ERIC Educational Resources Information Center
Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.
2016-01-01
Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…
TMPRSS4 induces cancer cell invasion through pro-uPA processing.
Min, Hye-Jin; Lee, Myung Kyu; Lee, Jung Weon; Kim, Semi
2014-03-28
TMPRSS4 is a novel type II transmembrane serine protease that is highly expressed on the cell surface in pancreatic, thyroid, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates cancer cell invasion, epithelial-mesenchymal transition, and metastasis and that increased TMPRSS4 expression correlates with colorectal cancer progression. We also demonstrated that TMPRSS4 upregulates urokinase-type plasminogen activator (uPA) gene expression to induce cancer cell invasion. However, it remains unknown how proteolytic activity of TMPRSS4 contributes to invasion. In this study, we report that TMPRSS4 directly converted inactive pro-uPA into the active form through its proteolytic activity. Analysis of conditioned medium from cells overexpressing TMPRSS4 demonstrated that the active TMPRSS4 protease domain is released from the cells and is associated with the plasma membrane. Furthermore, TMPRSS4 could increase pro-uPA-mediated invasion in a serine proteolytic activity-dependent manner. These observations suggest that TMPRSS4 is an upstream regulator of pro-uPA activation. This study provides valuable insights into the proteolytic function of TMPRSS4 as well as mechanisms for the control of invasion. Copyright © 2014 Elsevier Inc. All rights reserved.
Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akter, Jesmin; Takatori, Atsushi, E-mail: atakatori@chiba-cc.jp; Islam, Md. Sazzadul
2014-10-10
Highlights: • NLRR3 is a membrane protein highly expressed in favorable neuroblastoma. • NLRR3-ICD was produced through proteolytic processing by secretases. • NLRR3-ICD was induced to be translocated into cell nucleus following ATRA exposure. • NLRR3-ICD plays a pivotal role in ATRA-mediated neuroblastoma differentiation. - Abstract: We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus duringmore » ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas.« less
Krstic, Dimitrije; Rodriguez, Myriam; Knuesel, Irene
2012-01-01
The extracellular signaling protein Reelin, indispensable for proper neuronal migration and cortical layering during development, is also expressed in the adult brain where it modulates synaptic functions. It has been shown that proteolytic processing of Reelin decreases its signaling activity and promotes Reelin aggregation in vitro, and that proteolytic processing is affected in various neurological disorders, including Alzheimer's disease (AD). However, neither the pathophysiological significance of dysregulated Reelin cleavage, nor the involved proteases and their modulators are known. Here we identified the serine protease tissue plasminogen activator (tPA) and two matrix metalloproteinases, ADAMTS-4 and ADAMTS-5, as Reelin cleaving enzymes. Moreover, we assessed the influence of several endogenous protease inhibitors, including tissue inhibitors of metalloproteinases (TIMPs), α-2-Macroglobulin, and multiple serpins, as well as matrix metalloproteinase 9 (MMP-9) on Reelin cleavage, and described their complex interplay in the regulation of this process. Finally, we could demonstrate that in the murine hippocampus, the expression levels and localization of Reelin proteases largely overlap with that of Reelin. While this pattern remained stable during normal aging, changes in their protein levels coincided with accelerated Reelin aggregation in a mouse model of AD. PMID:23082219
HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination1
Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia
2016-01-01
Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. PMID:26912343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared
2006-03-15
The Nipah virus fusion (F) protein is proteolytically processed to F{sub 1} + F{sub 2} subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsinsmore » can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.« less
NASA Technical Reports Server (NTRS)
Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)
1993-01-01
Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.
Salamone, Monica; Carfì Pavia, Francesco
2016-01-01
In vitro cultured endothelial cells forming a continuous monolayer establish stable cell-cell contacts and acquire a “resting” phenotype; on the other hand, when growing in sparse conditions these cells acquire a migratory phenotype and invade the empty area of the culture. Culturing cells in different conditions, we compared expression and clustering of proteolytic enzymes in cells having migratory versus stationary behavior. In order to observe resting and migrating cells in the same microscopic field, a continuous cell monolayer was wounded. Increased expression of proteolytic enzymes was evident in cell membranes of migrating cells especially at sprouting sites and in shed membrane vesicles. Gelatin zymography and western blotting analyses confirmed that in migrating cells, expression of membrane-bound and of vesicle-associated proteolytic enzymes are increased. The enzymes concerned include MMP-2, MMP-9, MT1-MMP, seprase, DPP4 (DiPeptidyl Peptidase 4) and uPA. Shed membrane vesicles were shown to exert degradative activity on ECM components and produce substrates facilitating cell migration. Vesicles shed by migrating cells degraded ECM components at an increased rate; as a result their effect on cell migration was amplified. Inhibiting either Matrix Metallo Proteases (MMPs) or Serine Integral Membrane Peptidases (SIMPs) caused a decrease in the stimulatory effect of vesicles, inhibiting the spontaneous migratory activity of cells; a similar result was also obtained when a monoclonal antibody acting on DPP4 was tested. We conclude that proteolytic enzymes have a synergistic stimulatory effect on cell migration and that their clustering probably facilitates the proteolytic activation cascades needed to produce maximal degradative activity on cell substrates during the angiogenic process. PMID:27152413
HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination.
Diaz-Mendoza, Mercedes; Dominguez-Figueroa, Jose D; Velasco-Arroyo, Blanca; Cambra, Ines; Gonzalez-Melendi, Pablo; Lopez-Gonzalvez, Angeles; Garcia, Antonia; Hensel, Goetz; Kumlehn, Jochen; Diaz, Isabel; Martinez, Manuel
2016-04-01
Proteolysis is an essential process throughout the mobilization of storage proteins in barley (Hordeum vulgare) grains during germination. It involves numerous types of enzymes, with C1A Cys proteases the most abundant key players. Manipulation of the proteolytic machinery is a potential way to enhance grain yield and quality, and it could influence the mobilization of storage compounds along germination. Transgenic barley plants silencing or over-expressing the cathepsin F-like HvPap-1 Cys protease show differential accumulation of storage molecules such as starch, proteins, and free amino acids in the grain. It is particularly striking that the HvPap-1 artificial microRNA lines phenotype show a drastic delay in the grain germination process. Alterations to the proteolytic activities in the over-expressing and knock-down grains associated with changes in the level of expression of several C1A peptidases were also detected. Similarly, down-regulating cystatin Icy-2, one of the proteinaceous inhibitors of the cathepsin F-like protease, also has important effects on grain filling. However, the ultimate physiological influence of manipulating a peptidase or an inhibitor cannot be always predicted, since the plant tries to compensate the modified proteolytic effects by modulating the expression of some other peptidases or their inhibitors. © 2016 American Society of Plant Biologists. All Rights Reserved.
Cárdenas-Guerra, Rosa Elena; Figueroa-Angulo, Elisa Elvira; Puente-Rivera, Jonathan; Zamudio-Prieto, Olga; Ortega-López, Jaime
2015-01-01
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes. PMID:26090464
A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin.
Whittington, A Carl; Mason, Andrew J; Rokyta, Darin R
2017-04-01
Evolutionary innovations and complex phenotypes seemingly require an improbable amount of genetic change to evolve. Rattlesnakes display two dramatically different venom phenotypes. Type I venoms are hemorrhagic with low systemic toxicity and high expression of tissue-destroying snake venom metalloproteinases. Type II venoms are highly neurotoxic and lack snake venom metalloproteinase expression and associated hemorrhagic activity. This dichotomy hinges on Mojave toxin (MTx), a phospholipase A2 (PLA2) based β-neurotoxin expressed in Type II venoms. MTx is comprised of a nontoxic acidic subunit that undergoes extensive proteolytic processing and allosterically regulates activity of a neurotoxic basic subunit. Evolution of the acidic subunit presents an evolutionary challenge because the need for high expression of a nontoxic venom component and the proteolytic machinery required for processing suggests genetic changes of seemingly little immediate benefit to fitness. We showed that MTx evolved through a cascading series of exaptations unlocked by a single nucleotide change. The evolution of one new cleavage site in the acidic subunit unmasked buried cleavage sites already present in ancestral PLA2s, enabling proteolytic processing. Snake venom serine proteases, already present in the venom to disrupt prey hemostasis, possess the requisite specificities for MTx acidic subunit proteolysis. The dimerization interface between MTx subunits evolved by exploiting a latent, but masked, hydrophobic interaction between ancestral PLA2s. The evolution of MTx through exaptation of existing functional and structural features suggests complex phenotypes that depend on evolutionary innovations can arise from minimal genetic change enabled by prior evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pueyo, J.J.; Hunt, D.C.; Chrispeels, M.J.
Seeds of the common bean (Phaseolus vulgaris) contain a plant defense protein that inhibits the [alpha]-amylases of mammals and insects. This [alpha]-amylase inhibitor ([alpha]Al) is synthesized as a proprotein on the endoplasmic reticulum and is proteolytically processed after arrival in the protein storage vacuoles to polypeptides of relative molecular weight (M[sub r]) 15,000 to 18,000. The authors report two types of evidence that proteolytic processing is linked to activation of the inhibitory activity. First, by surveying seed extracts of wild accessions of P. vulgaris and other species in the genus Phaseolus, they found that antibodies to [alpha]Al recognize large (M[submore » r] 30,000-35,000) polypeptides as well as typical [alpha]Al processing products (M[sub r] 15,000-18,000). [alpha]Al activity was found in all extracts that had the typical [alpha]Al processed polypeptides, but was absent from seed extracts that lacked such polypeptides. Second, they made a mutant [alpha]Al in which asparagine-77 is changed to aspartic acid-77. This mutation slows down the proteolytic processing of pro-[alpha]Al when the gene is expressed in tobacco. When pro-[alpha]Al was separated from mature [alpha]Al by gel filtration, pro-[alpha]Al was found not to have [alpha]-amylase inhibitory activity. The authors interpret these results to mean that formation of the active inhibitor is causally related to proteolytic processing of the proprotein. They suggest that the polypeptide cleavage removes a conformation constraint on the precursor to produce the biochemically active molecule. 43 refs., 5 figs., 1 tab.« less
Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer
Yang, Lifang; Dutta, Sucharita M.; Troyer, Dean A.; Lin, Jefferson B.; Lance, Raymond A.; Nyalwidhe, Julius O.; Drake, Richard R; Semmes, O. John
2015-01-01
CUB-domain-containing protein 1 (CDCP1) is a trans-membrane protein regulator of cell adhesion with a potent pro-migratory function in tumors. Given that proteolytic cleavage of the ectodomain correlates with outside-in oncogenic signaling, we characterized glycosylation in the context of cellular processing and expression of CDCP1 in prostate cancer. We detected 135 kDa full-length and proteolytic processed 70 kDa species in a panel of PCa cell models. The relative expression of full-length CDCP1 correlated with the metastatic potential of syngeneic cell models and an increase in surface membrane expression of CDCP1 was observed in tumor compared to adjacent normal prostate tissues. We demonstrated that glycosylation of CDCP1 is a prerequisite for protein stability and plasma membrane localization, and that the expression level and extent of N-glycosylation of CDCP1 correlated with metastatic status. Interestingly, complex N-linked glycans with sialic acid chains were restricted to the N-terminal half of the ectodomain and absent in the truncated species. Characterization of the extracellular expression of CDCP1 identified novel circulating forms and revealed that extracellular vesicles provide additional processing pathways. Employing immunoaffinity mass spectrometry, we detected elevated levels of circulating CDCP1 in patient urine with high-risk disease. Our results establish that differential glycosylation, cell surface presentation and extracellular expression of CDCP1 are hallmarks of PCa progression. PMID:26497208
Antibody degradation in tobacco plants: a predominantly apoplastic process
2011-01-01
Background Interest in using plants for production of recombinant proteins such as monoclonal antibodies is growing, but proteolytic degradation, leading to a loss of functionality and complications in downstream purification, is still a serious problem. Results In this study, we investigated the dynamics of the assembly and breakdown of a human IgG1κ antibody expressed in plants. Initial studies in a human IgG transgenic plant line suggested that IgG fragments were present prior to extraction. Indeed, when the proteolytic activity of non-transgenic Nicotiana tabacum leaf extracts was tested against a human IgG1 substrate, little activity was detectable in extraction buffers with pH > 5. Significant degradation was only observed when the plant extract was buffered below pH 5, but this proteolysis could be abrogated by addition of protease inhibitors. Pulse-chase analysis of IgG MAb transgenic plants also demonstrated that IgG assembly intermediates are present intracellularly and are not secreted, and indicates that the majority of proteolytic degradation occurs following secretion into the apoplastic space. Conclusions The results provide evidence that proteolytic fragments derived from antibodies of the IgG subtype expressed in tobacco plants do not accumulate within the cell, and are instead likely to occur in the apoplastic space. Furthermore, any proteolytic activity due to the release of proteases from subcellular compartments during tissue disruption and extraction is not a major consideration under most commonly used extraction conditions. PMID:22208820
Nonproteolytic Roles of 19S ATPases in Transcription of CIITApIV Genes
Maganti, Nagini; Moody, Tomika D.; Truax, Agnieszka D.; Thakkar, Meghna; Spring, Alexander M.; Germann, Markus W.; Greer, Susanna F.
2014-01-01
Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes. PMID:24625964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel
2013-02-05
Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimersmore » as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.« less
Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation.
Akter, Jesmin; Takatori, Atsushi; Islam, Md Sazzadul; Nakazawa, Atsuko; Ozaki, Toshinori; Nagase, Hiroki; Nakagawara, Akira
2014-10-10
We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus during ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas. Copyright © 2014 Elsevier Inc. All rights reserved.
Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network
Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan
2015-01-01
Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088
Hackett, Fiona; Atid, Jonathan; Tan, Michele Ser Ying
2017-01-01
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. PMID:28683142
1988-12-01
correctly expresses, processes , and transports all M segment proteins (virus 7; r-eferences 2,3) were pulse -labeled with 35S- methionine and subsequently...c-ranslationii~y processed to yield the mature proteins. The first ATG codon of tP’o _iinle OrF is required for production of the 78kd protein...employed for the expression of the 78kd and l4kd proteins serves to control glycosylation arnd proteolytic. processing of the resultant poI~peptidles
An Examination of the Proteolytic Activity for Bovine Pregnancy-Associated Glycoprotein 2 and 12
Telugu, Bhanu Prakash V.L.; Palmier, Mark O.; Van Doren, Steven R.; Green, Jonathan A.
2010-01-01
The pregnancy-associated glycoproteins (PAGs) represent a complex group of putative aspartic peptidases expressed exclusively in the placentas of species in the Artiodactyla order. The ruminant PAGs segregate into two classes -the ‘ancient’ and ‘modern’ PAGs. Some of the modern PAGs possess alterations in the catalytic center that are predicted to preclude their ability to act as peptidases. The ancient ruminant PAGs in contrast are thought to be peptidases, although, no proteolytic activity has been described for these members. The goal of this present study was to investigate (1) if the ancient bovine PAGs (PAGs-2 and -12) have proteolytic activity, and (2) if there are any differences in activity between these two closely related members. Recombinant bovine PAGs-2 and -12 were expressed in a baculovirus expression system and the purified proteins were analyzed for proteolytic activity against a synthetic fluorescent cathepsin D/E substrate. Both proteins exhibited proteolytic activity with acidic pH optima. The kcat/KM for bovine PAG-2 was 2.7×105 M−1s−1 and for boPAG-12 it was 6.8×104 M−1s−1. The enzymes were inhibited by pepstatin A with a Ki of 0.56 and 7.5 nM for boPAG-2 and boPAG-12, respectively. This is the first report describing proteolytic activity in PAGs from ruminant ungulates. PMID:20030586
Endocytosis Plays a Critical Role in Proteolytic Processing of the Hendra Virus Fusion Protein
Meulendyke, Kelly Ann; Wurth, Mark Allen; McCann, Richard O.; Dutch, Rebecca Ellis
2005-01-01
The Hendra virus fusion (F) protein is synthesized as a precursor protein, F0, which is proteolytically processed to the mature form, F1+F2. Unlike the case for the majority of paramyxovirus F proteins, the processing event is furin independent, does not require the addition of exogenous proteases, is not affected by reductions in intracellular Ca2+, and is strongly affected by conditions that raise the intracellular pH (C. T. Pager, M. A. Wurth, and R. E. Dutch, J. Virol. 78:9154-9163, 2004). The Hendra virus F protein cytoplasmic tail contains a consensus motif for endocytosis, YXXΦ. To analyze the potential role of endocytosis in the processing and membrane fusion promotion of the Hendra virus F protein, mutation of tyrosine 525 to alanine (Hendra virus F Y525A) or phenylalanine (Hendra virus F Y525F) was performed. The rate of endocytosis of Hendra virus F Y525A was significantly reduced compared to that of the wild-type (wt) F protein, confirming the functional importance of the endocytosis motif. An intermediate level of endocytosis was observed for Hendra virus F Y525F. Surprisingly, dramatic reductions in the rate of proteolytic processing were observed for Hendra virus F Y525A, although initial transport to the cell surface was not affected. The levels of surface expression for both Hendra virus F Y525A and Hendra virus F Y525F were higher than that of the wt protein, and these mutants displayed enhanced syncytium formation. These results suggest that endocytosis is critically important for Hendra virus F protein cleavage, representing a new paradigm for proteolytic processing of paramyxovirus F proteins. PMID:16188966
Shen, Chengpin; Yu, Yanyan; Li, Hong; Yan, Guoquan; Liu, Mingqi; Shen, Huali; Yang, Pengyuan
2012-06-01
Proteolysis affects every protein at some point in its life cycle. Many biomarkers of disease or cancer are stable proteolytic fragments in biological fluids. There is great interest and a challenge in proteolytically modified protein study to identify physiologic protease-substrate relationships and find potential biomarkers. In this study, two human hepatocellular carcinoma (HCC) cell lines with different metastasis potential, MHCC97L, and HCCLM6, were researched with a high-throughput and sensitive PROTOMAP platform. In total 391 proteins were found to be proteolytically processed and many of them were cleaved into persistent fragments instead of completely degraded. Fragments related to 161 proteins had different expressions in these two cell lines. Through analyzing these significantly changed fragments with bio-informatic tools, several bio-functions such as tumor cell migration and anti-apoptosis were enriched. A proteolysis network was also built up, of which the CAPN2 centered subnetwork, including SPTBN1, ATP5B, and VIM, was more active in highly metastatic HCC cell line. Interestingly, proteolytic modifications of CD44 and FN1 were found to affect their secretion. This work suggests that proteolysis plays an important role in human HCC metastasis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hou, Jun-cai; Liu, Fei; Ren, Da-xi; Han, Wei-wei; Du, Yue-ou
2015-01-01
The proteolytic system of Lactobacillus bulgaricus breaks down milk proteins into peptides and amino acids, which are essential for the growth of the bacteria. The aim of this study was to determine the expressions of seven key genes in the proteolytic system under different culturing conditions (different phases, initial pH values, temperatures, and nitrogen sources) using real-time polymerase chain reaction (RT-PCR). The transcriptions of the seven genes were reduced by 30-fold on average in the stationary phase compared with the exponential growth phase. The transcriptions of the seven genes were reduced by 62.5-, 15.0-, and 59.0-fold in the strains KLDS 08006, KLDS 08007, and KLDS 08012, respectively, indicating that the expressions of the seven genes were significantly different among strains. In addition, the expressions of the seven genes were repressed in the MRS medium containing casein peptone. The effect of peptone supply on PepX transcription was the weakest compared with the other six genes, and the impact on OppD transcription was the strongest. Moreover, the expressions of the seven genes were significantly different among different strains (P<0.05). All these results indicated that the culturing conditions affected the expression of the proteolytic system genes in Lactobacillus bulgaricus at the transcription level. PMID:25845365
Direct imaging of APP proteolysis in living cells.
Parenti, Niccoló; Del Grosso, Ambra; Antoni, Claudia; Cecchini, Marco; Corradetti, Renato; Pavone, Francesco S; Calamai, Martino
2017-01-01
Alzheimer's disease is a multifactorial disorder caused by the interaction of genetic, epigenetic and environmental factors. The formation of cytotoxic oligomers consisting of A β peptide is widely accepted as being one of the main key events triggering the development of Alzheimer's disease. A β peptide production results from the specific proteolytic processing of the amyloid precursor protein (APP). Deciphering the factors governing the activity of the secretases responsible for the cleavage of APP is still a critical issue. Kits available commercially measure the enzymatic activity of the secretases from cells lysates, in vitro . By contrast, we have developed a prototypal rapid bioassay that provides visible information on the proteolytic processing of APP directly in living cells. APP was fused to a monomeric variant of the green fluorescent protein and a monomeric variant of the red fluorescent protein at the C-terminal and N-terminal (mChAPPmGFP), respectively. Changes in the proteolytic processing rate in transfected human neuroblastoma and rat neuronal cells were imaged with confocal microscopy as changes in the red/green fluorescence intensity ratio. The significant decrease in the mean red/green ratio observed in cells over-expressing the β -secretase BACE1, or the α -secretase ADAM10, fused to a monomeric blue fluorescent protein confirms that the proteolytic site is still accessible. Specific siRNA was used to evaluate the contribution of endogenous BACE1. Interestingly, we found that the degree of proteolytic processing of APP is not completely homogeneous within the same single cell, and that there is a high degree of variability between cells of the same type. We were also able to follow with a fluorescence spectrometer the changes in the red emission intensity of the extracellular medium when BACE1 was overexpressed. This represents a complementary approach to fluorescence microscopy for rapidly detecting changes in the proteolytic processing of APP in real time. In order to allow the discrimination between the α - and the β -secretase activity, we have created a variant of mChAPPmGFP with a mutation that inhibits the α -secretase cleavage without perturbing the β -secretase processing. Moreover, we obtained a quantitatively robust estimate of the changes in the red/green ratio for the above conditions by using a flow cytometer able to simultaneously excite and measure the red and green fluorescence. Our novel approach lay the foundation for a bioassay suitable to study the effect of drugs or particular conditions, to investigate in an unbiased way the the proteolytic processing of APP in single living cells in order, and to elucidate the causes of the variability and the factors driving the processing of APP.
The effects of Capn1 gene inactivation on the differential expression of genes in skeletal muscle
USDA-ARS?s Scientific Manuscript database
Protein turnover is required for muscle growth and regeneration and several proteolytic enzymes, including the calpains, degrade myofibrillar proteins during this process. In a previous experiment, phenotypic differences were observed between µ-calpain knockout (KO) and wild type (WT) mice, includin...
Escobar-Henriques, Mafalda; Langer, Thomas
2006-01-01
A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.
Proteolytic-antiproteolytic balance and its regulation in carcinogenesis
Skrzydlewska, Elzbieta; Sulkowska, Mariola; Koda, Mariusz; Sulkowski, Stanislaw
2005-01-01
Cancer development is essentially a tissue remodeling process in which normal tissue is substituted with cancer tissue. A crucial role in this process is attributed to proteolytic degradation of the extracellular matrix (ECM). Degradation of ECM is initiated by proteases, secreted by different cell types, participating in tumor cell invasion and increased expression or activity of every known class of proteases (metallo-, serine-, aspartyl-, and cysteine) has been linked to malignancy and invasion of tumor cells. Proteolytic enzymes can act directly by degrading ECM or indirectly by activating other proteases, which then degrade the ECM. They act in a determined order, resulting from the order of their activation. When proteases exert their action on other proteases, the end result is a cascade leading to proteolysis. Presumable order of events in this complicated cascade is that aspartyl protease (cathepsin D) activates cysteine proteases (e.g., cathepsin B) that can activate pro-uPA. Then active uPA can convert plasminogen into plasmin. Cathepsin B as well as plasmin are capable of degrading several components of tumor stroma and may activate zymogens of matrix metalloproteinases, the main family of ECM degrading proteases. The activities of these proteases are regulated by a complex array of activators, inhibitors and cellular receptors. In physiological conditions the balance exists between proteases and their inhibitors. Proteolytic-antiproteolytic balance may be of major significance in the cancer development. One of the reasons for such a situation is enhanced generation of free radicals observed in many pathological states. Free radicals react with main cellular components like proteins and lipids and in this way modify proteolytic-antiproteolytic balance and enable penetration damaging cellular membrane. All these lead to enhancement of proteolysis and destruction of ECM proteins and in consequence to invasion and metastasis. PMID:15761961
Tassone, Evelyne; Valacca, Cristina; Mignatti, Paolo
2014-01-01
Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades extracellular matrix components and controls diverse cell functions through proteolytic and non-proteolytic interactions with extracellular, intracellular and transmembrane proteins. Here we show that in tumor cells MT1-MMP downregulates fibroblast growth factor-2 (FGF-2) signaling by reducing the amount of FGF-2 bound to the cell surface with high and low affinity. FGF-2 induces weaker activation of ERK1/2 MAP kinase in MT1-MMP expressing cells than in cells devoid of MT1-MMP. This effect is abolished in cells that express proteolytically inactive MT1-MMP but persists in cells expressing MT1-MMP mutants devoid of hemopexin-like or cytoplasmic domain, showing that FGF-2 signaling is downregulated by MT1-MMP proteolytic activity. MT1-MMP expression results in downregulation of FGFR-1 and -4, and in decreased amount of cell surface-associated FGF-2. In addition, MT1-MMP strongly reduces the amount of FGF-2 bound to the cell surface with low affinity. Because FGF-2 association with low-affinity binding sites is a prerequisite for binding to its high-affinity receptors, downregulation of low-affinity binding to the cell surface results in decreased FGF-2 signaling. Consistent with this conclusion, FGF-2 induction of tumor cell migration and invasion in vitro is stronger in cells devoid of MT1-MMP than in MT1-MMP expressing cells. Thus, MT1-MMP controls FGF-2 signaling by a proteolytic mechanism that decreases the cell’s biological response to FGF-2. PMID:24986796
Impairment of Macrophage Presenting Ability and Viability by Echinococcus granulosus Antigens.
Mejri, Naceur; Hassen, Imed Eddine; Knapp, Jenny; Saidi, Mouldi
2017-03-01
Despite advances toward an improved understanding of the evasive mechanisms leading to the establishment of cystic echinococcosis, the discovery of specific immunosuppressive mechanisms and related factors are of great interest in the development of an immunotherapeutic approach. To elucidate immunosuppressive effects of bioactive factors contained in chromatographic fractions from hydatid cystic fluid (HCF) of Echinococcus granulosus. Hydatid cystic fluid was fractionated by reverse phase chromatography. Non-specific Concanavalin A-driven proliferation of spleen cells was used to determine specific inhibitory fractions. Trypan blue exclusion test and flowcytometry analysis were performed to check whether highly inhibitory fractions of HCF have apoptotic effect on peritoneal macrophages. Western blot analysis was used to determine proteolytic effects of parasitic antigens on major histocompatibility complex (MHC) class II (I-a) contained in membrane proteins extract from macrophages. High concentrations of HCF and few of chromatographic fractions suppressed spleen cells proliferation. Fractions 7 and 35 were the highest inhibitory fractions. Specifically fraction 35 and to a lesser extent HCF induced apoptosis in peritoneal naive macrophages. However, HCF and the fraction 7 proteolytically altered the expression of MHC class II molecules on peritoneal macrophages. The proteolytic molecule was identified to be a serine protease. Macrophages taken at the chronic and end phase from cystic echinococcosis-infected mice were able to uptake and process C-Ovalbumine-FITC. These cells expressed a drastically reduced level of (I-a) molecules. Our study present new aspects of immune suppression function of E. granulosus. Further molecular characterization of apoptotic and proteolytic factors might be useful to develop immunotherapeutic procedure to break down their inhibitory effects.
Jing, Li; Amster, I Jonathan
2009-10-15
Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using (15)N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures that with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a compute program which significantly accelerates the interpretation of (15)N metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the (15)N/(14)N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.
Intercellular Transfer of a Soluble Viral Superantigen
Reilly, Melissa; Mix, Denise; Reilly, Andrew A.; Yang Ye, Xiang; Winslow, Gary M.
2000-01-01
Mouse mammary tumor virus (MMTV) superantigens (vSAgs) can undergo intercellular transfer in vivo and in vitro such that a vSAg can be presented to T cells by major histocompatibility complex (MHC) class II proteins on antigen-presenting cells (APCs) that do not express the superantigen. This process may allow T-cell activation to occur prior to viral infection. Consistent with these findings, vSAg produced by Chinese hamster ovary (CHO) cells was readily transferred to class II IE and IA (H-2k and H-2d) proteins on a B-cell lymphoma or mouse splenocytes. Fixed class II-expressing acceptor cells were used to demonstrate that the vSAg, but not the class II proteins, underwent intercellular transfer, indicating that vSAg binding to class II MHC could occur directly at the cell surface. Intercellular transfer also occurred efficiently to splenocytes from endogenous retrovirus-free mice, indicating that other proviral proteins were not involved. Presentation of vSAg7 produced by a class II-negative, furin protease-deficient CHO variant (FD11) was unsuccessful, indicating that proteolytic processing was a requisite event and that proteolytic activity could not be provided by an endoprotease on the acceptor APC. Furthermore, vSAg presentation was effected using cell-free supernatant from class II-negative, vSAg-positive cells, indicating that a soluble molecule, most likely produced by proteolytic processing, was sufficient to stimulate T cells. Because the membrane-proximal endoproteolytic cleavage site in the vSAg (residues 68 to 71) was not necessary for intercellular transfer, the data support the notion that the carboxy-terminal endoproteolytic cleavage product is an active vSAg moiety. PMID:10954523
TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.
Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien; Aarnio-Peterson, Megan; Sanman, Laura; Archer-Hartmann, Stephanie; Azadi, Parastoo; Bogyo, Matthew; Steet, Richard A
2018-03-13
Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Alterations in the Ubiquitin Proteasome System in Persistent but Not Reversible Proteinuric Diseases
Beeken, Maire; Lindenmeyer, Maja T.; Blattner, Simone M.; Radón, Victoria; Oh, Jun; Meyer, Tobias N.; Hildebrand, Diana; Schlüter, Hartmut; Reinicke, Anna T.; Knop, Jan-Hendrik; Vivekanandan-Giri, Anuradha; Münster, Silvia; Sachs, Marlies; Wiech, Thorsten; Pennathur, Subramaniam; Cohen, Clemens D.; Kretzler, Matthias; Stahl, Rolf A.K.
2014-01-01
Podocytes are the key cells affected in nephrotic glomerular kidney diseases, and they respond uniformly to injury with cytoskeletal rearrangement. In nephrotic diseases, such as membranous nephropathy and FSGS, persistent injury often leads to irreversible structural damage, whereas in minimal change disease, structural alterations are mostly transient. The factors leading to persistent podocyte injury are currently unknown. Proteolysis is an irreversible process and could trigger persistent podocyte injury through degradation of podocyte-specific proteins. We, therefore, analyzed the expression and functional consequence of the two most prominent proteolytic systems, the ubiquitin proteasome system (UPS) and the autophagosomal/lysosomal system, in persistent and transient podocyte injuries. We show that differential upregulation of both proteolytic systems occurs in persistent human and rodent podocyte injury. The expression of specific UPS proteins in podocytes differentiated children with minimal change disease from children with FSGS and correlated with poor clinical outcome. Degradation of the podocyte-specific protein α-actinin-4 by the UPS depended on oxidative modification in membranous nephropathy. Notably, the UPS was overwhelmed in podocytes during experimental glomerular disease, resulting in abnormal protein accumulation and compensatory upregulation of the autophagosomal/lysosomal system. Accordingly, inhibition of both proteolytic systems enhanced proteinuria in persistent nephrotic disease. This study identifies altered proteolysis as a feature of persistent podocyte injury. In the future, specific UPS proteins may serve as new biomarkers or therapeutic targets in persistent nephrotic syndrome. PMID:24722446
Dougherty, W G; Semler, B L
1993-01-01
Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors. Images PMID:8302216
Okusha, Yuka; Eguchi, Takanori; Sogawa, Chiharu; Okui, Tatsuo; Nakano, Keisuke; Okamoto, Kuniaki; Kozaki, Ken-Ichi
2018-05-15
Members of matrix metalloproteinase (MMP) family promote cancer cell migration, invasion, and metastasis through alteration of the tumor milieu, intracellular signaling pathways, and transcription. We examined gene expression signatures of colon adenocarcinoma cell lines with different metastatic potentials and found that rapidly metastatic cells powerfully expressed genes encoding MMP3 and MMP9. The non-proteolytic PEX isoform and proteolytic isoforms of MMPs were significantly expressed in the metastatic cells in vitro. Knockdown of MMP3 attenuated cancer cell migration and invasion in vitro and lung metastasis in vivo. Profound nuclear localization of MMP3/PEX was found in tumor-stroma marginal area. In contrast, MMP9 was localized in central area of subcutaneous tumors. Overexpression of the PEX isoform of MMP3 promoted proliferation and migration of the rapidly metastatic cells in vitro. Taken together, the non-proteolytic PEX isoform of MMPs locating in cell nuclei involves proliferation, migration, and subsequent metastasis of aggressive adenocarcinoma cells. © 2018 Wiley Periodicals, Inc.
Roh, Kyung-Baeg; Kim, Chan-Hee; Lee, Hanna; Kwon, Hyun-Mi; Park, Ji-Won; Ryu, Ji-Hwan; Kurokawa, Kenji; Ha, Nam-Chul; Lee, Won-Jae; Lemaitre, Bruno; Söderhäll, Kenneth; Lee, Bok-Luel
2009-01-01
The insect Toll signaling pathway is activated upon recognition of Gram-positive bacteria and fungi, resulting in the expression of antimicrobial peptides via NF-κB-like transcription factor. This activation is mediated by a serine protease cascade leading to the processing of Spätzle, which generates the functional ligand of the Toll receptor. Recently, we identified three serine proteases mediating Toll pathway activation induced by lysine-type peptidoglycan of Gram-positive bacteria. However, the identities of the downstream serine protease components of Gram-negative-binding protein 3 (GNBP3), a receptor for a major cell wall component β-1,3-glucan of fungi, and their order of activation have not been characterized yet. Here, we identified three serine proteases that are required for Toll activation by β-1,3-glucan in the larvae of a large beetle, Tenebrio molitor. The first one is a modular serine protease functioning immediately downstream of GNBP3 that proteolytically activates the second one, a Spätzle-processing enzyme-activating enzyme that in turn activates the third serine protease, a Spätzle-processing enzyme. The active form of Spätzle-processing enzyme then cleaves Spätzle into the processed Spätzle as Toll ligand. In addition, we show that injection of β-1,3-glucan into Tenebrio larvae induces production of two antimicrobial peptides, Tenecin 1 and Tenecin 2, which are also inducible by injection of the active form of Spätzle-processing enzyme-activating enzyme or processed Spätzle. These results demonstrate a three-step proteolytic cascade essential for the Toll pathway activation by fungal β-1,3-glucan in Tenebrio larvae, which is shared with lysine-type peptidoglycan-induced Toll pathway activation. PMID:19473968
Rehosting of Bacterial Chaperones for High-Quality Protein Production▿
Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio
2009-01-01
Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142
Neurotrophins regulate ApoER2 proteolysis through activation of the Trk signaling pathway.
Larios, Jorge A; Jausoro, Ignacio; Benitez, Maria-Luisa; Bronfman, Francisca C; Marzolo, Maria-Paz
2014-09-19
ApoER2 and the neurotrophin receptors Trk and p75(NTR) are expressed in the CNS and regulate key functional aspects of neurons, including development, survival, and neuronal function. It is known that both ApoER2 and p75(NTR) are processed by metalloproteinases, followed by regulated intramembrane proteolysis. TrkA activation by nerve growth factor (NGF) increases the proteolytic processing of p75(NTR) mediated by ADAM17. Reelin induces the sheeding of ApoER2 ectodomain depending on metalloproteinase activity. However, it is not known if there is a common regulation mechanism for processing these receptors. We found that TrkA activation by NGF in PC12 cells induced ApoER2 processing, which was dependent on TrkA activation and metalloproteinases. NGF-induced ApoER2 proteolysis was independent of mitogen activated protein kinase activity and of phosphatidylinositol-3 kinase activity. In contrast, the basal proteolysis of ApoER2 increased when both kinases were pharmacologically inhibited. The ApoER2 ligand reelin regulated the proteolytic processing of its own receptor but not of p75(NTR). Finally, in primary cortical neurons, which express both ApoER2 and TrkB, we found that the proteolysis of ApoER2 was also regulated by brain-derived growth factor (BDNF). Our results highlight a novel relationship between neurotrophins and the reelin-ApoER2 system, suggesting that these two pathways might be linked to regulate brain development, neuronal survival, and some pathological conditions.
Chasseriaud, Laura; Miot-Sertier, Cécile; Coulon, Joana; Iturmendi, Nerea; Moine, Virginie; Albertin, Warren; Bely, Marina
2015-12-01
The existing methods for testing proteolytic activity are time consuming, quite difficult to perform, and do not allow real-time monitoring. Proteases have attracted considerable interest in winemaking and some yeast species naturally present in grape must, such as Metschnikowia pulcherrima, are capable of expressing this activity. In this study, a new test is proposed for measuring proteolytic activity directly in fermenting grape must, using azocasein, a chromogenic substrate. Several yeast strains were tested and differences in proteolytic activity were observed. Moreover, analysis of grape must proteins in wines revealed that protease secreted by Metschnikowia strains may be active against wine proteins. Copyright © 2015. Published by Elsevier B.V.
Muto, Machiko; Henry, Ryan E; Mayfield, Stephen P
2009-01-01
Background Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct. Results The luciferase from the fusion protein accumulated to significantly higher levels than luciferase expressed alone. By eliminating the endogenous Rubisco large subunit gene (rbcL), we achieved a further increase in luciferase accumulation with respect to luciferase expression in the WT background. Importantly, near-wild type levels of functional Rubisco holoenzyme were generated following the proteolytic removal of the fused luciferase, while luciferase activity for the fusion protein was almost ~33 times greater than luciferase expressed alone. These data demonstrate the utility of using fusion proteins to enhance recombinant protein accumulation in algal chloroplasts, and also show that engineered proteolytic processing sites can be used to liberate the exogenous protein from the endogenous fusion partner, allowing for the purification of the intended mature protein. Conclusion These results demonstrate the utility of fusion proteins in algal chloroplast as a method to increase accumulation of recombinant proteins that are difficult to express. Since Rubisco is ubiquitous to land plants and green algae, this strategy may also be applied to higher plant transgenic expression systems. PMID:19323825
O'Neal, Patrick; Alamdari, Nima; Smith, Ira; Poylin, Vitaliy; Menconi, Michael; Hasselgren, Per-Olof
2009-11-01
Muscle wasting is commonly seen in patients with hyperthyroidism and is mainly caused by stimulated muscle proteolysis. Loss of muscle mass in several catabolic conditions is associated with increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF1 but it is not known if atrogin-1 and MuRF1 are upregulated in hyperthyroidism. In addition, it is not known if thyroid hormone increases the activity of proteolytic mechanisms other than the ubiquitin-proteasome pathway. We tested the hypotheses that experimental hyperthyroidism in rats, induced by daily intraperitoneal injections of 100 microg/100 g body weight of triiodothyronine (T3), upregulates the expression of atrogin-1 and MuRF1 in skeletal muscle and stimulates lysosomal, including cathepsin L, calpain-, and caspase-3-dependent protein breakdown in addition to proteasome-dependent protein breakdown. Treatment of rats with T3 for 3 days resulted in an approximately twofold increase in atrogin-1 and MuRF1 mRNA levels. The same treatment increased proteasome-, cathepsin L-, and calpain-dependent proteolytic rates by approximately 40% but did not influence caspase-3-dependent proteolysis. The expression of atrogin-1 and MuRF1 remained elevated during a more prolonged period (7 days) of T3 treatment. The results provide support for a role of the ubiquitin-proteasome pathway in muscle wasting during hyperthyroidism and suggest that other proteolytic pathways as well may be activated in the hyperthyroid state. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Chen, Yu-Chih; Cheng, Yu-Heng; Ingram, Patrick; Yoon, Euisik
2016-06-01
Proteolytic degradation of the extracellular matrix (ECM) is critical in cancer invasion, and recent work suggests that heterogeneous cancer populations cooperate in this process. Despite the importance of cell heterogeneity, conventional proteolytic assays measure average activity, requiring thousands of cells and providing limited information about heterogeneity and dynamics. Here, we developed a microfluidic platform that provides high-efficiency cell loading and simple valveless isolation, so the proteolytic activity of a small sample (10-100 cells) can be easily characterized. Combined with a single cell derived (clonal) sphere formation platform, we have successfully demonstrated the importance of microenvironmental cues for proteolytic activity and also investigated the difference between clones. Furthermore, the platform allows monitoring single cells at multiple time points, unveiling different cancer cell line dynamics in proteolytic activity. The presented tool facilitates single cell proteolytic analysis using small samples, and our findings illuminate the heterogeneous and dynamic nature of proteolytic activity.
Epithelial Integrity Is Maintained by a Matriptase-Dependent Proteolytic Pathway
List, Karin; Kosa, Peter; Szabo, Roman; Bey, Alexandra L.; Wang, Chao Becky; Molinolo, Alfredo; Bugge, Thomas H.
2009-01-01
A pericellular proteolytic pathway initiated by the transmembrane serine protease matriptase plays a critical role in the terminal differentiation of epidermal tissues. Matriptase is constitutively expressed in multiple other epithelia, suggesting a putative role of this membrane serine protease in general epithelial homeostasis. Here we generated mice with conditional deletion of the St14 gene, encoding matriptase, and show that matriptase indeed is essential for the maintenance of multiple types of epithelia in the mouse. Thus, embryonic or postnatal ablation of St14 in epithelial tissues of diverse origin and function caused severe organ dysfunction, which was often associated with increased permeability, loss of tight junction function, mislocation of tight junction-associated proteins, and generalized epithelial demise. The study reveals that the homeostasis of multiple simple and stratified epithelia is matriptase-dependent, and provides an important animal model for the exploration of this membrane serine protease in a range of physiological and pathological processes. PMID:19717635
Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.
2013-06-17
Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significantmore » improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.« less
Strategies for achieving high-level expression of genes in Escherichia coli.
Makrides, S C
1996-01-01
Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli. PMID:8840785
Mingot, José-Manuel; Tilburn, Joan; Diez, Eliecer; Bignell, Elaine; Orejas, Margarita; Widdick, David A.; Sarkar, Sovan; Brown, Christopher V.; Caddick, Mark X.; Espeso, Eduardo A.; Arst, Herbert N.; Peñalva, Miguel A.
1999-01-01
The Aspergillus nidulans transcription factor PacC, which mediates pH regulation, is proteolytically processed to a functional form in response to ambient alkaline pH. The full-length PacC form is unstable in the presence of an operational pH signal transduction pathway, due to processing to the relatively stable short functional form. We have characterized and used an extensive collection of pacC mutations, including a novel class of “neutrality-mimicking” pacC mutations having aspects of both acidity- and alkalinity-mimicking phenotypes, to investigate a number of important features of PacC processing. Analysis of mutant proteins lacking the major translation initiation residue or truncated at various distances from the C terminus showed that PacC processing does not remove N-terminal residues, indicated that processing yields slightly heterogeneous products, and delimited the most upstream processing site to residues ∼252 to 254. Faithful processing of three mutant proteins having deletions of a region including the predicted processing site(s) and of a fourth having 55 frameshifted residues following residue 238 indicated that specificity determinants reside at sequences or structural features located upstream of residue 235. Thus, the PacC protease cuts a peptide bond(s) remote from these determinants, possibly thereby resembling type I endonucleases. Downstream of the cleavage site, residues 407 to 678 are not essential for processing, but truncation at or before residue 333 largely prevents it. Ambient pH apparently regulates the accessibility of PacC to proteolytic processing. Alkalinity-mimicking mutations L259R, L266F, and L340S favor the protease-accessible conformation, whereas a protein with residues 465 to 540 deleted retains a protease-inaccessible conformation, leading to acidity mimicry. Finally, not only does processing constitute a crucial form of modulation for PacC, but there is evidence for its conservation during fungal evolution. Transgenic expression of a truncated PacC protein, which was processed in a pH-independent manner, showed that appropriate processing can occur in Saccharomyces cerevisiae. PMID:9891072
Jepsen, Malene R.; Kløverpris, Søren; Mikkelsen, Jakob H.; Pedersen, Josefine H.; Füchtbauer, Ernst-Martin; Laursen, Lisbeth S.; Oxvig, Claus
2015-01-01
Mammalian stanniocalcin-2 (STC2) is a secreted polypeptide widely expressed in developing and adult tissues. However, although transgenic expression in mice is known to cause severe dwarfism, and targeted deletion of STC2 causes increased postnatal growth, its precise biological role is still unknown. We found that STC2 potently inhibits the proteolytic activity of the growth-promoting metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A). Proteolytic inhibition requires covalent binding of STC2 to PAPP-A and is mediated by a disulfide bond, which involves Cys-120 of STC2. Binding of STC2 prevents PAPP-A cleavage of insulin-like growth factor-binding protein (IGFBP)-4 and hence release within tissues of bioactive IGF, required for normal growth. Concordantly, we show that STC2 efficiently inhibits PAPP-A-mediated IGF receptor signaling in vitro and that transgenic mice expressing a mutated variant of STC2, STC2(C120A), which is unable to inhibit PAPP-A, grow like wild-type mice. Our work identifies STC2 as a novel proteinase inhibitor and a previously unrecognized extracellular component of the IGF system. PMID:25533459
Kanai, Stanley M; Edwards, Alethia J; Rurik, Joel G; Osei-Owusu, Patrick; Blumer, Kendall J
2017-11-24
Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the G q/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of G q/11 -evoked Ca 2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of G q/11 -coupled receptor signaling in the cardiovascular, immune, and nervous systems. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Bergström, Petra; Agholme, Lotta; Nazir, Faisal Hayat; Satir, Tugce Munise; Toombs, Jamie; Wellington, Henrietta; Strandberg, Joakim; Bontell, Thomas Olsson; Kvartsberg, Hlin; Holmström, Maria; Boreström, Cecilia; Simonsson, Stina; Kunath, Tilo; Lindahl, Anders; Blennow, Kaj; Hanse, Eric; Portelius, Erik; Wray, Selina; Zetterberg, Henrik
2016-07-07
Amyloid precursor protein (APP) and its cleavage product amyloid β (Aβ) have been thoroughly studied in Alzheimer's disease. However, APP also appears to be important for neuronal development. Differentiation of induced pluripotent stem cells (iPSCs) towards cortical neurons enables in vitro mechanistic studies on human neuronal development. Here, we investigated expression and proteolytic processing of APP during differentiation of human iPSCs towards cortical neurons over a 100-day period. APP expression remained stable during neuronal differentiation, whereas APP processing changed. α-Cleaved soluble APP (sAPPα) was secreted early during differentiation, from neuronal progenitors, while β-cleaved soluble APP (sAPPβ) was first secreted after deep-layer neurons had formed. Short Aβ peptides, including Aβ1-15/16, peaked during the progenitor stage, while processing shifted towards longer peptides, such as Aβ1-40/42, when post-mitotic neurons appeared. This indicates that APP processing is regulated throughout differentiation of cortical neurons and that amyloidogenic APP processing, as reflected by Aβ1-40/42, is associated with mature neuronal phenotypes.
Paterson, Clare; Wang, Yanhong; Kleinman, Joel E.; Law, Amanda J.
2015-01-01
OBJECTIVE Neuregulin 1 (NRG1) is a multifunctional neurotrophin and a critical mediator of neurodevelopment and risk for schizophrenia. NRG1 undergoes extensive alternative splicing, and association of brain NRG1-IV isoform expression with the schizophrenia-risk polymorphism, rs6994992, is a potential molecular mechanism of risk. Novel splice variants of NRG1-IV (NRG1-IVNV), with predicted unique signaling capabilities, have been cloned in fetal brain. Because the developmental expression and genetic regulation of NRG1-IVNV in human brain and relationship to schizophrenia is unknown, the authors investigated the temporal dynamics of NRG1-IVNV transcription, compared to the major NRG1 isoforms (types I-IV), across human prenatal and postnatal prefrontal cortical development and examined the association of rs6994992 with NRG1-IVNV expression. METHOD NRG1, types I-IV and NRG1-IVNV isoform expression was evaluated using quantitative real-time PCR in prefrontal cortex during human fetal brain development (14-39 weeks gestation: N=41) and postnatally through aging (age range 0-83 years: N=195). The association of rs6994992 genotype with NRG1-IVNV expression was determined. In-vitro assays were performed to determine the subcellular distribution and proteolytic processing of NRG1-IVNV isoforms. RESULTS Expression of NRG1, types I, II, III was temporally regulated during human prenatal and postnatal neocortical development and the trajectory of NRG1-IVNV was unique, being expressed from 16 weeks gestation until 3 years of age, after which it was undetectable. NRG1-IVNVs expression was associated with rs6994992 genotype, whereby homozygosity for the schizophrenia-risk allele (T) conferred lower cortical NRG1-IVNV levels. Finally, in-vitro cellular assays demonstrate that NRG1-IVNV is a novel nuclear enriched, truncated NRG1 protein that is resistant to proteolytic processing. CONCLUSION This study provides the first quantitative map of NRG1 isoform expression during human neocortical development and aging and identifies a potential mechanism of early developmental risk for schizophrenia at the NRG1 locus, involving a novel class of NRG1 proteins. PMID:24935406
Takasuka, Taichi E; Acheson, Justin F; Bianchetti, Christopher M; Prom, Ben M; Bergeman, Lai F; Book, Adam J; Currie, Cameron R; Fox, Brian G
2014-01-01
β-Mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaehs, Philipp; Weidinger, Petra; Probst, Olivia C.
2008-10-01
Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found tomore » cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.« less
Membrane-bound transcription factors: regulated release by RIP or RUP.
Hoppe, T; Rape, M; Jentsch, S
2001-06-01
Regulated nuclear transport of transcription factors from cytoplasmic pools is a major route by which eukaryotes control gene expression. Exquisite examples are transcription factors that are kept in a dormant state in the cytosol by membrane anchors; such proteins are released from membranes by proteolytic cleavage, which enables these transcription factors to enter the nucleus. Cleavage can be mediated either by regulated intramembrane proteolysis (RIP) catalysed by specific membrane-bound proteases or by regulated ubiquitin/proteasome-dependent processing (RUP). In both cases processing can be controlled by cues that originate at or in the vicinity of the membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchko, Garry W.; Arachchige, Rajith M. J.; Tao, Jinhui
Here, the aim of this study was to identify major matrix metalloproteinase-20 (MMP20) proteolytic processing products of amelogenin over time and determine if the tyrosine-rich amelogenin peptide (TRAP) was a substrate of MMP20.
