showed that distinct combinations of STK11 , EGFR and TP53 mutations, were major determinants of the tumor immune profile (TIP) and of the expression of PD-L1 by malignant cells. Indeed, the presence of TP53 mutations without co-occurring STK11 or EGFR alterations ( TP53 -mut/ STK11 - EGFR -WT), independently of KRAS mutations, identified the group of tumors with the highest CD8 T cell density and PD-L1 expression. In this tumor subtype, pathways related to T cell chemotaxis, immune cell cytotoxicity, and antigen processing were up-regulated. Finally, a prolonged progression-free survival (PFS: HR=0.32; 95% CI, 0.16-0.63, p <0.001) was observed in anti-PD-1 treated patients harboring TP53 -mut/ STK11 - EGFR -WT tumors. This clinical benefit was even more remarkable in patients with associated strong PD-L1 expression. Our study reveals that different combinations of TP53 , EGFR and STK11 mutations , together with PD-L1 expression by tumor cells, represent robust parameters to identify best responders to PD-1 blockade. Copyright ©2018, American Association for Cancer Research.

  17. ALDH1 is an immunohistochemical diagnostic marker for solitary fibrous tumours and haemangiopericytomas of the meninges emerging from gene profiling study

    PubMed Central

    2013-01-01

    Background Solitary Fibrous Tumours (SFT) and haemangiopericytomas (HPC) are rare meningeal tumours that have to be distinguished from meningiomas and more rarely from synovial sarcomas. We recently found that ALDH1A1 was overexpressed in SFT and HPC as compared to soft tissue sarcomas. Using whole-genome DNA microarrays, we defined the gene expression profiles of 16 SFT/HPC (9 HPC and 7 SFT). Expression profiles were compared to publicly available expression profiles of additional SFT or HPC, meningiomas and synovial sarcomas. We also performed an immunohistochemical (IHC) study with anti-ALDH1 and anti-CD34 antibodies on Tissue Micro-Arrays including 38 SFT (25 meningeal and 13 extrameningeal), 55 meningeal haemangiopericytomas (24 grade II, 31 grade III), 163 meningiomas (86 grade I, 62 grade II, 15 grade III) and 98 genetically confirmed synovial sarcomas. Results ALDH1A1 gene was overexpressed in SFT/HPC, as compared to meningiomas and synovial sarcomas. These findings were confirmed at the protein level. 84% of the SFT and 85.4% of the HPC were positive with anti-ALDH1 antibody, while only 7.1% of synovial sarcomas and 1.2% of meningiomas showed consistent expression. Positivity was usually more diffuse in SFT/HPC compared to other tumours with more than 50% of tumour cells immunostained in 32% of SFT and 50.8% of HPC. ALDH1 was a sensitive and specific marker for the diagnosis of SFT (SE = 84%, SP = 98.8%) and HPC (SE = 84.5%, SP = 98.7%) of the meninges. In association with CD34, ALDH1 expression had a specificity and positive predictive value of 100%. Conclusion We show that ALDH1, a stem cell marker, is an accurate diagnostic marker for SFT and HPC, which improves the diagnostic value of CD34. ALDH1 could also be a new therapeutic target for these tumours which are not sensitive to conventional chemotherapy. PMID:24252471

  18. Transcriptome Analysis of Chlorantraniliprole Resistance Development in the Diamondback Moth Plutella xylostella

    PubMed Central

    Hu, Zhendi; Chen, Huanyu; Yin, Fei; Li, Zhenyu; Dong, Xiaolin; Zhang, Deyong; Ren, Shunxiang; Feng, Xia

    2013-01-01

    Background The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella’s resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. Principal Findings To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. Conclusions The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide comprehensive insights into the gene expression profiles of the different chlorantraniliprole-resistant stains. These genes are specifically related to insecticide resistance, with different expressional profiles facilitating the study of the role of each gene in chlorantraniliprole resistance development. PMID:23977278

  19. Evaluation of hepatitis B viral replication and proteomic analysis of HepG2.2.15 cell line after knockdown of HBx.

    PubMed

    Xie, Hai-Yang; Cheng, Jun; Xing, Chun-Yang; Wang, Jin-Jin; Su, Rong; Wei, Xu-Yong; Zhou, Lin; Zheng, Shu-Sen

    2011-06-01

    Hepatitis B virus (HBV) is one of the major pathogens of human liver disease. Studies have shown that HBV X protein (HBx) plays an important role in promoting viral gene expression and replication. In this study we performed a global proteomic profiling to identify the downstream functional proteins of HBx, thereby detecting the mechanisms of action of HBx on virion replication. HBx in the HepG2.2.15 cell line was knocked down by the transfection of small interfering RNA (siRNA). The replication level of HBV was evaluated by microparticle enzyme immunoassay analysis of HBsAg and HBeAg in the culture supernatant, and real-time quantitative PCR analysis of HBV DNA. Two-dimensional electrophoresis combined with MALDI-TOF/TOF was performed to analyze the changes in protein expression profile after treatment with HBx siRNA. Knockdown of HBx disturbed HBV replication in vitro. HBx target siRNA significantly inhibited the expression of HBsAg, HBeAg and the replication of HBV DNA. Twelve significantly changed proteins (7 upregulated and 5 downregulated) were successfully identified by MALDI-TOF/TOF using proteomics differential expression analysis after the knockdown of HBx. Among these identified proteins, HSP70 was validated by Western blotting. The results of the study indicated the positive effect of HBx on HBV replication, and a group of downstream target proteins of HBx may be responsible for this effect.

  20. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.

    PubMed

    Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora

    2017-01-01

    Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.

  1. Genetic and epigenetic architecture of sex-biased expression in the jewel wasps Nasonia vitripennis and giraulti

    PubMed Central

    Wang, Xu; Werren, John H.; Clark, Andrew G.

    2015-01-01

    There is extraordinary diversity in sexual dimorphism (SD) among animals, but little is known about its epigenetic basis. To study the epigenetic architecture of SD in a haplodiploid system, we performed RNA-seq and whole-genome bisulfite sequencing of adult females and males from two closely related parasitoid wasps, Nasonia vitripennis and Nasonia giraulti. More than 75% of expressed genes displayed significantly sex-biased expression. As a consequence, expression profiles are more similar between species within each sex than between sexes within each species. Furthermore, extremely male- and female-biased genes are enriched for totally different functional categories: male-biased genes for key enzymes in sex-pheromone synthesis and female-biased genes for genes involved in epigenetic regulation of gene expression. Remarkably, just 70 highly expressed, extremely male-biased genes account for 10% of all transcripts in adult males. Unlike expression profiles, DNA methylomes are highly similar between sexes within species, with no consistent sex differences in methylation found. Therefore, methylation changes cannot explain the extensive level of sex-biased gene expression observed. Female-biased genes have smaller sequence divergence between species, higher conservation to other hymenopterans, and a broader expression range across development. Overall, female-biased genes have been recruited from genes with more conserved and broadly expressing “house-keeping” functions, whereas male-biased genes are more recently evolved and are predominately testis specific. In summary, Nasonia accomplish a striking degree of sex-biased expression without sex chromosomes or epigenetic differences in methylation. We propose that methylation provides a general signal for constitutive gene expression, whereas other sex-specific signals cause sex-biased gene expression. PMID:26100871

  2. Increased Cerebral Tff1 Expression in Two Murine Models of Neuroinflammation.

    PubMed

    Znalesniak, Eva B; Fu, Ting; Guttek, Karina; Händel, Ulrike; Reinhold, Dirk; Hoffmann, Werner

    2016-01-01

    The trefoil factor family (TFF) peptide TFF1 is a typical secretory product of the gastric mucosa and a very low level of expression occurs in nearly all regions of the murine brain. TFF1 possesses a lectin activity and binding to a plethora of transmembrane glycoproteins could explain the diverse biological effects of TFF1 (e.g., anti-apoptotic effect). It was the aim to test whether TFF expression is changed during neuroinflammation. Expression profiling was performed using semi-quantitative RT-PCR analyses in two murine models of neuroinflammation, i.e. Toxoplasma gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis. Tff1 expression was also localized using RNA in situ hybridization histochemistry. We report for the first time on a significant transcriptional induction in cerebral Tff1 expression in both T. gondii-induced encephalitis and EAE. In contrast, Tff2 and Tff3 expression were not altered. Tff1 transcripts were predominantly localized in the internal granular layer of the cerebellum indicating neuronal expression. Furthermore, also glial cells are expected to express Tff1. Characterization of both experimental models by expression profiling (e.g., inflammasome sensors, inflammatory cytokines, microglial marker Iba1, ependymin related protein 1) revealed differences concerning the expression of the inflammasome sensor Nlrp1 and interleukin 17a. The up-regulated expression of Tff1 is probably the result of a complex inflammatory process as its expression is induced by tumor necrosis factor α as well as interleukins 1β and 17. However on the transcript level, Tff1KO mice did not show any significant signs of an altered immune response after infection with T. gondii in comparison with the wild type animals. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. GENE EXPRESSION PROFILES IN ARSENIC-TREATED MCF-7 BREAST CANCER CELLS EXPRESSING DIFFERENT LEVELS OF HSP70

    EPA Science Inventory

    Gene expression profiles in arsenic-treated MCF-7 breast cancer cells expressing different levels of HSP70

    Gail Nelson, Susan Hester, Ernest Winkfield, Jill Barnes, James Allen
    Environmental Carcinogenesis Division, NHEERL, ORD, US Environmental Protection Agency, Rese...

  4. Shift of microRNA profile upon orthotopic xenografting of glioblastoma spheroid cultures.

    PubMed

    Halle, Bo; Thomassen, Mads; Venkatesan, Ranga; Kaimal, Vivek; Marcusson, Eric G; Munthe, Sune; Sørensen, Mia D; Aaberg-Jessen, Charlotte; Jensen, Stine S; Meyer, Morten; Kruse, Torben A; Christiansen, Helle; Schmidt, Steffen; Mollenhauer, Jan; Schulz, Mette K; Andersen, Claus; Kristensen, Bjarne W

    2016-07-01

    Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. In this study we aimed to identify over-expressed TSC-related miRs potentially amenable for therapeutic targeting. We used non-differentiated glioblastoma spheroid cultures (GSCs) containing TSCs and compared these to xenografts using a NanoString nCounter platform. This revealed 19 over-expressed miRs in the non-differentiated GSCs. Additionally, non-differentiated GSCs were compared to neural stem cells (NSCs) using a microarray platform. This revealed four significantly over-expressed miRs in the non-differentiated GSCs in comparison to the NSCs. The three most over-expressed miRs in the non-differentiated GSCs compared to xenografts were miR-126, -137 and -128. KEGG pathway analysis suggested the main biological function of these over-expressed miRs to be cell-cycle arrest and diminished proliferation. To functionally validate the profiling results suggesting association of these miRs with stem-like properties, experimental over-expression of miR-128 was performed. A consecutive limiting dilution assay confirmed a significantly elevated spheroid formation in the miR-128 over-expressing cells. This may provide potential therapeutic targets for anti-miRs to identify novel treatment options for GBM patients.

  5. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. iPcc: a novel feature extraction method for accurate disease class discovery and prediction

    PubMed Central

    Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi

    2013-01-01

    Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440

  7. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  8. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  9. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling

    PubMed Central

    Wagner, Bridget K.; Clemons, Paul A.

    2009-01-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene-expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe- and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of “virtual” profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe and drug discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections. PMID:19825513

  10. Alterations in the lenticular protein profile in experimental selenite-induced cataractogenesis and prevention by ellagic acid.

    PubMed

    Sakthivel, Muniyan; Geraldine, Pitchairaj; Thomas, Philip A

    2011-08-01

    Accumulating evidence suggests that oxidative stress underlies age-related formation of cataract, and that antioxidants retard cataractogenesis. This study aimed to evaluate whether ellagic acid, a natural polyphenol with antioxidant properties, prevents alterations in the lenticular protein profile in an experimental model of selenite cataract. Alterations in lenticular protein were determined by two-dimensional electrophoresis (2DE) and image analysis. Eluted αA-crystallin spots were analyzed by mass spectrometry. Western blot analysis was also performed to confirm the differential expression of certain crystallins and cytoskeletal proteins. In cataractous lenses, 2DE and image analysis revealed approximately 45 and 60 prominent spots in soluble and insoluble protein fractions respectively. Analysis of the pI and molecular weight of protein spots revealed differences in the expression of crystallin proteins in soluble and insoluble fractions. Western blot analysis confirmed changes in the expression of αA- and βB1- crystallins in both soluble and insoluble protein fractions, while mass spectrometry confirmed the degradation of αA-crystallin in selenite cataractous lenses. Western blot analysis also confirmed the occurrence of altered expression of certain cytoskeletal proteins in insoluble fractions. However, the lenticular protein profile in lenses from selenite-challenged, ellagic acid-treated rats was essentially similar to that noted in lenses from normal rats. The present study confirms the importance of structural and cytoskeletal proteins in the maintenance of lenticular transparency; the results also suggest that ellagic acid prevents lenticular protein alterations induced by selenite in an experimental setting.

  11. Transcriptome profile analysis of floral sex determination in cucumber.

    PubMed

    Wu, Tao; Qin, Zhiwei; Zhou, Xiuyan; Feng, Zhuo; Du, Yalin

    2010-07-15

    Cucumber has been widely studied as a model for floral sex determination. In this investigation, we performed genome-wide transcriptional profiling of apical tissue of a gynoecious mutant (Csg-G) and the monoecious wild-type (Csg-M) of cucumber in an attempt to isolate genes involved in sex determination, using the Solexa technology. The profiling analysis revealed numerous changes in gene expression attributable to the mutation, which resulted in the down-regulation of 600 genes and the up-regulation of 143 genes. The Solexa data were confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the differentially expressed genes were mainly involved in biogenesis, transport and organization of cellular component, macromolecular and cellular biosynthesis, localization, establishment of localization, translation and other processes. Furthermore, the expression of some of these genes depended upon the tissue and the developmental stage of the flowers of gynoecious mutant. The results of this study suggest two important concepts, which govern sex determination in cucumber. First, the differential expression of genes involved in plant hormone signaling pathways, such as ACS, Asr1, CsIAA2, CS-AUX1 and TLP, indicate that phytohormones and their crosstalk might play a critical role in the sex determination. Second, the regulation of some transcription factors, including EREBP-9, may also be involved in this developmental process. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  12. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study.

    PubMed

    Cervera, Héctor; Ambrós, Silvia; Bernet, Guillermo P; Rodrigo, Guillermo; Elena, Santiago F

    2018-07-01

    Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts.

  13. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host’s Transcriptome: The Tobacco Etch Potyvirus—Tobacco Case Study

    PubMed Central

    Cervera, Héctor; Ambrós, Silvia; Bernet, Guillermo P; Rodrigo, Guillermo; Elena, Santiago F

    2018-01-01

    Abstract Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts. PMID:29562354

  14. A regulation probability model-based meta-analysis of multiple transcriptomics data sets for cancer biomarker identification.

    PubMed

    Xie, Xin-Ping; Xie, Yu-Feng; Wang, Hong-Qiang

    2017-08-23

    Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle gene activity patterns across studies. Study heterogeneity needs to be addressed carefully for this goal. This paper proposes a regulation probability model-based meta-analysis, jGRP, for identifying differentially expressed genes (DEGs). The method integrates multiple transcriptomics data sets in a gene regulatory space instead of in a gene expression space, which makes it easy to capture and manage data heterogeneity across studies from different laboratories or platforms. Specifically, we transform gene expression profiles into a united gene regulation profile across studies by mathematically defining two gene regulation events between two conditions and estimating their occurring probabilities in a sample. Finally, a novel differential expression statistic is established based on the gene regulation profiles, realizing accurate and flexible identification of DEGs in gene regulation space. We evaluated the proposed method on simulation data and real-world cancer datasets and showed the effectiveness and efficiency of jGRP in identifying DEGs identification in the context of meta-analysis. Data heterogeneity largely influences the performance of meta-analysis of DEGs identification. Existing different meta-analysis methods were revealed to exhibit very different degrees of sensitivity to study heterogeneity. The proposed method, jGRP, can be a standalone tool due to its united framework and controllable way to deal with study heterogeneity.

  15. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure

    PubMed Central

    Dong, Fan; Xu, Tianyuan; Shen, Yifan; Zhong, Shan; Chen, Shanwen; Ding, Qiang; Shen, Zhoujun

    2017-01-01

    Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease. PMID:28187437

  16. Expression profiles of antimicrobial peptides (AMPs) and their regulation by Relish

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Fuhua; Li, Shihao; Wen, Rong; Xiang, Jianhai

    2012-07-01

    Antimicrobial peptides (AMPs), as key immune effectors, play important roles in the innate immune system of invertebrates. Different types of AMPs, including Penaeidin, Crustin, ALF (antilipopolysaccharide factor) have been identified in different penaeid shrimp; however, systematic analyses on the function of different AMPs in shrimp responsive to different types of bacteria are very limited. In this study, we analyzed the expression profiles of AMPs in the Chinese shrimps, Fenneropenaeus chinensis, simultaneously by real-time RT-PCR (reverse transcription-polymerase chain reaction) when shrimp were challenged with Micrococcus lysodeikticus (Gram-positive, G+) or Vibrio anguillarium (Gram-negative, G-). Different AMPs showed different expression profiles when shrimp were injected with one type of bacterium, and one AMP also showed different expression profiles when shrimp were challenged with different bacteria. Furthermore, the expression of these AMPs showed temporal expression profiles, suggesting that different AMPs function coordinately in bacteria-infected shrimp. An RNA interference approach was used to study the function of the Relish transcription factor in regulating the transcription of different AMPs. The current study showed that Relish could regulate the transcription of different AMPs in shrimp. Differential expression profiles of AMPs in shrimp injected with different types of bacteria indicated that a complicated antimicrobial response network existed in shrimp. These data contribute to our understanding of immunity in shrimp and may provide a strategy for the control of disease in shrimp.

  17. Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development.

    PubMed

    Wu, Ya; Yang, Liyu; Cao, Aqin; Wang, Jianbo

    2015-01-01

    The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.

  18. Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart.

    PubMed

    Geng, Zhimin; Wang, Jue; Pan, Lulu; Li, Ming; Zhang, Jitai; Cai, Xueli; Chu, Maoping

    2017-04-01

    Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.

  19. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling.

    PubMed

    Khan, Sumbul Jawed; Abidi, Syeda Nayab Fatima; Skinner, Andrea; Tian, Yuan; Smith-Bolton, Rachel K

    2017-07-01

    Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth.

  20. The Drosophila Duox maturation factor is a key component of a positive feedback loop that sustains regeneration signaling

    PubMed Central

    Skinner, Andrea; Tian, Yuan

    2017-01-01

    Regenerating tissue must initiate the signaling that drives regenerative growth, and sustain that signaling long enough for regeneration to complete. How these key signals are sustained is unclear. To gain a comprehensive view of the changes in gene expression that occur during regeneration, we performed whole-genome mRNAseq of actively regenerating tissue from damaged Drosophila wing imaginal discs. We used genetic tools to ablate the wing primordium to induce regeneration, and carried out transcriptional profiling of the regeneration blastema by fluorescently labeling and sorting the blastema cells, thus identifying differentially expressed genes. Importantly, by using genetic mutants of several of these differentially expressed genes we have confirmed that they have roles in regeneration. Using this approach, we show that high expression of the gene moladietz (mol), which encodes the Duox-maturation factor NIP, is required during regeneration to produce reactive oxygen species (ROS), which in turn sustain JNK signaling during regeneration. We also show that JNK signaling upregulates mol expression, thereby activating a positive feedback signal that ensures the prolonged JNK activation required for regenerative growth. Thus, by whole-genome transcriptional profiling of regenerating tissue we have identified a positive feedback loop that regulates the extent of regenerative growth. PMID:28753614

  1. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    PubMed

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  2. Cloning and expression profile of ionotropic receptors in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    PubMed

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Zheng, Yao; Shan, Shuang; Li, Rui-Jun; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-07-01

    Ionotropic receptors (IRs) mainly detect the acids and amines having great importance in many insect species, representing an ancient olfactory receptor family in insects. In the present work, we performed RNAseq of Microplitis mediator antennae and identified seventeen IRs. Full-length MmedIRs were cloned and sequenced. Phylogenetic analysis of the Hymenoptera IRs revealed that ten MmedIR genes encoded "antennal IRs" and seven encoded "divergent IRs". Among the IR25a orthologous groups, two genes, MmedIR25a.1 and MmedIR25a.2, were found in M. mediator. Gene structure analysis of MmedIR25a revealed a tandem duplication of IR25a in M. mediator. The tissue distribution and development specific expression of the MmedIR genes suggested that these genes showed a broad expression profile. Quantitative gene expression analysis showed that most of the genes are highly enriched in adult antennae, indicating the candidate chemosensory function of this family in parasitic wasps. Using immunocytochemistry, we confirmed that one co-receptor, MmedIR8a, was expressed in the olfactory sensory neurons. Our data will supply fundamental information for functional analysis of the IRs in parasitoid wasp chemoreception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Baculovirus induced transcripts in hemocytes from Heliothis virescens

    USDA-ARS?s Scientific Manuscript database

    Using RNA-sequencing digital difference expression profiling methods we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcri...

  4. Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions

    PubMed Central

    Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.

    2005-01-01

    Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080

  5. Functional clustering of time series gene expression data by Granger causality

    PubMed Central

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  6. Chromatographic and Spectrophotometric Analysis of Phenolic Compounds from Fruits of Libidibia ferrea Martius

    PubMed Central

    Ferreira, Magda R. A.; Fernandes, Mônica T. M.; da Silva, Wliana A. V.; Bezerra, Isabelle C. F.; de Souza, Tatiane P.; Pimentel, Maria F.; Soares, Luiz A. L.

    2016-01-01

    Background: Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz (Fabaceae) is a tree which is native to Brazil, widely known as “Jucá,” where its herbal derivatives are used in folk medicine with several therapeutic properties. The constituents, which have already been described in the fruit, are mainly hydrolysable tannins (gallic acid [GA] and ellagic acid [EA]). Objective: The aim of this study was to investigate the phenolic variability in the fruit of L. ferrea by ultraviolet/visible (UV/VIS) and chromatographic methods (high-performance liquid chromatography [HPLC]/high-performance thin layer chromatography [HPTLC]). Materials and Methods: Several samples were collected from different regions of Brazil and the qualitative (fingerprints by HPTLC and HPLC) and quantitative analysis (UV/VIS and HPLC) of polyphenols were performed. Results: The HPTLC and HPLC profiles allowed separation and identification of both major analytical markers: EA and GA. The chemical profiles were similar in a number of spots or peaks for the samples, but some differences could be observed in the intensity or area of the analytical markers for HPTLC or HPLC, respectively. Regarding the quantitative analysis, the polyphenolic content by UV/VIS ranged from 13.99 to 37.86 g% expressed as GA or from 10.75 to 29.09 g% expressed as EA. The contents of EA and GA by liquid chromatography-reversed phase (LC-RP) method ranged from 0.57 to 2.68 g% and from 0.54 to 3.23 g%, respectively. Conclusion: The chemical profiles obtained by HPTLC or HPLC, as well as the quantitative analysis by spectrophotometry or LC-RP method, were suitable for discrimination of each herbal sample and can be used as tools for the comparative analysis of the fruits from L. ferrea. SUMMARY The polyphenols of fruits of Libidibia ferrea can be quantified by UV/VIS and HPLCThe HPLC method was able to detect the gallic and ellagic acids in several samples of fruits of Libidibia ferreaThe phenolic profiles of fruits from Libidibia ferrea by HPTLC and HPLC were reproductible. Abbreviations used: HPTLC: high performance thin layer chromatography, HPLC: high performance liquid chromatography, UV-Vis: spectrophotometry PMID:27279721

  7. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival

    PubMed Central

    2012-01-01

    Background Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. Methods Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. Results Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). Conclusions These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors. PMID:23046790

  8. Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes

    PubMed Central

    Dunmire, Samantha K.; Odumade, Oludare A.; Porter, Jean L.; Reyes-Genere, Juan; Schmeling, David O.; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C.; Balfour, Henry H.; Hogquist, Kristin A.

    2014-01-01

    Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans. PMID:24465555

  9. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.

    PubMed

    Dunmire, Samantha K; Odumade, Oludare A; Porter, Jean L; Reyes-Genere, Juan; Schmeling, David O; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C; Balfour, Henry H; Hogquist, Kristin A

    2014-01-01

    Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.

  10. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.).

    PubMed

    Ma, Jin-Qi; Jian, Hong-Ju; Yang, Bo; Lu, Kun; Zhang, Ao-Xiang; Liu, Pu; Li, Jia-Na

    2017-07-15

    Growth regulating-factors (GRFs) are plant-specific transcription factors that help regulate plant growth and development. Genome-wide identification and evolutionary analyses of GRF gene families have been performed in Arabidopsis thaliana, Zea mays, Oryza sativa, and Brassica rapa, but a comprehensive analysis of the GRF gene family in oilseed rape (Brassica napus) has not yet been reported. In the current study, we identified 35 members of the BnGRF family in B. napus. We analyzed the chromosomal distribution, phylogenetic relationships (Bayesian Inference and Neighbor Joining method), gene structures, and motifs of the BnGRF family members, as well as the cis-acting regulatory elements in their promoters. We also analyzed the expression patterns of 15 randomly selected BnGRF genes in various tissues and in plant varieties with different harvest indices and gibberellic acid (GA) responses. The expression levels of BnGRFs under GA treatment suggested the presence of possible negative feedback regulation. The evolutionary patterns and expression profiles of BnGRFs uncovered in this study increase our understanding of the important roles played by these genes in oilseed rape. Copyright © 2017. Published by Elsevier B.V.

  11. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer

    PubMed Central

    ZHANG, HAITAO; DONG, YAN; ZHAO, HONGJUAN; BROOKS, JAMES D.; HAWTHORN, LESLEYANN; NOWAK, NORMA; MARSHALL, JAMES R.; GAO, ALLEN C.; IP, CLEMENT

    2008-01-01

    Background A previous clinical trial showed that selenium supplementation significantly reduced the incidence of prostate cancer. We report here a bioinformatics approach to gain new insights into selenium molecular targets that might be relevant to prostate cancer chemoprevention. Materials and Methods We first performed data mining analysis to identify genes which are consistently dysregulated in prostate cancer using published datasets from gene expression profiling of clinical prostate specimens. We then devised a method to systematically analyze three selenium microarray datasets from the LNCaP human prostate cancer cells, and to match the analysis to the cohort of genes implicated in prostate carcinogenesis. Moreover, we compared the selenium datasets with two datasets obtained from expression profiling of androgen-stimulated LNCaP cells. Results We found that selenium reverses the expression of genes implicated in prostate carcinogenesis. In addition, we found that selenium could counteract the effect of androgen on the expression of a subset obtained from androgen-regulated genes. Conclusions The above information provides us with a treasure of new clues to investigate the mechanism of selenium chemoprevention of prostate cancer. Furthermore, these selenium target genes could also serve as biomarkers in future clinical trials to gauge the efficacy of selenium intervention. PMID:18548127

  13. Profiling analysis of FOX gene family members identified FOXE1 as potential regulator of NSCLC development.

    PubMed

    Ji, G H; Cui, Y; Yu, H; Cui, X B

    2016-09-30

    Lung cancer is one of the most malignant tumors worldwide with a high mortality rate, which has not been improved since several decades ago. FOX gene family members have been reported to play extensive roles in regulating many biological processes and disorders. In order to clarify the contribution of FOX gene family members in lung cancer biology, we performed expression profiling analysis of FOX gene family members from FOXA to FOXR in lung cancer cell lines and tissue specimens by Real-time PCR, western blot and immunohistochemistry analysis. We found that FOXE1 was the only gene which was over-expressed in six out of eight lung cancer cell lines and human cancer tissue specimens (28 out of 35 cases with higher expression and 7 out of 35 cases with moderate expression). Further investigation showed that MMP2 gene was up-regulated, and autophagy markers such as LC3B, ATG5, ATG12 and BECLIN1, were down-regulated concomitant with the increase of FOXE1. These results implicated that FOXE1 may be an important regulator by targeting autophagy and MMPs pathways in lung cancer development.