Buchko, Garry W.; Arachchige, Rajith M. J.; Tao, Jinhui; ...
2018-06-01
Here, the aim of this study was to identify major matrix metalloproteinase-20 (MMP20) proteolytic processing products of amelogenin over time and determine if the tyrosine-rich amelogenin peptide (TRAP) was a substrate of MMP20.
Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John
2017-01-09
Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems.
Xu, Jiaxi; Mukerjee, Snigdha; Silva-Alves, Cristiane R A; Carvalho-Galvão, Alynne; Cruz, Josiane C; Balarini, Camille M; Braga, Valdir A; Lazartigues, Eric; França-Silva, Maria S
2016-01-01
ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.
Enzymatic aspects in ENT cancer-Matrix metalloproteinases
Zamfir Chiru, AA; Popescu, CR; Gheorghe, DC
2014-01-01
Abstract The study of ENT cancer allows the implementation of molecular biology methods in diagnosis, predicting the evolution of the disease and suggesting a certain treatment. MMPs are proteolytic enzymes, zinc dependent endopeptidases, secreted by tissues and proinflammatory cells that play a role in the clearance of cell surface receptors. They are expressed as zymogens (inactive forms). Proteolytic enzymes cleave zymogens generating active forms. They are involved in cell proliferation, adhesion, differentiation, migration, angiogenesis, apoptosis and host defense. PMID:25408759
Sevenich, Lisa; Bowman, Robert L.; Mason, Steven D.; Quail, Daniela F.; Rapaport, Franck; Elie, Benelita T.; Brogi, Edi; Brastianos, Priscilla K.; Hahn, William C.; Holsinger, Leslie J.; Massagué, Joan; Leslie, Christina S.; Joyce, Johanna A.
2014-01-01
Metastasis remains the most common cause of death in most cancers, with limited therapies for combating disseminated disease. While the primary tumor microenvironment is an important regulator of cancer progression, it is less well understood how different tissue environments influence metastasis. We analyzed tumor-stroma interactions that modulate organ tropism of brain, bone and lung metastasis in xenograft models. We identified a number of potential modulators of site-specific metastasis, including cathepsin S as a regulator of breast-to-brain metastasis. High cathepsin S expression at the primary site correlated with decreased brain metastasis-free survival in breast cancer patients. Both macrophages and tumor cells produce cathepsin S, and only the combined depletion significantly reduced brain metastasis in vivo. Cathepsin S specifically mediates blood-brain barrier transmigration via proteolytic processing of the junctional adhesion molecule (JAM)-B. Pharmacological inhibition of cathepsin S significantly reduced experimental brain metastasis, supporting its consideration as a therapeutic target for this disease. PMID:25086747
Knoops, Sofie; Aldinucci Buzzo, João L.; Boon, Lise; Martens, Erik; Opdenakker, Ghislain; Kolaczkowska, Elzbieta
2017-01-01
Gelatinase B or matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) is increased in inflammatory processes and cancer, and is associated with disease progression. In part, this is due to MMP-9-mediated degradation of extracellular matrix, facilitating influx of leukocytes into inflamed tissues and invasion or metastasis of cancer cells. MMP-9 is produced as proMMP-9 and its propeptide is subsequently removed by other proteases to generate proteolytically active MMP-9. The significance of MMP-9 in pathologies triggered the development of specific inhibitors of this protease. However, clinical trials with synthetic inhibitors of MMPs in the fight against cancer were disappointing. Reports on active compounds which inhibit MMP-9 should be carefully examined in this regard. In a considerable set of recent publications, two antibiotics (minocycline and azythromycin) and the proteasome inhibitor bortezomib, used in cancers, were reported to inhibit MMP-9 at different stages of its expression, activation or activity. The current study was undertaken to compare and to verify the impact of these compounds on MMP-9. With exception of minocycline at high concentrations (>100 μM), the compounds did not affect processing of proMMP-9 into MMP-9, nor did they affect direct MMP-9 gelatinolytic activity. In contrast, azithromycin specifically reduced MMP-9 mRNA and protein levels without affecting NF-κB in endotoxin-challenged monocytic THP-1 cells. Bortezomib, although being highly toxic, had no MMP-9-specific effects but significantly upregulated cyclooxygenase-2 (COX-2) activity and PGE2 levels. Overall, our study clarified that azithromycin decreased the levels of MMP-9 by reduction of gene and protein expression while minocycline inhibits proteolytic activity at high concentrations. PMID:28369077
Sreenivas, Suma; Krishnaiah, Sateesh M; Govindappa, Nagaraja; Basavaraju, Yogesh; Kanojia, Komal; Mallikarjun, Niveditha; Natarajan, Jayaprakash; Chatterjee, Amarnath; Sastry, Kedarnath N
2015-01-01
Glargine is an analog of Insulin currently being produced by recombinant DNA technology using two different hosts namely Escherichia coli and Pichia pastoris. Production from E. coli involves the steps of extraction of inclusion bodies by cell lysis, refolding, proteolytic cleavage and purification. In P. pastoris, a single-chain precursor with appropriate disulfide bonding is secreted to the medium. Downstream processing currently involves use of trypsin which converts the precursor into two-chain final product. The use of trypsin in the process generates additional impurities due to presence of Lys and Arg residues in the Glargine molecule. In this study, we describe an alternate approach involving over-expression of endogenous Kex2 proprotein convertase, taking advantage of dibasic amino acid sequence (Arg-Arg) at the end of B-chain of Glargine. KEX2 gene over-expression in Pichia was accomplished by using promoters of varying strengths to ensure production of greater levels of fully functional two-chain Glargine product, confirmed by HPLC and mass analysis. In conclusion, this new production process involving Kex2 protease over-expression improves the downstream process efficiency, reduces the levels of impurities generated and decreases the use of raw materials.
Abnormalities of peptide metabolism in Alzheimer disease.
Panchal, Maï; Rholam, Mohamed; Brakch, Noureddine
2004-10-01
The steady-state level of peptide hormones represents a balance between their biosynthesis and proteolytic processing by convertases and their catabolism by proteolytic enzymes. Low levels of neuropeptide Y, somatostatin and corticotropin-releasing factor, described in Alzheimer disease (AD), were related to a defect in proteolytic processing of their protein precursors. In contrast the abundance of beta-amyloid peptides, the major protein constituents of senile plaques is likely related to inefficient catabolism. Therefore, attention is mainly focused on convertases that generate active peptides and counter-regulatory proteases that are involved in their catabolism. Some well-described proteases such as NEP are thought to be involved in beta-amyloid catabolism. The search of other possible candidates represents a primary effort in the field. A variety of vascular risk factors such as diabetes, hypertension and arteriosclerosis suggest that the functional vascular defect contributes to AD pathology. It has also been described that beta-amyloid peptides potentiate endothelin-1 induced vasoconstriction. In this review, we will critically evaluate evidence relating proteases implicated in amyloid protein precursor proteolytic processing and beta-amyloid catabolism.
The uPA/uPAR system regulates the bioavailability of PDGF-DD: implications for tumour growth.
Ehnman, M; Li, H; Fredriksson, L; Pietras, K; Eriksson, U
2009-01-29
Members of the platelet-derived growth factor (PDGF) family are mitogens for cells of mesenchymal origin and have important functions during embryonic development, blood vessel maturation, fibrotic diseases and cancer. In contrast to the two classical PDGFs, the novel and less well-characterized members, PDGF-CC and PDGF-DD, are latent factors that need to be processed extracellularly by activating proteases, before they can mediate PDGF receptor activation. Here, we elucidate the structural requirements for urokinase plasminogen activator (uPA)-mediated activation of PDGF-DD, as well as the intricate interplay with uPA receptor (uPAR) signalling. Furthermore, we show that activated PDGF-DD, in comparison to latent, more potently transforms NIH/3T3 cells in vitro. Conversely, xenograft studies in nude mice demonstrate that cells expressing latent PDGF-DD are more tumorigenic than those expressing activated PDGF-DD. These findings imply that a fine-tuned proteolytic activation, in the local milieu, controls PDGF-DD bioavailability. Moreover, we suggest that proteolytic activation of PDGF-DD reveals a retention motif mediating interactions with pericellular components. Our proposed mechanism, where uPA not only generates active PDGF-DD, but also regulates its spatial distribution, provides novel insights into the biological function of PDGF-DD.
BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.
Yi, Hua-Shan; Pan, Cai-Xia; Pan, Chun; Song, Juan; Hu, Yan-Fen; Wang, La; Pan, Min-Hui; Lu, Cheng
2014-02-28
In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Takasuka, Taichi E.; Acheson, Justin F.; Bianchetti, Christopher M.; Prom, Ben M.; Bergeman, Lai F.; Book, Adam J.; Currie, Cameron R.; Fox, Brian G.
2014-01-01
β-mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity. PMID:24710170
Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moepert, Kristin; Hajek, Petr; Frank, Stephan
2009-08-01
RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with 'bulge'-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1)more » variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous 'fusion' and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.« less
Beckmann, Anna-Madeleine; Glebov, Konstantin; Walter, Jochen; Merkel, Olaf; Mangold, Martin; Schmidt, Frederike; Becker-Pauly, Christoph; Gütschow, Michael; Stirnberg, Marit
2016-08-01
Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ.
Ansardi, D C; Porter, D C; Morrow, C D
1991-04-01
The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.
Effect of proteolytic starter cultures as leavening agents of pizza dough.
Pepe, O; Villani, F; Oliviero, D; Greco, T; Coppola, S
2003-08-01
Lactic acid bacteria (LAB) and yeasts were selected on the basis of in vitro proteolytic activity against wheat gluten protein and then assayed as leavening agents for pizza dough. Trials were carried out to compare a proteolytic starter (Prt(+)), consisting of Lactobacillus sakei T56, Weissella paramesenteroides A51 and Candida krusei G271, and a non-proteolytic starter (Prt(-)), consisting of Lb. sakei T58, W. paramesenteroides A58 and Saccharomyces cerevisiae T22. The proteolytic activity of the starter cultures was monitored immediately after mixing of the dough and throughout the fermentation process. The proteolytic activity was assessed by analysing the salt-soluble protein (SSP) and the dioxane-soluble protein (DSP) fractions of the pizza dough by discontinuous SDS-PAGE. Only the Prt(+) starter exhibited considerable qualitative and quantitative changes in the electrophoretic patterns of the protein fractions extracted. After the fermentation, the Prt(+) and Prt(-) doughs were tested to evaluate the influence of the proteolytic activity on the mechanical properties of the dough before and after baking. Indications emerged suggesting an influence of the proteolytic activity on the viscoelasticity of pizza dough. The pizza dough with Prt(+) strains showed an increase in viscous properties during the fermentation as compared with the Prt(-) dough. Moreover, an increase in the firmness of the crumb was observed in Prt(+) baked pizza dough.
Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.
2017-01-01
Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1. PMID:28818858
Ato, Satoru; Makanae, Yuhei; Kido, Kohei; Sase, Kohei; Yoshii, Naomi; Fujita, Satoshi
2017-08-01
Previous studies have reported that different modes of muscle contraction (i.e., eccentric or concentric contraction) with similar contraction times can affect muscle proteolytic responses. However, the effect of different contraction modes on muscle proteolytic response under the same force-time integral (FTI: contraction force × time) has not been investigated. The purpose of this study was to investigate the effect of different contraction modes, with the same FTI, on acute proteolytic signaling responses. Eleven-week-old male Sprague-Dawley rats were randomly assigned to eccentric (EC), concentric (CC), or isometric contraction (IC) groups. Different modes of muscle contraction were performed on the right gastrocnemius muscle using electrical stimulation, with the left muscle acting as a control. In order to apply an equivalent FTI, the number of stimulation sets was modified between the groups. Muscle samples were taken immediately and three hours after exercise. Phosphorylation of FoxO3a at Ser253 was significantly increased immediately after exercise compared to controls irrespective of contraction mode. The mRNA levels of the ubiquitin ligases, MuRF1, and MAFbx mRNA were unchanged by contraction mode or time. Phosphorylation of ULK1 at Ser317 (positive regulatory site) and Ser757 (negative regulatory site) was significantly increased compared to controls, immediately or 3 h after exercise, in all contraction modes. The autophagy markers (LC3B-II/I ratio and p62 expression) were unchanged, regardless of contraction mode. These data suggest that differences in contraction mode during resistance exercise with a constant FTI, are not factors in regulating proteolytic signaling in the early phase of skeletal muscle contraction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
2011-09-01
epithelial tumors, including breast, cervix , esophagus, liver, mesothelium, prostate, and colorectal cancers [36,38,61–69]. Interestingly, in the case of...Proteolytic Processing of Laminin-332 by Hepsin and Matriptase and Its Role in Prostate Cancer Progression Manisha Tripathi The Vanderbilt University...Nashville, TN 37203 Laminin-332 is lost in prostate cancer progression. Laminin-332 is known to be cleaved by various cell surface proteases
Peng, Tao; Huang, Bingzhen; Sun, Yao; Lu, Yongbo; Bonewald, Lynda; Chen, Shuo; Butler, William T; Feng, Jerry Q; D'Souza, Rena N; Qin, Chunlin
2009-01-01
Dentin matrix protein 1 (DMP1) is present in the extracellular matrix (ECM) of dentin and bone as processed NH(2)- and COOH-terminal fragments, resulting from proteolytic cleavage at the NH(2) termini of 4 aspartic acid residues during rat DMP1 processing. One cleavage site residue, Asp(181) (corresponding to Asp(197) of mouse DMP1), and its flanking region are highly conserved across species. We speculate that cleavage at the NH(2) terminus of Asp(197) of mouse DMP1 represents an initial, first-step scission in the whole cascade of proteolytic processing. To test if Asp(197) is critical for initiating the proteolytic processing of mouse DMP1, we substituted Asp(197) with Ala(197) by mutating the corresponding nucleotides of mouse cDNA that encode this amino acid residue. This mutant DMP1 cDNA was cloned into a pcDNA3.1 vector. Data from transfection experiments indicated that this single substitution blocked the proteolytic processing of mouse DMP1 in HEK-293 cells, indicating that cleavage at the NH(2) terminus of Asp(197) is essential for exposing other cleavage sites for the conversion of DMP1 to its fragments. The NH(2)-terminal fragment of DMP1 occurs as a proteoglycan form (DMP1-PG) that contains a glycosaminoglycan (GAG) chain. Previously, we showed that a GAG chain is linked to Ser(74) in rat DMP1 (Ser(89) in mouse DMP1). To confirm that mouse DMP1-PG possesses a single GAG chain attached to Ser(89), we substituted Ser(89) by Gly(89). Data from transfection analysis indicated that this substitution completely prevented formation of the GAG-containing form, confirming that DMP1-PG contains a single GAG chain attached to Ser(89) in mouse DMP1. Copyright 2008 S. Karger AG, Basel.
Proteolytic processing of endogenous and recombinant beta 4 integrin subunit
1992-01-01
The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432
Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.
2015-01-01
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908
Tremonte, P; Reale, A; Di Renzo, T; Tipaldi, L; Di Luccia, A; Coppola, R; Sorrentino, E; Succi, M
2010-11-01
To evaluate interactions between Lactobacillus sakei and coagulase negative cocci (CNC) (Staphylococcus xylosus and Kocuria varians) and to investigate the influence of these interactions on their own proteolytic activity. Interactions occurring between strains of Lact. sakei and CNC were assessed by spectrophotometric analysis. The growth of 35 strains of Lact. sakei, used as indicators, was compared to that obtained combining the same strains with growing cells or cell-free supernatants of 20 CNC (18 Staph. xylosus and 2 K. varians). The proteolytic activity expressed by single strains or by their combinations was assessed on sarcoplasmic protein extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results evidenced that interactions are able to affect not only the growth but also the in vitro proteolytic activity of Lact. sakei and CNC used in combination. A relationship between the presence of interactions among useful strains and the strength of technological characteristics, such as proteolysis, was defined. The study highlighted that CNC are able to stimulate the growth of some Lact. sakei strains. At the same time, this interaction positively influences the proteolytic activity of strains used in combination. Given the importance of proteolysis during the ripening of fermented meats, this phenomenon should be taken into account to select meat starter cultures. © 2010 The Authors. © 2010 The Society for Applied Microbiology.
Deng, Jingren; Lazar, Iulia M
2016-04-01
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Deng, Jingren; Lazar, Iulia M.
2016-04-01
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples.
A Peptidomics Strategy to Elucidate the Proteolytic Pathways that Inactivate Peptide Hormones
Tinoco, Arthur D.; Kim, Yun-Gon; Tagore, Debarati M.; Wiwczar, Jessica; Lane, William S.; Danial, Nika N.; Saghatelian, Alan
2011-01-01
Proteolysis plays a key role in regulating the levels and activity of peptide hormones. Characterization of the proteolytic pathways that cleave peptide hormones is of basic interest and can, in some cases, spur the development of novel therapeutics. The lack, however, of an efficient approach to identify endogenous fragments of peptide hormones has hindered the elucidation of these proteolytic pathways. Here, we apply a mass spectrometry (MS)-based peptidomics approach to characterize the intestinal fragments of peptide histidine isoleucine (PHI), a hormone that promotes glucose-stimulated insulin secretion (GSIS). Our approach reveals a proteolytic pathway in the intestine that truncates PHI at its C-terminus to produce a PHI fragment that is inactive in a GSIS assay—a result that provides a potential mechanism of PHI regulation in vivo. Differences between these in vivo peptidomics studies and in vitro lysate experiments, which showed N- and C-terminal processing of PHI, underscore the effectiveness of this approach to discover physiologically relevant proteolytic pathways. Moreover, integrating this peptidomics approach with bioassays (i.e. GSIS) provides a general strategy to reveal proteolytic pathways that may regulate the activity of peptide hormones. PMID:21299233
Llorente, Berta E; Brutti, Cristina B; Caffini, Néstor O
2004-12-29
The study of proteinase expression in crude extracts from different organs of the globe artichoke (Cynara scolymus L.) disclosed that enzymes with proteolytic and milk-clotting activity are mainly located in mature flowers. Maximum proteolytic activity was recorded at pH 5.0, and inhibition studies showed that only pepstatin, specific for aspartic proteinases, presented a significant inhibitory effect. Such properties, in addition to easy enzyme inactivation by moderate heating, make this crude protease extract potentially useful for cheese production. Adsorption with activated carbon, together with anion exchange and affinity chromatography, led to the isolation of a heterodimeric milk-clotting proteinase consisting of 30- and 15-kDa subunits. MALDI-TOF MS of the 15-kDa chain determined a 15.358-Da mass, and the terminal amino sequence presented 96% homology with the smaller cardosin A subunit. The amino terminal sequence of the 30-kDa chain proved to be identical to the larger cardosin A subunit. Electrophoresis evidenced proteinase self-processing that was confirmed by immunoblots presenting 62-, 30-, and 15-kDa bands.
Kikuchi, Keiji; Kozuka-Hata, Hiroko; Oyama, Masaaki; Seiki, Motoharu; Koshikawa, Naohiko
2018-01-01
Proteolytic cleavage of membrane proteins can alter their functions depending on the cleavage sites. We recently demonstrated that membrane type 1 matrix metalloproteinase (MT1-MMP ) converts the tumor suppressor EphA2 into an oncogenic signal transducer through EphA2 cleavage. The cleaved EphA2 fragment that remains at the cell surface may be a better target for cancer therapy than intact EphA2. To analyze the cleavage site(s) of EphA2, we purified the fragments from tumor cells expressing MT1-MMP and Myc- and 6× His-tagged EphA2 by two-step affinity purification . The purified fragment was digested with trypsin to generate proteolytic peptides , and the amino acid sequences of these peptides were determined by nano-LC-mass spectrometry to identify the MT1-MMP-mediated cleavage site(s) of EphA2.
Philipp, Katrin; Riedel, Frank; Germann, Günter; Hörmann, Karl; Sauerbier, Michael
2005-02-01
The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix. The transforming growth factor-beta (TGF-beta) has been identified as an important component of wound healing. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-beta. We investigated the effect of TGF-beta antisense oligonucleotides on the mRNA expression of matrix metalloproteinases in cultured human keratinocytes, fibroblasts and endothelial cells using multiplex RT-PCR. The treatment of keratinocytes and fibroblasts with TGF-beta antisense oligonucleotides resulted in a significant decrease of expression of mRNA of MMP-1 and MMP-9 compared to controls. Accordingly, a decreased expression of MMP-1 mRNA in endothelial cells was detectable. Other MMPs were not affected. Affecting all dermal wound-healing-related cell types, TGF-beta antisense oligonucleotide technology may be a potential therapeutic option for the inhibition of proteolytic tissue destruction in chronic wounds. Pharmaceutical intervention in this area ultimately may help clinicians to proactively intervene in an effort to prevent normal wounds from becoming chronic.
Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases.
Schardon, Katharina; Hohl, Mathias; Graff, Lucile; Pfannstiel, Jens; Schulze, Waltraud; Stintzi, Annick; Schaller, Andreas
2016-12-23
Peptide hormones that regulate plant growth and development are derived from larger precursor proteins by proteolytic processing. Our study addressed the role of subtilisin-like proteinases (SBTs) in this process. Using tissue-specific expression of proteinase inhibitors as a tool to overcome functional redundancy, we found that SBT activity was required for the maturation of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION), a peptide signal for the abscission of floral organs in Arabidopsis We identified three SBTs that process the IDA precursor in vitro, and this processing was shown to be required for the formation of mIDA (the mature and bioactive form of IDA) as the endogenous signaling peptide in vivo. Hence, SBTs act as prohormone convertases in plants, and several functionally redundant SBTs contribute to signal biogenesis. Copyright © 2016, American Association for the Advancement of Science.
Cousin, Hélène; Abbruzzese, Genevieve; Kerdavid, Erin; Gaultier, Alban; Alfandari, Dominique
2011-01-01
Summary ADAMs are transmembrane metalloproteases that control cell behavior by cleaving both cell adhesion and signaling molecules. The cytoplasmic domain of ADAMs can regulate the proteolytic activity by controlling the subcellular localization and/or the activation of the protease domain. Here we show that the cytoplasmic domain of ADAM13 is cleaved and translocates into the nucleus. Preventing this translocation renders the protein incapable of promoting cranial neural crest (CNC) cell migration in vivo, without affecting its proteolytic activity. In addition, the cytoplasmic domain of ADAM13 regulates the expression of multiple genes in CNC, including the protease Calpain8-a. Restoring the expression of Calpain8-a is sufficient to rescue CNC migration in the absence of the ADAM13 cytoplasmic domain. This study shows that the cytoplasmic domain of ADAM metalloproteases can perform essential functions in the nucleus of cells and may contribute substantially to the overall function of the protein. PMID:21316592
Mehra, Divya; Geraghty, Patrick M.; Hardigan, Andrew A.; Foronjy, Robert
2012-01-01
Rationale Biomass is the energy source for cooking and heating for billions of people worldwide. Despite their prevalent use and their potential impact on global health, the effects of these fuels on lung biology and function remain poorly understood. Methods We exposed human small airway epithelial cells and C57BL/6 mice to dung biomass smoke or cigarette smoke to compare how these exposures impacted lung signaling and inflammatory and proteolytic responses that have been linked with disease pathogenesis. Results The in vitro exposure and siRNA studies demonstrated that biomass and cigarette smoke activated ERK to up regulate IL-8 and MMP-1 expression in human airway epithelial cells. In contrast to cigarette smoke, biomass also activated p38 and JNK within these lung cells and lowered the expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1). Similarly, in the lungs of mice, both biomass and cigarette smoke exposure increased macrophages, activated ERK and p38 and up regulated MMP-9 and MMP-12 expression. The main differences seen in the exposure studies was that mice exposed to biomass exhibited more perivascular inflammation and had higher G-CSF and GM-CSF lavage fluid levels than mice exposed identically to cigarette smoke. Conclusion Biomass activates similar pathogenic processes seen in cigarette smoke exposure that are known to result in the disruption of lung structure. These findings provide biological evidence that public health interventions are needed to address the harm associated with the use of this fuel source. PMID:23285217
NASA Astrophysics Data System (ADS)
Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver
2018-05-01
Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell-cell signaling. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver
2018-04-01
Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell-cell signaling. [Figure not available: see fulltext.
Kemp, C M; Oliver, W T; Wheeler, T L; Chishti, A H; Koohmaraie, M
2013-07-01
Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P < 0.01) and activity (P < 0.001), and greater caspase 3/7 activity (P < 0.05). At 30 wk of age, KO mice showed increased protein:DNA (P < 0.05) and RNA:DNA ratios (P < 0.01), greater protein content (P < 0.01) at the expense of lipid deposition (P < 0.05), and an increase in size and number of fast-twitch glycolytic muscle fibers (P < 0.05), suggesting that KO mice exhibit an increased capacity to accumulate and maintain protein in their skeletal muscle. Also, expression of proteins associated with muscle regeneration (neural cell adhesion molecule and myoD) were both reduced in the mature KO mice (P < 0.05 and P < 0.01, respectively), indicating less muscle regeneration and, therefore, less muscle damage. These findings indicate the concerted action of proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.
Yeswanth, Sthanikam; Chaudhury, Abhijit; Sarma, Potukuchi Venkata Gurunadha Krishna
2017-12-01
In Staphylococcus aureus, adherence and secretory proteins play chief role in the formation of biofilms. This mode of growth exhibits resistance to a variety of antibiotics and spreads its infections. In the present study, secretary and adherence proteins, Protein-A, Fibronectin-binding protein-A (FnbA) and Rsp (a transcription regulator encoding proteolytic property) expression levels were evaluated at different stages of growth in S. aureus ATCC12600 a drug-sensitive strain and multidrug-resistant strains of S. aureus. Initially, the SpA, FnbA and Rsp genes of S. aureus ATCC12600 were cloned, sequenced, expressed and characterized. The proteolytic property of recombinant Rsp was conspicuously shown when this pathogen was grown in aerobic conditions correlating with reduced biofilm units. In anaerobic mode of growth, S. aureus exhibited a higher expression of SpA and FnbA in early and mid adherence phases and finally stabilized at 48 h of incubation. This expression was more pronounced in methicillin-resistant strains (LMV1-8 and D1-4) of S. aureus. In all these stages, Rsp gene expression was at the lowest level and these results concur with the increased biofilm units. The results of the present study explain proteins chiefly contribute in the formation of biofilms.
Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis
Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes
2013-01-01
Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092
Driesbaugh, Kathryn H; Buzza, Marguerite S; Martin, Erik W; Conway, Gregory D; Kao, Joseph P Y; Antalis, Toni M
2015-02-06
Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Bedgood, R M; Stallcup, M R
1992-04-05
The intracellular processing of the murine leukemia virus envelope glycoprotein precursor Pr85 to the mature products gp70 and p15e was analyzed in the mouse T-lymphoma cell line W7MG1. Kinetic (pulse-chase) analysis of synthesis and processing, coupled with endoglycosidase (endo H) and neuraminidase digestions revealed the existence of a novel high molecular weight processing intermediate, gp95, containing endo H-resistant terminally glycosylated oligosaccharide chains. In contrast to previously published conclusions, our data indicate that proteolytic cleavage of the envelope precursor occurs after the acquisition of endo H-resistant chains and terminal glycosylation and thus after the mannosidase II step. In the same W7MG1 cell line, the type and order of murine leukemia virus envelope protein processing events was identical to that for the mouse mammary tumor virus envelope protein. Interestingly, complete mouse mammary tumor virus envelope protein processing requires the addition of glucocorticoid hormone, whereas murine leukemia virus envelope protein processing occurs constitutively in these W7MG1 cells. We propose that all retroviral envelope proteins share a common processing pathway in which proteolytic processing is a late event that follows acquisition of endo H resistance and terminal glycosylation.
Zile, Michael R; Baicu, Catalin F; Stroud, Robert E; Van Laer, An; Arroyo, Jazmine; Mukherjee, Rupak; Jones, Jeffrey A; Spinale, Francis G
2012-04-01
Increased myocardial extracellular matrix collagen represents an important structural milestone during the development of left ventricular (LV) pressure overload (PO); however, the proteolytic pathways that contribute to this process are not fully understood. This study tested the hypothesis that membrane type 1-matrix metalloproteinase (MT1-MMP) is directly induced at the transcriptional level in vivo during PO and is related to changes in LV collagen content. PO was induced in vivo by transverse aortic constriction in transgenic mice containing the full length human MT1-MMP promoter region ligated to luciferase (MT1-MMP Prom mice). MT1-MMP promoter activation (luciferase expression), expression, and activity; collagen volume fraction (CVF); and left atrial dimension were measured at 1 (n = 8), 2 (n = 12), and 4 (n = 17) wk following PO. Non-PO mice (n = 10) served as controls. Luciferase expression increased by fivefold at 1 wk, fell at 2 wk, and increased again by ninefold at 4 wk of PO (P < 0.05). MT1-MMP expression and activity increased at 1 wk, fell at 2 wk, and increased again at 4 wk after PO. CVF increased at 1 wk, remained unchanged at 2 wk, and increased by threefold at 4 wk of PO (P < 0.05). There was a strong positive correlation between CVF and MT1-MMP activity (r = 0.80, P < 0.05). Left atrial dimension remained unchanged at 1 and 2 wk but increased by 25% at 4 wk of PO. When a mechanical load was applied in vitro to LV papillary muscles isolated from MT1-MMP Prom mice, increased load caused MT1-MMP promoter activation to increase by twofold and MT1-MMP expression to increase by fivefold (P < 0.05). These findings challenge the canonical belief that PO suppresses overall matrix proteolytic activity, but rather supports the concept that certain proteases, such as MT1-MMP, play a pivotal role in PO-induced matrix remodeling and fibrosis.
Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes.
McKinsey, T A; Chu, Z; Tedder, T F; Ballard, D W
2000-01-01
The immunoglobulin superfamily member CD83 is expressed on the surface of mature dendritic cells that present processed antigens to T lymphocytes. In addition, T cells acquire CD83 expression following mitogenic stimulation in vitro. Here we report two lines of evidence demonstrating that this inducible lymphocyte response is genetically programmed by transcription factor NF-kappaB and contingent upon proteolytic breakdown of its cytoplasmic inhibitor IkappaBalpha. First, signal-dependent induction of CD83 mRNA expression is blocked in both transformed and primary T cells harboring a degradation-resistant mutant of IkappaBalpha that constitutively represses NF-kappaB. Second, as revealed in gel retardation assays, the IkappaBalpha constitutive repressor prevents the inducible interaction of NF-kappaB with consensus recognition sites identified in the CD83 promoter. Given that IkappaBalpha is functionally coupled to the T-cell antigen receptor, these findings suggest that the downstream transcription unit for CD83 is triggered by NF-kappaB during an adaptive immune response.
Purification and Crystallization of Murine Myostatin: A Negative Regulator of Muscle Mass
NASA Technical Reports Server (NTRS)
Hong, Young S.; Adamek, Daniel; Bridge, Kristi; Malone, Christine C.; Young, Ronald B.; Miller, Teresa; Karr, Laurel
2004-01-01
Myostatin (MSTN) has been crystallized and its preliminary X-ray diffraction data were collected. MSTN is a negative regulator of muscle growt/differentiation and suppressor of fat accumulation. It is a member of TGF-b family of proteins. Like other members of this family, the regulation of MSTN is critically tied to its process of maturation. This process involves the formation of a homodimer followed by two proteolytic steps. The first proteolytic cleavage produces a species where the n-terminal portion of the dimer is covalently separated from, but remains non-covalently bound to, the c-terminal, functional, portion of the protein. The protein is activated upon removal of the n-terminal "pro-segment" by a second n-terminal proteolytic cut by BMP-1 in vivo, or by acid treatment in vitro. Understanding the structural nature and physical interactions involved in these regulatory processes is the objective of our studies. Murine MSTN was purified from culture media of genetically engineered Chinese Hamster Ovary cells by multicolumn purification process and crystallized using the vapor diffusion method.
Millet, Jean Kaoru; Whittaker, Gary R.
2014-01-01
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2′ position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2′ site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. PMID:25288733
Bi, Fangfang; Chen, Fang; Li, Yanning; Wei, Ai; Cao, Wangsen
2018-05-05
Renal anti-aging protein Klotho exhibits impressive properties of anti-inflammation and renal protection, however is suppressed early after renal injury, making Klotho restoration an attractive strategy of treating renal inflammatory disorders. Here, we reported that Klotho is enriched in macrophages and Klotho preservation by Rhein, an anthraquinone derived from medicinal plant rhubarb, attenuates lipopolysaccharide (LPS)-induced acute inflammation essentially via promoting toll-like receptor 4 (TLR4) degradation. LPS-induced pro-inflammatory NF-κB signaling and cytokine expressions coincided with Klotho repression and toll-like receptor 4 (TLR4) elevation in macrophages, renal epithelial cells, and acutely- inflamed kidney. Intriguingly, Rhein treatment effectively corrected the inverted alterations of Klotho and TLR4 and mitigated the TLR4 downstream inflammatory response in a Klotho restoration and TLR4 repression-dependent manner. Klotho inducibly associated with TLR4 after LPS stimulation and suppressed TLR4 protein abundance mainly via a proteolytic process sensitive to the inhibition of Klotho's putative β-glucuronidase activity. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and renal protective effects of Rhein in a mouse model of acute kidney injury incurred by LPS. Thus, Klotho suppression of TLR4 via deglycosylation negatively controls TLR-associated inflammatory signaling and the endogenous Klotho preservation by Rhein or possibly other natural or synthetic compounds possesses promising potentials in the clinical treatment of renal inflammatory disorders. • Klotho is highly expressed in macrophages and repressed by LPS in vitro and in vivo. • Klotho inhibits LPS-induced TLR4 accumulation and the downstream signaling. • Klotho decreases TLR4 via a deglycosylation-associated proteolytic process. • Rhein effectively prevents acute inflammation-incurred Klotho suppression. • Rhein reversal of Klotho attenuates LPS-induced acute inflammation and kidney injury.
Schiffmacher, Andrew T.; Padmanabhan, Rangarajan; Jhingory, Sharon; Taneyhill, Lisa A.
2014-01-01
The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT. PMID:24196837
Salas, Alfonso Leija; Montezuma, Tania Díaz; Fariña, German Garrido; Reyes-Esparza, Jorge; Rodríguez-Fragoso, Lourdes
2008-01-01
To evaluate the effect of genistein on the fibrosis and matrix degradation caused by experimentally induced fibrosis in rats. Hepatic fibrosis was brought about by chronic administration of carbon tetrachloride to rats. To evaluate the effect of genistein on liver fibrosis and function, total collagen content and proteolytic activity in the liver were quantified. Urokinase-type plasminogen activator (uPA) expression during experimental fibrosis was localized by immunohistochemistry. Histopathological changes were evaluated using light and electron microscopy. Animals with fibrosis and treated with genistein showed an important reduction (73%) in hepatic collagen content as well as an improvement in liver function (p < 0.001). Genistein increased the capacity of the liver to degrade type I collagen and Matrigel (3.1- and 3.7-fold, respectively; p < 0.001) in animals with liver fibrosis. Genistein increased the number of uPA-immunoreactive cells. The increase in the uPA expression correlated with an increase in proteolytic activity. Histological analysis revealed a reduction in the number of fiber septa in pericentral and perisinusoidal areas. Transmission electron micrographs of livers from animals with fibrosis and treated with genistein showed a reduction in the number of hepatic stellate cells activated and a smaller number of collagen fibers. Genistein is able to improve the liver after injury and fibrosis induced by chronic administration of carbon tetrachloride. This finding suggests that genistein has antifibrogenic potential and could therefore be useful for treating chronic liver disease. (c) 2008 S. Karger AG, Basel.
Zulueta, Aida; Caretti, Anna; Campisi, Giuseppe Matteo; Brizzolari, Andrea; Abad, Jose Luis; Paroni, Rita; Signorelli, Paola; Ghidoni, Riccardo
2017-07-01
Exposure to cigarette smoke represents the most important risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is characterized by chronic inflammation of the airways, imbalance of proteolytic activity resulting in the destruction of lung parenchyma, alveolar hypoxia, oxidative stress, and apoptosis. Sphingolipids are structural membrane components whose metabolism is altered during stress. Known as apoptosis and inflammation inducer, the sphingolipid ceramide was found to accumulate in COPD airways and its plasma concentration increased as well. The present study investigates the role of sphingolipids in the cigarette smoke-induced damage of human airway epithelial cells. Lung epithelial cells were pre-treated with sphingolipid synthesis inhibitors (myriocin or XM462) and then exposed to a mixture of nicotine, acrolein, formaldehyde, and acetaldehyde, the major toxic cigarette smoke components. The inflammatory and proteolytic responses were investigated by analysis of the mRNA expression (RT-PCR) of cytokines IL-1β and IL-8, and matrix metalloproteinase-9 and of the protein expression (ELISA) of IL-8. Ceramide intracellular amounts were measured by LC-MS technique. Ferric-reducing antioxidant power test and superoxide anion radical scavenging activity assay were used to assess the antioxidant power of the inhibitors of ceramide synthesis. We here show that ceramide synthesis is enhanced under treatment with a cigarette smoke mixture correlating with increased expression of inflammatory cytokines and matrix metalloproteinase 9. The use of inhibitors of ceramide synthesis protected from smoke induced damages such as inflammation, oxidative stress, and proteolytic imbalance in airways epithelia.
López-Jiménez, Alberto J; Basak, Trayambak; Vanacore, Roberto M
2017-10-13
Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
In vivo sensing of proteolytic activity with an NSET-based NIR fluorogenic nanosensor.
Ku, Minhee; Hong, Yoochan; Heo, Dan; Lee, Eugene; Hwang, Seungyeon; Suh, Jin-Suck; Yang, Jaemoon
2016-03-15
Biomedical in vivo sensing methods in the near-infrared (NIR) range, which that provide relatively high photon transparency, separation from auto-fluorescence background, and extended sensitivity, are being used increasingly for non-invasive mapping and monitoring of molecular events in cancer cells. In this study, we fabricated an NIR fluorogenic nanosensor based on the nanoparticle surface energy transfer effect, by conjugation of fluorescent proteolytic enzyme-specific cleavable peptides with gold nanorods (GNRs). Membrane-anchored membrane type 1-matrix metalloproteinases (MT1-MMPs), a family of zinc-dependent proteolytic enzymes, can induce the metastatic potential of cancer cells by promoting degradation of the extracellular matrix. Therefore, sensitive detection of MT1-MMP activity can provide essential information in the clinical setting. We have applied in vivo NIR sensing to evaluate MT1-MMP activity, as an NIR imaging target, in an MT1-MMP-expressing metastatic tumor mouse model. Copyright © 2015 Elsevier B.V. All rights reserved.
Rebustini, Ivan T; Myers, Christopher; Lassiter, Keyonica S; Surmak, Andrew; Szabova, Ludmila; Holmbeck, Kenn; Pedchenko, Vadim; Hudson, Billy G; Hoffman, Matthew P
2009-10-01
Proteolysis is essential during branching morphogenesis, but the roles of MT-MMPs and their proteolytic products are not clearly understood. Here, we discover that decreasing MT-MMP activity during submandibular gland branching morphogenesis decreases proliferation and increases collagen IV and MT-MMP expression. Specifically, reducing epithelial MT2-MMP profoundly decreases proliferation and morphogenesis, increases Col4a2 and intracellular accumulation of collagen IV, and decreases the proteolytic release of collagen IV NC1 domains. Importantly, we demonstrate the presence of collagen IV NC1 domains in developing tissue. Furthermore, recombinant collagen IV NC1 domains rescue branching morphogenesis after MT2-siRNA treatment, increasing MT-MMP and proproliferative gene expression via beta1 integrin and PI3K-AKT signaling. Additionally, HBEGF also rescues MT2-siRNA treatment, increasing NC1 domain release, proliferation, and MT2-MMP and Hbegf expression. Our studies provide mechanistic insight into how MT2-MMP-dependent release of bioactive NC1 domains from collagen IV is critical for integrating collagen IV synthesis and proteolysis with epithelial proliferation during branching morphogenesis.
Chikuma, Toshiyuki; Inomata, Yuji; Tsuchida, Ken; Hojo, Hiroshi; Kato, Takeshi
2002-06-28
Th effect of monensin, which inhibits trans-Golgi function, on the levels of tachykinins and their processing enzyme activity was examined in organ-cultured rat dorsal root ganglia (DRG). Using an enzyme immunoassay method, we measured neurokinin A and substance P immunoreactivity in the DRG cultured for 72 h with and without 0.1 microM monensin. Both tachykinins were reduced in the DRG treated with monensin. Treatment with monensin also reduced the activity of carboxypeptidase E, which is one of the proteolytic processing enzymes of neuropeptides. These data suggest that proteolytic processing enzymes may in part modulate the biological activity of neuropeptides within a trans-Golgi apparatus.
Azad, Gajendra Kumar; Tomar, Raghuvir Singh
2016-06-01
The proteolytic clipping of histone tails has recently emerged as a novel form of irreversible post-translational modification (PTM) of histones. Histone clipping has been implicated as a regulatory process leading to the permanent removal of PTMs from histone proteins. However, there is scarcity of literature that describes the identification and characterization of histone-specific proteases. Here, we employed various biochemical methods to report histone H3-specific proteolytic activity from budding yeast. Our results demonstrate that H3 proteolytic activity was associated with sepharose bead matrices and activity was not affected by a variety of stress conditions. We have also identified the existence of an unknown protein that acts as a physiological inhibitor of the H3-clipping activity of yeast H3 protease. Moreover, through protease inhibition assays, we have also characterized yeast H3 protease as a serine protease. Interestingly, unlike glutamate dehydrogenase (GDH), yeast H3 proteolytic activity was not inhibited by Stefin B. Together, our findings suggest the existence of a novel H3 protease in yeast that is different from other reported histone H3 proteases. The presence of histone H3 proteolytic activity, along with the physiological inhibitor in yeast, suggests an interesting molecular mechanism that regulates the activity of histone proteases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Whitman, Shannon D.; Dutch, Rebecca Ellis
2007-01-01
Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F. PMID:17328935
Beinfeld, Margery C
2011-01-01
With the development of mice in which individual proteolytic enzymes have been inactivated, it has been of great interest to see how loss of these enzymes alters the processing of neuropeptides. In the course of studying changes in the peptide cholecystokinin (CCK) and other neuropeptides in several of these knockout mice, it has become clear that neuropeptide processing is complex and regionally specific. The enzyme responsible for processing in one part of the brain may not be involved in other parts of the brain. It is essential to do a detailed dissection of the brain and analyze peptide levels in many brain regions to fully understand the role of the enzymes. Because loss of these proteases may trigger compensatory mechanisms which involve expression of the neuropeptides being studied or other proteases or accessory proteins, it is also important to examine how loss of an enzyme alters expression of the neuropeptides being studied as well as other proteins thought to be involved in neuropeptide processing. By determining how loss of an enzyme alters the molecular form(s) of the peptide that are made, additional mechanistic information can be obtained. This review will describe established methods to achieve these research goals.
Sakai, Kouji; Ami, Yasushi; Tahara, Maino; Kubota, Toru; Anraku, Masaki; Abe, Masako; Nakajima, Noriko; Sekizuka, Tsuyoshi; Shirato, Kazuya; Suzaki, Yuriko; Ainai, Akira; Nakatsu, Yuichiro; Kanou, Kazuhiko; Nakamura, Kazuya; Suzuki, Tadaki; Komase, Katsuhiro; Nobusawa, Eri; Maenaka, Katsumi; Kuroda, Makoto; Hasegawa, Hideki; Kawaoka, Yoshihiro; Tashiro, Masato; Takeda, Makoto
2014-05-01
Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti-IAV drugs. Such drugs could also be effective for many other respiratory viruses, including the recently emerged Middle East respiratory syndrome (MERS) coronavirus, because they are also activated by TMPRSS2 in vitro. Consequently, the present paper could have a large impact on the battle against respiratory virus infections and contribute greatly to human health.
Mbikay, Majambu; Sirois, Francine; Nkongolo, Kabwe K; Basak, Ajoy; Chrétien, Michel
2011-12-01
Proprotein convertase 1/3 (PC1/3) is one of the endoproteases initiating the proteolytic activation of prohormones and proneuropeptides in the secretory pathway. It is produced as a zymogen that is subsequently modified by activity-determining cleavages at the amino and the carboxyl termini. In human, it is encoded by the PCSK1 locus on chromosome 5. Spontaneous inactivating mutations in its gene have been linked to obesity. Minor alleles of the common non-synonymous single-nucleotide polymorphisms (SNPs) rs6232 (T>C, N221D), rs6234 (G>C, Q665E) and rs6235 (C>G, S690T) have been associated with increased risk of obesity. We have shown that the variations associated with these SNPs are linked on minor PCSK1 alleles. In this study, we examined the impact of amino acid substitutions specified by the minor PCSK1 alleles on PC1/3 biosynthesis and prohormone processing activity in cultured cells. The common and variant isoforms of PC1/3 were expressed in transfected rat pituitary GH4C1 cells with or without proopiomelanocortin (POMC) as a substrate. Secreted PC1/3- or POMC-related proteins and peptides were analyzed by immunoblotting and immunoprecipitation. When expressed in GH4C1 cells, the triple-variant PC1/3 underwent significantly more proteolytic processing at the amino and carboxyl termini than the common and double-variant isoforms. However, there was no detectable difference among these isoforms in their ability to process POMC in the transfected cells. Since truncation of PC1/3 in its C-terminal region reportedly renders the enzyme unstable, we speculate that the accentuated processing of the triple variant in this region may, in vivo, create a subtle deficit of PC1/3 enzymatic activity in endocrine and neuroendocrine cells, causing impaired processing of prohormones and proneuropeptides to their bioactive forms. Copyright © 2011 Elsevier Inc. All rights reserved.
Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S
2012-12-13
Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.
USDA-ARS?s Scientific Manuscript database
The effects of insulin-like growth factor-I (IGF-I), insulin, and leucine on protein turnover and pathways that regulate proteolytic gene expression and protein polyubiquitination were investigated in primary cultures of four day old rainbow trout myocytes. Supplementing media with 100 nM IGF-I inc...
R, Jini; HC, Swapna; Rai, Amit Kumar; R, Vrinda; PM, Halami; NM, Sachindra; N, Bhaskar
2011-01-01
Proteolytic and/or lipolytic lactic acid bacteria (LAB) were isolated from visceral wastes of different fresh water fishes. LAB count was found to be highest in case of visceral wastes of Mrigal (5.88 log cfu/g) and lowest in that of tilapia (4.22 log cfu/g). Morphological, biochemical and molecular characterization of the selected LAB isolates were carried out. Two isolates FJ1 (E. faecalis NCIM5367) and LP3 (P. acidilactici NCIM5368) showed both proteolytic and lipolytic properties. All the six native isolates selected for characterization showed antagonistic properties against several human pathogens. All the native isolates were sensitive to antibiotics cephalothin and clindamycin; and, resistant to cotrimoxazole and vancomycin. Considering individually, P. acidilactici FM37, P. acidilactici MW2 and E. faecalis FD3 were sensitive to erythromycin. The two strains FJ1 (E. faecalis NCIM 5367) and LP3 (P. acidilactici NCIM 5368) that had both proteolytic and lipolytic properties have the potential for application in fermentative recovery of lipids and proteins from fish processing wastes. PMID:24031786
Wang, Chao; Zhang, Jie; Tang, Junchun; Li, Yi-Yi; Gu, YanXia; Yu, Ying; Xiong, Jing; Zhao, Xueqing; Zhang, Zheng; Li, Ting-Ting; Chen, Jutao; Wan, Qi; Zhang, Zhaohui
2018-04-17
Lysophosphatidic acid (LPA), an extracellular signaling molecule, influences diverse biological events, including the pathophysiological process induced after ischemic brain injury. However, the molecular mechanisms mediating the pathological change after ischemic stroke remain elusive. Here we report that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is regulated by LPA during stroke. AEP proteolytically cleaves tau and generates tauN368 fragments, triggering neuronal death. Inhibiting the generation of LPA reduces the expression of AEP and tauN368, and alleviates neuronal cell death. Together, this evidence indicates that the LPA-AEP pathway plays a key role in the pathophysiological process induced after ischemic stroke. Inhibition of LPA could be a useful therapeutic for treating neuronal injury after stroke. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delury, Craig, E-mail: c.delury@lancaster.ac.uk; Hart, Claire, E-mail: claire.hart@manchester.ac.uk; Brown, Mick, E-mail: michael.brown@ics.manchester.ac.uk
The Notch ligand Jagged1 is subject to regulated intramembrane proteolysis (RIP) which yields a soluble ectodomain (sJag) and a soluble Jagged1 intracellular domain (JICD). The full-length Jagged1 protein enhances prostate cancer (PCa) cell proliferation and is highly expressed in metastatic cells. However, little is known regarding the mechanisms by which Jagged1 or its RIP-generated fragments might promote PCa bone metastasis. In the current study we show that bone marrow stroma (BMS) induces Jagged1 expression in bone metastatic prostate cancer PC3 cells and that this enhanced expression is mechanistically linked to the promotion of cell migration. We also show that RIP-generatedmore » Jagged1 fragments exert disparate effects on PC3 cell behaviour and Notch signaling. In conclusion, the expression of both the full-length ligand and its RIP-generated fragments must be considered in tandem when attempting to regulate Jagged1 as a possible PCa therapy. - Highlights: • Bone marrow stroma induces Jagged1 expression in prostate cancer (PCa) PC3 cells. • This enhanced expression of full-length Jagged1 is required for PC3 cell migration. • Proteolytic fragments of Jagged1 exert disparate effects on PC3 cell behaviour. • Effects of fragments on cell behaviour do not correlate with Notch signaling. • Effects of Jagged1 and its fragments on PCa metastasis likely to be complex.« less
Maunsell, Bláithín; Adams, Claire; O'Gara, Fergal
2006-01-01
In the soil bacterium Pseudomonas fluorescens M114, extracellular proteolytic activity and fluorescent siderophore (pseudobactin M114) production were previously shown to be co-ordinately negatively regulated in response to environmental iron levels. An iron-starvation extracytoplasmic function sigma factor, PbrA, required for the transcription of siderophore biosynthetic genes, was also implicated in M114 protease regulation. The current study centred on the characterization and genetic regulation of the gene(s) responsible for protease production in M114. A serralysin-type metalloprotease gene, aprA, was identified and found to encode the major, if not only, extracellular protease produced by this strain. The expression of aprA and its protein product were found to be subject to complex regulation. Transcription analysis confirmed that PbrA was required for full aprA transcription under low iron conditions, while the ferric uptake regulator, Fur, was implicated in aprA repression under high iron conditions. Interestingly, the iron regulation of AprA was dependent on culture conditions, with PbrA-independent AprA-mediated proteolytic activity observed on skim milk agar supplemented with yeast extract, when supplied with iron or purified pseudobactin M114. These effects were not observed on skim milk agar without yeast extract. PbrA-independent aprA expression was also observed from a truncated transcriptional fusion when grown in sucrose asparagine tryptone broth supplied with iron or purified pseudobactin M114. Thus, experimental evidence suggested that iron mediated its effects via transcriptional activation by PbrA under low iron conditions, while an as-yet-unidentified sigma factor(s) may be required for the PbrA-independent aprA expression and AprA proteolytic activity induced by siderophore and iron.