  14. Cloning, expression profiling, and acetylation identification of alpha-tubulin N-acetyltransferase 1 from Bombyx mori.

    PubMed

    Zhou, Huaixiang; Cheng, Xusheng; Xu, Xiaoyuan; Jiang, Tianlong; Zhou, Haimeng; Sheng, Qing; Nie, Zuoming

    2018-03-22

    Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself. © 2018 Wiley Periodicals, Inc.

  15. New target genes in endometrial tumors show a role for the estrogen-receptor pathway in microsatellite-unstable cancers.

    PubMed

    Ferreira, Ana M; Tuominen, Iina; Sousa, Sónia; Gerbens, Frans; van Dijk-Bos, Krista; Osinga, Jan; Kooi, Krista A; Sanjabi, Bahram; Esendam, Chris; Oliveira, Carla; Terpstra, Peter; Hardonk, Menno; van der Sluis, Tineke; Zazula, Monika; Stachura, Jerzy; van der Zee, Ate G; Hollema, Harry; Sijmons, Rolf H; Aaltonen, Lauri A; Seruca, Raquel; Hofstra, Robert M W; Westers, Helga

    2014-12-01

    Microsatellite instability (MSI) in tumors results in an accumulation of mutations in (target) genes. Previous studies suggest that the profile of target genes differs according to tumor type. This paper describes the first genome-wide search for target genes for mismatch repair-deficient endometrial cancers. Genes expressed in normal endometrium containing coding repeats were analyzed for mutations in tumors. We identified 44 possible genes of which seven are highly mutated (>15%). Some candidates were also found mutated in colorectal and gastric tumors. The most frequently mutated gene, NRIP1 encoding nuclear receptor-interacting protein 1, was silenced in an endometrial tumor cell line and expression microarray experiments were performed. Silencing of NRIP1 was associated with differences in the expression of several genes in the estrogen-receptor network. Furthermore, an enrichment of genes related to cell cycle (regulation) and replication was observed. We present a new profile of target genes, some of them tissue specific, whereas others seem to play a more general role in MSI tumors. The high-mutation frequency combined with the expression data suggest, for the first time, an involvement of NRIP1 in endometrial cancer development. © 2014 WILEY PERIODICALS, INC.

  16. Integrated Molecular Profiling of Human Gastric Cancer Identifies DDR2 as a Potential Regulator of Peritoneal Dissemination.

    PubMed

    Kurashige, Junji; Hasegawa, Takanori; Niida, Atsushi; Sugimachi, Keishi; Deng, Niantao; Mima, Kosuke; Uchi, Ryutaro; Sawada, Genta; Takahashi, Yusuke; Eguchi, Hidetoshi; Inomata, Masashi; Kitano, Seigo; Fukagawa, Takeo; Sasako, Mitsuru; Sasaki, Hiroki; Sasaki, Shin; Mori, Masaki; Yanagihara, Kazuyoshi; Baba, Hideo; Miyano, Satoru; Tan, Patrick; Mimori, Koshi

    2016-03-03

    Peritoneal dissemination is the most frequent, incurable metastasis occurring in patients with advanced gastric cancer (GC). However, molecular mechanisms driving peritoneal dissemination still remain poorly understood. Here, we aimed to provide novel insights into the molecular mechanisms that drive the peritoneal dissemination of GC. We performed combined expression analysis with in vivo-selected metastatic cell lines and samples from 200 GC patients to identify driver genes of peritoneal dissemination. The driver-gene functions associated with GC dissemination were examined using a mouse xenograft model. We identified a peritoneal dissemination-associated expression signature, whose profile correlated with those of genes related to development, focal adhesion, and the extracellular matrix. Among the genes comprising the expression signature, we identified that discoidin-domain receptor 2 (DDR2) as a potential regulator of peritoneal dissemination. The DDR2 was upregulated by the loss of DNA methylation and that DDR2 knockdown reduced peritoneal metastasis in a xenograft model. Dasatinib, an inhibitor of the DDR2 signaling pathway, effectively suppressed peritoneal dissemination. DDR2 was identified as a driver gene for GC dissemination from the combined expression signature and can potentially serve as a novel therapeutic target for inhibiting GC peritoneal dissemination.

  17. Activation of Wnt/β-Catenin Pathway in Monocytes Derived from Chronic Kidney Disease Patients

    PubMed Central

    Al-Chaqmaqchi, Heevy Abdulkareem Musa; Moshfegh, Ali; Dadfar, Elham; Paulsson, Josefin; Hassan, Moustapha; Jacobson, Stefan H.; Lundahl, Joachim

    2013-01-01

    Patients with chronic kidney disease (CKD) have significantly increased morbidity and mortality resulting from infections and cardiovascular diseases. Since monocytes play an essential role in host immunity, this study was directed to explore the gene expression profile in order to identify differences in activated pathways in monocytes relevant to the pathophysiology of atherosclerosis and increased susceptibility to infections. Monocytes from CKD patients (stages 4 and 5, estimated GFR <20 ml/min/1.73 m2) and healthy donors were collected from peripheral blood. Microarray gene expression profile was performed and data were interpreted by GeneSpring software and by PANTHER tool. Western blot was done to validate the pathway members. The results demonstrated that 600 and 272 genes were differentially up- and down regulated respectively in the patient group. Pathways involved in the inflammatory response were highly expressed and the Wnt/β-catenin signaling pathway was the most significant pathway expressed in the patient group. Since this pathway has been attributed to a variety of inflammatory manifestations, the current findings may contribute to dysfunctional monocytes in CKD patients. Strategies to interfere with this pathway may improve host immunity and prevent cardiovascular complications in CKD patients. PMID:23935909

  18. Effects of Dietary n-6:n-3 PUFA Ratios on Lipid Levels and Fatty Acid Profile of Cherry Valley Ducks at 15-42 Days of Age.

    PubMed

    Li, Mengmeng; Zhai, Shuangshuang; Xie, Qiang; Tian, Lu; Li, Xiaocun; Zhang, Jiaming; Ye, Hui; Zhu, Yongwen; Yang, Lin; Wang, Wence

    2017-11-22

    The objective of this study was to investigate the effects of dietary n-6:n-3 PUFA ratio on growth performance, serum and tissue lipid levels, fatty acid profile, and hepatic expression of fatty acid synthesis genes in ducks. A total of 3168 15-day old ducks were fed different n-6:n-3 PUFA ratios: 13:1 (control), 10:1, 8:1, 6:1, 4:1, and 2:1. The feeding trial lasted 4 weeks. Our results revealed that dietary n-6:n-3 PUFA ratios had no effects on growth performance. The 2:1 group had the highest serum triglyceride levels. Serum total cholesterol and HDL levels were higher in the 13:1 and 8:1 groups than in the 6:1 and 2:1 groups. The concentration of C18:3n-3 in serum and tissues (liver and muscle) increased with decreasing dietary n-6:n-3 PUFA ratios. The hepatic expression of FADS2, ELOVL5, FADS1, and ELOVL2 increased on a quadratic function with decreasing dietary n-6:n-3 PUFA ratios. These results demonstrate that lower dietary n-6:n-3 PUFA ratios had strong effects on the fatty acid profile of edible parts and the deposition of n-3 PUFAs in adipose tissue of ducks.

  19. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  20. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism and is reported to be involved in DNA repair process. Its expression sensitivity and specificity were confirmed by RT-PCR and western blot analysis, indicating its potential to be used as space radiation biomarker. Space radiations might induce epigenetic effects on rice plants, especially changes of DNA methylation. Early results suggested that there were correlations between DNA methylation polymorphic and genomic mutation rates. In addition, the 5-methylcytosine located in coding gene’s promoter and exon regions could regulate gene expressions thus influence protein expressions. So whether there is correlation between genome DNA methylation changes and protein expression profile alterations caused by space radiation is worth for further investigation. Therefore we used the same rice samples treated by carbon ion radiation with different doses (0, 10, 20,100, 200, 1000, 2000, 5000, 20000mGy) and applied methylation sensitive amplification polymorphism (MSAP) for scanning genome DNA methylation changes. Interestingly, DNA methylation polymorphism rates also presented a dose-dependent effect and showed the same changing trend as rates of differentially expressed proteins. Whether there are correlations between epigenetic and proteomic effects of space radiation is worth for further investigation.

  1. Integrated analysis of long noncoding RNA and mRNA expression profile in children with obesity by microarray analysis.

    PubMed

    Liu, Yuesheng; Ji, Yuqiang; Li, Min; Wang, Min; Yi, Xiaoqing; Yin, Chunyan; Wang, Sisi; Zhang, Meizhen; Zhao, Zhao; Xiao, Yanfeng

    2018-06-08

    Long noncoding RNAs (lncRNAs) have an important role in adipose tissue function and energy metabolism homeostasis, and abnormalities may lead to obesity. To investigate whether lncRNAs are involved in childhood obesity, we investigated the differential expression profile of lncRNAs in obese children compared with non-obese children. A total number of 1268 differentially expressed lncRNAs and 1085 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis revealed that these lncRNAs were involved in varied biological processes, including the inflammatory response, lipid metabolic process, osteoclast differentiation and fatty acid metabolism. In addition, the lncRNA-mRNA co-expression network and the protein-protein interaction (PPI) network were constructed to identify hub regulatory lncRNAs and genes based on the microarray expression profiles. This study for the first time identifies an expression profile of differentially expressed lncRNAs in obese children and indicated hub lncRNA RP11-20G13.3 attenuated adipogenesis of preadipocytes, which is conducive to the search for new diagnostic and therapeutic strategies of childhood obesity.

  2. Gene Expression Profiling Predicts the Development of Oral Cancer

    PubMed Central

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develope multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinico-pathological risk factors. Based on the gene expression profile data, we also identified 2182 transcripts significantly associated with oral cancer risk associated genes (P-value<0.01, single variate Cox proportional hazards model). Functional pathway analysis revealed proteasome machinery, MYC, and ribosomes components as the top gene sets associated with oral cancer risk. In multiple independent datasets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. PMID:21292635

  3. Thymidylate synthase (TS) protein expression as a prognostic factor in advanced colorectal cancer: a comparison with TS mRNA expression.

    PubMed

    Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru

    2012-06-01

    The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.

  4. Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eveillard, Alexandre; Lasserre, Frederic; Tayrac, Marie de

    2009-05-01

    Phthalates are industrial additives widely used as plasticizers. In addition to deleterious effects on male genital development, population studies have documented correlations between phthalates exposure and impacts on reproductive tract development and on the metabolic syndrome in male adults. In this work we investigated potential mechanisms underlying the impact of DEHP on adult mouse liver in vivo. A parallel analysis of hepatic transcript and metabolic profiles from adult mice exposed to varying DEHP doses was performed. Hepatic genes modulated by DEHP are predominantly PPAR{alpha} targets. However, the induction of prototypic cytochrome P450 genes strongly supports the activation of additional NRmore » pathways, including Constitutive Androstane Receptor (CAR). Integration of transcriptomic and metabonomic profiles revealed a correlation between the impacts of DEHP on genes and metabolites related to heme synthesis and to the Rev-erb{alpha} pathway that senses endogenous heme level. We further confirmed the combined impact of DEHP on the hepatic expression of Alas1, a critical enzyme in heme synthesis and on the expression of Rev-erb{alpha} target genes involved in the cellular clock and in energy metabolism. This work shows that DEHP interferes with hepatic CAR and Rev-erb{alpha} pathways which are both involved in the control of metabolism. The identification of these new hepatic pathways targeted by DEHP could contribute to metabolic and endocrine disruption associated with phthalate exposure. Gene expression profiles performed on microdissected testis territories displayed a differential responsiveness to DEHP. Altogether, this suggests that impacts of DEHP on adult organs, including testis, could be documented and deserve further investigations.« less

  5. Omics in Reproductive Medicine: Application of Novel Technologies to Improve the IVF Success Rate.

    PubMed

    Nerenz, R D

    Treatment for many infertile couples often consists of in vitro fertilization (IVF) but an estimated 70% of IVF cycles fail to produce a live birth. In an attempt to improve the live birth rate, the vast majority of IVF cycles performed in the United States involve the transfer of multiple embryos, a practice that increases the risk of multiple gestation pregnancy. This is a concern because multiple gestation pregnancies are associated with an increased incidence of maternal and fetal complications and significant cost associated with the care of preterm infants. As the ideal outcome of each IVF cycle is the birth of a single healthy baby, significant effort has focused on identifying embryos with the greatest developmental potential. To date, selection of euploid embryos using comprehensive chromosome screening (CCS) is the most promising approach while metabolomic and proteomic assessment of spent culture medium have the potential to noninvasively assess embryo viability. Endometrial gene expression profiling may help determine the optimal time to perform embryo transfer. While CCS has been implemented in some clinics, further development and optimization will be required before analysis of spent culture medium and endometrial gene expression profiling make the transition to clinical use. This review will describe efforts to identify embryos with the greatest potential to result in a healthy, live birth, with a particular emphasis on detection of embryo aneuploidy and metabolic profiling of spent embryo culture medium. Assessment of endometrial receptivity to identify the optimal time to perform embryo transfer will also be discussed. © 2016 Elsevier Inc. All rights reserved.

  6. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells

    PubMed Central

    Lin, Zhuoheng; Feng, Xuyang; Jiang, Xue; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and these data provide new insights into the processes potentially involved in the GSC life cycle and spermatogenesis. PMID:26713853

  7. Global gene expression profiles in brain regions reflecting abnormal neuronal and glial functions targeting myelin sheaths after 28-day exposure to cuprizone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Hajime

    Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600 mg/kg CPZ for 28 days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600 mg/kgmore » for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO{sup +} oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68{sup +} microglia, MT{sup +} astrocytes, and TUNEL{sup +} apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO{sup +} oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure. - Highlights: • Target gene expression profiles were examined in rats after 28-day CPZ exposure. • Multiple brain region-specific global gene expression profiling was performed. • CPZ affected synaptic function and cell cycling in the hippocampal dentate gyrus. • CPZ suppressed KLOTHO-mediated oligodendrocyte maturation in the corpus callosum. • CPZ increased metallothionein-mediated protective mechanism against myelin damage.« less

  8. Integrated Copy Number and Expression Analysis Identifies Profiles of Whole-Arm Chromosomal Alterations and Subgroups with Favorable Outcome in Ovarian Clear Cell Carcinomas

    PubMed Central

    Uehara, Yuriko; Oda, Katsutoshi; Ikeda, Yuji; Koso, Takahiro; Tsuji, Shingo; Yamamoto, Shogo; Asada, Kayo; Sone, Kenbun; Kurikawa, Reiko; Makii, Chinami; Hagiwara, Otoe; Tanikawa, Michihiro; Maeda, Daichi; Hasegawa, Kosei; Nakagawa, Shunsuke; Wada-Hiraike, Osamu; Kawana, Kei; Fukayama, Masashi; Fujiwara, Keiichi; Yano, Tetsu; Osuga, Yutaka; Fujii, Tomoyuki; Aburatani, Hiroyuki

    2015-01-01

    Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis. PMID:26043110

  9. Cell-Type–Specific Transcriptional Profiles of the Dimorphic Pathogen Penicillium marneffei Reflect Distinct Reproductive, Morphological, and Environmental Demands

    PubMed Central

    Pasricha, Shivani; Payne, Michael; Canovas, David; Pase, Luke; Ngaosuwankul, Nathamon; Beard, Sally; Oshlack, Alicia; Smyth, Gordon K.; Chaiyaroj, Sansanee C.; Boyce, Kylie J.; Andrianopoulos, Alex

    2013-01-01

    Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, is dependent on temperature. To understand the process of dimorphic switching and the physiological capacity of the different cell types, two microarray-based profiling experiments covering approximately 42% of the genome were performed. The first experiment compared cells from the hyphal, yeast, and conidiation phases to identify “phase or cell-state–specific” gene expression. The second experiment examined gene expression during the dimorphic switch from one morphological state to another. The data identified a variety of differentially expressed genes that have been organized into metabolic clusters based on predicted function and expression patterns. In particular, C-14 sterol reductase–encoding gene ergM of the ergosterol biosynthesis pathway showed high-level expression throughout yeast morphogenesis compared to hyphal. Deletion of ergM resulted in severe growth defects with increased sensitivity to azole-type antifungal agents but not amphotericin B. The data defined gene classes based on spatio-temporal expression such as those expressed early in the dimorphic switch but not in the terminal cell types and those expressed late. Such classifications have been helpful in linking a given gene of interest to its expression pattern throughout the P. marneffei dimorphic life cycle and its likely role in pathogenicity. PMID:24062530

  10. Changes in miRNA expression profile of space-flown Caenorhabditis elegans during Shenzhou-8 mission

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Gao, Ying; Huang, Lei; Sun, Yeqing

    2014-04-01

    Recent advances in the field of molecular biology have demonstrated that small non-coding microRNAs (miRNAs) have a broad effect on gene expression networks and play a key role in biological responses to environmental stressors. However, little is known about how space radiation exposure and altered gravity affect miRNA expression. The "International Space Biological Experiments" project was carried out in November 2011 by an international collaboration between China and Germany during the Shenzhou-8 (SZ-8) mission. To study the effects of spaceflight on Caenorhabditis elegans (C. elegans), we explored the expression profile miRNA changes in space-flown C. elegans. Dauer C. elegans larvae were taken by SZ-8 spacecraft and experienced the 16.5-day shuttle spaceflight. We performed miRNA microarray analysis, and the results showed that 23 miRNAs were altered in a complex space environment and different expression patterns were observed in the space synthetic and radiation environments. Most putative target genes of the altered miRNAs in the space synthetic environment were predicted to be involved in developmental processes instead of in the regulation of transcription, and the enrichment of these genes was due to space radiation. Furthermore, integration analysis of the miRNA and mRNA expression profiles confirmed that twelve genes were differently regulated by seven miRNAs. These genes may be involved in embryonic development, reproduction, transcription factor activity, oviposition in a space synthetic environment, positive regulation of growth and body morphogenesis in a space radiation environment. Specifically, we found that cel-miR-52, -55, and -56 of the miR-51 family were sensitive to space environmental stressors and could regulate biological behavioural responses and neprilysin activity through the different isoforms of T01C4.1 and F18A12.8. These findings suggest that C. elegans responded to spaceflight by altering the expression of miRNAs and some target genes that function in diverse regulatory pathways.

  11. RNA-Seq Reveals Dynamic Changes of Gene Expression in Key Stages of Intestine Regeneration in the Sea Cucumber Apostichopus japonicas

    PubMed Central

    Sun, Lina; Yang, Hongsheng; Chen, Muyan; Ma, Deyou; Lin, Chenggang

    2013-01-01

    Background Sea cucumbers (Holothuroidea; Echinodermata) have the capacity to regenerate lost tissues and organs. Although the histological and cytological aspects of intestine regeneration have been extensively studied, little is known of the genetic mechanisms involved. There has, however, been a renewed effort to develop a database of Expressed Sequence Tags (ESTs) in Apostichopus japonicus, an economically-important species that occurs in China. This is important for studies on genetic breeding, molecular markers and special physiological phenomena. We have also constructed a library of ESTs obtained from the regenerative body wall and intestine of A. japonicus. The database has increased to ∼30000 ESTs. Results We used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe). This was compared to profiles obtained from a normally-functioning intestine. Approximately 5 million (M) reads were sequenced in every library. Over 2400 up-regulated genes (>10%) and over 1000 down-regulated genes (∼5%) were observed at 3 and 7dpe (log2Ratio≥1, FDR≤0.001). Specific “Go terms” revealed that the DEGs (Differentially Expressed Genes) performed an important function at every regeneration stage. Besides some expected pathways (for example, Ribosome and Spliceosome pathway term), the “Notch signaling pathway,” the “ECM-receptor interaction” and the “Cytokine-cytokine receptor interaction” were significantly enriched. We also investigated the expression profiles of developmental genes, ECM-associated genes and Cytoskeletal genes. Twenty of the most important differentially expressed genes (DEGs) were verified by Real-time PCR, which resulted in a trend concordance of almost 100% between the two techniques. Conclusion Our studies demonstrated dynamic changes in global gene expression during intestine regeneration and presented a series of candidate genes and enriched pathways that contribute to intestine regeneration in sea cucumbers. This provides a foundation for future studies on the genetics/molecular mechanisms associated with intestine regeneration. PMID:23936330

  12. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury

    PubMed Central

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Purpose: Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). Methods: In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. Results: The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. Conclusion: The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI. PMID:26823722

  13. A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles

    PubMed Central

    Stojnic, Robert; Fu, Audrey Qiuyan; Adryan, Boris

    2012-01-01

    Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM-specific repression mechanism that so far has not been characterised for this class of mesodermal CRMs. PMID:23144600

  14. Twist-induced tuning in tapered fiber couplers.

    PubMed

    Birks, T A

    1989-10-01

    The power-splitting ratio of fused tapered single-mode fiber couplers can be reversibly tuned by axial twisting without affecting loss. The twist-tuning behavior of a range of different tapered couplers is described. A simple expression for twist-tuning can be derived by representing the effects of twist by a change in the refractive index profile. Good agreement between this expression and experimental results is demonstrated. Repeated tuning over tens of thousands of cycles is found not to degrade coupler performance, and a number of practical applications, including a freely tunable tapered coupler, are described.

  15. Divergence between motoneurons: gene expression profiling provides a molecular characterization of functionally discrete somatic and autonomic motoneurons

    PubMed Central

    Cui, Dapeng; Dougherty, Kimberly J.; Machacek, David W.; Sawchuk, Michael; Hochman, Shawn; Baro, Deborah J.

    2009-01-01

    Studies in the developing spinal cord suggest that different motoneuron (MN) cell types express very different genetic programs, but the degree to which adult programs differ is unknown. To compare genetic programs between adult MN columnar cell types, we used laser capture micro-dissection (LCM) and Affymetrix microarrays to create expression profiles for three columnar cell types: lateral and medial MNs from lumbar segments and sympathetic preganglionic motoneurons located in the thoracic intermediolateral nucleus. A comparison of the three expression profiles indicated that ~7% (813/11,552) of the genes showed significant differences in their expression levels. The largest differences were observed between sympathetic preganglionic MNs and the lateral motor column, with 6% (706/11,552) of the genes being differentially expressed. Significant differences in expression were observed for 1.8% (207/11,552) of the genes when comparing sympathetic preganglionic MNs with the medial motor column. Lateral and medial MNs showed the least divergence, with 1.3% (150/11,552) of the genes being differentially expressed. These data indicate that the amount of divergence in expression profiles between identified columnar MNs does not strictly correlate with divergence of function as defined by innervation patterns (somatic/muscle vs. autonomic/viscera). Classification of the differentially expressed genes with regard to function showed that they underpin all fundamental cell systems and processes, although most differentially expressed genes encode proteins involved in signal transduction. Mining the expression profiles to examine transcription factors essential for MN development suggested that many of the same transcription factors participatein combinatorial codes in embryonic and adult neurons, but patterns of expression change significantly. PMID:16317082

  16. Face in profile view reduces perceived facial expression intensity: an eye-tracking study.

    PubMed

    Guo, Kun; Shaw, Heather

    2015-02-01

    Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Identification of the transcriptional regulators by expression profiling infected with hepatitis B virus.

    PubMed

    Chai, Xiaoqiang; Han, Yanan; Yang, Jian; Zhao, Xianxian; Liu, Yewang; Hou, Xugang; Tang, Yiheng; Zhao, Shirong; Li, Xiao

    2016-02-01

    The molecular pathogenesis of infection by hepatitis B virus with human is extremely complex and heterogeneous. To date the molecular information is not clearly defined despite intensive research efforts. Thus, studies aimed at transcription and regulation during virus infection or combined researches of those already known to be beneficial are needed. With the purpose of identifying the transcriptional regulators related to infection of hepatitis B virus in gene level, the gene expression profiles from some normal individuals and hepatitis B patients were analyzed in our study. In this work, the differential expressed genes were selected primarily. The several genes among those were validated in an independent set by qRT-PCR. Then the differentially co-expression analysis was conducted to identify differentially co-expressed links and differential co-expressed genes. Next, the analysis of the regulatory impact factors was performed through mapping the links and regulatory data. In order to give a further insight to these regulators, the co-expression gene modules were identified using a threshold-based hierarchical clustering method. Incidentally, the construction of the regulatory network was generated using the computer software. A total of 137,284 differentially co-expressed links and 780 differential co-expressed genes were identified. These co-expressed genes were significantly enriched inflammatory response. The results of regulatory impact factors revealed several crucial regulators related to hepatocellular carcinoma and other high-rank regulators. Meanwhile, more than one hundred co-expression gene modules were identified using clustering method. In our study, some important transcriptional regulators were identified using a computational method, which may enhance the understanding of disease mechanisms and lead to an improved treatment of hepatitis B. However, further experimental studies are required to confirm these findings. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site.

    PubMed

    Antonescu, Cristina R; Viale, Agnes; Sarran, Lisa; Tschernyavsky, Sylvia J; Gonen, Mithat; Segal, Neil H; Maki, Robert G; Socci, Nicholas D; DeMatteo, Ronald P; Besmer, Peter

    2004-05-15

    Gastrointestinal stromal tumors (GISTs) are specific KIT expressing and KIT-signaling driven mesenchymal tumors of the human digestive tract, many of which have KIT-activating mutations. Previous studies have found a relatively homogeneous gene expression profile in GIST, as compared with other histological types of sarcomas. Transcriptional heterogeneity within clinically or molecularly defined subsets of GISTs has not been previously reported. We tested the hypothesis that the gene expression profile in GISTs might be related to KIT genotype and possibly to other clinicopathological factors. An HG-U133A Affymetrix chip (22,000 genes) platform was used to determine the variability of gene expression in 28 KIT-expressing GIST samples from 24 patients. A control group of six intra-abdominal leiomyosarcomas was also included for comparison. Statistical analyses (t tests) were performed to identify discriminatory gene lists among various GIST subgroups. The levels of expression of various GIST subsets were also linked to a modified version of the growth factor/KIT signaling pathway to analyze differences at various steps in signal transduction. Genes involved in KIT signaling were differentially expressed among wild-type and mutant GISTs. High gene expression of potential drug targets, such as VEGF, MCSF, and BCL2 in the wild-type group, and Mesothelin in exon 9 GISTs were found. There was a striking difference in gene expression between stomach and small bowel GISTs. This finding was validated in four separate tumors, two gastric and two intestinal, from a patient with familial GIST with a germ-line KIT W557R substitution. GISTs have heterogeneous gene expression depending on KIT genotype and tumor location, which is seen at both the genomic level and the KIT signaling pathway in particular. These findings may explain their variable clinical behavior and response to therapy.

  19. GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress.

    PubMed

    Mian, Omar Y; Khattab, Mohamed H; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M; Veeraswamy, Ravi K; Brooks, James D; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G; Yegnasubramanian, Srinivasan; DeWeese, Theodore L

    2016-02-01

    Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1- transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. © 2015 Wiley Periodicals, Inc.

  20. GSTP1 Loss Results in Accumulation of Oxidative DNA Base Damage and Promotes Prostate Cancer Cell Survival Following Exposure to Protracted Oxidative Stress

    PubMed Central

    Mian, Omar Y.; Khattab, Mohamed H.; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M.; Veeraswamy, Ravi K.; Brooks, James D.; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G.; Yegnasubramanian, Srinivasan; DeWeese, Theodore L.

    2016-01-01

    BACKGROUND Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). METHODS GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1-transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. RESULTS GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. CONCLUSIONS The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. PMID:26447830

  1. Time-course microarray analysis for identifying candidate genes involved in obesity-associated pathological changes in the mouse colon.