Staab, J F; Ginkel, D L; Rosenberg, G B; Munford, R S
1994-09-23
Acyloxyacyl hydrolase, a leukocyte enzyme that acts on bacterial lipopolysaccharides (LPSs) and many glycerolipids, is synthesized as a precursor polypeptide that undergoes internal disulfide linkage before being proteolytically processed into two subunits. The larger subunit contains an amino acid sequence (Gly-X-Ser-X-Gly) that is found at the active sites of many lipases, while the smaller subunit has amino acid sequence similarity to saposins (sphingolipid activator proteins), cofactors for sphingolipid glycohydrolases. We show here that both acyloxyacyl hydrolase subunits are required for catalytic activity toward LPS and glycerophosphatidylcholine. In addition, mutations that truncate or delete the small subunit have profound effects on the intracellular localization, proteolytic processing, and stability of the enzyme in baby hamster kidney cells. Remarkably, proteolytic cleavage of the precursor protein increases the activity of the enzyme toward LPS by 10-20-fold without altering its activity toward glycerophosphatidylcholine. Proper orientation of the two subunits thus seems very important for the substrate specificity of this unusual enzyme.
Proteolytic Regulation of the Intestinal Epithelial Barrier: Mechanisms and Interventions
2014-09-01
DSS protocol to evaluate molecular markers of acute inflammation in the subepithelial lamina propria, including quantity and nature of immune cell...will be investigated by immunostaining of colonic segments for Ki-67, a nuclear protein preferentially expressed during active phases of the cell
Saito, Takashi; Iwata, Nobuhisa; Tsubuki, Satoshi; Takaki, Yoshie; Takano, Jiro; Huang, Shu-Ming; Suemoto, Takahiro; Higuchi, Makoto; Saido, Takaomi C
2005-04-01
Expression of somatostatin in the brain declines during aging in various mammals including apes and humans. A prominent decrease in this neuropeptide also represents a pathological characteristic of Alzheimer disease. Using in vitro and in vivo paradigms, we show that somatostatin regulates the metabolism of amyloid beta peptide (Abeta), the primary pathogenic agent of Alzheimer disease, in the brain through modulating proteolytic degradation catalyzed by neprilysin. Among various effector candidates, only somatostatin upregulated neprilysin activity in primary cortical neurons. A genetic deficiency of somatostatin altered hippocampal neprilysin activity and localization, and increased the quantity of a hydrophobic 42-mer form of Abeta, Abeta(42), in a manner similar to presenilin gene mutations that cause familial Alzheimer disease. These results indicate that the aging-induced downregulation of somatostatin expression may be a trigger for Abeta accumulation leading to late-onset sporadic Alzheimer disease, and suggest that somatostatin receptors may be pharmacological-target candidates for prevention and treatment of Alzheimer disease.
Evidence for the Existence in Arabidopsis thaliana of the Proteasome Proteolytic Pathway
Polge, Cécile; Jaquinod, Michel; Holzer, Frances; Bourguignon, Jacques; Walling, Linda; Brouquisse, Renaud
2009-01-01
Heavy metals are known to generate reactive oxygen species that lead to the oxidation and fragmentation of proteins, which become toxic when accumulated in the cell. In this study, we investigated the role of the proteasome during cadmium stress in the leaves of Arabidopsis thaliana plants. Using biochemical and proteomics approaches, we present the first evidence of an active proteasome pathway in plants. We identified and characterized the peptidases acting sequentially downstream from the proteasome in animal cells as follows: tripeptidyl-peptidase II, thimet oligopeptidase, and leucine aminopeptidase. We investigated the proteasome proteolytic pathway response in the leaves of 6-week-old A. thaliana plants grown hydroponically for 24, 48, and 144 h in the presence or absence of 50 μm cadmium. The gene expression and proteolytic activity of the proteasome and the different proteases of the pathway were found to be up-regulated in response to cadmium. In an in vitro assay, oxidized bovine serum albumin and lysozyme were more readily degraded in the presence of 20 S proteasome and tripeptidyl-peptidase II than their nonoxidized form, suggesting that oxidized proteins are preferentially degraded by the Arabidopsis 20 S proteasome pathway. These results show that, in response to cadmium, the 20 S proteasome proteolytic pathway is up-regulated at both RNA and activity levels in Arabidopsis leaves and may play a role in degrading oxidized proteins generated by the stress. PMID:19822524
Hehle, Verena K.; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.
2016-01-01
This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy’s 13 antibody heavy and light chain mutant combinations were expressed transiently in N. tabacum and demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.—Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217
Arbulo-Echevarria, Mikel M; Muñoz-Miranda, Juan Pedro; Caballero-García, Andrés; Poveda-Díaz, José L; Fernández-Ponce, Cecilia; Durán-Ruiz, M Carmen; Miazek, Arkadiusz; García-Cózar, Francisco; Aguado, Enrique
2016-08-01
Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors. © Society for Leukocyte Biology.
Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M
1990-09-01
The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.
Katchman, Alexander; Yang, Lin; Zakharov, Sergey I; Kushner, Jared; Abrams, Jeffrey; Chen, Bi-Xing; Liu, Guoxia; Pitt, Geoffrey S; Colecraft, Henry M; Marx, Steven O
2017-08-22
Calcium influx through the voltage-dependent L-type calcium channel (Ca V 1.2) rapidly increases in the heart during "fight or flight" through activation of the β-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of β-adrenergic activation of cardiac Ca V 1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α 1C and C-terminal proteolytic cleavage of the α 1C subunit. We generated transgenic mice expressing an α 1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for β-adrenergic regulation of Ca V 1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute β-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α 1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α 1C Prevention of C-terminal cleavage did not alter β-adrenergic stimulation of Ca V 1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α 1C in β-adrenergic stimulation of Ca V 1.2, and show that phosphoregulatory sites on α 1C are not redundant and do not each fractionally contribute to the net stimulatory effect of β-adrenergic stimulation. Further, proteolytic cleavage of α 1C is not required for β-adrenergic stimulation of Ca V 1.2.
Viollier, Patrick H; Weihofen, Andreas; Folcher, Marc; Thompson, Charles J
2003-01-24
The sigH gene encodes a sigma factor whose transcription is controlled by stress regulatory systems and the developmental program in Streptomyces coelicolor. Here, we describe developmentally regulated post-transcriptional control systems for SigH. sigH is expressed as three primary translation products, SigH-sigma(37), SigH-sigma(51), and SigH-sigma(52). In vitro, SigH-sigma(52) was comparable to SigH-sigma(37) in its ability to associate with RNA polymerase core enzyme and specifically initiate transcription in vitro. While SigH-sigma(51/52) were the primary gene products observed throughout early phases of growth, their abundance decreased during later stages in liquid or solid phase cultures while levels of shorter, C-terminally encoded products increased. These included SigH-sigma(37), a product of the downstream translational initiation site, as well as two proteolytic derivatives of SigH-sigma(51/52) (34kDa and 38kDa). Accumulation of SigH-sigma(37) and processing of SigH-sigma(51/52) into these stable 34kDa and 38kDa derivatives correlated with morphological changes on solid medium and physiological maturation in liquid medium. SigH-sigma(51/52) processing did not occur on medium non-permissive for aerial mycelium formation or in one particular developmental mutant (brgA). The proteolytic activity could be detected in vitro using crude extracts of stationary phase cultures, but was absent from exponential phase cultures. prsH, the gene upstream of sigH having sequence similarity to known anti-sigma factors, was able to bind to, and thus presumably inactivate SigH-sigma(52), SigH-sigma(51), and SigH-sigma(37). We have shown elsewhere that prsH was conditionally required for colonial development. Thus, while at least one transcriptional regulator is known to bring about the accumulation of sigH mRNA at different times and different locations in colonies, the post-transcriptional processes described here regulate the activity of different SigH isoforms and program their temporal accumulation pattern, i.e. the elimination of SigH-sigma(51/52) and accumulation of SigH-sigma(37)-like proteins, as a function of development.
Chaussain, Catherine; Eapen, Asha Sarah; Huet, Eric; Floris, Caroline; Ravindran, Sriram; Hao, Jianjun; Menashi, Suzanne; George, Anne
2009-11-12
Dentin Matrix Protein 1 (DMP1) plays a regulatory role in dentin mineralization and can also function as a signaling molecule. MMP-2 (matrix metalloproteinase-2) is a predominant protease in the dentin matrix that plays a prominent role in tooth formation and a potential role during the carious process. The possibility that MMP-2 can cleave DMP1 to release biologically active peptides was investigated in this study. DMP1, both in the recombinant form and in its native state within the dentin matrix, was shown to be a substrate for MMP-2. Proteolytic processing of DMP1 by MMP-2 produced two major peptides, one that contains the C-terminal region of the protein known to carry both the ASARM (aspartic acid and serine rich domain) domain involved in biomineralization and the DNA binding site of DMP1. In vitro experiments with recombinant N- and C-terminal polypeptides mimicking the MMP-2 cleavage products of DMP1 demonstrated an effect of the C-polypeptide on the differentiation of dental pulp stem/progenitor cells to a putative odontoblast phenotype. In vivo implantation of this peptide in a rat injured pulp model induced a rapid formation of a homogeneous dentin bridge covered by a palisade of orientated cells expressing dentin sialoprotein (DSP) and DMP1, attesting an efficient repair process. These data suggest that a peptide generated through the proteolytic processing of DMP1 by MMP-2 can regulate the differentiation of mesenchymal cells during dentinogenesis and thus sustain reparative dentin formation in pathological situations such as carious decay. In addition, these data open a new therapeutic possibility of using this peptide to regenerate dentin after an injury.
2010-01-01
Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man. PMID:20074340
Tognoli, Chiara; Rossi, Federica; Di Cola, Francesco; Baj, Gabriele; Tongiorgi, Enrico; Terova, Genciana; Saroglia, Marco; Bernardini, Giovanni; Gornati, Rosalba
2010-01-14
Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.
Kaźmierczak, Andrzej; Doniak, Magdalena; Kunikowska, Anita
2017-11-01
Programmed cell death (PCD) is a crucial process in plant development. In this paper, proteolytically related aspects of kinetin-induced PCD in cortex cells of Vicia faba ssp. minor seedlings were examined using morphological, fluorometric, spectrophotometric, and fluorescence microscopic analyses. Cell viability estimation after 46 μM kinetin treatment of seedling roots showed that the number of dying cortex cells increased with treatment duration, reaching maximum after 72 h. Weight of the apical root segments increased with time and was about 2.5-fold greater after 96 h, while the protein content remained unchanged, compared to the control. The total and cysteine-dependent proteolytic activities fluctuated during 1-96-h treatment, which was not accompanied by the changes in the protein amount, indicating that the absolute protein amounts decreased during kinetin-induced PCD. N-ethylmaleimide (NEM), phenylmethylsulfonyl fluoride (PMSF), and Z-Leu-Leu-Nva-H (MG115), the respective cysteine, serine, and proteasome inhibitors, suppressed kinetin-induced PCD. PMSF significantly decreased serine-dependent proteolytic activities without changing the amount of proteins, unlike NEM and MG115. More pronounced effect of PMSF over NEM indicated that in the root apical segments, the most important proteolytic activity during kinetin-induced PCD was that of serine proteases, while that of cysteine proteases may be important for protein degradation in the last phase of the process. Both NEM and PMSF inhibited apoptotic-like structure formation during kinetin-induced PCD. The level of caspase-3-like activity of β1 proteasome subunit increased after kinetin treatment. Addition of proteasome inhibitor MG-115 reduced the number of dying cells, suggesting that proteasomes might play an important role during kinetin-induced PCD.
Amyloid precursor protein modulates macrophage phenotype and diet-dependent weight gain
Puig, Kendra L.; Brose, Stephen A.; Zhou, Xudong; Sens, Mary A.; Combs, Gerald F.; Jensen, Michael D.; Golovko, Mikhail Y.; Combs, Colin K.
2017-01-01
It is well known that mutations in the gene coding for amyloid precursor protein are responsible for autosomal dominant forms of Alzheimer’s disease. Proteolytic processing of the protein leads to a number of metabolites including the amyloid beta peptide. Although brain amyloid precursor protein expression and amyloid beta production are associated with the pathophysiology of Alzheimer’s disease, it is clear that amyloid precursor protein is expressed in numerous cell types and tissues. Here we demonstrate that amyloid precursor protein is involved in regulating the phenotype of both adipocytes and peripheral macrophages and is required for high fat diet-dependent weight gain in mice. These data suggest that functions of this protein include modulation of the peripheral immune system and lipid metabolism. This biology may have relevance not only to the pathophysiology of Alzheimer’s disease but also diet-associated obesity. PMID:28262782
Rebustini, Ivan T.; Myers, Christopher; Lassiter, Keyonica S.; Surmak, Andrew; Szabova, Ludmila; Holmbeck, Kenn; Pedchenko, Vadim; Hudson, Billy G.; Hoffman, Matthew P.
2009-01-01
Summary Proteolysis is essential during branching morphogenesis, but the roles of MT-MMPs and their proteolytic products are not clearly understood. Here we discover that decreasing MT-MMP activity during submandibular gland branching morphogenesis decreases proliferation and increases collagen IV and MT-MMP expression. Importantly, reducing epithelial MT2-MMP profoundly decreases proliferation and morphogenesis, increases Col4a2 and intracellular accumulation of collagen IV, and decreases the proteolytic release of collagen IV NC1 domains. Importantly, we demonstrate the presence of collagen IV NC1 domains in developing tissue. Furthermore, recombinant collagen IV NC1 domains rescue branching morphogenesis after MT2-siRNA-treatment, increasing MT-MMP and pro-proliferative gene expression via β1 integrin and PI3K-AKT signaling. Additionally, HBEGF also rescues MT2-siRNA-treatment, increasing NC1 domain release, proliferation, and MT2-MMP and Hbegf expression. Our studies provide mechanistic insight into how MT2-MMP-dependent release of bioactive NC1 domains from collagen IV is critical for integrating collagen IV synthesis and proteolysis with epithelial proliferation during branching morphogenesis. PMID:19853562
Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩
Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.
2009-01-01
Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Shang-Jyh; School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan; Su, Jen-Liang
The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibitionmore » of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole inhibits IκBα degradation and NF-κB nucleus translocation. ► Osthole suppresses EMT by repressing vimentin and inducing E-cadherin expression.« less
Poblete-Naredo, Irais; Rodríguez-Yáñez, Yury; Corona-Núñez, Rogelio O; González-Monroy, Stuart; Salinas, Juan E; Albores, Arnulfo
2018-05-17
Hypertension disorders (HD) and pre-eclampsia (PRE) are leading causes of maternal deaths worldwide. PRE is associated with vascular endothelial dysfunction and with deregulation of the fibrinolysis pathway genes. Fibrinolysis is the fibrin clot hydrolysis process catalyzed by plasmin, a proteolytic enzyme formed from plasminogen. Plasminogen is cleaved by tissue-type (tPA) and urokinase-type (uPA) activators and inhibited by the plasminogen activator inhibitors type-1 (PAI-1) and type-2 (PAI-2). The whole process maintains blood hemostasis. This study aims to assess PAI-1, PAI-2, tPA and uPA mRNA expression in primary cultured human umbilical vein endothelial cells (HUVEC) isolated and cultured from healthy, HD and PRE women. Results show that PAI-1 and PAI-2 mRNA decreased in HD-HUVEC, whereas PAI-1 and uPA decreased in PRE-HUVEC cultures compared to control ones. Notably, the expression ratio between pro- and anti-fibrinolytic actors remained unchanged among the studied groups. It seems that newborn's hemostasis is maintained balanced probably by a compensatory mechanism that involves changes in the fibrinolysis gene expression profile. The real impact of these changes in mRNA expression is unknown, however, it is suggested that these changes could be associated with an increased predisposition to vascular disease development in the progeny. Copyright © 2018. Published by Elsevier Ltd.
Gluschankof, P; Morel, A; Gomez, S; Nicolas, P; Fahy, C; Cohen, P
1984-01-01
The post-translational proteolytic conversion of somatostatin-14 precursors was studied to characterize the enzyme system responsible for the production of the tetradecapeptide either from its 15-kDa precursor protein or from its COOH-terminal fragment, somatostatin-28. A synthetic undecapeptide Pro-Arg-Glu-Arg-Lys-Ala-Gly-Ala-Lys-Asn-Tyr(NH2), homologous to the amino acid sequence of the octacosapeptide at the putative Arg-Lys cleavage locus, was used as substrate, after 125I labeling on the COOH-terminal tyrosine residue. A 90-kDa proteolytic activity was detected in rat brain cortex extracts after molecular sieve fractionation followed by ion exchange chromatography. The protease released the peptide 125I-Ala-Gly-Ala-Lys-Asn-Tyr(NH2) from the synthetic undecapeptide substrate and converted somatostatin-28 into somatostatin-14 under similar conditions (pH 7.0). Under these experimental conditions, the product tetradecapeptide was not further degraded by the enzyme. In contrast, the purified 15-kDa hypothalamic precursor remained unaffected when exposed to the proteolytic enzyme under identical conditions. It is concluded that this Arg-Lys esteropeptidase from the brain cortex may be involved in the in vivo processing of the somatostatin-28 fragment of prosomatostatin into somatostatin-14, the former species being an obligatory intermediate in a two-step proteolytic mechanism leading to somatostatin-14. PMID:6149550
Müller, Barbara; Anders, Maria; Reinstein, Jochen
2014-01-01
Human immunodeficiency virus particles undergo a step of proteolytic maturation, in which the main structural polyprotein Gag is cleaved into its mature subunits matrix (MA), capsid (CA), nucleocapsid (NC) and p6. Gag proteolytic processing is accompanied by a dramatic structural rearrangement within the virion, which is necessary for virus infectivity and has been proposed to proceed through a sequence of dissociation and reformation of the capsid lattice. Morphological maturation appears to be tightly regulated, with sequential cleavage events and two small spacer peptides within Gag playing important roles by regulating the disassembly of the immature capsid layer and formation of the mature capsid lattice. In order to measure the influence of individual Gag domains on lattice stability, we established Förster's resonance energy transfer (FRET) reporter virions and employed rapid kinetic FRET and light scatter measurements. This approach allowed us to measure dissociation properties of HIV-1 particles assembled in eukaryotic cells containing Gag proteins in different states of proteolytic processing. While the complex dissociation behavior of the particles prevented an assignment of kinetic rate constants to individual dissociation steps, our analyses revealed characteristic differences in the dissociation properties of the MA layer dependent on the presence of additional domains. The most striking effect observed here was a pronounced stabilization of the MA-CA layer mediated by the presence of the 14 amino acid long spacer peptide SP1 at the CA C-terminus, underlining the crucial role of this peptide for the resolution of the immature particle architecture.
Antibody proteolysis: a common picture emerging from plants
Donini, Marcello; Lombardi, Raffaele; Lonoce, Chiara; Di Carli, Mariasole; Marusic, Carla; Morea, Veronica; Di Micco, Patrizio
2015-01-01
We have recently characterized the degradation profiles of 2 human IgG1 monoclonal antibodies, the tumor-targeting mAb H10 and the anti-HIV mAb 2G12. Both mAbs were produced in plants either as stable transgenics or using a transient expression system based on leaf agroinfiltration. The purified antibodies were separated by 1DE and protein bands were characterized by N-terminal sequencing. The proteolytic cleavage sites identified in the heavy chain (HC) of both antibodies were localized in 3 inter-domain regions, suggesting that the number of proteolytic cleavage events taking place in plants is limited. One of the cleavage sites, close to the hinge region, was common to both antibodies. PMID:26186119
Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing.
Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael
2017-06-08
Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates.
Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing
Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E.; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael
2017-01-01
Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates. PMID:28594355
Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk.
Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra
2014-11-02
We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o -phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli , Staphylococcus aureus , Salmonella cholere enteridis , Listeria monocytogenes , Listeria innocua and Enterobacter aerogenes . The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus , which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes . The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC.
Gene expression systems in corynebacteria.
Srivastava, Preeti; Deb, J K
2005-04-01
Corynebacterium belongs to a group of gram-positive bacteria having moderate to high G+C content, the other members being Mycobacterium, Nocardia, and Rhodococcus. Considerable information is now available on the plasmids, gene regulatory elements, and gene expression in corynebacteria, especially in soil corynebacteria such as Corynebacterium glutamicum. These bacteria are non-pathogenic and, unlike Bacillus and Streptomyces, are low in proteolytic activity and thus have the potential of becoming attractive systems for expression of heterologous proteins. This review discusses recent advances in our understanding of the organization of various regulatory elements, such as promoters, transcription terminators, and development of vectors for cloning and gene expression.
Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo
2015-01-01
This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G’ value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese. PMID:25938823
Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia
ERIC Educational Resources Information Center
Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.
2004-01-01
The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…
Recombinant cathepsin E has no proteolytic activity at neutral pH.
Zaidi, Nousheen; Herrmann, Timo; Voelter, Wolfgang; Kalbacher, Hubert
2007-08-17
Cathepsin E (CatE) is a major intracellular aspartic protease reported to be involved in cellular protein degradation and several pathological processes. Distinct cleavage specificities of CatE at neutral and acidic pH have been reported previously in studies using CatE purified from human gastric mucosa. Here, in contrast, we have analyzed the proteolytic activity of recombinant CatE at acidic and neutral pH using two separate approaches, RP-HPLC and FRET-based proteinase assays. Our data clearly indicate that recombinant CatE does not possess any proteolytic activity at all at neutral pH and was unable to cleave the peptides glucagon, neurotensin, and dynorphin A that were previously reported to be cleaved by CatE at neutral pH. Even in the presence of ATP, which is known to stabilize CatE, no proteolytic activity was observed. These discrepant results might be due to some contaminating factor present in the enzyme preparations used in previous studies or may reflect differences between recombinant CatE and the native enzyme.
Serine proteases as candidates for proteolytic processing of angiotensin-I converting enzyme.
Aragão, Danielle S; de Andrade, Maria Claudina C; Ebihara, Fabiana; Watanabe, Ingrid K M; Magalhães, Dayane C B P; Juliano, Maria Aparecida; Hirata, Izaura Yoshico; Casarini, Dulce Elena
2015-01-01
Somatic angiotensin-I converting enzyme (sACE) is a broadly distributed peptidase which plays a role in blood pressure and electrolyte homeostasis by the conversion of angiotensin I into angiotensin II. N-domain isoforms (nACE) with 65 and 90 kDa have been described in body fluids, tissues and mesangial cells (MC), and a 90 kDa nACE has been described only in spontaneously hypertensive rats. The aim of this study was to investigate the existence of proteolytic enzymes that may act in the hydrolysis of sACE generating nACEs in MC. After the confirmation of the presence of ACE sheddases in Immortalized MC (IMC), we purified and characterized these enzymes using fluorogenic substrates specifically designed for ACE sheddases. Purified enzyme identified as a serine protease by N-terminal sequence was able to generate nACE. In the present study, we described for the first time the presence of ACE sheddases in IMC, identified as serine proteases able to hydrolyze sACE in vitro. Further investigations are necessary to elucidate the mechanisms responsible for the expression and regulation of ACE sheddases in MC and their roles in the generation of nACEs, especially the 90 kDa form possibly related to hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.
Noël, A; Santavicca, M; Stoll, I; L'Hoir, C; Staub, A; Murphy, G; Rio, M C; Basset, P
1995-09-29
Matrix metalloproteinases (matrixins) constitute a group of extracellular proteinases belonging to the metzincin superfamily. They are involved in both physiological and pathological tissue remodeling processes, including those associated with cancer progression. Stromelysin-3, which is expressed in most invasive human carcinomas, is a matrix metalloproteinase with unusual functional properties. In particular, its mature form does not cleave any of the major extracellular matrix components. To define critical structural determinants involved in controlling stromelysin-3 proteolytic activity, we have used site-directed mutagenesis. We show that the deletion of at least 175 C-terminal amino-acids is sufficient to endow mouse stromelysin-3 with activities against casein, laminin, and type IV collagen. In the case of the human enzyme, however, a further and single Ala-235-->Pro substitution is necessary to observe similar activities. Ala-235, which characterizes human stromelysin-3 among matrixins, is located immediately after the C terminus of the "Met-turn," which forms a hydrophobic basis for the catalytic zinc atom in the metzincin family. We conclude that human stromelysin-3 has gained specific functional properties during evolution by amino acid substitution in the catalytic zinc environment, and that it represents an attractive target for specific inhibitors that may be used to prevent cancer progression.
Javitt, Gabe; Ben-Barak-Zelas, Zohar; Jerabek-Willemsen, Moran; Fishman, Ayelet
2017-02-28
Microbial transglutaminase (mTG) is a robust enzyme catalyzing the formation of an isopeptide bond between glutamine and lysine residues. It has found use in food applications, pharmaceuticals, textiles, and biomedicine. Overexpression of soluble and active mTG in E. coli has been limited due to improper protein folding and requirement for proteolytic cleavage of the pro-domain. Furthermore, to integrate mTG more fully industrially and academically, thermostable and solvent-stable variants may be imperative. A novel expression system constitutively producing active mTG was designed. Wild-type (WT) mTG and a S2P variant had similar expression levels, comparable to previous studies. Kinetic constants were determined by a glutamate dehydrogenase-coupled assay, and the S2P variant showed an increased affinity and a doubled enzyme efficiency towards Z-Gln-Gly. The melting temperature (T m ) of the WT was determined by intrinsic fluorescence measurements to be 55.8 ± 0.1 °C and of the S2P variant to be 56.3 ± 0.4 °C and 45.5 ± 0.1 °C, showing a moderately different thermostability profile. Stability in water miscible organic solvents was determined for both the WT and S2P variant. Of the solvents tested, incubation of mTG in isopropanol for 24 h at 4 °C showed the strongest stabilizing effect with mTG retaining 61 and 72% activity for WT and S2P respectively in 70% isopropanol. Both enzymes also showed an increased initial activity in the presence of organic solvents with the highest activity increase in 40% DMSO. Nevertheless, both enzymes were inactivated in 70% of all organic solvents tested. A constitutive expression system of active mTG in E. coli without downstream proteolytic cleavage processing was used for overexpression and characterization. High throughput techniques for testing thermostability and kinetics were useful in streamlining analysis and could be used in the future for quickly identifying beneficial mutants. Hitherto untested thermostability and stability of mTG in organic solvents was evaluated, which can pave the way for use of the enzyme in novel applications and processes.
2011-09-01
Fbg αC 242-424. DNA for expressing Fbg αC 242-424 and FXIII A2 in Ecoli have been obtained from collaborators. Strategies for expressing and...the coming months. It will be important to 11 verify that the expressed FXIII A2 is active and that the Fbg αC 242-424 can serve as an effective...optimized. For the larger substrate Fbg αC 242-424, we will need to proteolytically digest the quenched kinetic samples with chymotrypsin prior to
Hadj Sassi, Abdessattar; Monteil, Julien; Sauvant, Patrick; Atgié, Claude
2012-12-01
Caveolin-3 (cav-3), which is involved in the regulation of signal transduction and vesicular trafficking, could interact with activin receptor IIB to inhibit myostatin (MSTN) activity and may therefore play a role in muscle development and hypertrophy. MSTN is a member of the transforming growth factor-β family, identified as a negative regulator of skeletal muscle mass. The expression of MSTN is fiber-type specific and the greatest amount of MSTN is present in fiber, which is composed of myosin heavy chain (MHC) type IIb. MSTN acts through the activin receptor IIB to activate smad2/3 which leads to an increase in gene transcription involved in muscle atrophy. Muscle hypertrophy is a consequence of two mechanisms: (1) the inhibition of proteolysis such as the calcium-dependent proteolytic system calpains and calpastatin and (2) an increase in protein synthesis through the Akt/mTOR/p70s6K pathway. In order to determine which of the two processes predominates in inhibition of MSTN activity in a cav-3 context, we transfected a C2C12 cell line with plasmids containing mstn or cav-3 wild genes. The results reported in this study demonstrate that inhibition of MSTN activity by overexpression of cav-3 induces an activation of protein synthesis rather than an inhibition of proteolysis through the calcium proteolytic system. The inhibition of phosphorylation of smad-3 due to overexpression of cav-3 causes an increase in the phosphorylation of the ribosomal protein S6, promoting the synthesis of MHC type II, probably through activation of Akt/mTOR/p70s6K. These data highlight the role of protein synthesis as the predominant mechanism in muscle hypertrophy observed when the expression of MSTN is altered and confirm the value of studying the physiological role of MSTN in the growing processes of skeletal muscle.
Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth
2014-01-01
Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization. PMID:25251406
Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio
2018-04-09
The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Lu, S; Halberg, R; Kroos, L
1990-01-01
During sporulation of the Gram-positive bacterium Bacillus subtilis, transcription of genes encoding spore coat proteins in the mother-cell compartment of the sporangium is controlled by RNA polymerase containing the sigma subunit called sigma K. Based on comparison of the N-terminal amino acid sequence of sigma K with the nucleotide sequence of the gene encoding sigma K (sigK), the primary product of sigK was inferred to be a pro-protein (pro-sigma K) with 20 extra amino acids at the N terminus. Using antibodies generated against pro-sigma K, we have detected pro-sigma K beginning at the third hour of sporulation and sigma K beginning about 1 hr later. Even when pro-sigma K is expressed artificially during growth and throughout sporulation, sigma K appears at the normal time and expression of a sigma K-controlled gene occurs normally. These results suggest that pro-sigma K is an inactive precursor that is proteolytically processed to active sigma K in a developmentally regulated fashion. Mutations that block forespore gene expression block accumulation of sigma K but not accumulation of pro-sigma K, suggesting that pro-sigma K processing is a regulatory device that couples the programs of gene expression in the two compartments of the sporangium. We propose that this regulatory device ensures completion of forespore morphogenesis prior to the synthesis in the mother-cell of spore coat proteins that will encase the forespore. Images PMID:2124700
Cheng, Chuen-Yu; Tu, Wei-Lin; Wang, Shih-Han; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Chen, Shuen-Ei; Huang, San-Yuan
2015-01-01
This study investigated global gene expression in the small yellow follicles (6-8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens.
Wang, Shih-Han; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Chen, Shuen-Ei; Huang, San-Yuan
2015-01-01
This study investigated global gene expression in the small yellow follicles (6–8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens. PMID:26587838
Pasten, Consuelo; Cerda, Joaquín; Jausoro, Ignacio; Court, Felipe A; Cáceres, Alfredo; Marzolo, Maria-Paz
2015-11-01
ApoER2 and its ligand Reelin participate in neuronal migration during development. Upon receptor binding, Reelin induces the proteolytic processing of ApoER2 as well as the activation of signaling pathway, including small Rho GTPases. Besides its presence in the central nervous system (CNS), Reelin is also secreted by Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS). Reelin deficient mice (reeler) show decreased axonal regeneration in the PNS; however neither the presence of ApoER2 nor the role of the Reelin signaling pathway in the PNS have been evaluated. Interestingly SC migration occurs during PNS development and during injury-induced regeneration and involves activation of small Rho GTPases. Thus, Reelin-ApoER2 might regulate SC migration during axon regeneration in the PNS. Here we demonstrate the presence of ApoER2 in PNS. After sciatic nerve injury Reelin was induced and its receptor ApoER2 was proteolytically processed. In vitro, SCs express both Reelin and ApoER2 and Reelin induces SC migration. To elucidate the molecular mechanism underlying Reelin-dependent SC migration, we examined the involvement of Rac1, a conspicuous small GTPase family member. FRET experiments revealed that Reelin activates Rac1 at the leading edge of SCs. In addition, Tiam1, a major Rac1-specific GEF was required for Reelin-induced SC migration. Moreover, Reelin-induced SC migration was decreased after suppression of the polarity protein PAR3, consistent with its association to Tiam1. Even more interesting, we demonstrated that PAR3 binds preferentially to the full-length cytoplasmic tail of ApoER2 corresponding to the splice-variant containing the exon 19 that encodes a proline-rich insert and that ApoER2 was required for SC migration. Our study reveals a novel function for Reelin/ApoER2 in PNS, inducing cell migration of SCs, a process relevant for PNS development and regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.
Oliveira, Simone Santiago Carvalho de; Gonçalves, Diego de Souza; Garcia-Gomes, Aline Dos Santos; Gonçalves, Inês Correa; Seabra, Sergio Henrique; Menna-Barreto, Rubem Figueiredo; Lopes, Angela Hampshire de Carvalho Santos; D'Avila-Levy, Claudia Masini; Santos, André Luis Souza Dos; Branquinha, Marta Helena
2017-01-01
A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato parasite Phytomonas serpens. Ultrastructural studies revealed that MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of trans Golgi network. This effect was correlated to the inhibition in processing of cruzipain-like molecules, which presented an increase in expression paralleled by decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase was detected in the parasite extract, the activity of which was repressed by pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting analyses revealed the differential expression of calpain-like proteins (CALPs) in response to the pre-incubation of parasites with the MDL28170, and confocal fluorescence microscopy confirmed their surface location. The interaction of promastigotes with explanted salivary glands of the insect Oncopeltus fasciatus was reduced when parasites were pre-treated with MDL28170, which was correlated to reduced levels of surface cruzipain-like and gp63-like molecules. Treatment of parasites with anti-Drosophila melanogaster (Dm) calpain antibody also decreased the adhesion process. Additionally, parasites recovered from the interaction process presented higher levels of surface cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive to anti-Dm-calpain antibody. The results confirm the importance of exploring the use of calpain inhibitors in studying parasites' physiology.
de Oliveira, Simone Santiago Carvalho; Gonçalves, Diego de Souza; Garcia-Gomes, Aline dos Santos; Gonçalves, Inês Correa; Seabra, Sergio Henrique; Menna-Barreto, Rubem Figueiredo; Lopes, Angela Hampshire de Carvalho Santos; D’Avila-Levy, Claudia Masini; dos Santos, André Luis Souza; Branquinha, Marta Helena
2016-01-01
A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato parasite Phytomonas serpens. Ultrastructural studies revealed that MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of trans Golgi network. This effect was correlated to the inhibition in processing of cruzipain-like molecules, which presented an increase in expression paralleled by decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase was detected in the parasite extract, the activity of which was repressed by pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting analyses revealed the differential expression of calpain-like proteins (CALPs) in response to the pre-incubation of parasites with the MDL28170, and confocal fluorescence microscopy confirmed their surface location. The interaction of promastigotes with explanted salivary glands of the insect Oncopeltus fasciatus was reduced when parasites were pre-treated with MDL28170, which was correlated to reduced levels of surface cruzipain-like and gp63-like molecules. Treatment of parasites with anti-Drosophila melanogaster (Dm) calpain antibody also decreased the adhesion process. Additionally, parasites recovered from the interaction process presented higher levels of surface cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive to anti-Dm-calpain antibody. The results confirm the importance of exploring the use of calpain inhibitors in studying parasites’ physiology. PMID:27925020
Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.
2010-01-01
Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542
Ectoenzymatic ratios in relation to particulate organic matter distribution (Ross Sea, Antarctica).
Misic, C; Povero, P; Fabiano, M
2002-10-01
The results of a study on ectoenzymatic activity (the enzyme activity bound to particles larger than 0.2 micro m) and its relation to organic particle concentration are reported here. The sampling was carried out during the 1994 Antarctic spring, at a fixed station (Station 11) in the polynya of the Ross Sea, an area characterized by quick changes in sea ice cover. The sampling was repeated 4 times over a 20-day time period. The particulate organic matter distribution followed the physical structure of the water column, which depends on ice dynamics and is mainly determined by salinity. In the mixed-water surface layer (0-50 m) the concentrations were higher (on average 65.6 micro gC/L) than in the deeper water layer (50 m-bottom) (on average 19.1 micro gC/L). This distribution and quality, expressed by the protein:carbohydrate ratio, linked the particulate organic matter to the phytoplanktonic bloom which was in progress in the area. We determined the kinetic parameters of the glycolytic and proteolytic ectoenzymes and also the total activity for the proteolytic enzyme, in order to evaluate the contribution of the particle-bound activity. We observed higher values in the surface layer than in the deeper layer. b-Glucosidase activity ranged between 0.03 and 0.92 nmol L(-1) h(-1); b-N-acetylglucosaminidase activity was in the range of 0.04-0.58 nmol (L-1) (h-1). The total proteolytic activity (leucine aminopeptidase) ranged between 0.85 and 33.71 nmol L(-1) (h-1). The ectoproteolytic activity was about 35-60% of the total. The Km values were slightly higher for the proteolytic activity (on average 0.43 micro M for ectoproteolytic activity and 0.58 micro M for total proteolytic activity) than for the b-glucosidase (on average 0.36 micro M) and b-N-acetylglucosaminidase (on average 0.17 micro M), showing no remarkable variations in the water column. The ectoenzymatic ratios and their relationship with particulate organic substrates confirm the close link between organic substrate availability and degradation system response. The significant and positive correlations are not specific and suggest a prompt and efficient systemic response to the input of trophic resources. Nevertheless, changes in ectoenzyme activity and synthesis may act as adaptive responses to changing features of the ecosystem. In particular, variations in the proteolysis:glycolysis ratio depend on the functional features of the ecological system. In our study area this ratio is higher (about 10 or more) during production (particularly autotrophic) and lower (about 5 or less) during degradation/consumption events. The analysis of previous data, collected over a larger area characterized by different environmental conditions due to the changes of the pack ice cover, during the same cruise, confirms the existence of a significant relationship. Furthermore, the analysis of enzyme-uptake systems, expressed as Vmax:Km ratio, suggests that glycolytic ectoenzymes, although poorly expressed, may encourage microconsumers to grow rapidly on a wide range of organic substrates, including the refractory ones such as cellulose and chitin. However, low ectoenzyme potential exploitation rates of available organic substrates (on average about 5% for glycolytic and 12% for proteolytic ectoenzymes) would suggest that, during spring, zooplankton grazing or vertical and lateral transport are likely to play an important role in the removal of organic materials from the system.
USDA-ARS?s Scientific Manuscript database
Effects of 17-estradiol (E2), testosterone, and 5a-dihydrotestosterone (DHT) on protein turnover and proteolytic gene expression were determined in rainbow trout (Oncorhynchus mykiss) primary myocytes and white muscle tissue. E2 reduced rates of protein synthesis and increased rates of protein degr...
1990-02-01
procaryotic systems (12. 45). Certain eucaryotic ically cleaved by a trypsin-like proteas: ito produce a recep- viruses are currently being explored as...19847. Proteolytic activation of anthrax toxin bound to cellular recep- ACKN()WEIX;NMNTS tor%.. p. 111-112. In F. Fehrenbach et al. ifed.). Bacterial
Zhang, Xuebin; Abrahan, Carolina; Colquhoun, Thomas A.; ...
2017-04-26
Flavonoids represent a large family of specialized metabolites involved in plant growth, development, and adaptation. Chalcone synthase (CHS) catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid metabolism to flavonoid pathway. Despite extensive characterization of its function and transcriptional regulation, the molecular basis governing its posttranslational modification is enigmatic. Here, we report the discovery of a proteolytic regulator of CHS, namely, KFB CHS, a Kelch domain-containing F-box protein in Arabidopsis thaliana. KFB CHS physically interacts with CHS and specifically mediates its ubiquitination and degradation. KFB CHS exhibits developmental expression patterns in Arabidopsis leaves, stems, andmore » siliques and strongly responds to the dark-to-light (or the light-to-dark) switch, the blue, red, and far-red light signals, and UV-B irradiation. Alteration of KFB CHS expression negatively correlates to the cellular concentration of CHS and the production of flavonoids. Our study suggests that KFB CHS serves as a crucial negative regulator, via mediating CHS degradation, coordinately controlling flavonoid biosynthesis in response to the developmental cues and environmental stimuli.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuebin; Abrahan, Carolina; Colquhoun, Thomas A.
Flavonoids represent a large family of specialized metabolites involved in plant growth, development, and adaptation. Chalcone synthase (CHS) catalyzes the first step of flavonoid biosynthesis by directing carbon flux from general phenylpropanoid metabolism to flavonoid pathway. Despite extensive characterization of its function and transcriptional regulation, the molecular basis governing its posttranslational modification is enigmatic. Here, we report the discovery of a proteolytic regulator of CHS, namely, KFB CHS, a Kelch domain-containing F-box protein in Arabidopsis thaliana. KFB CHS physically interacts with CHS and specifically mediates its ubiquitination and degradation. KFB CHS exhibits developmental expression patterns in Arabidopsis leaves, stems, andmore » siliques and strongly responds to the dark-to-light (or the light-to-dark) switch, the blue, red, and far-red light signals, and UV-B irradiation. Alteration of KFB CHS expression negatively correlates to the cellular concentration of CHS and the production of flavonoids. Our study suggests that KFB CHS serves as a crucial negative regulator, via mediating CHS degradation, coordinately controlling flavonoid biosynthesis in response to the developmental cues and environmental stimuli.« less
[Cell-derived microparticles unveil their fibrinolytic and proteolytic function].
Doeuvre, Loïc; Angles-Cano, Eduardo
2009-01-01
Cell-derived microparticles (MP) are membrane microvesicles, 0.1-1 microm in size, shed by cells following activation or during apoptosis in a variety of pathological conditions. MPs released by blood cells or by vascular endothelial cells display molecular signatures that allow their identification and functional characterization. In addition, they provide tissue factor (TF) and a procoagulant phospholipid surface. Therefore, at present, the most strongly established applied research on MPs is their procoagulant activity as a determinant of thrombotic risk in various clinical conditions. Previous studies have indicated that MPs derived from malignant cells express matrix metalloproteinases, urokinase and its receptor (uPA/uPAR) that, in the presence of plasminogen, may act in concert to degrade extracellular matrix proteins. Recently, it was shown that MPs from TNFa-stimulated endothelial cells served as a surface for interaction with plasminogen and its conversion into plasmin by the uPA/uPAR system expressed at their surface. This capacity of MPs to promote plasmin generation confers them a new profibrinolytic and proteolytic function that may be of relevance in fibrinolysis, cell migration, angiogenesis, dissemination of malignant cells, cell detachment and apoptosis.
Srp, Jaroslav; Nussbaumerová, Martina; Horn, Martin; Mareš, Michael
2016-11-01
The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major pest of potato plants, and its digestive system is a promising target for development of pest control strategies. This work focuses on functional proteomic analysis of the digestive proteolytic enzymes expressed in the CPB gut. We identified a set of peptidases using imaging with specific activity-based probes and activity profiling with selective substrates and inhibitors. The secreted luminal peptidases were classified as: (i) endopeptidases of cathepsin D, cathepsin L, and trypsin types and (ii) exopeptidases with aminopeptidase (cathepsin H), carboxypeptidase (serine carboxypeptidase, prolyl carboxypeptidase), and carboxydipeptidase (cathepsin B) activities. The proteolytic arsenal also includes non-luminal peptidases with prolyl oligopeptidase and metalloaminopeptidase activities. Our results indicate that the CPB gut employs a multienzyme network of peptidases with complementary specificities to efficiently degrade ingested proteins. This proteolytic system functions in both CPB larvae and adults and is controlled mainly by cysteine and aspartic peptidases and supported by serine and metallopeptidases. The component enzymes identified here are potential targets for inhibitors with tailored specificities that could be engineered into potato plants to confer resistance to CPB. Copyright © 2016 Elsevier Ltd. All rights reserved.
Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara-Nishimura, I.; Nishimura, M.
1987-10-01
The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with (/sup 35/S)methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, ..gamma.. and delta. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin bymore » the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg/sup 2 +/, and Cu/sup 2 +/, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.« less
Glycosylation and Processing of Pro-B-type Natriuretic Peptide in Cardiomyocytes
Peng, Jianhao; Jiang, Jingjing; Wang, Wei; Qi, Xiaofei; Sun, Xue-Long; Wu, Qingyu
2011-01-01
B-type natriuretic peptide (BNP) and its related peptides are biomarkers for the diagnosis of heart failure. Recent studies identified several O-glycosylation sites, including Thr-71, on human pro-BNP but the functional significance was unclear. In this study, we analyzed glycosylation and proteolytic processing of pro-BNP in cardiomyocytes. Human pro-BNP wild-type (WT) and mutants were expressed in HEK 293 cells and murine HL-1 cardiomyocytes. Pro-BNP and BNP were analyzed by immunoprecipitation and Western blotting. Glycosidases and glycosylation inhibitors were used to examine carbohydrates on pro-BNP. The effects of furin and corin expression on pro-BNP processing in cells also were examined. We found that in HEK 293 cells, recombinant pro-BNP contained significant amounts of O-glycans with terminal oligosialic acids. Mutation at Thr-71 reduced O-glycans on pro-BNP and increased pro-BNP processing. In HL-1 cardiomyocytes, residue Thr-71 contained little O-glycans, and pro-BNP WT and T71A mutant were processed similarly. In HEK 293 cells, pro-BNP was processed by furin. Mutations at Arg-73 and Arg-76, but not Lys-79, prevented pro-BNP processing. In HL-1 cardiomyocytes, which express furin and corin, single or double mutations at Arg-73, Arg-76 and Lys-79 did not prevent pro-BNP processing. Only when all these three residues were mutated, was pro-BNP processing completely blocked. Our data indicate that pro-BNP glycosylation in cardiomyocytes differed significantly from that in HEK 293 cells. In HEK 293 cells, furin cleaved pro-BNP at Arg-76 whereas in cardiomyocytes corin cleaved pro-BNP at multiple residues including Arg-73, Arg-76 and Lys-79. PMID:21763278
Shaw, Maureen A.; Kombrinck, Keith W.; McElhinney, Kathryn E.; Sweet, David R.; Flick, Matthew J.; Palumbo, Joseph S.; Cheng, Mei; Esmon, Naomi L.; Esmon, Charles T.; Brill, Alexander; Wagner, Denisa D.; Degen, Jay L.
2016-01-01
Thrombin-mediated proteolysis is central to hemostatic function but also plays a prominent role in multiple disease processes. The proteolytic conversion of fII to α-thrombin (fIIa) by the prothrombinase complex occurs through 2 parallel pathways: (1) the inactive intermediate, prethrombin; or (2) the proteolytically active intermediate, meizothrombin (fIIaMZ). FIIaMZ has distinct catalytic properties relative to fIIa, including diminished fibrinogen cleavage and increased protein C activation. Thus, fII activation may differentially influence hemostasis and disease depending on the pathway of activation. To determine the in vivo physiologic and pathologic consequences of restricting thrombin generation to fIIaMZ, mutations were introduced into the endogenous fII gene, resulting in expression of prothrombin carrying 3 amino acid substitutions (R157A, R268A, and K281A) to limit activation events to yield only fIIaMZ. Homozygous fIIMZ mice are viable, express fII levels comparable with fIIWT mice, and have reproductive success. Although in vitro studies revealed delayed generation of fIIaMZ enzyme activity, platelet aggregation by fIIMZ is similar to fIIWT. Consistent with prior analyses of human fIIaMZ, significant prolongation of clotting times was observed for fIIMZ plasma. Adult fIIMZ animals displayed significantly compromised hemostasis in tail bleeding assays, but did not demonstrate overt bleeding. More notably, fIIMZ mice had 2 significant phenotypic advantages over fIIWT animals: protection from occlusive thrombosis after arterial injury and markedly diminished metastatic potential in a setting of experimental tumor metastasis to the lung. Thus, these novel animals will provide a valuable tool to assess the role of both fIIa and fIIaMZ in vivo. PMID:27252233
Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis
Lee, Sang Eun; Jeong, Se Kyoo
2010-01-01
Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD. PMID:20879045
Gardner, Amanda E.; Martin, Kimberly L.; Dutch, Rebecca E.
2008-01-01
Paramyxoviruses are a diverse family which utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of F are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30°C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30°C and 37°C, indicating this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F [Yin, H.S., et al. (2006) Nature 439, 38–44] indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from across this important viral family, and can also modulate subsequent membrane fusion promotion. PMID:17417875
Beaufort, Nathalie; Leduc, Dominique; Eguchi, Hiroshi; Mengele, Karin; Hellmann, Daniela; Masegi, Tsukio; Kamimura, Takashi; Yasuoka, Susumu; Fend, Falko; Chignard, Michel; Pidard, Dominique
2007-05-01
The human airway trypsin-like protease (HAT) is a respiratory epithelium-associated, type II transmembrane serine protease, which is also detected as an extracellular enzyme in lung fluids during airway inflammatory disorders. We have evaluated its capacity to affect the urokinase-type plasminogen activator receptor (uPAR), a membrane glycolipid-anchored, three-domain (D1D2D3) glycoprotein that plays a crucial role in innate immunity and inflammation by supporting cell migration and matrix degradation, with structure and biological properties that can be regulated via limited endoproteolysis. With the use of immunoblotting, flow immunocytometry, and ELISA analyses applied to a recombinant uPAR protein and to uPAR-expressing monocytic and human bronchial epithelial cells, it was shown that exposure of uPAR to soluble HAT in the range of 10-500 nM resulted in the proteolytic processing of the full-length (D1D2D3) into the truncated (D2D3) species, with cleavage occurring in the D1 to D2 linker sequence after arginine residues at position 83 and 89. Using immunohistochemistry, we found that both HAT and uPAR were expressed in the human bronchial epithelium. Moreover, transient cotransfection in epithelial cells showed that membrane coexpression of the two partners produced a constitutive and extensive shedding of the D1 domain, occurring for membrane-associated HAT concentrations in the nanomolar range. Because the truncated receptor was found to be unable to bind two of the major uPAR ligands, the adhesive matrix protein vitronectin and the serine protease urokinase, it thus appears that proteolytic regulation of uPAR by HAT is likely to modulate cell adherence and motility, as well as tissue remodeling during the inflammatory response in the airways.
Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E
2017-01-01
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. Copyright © 2017 by the Endocrine Society.
Puttabyatappa, Muraly; Al-Alem, Linah F.; Zakerkish, Farnosh; Rosewell, Katherine L.; Brännström, Mats
2017-01-01
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. PMID:27813674
Ubiquitin and Proteasomes in Transcription
Geng, Fuqiang; Wenzel, Sabine; Tansey, William P.