    PubMed

    Bae, Yun Jung; Kim, Sung-Eun; Hong, Seong Yeon; Park, Taesun; Lee, Sang Gyu; Choi, Myung-Sook; Sung, Mi-Kyung

    2016-01-01

    Obesity is known to increase the risk of colorectal cancer. However, mechanisms underlying the pathogenesis of obesity-induced colorectal cancer are not completely understood. The purposes of this study were to identify differentially expressed genes in the colon of mice with diet-induced obesity and to select candidate genes as early markers of obesity-associated abnormal cell growth in the colon. C57BL/6N mice were fed normal diet (11% fat energy) or high-fat diet (40% fat energy) and were euthanized at different time points. Genome-wide expression profiles of the colon were determined at 2, 4, 8, and 12 weeks. Cluster analysis was performed using expression data of genes showing log 2 fold change of ≥1 or ≤-1 (twofold change), based on time-dependent expression patterns, followed by virtual network analysis. High-fat diet-fed mice showed significant increase in body weight and total visceral fat weight over 12 weeks. Time-course microarray analysis showed that 50, 47, 36, and 411 genes were differentially expressed at 2, 4, 8, and 12 weeks, respectively. Ten cluster profiles representing distinguishable patterns of genes differentially expressed over time were determined. Cluster 4, which consisted of genes showing the most significant alterations in expression in response to high-fat diet over 12 weeks, included Apoa4 (apolipoprotein A-IV), Ppap2b (phosphatidic acid phosphatase type 2B), Cel (carboxyl ester lipase), and Clps (colipase, pancreatic), which interacted strongly with surrounding genes associated with colorectal cancer or obesity. Our data indicate that Apoa4 , Ppap2b , Cel , and Clps are candidate early marker genes associated with obesity-related pathological changes in the colon. Genome-wide analyses performed in the present study provide new insights on selecting novel genes that may be associated with the development of diseases of the colon.

  2. Cancer survival classification using integrated data sets and intermediate information.

    PubMed

    Kim, Shinuk; Park, Taesung; Kon, Mark

    2014-09-01

    Although numerous studies related to cancer survival have been published, increasing the prediction accuracy of survival classes still remains a challenge. Integration of different data sets, such as microRNA (miRNA) and mRNA, might increase the accuracy of survival class prediction. Therefore, we suggested a machine learning (ML) approach to integrate different data sets, and developed a novel method based on feature selection with Cox proportional hazard regression model (FSCOX) to improve the prediction of cancer survival time. FSCOX provides us with intermediate survival information, which is usually discarded when separating survival into 2 groups (short- and long-term), and allows us to perform survival analysis. We used an ML-based protocol for feature selection, integrating information from miRNA and mRNA expression profiles at the feature level. To predict survival phenotypes, we used the following classifiers, first, existing ML methods, support vector machine (SVM) and random forest (RF), second, a new median-based classifier using FSCOX (FSCOX_median), and third, an SVM classifier using FSCOX (FSCOX_SVM). We compared these methods using 3 types of cancer tissue data sets: (i) miRNA expression, (ii) mRNA expression, and (iii) combined miRNA and mRNA expression. The latter data set included features selected either from the combined miRNA/mRNA profile or independently from miRNAs and mRNAs profiles (IFS). In the ovarian data set, the accuracy of survival classification using the combined miRNA/mRNA profiles with IFS was 75% using RF, 86.36% using SVM, 84.09% using FSCOX_median, and 88.64% using FSCOX_SVM with a balanced 22 short-term and 22 long-term survivor data set. These accuracies are higher than those using miRNA alone (70.45%, RF; 75%, SVM; 75%, FSCOX_median; and 75%, FSCOX_SVM) or mRNA alone (65.91%, RF; 63.64%, SVM; 72.73%, FSCOX_median; and 70.45%, FSCOX_SVM). Similarly in the glioblastoma multiforme data, the accuracy of miRNA/mRNA using IFS was 75.51% (RF), 87.76% (SVM) 85.71% (FSCOX_median), 85.71% (FSCOX_SVM). These results are higher than the results of using miRNA expression and mRNA expression alone. In addition we predict 16 hsa-miR-23b and hsa-miR-27b target genes in ovarian cancer data sets, obtained by SVM-based feature selection through integration of sequence information and gene expression profiles. Among the approaches used, the integrated miRNA and mRNA data set yielded better results than the individual data sets. The best performance was achieved using the FSCOX_SVM method with independent feature selection, which uses intermediate survival information between short-term and long-term survival time and the combination of the 2 different data sets. The results obtained using the combined data set suggest that there are some strong interactions between miRNA and mRNA features that are not detectable in the individual analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friddle, Carl J; Koga, Teiichiro; Rubin, Edward M.

    2000-03-15

    While cardiac hypertrophy has been the subject of intensive investigation, regression of hypertrophy has been significantly less studied, precluding large-scale analysis of the relationship between these processes. In the present study, using pharmacological models of hypertrophy in mice, expression profiling was performed with fragments of more than 3,000 genes to characterize and contrast expression changes during induction and regression of hypertrophy. Administration of angiotensin II and isoproterenol by osmotic minipump produced increases in heart weight (15% and 40% respectively) that returned to pre-induction size following drug withdrawal. From multiple expression analyses of left ventricular RNA isolated at daily time-points duringmore » cardiac hypertrophy and regression, we identified sets of genes whose expression was altered at specific stages of this process. While confirming the participation of 25 genes or pathways previously known to be altered by hypertrophy, a larger set of 30 genes was identified whose expression had not previously been associated with cardiac hypertrophy or regression. Of the 55 genes that showed reproducible changes during the time course of induction and regression, 32 genes were altered only during induction and 8 were altered only during regression. This study identified both known and novel genes whose expression is affected at different stages of cardiac hypertrophy and regression and demonstrates that cardiac remodeling during regression utilizes a set of genes that are distinct from those used during induction of hypertrophy.« less

  4. Detection of growth hormone doping by gene expression profiling of peripheral blood.

    PubMed

    Mitchell, Christopher J; Nelson, Anne E; Cowley, Mark J; Kaplan, Warren; Stone, Glenn; Sutton, Selina K; Lau, Amie; Lee, Carol M Y; Ho, Ken K Y

    2009-12-01

    GH abuse is a significant problem in many sports, and there is currently no robust test that allows detection of doping beyond a short window after administration. Our objective was to evaluate gene expression profiling in peripheral blood leukocytes in-vivo as a test for GH doping in humans. Seven men and thirteen women were administered GH, 2 mg/d sc for 8 wk. Blood was collected at baseline and at 8 wk. RNA was extracted from the white cell fraction. Microarray analysis was undertaken using Agilent 44K G4112F arrays using a two-color design. Quantitative RT-PCR using TaqMan gene expression assays was performed for validation of selected differentially expressed genes. GH induced an approximately 2-fold increase in circulating IGF-I that was maintained throughout the 8 wk of the study. GH induced significant changes in gene expression with 353 in women and 41 in men detected with a false discovery rate of less than 5%. None of the differentially expressed genes were common between men and women. The maximal changes were a doubling for up-regulated or halving for down-regulated genes, similar in magnitude to the variation between individuals. Quantitative RT-PCR for seven target genes showed good concordance between microarray and quantitative PCR data in women but not in men. Gene expression analysis of peripheral blood leukocytes is unlikely to be a viable approach for the detection of GH doping.

  5. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    PubMed

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro.

    PubMed

    Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gahete, Manuel D; Jiménez-Reina, Luis; Venegas-Moreno, Eva; de la Riva, Andrés; Arráez, Miguel Ángel; González-Molero, Inmaculada; Schmid, Herbert A; Maraver-Selfa, Silvia; Gavilán-Villarejo, Inmaculada; García-Arnés, Juan Antonio; Japón, Miguel A; Soto-Moreno, Alfonso; Gálvez, María A; Luque, Raúl M; Castaño, Justo P

    2016-11-01

    Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca 2+ signaling ([Ca 2+ ] i ), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca 2+ ] i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca 2+ ] i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response. © 2016 Society for Endocrinology.

  7. Utilization of Lymphoblastoid Cell Lines as a System for the Molecular Modeling of Autism

    ERIC Educational Resources Information Center

    Baron, Colin A.; Liu, Stephenie Y.; Hicks, Chindo; Gregg, Jeffrey P.

    2006-01-01

    In order to provide an alternative approach for understanding the biology and genetics of autism, we performed statistical analysis of gene expression profiles of lymphoblastoid cell lines derived from children with autism and their families. The goal was to assess the feasibility of using this model in identifying autism-associated genes.…

  8. Prosodic Abilities in Spanish and English Children with Williams Syndrome: A Cross-Linguistic Study

    ERIC Educational Resources Information Center

    Martinez-Castilla, Pastora; Stojanovik, Vesna; Setter, Jane; Sotillo, Maria

    2012-01-01

    The aim of this study was to compare the prosodic profiles of English- and Spanish-speaking children with Williams syndrome (WS), examining cross-linguistic differences. Two groups of children with WS, English and Spanish, of similar chronological and nonverbal mental age, were compared on performance in expressive and receptive prosodic tasks…

  9. A High Protein Diet during Pregnancy Affects Hepatic Gene Expression of Energy Sensing Pathways along Ontogenesis in a Porcine Model

    PubMed Central

    Oster, Michael; Murani, Eduard; Metges, Cornelia C.; Ponsuksili, Siriluck; Wimmers, Klaus

    2011-01-01

    In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP) or an adequate protein diet (AP, 12% CP) throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc) and postnatal stages (1, 28, 188 dpn). Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages. PMID:21789176

  10. Noncoding RNA Expression and Targeted Next-Generation Sequencing Distinguish Tubulocystic Renal Cell Carcinoma (TC-RCC) from Other Renal Neoplasms.

    PubMed

    Lawrie, Charles H; Armesto, María; Fernandez-Mercado, Marta; Arestín, María; Manterola, Lorea; Goicoechea, Ibai; Larrea, Erika; Caffarel, María M; Araujo, Angela M; Sole, Carla; Sperga, Maris; Alvarado-Cabrero, Isabel; Michal, Michal; Hes, Ondrej; López, José I

    2018-01-01

    Tubulocystic renal cell carcinoma (TC-RCC) is a rare recently described renal neoplasm characterized by gross, microscopic, and immunohistochemical differences from other renal tumor types and was recently classified as a distinct entity. However, this distinction remains controversial particularly because some genetic studies suggest a close relationship with papillary RCC (PRCC). The molecular basis of this disease remains largely unexplored. We therefore performed noncoding (nc) RNA/miRNA expression analysis and targeted next-generation sequencing mutational profiling on 13 TC-RCC cases (11 pure, two mixed TC-RCC/PRCC) and compared with other renal neoplasms. The expression profile of miRNAs and other ncRNAs in TC-RCC was distinct and validated 10 differentially expressed miRNAs by quantitative RT-PCR, including miR-155 and miR-34a, that were significantly down-regulated compared with PRCC cases (n = 22). With the use of targeted next-generation sequencing we identified mutations in 14 different genes, most frequently (>60% of TC-RCC cases) in ABL1 and PDFGRA genes. These mutations were present in <5% of clear cell RCC, PRCC, or chromophobe RCC cases (n > 600) of The Cancer Genome Atlas database. In summary, this study is by far the largest molecular study of TC-RCC cases and the first to investigate either ncRNA expression or their genomic profile. These results add molecular evidence that TC-RCC is indeed a distinct entity from PRCC and other renal neoplasms. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. A community effort to assess and improve drug sensitivity prediction algorithms

    PubMed Central

    Costello, James C; Heiser, Laura M; Georgii, Elisabeth; Gönen, Mehmet; Menden, Michael P; Wang, Nicholas J; Bansal, Mukesh; Ammad-ud-din, Muhammad; Hintsanen, Petteri; Khan, Suleiman A; Mpindi, John-Patrick; Kallioniemi, Olli; Honkela, Antti; Aittokallio, Tero; Wennerberg, Krister; Collins, James J; Gallahan, Dan; Singer, Dinah; Saez-Rodriguez, Julio; Kaski, Samuel; Gray, Joe W; Stolovitzky, Gustavo

    2015-01-01

    Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods. PMID:24880487

  12. A community effort to assess and improve drug sensitivity prediction algorithms.

    PubMed

    Costello, James C; Heiser, Laura M; Georgii, Elisabeth; Gönen, Mehmet; Menden, Michael P; Wang, Nicholas J; Bansal, Mukesh; Ammad-ud-din, Muhammad; Hintsanen, Petteri; Khan, Suleiman A; Mpindi, John-Patrick; Kallioniemi, Olli; Honkela, Antti; Aittokallio, Tero; Wennerberg, Krister; Collins, James J; Gallahan, Dan; Singer, Dinah; Saez-Rodriguez, Julio; Kaski, Samuel; Gray, Joe W; Stolovitzky, Gustavo

    2014-12-01

    Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.

  13. Analysis of gene expression profile microarray data in complex regional pain syndrome.

    PubMed

    Tan, Wulin; Song, Yiyan; Mo, Chengqiang; Jiang, Shuangjian; Wang, Zhongxing

    2017-09-01

    The aim of the present study was to predict key genes and proteins associated with complex regional pain syndrome (CRPS) using bioinformatics analysis. The gene expression profiling microarray data, GSE47603, which included peripheral blood samples from 4 patients with CRPS and 5 healthy controls, was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in CRPS patients compared with healthy controls were identified using the GEO2R online tool. Functional enrichment analysis was then performed using The Database for Annotation Visualization and Integrated Discovery online tool. Protein‑protein interaction (PPI) network analysis was subsequently performed using Search Tool for the Retrieval of Interaction Genes database and analyzed with Cytoscape software. A total of 257 DEGs were identified, including 243 upregulated genes and 14 downregulated ones. Genes in the human leukocyte antigen (HLA) family were most significantly differentially expressed. Enrichment analysis demonstrated that signaling pathways, including immune response, cell motion, adhesion and angiogenesis were associated with CRPS. PPI network analysis revealed that key genes, including early region 1A binding protein p300 (EP300), CREB‑binding protein (CREBBP), signal transducer and activator of transcription (STAT)3, STAT5A and integrin α M were associated with CRPS. The results suggest that the immune response may therefore serve an important role in CRPS development. In addition, genes in the HLA family, such as HLA‑DQB1 and HLA‑DRB1, may present potential biomarkers for the diagnosis of CRPS. Furthermore, EP300, its paralog CREBBP, and the STAT family genes, STAT3 and STAT5 may be important in the development of CRPS.

  14. Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis

    PubMed Central

    Zhao, Hongjuan; Hastie, Trevor; Whitfield, Michael L; Børresen-Dale, Anne-Lise; Jeffrey, Stefanie S

    2002-01-01

    Background T7 based linear amplification of RNA is used to obtain sufficient antisense RNA for microarray expression profiling. We optimized and systematically evaluated the fidelity and reproducibility of different amplification protocols using total RNA obtained from primary human breast carcinomas and high-density cDNA microarrays. Results Using an optimized protocol, the average correlation coefficient of gene expression of 11,123 cDNA clones between amplified and unamplified samples is 0.82 (0.85 when a virtual array was created using repeatedly amplified samples to minimize experimental variation). Less than 4% of genes show changes in expression level by 2-fold or greater after amplification compared to unamplified samples. Most changes due to amplification are not systematic both within one tumor sample and between different tumors. Amplification appears to dampen the variation of gene expression for some genes when compared to unamplified poly(A)+ RNA. The reproducibility between repeatedly amplified samples is 0.97 when performed on the same day, but drops to 0.90 when performed weeks apart. The fidelity and reproducibility of amplification is not affected by decreasing the amount of input total RNA in the 0.3–3 micrograms range. Adding template-switching primer, DNA ligase, or column purification of double-stranded cDNA does not improve the fidelity of amplification. The correlation coefficient between amplified and unamplified samples is higher when total RNA is used as template for both experimental and reference RNA amplification. Conclusion T7 based linear amplification reproducibly generates amplified RNA that closely approximates original sample for gene expression profiling using cDNA microarrays. PMID:12445333

  15. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

    PubMed

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.

  16. Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles

    PubMed Central

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F.; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn2+ leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. PMID:23894303

  17. A method to identify differential expression profiles of time-course gene data with Fourier transformation

    PubMed Central

    2013-01-01

    Background Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. Results This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization. The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Conclusions Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics. PMID:24134721

  18. The protein expression landscape of the Arabidopsis root

    PubMed Central

    Petricka, Jalean J.; Schauer, Monica A.; Megraw, Molly; Breakfield, Natalie W.; Thompson, J. Will; Georgiev, Stoyan; Soderblom, Erik J.; Ohler, Uwe; Moseley, Martin Arthur; Grossniklaus, Ueli; Benfey, Philip N.

    2012-01-01

    Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein–protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development. PMID:22447775

  19. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180

  20. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors

    PubMed Central

    Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-01-01

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279

  1. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors.

    PubMed

    Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-07-20

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.

  2. Gene expression profiling in the adult Down syndrome brain.

    PubMed

    Lockstone, H E; Harris, L W; Swatton, J E; Wayland, M T; Holland, A J; Bahn, S

    2007-12-01

    The mechanisms by which trisomy 21 leads to the characteristic Down syndrome (DS) phenotype are unclear. We used whole genome microarrays to characterize for the first time the transcriptome of human adult brain tissue (dorsolateral prefrontal cortex) from seven DS subjects and eight controls. These data were coanalyzed with a publicly available dataset from fetal DS tissue and functional profiling was performed to identify the biological processes central to DS and those that may be related to late onset pathologies, particularly Alzheimer disease neuropathology. A total of 685 probe sets were differentially expressed between adult DS and control brains at a stringent significance threshold (adjusted p value (q) < 0.005), 70% of these being up-regulated in DS. Over 25% of genes on chromosome 21 were differentially expressed in comparison to a median of 4.4% for all chromosomes. The unique profile of up-regulation on chromosome 21, consistent with primary dosage effects, was accompanied by widespread transcriptional disruption. The critical Alzheimer disease gene, APP, located on chromosome 21, was not found to be up-regulated in adult brain by microarray or QPCR analysis. However, numerous other genes functionally linked to APP processing were dysregulated. Functional profiling of genes dysregulated in both fetal and adult datasets identified categories including development (notably Notch signaling and Dlx family genes), lipid transport, and cellular proliferation. In the adult brain these processes were concomitant with cytoskeletal regulation and vesicle trafficking categories, and increased immune response and oxidative stress response, which are likely linked to the development of Alzheimer pathology in individuals with DS.

  3. Subacute effects of hexabromocyclododecane (HBCD) on hepatic gene expression profiles in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canton, Rocio F.; Peijnenburg, Ad A.C.M.; Hoogenboom, Ron L.A.P.

    2008-09-01

    Hexabromoyclododecane (HBCD), used as flame retardant (FR) mainly in textile industry and in polystyrene foam manufacture, has been identified as a contaminant at levels comparable to other brominated FRs (BFRs). HBCD levels in biota are increasing slowly and seem to reflect the local market demand. The toxicological database of HBCD is too limited to perform at present a solid risk assessment, combining data from exposure and effect studies. In order to fill in some gaps, a 28-day HBCD repeated dose study (OECD407) was done in Wistar rats. In the present work liver tissues from these animals were used for genemore » expression profile analysis. Results show clear gender specificity with females having a higher number of regulated genes and therefore being more sensitive to HBCD than males. Several specific pathways were found to be affected by HBCD exposure, like PPAR-mediated regulation of lipid metabolism, triacylglycerol metabolism, cholesterol biosynthesis, and phase I and II pathways. These results were corroborated with quantitative RT-PCR analysis. Cholesterol biosynthesis and lipid metabolism were especially down-regulated in females. Genes involved in phase I and II metabolism were up-regulated predominantly in males, which could explain the observed lower HBCD hepatic disposition in male rats in this 28-day study. These sex-specific differences in gene expression profiles could also underlie sex-specific differences in toxicity (e.g. decreased thyroid hormone or increased serum cholesterol levels). To our knowledge, this is the fist study that describes the changes in rat hepatic gene profiles caused by this commonly used flame retardant.« less

  4. Divergent transcriptional profiles in pediatric asthma patients of low and high socioeconomic status.

    PubMed

    Miller, Gregory E; Chen, Edith; Shalowitz, Madeleine U; Story, Rachel E; Leigh, Adam K K; Ham, Paula; Arevalo, Jesusa M G; Cole, Steve W

    2018-06-01

    There are marked socioeconomic disparities in pediatric asthma control, but the molecular origins of these disparities are not well understood. To fill this gap, we performed genome-wide expression profiling of monocytes and T-helper cells from pediatric asthma patients of lower and higher socioeconomic status (SES). Ninety-nine children with asthma participated in a cross-sectional assessment. Out of which 87% were atopic, and most had disease of mild (54%) or moderate (29%) severity. Children were from lower-SES (n = 49; household income <$50 000) or higher-SES (n = 50; household income >$140 000) families. Peripheral blood monocytes and T-helper cells were isolated for genome-wide expression profiling of mRNA. Lower-SES children had worse asthma quality of life relative to higher-SES children, by both their own and their parents' reports. Although the groups had similar disease severity and potential confounds were controlled, their transcriptional profiles differed notably. The monocytes of lower-SES children showed transcriptional indications of up-regulated anti-microbial and pro-inflammatory activity. The T-helper cells of lower-SES children also had comparatively reduced expression of genes encoding γ-interferon and tumor necrosis factor-α, cytokines that orchestrate Type 1 responses. They also showed up-regulated activity of transcription factors that polarize cells towards Type 2 responses and promote Th17 cell maturation. Collectively, these patterns implicate pro-inflammatory monocytes and Type 2 cytokine activity as mechanisms contributing to worse asthma control among lower-SES children. © 2018 Wiley Periodicals, Inc.

  5. Medroxyprogesterone acetate-treated human, primary endometrial epithelial cells reveal unique gene expression signature linked to innate immunity and HIV-1 susceptibility.

    PubMed

    Woods, Matthew W; Zahoor, Muhammad Atif; Dizzell, Sara; Verschoor, Chris P; Kaushic, Charu

    2018-01-01

    Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. DEVELOPMENT OF PROTEIN PROFILE TECHNOLOGY TO EVALUATE ECOLOGICAL EFFECTS OF ENVIRONMENTAL CHEMICALS USING A SMALL FISH MODEL

    EPA Science Inventory

    The rationale for this research is: i) Protein expression changes with life stage, disease, tissue type and environmental stressors; ii) Technology allows rapid analysis of large numbers of proteins to provide protein expression profiles; iii) Protein profiles are used as specifi...

  7. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    PubMed

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  8. Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance

    PubMed Central

    Azimi, A; Pernemalm, M; Frostvik Stolt, M; Hansson, J; Lehtiö, J; Egyházi Brage, S; Hertzman Johansson, C

    2014-01-01

    Background: Disseminated cutaneous malignant melanoma (CMM) is commonly unresponsive to standard chemotherapies, and there are as yet no predictive markers of therapy response. Methods: In the present study we collected fresh-frozen pretreatment lymph-node metastasis samples (n=14) from melanoma patients with differential response to dacarbazine (DTIC) or temozolomide (TMZ) chemotherapy, to identify proteins with an impact on treatment response. We performed quantitative protein profiling using tandem mass spectrometry and compared the proteome differences between responders (R) and non-responders (NR), matched for age, gender and histopathological type of CMM. Results: Biological pathway analyses showed several signalling pathways differing between R vs NR, including Rho signalling. Gene expression profiling data was available for a subset of the samples, and the results were compared with the proteomics data. Four proteins with differential expression between R and NR were selected for technical validation by immunoblotting (ISYNA1, F13A1, CSTB and S100A13), and CSTB and S100A13 were further validated on a larger sample set by immunohistochemistry (n=48). The calcium binding protein S100A13 was found to be significantly overexpressed in NR compared with R in all analyses performed. Conclusions: Our results suggest that S100A13 is involved in CMM resistance to DTIC/TMZ. PMID:24722184

  9. Finger Forces in Clarinet Playing

    PubMed Central

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low–high; tempo: slow–fast, dynamics: soft–loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low–high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean) and peak force (Fmax) were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N). Such sensor instruments provide useful insights into player-instrument interactions and can also be used in the future to give feedback to students in various learning and practising situations. PMID:27540367

  10. Evidence of Dynamically Dysregulated Gene Expression Pathways in Hyperresponsive B Cells from African American Lupus Patients

    PubMed Central

    Dozmorov, Igor; Dominguez, Nicolas; Sestak, Andrea L.; Robertson, Julie M.; Harley, John B.; James, Judith A.; Guthridge, Joel M.

    2013-01-01

    Recent application of gene expression profiling to the immune system has shown a great potential for characterization of complex regulatory processes. It is becoming increasingly important to characterize functional systems through multigene interactions to provide valuable insights into differences between healthy controls and autoimmune patients. Here we apply an original systematic approach to the analysis of changes in regulatory gene interconnections between in Epstein-Barr virus transformed hyperresponsive B cells from SLE patients and normal control B cells. Both traditional analysis of differential gene expression and analysis of the dynamics of gene expression variations were performed in combination to establish model networks of functional gene expression. This Pathway Dysregulation Analysis identified known transcription factors and transcriptional regulators activated uniquely in stimulated B cells from SLE patients. PMID:23977035

  11. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis.

    PubMed

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-09-24

    In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (P<0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered. Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expressional profiles in endometriotic tissue.

  12. Dexamethasone Stimulated Gene Expression in Peripheral Blood is a Sensitive Marker for Glucocorticoid Receptor Resistance in Depressed Patients

    PubMed Central

    Menke, Andreas; Arloth, Janine; Pütz, Benno; Weber, Peter; Klengel, Torsten; Mehta, Divya; Gonik, Mariya; Rex-Haffner, Monika; Rubel, Jennifer; Uhr, Manfred; Lucae, Susanne; Deussing, Jan M; Müller-Myhsok, Bertram; Holsboer, Florian; Binder, Elisabeth B

    2012-01-01

    Although gene expression profiles in peripheral blood in major depression are not likely to identify genes directly involved in the pathomechanism of affective disorders, they may serve as biomarkers for this disorder. As previous studies using baseline gene expression profiles have provided mixed results, our approach was to use an in vivo dexamethasone challenge test and to compare glucocorticoid receptor (GR)-mediated changes in gene expression between depressed patients and healthy controls. Whole genome gene expression data (baseline and following GR-stimulation with 1.5 mg dexamethasone p.o.) from two independent cohorts were analyzed to identify gene expression pattern that would predict case and control status using a training (N=18 cases/18 controls) and a test cohort (N=11/13). Dexamethasone led to reproducible regulation of 2670 genes in controls and 1151 transcripts in cases. Several genes, including FKBP5 and DUSP1, previously associated with the pathophysiology of major depression, were found to be reliable markers of GR-activation. Using random forest analyses for classification, GR-stimulated gene expression outperformed baseline gene expression as a classifier for case and control status with a correct classification of 79.1 vs 41.6% in the test cohort. GR-stimulated gene expression performed best in dexamethasone non-suppressor patients (88.7% correctly classified with 100% sensitivity), but also correctly classified 77.3% of the suppressor patients (76.7% sensitivity), when using a refined set of 19 genes. Our study suggests that in vivo stimulated gene expression in peripheral blood cells could be a promising molecular marker of altered GR-functioning, an important component of the underlying pathology, in patients suffering from depressive episodes. PMID:22237309

  13. Identification of Mild Freezing Shock Response Pathways in Barley Based on Transcriptome Profiling.

    PubMed

    Wang, Xiaolei; Wu, Dezhi; Yang, Qian; Zeng, Jianbin; Jin, Gulei; Chen, Zhong-Hua; Zhang, Guoping; Dai, Fei

    2016-01-01

    Low temperature is a major abiotic stress affecting crop growth and productivity. A better understanding of low temperature tolerance mechanisms is imperative for developing the crop cultivars with improved tolerance. We herein performed an Illumina RNA-sequencing experiment using two barley genotypes differing in freezing tolerance (Nure, tolerant and Tremois, sensitive), to determine the transcriptome profiling and genotypic difference under mild freezing shock treatment after a very short acclimation for gene induction. A total of 6474 differentially expressed genes, almost evenly distributed on the seven chromosomes, were identified. The key DEGs could be classified into six signaling pathways, i.e., Ca(2+) signaling, PtdOH signaling, CBFs pathway, ABA pathway, jasmonate pathway, and amylohydrolysis pathway. Expression values of DEGs in multiple signaling pathways were analyzed and a hypothetical model of mild freezing shock tolerance mechanism was proposed. Expression and sequence profile of HvCBFs cluster within Frost resistance-H2, a major quantitative trait locus on 5H being closely related to low temperature tolerance in barley, were further illustrated, considering the crucial role of HvCBFs on freezing tolerance. It may be concluded that multiple signaling pathways are activated in concert when barley is exposed to mild freezing shock. The pathway network we presented may provide a platform for further exploring the functions of genes involved in low temperature tolerance in barley.