2013-01-01
Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription—from transcription initiation through to export of mRNA from the nucleus—is influenced by the UPS and that all major arms of the system—from the first step in ubiquitin (Ub) conjugation through to the proteasome—are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power. PMID:22404630
Sharma, Suresh D.; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R.; Kumar, Ganesh K.
2009-01-01
Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the α-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O2-sensitive peptidylglycine α-hydroxylating monooxygenase (PHM) and peptidyl-α-hydroxyglycine α-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O2 for 15 s followed by 21% O2 for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of α-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM (∼1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases Vmax but has no effect on Km. IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem. PMID:18818385
Sharma, Suresh D; Raghuraman, Gayatri; Lee, Myeong-Seon; Prabhakar, Nanduri R; Kumar, Ganesh K
2009-01-01
Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the alpha-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O(2)-sensitive peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O(2) for 15 s followed by 21% O(2) for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of alpha-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM ( approximately 1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases V(max) but has no effect on K(m). IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem.
Kim, Kwang Soon; Jin, Dong Bin; Ahn, So Shin; Park, Ki Seok; Seo, Sang Hwan; Suh, You Suk; Sung, Young Chul
2010-08-01
HIV protease (PR) mediates the processing of human immunodeficiency virus (HIV) polyproteins and is necessary for the viral production. Recently, HIV PR was shown to possess both cytotoxic and chaperone like activity. We demonstrate here that HIV PR can serve as a genetic adjuvant that enhances the HIV Env and human papillomavirus (HPV) DNA vaccine-induced T-cell response in a dose-dependent manner, only when codelivered with DNA vaccine. Interestingly, the T-cell adjuvant effects of HIV PR were increased by introducing several mutations that inhibited its proteolytic activity, indicating that the adjuvant properties were inversely correlated with its proteolytic activity. Conversely, the introduction of a mutation in the flap region of HIV PR limiting the access to the core domain of HIV PR inhibited the T-cell adjuvant effect, suggesting that the HIV PR chaperone like activity may play a role in mediating T-cell adjuvant properties. A similar adjuvant effect was also observed in adenovirus vaccine, indicating vaccine type independency. These findings suggest that HIV PR can modulate T-cell responses elicited by a gene-based vaccine positively by inherent chaperone like activity and negatively by its proteolytic activity.
Cam, Judy A; Zerbinatti, Celina V; Li, Yonghe; Bu, Guojun
2005-04-15
The low density lipoprotein receptor-related protein (LRP) is a approximately 600-kDa multifunctional endocytic receptor that is highly expressed in the brain. LRP and its ligands apolipoprotein E, alpha2-macroglobulin, and beta-amyloid precursor protein (APP), are genetically linked to Alzheimer disease and are found in characteristic plaque deposits in brains of patients with Alzheimer disease. To identify which extracellular domains of LRP interact with APP, we used minireceptors of each of the individual LRP ligand binding domains and assessed their ability to bind and degrade a soluble APP fragment. LRP minireceptors containing ligand binding domains II and IV, but not I or III, interacted with APP. To test whether APP trafficking is directly related to the rapid endocytosis of LRP, we generated stable Chinese hamster ovary cell lines expressing either a wild-type LRP minireceptor or its endocytosis mutants. Chinese hamster ovary cells stably expressing wild-type LRP minireceptor had less cell surface APP than pcDNA3 vector-transfected cells, whereas those stably expressing endocytosis-defective LRP minireceptors accumulated APP at the cell surface. We also found that the steady-state levels of the amyloid beta-peptides (Abeta) is dictated by the relative expression levels of APP and LRP, probably reflecting the dual roles of LRP in both Abeta production and clearance. Together, these data establish a relationship between LRP rapid endocytosis and APP trafficking and proteolytic processing to generate Abeta.
Effects of processing and in vitro proteolytic digestion on soybean and yambean hemagglutinins.
Ojimelukwe, P C; Onuoha, C C; Obanu, Z A
1995-06-01
Some conventional processing methods were applied on yambean and soybean seeds and flour samples. They include soaking fermentation, cooking whole seeds in the presence and absence of trona, autoclaving and dry heat treatment of flour samples. Hemagglutinating activity was assayed for after processing treatments. The hemagglutinating proteins from these seeds were classified based on their solubility properties. Effects of the presence of 0.01% concentration of trypsin, pepsin and proteases on agglutination of human red blood cells were also evaluated. Most processing methods, particularly cooking whole seeds for 1-2 h, soaking and fermentation, reduced hemagglutinating activity on cow red blood cells. Size reduction accompanied by heat treatment was effective in eliminating hemagglutination. Both the albumin and globulin fractions of the soybean showed hemagglutinating activity but only the albumin fraction of the yambean had agglutinating properties. Proteolytic action of proteases was more effective in reduction of hemagglutinating activity than that of trypsin and pepsin.
Dynamic survey of mitochondria by ubiquitin
Escobar-Henriques, Mafalda; Langer, Thomas
2014-01-01
Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria. PMID:24569520
Wyss, C; Moter, A; Choi, B-K; Dewhirst, F E; Xue, Yi; Schüpbach, P; Göbel, U B; Paster, B J; Guggenheim, B
2004-07-01
So far, little phenotypic heterogeneity has been detected in cultured oral treponemes with trypsin-like proteolytic activity, and all have been assigned to the species Treponema denticola. However, comparisons of protein patterns and antigen expression in our collection of proteolytic oral treponemes occasionally identified isolates with a unique phenotype; e.g. strain OMZ 830 (=ATCC 700768), which qualified as a 'pathogen-related oral spirochaete' due to the presence of a approximately 37 kDa protein reactive with the Treponema pallidum FlaA-specific mAb H9-2. In addition to such single isolates, a homogeneous group of seven independent strains is described that were highly motile, medium-sized, proteolytic but asaccharolytic spirochaetes and were cultured from human gingivitis, periodontitis and acute necrotizing ulcerative gingivitis in medium OMIZ-Pat supplemented with 1% human serum and antibiotics. Growth of these spirochaetes in OMIZ-Pat was not dependent on, but was stimulated by, human or bovine serum. Carbohydrates were neither required nor stimulatory for growth. The protein and antigen patterns of total cell extracts of these organisms separated by SDS-PAGE were distinct from those of all previously cultured spirochaetes, with highest similarity to T. denticola. The novel spirochaete has a 2 : 4 : 2 arrangement of the periplasmic flagella, similar to T. denticola. However, the flagellin pattern as detected by immunostaining or glycan staining of Western blots readily distinguished the novel group from T. denticola. Also, distinct from reference strains of T. denticola, none of the novel isolates displayed sialidase or dentilisin activities, both of which are expressed by most strains of T. denticola. Trypsin-like activity and other enzymes as detected by API ZYM test were similar to those of T. denticola. The status of a novel species is supported by the 16S rRNA gene sequence, with 98.5% similarity to its closest cultured relative, T. denticola. The name Treponema putidum sp. nov. is proposed (type strain OMZ 758T=ATCC 700334T=CIP 108088T).
Lü, Fan; Bize, Ariane; Guillot, Alain; Monnet, Véronique; Madigou, Céline; Chapleur, Olivier; Mazéas, Laurent; He, Pinjing; Bouchez, Théodore
2014-01-01
Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially. PMID:23949661
Lü, Fan; Bize, Ariane; Guillot, Alain; Monnet, Véronique; Madigou, Céline; Chapleur, Olivier; Mazéas, Laurent; He, Pinjing; Bouchez, Théodore
2014-01-01
Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially.
Abaturov, L V; Nosova, N G
2007-01-01
The studies by IR spectroscopy of the temperature dependence of the H-D exchange rate of the RNase A peptide NH atoms permit one to characterize two types of conformation fluctuations, local and global. A comparison with the temperature dependence of the proteolytic degradation rate of RNase A shows that similar in nature fluctuations allow for the H-D exchange of NH atoms and the splitting of peptide bonds of the native protein. In the low temperature region, both processes occur through local fluctuations, by way of the EX2 mechanism, and in the high temperature region, they occur through global fluctuations with the overall denaturation desorganization of the native structure, by way of the EX1 mechanism. The biphasic dependence of the rate of H-D exchange and proteolytic degradation of RNase A on urea concentration is also explained by the combination of local and global fluctuations.
Method for increasing thermostability in cellulase ennzymes
Adney, William S.; Thomas, Steven R.; Baker, John O.; Himmel, Michael E.; Chou, Yat-Chen
1998-01-01
The gene encoding Acidothermus cellulolyticus E1 endoglucanase is cloned and expressed in Pichia pastoris. A new modified E1 endoglucanase enzyme comprising the catalytic domain of the full size E1 enzyme demonstrates enhanced thermostability and is produced by two methods. The first method of producing the new modified E1 is proteolytic cleavage to remove the cellulose binding domain and linker peptide of the full size E1. The second method of producing the new modified E1 is genetic truncation of the gene encoding the full size E1 so that the catalytic domain is expressed in the expression product.
Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly
Plakke, Melissa S.; Deutsch, Aaron B.; Meslin, Camille; Clark, Nathan L.; Morehouse, Nathan I.
2015-01-01
ABSTRACT Reproductive traits experience high levels of selection because of their direct ties to fitness, often resulting in rapid adaptive evolution. Much of the work in this area has focused on male reproductive traits. However, a more comprehensive understanding of female reproductive adaptations and their relationship to male characters is crucial to uncover the relative roles of sexual cooperation and conflict in driving co-evolutionary dynamics between the sexes. We focus on the physiology of a complex female reproductive adaptation in butterflies and moths: a stomach-like organ in the female reproductive tract called the bursa copulatrix that digests the male ejaculate (spermatophore). Little is known about how the bursa digests the spermatophore. We characterized bursa proteolytic capacity in relation to female state in the polyandrous butterfly Pieris rapae. We found that the virgin bursa exhibits extremely high levels of proteolytic activity. Furthermore, in virgin females, bursal proteolytic capacity increases with time since eclosion and ambient temperature, but is not sensitive to the pre-mating social environment. Post copulation, bursal proteolytic activity decreases rapidly before rebounding toward the end of a mating cycle, suggesting active female regulation of proteolysis and/or potential quenching of proteolysis by male ejaculate constituents. Using transcriptomic and proteomic approaches, we report identities for nine proteases actively transcribed by bursal tissue and/or expressed in the bursal lumen that may contribute to observed bursal proteolysis. We discuss how these dynamic physiological characteristics may function as female adaptations resulting from sexual conflict over female remating rate in this polyandrous butterfly. PMID:25994634
Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu
2014-01-01
Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904
Plant Viral Proteases: Beyond the Role of Peptide Cutters
Rodamilans, Bernardo; Shan, Hongying; Pasin, Fabio; García, Juan Antonio
2018-01-01
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases
Theodorou, K.
2017-01-01
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity. PMID:28260841
Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endsley, Mark A., E-mail: maendsle@utmb.edu; Somasunderam, Anoma D., E-mail: asomasun@utmb.edu; Li, Guangyu, E-mail: LIG001@mail.etsu.edu
Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizesmore » with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.« less
Shivalingu, B R; Vivek, H K; Nafeesa, Zohara; Priya, B S; Swamy, S Nanjunda
2015-08-22
Turmeric rhizome is a traditional herbal medicine, which has been widely used as a remedy to stop bleeding on fresh cuts and for wound healing by the rural and tribal population of India. To validate scientific and therapeutic application of turmeric rhizomes to stop bleeding on fresh cuts and its role in wound healing process. The water extracts of thoroughly scrubbed and washed turmeric rhizomes viz., Curcuma aromatica Salisb., Curcuma longa L., Curcuma caesia Roxb., Curcuma amada Roxb. and Curcuma zedoria (Christm.) Roscoe. were subjected to salting out and dialysis. The dialyzed crude enzyme fractions (CEFs) were assessed for proteolytic activity using casein as substrate and were also confirmed by caseinolytic zymography. Its coagulant activity and fibrinogenolytic activity were assessed using human citrated plasma and fibrinogen, respectively. The type of protease(s) in CEFs was confirmed by inhibition studies using specific protease inhibitors. The CEFs of C. aromatica, C. longa and C. caesia showed 1.89, 1.21 and 1.07 folds higher proteolytic activity, respectively, compared to papain. In contrast to these, C. amada and C. zedoria exhibited moderate proteolytic activity. CEFs showed low proteolytic activities compared to trypsin. The proteolytic activities of CEFs were confirmed by caseinolytic zymography. The CEFs of C. aromatica, C. longa and C. caesia showed complete hydrolysis of Aα, Bβ and γ subunits of human fibrinogen, while C. amada and C. zedoria showed partial hydrolysis. The CEFs viz., C. aromatica, C. longa, C. caesia, C. amada and C. zedoria exhibited strong procoagulant activity by reducing the human plasma clotting time from 172s (Control) to 66s, 84s 88s, 78s and 90s, respectively. The proteolytic activity of C. aromatica, C. longa, C. caesia and C. amada was inhibited (>82%) by PMSF, suggesting the possible presence of a serine protease(s). However, C. zedoria showed significant inhibition (60%) against IAA and moderate inhibition (30%) against PMSF, indicating the presence of cysteine and serine protease(s). The CEFs of turmeric species exhibited strong procoagulant activity associated with fibrinogenolytic activity. This study provides the scientific credence to turmeric in its propensity to stop bleeding and wound healing process practiced by traditional Indian medicine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Grimm, Marcus O. W.; Grösgen, Sven; Rothhaar, Tatjana L.; Burg, Verena K.; Hundsdörfer, Benjamin; Haupenthal, Viola J.; Friess, Petra; Müller, Ulrike; Fassbender, Klaus; Riemenschneider, Matthias; Grimm, Heike S.; Hartmann, Tobias
2011-01-01
Lipids play an important role as risk or protective factors in Alzheimer's disease (AD), a disease biochemically characterized by the accumulation of amyloid beta peptides (Aβ), released by proteolytic processing of the amyloid precursor protein (APP). Changes in sphingolipid metabolism have been associated to the development of AD. The key enzyme in sphingolipid de novo synthesis is serine-palmitoyl-CoA transferase (SPT). In the present study we identified a new physiological function of APP in sphingolipid synthesis. The APP intracellular domain (AICD) was found to decrease the expression of the SPT subunit SPTLC2, the catalytic subunit of the SPT heterodimer, resulting in that decreased SPT activity. AICD function was dependent on Fe65 and SPTLC2 levels are increased in APP knock-in mice missing a functional AICD domain. SPTLC2 levels are also increased in familial and sporadic AD postmortem brains, suggesting that SPT is involved in AD pathology. PMID:21660213
Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha
2017-02-14
Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Poliovirus replication proteins: RNA sequence encoding P3-1b and the sites of proteolytic processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semler, B.L.; Anderson, C.W.; Kitamura, N.
1981-06-01
A partial amino-terminal amino acid sequence of each of the major proteins encoded by the replicase region of the poliovirus genome has been determined. A comparison of this sequence information with the amino acid sequence predicted from the RNA sequence that has been determined for the 3' region of the poliovirus genome has allowed us to locate precisely the proteolytic cleavage sites at which the initial polyprotein is processed to create the poliovirus products P3-1b (NCVP1b), P3-2 (NCVP2), P3-4b (NCVP4b), and P3-7c (NCVP7c). For each of these products, as well as for the small genome-linked protein VPg, proteolytic cleavage occursmore » between a glutamine and a glycine residue to create the amino terminus of each protein. This result suggests that a single proteinase may be responsible for all of these cleavages. The sequence data also allow the precise positioning of the genome-linked protein VPg within the precursor P3-1b just proximal to the amino terminus of polypeptide P3-2.« less
Petrova, Inna; Tolstorebrov, Ignat; Mora, Leticia; Toldrá, Fidel; Eikevik, Trygve Magne
2016-11-01
Proteolytic activity and physico-chemical characteristics were studied for Norwegian dry-cured ham at four different times of processing: raw hams, post-salted hams (3 months of processing), hams selected in the middle of the production (12 months of processing) and hams at the end of the processing (24 months). Cathepsin H activity decreased until negligible values after 3 months of processing, whereas cathepsins B and B+L were inactive at 12 months. AAP was the most active aminopeptidase whereas RAP and MAP were active just during the first 12 months of processing. Proteolysis index reached a value of 4.56±1.03 % with non-significant differences between 12 and 24 months of ripening. Peptide identification by LC-MS/MS was done and two peptides (GVEEPPKGHKGNKK and QAISNNKDQGSY) showing a linear response with the time of processing were found. Unfreezable water content and glass transition temperature were investigated using differential scanning calorimetry (DSC) technique with non-significant differences in the temperature of glass transition for 12 and 24 months of processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Busek, P; Stremenová, J; Krepela, E; Sedo, A
2008-01-01
Dipeptidyl peptidase-IV (DPP-IV, CD26) is a serine protease almost ubiquitously expressed on cell surface and present in body fluids. DPP-IV has been suggested to proteolytically modify a number of biologically active peptides including substance P (SP) and the chemokine stromal cell derived factor-1alpha (SDF-1alpha, CXCL12). SP and SDF-1alpha have been implicated in the regulation of multiple biological processes and also induce responses that may be relevant for glioma progression. Both SP and SDF-1alpha are signaling through cell surface receptors and use intracellular calcium as a second messenger. The effect of DPP-IV on intracellular calcium mobilization mediated by SP and SDF-1alpha was monitored in suspension of wild type U373 and DPP-IV transfected U373DPPIV glioma cells using indicator FURA-2. Nanomolar concentrations of SP triggered a transient dose dependent increase in intracellular calcium rendering the cells refractory to repeated stimulation, while SDF-1 had no measurable effect. SP signaling in DPP-IV overexpressing U373DPPIV cells was not substantially different from that in wild type cells. However, preincubation of SP with the DPP-IV overexpressing cells lead to the loss of its signaling potential, which could be prevented with DPP-IV inhibitors. Taken together, DPP-IV may proteolytically inactivate local mediators involved in gliomagenesis.
Pepinsky, Blake; Gong, Bang-Jian; Gao, Yan; Lehmann, Andreas; Ferrant, Janine; Amatucci, Joseph; Sun, Yaping; Bush, Martin; Walz, Thomas; Pederson, Nels; Cameron, Thomas; Wen, Dingyi
2017-08-22
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β (TGF-β) family, plays diverse roles in mammalian development. It is synthesized as a large, inactive precursor protein containing a prodomain, pro-GDF11, and exists as a homodimer. Activation requires two proteolytic processing steps that release the prodomains and transform latent pro-GDF11 into active mature GDF11. In studying proteolytic activation in vitro, we discovered that a 6-kDa prodomain peptide containing residues 60-114, PDP 60-114 , remained associated with the mature growth factor. Whereas the full-length prodomain of GDF11 is a functional antagonist, PDP 60-114 had no impact on activity. The specific activity of the GDF11/PDP 60-114 complex (EC 50 = 1 nM) in a SMAD2/3 reporter assay was identical to that of mature GDF11 alone. PDP 60-114 improved the solubility of mature GDF11 at neutral pH. As the growth factor normally aggregates/precipitates at neutral pH, PDP 60-114 can be used as a solubility-enhancing formulation. Expression of two engineered constructs with PDP 60-114 genetically fused to the mature domain of GDF11 through a 2x or 3x G4S linker produced soluble monomeric products that could be dimerized through redox reactions. The construct with a 3x G4S linker retained 10% activity (EC 50 = 10 nM), whereas the construct connected with a 2x G4S linker could only be activated (EC 50 = 2 nM) by protease treatment. Complex formation with PDP 60-114 represents a new strategy for stabilizing GDF11 in an active state that may translate to other members of the TGF-β family that form latent pro/mature domain complexes.
Deficient Differentiation of Mast Cells in the Skin of mi/mi Mice
Kasugai, Tsutomu; Oguri, Kayoko; Jippo-Kanemoto, Tomoko; Morimoto, Masahiro; Yamatodani, Atsushi; Yoshida, Keiichi; Ebi, Yoshitaka; Isozaki, Koji; Tei, Hideki; Tsujimura, Tohru; Nomura, Shintaro; Okayama, Minoru; Kitamura, Yukihiko
1993-01-01
The staining property of skin mast cells changed from Alcian blue+/berberine sulfate- to Alcian blue +/berberine sulfate+ in the skin of normal (+/+) and Wv/Wv mice. In contrast, this change did not occur in the skin of mi/mi mice. Heparin content and histamine content per a mi/mi skin mast cell were estimated to be 34% and 18% those of a +/+ skin mast cell, respectively. The low heparin content of mi/mi skin mast cells seemed to be consistent with the Alcian blue+/berberine sulfate- staining property. Expression of genes encoding mast cell-specific proteolytic enzymes was examined by Northern blotting and in situ hybridization. Messenger RNA of mast cell carboxypeptidase A was expressed most of all by +/+, WV Wv/W+ and mi/mi skin mast cells, but mRNA of mouse mast cell protease (MMCP)-6 was expressed by approximately a half of +/+ and Wv/Wv skin mast cells and by only 3% of mi/mi skin mast cells. A significant amount of MMCP-2 mRNA was not expressed in the skin of all +/+, Wv/Wv and mi/mi mice. This shows the presence of at least three phenotypes in skin mast cells of mice: berberine sulfate+/MMCP-6+, berberine sulfate+/MMCP-6-, and berberine sulfate-/ MMCP-6-. The in situ hybridization of mRNA of mast cell-specific proteolytic enzymes seemed to be useful to describe abnormalities of mast cell differentiation in the skin of mi/mi mice. ImagesFigure 4Figure 5 PMID:8238251
Characterization of a novel ADAM protease expressed by Pneumocystis carinii.
Kennedy, Cassie C; Kottom, Theodore J; Limper, Andrew H
2009-08-01
Pneumocystis species are opportunistic fungal pathogens that cause severe pneumonia in immunocompromised hosts. Recent evidence has suggested that unidentified proteases are involved in Pneumocystis life cycle regulation. Proteolytically active ADAM (named for "a disintegrin and metalloprotease") family molecules have been identified in some fungal organisms, such as Aspergillus fumigatus and Schizosaccharomyces pombe, and some have been shown to participate in life cycle regulation. Accordingly, we sought to characterize ADAM-like molecules in the fungal opportunistic pathogen, Pneumocystis carinii (PcADAM). After an in silico search of the P. carinii genomic sequencing project identified a 329-bp partial sequence with homology to known ADAM proteins, the full-length PcADAM sequence was obtained by PCR extension cloning, yielding a final coding sequence of 1,650 bp. Sequence analysis detected the presence of a typical ADAM catalytic active site (HEXXHXXGXXHD). Expression of PcADAM over the Pneumocystis life cycle was analyzed by Northern blot. Southern and contour-clamped homogenous electronic field blot analysis demonstrated its presence in the P. carinii genome. Expression of PcADAM was observed to be increased in Pneumocystis cysts compared to trophic forms. The full-length gene was subsequently cloned and heterologously expressed in Saccharomyces cerevisiae. Purified PcADAMp protein was proteolytically active in casein zymography, requiring divalent zinc. Furthermore, native PcADAMp extracted directly from freshly isolated Pneumocystis organisms also exhibited protease activity. This is the first report of protease activity attributable to a specific, characterized protein in the clinically important opportunistic fungal pathogen Pneumocystis.
Petersen, Lauren M.
2014-01-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493
2011-01-01
Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089
Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette
2012-07-01
Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Grimm, Marcus O. W.; Mett, Janine; Stahlmann, Christoph P.; Grösgen, Sven; Haupenthal, Viola J.; Blümel, Tamara; Hundsdörfer, Benjamin; Zimmer, Valerie C.; Mylonas, Nadine T.; Tanila, Heikki; Müller, Ulrike; Grimm, Heike S.; Hartmann, Tobias
2015-01-01
Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation. Neprilysin (NEP) is one of the major enzymes involved in Aβ degradation. Here we investigate the molecular mechanism of NEP regulation, which is up to now controversially discussed to be affected by APP processing itself. We found that NEP expression is highly dependent on the APP intracellular domain (AICD), released by APP processing. Mouse embryonic fibroblasts devoid of APP processing, either by the lack of the catalytically active subunit of the γ-secretase complex [presenilin (PS) 1/2] or by the lack of APP and the APP-like protein 2 (APLP2), showed a decreased NEP expression, activity and protein level. Similar results were obtained by utilizing cells lacking a functional AICD domain (APPΔCT15) or expressing mutations in the genes encoding for PS1. AICD supplementation or retransfection with an AICD encoding plasmid could rescue the down-regulation of NEP further strengthening the link between AICD and transcriptional NEP regulation, in which Fe65 acts as an important adaptor protein. Especially AICD generated by the amyloidogenic pathway seems to be more involved in the regulation of NEP expression. In line, analysis of NEP gene expression in vivo in six transgenic AD mouse models (APP and APLP2 single knock-outs, APP/APLP2 double knock-out, APP-swedish, APP-swedish/PS1Δexon9, and APPΔCT15) confirmed the results obtained in cell culture. In summary, in the present study we clearly demonstrate an AICD-dependent regulation of the Aβ-degrading enzyme NEP in vitro and in vivo and elucidate the underlying mechanisms that might be beneficial to develop new therapeutic strategies for the treatment of AD. PMID:26074811
Fernandez, Carlos J.; Haugwitz, Michael; Eaton, Benjamin; Moore, Hsiao-Ping H.
1997-01-01
The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse–chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20°C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from ISGs is impaired by BFA, proteolytic processing of POMC within this organelle proceeds unaffected. The finding that BFA impairs constitutive secretion from both the TGN and ISGs also suggests that these secretory processes may be related in mechanism. Finally, our data indicate that the unusually high levels of unregulated secretion often associated with endocrine tumors may result, at least in part, from inefficient storage of secretory products at the level of ISGs. PMID:9362061
Fernandez, C J; Haugwitz, M; Eaton, B; Moore, H P
1997-11-01
The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse-chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20 degrees C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from ISGs is impaired by BFA, proteolytic processing of POMC within this organelle proceeds unaffected. The finding that BFA impairs constitutive secretion from both the TGN and ISGs also suggests that these secretory processes may be related in mechanism. Finally, our data indicate that the unusually high levels of unregulated secretion often associated with endocrine tumors may result, at least in part, from inefficient storage of secretory products at the level of ISGs.
Processing, distribution, and function of VGF, a neuronal and endocrine peptide precursor.
Levi, Andrea; Ferri, Gian-Luca; Watson, Elizabeth; Possenti, Roberta; Salton, Stephen R J
2004-08-01
1. The vgf gene encodes a neuropeptide precursor with a restricted pattern of expression that is limited to a subset of neurons in the central and peripheral nervous systems and to specific populations of endocrine cells in the adenohypophysis, adrenal medulla, gastrointestinal tract, and pancreas. In responsive neurons, vgf transcription is upregulated by neurotrophins. the basis for the original identification of VGF as nerve growth factor- (NGF) inducible in PC12 cells (A. Levi, J. D. Eldridge, and B. M. Paterson, Science 229:393-395, 1985). 2. In this review, we shall summarize data concerning the transcriptional regulation of vgf in vitro, the structural organization of the vgf promoter as well as the transcription factors which regulate its activity. 3. On the basis of in situ hybridization and immunohistochemical studies, the in vivo tissue-specific expression of VGF during differentiation and in the adult will be summarized. 4. Parallel biochemical data will be reviewed, addressing the proteolytical processing of the pro-VGF precursor within the secretory compartment of neuroendocrine cells. 5. Finally, analysis of the phenotype of VGF knockout mice will be discussed, implying a nonredundant role of VGF products in the regulation of energy storage and expenditure.
Structure and Uncoating of Immature Adenovirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Berna, A.J.; Mangel, W.; Marabini, R.
2009-09-18
Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particlesmore » as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.« less
Ex vivo 18O-labeling mass spectrometry identifies a peripheral amyloid β clearance pathway.
Portelius, Erik; Mattsson, Niklas; Pannee, Josef; Zetterberg, Henrik; Gisslén, Magnus; Vanderstichele, Hugo; Gkanatsiou, Eleni; Crespi, Gabriela A N; Parker, Michael W; Miles, Luke A; Gobom, Johan; Blennow, Kaj
2017-02-20
Proteolytic degradation of amyloid β (Aβ) peptides has been intensely studied due to the central role of Aβ in Alzheimer's disease (AD) pathogenesis. While several enzymes have been shown to degrade Aβ peptides, the main pathway of Aβ degradation in vivo is unknown. Cerebrospinal fluid (CSF) Aβ42 is reduced in AD, reflecting aggregation and deposition in the brain, but low CSF Aβ42 is, for unknown reasons, also found in some inflammatory brain disorders such as bacterial meningitis. Using 18 O-labeling mass spectrometry and immune-affinity purification, we examined endogenous proteolytic processing of Aβ in human CSF. The Aβ peptide profile was stable in CSF samples from healthy controls but in CSF samples from patients with bacterial meningitis, showing increased leukocyte cell count, 18 O-labeling mass spectrometry identified proteolytic activities degrading Aβ into several short fragments, including abundant Aβ1-19 and 1-20. After antibiotic treatment, no degradation of Aβ was detected. In vitro experiments located the source of the proteolytic activity to blood components, including leukocytes and erythrocytes, with insulin-degrading enzyme as the likely protease. A recombinant version of the mid-domain anti-Aβ antibody solanezumab was found to inhibit insulin-degrading enzyme-mediated Aβ degradation. 18 O labeling-mass spectrometry can be used to detect endogenous proteolytic activity in human CSF. Using this technique, we found an enzymatic activity that was identified as insulin-degrading enzyme that cleaves Aβ in the mid-domain of the peptide, and could be inhibited by a recombinant version of the mid-domain anti-Aβ antibody solanezumab.
Platelet chemokines in vascular disease
Gleissner, Christian A.; von Hundelshausen, Philipp; Ley, Klaus
2009-01-01
Platelets are a rich source of different chemokines and express chemokine receptors. CXCL4 is highly abundant in platelets and involved in promoting monocyte arrest from rolling and monocyte differentiation to macrophages. CXCL4 can also associate with CCL5 and amplify its effect on monocytes. The megakaryocyte CXCL7 gene product is proteolytically cleaved into the strong neutrophil chemoattractant, NAP-2, which has also been implicated in repair cell homing to vascular lesions. Platelet adhesion can induce release of CCL2 and CXCL8 from endothelial cells. Conversely, the chemokines CCL17, CCL22 and CXCL12 made by other cells amplify platelet activation. Platelet chemokines enhance recruitment of various hematopoietic cells to the vascular wall, fostering processes such as neointima formation, atherosclerosis, and thrombosis but also vessel repair and regeneration after vascular injury. PMID:18723831
Moreno-Hernández, Jesús Martín; Hernández-Mancillas, Xitlalli Desideria; Navarrete, Evelia Lorena Coss; Mazorra-Manzano, Miguel Ángel; Osuna-Ruiz, Idalia; Rodríguez-Tirado, Víctor Alfonso; Salazar-Leyva, Jesús Aarón
2017-05-01
Plant proteases are capable of performing several functions in biological systems, and their use is attractive for biotechnological process due to their interesting catalytic properties. Bromelia pinguin (aguama) is a wild abundant natural resource in several regions of Central America and the Caribbean Islands but is underutilized. Their fruits are rich in proteases with properties that are still unknown, but they represent an attractive source of enzymes for biotechnological applications. Thus, the proteolytic activity in enzymatic crude extracts (CEs) from wild B. pinguin fruits was partially characterized. Enzymes in CEs showed high proteolytic activity at acid (pH 2.0-4.0) and neutral alkaline (pH 7.0-9.0) conditions, indicating that different types of active proteases are present. Proteolytic activity inhibition by the use of specific protease inhibitors indicated that aspartic, cysteine, and serine proteases are the main types of proteases present in CEs. Activity at pH 3.0 was stable in a broad range of temperatures (25-50 °C) and retained its activity in the presence of surfactants (SDS, Tween-80), reducing agents (DTT, 2-mercapoethanol), and organic solvents (methanol, ethanol, acetone, 2-propanol), which suggests that B. pinguin proteases are potential candidates for their application in brewing, detergent, and pharmaceutical industries.
Seredyński, Rafał; Wolna, Dorota; Kędzior, Mateusz; Gutowicz, Jan
2017-01-01
Protease secretion in Saccharomyces cerevisiae cultures is a complex process, important for the application of this organism in the food industry and biotechnology. Previous studies provide rather quantitative data, yielding no information about the number of enzymes involved in proteolysis and their individual biochemical properties. Here we demonstrate that W303a and BY4742 S. cerevisiae strains reveal different patterns of spontaneous and gelatin-induced extracellular proteolytic activity. We applied the gelatin zymography assay to track changes of the proteolytic profile in time, finding the protease secretion dependent on the growth phase and the presence of the protein inducer. Detected enzymes were characterized regarding their substrate specificity, pH tolerance, and susceptibility to inhibitors. In case of the W303a strain, only one type of gelatin-degrading secretory protease (presumably metalloproteinase) was observed. However, the BY4742 strain secreted different proteases of the various catalytic types, depending on the substrate availability. Our study brings the evidence that S. cerevisiae strains secrete several kinds of proteases depending on the presence and type of the substrate. Protein induction may cause not only quantitative but also qualitative changes in the extracellular proteolytic patterns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
del Valle, Luis J
2005-06-01
Sea urchin and sea star oocyte extracts contain proteolytic activities that are active against sperm basic nuclear proteins (SNBP). This SNBP degradation has been related to the decondensation of sperm chromatin as a possible model to male pronuclei formation. We have studied the presence of this proteolytic activity in Holothuria tubulosa (sea cucumber) and its possible relationship with sperm nuclei decondensation. The mature oocyte extracts from H. tubulosa contain a proteolytic activity to SNBP located in the macromolecular fraction of the egg-jelly layer. SNBP degradation occurred both on sperm nuclei and on purified SNBP, histones being more easily degraded than protein Ø(o) (sperm-specific protein). SNBP degradation was found to be dependent on concentration, incubation time, presence of Ca(2+), pH, and this activity could be a serine-proteinase. Thermal denaturalization of the oocyte extracts (80 degrees C, 10-15 min) inactivates its proteolytic activity on SNBP but does not affect sperm nuclei decondensation. These results would suggest that sperm nuclei decondensation occurs by a mechanism different from SNBP degradation. Thus, the sperm nuclei decondensation occurs by a thermostable factor(s) and the removal of linker SNBP (H1 and protein Ø(o)) will be a first condition in the process of sperm chromatin remodeling.
Barndt, Robert; Gu, Yayun; Chen, Chien-Yu; Tseng, I-Chu; Su, Sheng-Fang; Wang, Jehng-Kang; Johnson, Michael D.
2017-01-01
The type 2 transmembrane serine protease matriptase is involved in many pathophysiological processes probably via its enzymatic activity, which depends on the dynamic relationship between zymogen activation and protease inhibition. Matriptase shedding can prolong the life of enzymatically active matriptase and increase accessibility to substrates. We show here that matriptase shedding occurs via a de novo proteolytic cleavage at sites located between the SEA domain and the CUB domain. Point or combined mutations at the four positively charged amino acid residues in the region following the SEA domain allowed Arg-186 to be identified as the primary cleavage site responsible for matriptase shedding. Kinetic studies further demonstrate that matriptase shedding is temporally coupled with matriptase zymogen activation. The onset of matriptase shedding lags one minute behind matriptase zymogen activation. Studies with active site triad Ser-805 point mutated matriptase, which no longer undergoes zymogen activation or shedding, further suggests that matriptase shedding depends on matriptase zymogen activation, and that matriptase proteolytic activity may be involved in its own shedding. Our studies uncover an autonomous mechanism coupling matriptase zymogen activation, proteolytic activity, and shedding such that a proportion of newly generated active matriptase escapes HAI-1-mediated rapid inhibition by shedding into the extracellular milieu. PMID:28829816
Zamuner, Annj; Brun, Paola; Scorzeto, Michele; Sica, Giuseppe; Castagliuolo, Ignazio; Dettin, Monica
2017-09-01
Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP) mapped on [351-359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.
Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T; Scheaffer, Suzanne M; Roswit, William T; Alevy, Yael G; Patel, Anand C; Heier, Richard F; Romero, Arthur G; Nichols, Colin G; Holtzman, Michael J; Brett, Tom J
2012-12-07
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.
Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T.; Scheaffer, Suzanne M.; Roswit, William T.; Alevy, Yael G.; Patel, Anand C.; Heier, Richard F.; Romero, Arthur G.; Nichols, Colin G.; Holtzman, Michael J.; Brett, Tom J.
2012-01-01
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface. PMID:23112050
USDA-ARS?s Scientific Manuscript database
Matrix metalloproteinase-13 (MMP-13), referred to as collagenase-3, is a proteolytic enzyme that plays a key role in degradation and remodelling of host extracellularmatrix proteins. The objective of this study was to characterize the MMP-13 gene in channel catfish, and to determine its pattern of e...
Scharf, Andrea; Rockel, Thomas Dino; von Mikecz, Anna
2007-06-01
Proteasomes are ATP-driven, multisubunit proteolytic machines that degrade endogenous proteins into peptides and play a crucial role in cellular events such as the cell cycle, signal transduction, maintenance of proper protein folding and gene expression. Recent evidence indicates that the ubiquitin-proteasome system is an active component of the cell nucleus. A characteristic feature of the nucleus is its organization into distinct domains that have a unique composition of macromolecules and dynamically form as a response to the requirements of nuclear function. Here, we show by systematic application of different immunocytochemical procedures and comparison with signature proteins of nuclear domains that during interphase endogenous proteasomes are localized diffusely throughout the nucleoplasm, in speckles, in nuclear bodies, and in nucleoplasmic foci. Proteasomes do not occur in the nuclear envelope region or the nucleolus, unless nucleoplasmic invaginations expand into this nuclear body. Confirmedly, proteasomal proteolysis is detected in nucleoplasmic foci, but is absent from the nuclear envelope or nucleolus. The results underpin the idea that the ubiquitin-proteasome system is not only located, but also proteolytically active in distinct nuclear domains and thus may be directly involved in gene expression, and nuclear quality control.
Gao, Gang; Xu, Xiao-Xia; Yu, Jing; Li, Lin-Miao; Ju, Wen-Yan; Jin, Feng-Liang; Freed, Shoaib
2016-09-01
The proteolytic activation of prophenoloxidase (proPO) is a humoral defense mechanism in insects and crustaceans. Phenoloxidase (PO) is produced as an inactive precursor namely, proPO and is activated via specific proteolytic cleavage by proPO-activating proteinase. The current research reports two novel serine proteinase genes (PxSP1-768 bp and PxSP2-816 bp) from Plutella xylostella, encoding 255 and 271 amino acid residues, respectively. Tissue distribution analyses by semiquantitative reverse transcription-PCR (RT-PCR) revealed the resultant genes to be primarily expressed in the hemocytes, while quantitative-RT-PCR (qRT-PCR) assay showed that transcription level of PxSP1 and PxSP2 increased significantly after injection of the fungal pathogen Beauveria bassiana. Purified recombinant fusion proteins of PxSP2 and PxSP1 were injected to New Zealand white rabbits and polyclonal antibodies were generated with the titers of 1:12,800. After silencing the expression of PxSP2 by RNAi, the PO activity decreased significantly. The results show that PxSP2 is involved in prophenoloxidase activation in P. xylostella. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamik, Barbara; Islam, Aminul; Rouhani, Farshid N.
The type I, 55-kDa tumor necrosis factor receptor (TNFR1) is released to the extracellular space by two mechanisms, the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains. Both pathways appear to be regulated by an interaction between TNFR1 and ARTS-1 (aminopeptidase regulator of TNFR1 shedding). Here, we sought to identify ARTS-1-interacting proteins that modulate TNFR1 release. Co-immunoprecipitation identified an association between ARTS-1 and RBMX (RNA-binding motif gene, X chromosome), a 43-kDa heterogeneous nuclear ribonucleoprotein. RNA interference attenuated RBMX expression, which reduced both the constitutive release of TNFR1 exosome-like vesicles and the IL-1{beta}-mediated inducible proteolyticmore » cleavage of soluble TNFR1 ectodomains. Reciprocally, over-expression of RBMX increased TNFR1 exosome-like vesicle release and the IL-1{beta}-mediated inducible shedding of TNFR1 ectodomains. This identifies RBMX as an ARTS-1-associated protein that regulates both the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains.« less
Kim, Seung-Jin; Choi, Hojung; Park, Sung-Soo; Chang, Chawnshang; Kim, Eungseok
2011-01-01
Stearoyl-CoA desaturase (SCD), the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, is highly expressed in prostate cancer although the SCD protein has been known to be rapidly turned over by proteolytic cleavage. The present data demonstrate that SCD can promote proliferation of androgen receptor (AR)-positive LNCaP prostate cancer cells and enhance dihydrotestosterone (DHT)-induced AR transcriptional activity, resulting in increased expression of prostatespecific antigen (PSA) and kallikrein-related peptidase 2 (KLK2). Interestingly, among the previously reported SCDderived peptides produced by proteolytic cleavage of SCD, a peptide spanning amino acids 130-162 of SCD (SCDCoRNR) contained the CoRNR box motif (LFLII) and enhanced AR transcriptional activity. In contrast, a mutant SCD-CoRNR in which Leu136 was replaced by Ala had no effect on AR transcriptional activity. Moreover, SCDCoRNR directly interacted with AR and inhibited RIP140 suppression of AR transactivation. Knockdown of the SCD gene by SCD microRNA suppressed AR transactivation with decreased cell proliferation, suggesting that SCD may regulate the proliferation of LNCaP cells via modulation of AR transcriptional activity. Moreover, ectopic expression of SCD in LNCaP cells facilitated LNCaP tumor formation and growth in nude mice. Together, the data indicate that SCD plays a key role in the regulation of AR transcriptional activity in prostate cancer cells. PMID:21331774
Method for increasing thermostability in cellulase ennzymes
Adney, W.S.; Thomas, S.R.; Baker, J.O.; Himmel, M.E.; Chou, Y.C.
1998-01-27
The gene encoding Acidothermus cellulolyticus E1 endoglucanase is cloned and expressed in Pichia pastoris. A new modified E1 endoglucanase enzyme comprising the catalytic domain of the full size E1 enzyme demonstrates enhanced thermostability and is produced by two methods. The first method of producing the new modified E1 is proteolytic cleavage to remove the cellulose binding domain and linker peptide of the full size E1. The second method of producing the new modified E1 is genetic truncation of the gene encoding the full size E1 so that the catalytic domain is expressed in the expression product. 8 figs.
Effect of new lines of winter wheat on microbiological activity in Luvisol
NASA Astrophysics Data System (ADS)
Jezierska-Tys, S.; Rachoń, L.; Rutkowska, A.; Szumiło, G.
2012-02-01
The study presented in this paper was conducted under the conditions of a field experiment. Microbiological analyses were made at various stages of winter wheat plants development ie heading, milk ripeness and full ripeness. The objective of the study was to acquire knowledge on the effect of cultivation of various lines of winter wheat on the numbers of bacteria and fungi with proteolytic capabilities, on protease and urease activity, and on the rate of the processes of ammonification and nitrification. The results of conducted study demonstrated that the number of proteolytic bacteria and fungi, as well as the activity of protease and urease, and the intensity of ammonification and nitrification processes in soil depended on both the development stage and cultivated line of winter wheat.
Proprotein convertase 1 mediated proneuropeptide proteolytic processing in ischemic neuron injury.
Tang, S S; Liang, Z Y; Guo, L R; Zhang, J H; Zhou, D
2017-01-01
Pro-protein processing mechanism plays an important role in neuron injury. To study the protein convertase 1 (PC1) mediated processing mechanism, the ischemic cellular or tissue proPC1/PC1 or proCgA/CgA (pro-chromogranin A) was analyzed. NS20Y differentiated cells were stressed by 0-6 h of oxygen and glucose deprivation (OGD) in glucose-free DMEM and an anaerobic jar environment. Ischemic C57BL/J mouse model was established by performing 60-min of middle cerebral artery occlusion (MCAO) operation and subsequent 4 or 24-h reperfusion. The TUNEL, immunochemistry, and Western blot methods were used to detect protein expression in ischemic cells or tissues. The OGD or MCAO stress caused substantial cell death in a dose-dependent manner (p < 0.05 or 0.01). With the increasing OGD dose, proPC1 and PC1 proteins gradually increased (p < 0.05 or 0.01) whereas proCgA and CgA proteins decreased (p < 0.05). In vivo the proPC1 and PC1 expressions presented with a peak at 4-h and then decreased at 24-h reperfusion (p < 0.05 or 0.01). The tissue proCgA and CgA proteins decreased with the increasing reperfusion time (p < 0.05). The results suggest that the increasing PC1 expression promoted the transformation of proCgA into CgA or smaller peptides, i.e. Pancreastatin or Secretoneurin, and the PC1 mediated processing plays a critical role (Fig. 4, Ref. 15).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanecak, R.; Semler, B.L.; Anderson, C.W.
1982-07-01
Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH/sub 2/-coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins inmore » vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X.« less
Sheehan, A; Cuinn, G O'; Fitzgerald, R J; Wilkinson, M G
2006-04-01
To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.
Kakio, Shota; Funakoshi-Tago, Megumi; Kobata, Kenji; Tamura, Hiroomi
2017-07-01
Recent evidence indicates that hypoxia-inducible vascular endothelial growth factor (VEGF) has neurotrophic and neuroprotective effects on neuronal and glial cells. On the other hand, recent epidemiological studies showed that daily coffee consumption has been associated with a lower risk of several neuronal disorders. Therefore, we investigated the effect of coffee on VEGF expression in human neuroblastoma SH-SY5Y cells. We found that even low concentration of coffee (<2%) strongly induced VEGF expression via an activation of HIF-1α. The activation of HIF-1α by coffee was attributed to the coffee-dependent inhibition of prolyl hydroxylation of HIF1α, which is essential for proteolytic degradation of HIF-1α. However, no inhibition was observed at the catalytic activity in vitro. Coffee component(s) responsible for the activation of HIF-1α was not major constituents such as caffeine, caffeic acid, chlorogenic acid, and trigonelline, but was found to emerge during roasting process. The active component(s) was extractable with ethyl acetate. Our results suggest that daily consumption of coffee may induce VEGF expression in neuronal cells. This might be related to protective effect of coffee on neural disorders such as Alzheimer's disease and Parkinson's disease.
Phenotypic changes in neutrophils related to anti-inflammatory therapy.
Barton, A E; Bayley, D L; Mikami, M; Llewellyn-Jones, C G; Stockley, R A
2000-01-03
Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.
Betsholtz, C; Svensson, V; Rorsman, F; Engström, U; Westermark, G T; Wilander, E; Johnson, K; Westermark, P
1989-08-01
We have cloned and sequenced a human islet amyloid polypeptide (IAPP) cDNA. A secretory 89 amino acid IAPP protein precursor is predicted from which the 37 amino acid IAPP molecule is formed by amino- and carboxyterminal proteolytic processing. The IAPP peptide is 43-46% identical in amino acid sequence to the two members of the calcitonin gene-related peptide (CGRP) family. Evolutionary conserved proteolytic processing sites indicate that similar proteases are involved in the maturation of IAPP and CGRP and that the IAPP amyloid polypeptide is identical to the normal proteolytic product of the IAPP precursor. A synthetic peptide corresponding to a carboxyteminal fragment of human IAPP is shown to spontaneously form amyloid-like fibrils in vitro. Antibodies against this peptide cross-react with IAPP from species that develop amyloid in pancreatic islets in conjunction with age-related diabetes mellitus (human, cat, racoon), but do not cross-react with IAPP from other tested species (mouse, rat, guinea pig, dog). Thus, a species-specific structural motif in the putative amyloidogenic region of IAPP is associated with both amyloid formation and the development of age-related diabetes mellitus. This provides a new molecular clue to the pathogenesis of this disease.
Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji
2016-12-01
Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.
Laux, Holger; Romand, Sandrine; Nuciforo, Sandro; Farady, Christopher J; Tapparel, Joel; Buechmann-Moeller, Stine; Sommer, Benjamin; Oakeley, Edward J; Bodendorf, Ursula
2018-05-19
An increasing number of non-antibody format proteins are entering the clinical development. However, one of the major hurdles for the production of non-antibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics and genetic knockdowns we have identified, out of the more than 700 known proteases in rodents, Matriptase-1 as the major protease involved in degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently Matriptase-1 was deleted in CHO-K1 cells using "Transcription Activator-Like Effector Nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase knockout (KO) cell line with strongly reduced or no proteolytic degradation activity towards a panel of recombinantly-expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments, and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next generation sequencing screening methods and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh
2015-10-01
We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.
Winkler, Laura L; Kalejta, Robert F
2014-10-01
Proteasomes are large, multisubunit complexes that support normal cellular activities by executing the bulk of protein turnover. During infection, many viruses have been shown to promote viral replication by using proteasomes to degrade cellular factors that restrict viral replication. For example, the human cytomegalovirus (HCMV) pp71 protein induces the proteasomal degradation of Daxx, a cellular transcriptional repressor that can silence viral immediate early (IE) gene expression. We previously showed that this degradation requires both the proteasome catalytic 20S core particle (CP) and the 19S regulatory particle (RP). The 19S RP associates with the 20S CP to facilitate protein degradation but also plays a 20S CP-independent role promoting transcription. Here, we present a nonproteolytic role of the 19S RP in HCMV IE gene expression. We demonstrate that 19S RP subunits are recruited to the major immediate early promoter (MIEP) that directs IE transcription. Depletion of 19S RP subunits generated a defect in RNA polymerase II elongation through the MIE locus during HCMV infection. Our results reveal that HCMV commandeers proteasome components for both proteolytic and nonproteolytic roles to promote HCMV lytic infection. Importance: Proteasome inhibitors decrease or eliminate 20S CP activity and are garnering increasing interest as chemotherapeutics. However, an increasing body of evidence implicates 19S RP subunits in important proteolytic-independent roles during transcription. Thus, pharmacological inhibition of the 20S CP as a means to modulate proteasome function toward therapeutic effect is an incomplete capitalization on the potential of this approach. Here, we provide an additional example of nonproteolytic 19S RP function in promoting HCMV transcription. These data provide a novel system with which to study the roles of different proteasome components during transcription, a rationale for previously described shifts in 19S RP subunit localization during HCMV infection, and a potential therapeutic intervention point at a pre-immediate early stage for the inhibition of HCMV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Basaran, Recep; Senol, Mehmet; Ozkanli, Seyma; Efendioglu, Mustafa; Kaner, Tuncay
2017-07-01
Degeneration of IVD is a progressive and irreversible process and can be evaluated with immunohistochemical examination or radiological grading. MMPs are a family of proteolytic enzymes and involved in the degradation of the matrix components of the IVD. We aimed to compare MMP-1, -2, -3, and -9 expressions with demographic features, visual analogue scale (VAS), Oswestry Disability Index (ODI) and radiological (MRI) grades. The study involved 60 participants. We recorded data about age, complaint, radiological imaging, expression levels of MMP-1, -2, -3, and -9, ODI and VAS for back pain retrospectively. Intervertebral disc degeneration was graded on a 0-5 scale according to the Pfirrmann classification. As a result of the study, the median age was 52.09±12.74years. There were statistical significances between age and MMP-1, and MMP-2. There was a close correlation between grade and MMP-9. We found correlation between the VAS and the MMP-9 expression. In addition, there was relationship between expression of MMP-2 and MMP-1, MMP-3, MMP-9. In conclusion, the expressions of MMP-1 and -2 are increased with aging. There was no relationship between radiological evaluation of IVDD and aging. Increased expression of MMPs affected IVDD positively. The relationship with MMPs is not explained. This study adds to our understanding of the interaction between MMPs and IVDD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S
2007-04-01
The 53-kDa amylase secreted by Aspergillus niger due to proteolytic processing of the precursor starch-hydrolyzing enzyme was resistant to acarbose, a potent alpha-glucosidase inhibitor. The enzyme production was induced when A. niger was grown in starch medium containing the inhibitor. Antibodies against the precursor enzyme cross-reacted with the 54-kDa Taka-amylase protein of A. oryzae. It resembled Taka-amylase in most of its properties and also hydrolyzed starch to maltose of alpha-anomeric configuration. However, it did not degrade maltotriose formed during the reaction and was not inhibited by zinc ions.