  14. Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock†

    PubMed Central

    Krantz, Marcus; Nordlander, Bodil; Valadi, Hadi; Johansson, Mikael; Gustafsson, Lena; Hohmann, Stefan

    2004-01-01

    Yeast cells adapt to hyperosmotic shock by accumulating glycerol and altering expression of hundreds of genes. This transcriptional response of Saccharomyces cerevisiae to osmotic shock encompasses genes whose products are implicated in protection from oxidative damage. We addressed the question of whether osmotic shock caused oxidative stress. Osmotic shock did not result in the generation of detectable levels of reactive oxygen species (ROS). To preclude any generation of ROS, osmotic shock treatments were performed in anaerobic cultures. Global gene expression response profiles were compared by employing a novel two-dimensional cluster analysis. The transcriptional profiles following osmotic shock under anaerobic and aerobic conditions were qualitatively very similar. In particular, it appeared that expression of the oxidative stress genes was stimulated upon osmotic shock even if there was no apparent need for their function. Interestingly, cells adapted to osmotic shock much more rapidly under anaerobiosis, and the signaling as well as the transcriptional response was clearly attenuated under these conditions. This more rapid adaptation is due to an enhanced glycerol production capacity in anaerobic cells, which is caused by the need for glycerol production in redox balancing. Artificially enhanced glycerol production led to an attenuated response even under aerobic conditions. These observations demonstrate the crucial role of glycerol accumulation and turgor recovery in determining the period of osmotic shock-induced signaling and the profile of cellular adaptation to osmotic shock. PMID:15590813

  15. Massively parallel nanowell-based single-cell gene expression profiling.

    PubMed

    Goldstein, Leonard D; Chen, Ying-Jiun Jasmine; Dunne, Jude; Mir, Alain; Hubschle, Hermann; Guillory, Joseph; Yuan, Wenlin; Zhang, Jingli; Stinson, Jeremy; Jaiswal, Bijay; Pahuja, Kanika Bajaj; Mann, Ishminder; Schaal, Thomas; Chan, Leo; Anandakrishnan, Sangeetha; Lin, Chun-Wah; Espinoza, Patricio; Husain, Syed; Shapiro, Harris; Swaminathan, Karthikeyan; Wei, Sherry; Srinivasan, Maithreyan; Seshagiri, Somasekar; Modrusan, Zora

    2017-07-07

    Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples.

  16. Validation of a rapid DNA process with the RapidHIT® ID system using GlobalFiler® Express chemistry, a platform optimized for decentralized testing environments.

    PubMed

    Salceda, Susana; Barican, Arnaldo; Buscaino, Jacklyn; Goldman, Bruce; Klevenberg, Jim; Kuhn, Melissa; Lehto, Dennis; Lin, Frank; Nguyen, Phong; Park, Charles; Pearson, Francesca; Pittaro, Rick; Salodkar, Sayali; Schueren, Robert; Smith, Corey; Troup, Charles; Tsou, Dean; Vangbo, Mattias; Wunderle, Justus; King, David

    2017-05-01

    The RapidHIT ® ID is a fully automated sample-to-answer system for short tandem repeat (STR)-based human identification. The RapidHIT ID has been optimized for use in decentralized environments and processes presumed single source DNA samples, generating Combined DNA Index System (CODIS)-compatible DNA profiles in less than 90min. The system is easy to use, requiring less than one minute of hands-on time. Profiles are reviewed using centralized linking software, RapidLINK™ (IntegenX, Pleasanton, CA), a software tool designed to collate DNA profiles from single or multiple RapidHIT ID systems at different geographic locations. The RapidHIT ID has been designed to employ GlobalFiler ® Express and AmpFLSTR ® NGMSElect™, Thermo Fisher Scientific (Waltham, MA) STR chemistries. The Developmental Validation studies were performed using GlobalFiler ® Express with single source reference samples according to Scientific Working Group for DNA Analysis Methods guidelines. These results show that multiple RapidHIT ID systems networked with RapidLINK software form a highly reliable system for wide-scale deployment in locations such as police booking stations and border crossings enabling real-time testing of arrestees, potential human trafficking victims, and other instances where rapid turnaround is essential. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Differentially expressed genes in the ovary of the sixth day of pupal "Ming" lethal egg mutant of silkworm, Bombyx mori.

    PubMed

    Gao, Peng; Chen, An-Li; Zhao, Qiao-Ling; Shen, Xing-Jia; Qiu, Zhi-Yong; Xia, Ding-Guo; Tang, Shun-Ming; Zhang, Guo-Zheng

    2013-09-15

    The "Ming" lethal egg mutant (l-em) is a vitelline membrane mutant in silkworm, Bombyx mori. The eggs laid by the l-em mutant lose water, ultimately causing death within an hour. Previous studies have shown that the deletion of BmEP80 is responsible for the l-em mutation in silkworm, B. mori. In the current study, digital gene expression (DGE) was performed to investigate the difference of gene expression in ovaries between wild type and l-em mutant on the sixth day of the pupal stage to obtain a global view of gene expression profiles using the ovaries of three l-em mutants and three wild types. The results showed a total of 3,463,495 and 3,607,936 clean tags in the wild type and the l-em mutant libraries, respectively. Compared with those of wild type, 239 differentially expressed genes were detected in the l-em mutant, wherein 181 genes are up-regulated and 58 genes are down-regulated in the mutant strain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that no pathway was significantly enriched and three pathways are tightly related to protein synthesis among the five leading pathways. Moreover, the expression profiles of eight important differentially expressed genes related to oogenesis changed. These results provide a comprehensive gene expression analysis of oogenesis and vitellogenesis in B. mori which facilitates understanding of both the specific molecular mechanism of the 1-em mutant and Lepidopteran oogenesis in general. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Whole Genome Expression in Peripheral-Blood Samples of Workers Professionally Exposed to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Wu, Ming-Tsang; Lee, Tzu-Chi; Su, Hung-Ju; Huang, Jie-Len; Peng, Chiung-Yu; Wang, Weihsin; Chou, Ting-Yu; Lin, Ming-Yen; Lin, Wen-Yi; Huang, Chia-Tsuan; Pan, Chih-Hong; Ho, Chi-Kung

    2011-01-01

    This study aims to examine global gene expression profiles before and after the work-shift among coke-oven workers (COW). COW work six consecutive days and then take two days off. Two blood and urine samples in each worker were collected before starting to work after two-days off and end-of-shift in the sixth-day work in 2009. Altered gene expressions (ratio of gene expression levels between end-of-shift and pre-shift work) were performed by Human OneArray expression system which probes ∼30,000-transcription expression profiling of human genes. Sixteen workers, all men, were enrolled in this study. Median urinary 1-hydroxypyrene (1OHP) levels (μmole/mole creatinine) in end-of-shift work were significantly higher than those in pre-shift work (2.58 vs. 0.29, p = 0.0002). Among the 20,341 genes which passed experimental quality control, 26 gene expression changes, 7 positive and 19 negative, were highly correlated with across-the-shift urinary 1OHP levels (end-of-shift – pre-shift 1OHP) (p-value < 0.001). The high and low exposure groups of across-the-shift urinary 1OHP levels dichotomized in ∼2.00 μmole/mole creatinine were able to be distinguished by these 26 genes. Some of them are known to be involved in apoptosis, chromosome stability/DNA repair, cell cycle control/tumor suppressor, cell adhesion, development/spermatogenesis, immune function, and neuronal cell function. These findings in COW will be an ideal model to study the relationship of PAHs exposure with acute changes of gene expressions. PMID:21854004

  19. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  20. Analysis of gene expression profiles in tympanic membrane following perforation using PCR Array in rats--preliminary investigation.

    PubMed

    Hassmann-Poznańska, Elżbieta; Taranta, Andrzej; Bialuk, Izabela; Poznańska, Maria; Zajączkiewicz, Hanna; Winnicka, Maria Małgorzata

    2013-10-01

    The goal of this work was to identify genes, known to be involved in the skin wound healing, that express differentially in the healthy and injured tympanic membrane (TM), and designate the molecules potentially beneficial for treatment of TM perforation. The molecular mechanisms controlling the course of TM regeneration are far from being elucidated. Twenty rats had their tympanic membranes perforated, while four served as a control. Animals were sacrificed on either days 1, 2, 3, 5 and 10 post injury, and TMs were immediately dissected and frozen in liquid nitrogen. Total TM RNA was isolated and reversely transcribed. qPCR was performed using Rat Wound Healing RT(2) Profiler PCR Array (QIAGEN) containing primers for 84 genes. Statistically significant changes in the expression of 42 genes were found in various stages of TM healing. The increased expression of genes taking part in the inflammatory reaction (interleukin 6, granulocyte and macrophage chemotactic proteins) was observed from day 2. The expression of several genes of extracellular matrix components and their remodeling enzymes was also changed. Among growth factor genes: Vegfa, Igf1 and Hbegf showed increased expression at the beginning of the healing process, while Hgf expression was highest on day 3. Several changes in the expression of genes involved in remodeling of extracellular matrix point to important role of connective tissue in TM healing. The molecules accelerating this process, like HbEGF and HGF, seem to be good candidates for further evaluation of their possible use in clinical treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. How to normalize metatranscriptomic count data for differential expression analysis.

    PubMed

    Klingenberg, Heiner; Meinicke, Peter

    2017-01-01

    Differential expression analysis on the basis of RNA-Seq count data has become a standard tool in transcriptomics. Several studies have shown that prior normalization of the data is crucial for a reliable detection of transcriptional differences. Until now it has not been clear whether and how the transcriptomic approach can be used for differential expression analysis in metatranscriptomics. We propose a model for differential expression in metatranscriptomics that explicitly accounts for variations in the taxonomic composition of transcripts across different samples. As a main consequence the correct normalization of metatranscriptomic count data under this model requires the taxonomic separation of the data into organism-specific bins. Then the taxon-specific scaling of organism profiles yields a valid normalization and allows us to recombine the scaled profiles into a metatranscriptomic count matrix. This matrix can then be analyzed with statistical tools for transcriptomic count data. For taxon-specific scaling and recombination of scaled counts we provide a simple R script. When applying transcriptomic tools for differential expression analysis directly to metatranscriptomic data with an organism-independent (global) scaling of counts the resulting differences may be difficult to interpret. The differences may correspond to changing functional profiles of the contributing organisms but may also result from a variation of taxonomic abundances. Taxon-specific scaling eliminates this variation and therefore the resulting differences actually reflect a different behavior of organisms under changing conditions. In simulation studies we show that the divergence between results from global and taxon-specific scaling can be drastic. In particular, the variation of organism abundances can imply a considerable increase of significant differences with global scaling. Also, on real metatranscriptomic data, the predictions from taxon-specific and global scaling can differ widely. Our studies indicate that in real data applications performed with global scaling it might be impossible to distinguish between differential expression in terms of transcriptomic changes and differential composition in terms of changing taxonomic proportions. As in transcriptomics, a proper normalization of count data is also essential for differential expression analysis in metatranscriptomics. Our model implies a taxon-specific scaling of counts for normalization of the data. The application of taxon-specific scaling consequently removes taxonomic composition variations from functional profiles and therefore provides a clear interpretation of the observed functional differences.

  2. Integration of biological networks and gene expression data using Cytoscape

    PubMed Central

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2013-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape. PMID:17947979

  3. Gene expression profiling of intestinal regeneration in the sea cucumber

    PubMed Central

    Ortiz-Pineda, Pablo A; Ramírez-Gómez, Francisco; Pérez-Ortiz, Judit; González-Díaz, Sebastián; Santiago-De Jesús, Francisco; Hernández-Pasos, Josue; Del Valle-Avila, Cristina; Rojas-Cartagena, Carmencita; Suárez-Castillo, Edna C; Tossas, Karen; Méndez-Merced, Ana T; Roig-López, José L; Ortiz-Zuazaga, Humberto; García-Arrarás, José E

    2009-01-01

    Background Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools. For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. Results In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. Conclusion Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes. PMID:19505337

  4. Introduction on performance analysis and profiling methodologies for KVM on ARM virtualization

    NASA Astrophysics Data System (ADS)

    Motakis, Antonios; Spyridakis, Alexander; Raho, Daniel

    2013-05-01

    The introduction of hardware virtualization extensions on ARM Cortex-A15 processors has enabled the implementation of full virtualization solutions for this architecture, such as KVM on ARM. This trend motivates the need to quantify and understand the performance impact, emerged by the application of this technology. In this work we start looking into some interesting performance metrics on KVM for ARM processors, which can provide us with useful insight that may lead to potential improvements in the future. This includes measurements such as interrupt latency and guest exit cost, performed on ARM Versatile Express and Samsung Exynos 5250 hardware platforms. Furthermore, we discuss additional methodologies that can provide us with a deeper understanding in the future of the performance footprint of KVM. We identify some of the most interesting approaches in this field, and perform a tentative analysis on how these may be implemented in the KVM on ARM port. These take into consideration hardware and software based counters for profiling, and issues related to the limitations of the simulators which are often used, such as the ARM Fast Models platform.

  5. Local Context Finder (LCF) reveals multidimensional relationships among mRNA expression profiles of Arabidopsis responding to pathogen infection

    PubMed Central

    Katagiri, Fumiaki; Glazebrook, Jane

    2003-01-01

    A major task in computational analysis of mRNA expression profiles is definition of relationships among profiles on the basis of similarities among them. This is generally achieved by pattern recognition in the distribution of data points representing each profile in a high-dimensional space. Some drawbacks of commonly used pattern recognition algorithms stem from their use of a globally linear space and/or limited degrees of freedom. A pattern recognition method called Local Context Finder (LCF) is described here. LCF uses nonlinear dimensionality reduction for pattern recognition. Then it builds a network of profiles based on the nonlinear dimensionality reduction results. LCF was used to analyze mRNA expression profiles of the plant host Arabidopsis interacting with the bacterial pathogen Pseudomonas syringae. In one case, LCF revealed two dimensions essential to explain the effects of the NahG transgene and the ndr1 mutation on resistant and susceptible responses. In another case, plant mutants deficient in responses to pathogen infection were classified on the basis of LCF analysis of their profiles. The classification by LCF was consistent with the results of biological characterization of the mutants. Thus, LCF is a powerful method for extracting information from expression profile data. PMID:12960373

  6. Gene expression profiles analysis identifies key genes for acute lung injury in patients with sepsis.

    PubMed

    Guo, Zhiqiang; Zhao, Chuncheng; Wang, Zheng

    2014-09-26

    To identify critical genes and biological pathways in acute lung injury (ALI), a comparative analysis of gene expression profiles of patients with ALI + sepsis compared with patients with sepsis alone were performed with bioinformatic tools. GSE10474 was downloaded from Gene Expression Omnibus, including a collective of 13 whole blood samples with ALI + sepsis and 21 whole blood samples with sepsis alone. After pre-treatment with robust multichip averaging (RMA) method, differential analysis was conducted using simpleaffy package based upon t-test and fold change. Hierarchical clustering was also performed using function hclust from package stats. Beisides, functional enrichment analysis was conducted using iGepros. Moreover, the gene regulatory network was constructed with information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and then visualized by Cytoscape. A total of 128 differentially expressed genes (DEGs) were identified, including 47 up- and 81 down-regulated genes. The significantly enriched functions included negative regulation of cell proliferation, regulation of response to stimulus and cellular component morphogenesis. A total of 27 DEGs were significantly enriched in 16 KEGG pathways, such as protein digestion and absorption, fatty acid metabolism, amoebiasis, etc. Furthermore, the regulatory network of these 27 DEGs was constructed, which involved several key genes, including protein tyrosine kinase 2 (PTK2), v-src avian sarcoma (SRC) and Caveolin 2 (CAV2). PTK2, SRC and CAV2 may be potential markers for diagnosis and treatment of ALI. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5865162912987143.

  7. The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels.

    PubMed

    Guo, Rui; Wang, Simei; Xue, Renyu; Cao, Guangli; Hu, Xiaolong; Huang, Moli; Zhang, Yangqi; Lu, Yahong; Zhu, Liyuan; Chen, Fei; Liang, Zi; Kuang, Sulan; Gong, Chengliang

    2015-06-01

    High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

  8. Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer

    PubMed Central

    2015-01-01

    Background microRNA (miRNA) expression plays an influential role in cancer classification and malignancy, and miRNAs are feasible as alternative diagnostic markers for pancreatic cancer, a highly aggressive neoplasm with silent early symptoms, high metastatic potential, and resistance to conventional therapies. Methods In this study, we evaluated the benefits of multi-omics data analysis by integrating miRNA and mRNA expression data in pancreatic cancer. Using support vector machine (SVM) modelling and leave-one-out cross validation (LOOCV), we evaluated the diagnostic performance of single- or multi-markers based on miRNA and mRNA expression profiles from 104 PDAC tissues and 17 benign pancreatic tissues. For selecting even more reliable and robust markers, we performed validation by independent datasets from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) data depositories. For validation, miRNA activity was estimated by miRNA-target gene interaction and mRNA expression datasets in pancreatic cancer. Results Using a comprehensive identification approach, we successfully identified 705 multi-markers having powerful diagnostic performance for PDAC. In addition, these marker candidates annotated with cancer pathways using gene ontology analysis. Conclusions Our prediction models have strong potential for the diagnosis of pancreatic cancer. PMID:26328610

  9. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124.

    PubMed

    Chen, Junjiang; Cui, Lianqun; Yuan, Jingliang; Zhang, Yuqing; Sang, Hongjun

    2017-12-09

    Increasing evidences have revealed the important role of circular RNAs (circRNAs) in cardiovascular system disease. Whereas, the expression profiles and in-depth regulation of circRNAs on vascular smooth muscle cells (VSMCs) is still undetermined. In present study, our research team performed circRNAs microarray analysis to present the circRNAs expression profiles in high glucose induced VSMCs in vitro. Results showed that total of 983 circRNAs were discovered to be differentially expressed, and of these, 458 were upregulated and 525 were downregulated. Moreover, 31 circRNAs were up-regulated and 22 circRNAs were down-regulated with 2 fold change (P < 0.05). One of an up-regulated circRNA, circWDR77, was identified. In vitro cell assay, circWDR77 silencing significantly inhibited the proliferation and migration. Bioinformatics methods discovered that miR-124 and fibroblast growth factor 2 (FGF-2) were downstream targets of circWDR77. The RNA sequence complementary binding was validated by RNA immunoprecipitation (RIP) and/or luciferase reporter assay. Further function validation experiments revealed that circWDR77 regulated VSMCs proliferation and migration via targeting miR-124/FGF2. Taken together, present study firstly reveals the circRNAs expression profiles in high glucose induced VSMCs and identifies the role of circWDR77-miR-124-FGF2 regulatory pathway in VSMCs proliferation and migration, which might provide a new theoretical basis for diabetes mellitus correlated vasculopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Analysis of blood-based gene expression in idiopathic Parkinson disease.

    PubMed

    Shamir, Ron; Klein, Christine; Amar, David; Vollstedt, Eva-Juliane; Bonin, Michael; Usenovic, Marija; Wong, Yvette C; Maver, Ales; Poths, Sven; Safer, Hershel; Corvol, Jean-Christophe; Lesage, Suzanne; Lavi, Ofer; Deuschl, Günther; Kuhlenbaeumer, Gregor; Pawlack, Heike; Ulitsky, Igor; Kasten, Meike; Riess, Olaf; Brice, Alexis; Peterlin, Borut; Krainc, Dimitri

    2017-10-17

    To examine whether gene expression analysis of a large-scale Parkinson disease (PD) patient cohort produces a robust blood-based PD gene signature compared to previous studies that have used relatively small cohorts (≤220 samples). Whole-blood gene expression profiles were collected from a total of 523 individuals. After preprocessing, the data contained 486 gene profiles (n = 205 PD, n = 233 controls, n = 48 other neurodegenerative diseases) that were partitioned into training, validation, and independent test cohorts to identify and validate a gene signature. Batch-effect reduction and cross-validation were performed to ensure signature reliability. Finally, functional and pathway enrichment analyses were applied to the signature to identify PD-associated gene networks. A gene signature of 100 probes that mapped to 87 genes, corresponding to 64 upregulated and 23 downregulated genes differentiating between patients with idiopathic PD and controls, was identified with the training cohort and successfully replicated in both an independent validation cohort (area under the curve [AUC] = 0.79, p = 7.13E-6) and a subsequent independent test cohort (AUC = 0.74, p = 4.2E-4). Network analysis of the signature revealed gene enrichment in pathways, including metabolism, oxidation, and ubiquitination/proteasomal activity, and misregulation of mitochondria-localized genes, including downregulation of COX4I1 , ATP5A1 , and VDAC3 . We present a large-scale study of PD gene expression profiling. This work identifies a reliable blood-based PD signature and highlights the importance of large-scale patient cohorts in developing potential PD biomarkers. © 2017 American Academy of Neurology.

  11. Innate inflammatory gene expression profiling in potential brain-dead donors: detailed investigation of the effect of common corticosteroid therapy.

    PubMed

    Gholamnezhadjafari, Reza; Tajik, Nader; Falak, Reza; Aflatoonian, Reza; Dehghan, Sanaz; Rezaei, Abbas

    2017-07-01

    Our study aimed to assess the influence of common methylprednisolone therapy on innate inflammatory factors in potential brain-dead organ donors (BDDs). The study groups consisted of 50 potential BDDs who received 15 mg/kg/d methylprednisolone and 25 live organ donors (LDs) as control group. Innate immunity gene expression profiling was performed by RT-PCR array. Soluble serum cytokines and chemokines, complement components, heat shock protein 70 (HSP70) and high mobility group box-1 (HMGB1) were measured by ELISA. Surface expression of TLR2 and TLR4 were determined using flow cytometry. Gene expression profiling revealed up-regulation of TLRs 1, 2, 4, 5, 6, 7 and 8, MYD88, NF-κB, NF-κB1A, IRAK1, STAT3, JAK2, TNF-α, IL-1β, CD86 and CD14 in the BDD group. Remarkably, the serum levels of C-reactive protein and HSP70 were considerably higher in the BDD group. In addition, serum amounts of IL-1β, IL-6, TNF-α, HMGB1, HSP70, C3a and C5a, but not IL-8, sCD86 or monocyte chemoattractant protein-1, were significantly increased in the BDD group. Significant differences were observed in flow cytometry analysis of TLR2 and TLR4 between the two groups. In summary, common methylprednisolone therapy in BDDs did not adequately reduce systemic inflammation, which could be due to inadequate doses or inefficient impact on other inflammatory-inducing pathways, for example oxidative stress or production of damage-associated molecules.

  12. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation

    PubMed Central

    Lin, Zhaomiao; Wang, Zunxin; Zhang, Xincheng; Li, Ganghua; Wang, Shaohua; Ding, Yanfeng

    2017-01-01

    Rice grain chalkiness is a highly complex trait involved in multiple metabolic pathways and controlled by polygenes and growth conditions. To uncover novel aspects of chalkiness formation, we performed an integrated profiling of gene activity in the developing grains of a notched-belly rice mutant. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 38,476 transcripts and 3,840 proteins. Comparison between the translucent part and chalky part of the notched-belly grains resulted in only a few differently express genes (240) and differently express proteins (363), thus making it possible to focus on ‘core’ genes or common pathways. Several novel key pathways were identified as of relevance to chalkiness formation, in particular the shift of C and N metabolism, the down-regulation of ribosomal proteins and the resulting low abundance of storage proteins especially the 13 kDa prolamin subunit, and the suppressed photosynthetic capacity in the pericarp of the chalky part. Further, genes and proteins as transporters for carbohydrates, amino acid/peptides, proteins, lipids and inorganic ions showed an increasing expression pattern in the chalky part of the notched-belly grains. Similarly, transcripts and proteins of receptors for auxin, ABA, ethylene and brassinosteroid were also up-regulated. In summary, this joint analysis of transcript and protein profiles provides a comprehensive reference map of gene activity regarding the physiological state in the chalky endosperm. PMID:28158863

  13. Diethylnitrosamine initiation does not alter clofibric acid-induced hepatocarcinogenesis in the rat.

    PubMed

    Michel, Cecile; Desdouets, Chantal; Slaoui, Mohamed; Isaacs, Kevin Robert; Roberts, Ruth Angela; Boitier, Eric

    2007-09-01

    Clofibric acid (CLO) is a nongenotoxic hepatocarcinogen in rodents that causes altered hepatocellular foci and/or neoplasms. Initiation by DNA-damaging agents such as diethylnitrosamine (DEN) accelerates focus and tumor appearance and could therefore significantly contribute to shortening of the regulatory 2-year rodent carcinogenicity bioassays. However, it is crucial to evaluate the histological and molecular impact of initiation with DEN on hepatocarcinogenesis promoted by CLO. Male F344 rats were given a single nonnecrogenic injection of DEN (0 or 30 mg/kg) followed by Control diet or CLO (5000 ppm) in diet for up to 20 months. Histopathology and gene expression profiling were performed in liver tumors and surrounding nontumoral liver tissues. The molecular signature of DEN was characterized and its histopathological and immunohistopathological effects on focus and tumor types were also determined. Although foci and tumors appeared earlier in the DEN+CLO-treated group compared to the group treated with CLO alone, DEN had little impact on gene expression in nontumoral tissues since the gene expression profiles were highly similar between Control and DEN-treated rats, and DEN+CLO- and CLO-treated rats. Finally, tumors obtained from DEN+CLO and CLO-treated groups displayed highly correlated gene expression profiles (r>0.83, independently of the time-point). The pathways involved in tumor development revealed by Gene Ontology functional analysis are similar when driven either by spontaneous initiation or by a chemically induced initiation step. Our work described here may contribute to the design optimization of shorter preclinical tests for the evaluation of the nongenotoxic hepatocarcinogenic potential of drugs under development.

  14. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. | Office of Cancer Genomics

    Cancer.gov

    Gene networks are rapidly growing in size and number, raising the question of which networks are most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease gene sets identified through literature curation, gene expression profiling, or genome-wide association studies. While all networks have some ability to recover disease genes, we observe a wide range of performance with STRING, ConsensusPathDB, and GIANT networks having the best performance overall.

  15. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  16. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  17. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  18. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  19. Expression and secretory profile of buffalo fetal fibroblasts and Wharton's jelly feeder layers.

    PubMed

    Parmar, Mehtab S; Mishra, Smruti Ranjan; Somal, Anjali; Pandey, Sriti; Kumar, G Sai; Sarkar, Mihir; Chandra, Vikash; Sharma, G Taru

    2017-05-01

    The present study examined the comparative expression and secretory profile of vital signaling molecules in buffalo fetal fibroblasts (BFF) and Wharton's jelly (BWJ) feeder layers at different passages. Both feeder layers were expanded up to 8th passage. Signaling molecules viz. bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF) and transforming growth factor beta 1 (TGFB1) and pluripotency-associated transcriptional factors (POU5F1, SOX2, NANOG, KLF4, MYC and FOXD3) were immunolocalized in the both feeder types. A clear variation in the expression pattern of key signaling molecules with passaging was registered in both feeders compared to primary culture (0 passage). The conditioned media (CM) was collected from different passages (2, 4, 6, 8) of both the feeder layers and was quantified using enzyme-linked immunosorbent assay (ELISA). Concomitant to expression profile, protein quantification also revealed differences in the concentration of signaling molecules at different time points. Conjointly, expression and secretory profile revealed that 2nd passage of BFF and 6th passage of BWJ exhibit optimal levels of key signaling molecules thus may be selected as best passages for embryonic stem cells (ESCs) propagation. Further, the effect of mitomycin-C (MMC) treatment on the expression profile of signaling molecules in the selected passages of BFF and BWJ revealed that MMC modulates the expression profile of these molecules. In conclusion, the results indicate that feeder layers vary in expression and secretory pattern of vital signaling molecules with passaging. Based on these findings, the appropriate feeder passages may be selected for the quality propagation of buffalo ESCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    PubMed Central

    Obermeier, Christian; Hosseini, Bashir; Friedt, Wolfgang; Snowdon, Rod

    2009-01-01

    Background Serial analysis of gene expression (LongSAGE) was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus). The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP). Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species. PMID:19575793

Top