Shimshek, Derya R.; Jacobson, Laura H.; Kolly, Carine; Zamurovic, Natasa; Balavenkatraman, Kamal Kumar; Morawiec, Laurent; Kreutzer, Robert; Schelle, Juliane; Jucker, Mathias; Bertschi, Barbara; Theil, Diethilde; Heier, Annabelle; Bigot, Karine; Beltz, Karen; Machauer, Rainer; Brzak, Irena; Perrot, Ludovic; Neumann, Ulf
2016-01-01
Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17. Beta Site APP Cleaving Enzyme-2 (BACE2) and γ-secretase have been shown to be key players in generating the proteolytic fragments of PMEL17. The β-secretase (BACE1) is responsible for the generation of amyloid-β (Aβ) fragments in the brain and is therefore proposed as a therapeutic target for Alzheimer’s disease (AD). Currently BACE1 inhibitors, most of which lack selectivity over BACE2, have demonstrated efficacious reduction of amyloid-β peptides in animals and the CSF of humans. BACE2 knock-out mice have a deficiency in PMEL17 proteolytic processing leading to impaired melanin storage and hair depigmentation. Here, we confirm BACE2-mediated inhibition of PMEL17 proteolytic processing in vitro in mouse and human melanocytes. Furthermore, we show that wildtype as well as bace2+/− and bace2−/− mice treated with a potent dual BACE1/BACE2 inhibitor NB-360 display dose-dependent appearance of irreversibly depigmented hair. Retinal pigmented epithelium showed no morphological changes. Our data demonstrates that BACE2 as well as additional BACE1 inhibition affects melanosome maturation and induces hair depigmentation in mice. PMID:26912421
Jensen, Jeanette H; Conley, Lene N; Hedegaard, Jakob; Nielsen, Mathilde; Young, Jette F; Oksbjerg, Niels; Hornshøj, Henrik; Bendixen, Christian; Thomsen, Bo
2012-07-01
Acute physical activity elicits changes in gene expression in skeletal muscles to promote metabolic changes and to repair exercise-induced muscle injuries. In the present time-course study, pigs were submitted to an acute bout of treadmill running until near exhaustion to determine the impact of unaccustomed exercise on global transcriptional profiles in porcine skeletal muscles. Using a combined microarray and candidate gene approach, we identified a suite of genes that are differentially expressed in muscles during postexercise recovery. Several members of the heat shock protein family and proteins associated with proteolytic events, such as the muscle-specific E3 ubiquitin ligase atrogin-1, were significantly upregulated, suggesting that protein breakdown, prevention of protein aggregation and stabilization of unfolded proteins are important processes for restoration of cellular homeostasis. We also detected an upregulation of genes that are associated with muscle cell proliferation and differentiation, including MUSTN1, ASB5 and CSRP3, possibly reflecting activation, differentiation and fusion of satellite cells to facilitate repair of muscle damage. In addition, exercise increased expression of the orphan nuclear hormone receptor NR4A3, which regulates metabolic functions associated with lipid, carbohydrate and energy homeostasis. Finally, we observed an unanticipated induction of the long non-coding RNA transcript NEAT1, which has been implicated in RNA processing and nuclear retention of adenosine-to-inosine edited mRNAs in the ribonucleoprotein bodies called paraspeckles. These findings expand the complexity of pathways affected by acute contractile activity of skeletal muscle, contributing to a better understanding of the molecular processes that occur in muscle tissue in the recovery phase.
A novel proteolytic processing of prolysyl oxidase
Atsawasuwan, Phimon; Mochida, Yoshiyuki; Katafuchi, Michitsuna; Tokutomi, Kentaro; Mocanu, Viorel; Parker, Carol E.; Yamauchi, Mitsuo
2012-01-01
Lysyl oxidase (LOX) is an amine oxidase that is critical for the stability of connective tissues. The secreted proLOX is enzymatically quiescent and is activated through proteolytic cleavage between residue Gly162 and Asp163 (residue numbers according to the mouse LOX) by bone morphogenetic protein (BMP)-1 gene products. Here we report a novel processing of proLOX identified in vitro and in vivo. Two forms of mature LOX were identified and characterized by their immunoreactivity to specific antibodies, amine oxidase activity and mass spectrometry. One form was identified as a well characterized BMP-1 processed LOX protein. Another was found to be a truncated form of LOX (tLOX) resulting from the cleavage at the carboxy terminus of Arg192. The tLOX still appeared to retain amine oxidase activity. The results from the proLOX gene deletion and mutation experiments indicated that the processing occurs independent of the cleavage of proLOX by BMP-1 gene products and likely requires the presence of LOX propeptide. These results indicate that proLOX could be processed by two different mechanisms producing two forms of active LOX. PMID:21591931
A novel proteolytic processing of prolysyl oxidase.
Atsawasuwan, Phimon; Mochida, Yoshiyuki; Katafuchi, Michitsuna; Tokutomi, Kentaro; Mocanu, Viorel; Parker, Carol E; Yamauchi, Mitsuo
2011-01-01
Lysyl oxidase (LOX) is an amine oxidase that is critical for the stability of connective tissues. The secreted proLOX is enzymatically quiescent and is activated through proteolytic cleavage between residues Gly(162) and Asp(163) (residue numbers according to the mouse LOX) by bone morphogenetic protein (BMP)-1 gene products. Here we report a novel processing of proLOX identified in vitro and in vivo. Two forms of mature LOX were identified and characterized by their immunoreactivity to specific antibodies, amine oxidase activity, and mass spectrometry. One form was identified as a well-characterized BMP-1 processed LOX protein. Another was found to be a truncated form of LOX resulting from the cleavage at the carboxy terminus of Arg(192). The truncated form of LOX still appeared to retain amine oxidase activity. The results from the proLOX gene deletion and mutation experiments indicated that the processing occurs independent of the cleavage of proLOX by BMP-1 gene products and likely requires the presence of LOX propeptide. These results indicate that proLOX could be processed by two different mechanisms producing two forms of active LOX.
Settachaimongkon, Sarn; Nout, M J Robert; Antunes Fernandes, Elsa C; Hettinga, Kasper A; Vervoort, Jacques M; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J; van Valenberg, Hein J F
2014-05-02
Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L. delbrueckii subsp. bulgaricus was investigated in terms of microbial growth, acidification and changes in the biochemical composition of milk during set-yoghurt fermentation. A complementary metabolomics approach was applied for global characterization of volatile and non-volatile polar metabolite profiles of yoghurt associated with proteolytic activity of the individual strains in the starter cultures. The results demonstrated that only non-proteolytic S. thermophilus (Prt-) strain performed proto-cooperation with L. delbrueckii subsp. bulgaricus. The proto-cooperation resulted in significant higher populations of the two species, faster milk acidification, significant abundance of aroma volatiles and non-volatile metabolites desirable for a good organoleptic quality of yoghurt. Headspace SPME-GC/MS and (1)H NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Furthermore, multivariate statistical analysis allows discriminating set-yoghurts fermented by different types of starter cultures according to their metabolite profiles. Our finding underlines that selection of suitable strain combinations in yoghurt starters is important for achieving the best technological performance regarding the quality of product. Copyright © 2014 Elsevier B.V. All rights reserved.
Proteolytic crosstalk in multi-protease networks
NASA Astrophysics Data System (ADS)
Ogle, Curtis T.; Mather, William H.
2016-04-01
Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.
Wood, Matthew P; Cole, Amy L; Eade, Colleen R; Chen, Li-Mei; Chai, Karl X; Cole, Alexander M
2014-01-01
Several aspects of HIV-1 virulence and pathogenesis are mediated by the envelope protein gp41. Additionally, peptides derived from the gp41 ectodomain have been shown to induce chemotaxis in monocytes and neutrophils. Whereas this chemotactic activity has been reported, it is not known how these peptides could be produced under biological conditions. The heptad repeat 1 (HR1) region of gp41 is exposed to the extracellular environment and could therefore be susceptible to proteolytic processing into smaller peptides. Matriptase is a serine protease expressed at the surface of most epithelia, including the prostate and mucosal surfaces. Here, we present evidence that matriptase efficiently cleaves the HR1 portion of gp41 into a 22-residue chemotactic peptide MAT-1, the sequence of which is highly conserved across HIV-1 clades. We found that MAT-1 induced migration of primary neutrophils and monocytes, the latter of which act as a cellular reservoir of HIV during early stage infection. We then used formyl peptide receptor 1 (FPR1) and FPR2 inhibitors, along with HEK 293 cells, to demonstrate that MAT-1 can induce chemotaxis specifically using FPR2, a receptor found on the surface of monocytes, macrophages and neutrophils. These findings are the first to identify a proteolytic cleavage product of gp41 with chemotactic activity and highlight a potential role for matriptase in HIV-1 transmission and infection at epithelial surfaces and within tissue reservoirs of HIV-1. PMID:24617769
Gillette, William K; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H; Grose, Carissa; Jones, Jane E; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G
2015-11-02
Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.
Cysteine cathepsin S processes leptin, inactivating its biological activity.
Oliveira, Marcela; Assis, Diego M; Paschoalin, Thaysa; Miranda, Antonio; Ribeiro, Eliane B; Juliano, Maria A; Brömme, Dieter; Christoffolete, Marcelo Augusto; Barros, Nilana M T; Carmona, Adriana K
2012-08-01
Leptin is a 16 kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.
Gillette, William K.; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H.; Grose, Carissa; Jones, Jane E.; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V.; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G.
2015-01-01
Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer’s disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5–10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ. PMID:26522388
Kyriazis, George A; Wei, Zelan; Vandermey, Miriam; Jo, Dong-Gyu; Xin, Ouyang; Mattson, Mark P; Chan, Sic L
2008-09-12
Central to the pathogenesis of Alzheimer disease is the aberrant processing of the amyloid precursor protein (APP) to generate amyloid beta-peptide (Abeta), the principle component of amyloid plaques. The cell fate determinant Numb is a phosphotyrosine binding domain (PTB)-containing endocytic adapter protein that interacts with the carboxyl-terminal domain of APP. The physiological relevance of this interaction is unknown. Mammals produce four alternatively spliced variants of Numb that differ in the length of their PTB and proline-rich region. In the current study, we determined the influence of the four human Numb isoforms on the intracellular trafficking and processing of APP. Stable expression of Numb isoforms that differ in the PTB but not in the proline-rich region results in marked differences in the sorting of APP to the recycling and degradative pathways. Neural cells expressing Numb isoforms that lack the insert in the PTB (short PTB (SPTB)) exhibited marked accumulation of APP in Rab5A-labeled early endosomal and recycling compartments, whereas those expressing isoforms with the insertion in the PTB (long PTB (LPTB)) exhibited reduced amounts of cellular APP and its proteolytic derivatives relative to parental control cells. Neither the activities of the beta- and gamma-secretases nor the expression of APP mRNA were significantly different in the stably transfected cells, suggesting that the differential effects of the Numb proteins on APP metabolism is likely to be secondary to altered APP trafficking. In addition, the expression of SPTB-Numb increases at the expense of LPTB-Numb in neuronal cultures subjected to stress, suggesting a role for Numb in stress-induced Abeta production. Taken together, these results suggest distinct roles for the human Numb isoforms in APP metabolism and may provide a novel potential link between altered Numb isoform expression and increased Abeta generation.
Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang
2014-03-24
Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the basis for a next generation production host, since the strain has still a large potential for further genetic engineering. The final amylase titer of 65% in reference to B. licheniformis protease titer suggests that the developed B. pumilus expression platform is also suitable for an efficient production of non-proteolytic enzymes reaching a final titer of several grams per liter without complex process modifications.
Proteome analysis of Lactobacillus helveticus H9 during growth in skim milk.
Chen, Y F; Zhao, W J; Wu, R N; Sun, Z H; Zhang, W Y; Wang, J C; Bilige, M; Zhang, H P
2014-12-01
Lactobacillus helveticus H9 was isolated from traditionally fermented yak milk in Tibet (China) with the ability to produce the antihypertensive peptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) during milk fermentation. To understand the changes in the protein expression of L. helveticus H9, proteome analysis was performed at 3 different growth stages, lag phase (pH 6.1), log phase (pH 5.1), and stationary phase (pH 4.5) using 2-dimensional electrophoresis (2-DE). Further analysis showed that 257 differential protein spots were found and 214 protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). The cellular functions of the differentially expressed proteins were complex. Interestingly, the proteolytic system-related proteins aminopeptidase N (PepN), aminopeptidase E (PepE), endopeptidase O2 (PepO2), and oligopeptide transport system permease protein (OppC) were observed only on the maps of pH 5.1 and pH 4.5, which was consistent with the presence of angiotensin I-converting enzyme (ACE)-inhibitory peptides VPP and IPP during these 2 growth stages (log phase and stationary phase). These results, combined with a previous study of gene expression of the proteolytic system, led us to conclude that the Opp transport system, pepE, and pepO2 are likely related to the production of ACE-inhibitory peptides. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Role of protein kinase D in Golgi exit and lysosomal targeting of the transmembrane protein, Mcoln1
Marks, David L.; Holicky, Eileen L.; Wheatley, Christine L.; Frumkin, Ayala; Bach, Gideon; Pagano, Richard E.
2012-01-01
The targeting of lysosomal transmembrane proteins from the Golgi apparatus to lysosomes is a complex process that is only beginning to be understood. Here, the lysosomal targeting of Mcoln1, the transmembrane protein defective in the autosomal recessive disease, Mucolipidosis, type IV, was studied by over-expressing full length and truncated forms of the protein in human cells, followed by detection using immunofluorescence and immunoblotting. We demonstrated that a 53 amino acid C-terminal region of Mcoln1 is required for efficient exit from the Golgi. Truncations lacking this region exhibited reduced delivery to lysosomes and decreased proteolytic cleavage of Mcoln1 into characteristic ~35 kDa fragments, suggesting that this cleavage occurs in lysosomes. In addition, we found that co-expression of full length Mcoln1 with kinase-inactive protein kinase D (PKD) 1 or 2 inhibited Mcoln1 Golgi exit and transport to lysosomes and decreased Mcoln1 cleavage. These studies suggest that PKDs play a role in the delivery of some lysosomal resident transmembrane proteins from the Golgi to the lysosomes. PMID:22268962
He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei
2011-09-01
Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.
Radek, Katherine A.; Lopez-Garcia, Belen; Hupe, Melanie; Niesman, Ingrid R.; Elias, Peter M.; Taupenot, Laurent; Mahata, Sushil K.; O’Connor, Daniel T.; Gallo, Richard L.
2009-01-01
Epithelia establish a microbial barrier against infection through the production of antimicrobial peptides (AMPs). In this study, we investigated whether catestatin (Cst), a peptide derived from the neuroendocrine protein chromogranin A (CHGA), is a functional AMP and is present in the epidermis. We show that Cst is antimicrobial against relevant skin microbes, including Gram-positive and Gram-negative bacteria, yeast, and fungi. The antimicrobial mechanism of Cst was found to be similar to other AMPs, as it was dependent on bacterial charge and growth conditions, and induced membrane disruption. The potential relevance of Cst against skin pathogens was supported by the observation that CHGA was expressed in keratinocytes. In human skin, CHGA was found to be proteolytically processed into the antimicrobial fragment Cst, thus enabling its AMP function. Furthermore, Cst expression in murine skin increased in response to injury and infection, providing potential for increased protection against infection. These data demonstrate that a neuroendocrine peptide has antimicrobial function against a wide assortment of skin pathogens and is upregulated upon injury, thus demonstrating a direct link between the neuroendocrine and cutaneous immune systems. PMID:18185531
Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury.
Grady, T; Mah'Moud, M; Otani, T; Rhee, S; Lerch, M M; Gorelick, F S
1998-11-01
The pathological activation of digestive zymogens within the pancreatic acinar cell probably plays a central role in initiating many forms of pancreatitis. To examine the relationship between zymogen activation and acinar cell injury, we investigated the effects of secretagogue treatment on isolated pancreatic acini. Immunofluorescence studies using antibodies to the trypsinogen-activation peptide demonstrated that both CCK (10(-7) M) hyperstimulation and bombesin (10(-5) M) stimulation of isolated acini resulted in trypsinogen processing to trypsin. These treatments also induced the proteolytic processing of procarboxypeptidase A1 to carboxypeptidase A1 (CA1). After CCK hyperstimulation, most CA1 remained in the acinar cell. In contrast, the CA1 generated by bombesin was released from the acinar cell. CCK hyperstimulation of acini was associated with cellular injury, whereas bombesin treatment did not induce injury. These studies suggest that 1) proteolytic zymogen processing occurs within the pancreatic acinar cell and 2) both zymogen activation and the retention of enzymes within the acinar cell may be required to induce injury.
Expression of PCSK1 (PC1/3), PCSK2 (PC2) and PCSK3 (furin) in mouse small intestine.
Gagnon, Jeffrey; Mayne, Janice; Mbikay, Majambu; Woulfe, John; Chrétien, Michel
2009-01-08
The family of serine proteases known as the proprotein convertases subtilisin/kexin type (PCSK) is responsible for the cleavage and maturation of many precursor hormones. Over its three successive regions, the duodenum, the jejunum and the ileum, the small intestine (SI) expresses over 40 peptide hormones necessary for normal intestinal physiology. Most of these hormones derive from proteolytic cleavage of their cognate inactive polypeptide precursors. Members of the PCSK family of proteases have been implicated in this process, although details of enzyme-substrate interactions are largely lacking. As a first step towards elucidating these interactions, we have analyzed by immunohistochemistry the regional distribution of PCSK1, PCSK2 and PCSK3 in mouse SI as well as their cellular co-localization with substance P (SP), cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP) and somatostatin (SS), 4 peptide hormones known to result from PCSK-mediated processing. Results indicate that PCSK1 is found in all three regions of the SI while PCSK2 and PCSK3 are primarily expressed in the upper two, the duodenum and the jejunum. In these proximal regions, PCSK1 was detectable in 100% of SP-positive (+) cells, 85% of CCK+ cells and 50% of GIP+ cells; PCSK2 was detectable in 40% of SS+ cells and 35% of SP+ cells; PCSK3 was detectable in 75% of GIP+ cells and 60% of SP+ cells. These histological data suggest that the 3 PCSKs may play differential and overlapping roles in prohormone processing in the three regions of the SI.
Proteolytic Regulation of the Intestinal Epithelial Barrier: Mechanisms and Interventions
2013-09-01
gastrointestinal tract. The two main forms of inflammatory bowel diseases, Crohn’s disease and Ulcerative Colitis , currently affect over 1 million Americans...gastrointestinal tract. The two main forms of IBD, Crohn’s disease and Ulcerative Colitis , currently affect over 1 million Americans including military personnel...apoptosis and barrier disruption. IL-13 production and claudin-2 expression are both increased in human ulcerative colitis and Crohn’s disease (14; 15
Zhang, Sharon; Ratliff, Eric P.; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W.; Achal, Madhulika; Mauntz, Ruth E.; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A.; Macias, Andrew M.; Daugherty, Daniel; Harris, Greg L.; Edwards, Robert A.; Finley, Kim D.
2018-01-01
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system. PMID:29642630
Zhang, Sharon; Ratliff, Eric P; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W; Achal, Madhulika; Mauntz, Ruth E; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A; Macias, Andrew M; Daugherty, Daniel; Harris, Greg L; Edwards, Robert A; Finley, Kim D
2018-04-10
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.
Pan, Yanfang; Yago, Tadayuki; Fu, Jianxin; Herzog, Brett; McDaniel, J. Michael; Mehta-D’Souza, Padmaja; Cai, Xiaofeng; Ruan, Changgeng; McEver, Rodger P.; West, Christopher; Dai, Kesheng; Chen, Hong
2014-01-01
O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan–deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan–deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacking endothelial core 1 O-glycan or cecal ligation and puncture-treated mice. Furthermore, core 1 O-glycan–deficient or desialylated PDPN impaired platelet interaction under physiological flow. These data indicate that sialylated O-glycans of PDPN are essential for platelet adhesion and prevent PDPN from proteolytic degradation primarily mediated by MMPs in the lymph. PMID:25336627
Koutsioumpa, Marina; Hatziapostolou, Maria; Mikelis, Constantinos; Koolwijk, Pieter; Papadimitriou, Evangelia
2009-01-14
Pleiotrophin is an 18 kDa secreted polypeptide growth factor with direct pro-angiogenic and tumorigenic properties. Pleiotrophin is a substrate for proteolytic enzymes, such as plasmin, leading to proteolytic fragments with distinct activities on endothelial cell activation in vitro or angiogenesis in vivo. Aprotinin is a naturally occurring broad spectrum protease inhibitor, used widely in cardiac surgery due to its ability to inhibit plasmin and reduce perioperative bleeding. Since we have seen that aprotinin inhibits proteolysis of pleiotrophin by plasmin, the aim of the present study was to evaluate the possible role of pleiotrophin in the effects of aprotinin on angiogenesis and human endothelial cell migration. Our data demonstrate that aprotinin, in a concentration-dependent manner, is angiogenic in the chicken embryo chorioallantoic membrane assay in vivo and induces human endothelial cell migration in vitro. Aprotinin inhibits pleiotrophin proteolysis and induces expression and secretion of pleiotrophin through an AP-1-dependent transcriptional activation of the pleiotrophin gene, and pleiotrophin seems to mediate the stimulatory effects of aprotinin on cell migration through its receptor protein tyrosine phosphatase beta/zeta. The stimulatory effect of aprotinin on pleiotrophin expression and cell migration may explain, at least partly, the problems observed with the clinical use of aprotinin.
Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart
Cardona, Maria; López, Juan Antonio; Serafín, Anna; Rongvaux, Anthony; Inserte, Javier; García-Dorado, David; Flavell, Richard; Llovera, Marta; Cañas, Xavier; Vázquez, Jesús; Sanchis, Daniel
2015-01-01
Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development. PMID:26121671
Taniguchi, Hiroaki; Okamuro, Shota; Koji, Misaki; Waku, Tsuyoshi; Kubo, Kaori; Hatanaka, Atsushi; Sun, Yimeng; Chowdhury, A M Masudul Azad; Fukamizu, Akiyoshi; Kobayashi, Akira
2017-02-26
The transcription factor Nrf1 (NFE2L1) maintains protein homeostasis (proteostasis) by regulating the gene expression of proteasome subunits in response to proteasome inhibition. The deletion of the Nrf1 gene in neural stem/progenitor cells causes severe neurodegeneration due to the accumulation of ubiquitinated proteins in Purkinje cells and motor neurons (Nrf1 NKO mice). However, the molecular mechanisms governing this neurodegenerative process remain unclear. We demonstrate herein that the loss of Nrf1 leads to the reduced gene expression of the deubiquitinating enzymes (DUBs) but not proteasome subunits in Nrf1 NKO mice between P7 and P18. First, we show that K48-linked polyubiquitinated proteins accumulate in Nrf1-deficient Purkinje cells and cerebral cortex neurons. Nevertheless, loss of Nrf1 does not alter the expression and proteolytic activity of proteasome. A significantly reduced expression of deubiquitinating enzymes was also demonstrated in Nrf1-deficient cerebellar tissue using microarray analysis. The genome database further reveals species-conserved ARE, a Nrf1 recognition element, in the regulatory region of certain DUB genes. Furthermore, we show that Nrf1 can activate Usp9x gene expression related to neurodegeneration. Altogether these findings suggest that neurodegeneration in Nrf1 NKO mice may stem from the dysfunction of the ubiquitin-mediated regulation of neuronal proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
Vilim, F.S.; Sasaki, K.; Rybak, J.; Alexeeva, V.; Cropper, E.; Jing, J.; Orekhova, I.V.; Brezina, V.; Price, D.; Romanova, E.V.; Rubakhin, S.S.; Hatcher, N.; Sweedler, J.V.; Weiss, K.R.
2010-01-01
Many bioactive neuropeptides containing RFamide at their C-terminus have been described in both invertebrates and vertebrates. To obtain insight into the functional logic of RFamide signaling, we investigate it here in the feeding system of Aplysia. We focus on the expression, localization, and actions of two families of RFamide peptides, the FRFamides and FMRFamide, in the central neuronal circuitry and the peripheral musculature that generate the feeding movements. We describe the cloning of the FRFamide precursor protein and show that the FRFamides and FMRFamide are derived from different precursors. We map the expression of the FRFamide and FMRFamide precursors in the feeding circuitry using in-situ hybridization and immunostaining, and confirm proteolytic processing of the FRFamide precursor by mass spectrometry. We show that the two precursors are expressed in different populations of sensory neurons in the feeding system. In a representative feeding muscle, we demonstrate the presence of both FRFamides and FMRFamide and their release, probably from the processes of the sensory neurons in the muscle. Both centrally and in the periphery, the FRFamides and FMRFamide act in distinct ways, apparently through distinct mechanisms, that nevertheless, from an overall functional perspective, their actions are complementary. Together, the FRFamides and FMRFamide convert feeding motor programs from ingestive to egestive, and depress feeding muscle contractions. We conclude that these structurally related peptides, even though derived from different precursors, expressed in different neurons, and acting through different mechanisms, remain related to each other in the functional roles that they play in the system. PMID:20053896
Han, Zhou; Anderson, David W.
2012-01-01
Purpose. Prominin-1 expresses in rod and cone photoreceptors. Mutations in the prominin-1 gene cause retinal degeneration in humans. In this study, the authors investigated the expression and subcellular localization of xlProminin-1 protein, the Xenopus laevis ortholog of prominin-1, in rod and cone photoreceptors of this frog. Methods. Antibodies specific for xlProminin-1 were generated. Immunoblotting was used to study the expression and posttranslational processing of xlProminin-1 protein. Immunocytochemical light and electron microscopy and transgenesis were used to study the subcellular distribution of xlProminin-1. Results. xlProminin-1 is expressed and is subject to posttranslational proteolytic processing in the retina, brain, and kidney. xlProminin-1 is differently expressed and localized in outer segments of rod and cone photoreceptors of X. laevis. Antibodies specific for the N or C termini of xlProminin-1 labeled the open rims of lamellae of cone outer segments (COS) and the open lamellae at the base of rod outer segments (ROS). By contrast, anti–peripherin-2/rds antibody, Xper5A11, labeled the closed rims of cone lamellae adjacent to the ciliary axoneme and the rims of the closed ROS disks. The extent of labeling of the basal ROS by anti–xlProminin-1 antibodies varied with the light cycle in this frog. The entire ROS was also faintly labeled by both antibodies, a result that contrasts with the current notion that prominin-1 localizes only to the basal ROS. Conclusions. These findings suggest that xlProminin-1 may serve as an anti–fusogenic factor in the regulation of disk morphogenesis and may help to maintain the open lamellar structure of basal ROS and COS disks in X. laevis photoreceptors. PMID:22076989
Kuznetsova, E V; Snarskaya, E S; Zavalishina, L E; Tkachenko, S B
Matrix metalloproteinases (MMPs) mediate the degradation of all types of collagens and other extracellular matrix components (elastin, proteoglycans, and laminin), their synthesis and accumulation play a key role in the hydrolysis of basement membrane. MMPs are involved in a wide range of proteolytic processes in the presence of different physiological and pathological changes, including inflammation, wound healing, angiogenesis, and carcinogenesis. to study the specific features of MMP-1 and MMP-9 expression in different stages of skin photoaging, in the foci of actinic keratosis and basal cell carcinoma by immunohistochemical examination. 12 samples of the healthy skin (6 samples of the eyelid skin with Glogau grade II photoaging; 6 ones of eyelid skin with Glogau grades III-IV photoaging) and biopsies from 8 foci of actinic keratosis and from 8 ones of basal cell carcinoma were examined. A positive reaction to MMPs was shown as different brown staining intensity in the cytoplasm of keratinocytes/tumor cells. MMP-1 and MMP-9 expression was recorded in 67% of the histological specimens of the Glogau grade III photoaged skin and in 100% of those of Glogau grade IV. In the foci of actinic keratosis, the expression of MMP-1 was observed in 62.5% of cases and that of MMP-9 was seen in 87.5%. In basal cell carcinoma, the expression of MMP-1 and MMP-9 was detected in all investigated samples. The immunomorphological findings are indicative of the important role of the level of MMP-1 and MMP-9 expression that is associated with the degree of progression of skin photoaging processes. Minimal MMP-1 and MMP-9 expression was recorded even in grades III-IV photoaging and in the foci of actinic keratosis. Intense MMP-1 and MMP-9 expression was detected in malignant skin epithelial neoplasms as different clinicomorphological types of basal cell carcinoma.
Hoyte, Ashley C; Jamin, Augusta V; Koneru, Pratibha C; Kobe, Matthew J; Larue, Ross C; Fuchs, James R; Engelman, Alan N; Kvaratskhelia, Mamuka
2017-12-01
The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation
Cohen, Todd J.; Constance, Brian H.; Hwang, Andrew W.; James, Michael; Yuan, Chao-Xing
2016-01-01
Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer’s disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies. PMID:27383765
Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.
Cohen, Todd J; Constance, Brian H; Hwang, Andrew W; James, Michael; Yuan, Chao-Xing
2016-01-01
Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.
Proteases and the gut barrier.
Biancheri, Paolo; Di Sabatino, Antonio; Corazza, Gino R; MacDonald, Thomas T
2013-02-01
Serine proteases, cysteine proteases, aspartic proteases and matrix metalloproteinases play an essential role in extracellular matrix remodeling and turnover through their proteolytic action on collagens, proteoglycans, fibronectin, elastin and laminin. Proteases can also act on chemokines, receptors and anti-microbial peptides, often potentiating their activity. The intestinal mucosa is the largest interface between the external environment and the tissues of the human body and is constantly exposed to proteolytic enzymes from many sources, including bacteria in the intestinal lumen, fibroblasts and immune cells in the lamina propria and enterocytes. Controlled proteolytic activity is crucial for the maintenance of gut immune homeostasis, for normal tissue turnover and for the integrity of the gut barrier. However, in intestinal immune-mediated disorders, pro-inflammatory cytokines induce the up-regulation of proteases, which become the end-stage effectors of mucosal damage by destroying the epithelium and basement membrane integrity and degrading the extracellular matrix of the lamina propria to produce ulcers. Protease-mediated barrier disruption in turn results in increased amounts of antigen crossing into the lamina propria, driving further immune responses and sustaining the inflammatory process.
Retrovirus maturation-an extraordinary structural transformation.
Mattei, Simone; Schur, Florian Km; Briggs, John Ag
2016-06-01
Retroviruses such as HIV-1 assemble and bud from infected cells in an immature, non-infectious form. Subsequently, a series of proteolytic cleavages catalysed by the viral protease leads to a spectacular structural rearrangement of the viral particle into a mature form that is competent to fuse with and infect a new cell. Maturation involves changes in the structures of protein domains, in the interactions between protein domains, and in the architecture of the viral components that are assembled by the proteins. Tight control of proteolytic cleavages at different sites is required for successful maturation, and the process is a major target of antiretroviral drugs. Here we will describe what is known about the structures of immature and mature retrovirus particles, and about the maturation process by which one transitions into the other. Despite a wealth of available data, fundamental questions about retroviral maturation remain unanswered. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Cardinali-Rezende, Juliana; Rojas-Ojeda, Patricia; Nascimento, Andréa M A; Sanz, José L
2016-03-01
Biomethanization entails a good means to reduce the organic fraction (OF) derived from municipal solid wastes (MSW). The bacterial diversity of a full scale MSW anaerobic reactor located in Madrid (Spain) was investigated using high-throughput 454 pyrosequencing. Even though the proteolytic bacteria prevailed throughout all of the process, community shifts were observed from the start-up to the steady-state conditions, with an increasing biodiversity displayed over time. The Bacteroidetes and the Firmicutes were the majority phyla: 55.1 and 40.2% (start-up) and 18.7 and 78.7 (steady-state) of the total reads. The system's lack of evenness remains noteworthy as the sequences affiliated to the proteolytic non-saccharolytic Proteiniphylum, Gallicola and Fastidiosipila genera, together with the saccharolytic Saccharofermentans, were predominant on the system and this predominance appears to correlate with the presence of a high ammonium concentration. The 454 pyrosequencing revealed a great diversity of rare organisms which seemingly do not sustain any metabolic roles in the course of the OF-MSW degradation. However, this scarce and unique microbiota can confer great resilience to the system as a buffer against nutritional and environmental changing conditions, thus opening the door to increase the current knowledge about the bacterial community dynamics taking place during MSW treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Barnacle cement: a polymerization model based on evolutionary concepts
Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel
2009-01-01
Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun
2011-11-15
The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the freemore » radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for development of novel treatment strategies for PD.« less
Mancilla-Olea, Maria Inocente; Ortega-López, Jaime; Figueroa-Angulo, Elisa E; Avila-González, Leticia; Cárdenas-Guerra, Rosa Elena; Miranda-Ozuna, Jesús F T; González-Robles, Arturo; Hernández-García, Mar Saraí; Sánchez-Ayala, Lizbeth; Arroyo, Rossana
2018-04-01
Trichomonas vaginalis genome encodes ∼440 proteases, six of which are aspartic proteases (APs). However, only one belongs to a clan AA (EC 3.4.23.5), family A1 (pepsin A), cathepsin D-like protease. This AP is encoded by an 1113-bp gene (tv-catd), which translates into a 370-aa residues zymogen of 40.7-kDa and a theoretical pI of 4.6, generating a ∼35 kDa active enzyme after maturation (Tv-CatD). The goal of this study was to identify and analyze the effect of glucose on the expression of Tv-CatD at the transcript and protein levels, subcellular localization, and proteolytic activity. The qRT-PCR assays showed a ∼2-fold increase in tv-catd mRNA under high-glucose (HG) conditions compared to glucose-restriction (GR) conditions. We amplified, cloned, and expressed the tv-catd gene, and purified the recombinant precursor enzyme (Tv-CatDr) to generate a polyclonal antibody (anti-Tv-CatDr). Western blot (WB) and immunolocalization assays showed that glucose increases the amount of Tv-CatD in different subcellular localizations and in in vitro secretions. Additionally, Tv-CatD proteolytic activity was detected in protease-resistant extracts (PREs) using a synthetic fluorogenic peptide specific for cathepsin D/E APs at different pHs and in the presence of AP inhibitors. In a two-dimensional (2-DE) WB analysis of a PRE from parasites grown under GR and HG conditions, an anti-Tv-CatDr antibody detected a 35-kDa protein spot at pI 5.0 identified as the mature Tv-CatD form by mass spectrometry that showed proteolytic activity in 2-DE zymograms copolymerized with hemoglobin under both glucose conditions. Thus, Tv-CatD could be involved in trichomonal hemolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Petersen, Lauren M; Tisa, Louis S
2014-11-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Ichikawa, Shoji; Austin, Anthony M.; Gray, Amie K.; Econs, Michael J.
2011-01-01
Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH – high dose phosphate and calcitriol – further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate. To test for the presence of abnormal phosphate responsiveness, we compared serum biochemistries and femoral Fgf23 mRNA expression between wild-type mice, murine models of XLH (PhexK496X) and hyperphosphatemic tumoral calcinosis (Galnt3 -/-), and Galnt3/Phex double mutant mice. Phex mutant mice had not only increased Fgf23 expression, but also reduced proteolytic cleavage of intact Fgf23 protein, resulting in markedly elevated intact Fgf23 levels and consequent hypophosphatemia. In contrast, despite markedly increased Fgf23 expression, Galnt3 knockout mice had significantly high proteolytic cleavage of Fgf23 protein, leading to low intact Fgf23 concentrations and hyperphosphatemia. Galnt3/Phex double mutant mice had an intermediate biochemical phenotype between wild-type and Phex mutant mice, including slightly elevated intact Fgf23 concentrations with milder hypophosphatemia. Despite the hypophosphatemia, double mutant mice attempted to reduce serum phosphate back to the level of Phex mutant mice by up-regulating Fgf23 expression as much as 24 fold higher than Phex mutant mice. These data suggest that Phex mutations alter the responsiveness of bone cells to extracellular phosphate concentrations and may create a lower set point for “normal” phosphate levels. PMID:22006791
Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Econs, Michael J
2012-02-01
Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH--high-dose phosphate and calcitriol--further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate. To test for the presence of abnormal phosphate responsiveness, we compared serum biochemistries and femoral Fgf23 mRNA expression between wild-type mice, murine models of XLH (Phex(K496X)) and hyperphosphatemic tumoral calcinosis (Galnt3(-/-)), and Galnt3/Phex double-mutant mice. Phex mutant mice had not only increased Fgf23 expression but also reduced proteolytic cleavage of intact Fgf23 protein, resulting in markedly elevated intact Fgf23 levels and consequent hypophosphatemia. In contrast, despite markedly increased Fgf23 expression, Galnt3 knockout mice had significantly high proteolytic cleavage of Fgf23 protein, leading to low intact Fgf23 concentrations and hyperphosphatemia. Galnt3/Phex double-mutant mice had an intermediate biochemical phenotype between wild-type and Phex mutant mice, including slightly elevated intact Fgf23 concentrations with milder hypophosphatemia. Despite the hypophosphatemia, double-mutant mice attempted to reduce serum phosphate back to the level of Phex mutant mice by upregulating Fgf23 expression as much as 24-fold higher than Phex mutant mice. These data suggest that Phex mutations alter the responsiveness of bone cells to extracellular phosphate concentrations and may create a lower set point for "normal" phosphate levels.
Sastradipura, D F; Nakanishi, H; Tsukuba, T; Nishishita, K; Sakai, H; Kato, Y; Gotow, T; Uchiyama, Y; Yamamoto, K
1998-05-01
Cathepsin E is a major nonlysosomal, intracellular aspartic proteinase that localizes in various cellular compartments such as the plasma membrane, endosome-like organelles, and the endoplasmic reticulum (ER). To learn the segregation mechanisms of cathepsin E into its appropriate cellular destinations, the present studies were initiated to define the biosynthesis, processing, and intracellular localization as well as the site of proteolytic maturation of the enzyme in primary cultures of rat brain microglia. Immunohistochemical and immunoblot analyses revealed that cathepsin E was the most abundant in microglia among various brain cell types, where the enzyme existed predominantly as the mature enzyme. Immunoelectron microscopy studies showed the presence of the enzyme predominantly in the endosome-like vacuoles and partly in the vesicles located in the trans-Golgi area and the lumen of ER. In the primary cultured microglial cells labeled with [35S]methionine, >95% of labeled cathepsin E were represented by a 46-kDa polypeptide (reduced form) after a 30-min pulse. Most of it was proteolytically processed via a 44-kDa intermediate to a 42-kDa mature form within 4 h of chase. This processing was completely inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Brefeldin A, a blocker for the traffic of secretory proteins from the ER to the Golgi complex, also inhibited the processing of procathepsin E and enhanced its degradation. Procathepsin E, after pulse-labeling, showed complete susceptibility to endoglycosidase H, whereas the mature enzyme almost acquired resistance to endoglycosidases H as well as F. The present studies provide the first evidence that cathepsin E in microglia is first synthesized as the inactive precursor bearing high-mannose oligosaccharides and processed to the active mature enzyme with complex-type oligosaccharides via the intermediate form and that the final proteolytic maturation step occurs in endosome-like acidic compartments.
Watanabe, K; Hayano, K
1993-07-01
Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.
The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity
Abbruzzese, Genevieve; Gorny, Anne-Kathrin; Kaufmann, Lilian T.; Cousin, Hélène; Kleino, Iivari; Steinbeisser, Herbert; Alfandari, Dominique
2015-01-01
ABSTRACT Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity. PMID:25616895
Applicability of Yeast Extracellular Proteinases in Brewing: Physiological and Biochemical Aspects
Bilinski, Carl A.; Russell, Inge; Stewart, Graham G.
1987-01-01
A general screening survey for expression of extracellular acid proteinase production was performed on over 100 cultures belonging to the genus Saccharomyces. Although two strains of Saccharomyces cerevisiae showed positive extracellular proteinase phenotypes in plate tests, it was not possible to demonstrate proteolytic activities in cell-free culture supernatants in assays performed at beer pH values. Of several yeasts from other genera examined, Saccharomycopsis fibuligera and Torulopsis magnoliae produced extracellular proteinases with desirable properties. Proteolytic activities were detected in assays performed at beer pH values and at lower temperature. Brewer's wort served as a highly inducing medium for extracellular proteinase production, with T. magnoliae yielding enzyme of highest specific activity. In fact, commencement of enzyme production was detected shortly after the onset of exponential growth in brewer's wort. Inclusion of crude enzyme preparations in brewer's wort inoculated simultaneously with brewer's yeast reduced final ethanol yields slightly and was found to be effective in reducing chill haze formation in bottled beer. PMID:16347298
PSEN1 and PSEN2 gene expression in Alzheimer's disease brain: a new approach.
Delabio, Roger; Rasmussen, Lucas; Mizumoto, Igor; Viani, Gustavo-Arruda; Chen, Elizabeth; Villares, João; Costa, Isabela-Bazzo; Turecki, Gustavo; Linde, Sandra Aparecido; Smith, Marilia Cardoso; Payão, Spencer-Luiz
2014-01-01
Presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes encode the major component of y-secretase, which is responsible for sequential proteolytic cleavages of amyloid precursor proteins and the subsequent formation of amyloid-β peptides. 150 RNA samples from the entorhinal cortex, auditory cortex and hippocampal regions of individuals with Alzheimer's disease (AD) and controls elderly subjects were analyzed with using real-time rtPCR. There were no differences between groups for PSEN1 expression. PSEN2 was significantly downregulated in the auditory cortex of AD patients when compared to controls and when compared to other brain regions of the patients. Alteration in PSEN2 expression may be a risk factor for AD.
The β-amyloid peptide compromises Reelin signaling in Alzheimer’s disease
Cuchillo-Ibañez, Inmaculada; Mata-Balaguer, Trinidad; Balmaceda, Valeria; Arranz, Juan José; Nimpf, Johannes; Sáez-Valero, Javier
2016-01-01
Reelin is a signaling protein that plays a crucial role in synaptic function, which expression is influenced by β-amyloid (Aβ). We show that Reelin and Aβ oligomers co-immunoprecipitated in human brain extracts and were present in the same size-exclusion chromatography fractions. Aβ treatment of cells led to increase expression of Reelin, but secreted Reelin results trapped together with Aβ aggregates. In frontal cortex extracts an increase in Reelin mRNA, and in soluble and insoluble (guanidine-extractable) Reelin protein, was associated with late Braak stages of Alzheimer’s disease (AD), while expression of its receptor, ApoER2, did not change. However, Reelin-dependent induction of Dab1 phosphorylation appeared reduced in AD. In cells, Aβ reduced the capacity of Reelin to induce internalization of biotinylated ApoER2 and ApoER2 processing. Soluble proteolytic fragments of ApoER2 generated after Reelin binding can be detected in cerebrospinal fluid (CSF). Quantification of these soluble fragments in CSF could be a tool to evaluate the efficiency of Reelin signaling in the brain. These CSF-ApoER2 fragments correlated with Reelin levels only in control subjects, not in AD, where these fragments diminished. We conclude that while Reelin expression is enhanced in the Alzheimer’s brain, the interaction of Reelin with Aβ hinders its biological activity. PMID:27531658
Stable, high-level expression of a type I antifreeze protein in Escherichia coli.
Solomon, R G; Appels, R
1999-06-01
The type I antifreeze proteins are simple amphipathic helical proteins found in abundance in polar fish species, where they act to prevent freezing of internal fluids by a mechanism of noncolligative freezing point depression. Large-scale production of these proteins for research and biotechnological purposes has been hampered by their apparent instability when expressed in heterologous host systems. This has necessitated their production as fusion proteins, in polymeric form, or as proproteins for secretion, with the concomitant necessity for postpurification processing to generate the mature form of the protein. We have successfully expressed a recombinant variant of type I antifreeze protein (rAFP) in Escherichia coli using the inducible T7 polymerase transcription expression system. The rAFP contains five copies of the 11 amino acid ice-binding repeat motif found in all type I antifreeze proteins. The protein accumulates to high levels intracellularly in the form of inclusion bodies, with no apparent degradation by the cellular proteolytic machinery. We have devised a simple and rapid purification protocol for this recombinant type I antifreeze protein which does not require cellular fractionation, purification of the inclusion bodies, or chromatographic steps. This protocol may be of general use for this class of protein. The protein displays all three activities common to these proteins: recrystallization inhibition, noncolligative freezing point depression, and modification of the morphology of single ice crystals in solution.
Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens.
Santos, André L S; d'Avila-Levy, Claudia M; Elias, Camila G R; Vermelho, Alane B; Branquinha, Marta H
2007-07-01
The present review provides an overview of recent discoveries concerning the immunological similarities between Phytomonas serpens, a tomato parasite, and human trypanosomatid pathogens, with special emphasis on peptidases. Leishmania spp. and Trypanosoma cruzi express peptidases that are well-known virulence factors, named leishmanolysin and cruzipain. P. serpens synthesizes two distinct classes of proteolytic enzymes, metallo- and cysteine-type peptidases, that share common epitopes with leishmanolysin and cruzipain, respectively. The leishmanolysin-like and cruzipain-like molecules from P. serpens participate in several biological processes including cellular growth and adhesion to the salivary glands of Oncopeltus fasciatus, a phytophagous insect experimental model. Since previous reports demonstrated that immunization of mice with P. serpens induced a partial protective immune response against T. cruzi, this plant trypanosomatid may be a suitable candidate for vaccine studies. Moreover, comparative approaches in the Trypanosomatidae family may be useful to understand kinetoplastid biology, biochemistry and evolution.
Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.
Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression hostmore » offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.« less
Dietzmann, K; von Bossanyi, P; Krause, D; Wittig, H; Mawrin, C; Kirches, E
2000-01-01
Plasminogen activators as inducible extracellular serine proteases are involved in a variety of processes, such as the degradation of brain structures. In regions of brain degradation, an increase in the expression of genes encoding cytokines and proteinases has recently been demonstrated. We tested the hypothesis, whether the plasminogen activator system as well as the plasminogen activator inhibitors are expressed and possibly involved in a proteolytic cascade that breaks down the extracellular matrix as a result of ischemic or posttraumatic brain destructions. To study this supposition, we investigated immunohistochemically the expression of tPA, uPA and its receptor, the plasminogen activator inhibitors PAI-1 and PAI-2, tetranectin as well as the laminin breakdown as an event of secondary brain injury. Brain tissue from 21 autopsy cases with severe brain injuries, material from 14 ischemic infarcts and 11 controls with acute hypoxia were used. All components of the plasminogen activator system studied were over-expressed immunohistochemically in reactive astrocytes, microglia and endothelial cells around the lesion zone. Tetranectin showed an analogous distribution to the plasminogen activator system. A reduced immunoreactivity of laminin within the identical region of destruction was detected concomitant with laminin remnants in perivascular macrophages, so that a remarkable role of the plasmin cascade in the degradation of extracellular matrix proteins in the brain is taken into consideration.
Weis, Michael; Maisner, Andrea
2015-01-01
Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.
Silva, Carlos A; Ianzer, Danielle A; Portaro, Fernanda C V; Konno, Katsuhiro; Faria, Marcella; Fernandes, Beatriz L; Camargo, Antonio C M
2008-09-01
BPPs have been identified in the venom of the Bothrops jararaca snake, or deduced from precursor proteins expressed either in the venom gland or in the brain of the snake. Their potentiating activity on bradykinin (Bk) is assumed to occur through a somatic angiotensin-converting enzyme (sACE) inhibitory mechanism. We have demonstrated that synthetic BPPs show remarkable functional differences, despite their high amino acid sequence similarities. Recently, we demonstrated that BPP-10c, after i.p. administration, was found in its intact form and in the form of a unique metabolite (des-Pro(10) BPP-10c) in mouse urine. Given this finding, we selected a number of BPPs with different structure-activities - BPP-5a (
Jha, Niraj Kumar; Jha, Saurabh Kumar; Kumar, Dhiraj; Kejriwal, Noopur; Sharma, Renu; Ambasta, Rashmi K; Kumar, Pravir
2015-01-01
Alzheimer's disease (AD) is a neurodegenerative process primarily characterized by amyloid-β (Aβ) agglomeration, neuroinflammation, and cognitive dysfunction. The prominent cause for dementia is the deposition of Aβ plaques and tau-neurofibrillary tangles that hamper the neuronal organization and function. Aβ pathology further affects numerous signaling cascades that disturb the neuronal homeostasis. For instance, Aβ deposition is responsible for altered expression of insulin encoding genes that lead to insulin resistance, and thereby affecting insulin signaling pathway and glucose metabolism in the brain. As a result, the common pathology of insulin resistance between Type-2 diabetes mellitus and AD has led AD to be proposed as a form of diabetes and termed 'Type-3 diabetes'. Since accumulation of Aβ is the prominent cause of neuronal toxicity in AD, its clearance is the prime requisite for therapeutic prospects. This purpose is expertly fulfilled by the potential role of Aβ degrading enzymes such as insulin degrading enzyme (IDE) and Neprilysin (NEP). Therefore, their molecular study is important to uncover the proteolytic and regulatory mechanism of Aβ degradation. Herein, (i) In silico sequential and structural analysis of IDE and NEP has been performed to identify the molecular entities for proteolytic degradation of Aβ in the AD brain, (ii) to analyze their catalytic site to demonstrate the enzymatic action played by IDE and NEP, (iii) to identify their structural homologues that could behave as putative partners of IDE and NEP with similar catalytic action and (iv) to illustrate various IDE- and NEP-mediated therapeutic approaches and factors for clearing Aβ in AD.
Monoclonal Antibody Testing for Cancer Metastasis
NASA Technical Reports Server (NTRS)
1993-01-01
Malignant cells are characterized by the ability to invade surrounding normal tissues. Tumor invasion is abetted by proteolytic enzymes that have been correlated with recurrent disease and metastasis. These enzymes are involved in a cascade of proteolytic interactions with other enzymes and inhibitors which allow cancer cells to dissolve surrounding extracellular matrix, thereby enabling the cells to rapidly invade adjacent tissues and migrate to metastatic sites distant from the primary tumor. Among these proteases are the plasminogen activators (PA), collagenase IV, faminase, and in some cases cathepsin D, which together mediate key steps in the invasion process of metastasis. Cells which have the selective advantage for invasion and metastasis are those capable of regulating their proteolytic activity and proliferation. Cells in the process of invasion would be probably down-regulated for proliferation, but subsequent to attachment and adhesion at a distant site, would then be in a proliferative mode, up-regulating DNA replication. Urokinase (uPA) can be present in the tissues in several molecular forms. The inactive proenzyme is a single chain protein (scuPA) that is cleaved at Lys. 158 to form the double chain, high molecular weight active form (HMW-uPA) of 54 kD. A low molecular weight form (LMW-uPA) can also be produced by cleavage of the HMW-U PA at Lys. 135 - Lys. 136 giving a 35 kD active enzyme. Recently, it has been shown that the HMW active form of urokinase, bound to the tumor cell membrane, is responsible for the local lysis of the extracellular matrix, hence the tissue invasion mechanism for metastasis (Andreasen et al, 19861. Receptor- (membrane) bound uPA is twice as efficient (catalytically) as free fluid-phase uPA. Tho unbound uPA and the LMW form is not responsible for most of the local dissolution of extracellular matrix in the immediate vicinity of the metastatic tumor cell. High levels of urokinase (greater than 3.49 ng/mg of total protein) extracted from breast tumor tissues have recently been shown, together with plasminogen activator inhibitor 1 (PAI-1), to be a good prognostic indicator for high risk of recurrence and shorter patient survival times. In this project, we have attempted to develop immunocytochemical methodologies for the clinical assessment of the expression of urokinase plasminogen activator, which has been implicated to be important for initial steps in tumor invasion, and to relate it to cell proliferation and DNA replication at the single-cell level.
Butler, William T
2008-01-01
In this brief review, I recount events and scientific endeavors in which I have been privileged to participate. The descriptive information includes discovery and characterization of hydroxylysine glycosides from collagen, isolation of dentin sialoprotein (DSP), investigations on dentin phosphoprotein (DPP), and the discovery of a single gene for both DSP and DPP that requires posttranslational proteolytic cleavage of the parent DSPP molecule to generate the two fragments. Finally, I address our unexpected finding of fragments of DMP1 in bone extracts. These fragments are from the NH2-terminal (37 kDa) and COOH-terminal (57 kDa) regions of DMP1. Our studies showed that, similar to DSPP, DMP1 is proteolytically processed by cleavages at X-Asp bonds.
A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli
2012-01-01
Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis. PMID:22943700
Cell Surface Translocation of Annexin A2 Facilitates Glutamate-induced Extracellular Proteolysis*
Valapala, Mallika; Maji, Sayantan; Borejdo, Julian; Vishwanatha, Jamboor K.
2014-01-01
Glutamate-induced elevation in intracellular Ca2+ has been implicated in excitotoxic cell death. Neurons respond to increased glutamate levels by activating an extracellular proteolytic cascade involving the components of the plasmin-plasminogen system. AnxA2 is a Ca2+-dependent phospholipid binding protein and serves as an extracellular proteolytic center by recruiting the tissue plasminogen activator and plasminogen and mediating the localized generation of plasmin. Ratiometric Ca2+ imaging and time-lapse confocal microscopy demonstrated glutamate-induced Ca2+ influx. We showed that glutamate translocated both endogenous and AnxA2-GFP to the cell surface in a process dependent on the activity of the NMDA receptor. Glutamate-induced translocation of AnxA2 is dependent on the phosphorylation of tyrosine 23 at the N terminus, and mutation of tyrosine 23 to a non-phosphomimetic variant inhibits the translocation process. The cell surface-translocated AnxA2 forms an active plasmin-generating complex, and this activity can be neutralized by a hexapeptide directed against the N terminus. These results suggest an involvement of AnxA2 in potentiating glutamate-induced cell death processes. PMID:24742684
Cubarsi, R; Carrió, M M; Villaverde, A
2005-09-01
The in vivo proteolytic digestion of bacterial inclusion bodies (IBs) and the kinetic analysis of the resulting protein fragments is an interesting approach to investigate the molecular organization of these unconventional protein aggregates. In this work, we describe a set of mathematical instruments useful for such analysis and interpretation of observed data. These methods combine numerical estimation of digestion rate and approximation of its high-order derivatives, modelling of fragmentation events from a mixture of Poisson processes associated with differentiated protein species, differential equations techniques in order to estimate the mixture parameters, an iterative predictor-corrector algorithm for describing the flow diagram along the cascade process, as well as least squares procedures with minimum variance estimates. The models are formulated and compared with data, and successively refined to better match experimental observations. By applying such procedures as well as newer improved algorithms of formerly developed equations, it has been possible to model, for two kinds of bacterially produced aggregation prone recombinant proteins, their cascade digestion process that has revealed intriguing features of the IB-forming polypeptides.
Gholami, Mohammad Amin; Forouzmand, Masihollah; Khajavi, Mokhtar; Hossienifar, Shima; Naghiha, Reza
2018-01-01
The purpose of this study was to investigate the effect of different corn processing methods on rumen microbial flora, histomorphometry and fermentation in fattening male lambs. Twenty male lambs (average age and weight of 90 days and 25.00 ± 1.10 kg, respectively) were used in a completely randomized design including four treatments and five replicates each over 80 days long period: 1) Lambs fed ground corn seeds; 2) Lambs fed steam-rolled corn; 3) Lambs fed soaked corn seeds (24 hr) and 4) Lambs fed soaked corn seeds (48 hr). At the end of the experiment, three lambs of each treatment were slaughtered and samples were collected for pH, volatile fatty acids, amylolytic, proteolytic, cellulytic and heterophilic bacteria and protozoa assessment. The number of proteolytic bacteria in soaked corn seeds was significantly increased in comparison with other treatments. The thickness of wall, papillae and muscular layers of rumen in the soaked corn seeds treatment was significantly increased. Overall, from a practical point of view, soaked corn processing could be generally used in lambs fattening system. PMID:29719663
Nucleotide sequences encoding a thermostable alkaline protease
Wilson, David B.; Lao, Guifang
1998-01-01
Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.
In-Source Fragmentation and the Sources of Partially Tryptic Peptides in Shotgun Proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong-Seo; Monroe, Matthew E.; Camp, David G.
2013-02-01
Partially tryptic peptides are often identified in shotgun proteomics using trypsin as the proteolytic enzyme; however, it has been controversial regarding the sources of such partially tryptic peptides. Herein we investigate the impact of in-source fragmentation on shotgun proteomics using three biological samples, including a standard protein mixture, a mouse brain tissue homogenate, and a mouse plasma sample. Since the in-source fragments of a peptide retain the same elution time with its parent fully tryptic peptide, the partially tryptic peptides from in-source fragmentation can be distinguished from the other partially tryptic peptides by plotting the observed retention times against themore » computationally predicted retention times. Most partially tryptic in-source fragmentation artifacts were misaligned from the linear distribution of fully tryptic peptides. The impact of in-source fragmentation on peptide identifications was clearly significant in a less complex sample such as a standard protein digest, where ~60 % of unique peptides were observed as partially tryptic peptides from in-source fragmentation. In mouse brain or mouse plasma samples, in-source fragmentation contributed to 1-3 % of all identified peptides. The other major source of partially tryptic peptides in complex biological samples is presumably proteolytic processing by endogenous proteases in the samples. By filtering out the in-source fragmentation artifacts from the identified partially tryptic or non-tryptic peptides, it is possible to directly survey in-vivo proteolytic processing in biological samples such as blood plasma.« less
Pan, Yanfang; Yago, Tadayuki; Fu, Jianxin; Herzog, Brett; McDaniel, J Michael; Mehta-D'Souza, Padmaja; Cai, Xiaofeng; Ruan, Changgeng; McEver, Rodger P; West, Christopher; Dai, Kesheng; Chen, Hong; Xia, Lijun
2014-12-04
O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan-deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan-deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacking endothelial core 1 O-glycan or cecal ligation and puncture-treated mice. Furthermore, core 1 O-glycan-deficient or desialylated PDPN impaired platelet interaction under physiological flow. These data indicate that sialylated O-glycans of PDPN are essential for platelet adhesion and prevent PDPN from proteolytic degradation primarily mediated by MMPs in the lymph. © 2014 by The American Society of Hematology.
Guo, Yongzheng; Wang, Zhen; Qin, Xinghua; Xu, Jie; Hou, Zuoxu; Yang, Hongyan; Mao, Xuechao; Xing, Wenjuan; Li, Xiaoliang; Zhang, Xing; Gao, Feng
2018-06-01
Heart failure (HF) is characterized by reduced fatty acid (FA) utilization associated with mitochondrial dysfunction. Recent evidence has shown that enhancing FA utilization may provide cardioprotection against HF. Our aim was to investigate the effects and the underlying mechanisms of cardiac FA utilization on cardiac function in response to pressure overload. Transverse aortic constriction (TAC) was used in C57 mice to establish pressure overload-induced HF. TAC mice fed on a high fat diet (HFD) exhibited increased cardiac FA utilization and improved cardiac function and survival compared with those on control diet. Such cardioprotection could also be provided by cardiac-specific overexpression of CD36. Notably, both HFD and CD36 overexpression attenuated mitochondrial fragmentation and improved mitochondrial function in the failing heart. Pressure overload decreased ATP-dependent metalloprotease (YME1L) expression and induced the proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 as a result of suppressed FA utilization. Enhancing FA utilization upregulated YME1L expression and subsequently rebalanced OPA1 processing, resulting in restoration of mitochondrial morphology in the failing heart. In addition, cardiac-specific overexpression of YME1L exerted similar cardioprotective effects against HF to those provided by HFD or CD36 overexpression. These findings demonstrate that enhancing FA utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing OPA1 processing in pressure overload-induced HF, suggesting a unique metabolic intervention approach to improving cardiac functions in HF.
Vella, Laura J; Cappai, Roberto
2012-07-01
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The proteolytic processing of the amyloid precursor protein (APP) into the β-amyloid (Aβ) peptide is a central event in AD. While the pathway that generates Aβ is well described, many questions remain concerning general APP metabolism and its metabolites. It is becoming clear that the amino-terminal region of APP can be processed to release small N-terminal fragments (NTFs). The purpose of this study was to investigate the occurrence and generation of APP NTFs in vivo and in cell culture (SH-SY5Y) in order to delineate the cellular pathways implicated in their generation. We were able to detect 17- to 28-kDa APP NTFs in human and mouse brain tissue that are distinct from N-APP fragments previously reported. We show that the 17- to 28-kDa APP NTFs were highly expressed in mice from the age of 2 wk to adulthood. SH-SY5Y studies indicate the generation of APP NTFs involves a novel APP processing pathway, regulated by protein kinase C, but independent of α-secretase or β-secretase 1 (BACE) activity. These results identify a novel, developmentally regulated APP processing pathway that may play an important role in the physiological function of APP.
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.
Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán
2015-09-24
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
Blending protein separation and peptide analysis through real-time proteolytic digestion.
Slysz, Gordon W; Schriemer, David C
2005-03-15
Typical liquid- or gel-based protein separations require enzymatic digestion as an important first step in generating protein identifications. Traditional protocols involve long-term proteolytic digestion of the separated protein, often leading to sample loss and reduced sensitivity. Previously, we presented a rapid method of proteolytic digestion that showed excellent digestion of resistant and low concentrations of protein without requiring reduction and alkylation. Here, we demonstrate on-line, real-time tryptic digestion in conjunction with reversed-phase protein separation. The studies were aimed at optimizing pH and ionic strength and the size of the digestion element, to produce maximal protein digestion with minimal effects on chromatographic integrity. Upon establishing optimal conditions, the digestion element was attached downstream from a capillary C4 reversed-phase column. A four-protein mixture was processed through the combined system, and the resulting peptides were analyzed on-line by electrospray mass spectrometry. Extracted ion chromatograms for protein chromatography based on peptide elution were generated. These were shown to emulate ion chromatograms produced in a subsequent run without the digestion element, based on protein elution. The methodology will enable rapid and sensitive analysis of liquid-based protein separations using the power of bottom-up proteomics methodologies.
Freeze, H H; Koza-Taylor, P; Saunders, A; Cardelli, J A
1989-11-15
We have examined the relationship of N-linked oligosaccharide structures to the proper targeting and proteolytic processing of two lysosomal enzymes, alpha-mannosidase and beta-glucosidase, in the slime mold Dictyostelium discoideum. Two different mutant strains, HL241 and HL243, each synthesize the same nonglucosylated, truncated, lipid-linked oligosaccharide precursor, Man6GlcNAc2. [3H]Mannose-labeled N-linked oligosaccharides were studied following their release from immunoprecipitated alpha-mannosidase and beta-glucosidase by digestion with peptide:N-glycosidase F. The oligosaccharides from both mutants resembled each other, but they were smaller and contained fewer anionic groups than those from the wild-type. The oligosaccharides from the mutants strains were reduced in sulfate and Man-6-P content, and all Man-6-P was in the form of acid-stable phosphodiesters. Pulse-chase radiolabeling experiments using [35S] methionine indicated that the precursor forms of both enzymes were smaller than wild-type, and that this difference was due solely to differences in N-linked oligosaccharides. The precursor forms of the enzymes were not over-secreted, but appeared to be proteolytically processed into mature forms at approximately 50% the rate of wild-type. This is mainly due to their prolonged retention in the rough endoplasmic reticulum, but, ultimately, both enzymes were properly targeted to lysosomes. These studies indicate that a reduction in the amount of sulfation, phosphorylation or size of the N-linked oligosaccharides in these mutants is not critical for the proteolytic processing and targeting of the lysosomal enzymes, but that these changes may influence their rate of exit from the rough endoplasmic reticulum.
Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.
2014-07-29
To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides withmore » 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.« less
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico.
Borja, Miguel; Neri-Castro, Edgar; Castañeda-Gaytán, Gamaliel; Strickland, Jason L; Parkinson, Christopher L; Castañeda-Gaytán, Juan; Ponce-López, Roberto; Lomonte, Bruno; Olvera-Rodríguez, Alejandro; Alagón, Alejandro; Pérez-Morales, Rebeca
2018-01-08
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A 2 s (PLA 2 s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes ( Crotalus scutulatus scutulatus ) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD 50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE ( n = 28) and Hide Powder Azure proteolytic analysis ( n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present.
Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico
Castañeda-Gaytán, Gamaliel; Castañeda-Gaytán, Juan; Ponce-López, Roberto; Olvera-Rodríguez, Alejandro; Alagón, Alejandro; Pérez-Morales, Rebeca
2018-01-01
Rattlesnake venoms may be classified according to the presence/absence and relative abundance of the neurotoxic phospholipases A2s (PLA2s), such as Mojave toxin, and snake venom metalloproteinases (SVMPs). In Mexico, studies to determine venom variation in Mojave Rattlesnakes (Crotalus scutulatus scutulatus) are limited and little is known about the biological and proteolytic activities in this species. Tissue (34) and venom (29) samples were obtained from C. s. scutulatus from different locations within their distribution in Mexico. Mojave toxin detection was carried out at the genomic (by PCR) and protein (by ELISA) levels for all tissue and venom samples. Biological activity was tested on representative venoms by measuring LD50 and hemorrhagic activity. To determine the approximate amount of SVMPs, 15 venoms were separated by RP-HPLC and variation in protein profile and proteolytic activity was evaluated by SDS-PAGE (n = 28) and Hide Powder Azure proteolytic analysis (n = 27). Three types of venom were identified in Mexico which is comparable to the intraspecific venom diversity observed in the Sonoran Desert of Arizona, USA: Venom Type A (∼Type II), with Mojave toxin, highly toxic, lacking hemorrhagic activity, and with scarce proteolytic activity; Type B (∼Type I), without Mojave toxin, less toxic than Type A, highly hemorrhagic and proteolytic; and Type A + B, containing Mojave toxin, as toxic as venom Type A, variable in hemorrhagic activity and with intermediate proteolytic activity. We also detected a positive correlation between SVMP abundance and hemorrhagic and proteolytic activities. Although more sampling is necessary, our results suggest that venoms containing Mojave toxin and venom lacking this toxin are distributed in the northwest and southeast portions of the distribution in Mexico, respectively, while an intergradation in the middle of both zones is present. PMID:29316683
Capodifoglio, Eduardo; Vidal, Ana Maria Centola; Lima, Joyce Aparecida Santos; Bortoletto, Fernanda; D'Abreu, Léa Furlan; Gonçalves, Ana Carolina Siqueira; Vaz, Andreia Cristina Nakashima; Balieiro, Julio Cesar de Carvalho; Netto, Arlindo Saran
2016-07-01
The aim of this study was to verify the presence of lipolytic and proteolytic Pseudomonas spp. during milking and storage of refrigerated raw milk. We also intended to compare samples collected during rainy and dry seasons, from farms with manual and mechanical milking systems. For this, samples of milkers' hands, cows' teats, water, expansion tanks, equipment, and utensils used during milking were analyzed regarding Pseudomonas spp. Positive samples were tested for the production of lipolytic and proteolytic enzymes. Microorganisms of the genus Pseudomonas were isolated from all sampling points. A higher isolation rate of the bacterium was found in the rainy season except for 6 sampling points, with all of these associated with mechanical milking systems. Pseudomonas spp. exhibiting lipolytic activity were found to be predominant during the dry season, since no activity was detected during the rainy season in 26 of the 29 sampling sites. The highest number of lipolytic Pseudomonas isolates was obtained from water. Presence of lipase-producing Pseudomonas spp. was verified in 7 and 36% of the samples collected from farms with manual and mechanical milking, respectively. When analyzing raw milk collected from expansion tanks immediately (0 h) and 24h after milking, we observed that for dairy properties with manual milking process, 10% of the Pseudomonas isolates were positive for lipolytic activity. The percentage increased to 12% 48h after milking. Mean averages were 32, 33, and 39% immediately after, 24 and 48h after milking, respectively, for farms with mechanical milking. All sampling points showed the presence of proteolytic strains of Pseudomonas. The highest proteolytic activity was found during the rainy season, except for the samples collected from milkers' hands before milking, buckets, and teat cup inner surfaces after milking and from the water in dairy farms with mechanical milking system. Of these samples, 72, 56, and 50%, respectively, were positive for proteolysis during the dry season. For the water samples, a statistical difference was observed between mechanical (50%) and manual (7%) milking systems in the percentage of proteolytic activity. No production of proteolytic enzyme was detected in the samples from milkers' hands taken after milking and no statistically significant difference was found among manual (19.91%) and mechanical (47.85%) milking. During the rainy months, no proteolysis was detected in the samples taken from cows' teats after the predipping. It is evident, therefore, that preventive measures capable of minimizing the contamination with Pseudomonas spp. during milking and storage of refrigerated raw milk are needed, regardless of season. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Benjamin, Mina M; Khalil, Raouf A
2012-01-01
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Mathematical modeling and growth kinetics of Clostridium sporogenes in cooked beef
USDA-ARS?s Scientific Manuscript database
Clostridium sporogenes PA 3679 is a common surrogate for proteolytic Clostridium botulinum for thermal process development and validation. However, little information is available concerning the growth kinetics of C. sporogenes in food. Therefore, the objective of this study was to investigate the...
Proteolysis, proteasomes and antigen presentation
NASA Technical Reports Server (NTRS)
Goldberg, A. L.; Rock, K. L.
1992-01-01
Proteins presented to the immune system must first be cleaved to small peptides by intracellular proteinases. Proteasomes are proteolytic complexes that degrade cytosolic and nuclear proteins. These particles have been implicated in ATP-ubiquitin-dependent proteolysis and in the processing of intracellular antigens for cytolytic immune responses.
Sreenivas, Suma; Krishnaiah, Sateesh M; Shyam Mohan, Anil H; Mallikarjun, Niveditha; Govindappa, Nagaraja; Chatterjee, Amarnath; Sastry, Kedarnath N
2016-02-01
Insulin glargine is a slow acting analog of insulin used in diabetes therapy. It is produced by recombinant DNA technology in different hosts namely E. coli and Pichia pastoris. In our previous study, we have described the secretion of fully folded two-chain Insulin glargine into the medium by over-expression of Kex2 protease. The enhanced levels of the Kex2 protease was responsible for the processing of the glargine precursor with in the host. Apart from the two-chain glargine product we observed a small proportion of arginine clipped species. This might be due to the clipping of arginine present at the C-terminus of the B-chain as it is exposed upon Kex2 cleavage. The carboxypeptidase precursor Kex1 is known to be responsible for clipping of C-terminal lysine or arginine of the proteins or peptides. In order to address this issue we created a Kex1 knock out in the host using Cre/loxP mechanism of targeted gene deletion. When two-chain glargine was expressed in the Kex1 knock out host of P. pastoris GS115 the C-terminal clipped species reduced by ∼80%. This modification further improved the process by reducing the levels of product related impurities. Copyright © 2015 Elsevier Inc. All rights reserved.
Henderson, L E; Sowder, R; Copeland, T D; Smythers, G; Oroszlan, S
1984-01-01
The structural proteins of murine type C retroviruses are proteolytic cleavage products of two different precursor polyproteins coded by the viral gag and env genes. To further investigate the nature and number of proteolytic cleavages involved in virus maturation, we quantitatively isolated the structural proteins of the Rauscher and Moloney strains of type C murine leukemia virus (R-MuLV and M-MuLV, respectively) by reversed-phase high-pressure liquid chromatography. Proteins and polypeptides isolated from R-MuLV included p10, p12, p15, p30, p15(E), gp69, and gp71 and three previously undescribed virus components designated here as p10', p2(E), and p2(E). Homologous proteins and polypeptides were isolated from M-MuLV. Complete or partial amino acid sequences of all the proteins listed above were either determined in this study or were available in previous reports from this laboratory. These data were compared with those from the translation of the M-MuLV proviral DNA sequence (Shinnick et al., Nature [London] 293:543-548, 1981) to determine the exact nature of proteolytic cleavages for all the structural proteins described above and to determine the origin of p10' and p2(E)s. The results showed that, during proteolytic processing of gp80env from M-MuLV (M-gp 80env), a single Arg residue was excised between gp70 and p15(E) and a single peptide bond was cleaved between p15(E) and p2(E). The structure of M-gPr80env is gp70-(Arg)-p15(E)-p2(E). The data suggest that proteolytic cleavage sites in R-gp85env are identical to corresponding cleavage sites in M-gp80env. The p2(E)s are shown to be different genetic variants of p2(E) present in the uncloned-virus preparations. The data for R- and M-p10's shows that they are cleavage products of the gag precursor with the structure p10-Thr-Leu-Asp-Asp-OH. The complete structure of Pr65gag is p15-p12-p30-p10'. Stoichiometries of the gag and env cleavage products in mature R- and M-MuLV were determined. In each virus, gag cleavage products (p15, p12, p30, and p10 plus p10') were found in equimolar amounts and p15(E)s were equimolar with p2(E)s. The stoichiometry of gag to env cleavage products was 4:1. These data are consistent with the proposal that proteolytic processing of precursor polyproteins occurs after virus assembly and that the C-terminal portion of Pr15(E) [i.e., p15(E)-p2(E)] is located on the inner side of the lipid bilayer of the virus. Images PMID:6333515
Chernyshova, M P; Alen'kina, S A; Nikitina, V E; Ignatov, V V
2005-01-01
It was found that Azospirillum brasilensis strain Sp7 is able to produce extracellular proteolytic enzymes. The enzymes were active within a broad range of pH values, with two peaks of activity being located in the acid and alkaline pH areas; required calcium ions; and exhibited substrate specificity with respect to azogelatin. Zymography allowed at least four proteolytic enzymes with molecular weights of 32, 45, 52, and 174 kDa to be detected in A. brasilense Sp7 culture liquid. It was shown that the lectin from A. brasilense Sp7 can inhibit proteolytic enzymes.
Zhang, Heng; Zhang, Ling; Zhou, Dongming; He, Xiao; Wang, Dongpi; Pan, Hongyu; Zhang, Xiaoqin; Mei, Yufei; Qian, Qi; Zheng, Tingting; Jones, Frank E; Sun, Binggui
2017-10-01
Accumulation of amyloid β (Aβ) induces neuronal, synaptic, and cognitive deficits in patients and animal models of Alzheimer's disease (AD). The underlying mechanisms, however, remain to be fully elucidated. In the present study, we found that Aβ interacted with ErbB4, a member of the receptor tyrosine kinase family and mainly expressed in GABAergic interneurons. Deleting ErbB4 in parvalbumin-expressing neurons (PV neurons) significantly attenuated oligomeric Aβ-induced suppression of long term potentiation (LTP). Furthermore, specific ablation of ErbB4 in PV neurons via Cre/loxP system greatly improved spatial memory and synaptic plasticity in the hippocampus of hAPP-J20 mice. The deposition of Aβ detected by 3D6 and Thioflavin S staining and the proteolytic processing of hAPP analyzed by western blotting were not affected in the hippocampus of hAPP-J20 mice by deleting ErbB4 in PV neurons. Our data suggested that ErbB4 in PV neurons mediated Aβ-induced synaptic and cognitive dysfunctions without affecting Aβ levels. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Jingjie; Leen, Eoin N.; Maree, Francois F.
2016-01-01
The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3Cpro). As in other picornaviruses, 3Cpro performs most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3Cpro from serotype A—one of the seven serotypes of FMDV—adopts a trypsin-like fold. On the basis of capsid sequence comparisons the FMDV serotypes are grouped into two phylogenetic clusters, with O, A, C, and Asia 1 in one, and the three Southern African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another, a grouping pattern that is broadly, but not rigidly, reflected in 3Cpro amino acid sequences. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2 Å resolution of 3Cpro from SAT2/GHA/8/91. PMID:27168976
Biosynthesis of human myeloperoxidase.
Nauseef, William M
2018-03-15
Members of Chordata peroxidase subfamily [1] expressed in mammals, including myeloperoxidase (MPO), eosinophil peroxidase (EPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO), express conserved motifs around the heme prosthetic group essential for their activity, a calcium-binding site, and at least two covalent bonds linking the heme group to the protein backbone. Although most studies of the biosynthesis of these peroxidases have focused on MPO, many of the features described occur during biosynthesis of other members of the protein subfamily. Whereas MPO biosynthesis includes events typical for proteins generated in the secretory pathway, the importance and consequences of heme insertion are events uniquely associated with peroxidases. This Review summarizes decades of work elucidating specific steps in the biosynthetic pathway of human MPO. Discussion includes cotranslational glycosylation and subsequent modifications of the N-linked carbohydrate sidechains, contributions by molecular chaperones in the endoplasmic reticulum, cleavage of the propeptide from proMPO, and proteolytic processing of protomers and dimerization to yield mature MPO. Parallels between the biosynthesis of MPO and TPO as well as the impact of inherited mutations in the MPO gene on normal biosynthesis will be summarized. Lastly, specific gaps in our knowledge revealed by this review of our current understanding will be highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.
Jefferson, Tamara; Auf dem Keller, Ulrich; Bellac, Caroline; Metz, Verena V; Broder, Claudia; Hedrich, Jana; Ohler, Anke; Maier, Wladislaw; Magdolen, Viktor; Sterchi, Erwin; Bond, Judith S; Jayakumar, Arumugam; Traupe, Heiko; Chalaris, Athena; Rose-John, Stefan; Pietrzik, Claus U; Postina, Rolf; Overall, Christopher M; Becker-Pauly, Christoph
2013-01-01
The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.
Ma, Qingshan; Yu, Zhanqiao; Han, Bing; Wang, Qing; Zhang, Rijun
2012-04-01
Lacticin Q is a broad-spectrum class II bacteriocin with potential as an alternative to conventional antibiotics. The objective of this study was to produce recombinant lacticin Q using a small ubiquitin-related modifier (SUMO) fusion protein expression system. The 168-bp lacticin Q gene was cloned into the expression vector pET SUMO and transformed into Escherichia coli BL21(DE3). The soluble fusion protein was recovered with a Ni-NTA Sepharose column (95% purity); 130 mg protein was obtained per liter of fermentation culture. The SUMO tag was then proteolytically cleaved from the protein, which was re-applied to the column. Finally, about 32 mg lacticin Q (≥96% purity) was obtained. The recombinant protein exhibited antimicrobial properties similar to that of the native protein, demonstrating that lacticin Q had been successfully expressed by the SUMO fusion system.
Brandley, Matthew C.; Young, Rebecca L.; Warren, Dan L.; Thompson, Michael B.; Wagner, Günter P.
2012-01-01
Although the morphological and physiological changes involved in pregnancy in live-bearing reptiles are well studied, the genetic mechanisms that underlie these changes are not known. We used the viviparous African Ocellated Skink, Chalcides ocellatus, as a model to identify a near complete gene expression profile associated with pregnancy using RNA-Seq analyses of uterine transcriptomes. Pregnancy in C. ocellatus is associated with upregulation of uterine genes involved with metabolism, cell proliferation and death, and cellular transport. Moreover, there are clear parallels between the genetic processes associated with pregnancy in mammals and Chalcides in expression of genes related to tissue remodeling, angiogenesis, immune system regulation, and nutrient provisioning to the embryo. In particular, the pregnant uterine transcriptome is dominated by expression of proteolytic enzymes that we speculate are involved both with remodeling the chorioallantoic placenta and histotrophy in the omphaloplacenta. Elements of the maternal innate immune system are downregulated in the pregnant uterus, indicating a potential mechanism to avoid rejection of the embryo. We found a downregulation of major histocompatability complex loci and estrogen and progesterone receptors in the pregnant uterus. This pattern is similar to mammals but cannot be explained by the mammalian model. The latter finding provides evidence that pregnancy is controlled by different endocrinological mechanisms in mammals and reptiles. Finally, 88% of the identified genes are expressed in both the pregnant and the nonpregnant uterus, and thus, morphological and physiological changes associated with C. ocellatus pregnancy are likely a result of regulation of genes continually expressed in the uterus rather than the initiation of expression of unique genes. PMID:22333490
Lorente, Elena; García, Ruth; Mir, Carmen; Barriga, Alejandro; Lemonnier, François A.; Ramos, Manuel; López, Daniel
2012-01-01
The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8+ lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8+ T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections. PMID:22298786
Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian
2015-01-01
ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural alterations that prime the virus extracellularly for receptor switching, internalization, and possibly uncoating. This step was also important for HPV6 and HPV18, which may suggest that it is conserved among the papillomaviruses. This study advances the understanding of how HPV16 initially infects cells, strengthens the notion that wounding facilitates infection of epidermal tissue, and may help the development of antiviral measures. PMID:25926655
Roles and regulation of the matrix metalloproteinase system in parturition.
Geng, Junnan; Huang, Cong; Jiang, Siwen
2016-04-01
Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post-term birth or pre-eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes. © 2016 Wiley Periodicals, Inc.
Nucleotide sequences encoding a thermostable alkaline protease
Wilson, D.B.; Lao, G.
1998-01-06
Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.
Kee, Nalise Low Ah; Krause, Jason; Blatch, Gregory L; Muramoto, Koji; Sakka, Kazuo; Sakka, Makiko; Naudé, Ryno J; Wagner, Leona; Wolf, Raik; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich; Mielicki, Wojciech P; Frost, Carminita L
2015-10-01
Proteases are essential for tumour progression and many are over-expressed during this time. The main focus of research was the role of these proteases in degradation of the basement membrane and extracellular matrix (ECM), thereby enabling metastasis to occur. Cancer procoagulant (CP), a protease present in malignant tumours, but not normal tissue, is a known activator of coagulation factor X (FX). The present study investigated the function of CP in cancer progression by focussing on its enzymatic specificity. FX cleavage was confirmed using SDS-PAGE and MALDI-TOF MS and compared to the proteolytic action of CP on ECM proteins, including collagen type IV, laminin and fibronectin. Contrary to previous reports, CP cleaved FX at the conventional activation site (between Arg-52 and Ile-53). Additionally, degradation of FX by CP occurred at a much slower rate than degradation by conventional activators. Complete degradation of the heavy chain of FX was only visible after 24 h, while degradation by RVV was complete after 30 min, supporting postulations that the procoagulant function of CP may be of secondary importance to its role in cancer progression. Of the ECM proteins tested, only fibronectin was cleaved. The substrate specificity of CP was further investigated by screening synthetic peptide substrates using a novel direct CP assay. The results indicate that CP is not essential for either cancer-associated blood coagulation or the degradation of ECM proteins. Rather, they suggest that this protease may be required for the proteolytic activation of membrane receptors.
Hoashi, Toshihiko; Sato, Shinichi; Yamaguchi, Yuji; Passeron, Thierry; Tamaki, Kunihiko; Hearing, Vincent J.
2010-01-01
Melanosomes are organelles specialized for the production of melanin pigment and are specifically produced by melanocytic cells. More than 150 pigmentation-related genes have been identified, including glycoprotein nonmetastatic melanoma protein b (GPNMB). A recent proteomics analysis revealed that GPNMB is localized in melanosomes, and GPNMB is a membrane-bound glycoprotein that shows high homology with a well-known melanosomal structural protein, Pmel17/gp100. In this study, we show that GPNMB is expressed in melanocytes of normal human skin, as well as in human melanoma cells. GPNMB is heavily glycosylated and is enriched in mature (stage III and IV) melanosomes in contrast to MART-1 and Pmel17, which are abundant in early (stage I and II) melanosomes. MART-1 and Pmel17 play critical roles in the maturation of early melanosomes; thus, we speculate that GPNMB might be important in the functions of late melanosomes, possibly their transport and/or transfer to keratinocytes. We also demonstrate that a secreted form of GPNMB is released by ectodomain shedding from the largely Golgi-modified form of GPNMB and that the PKC and Ca2+ intracellular signaling pathways regulate that shedding. We conclude that GPNMB is a melanosomal protein that is released by proteolytic ectodomain shedding and might be a useful and specific histological marker of melanocytic cells.—Hoashi, T., Sato, S., Yamaguchi, Y., Passeron, T., Tamaki, K., Hearing, V. J. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. PMID:20056711
Tsai, Shih-Jen
2017-12-22
Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.
The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity.
Abbruzzese, Genevieve; Gorny, Anne-Kathrin; Kaufmann, Lilian T; Cousin, Hélène; Kleino, Iivari; Steinbeisser, Herbert; Alfandari, Dominique
2015-03-15
Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity. © 2015. Published by The Company of Biologists Ltd.
Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning.
Wasser, Catherine R; Masiulis, Irene; Durakoglugil, Murat S; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E; Herz, Joachim
2014-11-25
Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. Copyright © 2014, American Association for the Advancement of Science.
Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning
Wasser, Catherine R.; Masiulis, Irene; Durakoglugil, Murat S.; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E.; Herz, Joachim
2015-01-01
Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. PMID:25429077
Cui, Jingqiu; Chen, Wei; Sun, Jinhong; Guo, Huan; Madley, Rachel; Xiong, Yi; Pan, Xingyi; Wang, Hongliang; Tai, Andrew W.; Weiss, Michael A.; Arvan, Peter; Liu, Ming
2015-01-01
Upon translocation across the endoplasmic reticulum (ER) membrane, secretory proteins are proteolytically processed to remove their signal peptide by signal peptidase (SPase). This process is critical for subsequent folding, intracellular trafficking, and maturation of secretory proteins. Prokaryotic SPase has been shown to be a promising antibiotic target. In contrast, to date, no eukaryotic SPase inhibitors have been reported. Here we report that introducing a proline immediately following the natural signal peptide cleavage site not only blocks preprotein cleavage but also, in trans, impairs the processing and maturation of co-expressed preproteins in the ER. Specifically, we find that a variant preproinsulin, pPI-F25P, is translocated across the ER membrane, where it binds to the catalytic SPase subunit SEC11A, inhibiting SPase activity in a dose-dependent manner. Similar findings were obtained with an analogous variant of preproparathyroid hormone, demonstrating that inhibition of the SPase does not depend strictly on the sequence or structure of the downstream mature protein. We further show that inhibiting SPase in the ER impairs intracellular processing of viral polypeptides and their subsequent maturation. These observations suggest that eukaryotic SPases (including the human ortholog) are, in principle, suitable therapeutic targets for antiviral drug design. PMID:26446786
Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien
2012-05-15
The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. Copyright © 2012 Elsevier Inc. All rights reserved.
Cardiotrophin-1 Induces Matrix Metalloproteinase-1 in Human Aortic Endothelial Cells
Tokito, Akinori; Jougasaki, Michihisa; Ichiki, Tomoko; Hamasaki, Shuichi
2013-01-01
Rupture of an atherosclerotic plaque is a key event in the development of cardiovascular disorders, in which matrix metalloproteinase-1 (MMP-1) plays a crucial role by degradation of extracellular matrix resulting in plaque instability. Cardiotrophin-1 (CT-1), a member of interleukin-6-type proinflammatory cytokines, has potent cardiovascular actions and is highly expressed in vascular endothelium, however its role in atherosclerosis has not been fully elucidated to date. The present study was designed to investigate whether CT-1 induces MMP-1 in human aortic endothelial cells (HAECs). Ribonuclease protection assay demonstrated that MMP-1 gene level in HAECs was enhanced by the treatment of CT-1 in a dose- and time-dependent manner. Immunocytochemical staining, Western immunoblot analysis and enzyme-linked immunosorbent assay revealed that CT-1 augmented MMP-1 protein synthesis and secretion. MMP-1 activity assay revealed that MMP-1 present in the supernatant of HAECs was exclusively precursor form. Casein zymography disclosed proteolytic activity in the supernatant of HAECs, which was enhanced by CT-1 treatment. Furthermore, pharmacological inhibitor study indicated the important roles of extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein (MAP) kinase, c-Jun N-terminal kinase (JNK) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathways in mediating CT-1-induced MMP-1 gene and protein expression. These data reveal for the first time that CT-1 induces the proteolytic potential in HAECs by upregulating MMP-1 expression through ERK1/2, p38 MAP kinase, JNK and JAK/STAT pathways, and suggest that CT-1 may play an important role in the pathophysiology of atherosclerosis and plaque instability. PMID:23935888
Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension
Li, Wencheng; Peng, Hua; Mehaffey, Eamonn P.; Kimball, Christie D.; Grobe, Justin L.; van Gool, Jeanette M.G.; Sullivan, Michelle N.; Earley, Scott; Danser, A.H. Jan; Ichihara, Atsuhiro; Feng, Yumei
2013-01-01
The (pro)renin receptor, which binds both renin and prorenin, is a newly discovered component of the renin angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, non-proteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate salt induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. (Pro)renin receptor expression, detected by immunostaining and RT-PCR, was significantly decreased in the brains of knockout compared with wide-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild type mice. This hypertensive response was abolished in (pro)renin receptor knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate salt increased (pro)renin receptor expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in (pro)renin receptor knockout mice. (Pro)renin receptor knockout in neurons prevented the development of Deoxycorticosterone acetate salt-induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, non-proteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate salt-induced hypertension, possibly through diminished angiotensin II formation. PMID:24246383
TvMP50 is an Immunogenic Metalloproteinase during Male Trichomoniasis*
Quintas-Granados, Laura Itzel; Villalpando, José Luis; Vázquez-Carrillo, Laura Isabel; Arroyo, Rossana; Mendoza-Hernández, Guillermo; Álvarez-Sánchez, María Elizbeth
2013-01-01
Trichomonas vaginalis, a human urogenital tract parasite, is capable of surviving in the male microenvironment, despite of the presence of Zn2+. Concentrations > 1.6 mm of Zn2+ have a trichomonacidal effect; however, in the presence of ≤1.6 mm Zn2+, several trichomonad proteins are up- or down-regulated. Herein, we analyzed the proteome of a T. vaginalis male isolate (HGMN01) grown in the presence of Zn2+ and found 32 protein spots that were immunorecognized by male trichomoniasis patient serum. Using mass spectrometry (MS), the proteins were identified and compared with 23 spots that were immunorecognized in the proteome of a female isolate using the same serum. Interestingly, we found a 50-kDa metallopeptidase (TvMP50). Unexpectedly, this proteinase was immunodetected by the serum of male trichomoniasis patients but not by the female patient serum or sera from healthy men and women. We analyzed the T. vaginalis genome and localized the mp50 gene in locus TVAG_403460. Using an RT-PCR assay, we amplified a 1320-bp mp50 mRNA transcript that was expressed in the presence of Zn2+ in the HGMN01 and CNCD147 T. vaginalis isolates. According to a Western blot assay, native TvMP50 was differentially expressed in the presence of Zn2+. The TvMP50 proteolytic activity increased in the presence of Zn2+ in both isolates and was inhibited by EDTA but not by ptosyl-L-lysine chloromethyl ketone (TLCK), E64, leupeptin, or phenylmethane sulfonyl fluoride. Furthermore, the recombinant TvMP50 had proteolytic activity that was inhibited by EDTA. These data suggested that TvMP50 is immunogenic during male trichomoniasis, and Zn2+ induces its expression. PMID:23579185
Spit, Jornt; Zels, Sven; Dillen, Senne; Holtof, Michiel; Wynant, Niels; Vanden Broeck, Jozef
2014-05-01
While technological advancements have recently led to a steep increase in genomic and transcriptomic data, and large numbers of protease sequences are being discovered in diverse insect species, little information is available about the expression of digestive enzymes in Orthoptera. Here we describe the identification of Locusta migratoria serine protease transcripts (cDNAs) involved in digestion, which might serve as possible targets for pest control management. A total of 5 putative trypsin and 15 putative chymotrypsin gene sequences were characterized. Phylogenetic analysis revealed that these are distributed among 3 evolutionary conserved clusters. In addition, we have determined the relative gene expression levels of representative members in the gut under different feeding conditions. This study demonstrated that the transcript levels for all measured serine proteases were strongly reduced after starvation. On the other hand, larvae of L. migratoria displayed compensatory effects to the presence of Soybean Bowman Birk (SBBI) and Soybean Trypsin (SBTI) inhibitors in their diet by differential upregulation of multiple proteases. A rapid initial upregulation was observed for all tested serine protease transcripts, while only for members belonging to class I, the transcript levels remained elevated after prolonged exposure. In full agreement with these results, we also observed an increase in proteolytic activity in midgut secretions of locusts that were accustomed to the presence of protease inhibitors in their diet, while no change in sensitivity to these inhibitors was observed. Taken together, this paper is the first comprehensive study on dietary dependent transcript levels of proteolytic enzymes in Orthoptera. Our data suggest that compensatory response mechanisms to protease inhibitor ingestion may have appeared early in insect evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Churion, Kelly A; Rogers, Robert E; Bayless, Kayla J; Bondos, Sarah E
2016-12-01
Separation of full-length protein from proteolytic products is challenging, since the properties used to isolate the protein can also be present in proteolytic products. Many separation techniques risk non-specific protein adhesion and/or require a lot of time, enabling continued proteolysis and aggregation after lysis. We demonstrate that proteolytic products aggregate for two different proteins. As a result, full-length protein can be rapidly separated from these fragments by filter flow-through purification, resulting in a substantial protein purity enhancement. This rapid approach is likely to be useful for intrinsically disordered proteins, whose repetitive sequence composition and flexible nature can facilitate aggregation. Copyright © 2016 Elsevier Inc. All rights reserved.
Vicilin and convicilin are potential major allergens from pea.
Sanchez-Monge, R; Lopez-Torrejón, G; Pascual, C Y; Varela, J; Martin-Esteban, M; Salcedo, G
2004-11-01
Allergic reactions to pea (Pisum sativum) ingestion are frequently associated with lentil allergy in the Spanish population. Vicilin have been described as a major lentil allergen. To identify the main IgE binding components from pea seeds and to study their potential cross-reactivity with lentil vicilin. A serum pool or individual sera from 18 patients with pea allergy were used to detect IgE binding proteins from pea seeds by immunodetection and immunoblot inhibition assays. Protein preparations enriched in pea vicilin were obtained by gel filtration chromatography followed by reverse-phase high-performance liquid chromatography (HPLC). IgE binding components were identified by means of N-terminal amino acid sequencing. Complete cDNAs encoding pea vicilin were isolated by PCR, using primers based on the amino acid sequence of the reactive proteins. IgE immunodetection of crude pea extracts revealed that convicilin (63 kDa), as well as vicilin (44 kDa) and one of its proteolytic fragments (32 kDa), reacted with more than 50% of the individual sera tested. Additional proteolytic subunits of vicilin (36, 16 and 13 kDa) bound IgE from approximately 20% of the sera. The lentil vicilin allergen Len c 1 strongly inhibited the IgE binding to all components mentioned above. The characterization of cDNA clones encoding pea vicilin has allowed the deduction of its complete amino acid sequence (90% of sequence identity to Len c 1), as well as those of its reactive proteolytic processed subunits. Vicilin and convicilin are potential major allergens from pea seeds. Furthermore, proteolytic fragments from vicilin are also relevant IgE binding pea components. All these proteins cross-react with the major lentil allergen Len c 1.
Kucerová, H; Strnadová, M; Ludvík, J; Chaloupka, J
1999-01-01
In Bacillus megaterium, a temperature that suppresses sporulation (43 degrees C) only slightly exceeds both the optimum growth temperature and the temperature still permitting sporulation (40-41 degrees C). Here we show that, when cells grown at 35 degrees C and transferred to a sporulation medium, were subjected to shifts between 35 degrees C and the sporulation suppressing temperature (SST, 43 degrees C), their development and proteolytic activities were deeply affected. During the reversible sporulation phase that took place at 35 degrees C for 2-3 h (T2-T3), the cells developed forespores and their protein turnover was characterized by degradation of short-lived proteins and proteins made accessible to the proteolytic attack because of starvation. During the following irreversible sporulation phase refractile heat-resistant spores appeared at T4-T5. Protein turnover rate increased again after T2 and up to T8 60-70% prelabelled proteins were degraded. The SST suppressed sporulation at its beginning; at T3 no asymmetric septa were observed and the amount of heat-resistant spores at T8 was by 4-5 orders lower than at 35 degrees C. However, the cells remained viable and were able to sporulate when transferred to a lower temperature. Protein degradation was increased up to T3 but then its velocity sharply dropped and the amount of degraded protein at T8 corresponded to slightly more than one-half of that found at 35 degrees C. The cytoplasmic proteolytic activity was enhanced but the activity in the membrane fraction was decreased. When a temperature shift to SST was applied at the beginning of the irreversible sporulation phase (T2.5), the sporulation process was impaired. A portion of forespores lyzed, the others were able to complete their development but most spores were not heat-resistant and their coats showed defects. Protein degradation increased again because an effective proteolytic system was developed during the reversible sporulation phase but the amount of degraded protein was slightly lower than at 35 degrees C. A later (T4) shift to SST had no effect on the sporulation process.
Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7
USDA-ARS?s Scientific Manuscript database
Events within and transitions between the phases of the eukaryotic cell cycle are tightly controlled by transcriptional and post-translational processes. Prominent among them is a profound role for the ubiquitin proteasome proteolytic pathway. The timely degradation of proteins balances the increase...
Elucidating the Role of Truncated ErB2 Receptor (p95) in Breast Cancer
2011-03-01
of Medicine, Xiamen, Fujian 361005, China; 3Targeted Molecular Diagnostics, Westmont, IL 60559, USA; 4 Center for Applied Proteomics and Molecular...the proteolytic processing of the Aspergillus nidulans zinc finger transcription factor PacC. J Biol Chem. 2007; 282: 34735-47. 32
Tholen, Stefan; Biniossek, Martin L.; Gansz, Martina; Gomez-Auli, Alejandro; Bengsch, Fee; Noel, Agnes; Kizhakkedathu, Jayachandran N.; Boerries, Melanie; Busch, Hauke; Reinheckel, Thomas; Schilling, Oliver
2013-01-01
Numerous studies highlight the fact that concerted proteolysis is essential for skin morphology and function. The cysteine protease cathepsin L (Ctsl) has been implicated in epidermal proliferation and desquamation, as well as in hair cycle regulation. In stark contrast, mice deficient in cathepsin B (Ctsb) do not display an overt skin phenotype. To understand the systematic consequences of deleting Ctsb or Ctsl, we determined the protein abundances of >1300 proteins and proteolytic cleavage events in skin samples of wild-type, Ctsb−/−, and Ctsl−/− mice via mass-spectrometry-based proteomics. Both protease deficiencies revealed distinct quantitative changes in proteome composition. Ctsl−/− skin revealed increased levels of the cysteine protease inhibitors cystatin B and cystatin M/E, increased cathepsin D, and an accumulation of the extracellular glycoprotein periostin. Immunohistochemistry located periostin predominantly in the hypodermal connective tissue of Ctsl−/− skin. The proteomic identification of proteolytic cleavage sites within skin proteins revealed numerous processing sites that are underrepresented in Ctsl−/− or Ctsb−/− samples. Notably, few of the affected cleavage sites shared the canonical Ctsl or Ctsb specificity, providing further evidence of a complex proteolytic network in the skin. Novel processing sites in proteins such as dermokine and Notch-1 were detected. Simultaneous analysis of acetylated protein N termini showed prototypical mammalian N-alpha acetylation. These results illustrate an influence of both Ctsb and Ctsl on the murine skin proteome and degradome, with the phenotypic consequences of the absence of either protease differing considerably. PMID:23233448
Proteolytic processing of the vitellogenin precursor in the boll weevil, Anthonomus grandis.
Heilmann, L J; Trewitt, P M; Kumaran, A K
1993-01-01
The soluble proteins of the eggs of the coleopteran insect Anthonomus grandis Boheman, the cotton boll weevil, consist almost entirely of two vitellin types with M(r)s of 160,000 and 47,000. We sequenced their N-terminal ends and one internal cyanogen bromide fragment of the large vitellin and compared these sequences with the deduced amino acid sequence from the vitellogenin gene. The results suggest that both the boll weevil vitellin proteins are products of the proteolytic cleavage of a single precursor protein. The smaller 47,000 M(r) vitellin protein is derived from the N-terminal portion of the precursor adjacent to an 18 amino acid signal peptide. The cleavage site between the large and small vitellins at amino acid 362 is adjacent to a pentapeptide sequence containing two pairs of arginine residues. Comparison of the boll weevil sequences with limited known sequences from the single 180,000 M(r) honey bee protein show that the honey bee vitellin N-terminal exhibits sequence homology to the N-terminal of the 47,000 M(r) boll weevil vitellin. Treatment of the vitellins with an N-glycosidase results in a decrease in molecular weight of both proteins, from 47,000 to 39,000 and from 160,000 to 145,000, indicating that about 10-15% of the molecular weight of each vitellin consists of N-linked carbohydrate. The molecular weight of the deglycosylated large vitellin is smaller than that predicted from the gene sequence, indicating possible further proteolytic processing at the C-terminal of that protein.
Proteases of Sporothrix schenckii: Cytopathological effects on a host-cell model.
Sabanero López, Myrna; Flores Villavicencio, Lérida L; Soto Arredondo, Karla; Barbosa Sabanero, Gloria; Villagómez-Castro, Julio César; Cruz Jiménez, Gustavo; Sandoval Bernal, Gerardo; Torres Guerrero, Haydee
Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. To evaluate the proteolytic activity of S. schenckii on epithelial cells. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Lana, Alessandro; Zolla, Lello
2016-09-16
Muscle has to undergo a number of biochemical changes to become the final product, and, once become meat, needs to develop the proper organoleptic peculiarities, including tenderness. Tenderness depends on multiple factors, intervening throughout the production chain, from animal's birth till the end of meat aging. Given the striking number of variables, it is not an exaggeration to affirm that meat coming from each individual is a 'unique' meat. So, the process of meat tenderization follows different paths; meat derived from different animals shows its own evolution, but underneath the wide variability, all these individual developments follow a standard template: in other words, there are some boundaries that limit the possible variations. This review wants to give a comprehensive idea of the concept of meat tenderness, in particular focusing on the two protein classes that are among the most important direct responsibles for tenderization: sarcomeric proteins and proteolytic enzymes. We will review the most recent and significant data acquired on each protein, pointing the attention on the results collected by means of the 'omics' technologies, and underlining the possible role of markers in the frame of meat tenderness. Our review discusses the evidences collected by means of the 'omics' technologies about the proteolytic mechanisms that act in the muscle-to-meat conversion process, leading the muscle to reach the acceptable tenderness of the eatable meat. We consider the proteolytic enzymes and their substrate individually, summarizing the most significant data from the omic approach, and discussing their possible role of marker of tenderness. Copyright © 2016 Elsevier B.V. All rights reserved.
Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro
Garrett, I.R.; Chen, D.; Gutierrez, G.; Zhao, M.; Escobedo, A.; Rossini, G.; Harris, S.E.; Gallwitz, W.; Kim, K.B.; Hu, S.; Crews, C.M.; Mundy, G.R.
2003-01-01
We have found that the ubiquitin-proteasome pathway exerts exquisite control of osteoblast differentiation and bone formation in vitro and in vivo in rodents. Structurally different inhibitors that bind to specific catalytic β subunits of the 20S proteasome stimulated bone formation in bone organ cultures in concentrations as low as 10 nM. When administered systemically to mice, the proteasome inhibitors epoxomicin and proteasome inhibitor–1 increased bone volume and bone formation rates over 70% after only 5 days of treatment. Since the ubiquitin-proteasome pathway has been shown to modulate expression of the Drosophila homologue of the bone morphogenetic protein-2 and -4 (BMP-2 and BMP-4) genes, we examined the effects of noggin, an endogenous inhibitor of BMP-2 and BMP-4 on bone formation stimulated by these compounds and found that it was abrogated. These compounds increased BMP-2 but not BMP-4 or BMP-6 mRNA expression in osteoblastic cells, suggesting that BMP-2 was responsible for the observed bone formation that was inhibited by noggin. We show proteasome inhibitors regulate BMP-2 gene expression at least in part through inhibiting the proteolytic processing of Gli3 protein. Our results suggest that the ubiquitin-proteasome machinery regulates osteoblast differentiation and bone formation and that inhibition of specific components of this system may be useful therapeutically in common diseases of bone loss. PMID:12782679
Dingle, J. T.; Sharman, I. M.; Moore, T.
1966-01-01
1. Young rats were kept for several weeks on a diet deficient in vitamin A. Some were undosed, others were given marginal (25i.u. weekly), adequate (1000i.u. weekly) or excessive (50000i.u. daily) doses of vitamin A acetate. The undosed rats developed signs of vitamin A deficiency, and the overdosed animals had skeletal fractures indicative of hypervitaminosis A. 2. The rats were decapitated. Their livers, and sometimes their kidneys, were homogenized and processed by centrifugal methods to sediment most of the lysosome fractions. Proteolytic activity was measured, after treatment with a detergent, in the whole homogenate (`total' activity), in the pellet obtained after 20min. at 15000g (`bound' activity) and, without treatment with detergent, in the supernatant (`free' activity). 3. In rats suffering from hypervitaminosis A the free activity and to a smaller extent the total activity were increased. Free activity was also raised in most rats suffering from avitaminosis A, but less than in those suffering from hypervitaminosis. 4. The vitamin A status appeared to have little effect on the proteolytic activity of the kidneys. Results for total and free activities, but not for bound activities, were higher than for corresponding liver preparations. 5. Control experiments were done on starved rats and on rats which were pair-fed with hypervitaminotic animals. Short periods of starvation caused an increase in free activity in young rats, but not in adults. The increases caused by starvation were much less than those caused by hypervitaminosis A. 6. For studies of the distribution of vitamin A more complete separation of the subcellular fractions was carried out on the combined livers from several hypervitaminotic rats. The concentration of vitamin A in the lysosome fraction was less than in the liver as a whole. 7. Our finding that the free proteolytic activity of the liver is increased by toxic oral dosing with vitamin A can be considered an extension of the previous observation that proteolytic enzymes are liberated when lysosomes are treated in vitro with vitamin A. PMID:5941340
Iqbal, Junaid; Rajani, Mehak; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed
2013-05-01
Proteases are well-known virulence factors that promote survival, pathogenesis and immune evasion of many pathogens. Several lines of evidence suggest that the blood-brain barrier permeability is a prerequisite in microbial invasion of the central nervous system. Because proteases are frequently associated with vascular permeability by targeting junctional proteins, here it is hypothesized that neuropathogenic Escherichia coli K1 exhibit proteolytic activities to exert its pathogenicity. Zymographic assays were performed using collagen and gelatin as substrates. The lysates of whole E. coli K1 strain E44, or E. coli K-12 strain HB101 were tested for proteolytic activities. The conditioned media were prepared by incubating bacteria in RPMI-1640 in the presence or absence of serum. The cell-free supernatants were collected and tested for proteases in zymography as mentioned above. Additionally, proteolytic degradation of host immune factors was determined by co-incubating conditioned media with albumin/immunoglobulins using protease assays. When collagen or gelatin were used as substrates in zymographic assays, neither whole bacteria nor conditioned media exhibited proteolytic activities. The conditioned media of neuropathogenic E. coli K1 strain E44, or E. coli K-12 strain HB101 did not affect degradation of albumin and immunoglobulins using protease assays. Neither zymographic assays nor protease assays detected proteolytic activities in either the whole bacteria or conditioned media of E. coli K1 strain E44 and E. coli K-12 strain HB101. These findings suggest that host cell monolayer disruptions and immune evasion strategies are likely independent of proteolytic activities of neuropathogenic E. coli K1.
Glowacka, Ilona; Bertram, Stephanie; Müller, Marcel A.; Allen, Paul; Soilleux, Elizabeth; Pfefferle, Susanne; Steffen, Imke; Tsegaye, Theodros Solomon; He, Yuxian; Gnirss, Kerstin; Niemeyer, Daniela; Schneider, Heike; Drosten, Christian; Pöhlmann, Stefan
2011-01-01
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion. PMID:21325420
Chrétien, Michel; Mbikay, Majambu
2016-05-01
Pro-opiomelanocortin (POMC), is a polyprotein expressed in the pituitary and the brain where it is proteolytically processed into peptide hormones and neuropeptides with distinct biological activities. It is the prototype of multipotent prohormones. The prohormone theory was first suggested in 1967 when Chrétien and Li discovered γ-lipotropin and observed that (i) it was part of β-lipotropin (β-LPH), a larger polypeptide characterized 2 years earlier and (ii) its C-terminus was β-melanocyte-stimulating hormone (β-MSH). This discovery led them to propose that the lipotropins might be related biosynthetically to the biologically active β-MSH in a precursor to end product relationship. The theory was widely confirmed in subsequent years. As we celebrate the 50th anniversary of the sequencing of β-LPH, we reflect over the lessons learned from the sequencing of those proteins; we explain their extension to the larger POMC precursor; we examine how the theory of precursor endoproteolysis they inspired became relevant for vast fields in biology; and how it led, after a long and arduous search, to the novel proteolytic enzymes called proprotein convertases. This family of nine enzymes plays multifaceted functions in growth, development, metabolism, endocrine, and brain functions. Their genetics has provided many insights into health and disease. Their therapeutic targeting is foreseeable in the near future. Thus, what started five decades ago as a theory based on POMC fragments, has opened up novel and productive avenues of biological and medical research, including, for our own current interest, a highly intriguing hypocholesterolemic Gln152His PCSK9 mutation in French-Canadian families. © 2016 Society for Endocrinology.
Eydoux, Cécilia; De Caro, Josiane; Ferrato, Francine; Boullanger, Paul; Lafont, Dominique; Laugier, René; Carrière, Frédéric; De Caro, Alain
2007-07-01
Recombinant human pancreatic lipase-related protein 2 (rHPLRP2) was produced in the protease A-deficient yeast Pichia pastoris. A major protein with a molecular mass of 50 kDa was purified from the culture medium using SP-Sepharose and Mono Q chromatography. The protein was found to be highly sensitive to the proteolytic cleavage of a peptide bond in the lid domain. The proteolytic cleavage process occurring in the lid affected both the lipase and phospholipase activities of rHPLRP2. The substrate specificity of the nonproteolyzed rHPLRP2 was investigated using pH-stat and monomolecular film techniques and various substrates (glycerides, phospholipids, and galactolipids). All of the enzyme activities were maximum at alkaline pH values and decreased in the pH 5-7 range corresponding to the physiological conditions occurring in the duodenum. rHPLRP2 was found to act preferentially on substrates forming small aggregates in solution (monoglycerides, egg phosphatidylcholine, and galactolipids) rather than on emulsified substrates such as triolein and diolein. The activity of rHPLRP2 on monogalactosyldiglyceride and digalactosyldiglyceride monomolecular films was determined and compared with that of guinea pig pancreatic lipase-related protein 2, which shows a large deletion in the lid domain. The presence of a full-length lid domain in rHPLRP2 makes it possible for enzyme activity to occur at higher surface pressures. The finding that the inhibition of nonproteolyzed rHPLRP2 by tetrahydrolipstatin and diethyl-p-nitrophenyl phosphate does not involve any bile salt requirements suggests that the rHPLRP2 lid adopts an open conformation in aqueous media.
Schmid-Schönbein, Geert W.
2017-01-01
Transformation of circulating leukocytes from a dormant into an activated state with changing rheological properties leads to a major shift of their behavior in the microcirculation. Low levels of pseudopod formation or expression of adhesion molecules facilitate relatively free passage through microvessels while activated leukocytes with pseudopods and enhanced levels of adhesion membrane proteins become trapped in microvessels, attach to the endothelium and migrate into the tissue. The transformation of leukocytes into an activated state is seen in many diseases. While mechanisms for activation due to infections, tissue trauma, as well as non-physiological biochemical or biophysical exposures are well recognized, the mechanisms for activation in many diseases have not been conclusively liked to these traditional mechanisms and remain unknown. We summarize our recent evidence suggesting a major and surprising role of digestive enzymes in the small intestine as root causes for leukocyte activation and microvascular disturbances. During normal digestion of food digestive enzymes are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. When permeability of this barrier increases, these powerful degrading enzymes leak into the wall of the intestine and into the systemic circulation. Leakage of digestive enzymes occurs for example in physiological shock and multi-organ failure. Entry of digestive enzymes into the wall of the small intestine leads to degradation of the intestinal tissue in an autodigestion process. The digestive enzymes and tissue/food fragments generate not only activate leukocytes but also cause numerous cell dysfunctions. For example, proteolytic destruction of membrane receptors, plasma proteins and other biomolecules occurs. We conclude that escape of digestive enzymes from the intestinal track serves as a major source of cell dysfunction, morbidity and even mortality, including abnormal leukocyte activation seen in rheological studies. PMID:28269737
Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion
He, Wan-ting; Wan, Haoqiang; Hu, Lichen; Chen, Pengda; Wang, Xin; Huang, Zhe; Yang, Zhang-Hua; Zhong, Chuan-Qi; Han, Jiahuai
2015-01-01
Inflammasome is an intracellular signaling complex of the innate immune system. Activation of inflammasomes promotes the secretion of interleukin 1β (IL-1β) and IL-18 and triggers pyroptosis. Caspase-1 and -11 (or -4/5 in human) in the canonical and non-canonical inflammasome pathways, respectively, are crucial for inflammasome-mediated inflammatory responses. Here we report that gasdermin D (GSDMD) is another crucial component of inflammasomes. We discovered the presence of GSDMD protein in nigericin-induced NLRP3 inflammasomes by a quantitative mass spectrometry-based analysis. Gene deletion of GSDMD demonstrated that GSDMD is required for pyroptosis and for the secretion but not proteolytic maturation of IL-1β in both canonical and non-canonical inflammasome responses. It was known that GSDMD is a substrate of caspase-1 and we showed its cleavage at the predicted site during inflammasome activation and that this cleavage was required for pyroptosis and IL-1β secretion. Expression of the N-terminal proteolytic fragment of GSDMD can trigger cell death and N-terminal modification such as tagging with Flag sequence disrupted the function of GSDMD. We also found that pro-caspase-1 is capable of processing GSDMD and ASC is not essential for GSDMD to function. Further analyses of LPS plus nigericin- or Salmonella typhimurium-treated macrophage cell lines and primary cells showed that apoptosis became apparent in Gsdmd−/− cells, indicating a suppression of apoptosis by pyroptosis. The induction of apoptosis required NLRP3 or other inflammasome receptors and ASC, and caspase-1 may partially contribute to the activation of apoptotic caspases in Gsdmd−/− cells. These data provide new insights into the molecular mechanisms of pyroptosis and reveal an unexpected interplay between apoptosis and pyroptosis. PMID:26611636
Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion.
He, Wan-ting; Wan, Haoqiang; Hu, Lichen; Chen, Pengda; Wang, Xin; Huang, Zhe; Yang, Zhang-Hua; Zhong, Chuan-Qi; Han, Jiahuai
2015-12-01
Inflammasome is an intracellular signaling complex of the innate immune system. Activation of inflammasomes promotes the secretion of interleukin 1β (IL-1β) and IL-18 and triggers pyroptosis. Caspase-1 and -11 (or -4/5 in human) in the canonical and non-canonical inflammasome pathways, respectively, are crucial for inflammasome-mediated inflammatory responses. Here we report that gasdermin D (GSDMD) is another crucial component of inflammasomes. We discovered the presence of GSDMD protein in nigericin-induced NLRP3 inflammasomes by a quantitative mass spectrometry-based analysis. Gene deletion of GSDMD demonstrated that GSDMD is required for pyroptosis and for the secretion but not proteolytic maturation of IL-1β in both canonical and non-canonical inflammasome responses. It was known that GSDMD is a substrate of caspase-1 and we showed its cleavage at the predicted site during inflammasome activation and that this cleavage was required for pyroptosis and IL-1β secretion. Expression of the N-terminal proteolytic fragment of GSDMD can trigger cell death and N-terminal modification such as tagging with Flag sequence disrupted the function of GSDMD. We also found that pro-caspase-1 is capable of processing GSDMD and ASC is not essential for GSDMD to function. Further analyses of LPS plus nigericin- or Salmonella typhimurium-treated macrophage cell lines and primary cells showed that apoptosis became apparent in Gsdmd(-/-) cells, indicating a suppression of apoptosis by pyroptosis. The induction of apoptosis required NLRP3 or other inflammasome receptors and ASC, and caspase-1 may partially contribute to the activation of apoptotic caspases in Gsdmd(-/-) cells. These data provide new insights into the molecular mechanisms of pyroptosis and reveal an unexpected interplay between apoptosis and pyroptosis.
Sojka, Daniel; Franta, Zdeněk; Horn, Martin; Hajdušek, Ondřej; Caffrey, Conor R; Mareš, Michael; Kopáček, Petr
2008-01-01
Background Ticks are vectors for a variety of viral, bacterial and parasitic diseases in human and domestic animals. To survive and reproduce ticks feed on host blood, yet our understanding of the intestinal proteolytic machinery used to derive absorbable nutrients from the blood meal is poor. Intestinal digestive processes are limiting factors for pathogen transmission since the tick gut presents the primary site of infection. Moreover, digestive enzymes may find practical application as anti-tick vaccine targets. Results Using the hard tick, Ixodes ricinus, we performed a functional activity scan of the peptidase complement in gut tissue extracts that demonstrated the presence of five types of peptidases of the cysteine and aspartic classes. We followed up with genetic screens of gut-derived cDNA to identify and clone genes encoding the cysteine peptidases cathepsins B, L and C, an asparaginyl endopeptidase (legumain), and the aspartic peptidase, cathepsin D. By RT-PCR, expression of asparaginyl endopeptidase and cathepsins B and D was restricted to gut tissue and to those developmental stages feeding on blood. Conclusion Overall, our results demonstrate the presence of a network of cysteine and aspartic peptidases that conceivably operates to digest host blood proteins in a concerted manner. Significantly, the peptidase components of this digestive network are orthologous to those described in other parasites, including nematodes and flatworms. Accordingly, the present data and those available for other tick species support the notion of an evolutionary conservation of a cysteine/aspartic peptidase system for digestion that includes ticks, but differs from that of insects relying on serine peptidases. PMID:18348719
Matrix metalloproteinase-14 triggers an anti-inflammatory proteolytic cascade in endotoxemia.
Aguirre, Alina; Blázquez-Prieto, Jorge; Amado-Rodriguez, Laura; López-Alonso, Inés; Batalla-Solís, Estefanía; González-López, Adrián; Sánchez-Pérez, Moisés; Mayoral-Garcia, Carlos; Gutiérrez-Fernández, Ana; Albaiceta, Guillermo M
2017-05-01
ᅟ: Matrix metalloproteinases can modulate the inflammatory response through processing of cyto- and chemokines. Among them, MMP-14 is a non-dispensable collagenase responsible for the activation of other enzymes, triggering a proteolytic cascade. To identify the role of MMP-14 during the pro-inflammatory response, wildtype and Mmp14 -/- mice were challenged with lipopolysaccharide. MMP-14 levels decreased after endotoxemia. Mutant animals showed 100% mortality, compared to 50% in wildtype mice. The increased mortality was related to a more severe lung injury, an impaired lung MMP-2 activation, and increased levels of the alarmin S100A9. There were no differences in the expression of other mediators including Il6, Cxcl2, Tgfb, Il10, or S100a8. A similar result was observed in lung explants of both genotypes cultured in presence of lipopolysaccharide. In this ex vivo model, exogenous activated MMP-2 ameliorated the observed increase in alarmins. Samples from septic patients showed a decrease in serum MMP-14 and activated MMP-2 compared to non-septic critically ill patients. These results demonstrate that the MMP-14-MMP-2 axis is downregulated during sepsis, leading to a proinflammatory response involving S100A9 and a more severe lung injury. This anti-inflammatory role of MMP-14 could have a therapeutic value in sepsis. • MMP-14 levels decrease in lungs from endotoxemic mice and serum from septic patients. • Mmp14 -/- mice show increased lung injury and mortality following endotoxemia. • Absence of Mmp14 decreases activated MMP-2 and increases S100A9 levels in lung tissue. • MMP-14 ameliorates inflammation by promoting S100A9 cleavage by activated MMP-2.
Functional Specialization and Evolution of Leader Proteinases in the Family Closteroviridae
Peng, Chih-Wen; Peremyslov, Valera V.; Mushegian, Arcady R.; Dawson, William O.; Dolja, Valerian V.
2001-01-01
Members of the Closteroviridae and Potyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus (a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event. PMID:11711606
Functional specialization and evolution of leader proteinases in the family Closteroviridae.
Peng, C W; Peremyslov, V V; Mushegian, A R; Dawson, W O; Dolja, V V
2001-12-01
Members of the Closteroviridae and Potyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus (a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event.
Takemori, Nobuaki; Takemori, Ayako; Tanaka, Yuki; Endo, Yaeta; Hurst, Jane L.; Gómez-Baena, Guadalupe; Harman, Victoria M.; Beynon, Robert J.
2017-01-01
A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system. PMID:29055021
Silva, Kleiton Augusto Santos; Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Schor, Nestor; Tweardy, David J; Zhang, Liping; Mitch, William E
2015-04-24
Cachexia occurs in patients with advanced cancers. Despite the adverse clinical impact of cancer-induced muscle wasting, pathways causing cachexia are controversial, and clinically reliable therapies are not available. A trigger of muscle protein loss is the Jak/Stat pathway, and indeed, we found that conditioned medium from C26 colon carcinoma (C26) or Lewis lung carcinoma cells activates Stat3 (p-Stat3) in C2C12 myotubes. We identified two proteolytic pathways that are activated in muscle by p-Stat3; one is activation of caspase-3, and the other is p-Stat3 to myostatin, MAFbx/Atrogin-1, and MuRF-1 via CAAT/enhancer-binding protein δ (C/EBPδ). Using sequential deletions of the caspase-3 promoter and CHIP assays, we determined that Stat3 activation increases caspase-3 expression in C2C12 cells. Caspase-3 expression and proteolytic activity were stimulated by p-Stat3 in muscles of tumor-bearing mice. In mice with cachexia caused by Lewis lung carcinoma or C26 tumors, knock-out of p-Stat3 in muscle or with a small chemical inhibitor of p-Stat3 suppressed muscle mass losses, improved protein synthesis and degradation in muscle, and increased body weight and grip strength. Activation of p-Stat3 stimulates a pathway from C/EBPδ to myostatin and expression of MAFbx/Atrogin-1 and increases the ubiquitin-proteasome system. Indeed, C/EBPδ KO decreases the expression of MAFbx/Atrogin-1 and myostatin, while increasing muscle mass and grip strength. In conclusion, cancer stimulates p-Stat3 in muscle, activating protein loss by stimulating caspase-3, myostatin, and the ubiquitin-proteasome system. These results could lead to novel strategies for preventing cancer-induced muscle wasting. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Silva, Kleiton Augusto Santos; Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Schor, Nestor; Tweardy, David J.; Zhang, Liping; Mitch, William E.
2015-01-01
Cachexia occurs in patients with advanced cancers. Despite the adverse clinical impact of cancer-induced muscle wasting, pathways causing cachexia are controversial, and clinically reliable therapies are not available. A trigger of muscle protein loss is the Jak/Stat pathway, and indeed, we found that conditioned medium from C26 colon carcinoma (C26) or Lewis lung carcinoma cells activates Stat3 (p-Stat3) in C2C12 myotubes. We identified two proteolytic pathways that are activated in muscle by p-Stat3; one is activation of caspase-3, and the other is p-Stat3 to myostatin, MAFbx/Atrogin-1, and MuRF-1 via CAAT/enhancer-binding protein δ (C/EBPδ). Using sequential deletions of the caspase-3 promoter and CHIP assays, we determined that Stat3 activation increases caspase-3 expression in C2C12 cells. Caspase-3 expression and proteolytic activity were stimulated by p-Stat3 in muscles of tumor-bearing mice. In mice with cachexia caused by Lewis lung carcinoma or C26 tumors, knock-out of p-Stat3 in muscle or with a small chemical inhibitor of p-Stat3 suppressed muscle mass losses, improved protein synthesis and degradation in muscle, and increased body weight and grip strength. Activation of p-Stat3 stimulates a pathway from C/EBPδ to myostatin and expression of MAFbx/Atrogin-1 and increases the ubiquitin-proteasome system. Indeed, C/EBPδ KO decreases the expression of MAFbx/Atrogin-1 and myostatin, while increasing muscle mass and grip strength. In conclusion, cancer stimulates p-Stat3 in muscle, activating protein loss by stimulating caspase-3, myostatin, and the ubiquitin-proteasome system. These results could lead to novel strategies for preventing cancer-induced muscle wasting. PMID:25787076
Alteration of Galectin-3 in Tears of Patients with Dry Eye Disease
Uchino, Yuichi; Mauris, Jerome; Woodward, Ashley M.; Dieckow, Julia; Amparo, Francisco; Dana, Reza; Mantelli, Flavio; Argüeso, Pablo
2015-01-01
Purpose To investigate the expression, release, and proteolytic degradation of galectin-3 in patients with dry eye disease. Design Observational case series with a comparison group. Methods Tear washes and conjunctival impression cytology specimens were collected through standard procedures from 16 patients with dry eye and 11 age-matched healthy subjects. Galectin-3 content in tears was analyzed by quantitative Western blot, using recombinant galectin-3 protein to generate a calibration curve. The relative expression of galectin-3 and matrix metalloproteinase 9 (MMP9) was evaluated by quantitative polymerase chain reaction. The cleavage of galectin-3 was studied in vitro using activated recombinant MMP9 and protease inhibitors. Results The concentration of galectin-3 protein in tears, but not galectin-3 expression in conjunctival epithelium, was significantly higher in tears of patients with dry eye (0.38 ng/μg total protein, range 0.04-1.36) compared to healthy subjects (0.12 ng/μg total protein, range 0.00-0.41) (P < .01). By Western blot, an intact (∼28.0 kDa) galectin-3 band was identified in tear samples from healthy subjects, whereas 50% of the dry eye samples were characterized by the additional presence of a partially degraded form (∼25.4 kDa). In our experiments, elevated expression of MMP9 in dry eye subjects correlated with the ability of active MMP9 to cleave galectin-3 from recombinant origin. Interestingly, cleavage of endogenous galectin-3 in tear samples was impaired using a broad-spectrum proteinase inhibitor cocktail, but not the pan-specific MMP inhibitor GM6001, suggesting the presence of proteases other than MMPs in promoting galectin-3 degradation in dry eye. Conclusions Our results indicate that release of cellular galectin-3 into tears is associated with epithelial dysfunction in dry eye, and that galectin-3 proteolytic cleavage may contribute to impaired ocular surface barrier function. PMID:25703476
Alteration of galectin-3 in tears of patients with dry eye disease.
Uchino, Yuichi; Mauris, Jerome; Woodward, Ashley M; Dieckow, Julia; Amparo, Francisco; Dana, Reza; Mantelli, Flavio; Argüeso, Pablo
2015-06-01
To investigate the expression, release, and proteolytic degradation of galectin-3 in patients with dry eye disease. Observational case series with a comparison group. Tear washes and conjunctival impression cytology specimens were collected through standard procedures from 16 patients with dry eye and 11 age-matched healthy subjects. Galectin-3 content in tears was analyzed by quantitative Western blot, using recombinant galectin-3 protein to generate a calibration curve. The relative expression of galectin-3 and matrix metalloproteinase 9 (MMP9) was evaluated by quantitative polymerase chain reaction. The cleavage of galectin-3 was studied in vitro using activated recombinant MMP9 and protease inhibitors. The concentration of galectin-3 protein in tears, but not galectin-3 expression in conjunctival epithelium, was significantly higher in tears of patients with dry eye (0.38 ng/μg total protein, range 0.04-1.36) compared to healthy subjects (0.12 ng/μg total protein, range 0.00-0.41) (P < .01). By Western blot, an intact (∼28.0 kDa) galectin-3 band was identified in tear samples from healthy subjects, whereas 50% of the dry eye samples were characterized by the additional presence of a partially degraded form (∼25.4 kDa). In our experiments, elevated expression of MMP9 in dry eye subjects correlated with the ability of active MMP9 to cleave galectin-3 from recombinant origin. Interestingly, cleavage of endogenous galectin-3 in tear samples was impaired using a broad-spectrum proteinase inhibitor cocktail, but not the pan-specific MMP inhibitor GM6001, suggesting the presence of proteases other than MMPs in promoting galectin-3 degradation in dry eye. Our results indicate that release of cellular galectin-3 into tears is associated with epithelial dysfunction in dry eye, and that galectin-3 proteolytic cleavage may contribute to impaired ocular surface barrier function. Copyright © 2015 Elsevier Inc. All rights reserved.
Lanzetti, Manuella; da Costa, Cristiane Aguiar; Nesi, Renata Tiscoski; Barroso, Marina Valente; Martins, Vanessa; Victoni, Tatiana; Lagente, Vincent; Pires, Karla Maria Pereira; e Silva, Patrícia Machado Rodrigues; Resende, Angela Castro; Porto, Luis Cristóvão; Benjamim, Cláudia Farias; Valença, Samuel Santos
2012-12-01
Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema. Copyright © 2012 Elsevier Inc. All rights reserved.
de Boer, Maarten D; Selby, Anna; Atherton, Philip; Smith, Ken; Seynnes, Olivier R; Maganaris, Constantinos N; Maffulli, Nicola; Movin, Tomas; Narici, Marco V; Rennie, Michael J
2007-01-01
We hypothesized that rates of myofibrillar and patellar tendon collagen synthesis would fall over time during disuse, the changes being accompanied in muscle by decreases in focal adhesion kinase (FAK) phosphorylation and in gene expression for proteolytic enzymes. We studied nine men (22 ± 4 years, BMI 24 ± 3 kg m−2 (means ± s.d.) who underwent unilateral lower leg suspension for 23 days; five were studied between 0 and 10 days and four between 10 and 21 days. Muscle and tendon biopsies were taken in the postabsorptive state at days 0, 10 and 21 for measurement of protein synthesis, gene expression and protein phosphorylation. Muscle cross-sectional area decreased by 5.2% at 14 days and 10.0% (both P < 0.001), at 23 days, i.e. 0.5% day−1, whereas tendon dimensions were constant. Rates of myofibrillar protein synthesis fell (P < 0.01) from 0.047% h−1 at day 0 to 0.022% h−1 at 10 days without further changes. Tendon collagen synthetic rates also fell (P < 0.01), from 0.052 to 0.023% h−1 at 10 days and then to 0.010% h−1 at 21 days. FAK phosphorylation decreased 30% (P < 0.01) at 10 days. No changes occurred in the amounts/phosphorylation of PKB–P70s6k–mTOR pathway components. Expression of mRNA for MuRF-1 increased ∼3-fold at 10 days without changes in MAFbx or tripeptidyl peptidase II mRNA, but all decreased between 10 and 21 days. Thus, both myofibrillar and tendon protein synthetic rates show progressive decreases during 21 days of disuse; in muscle, this is accompanied by decreased phosphorylation of FAK, with no marked increases in genes for proteolytic enzymes. PMID:17901116
Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation
Renner, Florian; Lam, Stephen; Freuler, Felix; Gerrits, Bertran; Voshol, Johannes; Calzascia, Thomas; Régnier, Catherine H.; Renatus, Martin; Nikolay, Rainer; Israël, Laura; Bornancin, Frédéric
2017-01-01
The paracaspase MALT1 has arginine-directed proteolytic activity triggered by engagement of immune receptors. Recruitment of MALT1 into activation complexes is required for MALT1 proteolytic function. Here, co-expression of MALT1 in HEK293 cells, either with activated CARD11 and BCL10 or with TRAF6, was used to explore the mechanism of MALT1 activation at the molecular level. This work identified a prominent self-cleavage site of MALT1 isoform A (MALT1A) at R781 (R770 in MALT1B) and revealed that TRAF6 can activate MALT1 independently of the CBM. Intramolecular cleavage at R781/R770 removes a C-terminal TRAF6-binding site in both MALT1 isoforms, leaving MALT1B devoid of the two key interaction sites with TRAF6. A previously identified auto-proteolysis site of MALT1 at R149 leads to deletion of the death-domain, thereby abolishing interaction with BCL10. By using MALT1 isoforms and cleaved fragments thereof, as well as TRAF6 WT and mutant forms, this work shows that TRAF6 induces N-terminal auto-proteolytic cleavage of MALT1 at R149 and accelerates MALT1 protein turnover. The MALT1 fragment generated by N-terminal self-cleavage at R149 was labile and displayed enhanced signaling properties that required an intact K644 residue, previously shown to be a site for mono-ubiquitination of MALT1. Conversely, C-terminal self-cleavage at R781/R770 hampered the ability for self-cleavage at R149 and stabilized MALT1 by hindering interaction with TRAF6. C-terminal self-cleavage had limited impact on MALT1A but severely reduced MALT1B proteolytic and signaling functions. It also abrogated NF-κB activation by N-terminally cleaved MALT1A. Altogether, this study provides further insights into mechanisms that regulate the scaffolding and activation cycle of MALT1. It also emphasizes the reduced functional capacity of MALT1B as compared to MALT1A. PMID:28052131
Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yacoby, I.; Tegler, L. T.; Pochekailov, S.
2012-04-01
Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus,more » led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.« less
miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle
Rahnert, Jill A.; Zheng, Bin; Woodworth-Hobbs, Myra E.; Franch, Harold A.; Russ Price, S.
2014-01-01
Skeletal muscle atrophy occurs in response to a variety of conditions including chronic kidney disease, diabetes, cancer, and elevated glucocorticoids. MicroRNAs (miR) may play a role in the wasting process. Activation of the forkhead box O3 (FoxO3) transcription factor causes skeletal muscle atrophy in patients, animals, and cultured cells by increasing the expression of components of the ubiquitin-proteasome and autophagy-lysosome proteolytic systems. To identify microRNAs that potentially modulate the atrophy process, an in silico target analysis was performed and miR-182 was predicted to target FoxO3 mRNA. Using a combination of immunoblot analysis, quantitative real-time RT-PCR, and FoxO3 3′-UTR luciferase reporter genes, miR-182 was confirmed to regulate FoxO3 expression in C2C12 myotubes. Transfection of miR-182 into muscle cells decreased FoxO3 mRNA 30% and FoxO3 protein 67% (P < 0.05) and also prevented a glucocorticoid-induced upregulation of multiple FoxO3 gene targets including MAFbx/atrogin-1, autophagy-related protein 12 (ATG12), cathepsin L, and microtubule-associated protein light chain 3 (LC3). Treatment of C2C12 myotubes with dexamethasone (Dex) (1 μM, 6 h) to induce muscle atrophy decreased miR-182 expression by 63% (P < 0.05). Similarly, miR-182 was decreased 44% (P < 0.05) in the gastrocnemius muscle of rats injected with streptozotocin to induce diabetes compared with controls. Finally, miR-182 was present in exosomes isolated from the media of C2C12 myotubes and Dex increased its abundance. These data identify miR-182 as an important regulator of FoxO3 expression that participates in the control of atrophy-inducing genes during catabolic diseases. PMID:24871856
Bone Marrow Stromal Cells Stimulate an Angiogenic Program that Requires Endothelial MT1-MMP
Kachgal, Suraj; Carrion, Bita; Janson, Isaac A.; Putnam, Andrew J.
2012-01-01
Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis. PMID:22262018
Cecchini, Stefano; Caputo, Anna R
2009-01-01
Several studies have shown an immunomodulatory effect of orally administered bovine lactoferrin (LF) in fish, but the process of digestion was not characterized. In the present study, we investigated the fate of bovine LF after oral and anal administration, and studied the appearance of intact LF in the bloodstream and its proteolytic attack during the gastric transit in rainbow trout (Oncorhynchus mykiss) held at 9 degrees C and 18 degrees C. Data obtained showed the presence of intact bovine LF in the bloodstream only after anal administration in fish held at 18 degrees C and the presence of several peptides derived from bovine LF in the gastric content. Immunoblotting analysis showed that only a part of bovine LF-derived peptides reacted with the applied anti-bovine LF antibody. The concentration of intact bovine LF, after 30 min of administration, in the gastric content of fish reared at 18 degrees C, being extremely low, if any, led us to suspect that the immunoregulatory effect of dietary bovine LF shown in fish by several authors is not due to the intact form but to bioactive fragments, originated by the proteolytic attack during the gastric transit, as demonstrated in higher vertebrates.
McMillan, Elliott M; Quadrilatero, Joe
2011-03-01
Increased skeletal muscle apoptosis has been associated with a number of conditions including aging, disuse, and cardiovascular disease. Skeletal muscle is a complex tissue comprised of several fiber types with unique properties. To date, no report has specifically examined apoptotic differences across muscles or fiber types. Therefore, we measured several apoptotic indices in healthy rat red (RG) and white gastrocnemius (WG) muscle, as well as examined the expression of several key proteins across fiber types in a mixed muscle (mixed gastrocnemius). The protein content of apoptosis-inducing factor (AIF), apoptosis repressor with caspase recruitment domain (ARC), Bax, Bcl-2, cytochrome c, heat shock protein 70 (Hsp70), and second mitochondria-derived activator of caspases (Smac) were significantly (P < 0.05) higher in RG vs. WG muscle. Cytosolic AIF, cytochrome c, and Smac as well as nuclear AIF were also significantly (P < 0.05) higher in RG compared with WG muscle. In addition, ARC protein expression was related to muscle fiber type and found to be highest (P < 0.001) in type I fibers. Similarly, AIF protein expression was differentially expressed across fibers; however, AIF was correlated to oxidative potential (P < 0.001). Caspase-3, -8, and -9 activity, calpain activity, and DNA fragmentation (a hallmark of apoptosis) were also significantly higher (P < 0.05) in RG compared with WG muscle. Furthermore, total muscle reactive oxygen species generation, as well as Ca(2+)-induced permeability transition pore opening and loss of membrane potential in isolated mitochondria were greater in RG muscle. Collectively, these data suggest that a number of apoptosis-related indices differ between muscles and fiber types. Given these findings, muscle and fiber-type differences in apoptotic protein expression, signaling, and susceptibility should be considered when studying cell death processes in skeletal muscle.
Endres, Marcel; Kneitz, Susanne; Orth, Martin F; Perera, Ruwan K; Zernecke, Alma; Butt, Elke
2016-09-27
The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines.By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines.In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown.Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression.The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.
Lindberg, Pia; Devine, Ellenor; Stensjö, Karin
2012-01-01
The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512
Affinity Proteomics for Fast, Sensitive, Quantitative Analysis of Proteins in Plasma.
O'Grady, John P; Meyer, Kevin W; Poe, Derrick N
2017-01-01
The improving efficacy of many biological therapeutics and identification of low-level biomarkers are driving the analytical proteomics community to deal with extremely high levels of sample complexity relative to their analytes. Many protein quantitation and biomarker validation procedures utilize an immunoaffinity enrichment step to purify the sample and maximize the sensitivity of the corresponding liquid chromatography tandem mass spectrometry measurements. In order to generate surrogate peptides with better mass spectrometric properties, protein enrichment is followed by a proteolytic cleavage step. This is often a time-consuming multistep process. Presented here is a workflow which enables rapid protein enrichment and proteolytic cleavage to be performed in a single, easy-to-use reactor. Using this strategy Klotho, a low-abundance biomarker found in plasma, can be accurately quantitated using a protocol that takes under 5 h from start to finish.
The Insulin-Like Growth Factor System in the Long-Lived Naked Mole-Rat
Brohus, Malene; Gorbunova, Vera; Faulkes, Chris G.; Overgaard, Michael T.; Conover, Cheryl A.
2015-01-01
Naked mole-rats (Heterocephalus glaber) (NMRs) are the longest living rodents known. They show negligible senescence, and are resistant to cancers and certain damaging effects associated with aging. The insulin-like growth factors (IGFs) have pluripotent actions, influencing growth processes in virtually every system of the body. They are established contributors to the aging process, confirmed by the demonstration that decreased IGF signaling results in life-extending effects in a variety of species. The IGFs are likewise involved in progression of cancers by mediating survival signals in malignant cells. This report presents a full characterization of the IGF system in the NMR: ligands, receptors, IGF binding proteins (IGFBPs), and IGFBP proteases. A particular emphasis was placed on the IGFBP protease, pregnancy-associated plasma protein-A (PAPP-A), shown to be an important lifespan modulator in mice. Comparisons of IGF-related genes in the NMR with human and murine sequences indicated no major differences in essential parts of the IGF system, including PAPP-A. The protease was shown to possess an intact active site despite the report of a contradictory genome sequence. Furthermore, PAPP-A was expressed and translated in NMRs cells and retained IGF-dependent proteolytic activity towards IGFBP-4 and IGF-independent activity towards IGFBP-5. However, experimental data suggest differential regulatory mechanisms for PAPP-A expression in NMRs than those described in humans and mice. This overall description of the IGF system in the NMR represents an initial step towards elucidating the complex molecular mechanisms underlying longevity, and how these animals have evolved to ensure a delayed and healthy aging process. PMID:26694858
Nagayoshi, Taikai; Isoda, Kiichiro; Mamiya, Nori; Kida, Satoshi
2017-12-19
Memory consolidation, reconsolidation, and extinction have been shown to share similar molecular signatures, including new gene expression. Calpain is a Ca 2+ -dependent protease that exerts its effects through the proteolytic cleavage of target proteins. Neuron-specific conditional deletions of calpain 1 and 2 impair long-term potentiation in the hippocampus and spatial learning. Moreover, recent studies have suggested distinct roles of calpain 1 and 2 in synaptic plasticity. However, the role of hippocampal calpain in memory processes, especially memory consolidation, reconsolidation, and extinction, is still unclear. In the current study, we demonstrated the critical roles of hippocampal calpain in the consolidation, reconsolidation, and extinction of contextual fear memory in mice. We examined the effects of pharmacological inhibition of calpain in the hippocampus on these memory processes, using the N-Acetyl-Leu-Leu-norleucinal (ALLN; calpain 1 and 2 inhibitor). Microinfusion of ALLN into the dorsal hippocampus impaired long-term memory (24 h memory) without affecting short-term memory (2 h memory). Similarly, this pharmacological blockade of calpain in the dorsal hippocampus also disrupted reactivated memory but did not affect memory extinction. Importantly, the systemic administration of ALLN inhibited the induction of c-fos in the hippocampus, which is observed when memory is consolidated. Our observations showed that hippocampal calpain is required for the consolidation and reconsolidation of contextual fear memory. Further, the results suggested that calpain contributes to the regulation of new gene expression that is necessary for these memory processes as a regulator of Ca 2+ -signal transduction pathway.
Tulini, Fabricio L; Hymery, Nolwenn; Haertlé, Thomas; Le Blay, Gwenaelle; De Martinis, Elaine C P
2016-02-01
Lactic acid bacteria (LAB) can be isolated from different sources such as milk and cheese, and the lipolytic, proteolytic and glycolytic enzymes of LAB are important in cheese preservation and in flavour production. Moreover, LAB produce several antimicrobial compounds which make these bacteria interesting for food biopreservation. These characteristics stimulate the search of new strains with technological potential. From 156 milk and cheese samples from cow, buffalo and goat, 815 isolates were obtained on selective agars for LAB. Pure cultures were evaluated for antimicrobial activities by agar antagonism tests and for proteolytic activity on milk proteins by cultivation on agar plates. The most proteolytic isolates were also tested by cultivation in skim milk followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the fermented milk. Among the 815 tested isolates, three of them identified as Streptococcus uberis (strains FT86, FT126 and FT190) were bacteriocin producers, whereas four other ones identified as Weissella confusa FT424, W. hellenica FT476, Leuconostoc citreum FT671 and Lactobacillus plantarum FT723 showed high antifungal activity in preliminary assays. Complementary analyses showed that the most antifungal strain was L. plantarum FT723 that inhibited Penicillium expansum in modified MRS agar (De Man, Rogosa, Sharpe, without acetate) and fermented milk model, however no inhibition was observed against Yarrowia lipolytica. The proteolytic capacities of three highly proteolytic isolates identified as Enterococcus faecalis (strains FT132 and FT522) and Lactobacillus paracasei FT700 were confirmed by SDS-PAGE, as visualized by the digestion of caseins and whey proteins (β-lactoglobulin and α-lactalbumin). These results suggest potential applications of these isolates or their activities (proteolytic activity or production of antimicrobials) in dairy foods production.
The oral microbiome in dental caries.
Struzycka, Izabela
2014-01-01
Dental caries is one of the most common chronic and multifactorial diseases affecting the human population. The appearance of a caries lesion is determined by the coexistence of three main factors: acidogenic and acidophilic microorganisms, carbohydrates derived from the diet, and host factors. Socio-economic and behavioral factors also play an important role in the etiology of the disease. Caries develops as a result of an ecological imbalance in the stable oral microbiom. Oral microorganisms form dental plaque on the surfaces of teeth, which is the cause of the caries process, and shows features of the classic biofilm. Biofilm formation appears to be influenced by large scale changes in protein expression over time and under genetic control Cariogenic microorganisms produce lactic, formic, acetic and propionic acids, which are a product of carbohydrate metabolism. Their presence causes a decrease in pH level below 5.5, resulting in demineralization of enamel hydroxyapatite crystals and proteolytic breakdown of the structure of tooth hard tissues. Streptococcus mutans, other streptococci of the so-called non-mutans streptococci group, Actinomyces and Lactobacillus play a key role in this process. Dental biofilm is a dynamic, constantly active metabolically structure. The alternating processes of decrease and increase of biofilm pH occur, which are followed by the respective processes of de- and remineralisation of the tooth surface. In healthy conditions, these processes are in balance and no permanent damage to the tooth enamel surface occurs.
Theron, Laetitia; Fernandez, Xavier; Marty-Gasset, Nathalie; Chambon, Christophe; Viala, Didier; Pichereaux, Carole; Rossignol, Michel; Astruc, Thierry; Molette, Caroline
2013-01-30
Fat loss during cooking of duck "foie gras" is the main problem for both manufacturers and consumers. Despite the efforts of the processing industry to control fat loss, the variability of fatty liver cooking yields remains high and uncontrolled. To understand the biochemical effects of postslaughter processing on fat loss during cooking, this study characterizes for the first time the protein expression of fatty liver during chilling using a proteomic approach. For this purpose the proteins were separated according to their solubility: the protein fraction soluble in a buffer of low ionic strength (S) and the protein fraction insoluble in the same buffer (IS). Two-dimensional electrophoresis was used to analyze the S fraction and mass spectrometry for the identification of spots of interest. This analysis revealed 36 (21 identified proteins) and 34 (26 identified proteins) spots of interests in the low-fat-loss and high-fat-loss groups, respectively. The expression of proteins was lower after chilling, which revealed a suppressive effect of chilling on biological processes. The shot-gun strategy was used to analyze the IS fraction, with the identification of all the proteins by mass spectrometry. This allowed identification of 554 and 562 proteins in the low-fat-loss and high-fat-loss groups, respectively. Among these proteins, only the proteins that were up-regulated in the high-fat-loss group were significant (p value = 3.17 × 10(-3)) and corresponded to protein from the cytoskeleton and its associated proteins. Taken together, these results suggest that the variability of technological yield observed in processing plants could be explained by different aging states of fatty livers during chilling, most likely associated with different proteolytic patterns.
Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S.; Mitchum, Melissa G.
2015-01-01
Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. PMID:25416475
The ABC of BTC: structural properties and biological roles of betacellulin.
Dahlhoff, Maik; Wolf, Eckhard; Schneider, Marlon R
2014-04-01
Betacellulin was initially detected as a growth-promoting factor in the conditioned medium of a mouse pancreatic β-cell tumor cell line. Sequencing of the purified protein and of the cloned cDNA supported the assumption that betacellulin is a new ligand of the epidermal growth factor receptor (EGFR), which was later confirmed experimentally. As a typical EGFR ligand, betacellulin is expressed by a variety of cell types and tissues, and the soluble growth factor is proteolytically cleaved from a larger membrane-anchored precursor. Importantly, BTC can - in addition to the EGFR - bind and activate all possible heterodimeric combinations of the related ERBB receptors including the highly oncogenic ERBB2/3 dimer, as well as homodimers of ERBB4. While a large number of studies attest a role for betacellulin in the differentiation of pancreatic β-cells, the last decade witnessed the association of betacellulin with a large number of additional biological processes, ranging from reproduction to the control of neural stem cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Life and death of proteins: a case study of glucose-starved Staphylococcus aureus.
Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael
2012-09-01
The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis.
Life and Death of Proteins: A Case Study of Glucose-starved Staphylococcus aureus*
Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael
2012-01-01
The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis. PMID:22556279
Zen, Ke; Guo, Yalan; Bian, Zhen; Lv, Zhiyuan; Zhu, Dihan; Ohnishi, Hiroshi; Matozaki, Takashi; Liu, Yuan
2018-01-01
Signal regulatory protein α (SIRPα), an immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor, is an essential negative regulator of leukocyte inflammatory responses. Here we report that SIRPα cytoplasmic signalling ITIMs in neutrophils are cleaved during active inflammation and that the loss of SIRPα ITIMs enhances the polymorphonuclear leukocyte (PMN) inflammatory response. Using human leukocytes and two inflammatory models in mice, we show that the cleavage of SIRPα ITIMs in PMNs but not monocytes occurs at the post-acute stage of inflammation and correlates with increased PMN recruitment to inflammatory loci. Enhanced transmigration of PMNs and PMN-associated tissue damage are confirmed in mutant mice expressing SIRPα but lacking the ITIMs. Moreover, the loss of SIRPα ITIMs in PMNs during colitis is blocked by an anti-interleukin-17 (IL-17) antibody. These results demonstrate a SIRPα-based mechanism that dynamically regulates PMN inflammatory responses by generating a CD47-binding but non-signalling SIRPα ‘decoy’. PMID:24026300
Analysis of specific proteolytic digestion of the peptidoglutaminase-asparaginase of koji molds.
Ito, Kotaro; Koyama, Yasuji
2014-09-01
AsGahB, a peptidoglutaminase-asparaginase acting as the main glutaminase in Aspergillus sojae, was previously purified from the cytoplasm of overexpressing strains. Here, we found that specific proteolytic digestion of AsGahB by extracellular proteases of koji molds is similar to that of AsGahA which exists in proteolytic form under solid-state culture. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Impact of new ingredients obtained from brewer's spent yeast on bread characteristics.
Martins, Z E; Pinho, O; Ferreira, I M P L V O
2018-05-01
The impact of bread fortification with β-glucans and with proteins/proteolytic enzymes from brewers' spent yeast on physical characteristics was evaluated. β-Glucans extraction from spent yeast cell wall was optimized and the extract was incorporated on bread to obtain 2.02 g β-glucans/100 g flour, in order to comply with the European Food Safety Authority guidelines. Protein/proteolytic enzymes extract from spent yeast was added to bread at 60 U proteolytic activity/100 g flour. Both β-glucans rich and proteins/proteolytic enzymes extracts favoured browning of bread crust. However, breads with proteins/proteolytic enzymes addition presented lower specific volume, whereas the incorporation of β-glucans in bread lead to uniform pores that was also noticeble in terms of higher specific volume. Overall, the improvement of nutritional/health promoting properties is highlighted with β-glucan rich extract, not only due to bread β-glucan content but also for total dietary fibre content (39% increase). The improvement was less noticeable for proteins/proteolytic enzymes extract. Only a 6% increase in bread protein content was noted with the addition of this extract and higher protein content would most likely accentuate the negative impact on bread specific volume that in turn could impair consumer acceptance. Therefore, only β-glucan rich extract is a promising bread ingredient.
Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi
2014-05-01
The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.
Identification of a maize chlorotic dwarf virus silencing suppressor protein
USDA-ARS?s Scientific Manuscript database
Maize chlorotic dwarf virus (MCDV), a member of the genus Waikavirus, family Secoviridae, has a 11784 nt (+)ssRNA genome that encodes a 389 kDa proteolytically processed polyprotein. We show that an N-terminal 78kDa polyprotein (R78) has silencing suppressor activity, that it is cleaved by the viral...
Bacillus thuringiensis toxins trigger receptor shedding from gypsy moth midgut cells
Algimantas P. Valaitis
2007-01-01
The mechanism of action of the Cry1 insecticidal proteins produced by Bacillus thuringiensis (Bt) begins with the processing of these proteins in the larval gut. After proteolytic activation, the Bt toxins bind to specific midgut receptors and insert into the membrane of the gut epithelial cells, causing insect death.
Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus.
Nhan, Nguyen Thanh; Gonzalez de Valdivia, Ernesto; Gustavsson, Martin; Hai, Truong Nam; Larsson, Gen
2011-04-11
Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in Escherichia coli by the β-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes. Both SefA and H:gm were translocated to the outer membrane in Escherichia coli. SefA was expressed to full length but H:gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H:gm since the N-terminal detection tag (His6) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from Staphylococcus carnosus suggested that the H:gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis. Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of E. coli for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in Staphylococcus carnosus shows that the distribution of the surface protein on each cell was comparatively very narrow in E. coli, the E. coli outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein were detected which would probably be positive for the realisation of a strong antigenic property. The detection of specific and similar proteolytic cleavage patterns for both the proteins provides a further starting point for the investigation and development of the Escherichia coli AIDA autotransporter efficiency.
Penicillium salamii strain ITEM 15302: A new promising fungal starter for salami production.
Magistà, D; Ferrara, M; Del Nobile, M A; Gammariello, D; Conte, A; Perrone, G
2016-08-16
Traditional sausages are often considered of superior quality to sausages inoculated with commercial starter cultures and this is partially due to the action of the typical house microflora. Penicillium nalgiovense is the species commonly used as starter culture for dry-cured meat production. Recently a new species, Penicillium salamii, was described as typical colonizer during salami seasoning. In order to understand its contribution to the seasoning process, two different experiments on curing of fresh pork sausages were conducted using P. salamii ITEM 15302 in comparison with P. nalgiovense ITEM 15292 at small and industrial scale, and the dry-cured sausages were subjected to sensory analyses. Additionally, proteolytic and lipolytic in vitro assays were performed on both strains. P. salamii ITEM 15302 proved to be a fast growing mould on dry-cured sausage casings, well adapted to the seasoning process, with high lipolytic and proteolytic enzymatic activity that confers typical sensory characteristics to meat products. Therefore, P. salamii ITEM 15302 was shown to be a good candidate as new starter for meat industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Pettit, S C; Moody, M D; Wehbie, R S; Kaplan, A H; Nantermet, P V; Klein, C A; Swanstrom, R
1994-12-01
The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions.
Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope1[OPEN
Tanabe, Noriaki; Clarke, Adrian K.
2016-01-01
The Hsp100-type chaperone Hsp93/ClpC has crucial roles in chloroplast biogenesis. In addition to its role in proteolysis in the stroma, biochemical and genetic evidence led to the hypothesis that this chaperone collaborates with the inner envelope TIC complex to power preprotein import. Recently, it was suggested that Hsp93, working together with the Clp proteolytic core, can confer a protein quality control mechanism at the envelope. Thus, the role of envelope-localized Hsp93, and the mechanism by which it participates in protein import, remain unclear. To analyze the function of Hsp93 in protein import independently of its ClpP association, we created a mutant of Hsp93 affecting its ClpP-binding motif (PBM) (Hsp93[P-]), which is essential for the chaperone’s interaction with the Clp proteolytic core. The Hsp93[P-] construct was ineffective at complementing the pale-yellow phenotype of hsp93 Arabidopsis (Arabidopsis thaliana) mutants, indicating that the PBM is essential for Hsp93 function. As expected, the PBM mutation negatively affected the degradation activity of the stromal Clp protease. The mutation also disrupted association of Hsp93 with the Clp proteolytic core at the envelope, without affecting the envelope localization of Hsp93 itself or its association with the TIC machinery, which we demonstrate to be mediated by a direct interaction with Tic110. Nonetheless, Hsp93[P-] expression did not detectably improve the protein import efficiency of hsp93 mutant chloroplasts. Thus, our results do not support the proposed function of Hsp93 in protein import propulsion, but are more consistent with the notion of Hsp93 performing a quality control role at the point of import. PMID:26586836
Cho, Hong-Jun; Lee, Sung-Jin; Park, Sung-Jun; Paik, Chang H; Lee, Sang-Myung; Kim, Sehoon; Lee, Yoon-Sik
2016-09-10
A disulfide-bridged cyclic RGD peptide, named iRGD (internalizing RGD, c(CRGDK/RGPD/EC)), is known to facilitate tumor targeting as well as tissue penetration. After the RGD motif-induced targeting on αv integrins expressed near tumor tissue, iRGD encounters proteolytic cleavage to expose the CendR motif that promotes penetration into cancer cells via the interaction with neuropilin-1. Based on these proteolytic cleavage and internalization mechanism, we designed an iRGD-based monolithic imaging probe that integrates multiple functions (cancer-specific targeting, internalization and fluorescence activation) within a small peptide framework. To provide the capability of activatable fluorescence signaling, we conjugated a fluorescent dye to the N-terminal of iRGD, which was linked to the internalizing sequence (CendR motif), and a quencher to the opposite C-terminal. It turned out that fluorescence activation of the dye/quencher-conjugated monolithic peptide probe requires dual (reductive and proteolytic) cleavages on both disulfide and amide bond of iRGD peptide. Furthermore, the cleavage of the iRGD peptide leading to fluorescence recovery was indeed operative depending on the tumor-related angiogenic receptors (αvβ3 integrin and neuropilin-1) in vitro as well as in vivo. Compared to an 'always fluorescent' iRGD control probe without quencher conjugation, the dye/quencher-conjugated activatable monolithic peptide probe visualized tumor regions more precisely with lower background noise after intravenous injection, owing to the multifunctional responses specific to tumor microenvironment. All these results, along with minimal in vitro and in vivo toxicity profiles, suggest potential of the iRGD-based activatable monolithic peptide probe as a promising imaging agent for precise tumor diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
A potential oncogenic activity of platelet-derived growth factor d in prostate cancer progression.
Ustach, Carolyn V; Taube, Marcus E; Hurst, Newton J; Bhagat, Sunita; Bonfil, R Daniel; Cher, Michael L; Schuger, Lucia; Kim, Hyeong-Reh Choi
2004-03-01
The platelet-derived growth factor (PDGF) proteins are potent stimulators of cell proliferation/transformation and play a major role in cell-cell communication. For over two decades, PDGFs were thought to exist as three dimeric polypeptides (the homodimers AA and BB and the heterodimer AB). Recently, however, the PDGF C and D chains were discovered in a BLAST search of the expressed sequence tag databases. The PDGF CC and DD dimers have a unique two-domain structure with an NH(2)-terminal CUB (compliment subcomponents C1r/C1s, Uegf, and Bmp1) domain and a COOH-terminal PDGF/vascular endothelial growth factor domain. Whereas secreted PDGF AA, BB, and AB readily activate their cell surface receptors, it was suggested that extracellular proteolytic removal of the CUB domain is required for the PDGF/vascular endothelial growth factor domain of PDGF CC and DD to activate PDGF receptors. In the present study, we examined the processing of latent PDGF D into its active form and the effects of PDGF D expression on prostate cancer progression. We show that LNCaP cells auto-activate latent PDGF DD into the active PDGF domain, which can induce phosphorylation of the beta-PDGF receptor and stimulates LNCaP cell proliferation in an autocrine manner. Additionally, LNCaP-PDGF D-conditioned medium induces migration of the prostate fibroblast cell line 1532-FTX, indicating LNCaP-processed PDGF DD is active in a paracrine manner as well. In a severe combined immunodeficient mouse model, PDGF DD expression accelerates early onset of prostate tumor growth and drastically enhances prostate carcinoma cell interaction with surrounding stromal cells. These demonstrate a potential oncogenic activity of PDGF DD in the development and/or progression of prostate cancer.
A Potential Oncogenic Activity of Platelet-Derived Growth Factor D in Prostate Cancer Progression
Ustach, Carolyn V.; Taube, Marcus E.; Hurst, Newton J.; Bhagat, Sunita; Bonfil, R. Daniel; Cher, Michael L.; Schuger, Lucia; Kim, Hyeong-Reh Choi
2014-01-01
The platelet-derived growth factor (PDGF) proteins are potent stimulators of cell proliferation/transformation and play a major role in cell-cell communication. For over two decades, PDGFs were thought to exist as three dimeric polypeptides (the homodimers AA and BB and the heterodimer AB). Recently, however, the PDGF C and D chains were discovered in a BLAST search of the expressed sequence tag databases. The PDGF CC and DD dimers have a unique two-domain structure with an NH2-terminal CUB (compliment subcomponents C1r/C1s, Uegf, and Bmp1) domain and a COOH-terminal PDGF/vascular endothelial growth factor domain. Whereas secreted PDGF AA, BB, and AB readily activate their cell surface receptors, it was suggested that extracellular proteolytic removal of the CUB domain is required for the PDGF/vascular endothelial growth factor domain of PDGF CC and DD to activate PDGF receptors. In the present study, we examined the processing of latent PDGF D into its active form and the effects of PDGF D expression on prostate cancer progression. We show that LNCaP cells auto-activate latent PDGF DD into the active PDGF domain, which can induce phosphorylation of the β-PDGF receptor and stimulates LNCaP cell proliferation in an autocrine manner. Additionally, LNCaP-PDGF D-conditioned medium induces migration of the prostate fibroblast cell line 1532-FTX, indicating LNCaP-processed PDGF DD is active in a paracrine manner as well. In a severe combined immunodeficient mouse model, PDGF DD expression accelerates early onset of prostate tumor growth and drastically enhances prostate carcinoma cell interaction with surrounding stromal cells. These demonstrate a potential oncogenic activity of PDGF DD in the development and/or progression of prostate cancer. PMID:14996732
Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G
2014-10-01
Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.
Juretić, Nevenka; Díaz, Josefina; Romero, Felipe; González, Gustavo; Jaimovich, Enrique; Riveros, Nora
2017-03-01
Duchenne muscular dystrophy (DMD) is a neuromuscular disease originated by mutations in the dystrophin gene. A promising therapeutic approach deals with functional substitution of dystrophin by utrophin, a structural homolog that might be able to compensate dystrophin absence in DMD muscle fibers. It has been described that both interleukin-6 (IL-6) and neuregulin-1 (NRG-1; Heregulin-HRG) induce utrophin expression in skeletal muscle. We investigated a possible functional link among IL-6, NRG-1 and utrophin, in normal (C57) and dystrophic (mdx) skeletal muscle cells. Western Blot analysis allowed us to demonstrate that IL-6 (100ng/mL) induces NRG-1 receptor phosphorylation (ErbB2/ErbB3) in both cell types, in a process that depends on intracellular Ca 2+ and metalloproteinase activity; it also induces a transient increase of ERK1 and GABPα phosphorylation only in dystrophic myotubes. Semiquantitative PCR showed that IL-6 treatment increases utrophin mRNA levels just in mdx myotubes. We observed that utrophin mRNA induction was abolished by BAPTA-AM (an intracellular Ca 2+ chelator), GM6001 (a general metalloproteinase inhibitor), genistein (a general protein tyrosine kinase inhibitor), PD-158780 (an ErbB receptor tyrosine kinase inhibitor) and PD-98059 (a MEK inhibitor), whereas Ly-294002 and wortmannin (PI3K inhibitors) did not affect utrophin induction evoked by IL-6 in dystrophic myotubes. Our results suggest that IL-6 induces utrophin expression in mdx myotubes through activation of a NRG-1/ErbBs signaling cascade. Soluble NRG-1 elicited by proteolytic processing of transmembrane NRG-1 might induce ErbBs phosphorylation and ERK1/2 pathway activation, leading to utrophin up-regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Hama, Shinji; Tamalampudi, Sriappareddy; Shindo, Naoki; Numata, Takao; Yamaji, Hideki; Fukuda, Hideki; Kondo, Akihiko
2008-07-01
To develop a new approach for improving heterologous protein production in Aspergillus oryzae, we focused on the functional role of the N-terminal region of Rhizopus oryzae lipase (ROL). Several N-terminal deletion variants of ROL were expressed in A. oryzae. Interestingly, a segment of 28 amino acids from the C-terminal region of the propeptide (N28) was found to be critical for secretion of ROL into the culture medium. To further investigate the role of N28, the ROL secretory process was visualized in vivo using ROL-green fluorescent protein (GFP) fusion proteins. In cells producing ROL with N28, fluorescence observations showed that the fusion proteins are transported through endoplasmic reticulum (ER), Golgi, and cell wall, which is one of the typical secretory processes in a eukaryotic cell. Because the expression of the mature ROL-GFP fusion protein induced fluorescence accumulation without its translocation into the ER, N28 is considered to play a crucial role in protein transport. When N28 was inserted between the secretion signal and GFP, fluorescence observations showed that GFP, which is originally a cytoplasmic protein, was efficiently translocated into the ER of A. oryzae, resulting in an enhanced secretion of mature GFP after proteolytic cleavage of N28. These findings suggest that N28 facilitates protein translocation into ER and can be a promising candidate for improving heterologous protein production in A. oryzae.
Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne
2014-01-01
Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810
Cho, Yong Suk; Stevens, Leslie M; Stein, David
2010-06-22
The establishment of Drosophila embryonic dorsal-ventral (DV) polarity relies on serine proteolytic activity in the perivitelline space between the embryonic membrane and the eggshell. Gastrulation Defective cleaves and activates Snake, which processes and activates Easter, which cleaves Spätzle to form the activating ligand for the Toll receptor. Ventral restriction of ligand formation depends on the Pipe sulfotransferase, which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. Pipe modifies components of the developing eggshell to produce a ventral cue embedded in the vitelline membrane. This ventral cue is believed to promote one or more of the proteolysis steps in the perivitelline space. By examining the processing of transgenic, tagged versions of the perivitelline proteins during DV patterning, we find that the proteolysis of Easter by Snake is the first Pipe-dependent step and therefore the key ventrally restricted event in the protease cascade. We also find that Snake and Easter associate together in a complex in both wild-type and pipe mutant-derived embryos. This observation suggests a mechanism in which the sulfated target of Pipe promotes a productive interaction between Snake and Easter, perhaps by facilitating conformational changes in a complex containing the two proteins. Copyright 2010 Elsevier Ltd. All rights reserved.
Qin, Chunlin; Brunn, Jan C; Cook, Richard G; Orkiszewski, Ralph S; Malone, James P; Veis, Arthur; Butler, William T
2003-09-05
Full-length cDNA coding for dentin matrix protein 1 (DMP1) has been cloned and sequenced, but the corresponding complete protein has not been isolated. In searching for naturally occurring DMP1, we recently discovered that the extracellular matrix of bone contains fragments originating from DMP1. Shortened forms of DMP1, termed 37K and 57K fragments, were treated with alkaline phosphatase and then digested with trypsin. The resultant peptides were purified by a two-dimensional method: size exclusion followed by reversed-phase high performance liquid chromatography. Purified peptides were sequenced by Edman degradation and mass spectrometry, and the sequences compared with the DMP1 sequence predicted from cDNA. Extensive sequencing of tryptic peptides revealed that the 37K fragments originated from the NH2-terminal region, and the 57K fragments were from the COOH-terminal part of DMP1. Phosphate analysis indicated that the 37K fragments contained 12 phosphates, and the 57K fragments had 41. From 37K fragments, two peptides lacked a COOH-terminal lysine or arginine; instead they ended at Phe173 and Ser180 and were thus COOH termini of 37K fragments. Two peptides were from the NH2 termini of 57K fragments, starting at Asp218 and Asp222. These findings indicated that DMP1 is proteolytically cleaved at four bonds, Phe173-Asp174, Ser180-Asp181, Ser217-Asp218, and Gln221-Asp222, forming eight fragments. The uniformity of cleavages at the NH2-terminal peptide bonds of aspartyl residues suggests that a single proteinase is involved. Based on its reported specificity, we hypothesize that these scissions are catalyzed by PHEX protein. We envision that the proteolytic processing of DMP1 plays a crucial role during osteogenesis and dentinogenesis.
Human epidermis is a novel site of phospholipase B expression.
Maury, Eric; Prévost, Marie Claude; Nauze, Michel; Redoulès, Daniel; Tarroux, Roger; Charvéron, Marie; Salles, Jean Pierre; Perret, Bertrand; Chap, Hugues; Gassama-Diagne, Ama
2002-07-12
Phospholipase B (PLB) is an enzyme that displays both phospholipase A(2) and lysophospholipase activities. Analysis of human epidermis homogenates indicated the presence of a 97 kDa PLB protein, as well as a phospholipase A(2) activity, both being enriched in the soluble fraction. Immunolabelling and in situ hybridization experiments showed that this enzyme is expressed in the different layers of epidermis with an accumulation at the dermo-epidermis junction. RT-PCR data indicated that PLB is specifically expressed in natural and reconstructed epidermis. By 3'-RACE-PCR and screening of human genome databases, we obtained a 3600 bp cDNA coding for human PLB highly homologous to already described intestinal brush border PLBs. These data led us to conclude that the soluble PLB corresponds to a proteolytic cleavage of the membrane anchored protein. Altogether, our results provide the first characterization of human PLB which should play an important role in epidermal barrier function.
Jaouani, Khadija; Karmous, Inès; Ostrowski, Maciej; Ferjani, Ezzedine El; Jakubowska, Anna; Chaoui, Abdelilah
2018-04-16
This work aims to give more insight into mechanisms of action of cadmium (Cd) on germinating pea seeds (Pisum sativum L. var. douce province), specifically the different ways by which Cd cations may interfere with the principal factors involved during germination process, notably storage proteins mobilization, amino acids freeing and proteolytic activities. Obtained results revealed that the process of hydrolysis of main storage proteins showed a significant disruption, which resulted in the decrease of the release of free amino acids, thus imposing a lack in nitrogen supply of essential nutrients to growing embryo under Cd stress. This hypothesis was evidenced by Cd-induced changes occurring in main purified protein fractions; Albumins, Legumins and Vicilins, during their breakdown. Besides, at enzymatic level, the activities of main proteases responsible for this hydrolysis were altered. Indeed, assays using synthetic substrates and specific protease inhibitors followed by protease activity measurements demonstrated that Cd inhibited drastically the total azocaseinolytic activity (ACA) and activities of different proteolytic classes: cysteine-, aspartic-, serine- and metallo-endopeptidases (EP), leucine- and proline-aminopeptidases (LAP and PAP, respectively), and glycine-carboxypeptidases (Gly-CP). The data here presented may suggest that the vulnerability of the embryonic axes towards Cd toxicity could be explained as a result of eventual disruption of metabolic pathways that affect mobilization of reserves and availability of nutrients. In vitro studies suggest that Cd cations may act either directly on the catalytic sites of the proteolytic enzymes, which may cause their deactivation, or indirectly via the generation of oxidative stress and overproduction of free radicals that can interact with enzymes, by altering their activity and structure. Copyright © 2018 Elsevier GmbH. All rights reserved.
Characterization of Three L-Asparaginases from Maritime Pine (Pinus pinaster Ait.).
Van Kerckhoven, Sonia H; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cantón, Francisco R; Cánovas, Francisco M
2017-01-01
Asparaginases (ASPG, EC 3.5.1.1) catalyze the hydrolysis of the amide group of L-asparagine producing L-aspartate and ammonium. Three ASPG, PpASPG1, PpASPG2, and PpASPG3, have been identified in the transcriptome of maritime pine ( Pinus pinaster Ait.) that were transiently expressed in Nicotiana benthamiana by agroinfection. The three recombinant proteins were processed in planta to active enzymes and it was found that all mature forms exhibited double activity asparaginase/isoaspartyl dipeptidase but only PpASPG1 was able to catalyze efficiently L-asparagine hydrolysis. PpASPG1 contains a variable region of 77 amino acids that is critical for proteolytic processing of the precursor and is retained in the mature enzyme. Furthermore, the functional analysis of deletion mutants demonstrated that this protein fragment is required for specific recognition of the substrate and favors enzyme stability. Potassium has a limited effect on the activation of maritime pine ASPG what is consistent with the lack of a critical residue essential for interaction of cation. Taken together, the results presented here highlight the specific features of ASPG from conifers when compared to the enzymes from angiosperms.
Nasri, M
In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits. © 2017 Elsevier Inc. All rights reserved.
Characterization of Three L-Asparaginases from Maritime Pine (Pinus pinaster Ait.)
Van Kerckhoven, Sonia H.; de la Torre, Fernando N.; Cañas, Rafael A.; Avila, Concepción; Cantón, Francisco R.; Cánovas, Francisco M.
2017-01-01
Asparaginases (ASPG, EC 3.5.1.1) catalyze the hydrolysis of the amide group of L-asparagine producing L-aspartate and ammonium. Three ASPG, PpASPG1, PpASPG2, and PpASPG3, have been identified in the transcriptome of maritime pine (Pinus pinaster Ait.) that were transiently expressed in Nicotiana benthamiana by agroinfection. The three recombinant proteins were processed in planta to active enzymes and it was found that all mature forms exhibited double activity asparaginase/isoaspartyl dipeptidase but only PpASPG1 was able to catalyze efficiently L-asparagine hydrolysis. PpASPG1 contains a variable region of 77 amino acids that is critical for proteolytic processing of the precursor and is retained in the mature enzyme. Furthermore, the functional analysis of deletion mutants demonstrated that this protein fragment is required for specific recognition of the substrate and favors enzyme stability. Potassium has a limited effect on the activation of maritime pine ASPG what is consistent with the lack of a critical residue essential for interaction of cation. Taken together, the results presented here highlight the specific features of ASPG from conifers when compared to the enzymes from angiosperms. PMID:28690619
Diaz, Isabel
2012-01-01
Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822
Plasmin on adherent cells: from microvesiculation to apoptosis
Doeuvre, Loïc; Plawinski, Laurent; Goux, Didier; Vivien, Denis; Anglés-Cano, Eduardo
2010-01-01
SYNOPSIS Cell activation by stressors is characterised by a sequence of detectable phenotypic cell changes. The strength of a given stimulus induces modifications in the activity of membrane phospholipids transporters and calpains, which leads to phosphatidylserine exposure, membrane blebbing and the release of microparticles (nanoscale membrane vesicles). This vesiculation could be considered as a warning signal that may be followed, if the stimulus is maintained, by cell detachment-induced apoptosis. In this study, plasminogen incubated onto adherent cells is activated into plasmin by constitutively expressed tPA or uPA. Plasmin formed on the cellular membrane then induces an unique response characterized by membrane blebbing and vesiculation. Hitherto unknown for plasmin, these membrane changes are similar to those induced by thrombin on platelets. If plasmin formation evolves, matrix proteins are then degraded, cells lose attachment and enter the apoptotic process, characterized by DNA fragmentation and electron microscopy features. This sequence of events was experimentally documented at all these stages. Since other proteolytic or inflammatory stimuli may evoke similar responses by distinct adherent cells, this sequence can be applied to distinguish activated adherent cells from cells entering the apoptotic process. This is a major definition crucial to the identification of mediators, inhibitors and potential therapeutic agents. PMID:20846121
Content of intrinsic disorder influences the outcome of cell-free protein synthesis.
Tokmakov, Alexander A; Kurotani, Atsushi; Ikeda, Mariko; Terazawa, Yumiko; Shirouzu, Mikako; Stefanov, Vasily; Sakurai, Tetsuya; Yokoyama, Shigeyuki
2015-09-11
Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.
Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily
2014-01-01
FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.
Coumans, Joëlle V. F.; Poljak, Anne; Raftery, Mark J.; Pereg, Lily
2014-01-01
FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA − strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome. PMID:25502569
Phylogenetically distant barley legumains have a role in both seed and vegetative tissues.
Julián, Israel; Gandullo, Jacinto; Santos-Silva, Ludier K; Diaz, Isabel; Martinez, Manuel
2013-07-01
Legumains or vacuolar processing enzymes are cysteine peptidases (C13 family, clan CD) with increasingly recognized physiological significance in plants. They have previously been classified as seed and vegetative legumains. In this work, the entire barley legumain family is described. The eight members of this family belong to the two phylogenetic clades in which the angiosperm legumains are distributed. An in-depth molecular and functional characterization of a barley legumain from each group, HvLeg-2 and HvLeg-4, was performed. Both legumains contained a signal peptide and were located in the endoplasmic reticulum, were expressed in seeds and vegetative tissues, and when expressed as recombinant proteins showed legumain and caspase proteolytic activities. However, the role of each protein seemed to be different in their target tissues. HvLeg-2 responded in leaves to biotic and abiotic stimuli, such as salicylic acid, jasmonic acid, nitric oxide, abscisic acid, and aphid infestation, and was induced by gibberellic acid in seeds, where the protein is able to degrade storage globulins. HvLeg-4 responded in leaves to wounding, nitric oxide, and abscisic acid treatments, and had an unknown role in the germinating seed. From these results, a multifunctional role was assumed for these two phylogenetically distant legumains, achieving different physiological functions in both seed and vegetative tissues.
Kelloniemi, Jani; Mäkinen, Kristiina; Valkonen, Jari P T
2006-05-01
Potato virus A (PVA), a potyvirus with a (+)ssRNA genome translated to a large polyprotein, was engineered and used as a gene vector for expression of heterologous proteins in plants. Foreign genes including jellyfish GFP (Aequorea victoria) encoding the green fluorescent protein (GFP, 27 kDa) and the genes of human origin (Homo sapiens) encoding a soluble resistance-related calcium-binding protein (sorcin, 22 kDa) and the catechol-O-methyltransferase (S-COMT; 25 kDa) were cloned between the cistrons for the viral replicase and coat protein (CP). The inserts caused no adverse effects on viral infectivity and virulence, and the inserted sequences remained intact in progeny viruses in the systemically infected leaves. The heterologous proteins were released from the viral polyprotein following cleavage by the main viral proteinase, NIa, at engineered proteolytic processing sites flanking the insert. Active GFP, as indicated by green fluorescence, and S-COMT with high levels of enzymatic activity were produced. In contrast, no sorcin was detected despite the expected equimolar amounts of the foreign and viral proteins being expressed as a polyprotein. These data reveal inherent differences between heterologous proteins in their suitability for production in plants.
Surface expression of ω-transaminase in Escherichia coli.
Gustavsson, Martin; Muraleedharan, Madhu Nair; Larsson, Gen
2014-04-01
Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity.
Surface Expression of ω-Transaminase in Escherichia coli
Gustavsson, Martin; Muraleedharan, Madhu Nair
2014-01-01
Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity. PMID:24487538
Co-assembly of Viral Envelope Glycoproteins Regulates Their Polarized Sorting in Neurons
Mardones, Gonzalo A.; Bonifacino, Juan S.
2014-01-01
Newly synthesized envelope glycoproteins of neuroinvasive viruses can be sorted in a polarized manner to the somatodendritic and/or axonal domains of neurons. Although critical for transneuronal spread of viruses, the molecular determinants and interregulation of this process are largely unknown. We studied the polarized sorting of the attachment (NiV-G) and fusion (NiV-F) glycoproteins of Nipah virus (NiV), a paramyxovirus that causes fatal human encephalitis, in rat hippocampal neurons. When expressed individually, NiV-G exhibited a non-polarized distribution, whereas NiV-F was specifically sorted to the somatodendritic domain. Polarized sorting of NiV-F was dependent on interaction of tyrosine-based signals in its cytosolic tail with the clathrin adaptor complex AP-1. Co-expression of NiV-G with NiV-F abolished somatodendritic sorting of NiV-F due to incorporation of NiV-G•NiV-F complexes into axonal transport carriers. We propose that faster biosynthetic transport of unassembled NiV-F allows for its proteolytic activation in the somatodendritic domain prior to association with NiV-G and axonal delivery of NiV-G•NiV-F complexes. Our study reveals how interactions of viral glycoproteins with the host's transport machinery and between themselves regulate their polarized sorting in neurons. PMID:24831812
NASA Technical Reports Server (NTRS)
Lah, T. T.; Hawley, M.; Rock, K. L.; Goldberg, A. L.
1995-01-01
Previous studies have indicated that acid-optimal cysteine proteinase(s) in the endosomal-lysosomal compartments, cathepsins, play a critical role in the proteolytic processing of endocytosed proteins to generate the antigenic peptides presented to the immune system on major histocompatibility complex (MHC) class II molecules. The presentation of these peptides and the expression of MHC class II molecules by macrophages and lymphocytes are stimulated by gamma-interferon (gamma-IFN). We found that treatment of human U-937 monocytes with gamma-IFN increased the activities and the content of the two major lysosomal cysteine proteinases, cathepsins B and L. Assays of protease activity, enzyme-linked immunosorbant assays (ELISA) and immunoblotting showed that this cytokine increased the amount of cathepsin B 5-fold and cathepsin L 3-fold in the lysosomal fraction. By contrast, the aspartic proteinase, cathepsin D, in this fraction was not significantly altered by gamma-IFN treatment. An induction of cathepsins B and L was also observed in mouse macrophages, but not in HeLa cells. These results suggest coordinate regulation in monocytes of the expression of cathepsins B and L and MHC class II molecules. Presumably, this induction of cysteine proteases contributes to the enhancement of antigen presentation by gamma-IFN.
Saladino, Silvia; Salamone, Monica; Ghersi, Giulio
2017-09-01
Tumor angiogenesis is a multiphasic process, having the extracellular matrix remodeling as critical step. Different classes of proteolytic enzymes in matrix digestion/remodeling are involved. The role of lytic enzymes and their activation mode have not been completely elucidated. Herein, the crosstalk between endothelia and tumor cells, by realization of bi- and three-dimensional endothelial and breast cancer cells co-cultures, were studied in vitro. Particularly, the effects of two tumor conditioned media (TCM) were assessed about endothelial proliferation, migration, and invasiveness. An increase in expression of pro-MMP9 was detected when endothelial cells were cultured in the presence of both TCM; such as an up-regulation of MMP1 and MMP14 and a down-regulation of MMP7. Moreover the increased MMP2 gene expression from one of them and the stimulation MMP3 synthesis from the other one were observed; an increases of β3-integrin, VEGFA, and DPP4 molecules were detected when endothelia cells are cultured with both TCM. The selection/characterization of elements present in conditioned media from breast cancer cells differently affect endothelial cells, make them potential effectors useful in breast cancer treatment. © 2017 International Federation for Cell Biology.
Ichikawa, Shoji; Sorenson, Andrea H; Austin, Anthony M; Mackenzie, Donald S; Fritz, Timothy A; Moh, Akira; Hui, Siu L; Econs, Michael J
2009-06-01
Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia. The disease is caused by inactivating mutations in fibroblast growth factor 23 (FGF23), Klotho (KL), and uridine diphosphate-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). In vitro studies indicate that GALNT3 O-glycosylates a phosphaturic hormone, FGF23, and prevents its proteolytic processing, thereby allowing secretion of intact FGF23. In this study we generated mice lacking the Galnt3 gene, which developed hyperphosphatemia without apparent calcifications. In response to hyperphosphatemia, Galnt3-deficient mice had markedly increased Fgf23 expression in bone. However, compared with wild-type and heterozygous littermates, homozygous mice had only about half of circulating intact Fgf23 levels and higher levels of C-terminal Fgf23 fragments in bone. Galnt3-deficient mice also exhibited an inappropriately normal 1,25-dihydroxyvitamin D level and decreased alkaline phosphatase activity. Furthermore, renal expression of sodium-phosphate cotransporters and Kl were elevated in Galnt3-deficient mice. Interestingly, there were sex-specific phenotypes; only Galnt3-deficient males showed growth retardation, infertility, and significantly increased bone mineral density. In summary, ablation of Galnt3 impaired secretion of intact Fgf23, leading to decreased circulating Fgf23 and hyperphosphatemia, despite increased Fgf23 expression. Our findings indicate that Galnt3-deficient mice have a biochemical phenotype of tumoral calcinosis and provide in vivo evidence that Galnt3 plays an essential role in proper secretion of Fgf23 in mice.
Chadwick, Jessica A; Bhattacharya, Sayak; Lowe, Jeovanna; Weisleder, Noah; Rafael-Fortney, Jill A
2017-02-01
Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD. Copyright © 2017 the American Physiological Society.
Kalyani, Manjula Ishwara; Lingaraju, Sheela Mysore; Salimath, Bharathi P
2013-01-01
In diseases such as cancer, induction of apoptosis has been a new target for mechanism-based drug discovery. The central component of the process of apoptosis is a proteolytic system involving a family of proteases called caspases. Apoptosis involves characteristic morphological and biochemical events ultimately leading to cell demise. Apoptotic induction is evidently central to the mechanism of action of plant-derived anticancer drugs. Extract of the medicinal plant, Bacopa monnieri, inhibits tumor cell proliferation and accumulation of malignant ascites fluid. The crude sample when subjected to Soxhlet extraction yielded different solvent extracts of which the aqueous extract showed biological activity of apoptosis in Ehrlich ascites tumor cell lines (EAT). Bacopa monnieri water extract (BMWE) treatment of EAT cells produced apoptotic morphological characteristics and in-vivo DNA fragmentation, which is due to the activity of an endogenous endonuclease. The endonuclease responsible for DNA fragmentation acts downstream of caspase-3 activity and is also referred to as caspase-activated DNase (CAD). The CAD constitutively expressed in the cell cytoplasm is translocated into the nucleus upon BMWE treatment, as verified by Western blotting, leading to DNA fragmentation and to programmed cell death. The expression of the pro-apoptotic gene Bax was increased and the expression of the anti-apoptotic gene Bcl-2 was decreased by BMWE treatment. Considering the above results, BMWE was able induce apoptosis in EAT cells via Bax-related caspase-3 activation. This may provide experimental data for the further clinical use of BMWE in cancer.
Huang, Chi-Hung; Yang, Wen-Hao; Chang, Shyue-Yih; Tai, Shyh-Kuan; Tzeng, Cheng-Hwei; Kao, Jung-Yie; Wu, Kou-Juey; Yang, Muh-Hwa
2009-01-01
The hypoxic tumor environment has been shown to be critical to cancer metastasis through the promotion of angiogenesis, induction of epithelial-mesenchymal transition (EMT), and acquisition of invasive potential. However, the impact of hypoxia on the expression profile of the proteolytic enzymes involved in invasiveness is relatively unknown. Membrane-type 4 matrix metalloproteinase (MT4-MMP) is a glycosyl-phosphatidyl inositol-anchored protease that has been shown to be overexpressed in human cancers. However, detailed mechanisms regarding the regulation and function of MT4-MMP expression in tumor cells remain unknown. Here, we demonstrate that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) induced MT4-MMP expression in human cancer cells. Activation of SLUG, a transcriptional factor regulating the EMT process of human cancers, by HIF-1α was critical for the induction of MT4-MMP under hypoxia. SLUG regulated the transcription of MT4-MMP through direct binding to the E-box located in its proximal promoter. Short-interference RNA-mediated knockdown of MT4-MMP attenuated in vitro invasiveness and in vivo pulmonary colonization of tumor cells without affecting cell migratory ability. MT4-MMP promoted invasiveness and pulmonary colonization through modulation of the expression profile of MMPs and angiogenic factors. Finally, coexpression of HIF-1α and MT4-MMP in human head and neck cancer was predictive of a worse clinical outcome. These findings establish a novel signaling pathway for hypoxia-mediated metastasis and elucidate the underlying regulatory mechanism and functional significance of MT4-MMP in cancer metastasis. PMID:20019845
Kadurin, Ivan; Rothwell, Simon W.; Lana, Beatrice; Nieto-Rostro, Manuela; Dolphin, Annette C.
2017-01-01
Voltage-gated Ca2+ (CaV) channels consist of a pore-forming α1 subunit, which determines the main functional and pharmacological attributes of the channel. The CaV1 and CaV2 channels are associated with auxiliary β- and α2δ-subunits. The molecular mechanisms involved in α2δ subunit trafficking, and the effect of α2δ subunits on trafficking calcium channel complexes remain poorly understood. Here we show that α2δ-1 is a ligand for the Low Density Lipoprotein (LDL) Receptor-related Protein-1 (LRP1), a multifunctional receptor which mediates trafficking of cargoes. This interaction with LRP1 is direct, and is modulated by the LRP chaperone, Receptor-Associated Protein (RAP). LRP1 regulates α2δ binding to gabapentin, and influences calcium channel trafficking and function. Whereas LRP1 alone reduces α2δ-1 trafficking to the cell-surface, the LRP1/RAP combination enhances mature glycosylation, proteolytic processing and cell-surface expression of α2δ-1, and also increase plasma-membrane expression and function of CaV2.2 when co-expressed with α2δ-1. Furthermore RAP alone produced a small increase in cell-surface expression of CaV2.2, α2δ-1 and the associated calcium currents. It is likely to be interacting with an endogenous member of the LDL receptor family to have these effects. Our findings now provide a key insight and new tools to investigate the trafficking of calcium channel α2δ subunits. PMID:28256585
Mechanisms of Normal and Abnormal Endometrial Bleeding
Lockwood, Charles J.
2011-01-01
Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503
Tunable protease-activatable virus nanonodes.
Judd, Justin; Ho, Michelle L; Tiwari, Abhinav; Gomez, Eric J; Dempsey, Christopher; Van Vliet, Kim; Igoshin, Oleg A; Silberg, Jonathan J; Agbandje-McKenna, Mavis; Suh, Junghae
2014-05-27
We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.
Tunable Protease-Activatable Virus Nanonodes
2015-01-01
We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery. PMID:24796495
Structure of the Integral Membrane Protein CAAX Protease Ste24p
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor Jr., Edward E.; Horanyi, Peter S.; Clark, Kathleen M.
2012-10-26
Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a -factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavitymore » containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.« less
The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study.
DelBove, Claire E; Deng, Xian-Zhen; Zhang, Qi
2018-06-21
Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.
Rosewell, Katherine L.; Li, Feixue; Puttabyatappa, Muraly; Akin, James W.; Brännström, Mats; Curry, Thomas E.
2013-01-01
ABSTRACT Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability. PMID:24048576
Rosewell, Katherine L; Li, Feixue; Puttabyatappa, Muraly; Akin, James W; Brännström, Mats; Curry, Thomas E
2013-11-01
Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability.
van den Born, Erwin; Posthuma, Clara C; Knoops, Kèvin; Snijder, Eric J
2007-04-01
Thus far, systems developed for heterologous gene expression from the genomes of nidoviruses (arteriviruses and coronaviruses) have relied mainly on the translation of foreign genes from subgenomic mRNAs, whose synthesis is a key feature of the nidovirus life cycle. In general, such expression vectors often suffered from relatively low and unpredictable expression levels, as well as genome instability. In an attempt to circumvent these disadvantages, the possibility to express a foreign gene [encoding enhanced green fluorescent protein (eGFP)] from within the nidovirus replicase gene, which encodes two large polyproteins that are processed proteolytically into the non-structural proteins (nsps) required for viral RNA synthesis, has now been explored. A viable recombinant of the arterivirus Equine arteritis virus, EAV-GFP2, was obtained, which contained the eGFP insert at the site specifying the junction between the two most N-proximal replicase-cleavage products, nsp1 and nsp2. EAV-GFP2 replication could be launched by transfection of cells with either in vitro-generated RNA transcripts or a DNA launch plasmid. EAV-GFP2 displayed growth characteristics similar to those of the wild-type virus and was found to maintain the insert stably for at least eight passages. It is proposed that EAV-GFP2 has potential for arterivirus vector development and as a tool in inhibitor screening. It can also be used for fundamental studies into EAV replication, which was illustrated by the fact that the eGFP signal of EAV-GFP2, which largely originated from an eGFP-nsp2 fusion protein, could be used to monitor the formation of the membrane-bound EAV replication complex in real time.
Hui, Wang; Litherland, Gary J; Elias, Martina S; Kitson, Gareth I; Cawston, Tim E; Rowan, Andrew D; Young, David A
2012-03-01
To investigate the effect of leptin on cartilage destruction. Collagen release was assessed in bovine cartilage explant cultures, while collagenolytic and gelatinolytic activities in culture supernatants were determined by bioassay and gelatin zymography. The expression of matrix metalloproteinases (MMP) was analysed by real-time RT-PCR. Signalling pathway activation was studied by immunoblotting. Leptin levels in cultured osteoarthritic joint infrapatellar fat pad or peri-enthesal deposit supernatants were measured by immunoassay. Leptin, either alone or in synergy with IL-1, significantly induced collagen release from bovine cartilage by upregulating collagenolytic and gelatinolytic activity. In chondrocytes, leptin induced MMP1 and MMP13 expression with a concomitant activation of STAT1, STAT3, STAT5, MAPK (JNK, Erk, p38), Akt and NF-κB signalling pathways. Selective inhibitor blockade of PI3K, p38, Erk and Akt pathways significantly reduced MMP1 and MMP13 expression in chondrocytes, and reduced cartilage collagen release induced by leptin or leptin plus IL-1. JNK inhibition had no effect on leptin-induced MMP13 expression or leptin plus IL-1-induced cartilage collagen release. Conditioned media from cultured white adipose tissue (WAT) from osteoarthritis knee joint fat pads contained leptin, induced cartilage collagen release and increased MMP1 and MMP13 expression in chondrocytes; the latter being partly blocked with an anti-leptin antibody. Leptin acts as a pro-inflammatory adipokine with a catabolic role on cartilage metabolism via the upregulation of proteolytic enzymes and acts synergistically with other pro-inflammatory stimuli. This suggests that the infrapatellar fat pad and other WAT in arthritic joints are local producers of leptin, which may contribute to the inflammatory and degenerative processes in cartilage catabolism, providing a mechanistic link between obesity and osteoarthritis.
Resnyk, Christopher W.; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H.; Simon, Jean; Le Bihan-Duval, Elisabeth; Duclos, Michel J.; Cogburn, Larry A.
2015-01-01
Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5–2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern growth and metabolism of visceral fat in this unique avian model of juvenile-onset obesity and glucose-insulin imbalance. PMID:26445145
Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.
Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel
2015-01-01
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.
Single cell multiplexed assay for proteolytic activity using droplet microfluidics.
Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung
2016-07-15
Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. Copyright © 2016 Elsevier B.V. All rights reserved.
Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants
Buch, Franziska; Kaman, Wendy E.; Bikker, Floris J.; Yilamujiang, Ayufu; Mithöfer, Axel
2015-01-01
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992
Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene; Alfandari, Dominique
2017-08-22
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration.
Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene
2017-01-01
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration. PMID:28829038
Proteolytic inactivation of tissue factor pathway inhibitor by bacterial omptins
Yun, Thomas H.; Cott, Jessica E.; Tapping, Richard I.; Slauch, James M.
2009-01-01
The immune response to infection includes activation of the blood clotting system, leading to extravascular fibrin deposition to limit the spread of invasive microorganisms. Some bacteria have evolved mechanisms to counteract this host response. Pla, a member of the omptin family of Gram-negative bacterial proteases, promotes the invasiveness of the plague bacterium, Yersinia pestis, by activating plasminogen to plasmin to digest fibrin. We now show that the endogenous anticoagulant tissue factor pathway inhibitor (TFPI) is also highly sensitive to proteolysis by Pla and its orthologs OmpT in Escherichia coli and PgtE in Salmonella enterica serovar Typhimurium. Using gene deletions, we demonstrate that bacterial inactivation of TFPI requires omptin expression. TFPI inactivation is mediated by proteolysis since Western blot analysis showed that TFPI cleavage correlated with loss of anticoagulant function in clotting assays. Rates of TFPI inactivation were much higher than rates of plasminogen activation, indicating that TFPI is a better substrate for omptins. We hypothesize that TFPI has evolved sensitivity to proteolytic inactivation by bacterial omptins to potentiate procoagulant responses to bacterial infection. This may contribute to the hemostatic imbalance in disseminated intravascular coagulation and other coagulopathies accompanying severe sepsis. PMID:18988866
Pinsino, A; Roccheri, M C; Matranga, V
2014-02-01
In the marine environment, manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. In earlier reports we found that the exposure of Paracentrotus lividus sea urchin embryos to manganese produced phenotypes with no skeleton. In addition, manganese interfered with calcium uptake, perturbed extracellular signal-regulated kinase (ERK) signaling, affected the expression of skeletogenic genes, and caused an increase of the hsc70 and hsc60 protein levels. Here, we extended our studies focusing on the temporal activation of the p38 mitogen-activated protein kinase (p38 MAPK) and the proteolytic activity of metalloproteinases (MMPs). We found that manganese affects the stage-dependent dynamics of p38 MAPK activation and inhibits the total gelatin-auto-cleaving activity of MMPs, with the exclusion of the 90-85 kDa and 68-58 kDa MMPs, whose levels remain high all throughout development. Our findings correlate, for the first time to our knowledge, an altered activation pattern of the p38 MAPK with an aberrant MMP proteolytic activity in the sea urchin embryo. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pascual-Ruiz, S; Carrillo, L; Alvarez-Alfageme, F; Ruíz, M; Castañera, P; Ortego, F
2009-10-01
The effects of different prey regimes on the performance and digestive physiology of the spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae), were assessed. Specifically, P. maculiventris nymphs were fed on Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), larvae; Egyptian cotton leafworm (ECW); Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae); larvae; Calliphora spp. (CAL) (Diptera: Calliphoridae) pupae or a mixture of the three prey. No differences in development and weight gain were observed when P. maculiventris nymphs were fed different prey species (CPB, ECW or CAL). However, an increase in weight gain and a reduction in the duration of the stadia were observed for nymphs fed with a mixture of the three prey. To investigate the physiological background, biochemical analysis were carried out on insects dissected at the end of the feeding assay. We have found that the proteolytic activity in the salivary glands of P. maculiventris nymphs was not affected by prey species, whereas the relative activity of these proteases in the midgut depends on the prey. Moreover, gel assays proved that the proteolytic profiles of midguts from P. maculiventris nymphs feeding on CPB, ECW and CPB closely resembled those of their prey. All together, these results suggest that P. maculiventris may utilize enzymes from the prey they consume that may facilitate the process of digestion.
Naseri, Bahram; Fathipour, Yaghoub; Moharramipour, Saeid; Hosseininaveh, Vahid; Gatehouse, Angharad M R
2010-12-01
Digestive proteolytic and amylolytic activities of the larvae of Helicoverpa armigera (Hübner) fed either on artificial diet or on different soybean cultivars (356, M4, M7, M9, Clark, Sahar, JK, BP, Williams, L17, Zane, Gorgan3 and DPX) and response of the larvae to feeding on some soybean-based protease inhibitors were studied. The highest general and specific proteolytic activities were in artificial-diet-fed larvae. Although the highest general proteolytic activity was in the larvae fed on L17, M4 and Sahar cultivars, the lowest tryptic activity was on L17 and Sahar, which may be due to the presence of some serine protease inhibitors in these two cultivars, resulting in hyperproduction of chymotrypsin- and elastase-like enzymes in response to the inhibition of these enzymes. The highest amylolytic activity was on M4, and the lowest was on Williams and DPX. General proteolytic activity of SKTI-fed larvae was the highest compared with SBBI- and STI-fed larvae. The findings demonstrated that the cultivars L17 and Sahar were partially resistant to this pest, probably because of some secondary chemicals or proteinaceous protease inhibitors of these cultivars.
2010-09-01
interact with neighboring ECMmole- cules to promote this activity. This interaction sometimes pro- motes remodeling of the ECM to create amore conducive...cells remaining on the upper filter were scraped off gently using a cotton swab, and the inserts were gently washed with PBS. Those cells that migrated
USDA-ARS?s Scientific Manuscript database
The objective of this study is to develop a mathematical method to simulate the internal temperature history of products processed in a prototype microwave-assisted pasteurization system (MAPS) developed by Washington State University. Two products (10 oz. beef meatball trays and 16 oz. salmon fill...
Fidelity of metal insertion into hydrogenases.
Magalon, A; Blokesch, M; Zehelein, E; Böck, A
2001-06-15
The fidelity of metal incorporation into the active center of hydrogenase 3 from Escherichia coli was studied by analyzing the inhibition of the maturation pathway by zinc and other transition metals. Hydrogenase maturation of wild-type cells was significantly affected only by concentrations of zinc or cadmium higher than 200 microM, whereas a mutant with a lesion in the nickel uptake system displayed a total blockade of the proteolytic processing of the precursor form into the mature form of the large subunit after growth in the presence of 10 microM Zn(2+). The precursor could not be processed in vitro by the maturation endopeptidase even in the presence of an excess of nickel ions. Evidence is presented that zinc does not interfere with the incorporation of iron into the metal center. Precursor of the large subunit accumulated in nickel proficient cells formed a transient substrate complex with the cognate endoprotease HycI whereas that of zinc-supplemented cells did not. The results show that zinc can intrude the nickel-dependent maturation pathway only when nickel uptake is blocked. Under this condition zinc appears to be incorporated at the nickel site of the large subunit and delivers a precursor not amenable to proteolytic processing since the interaction with the endoprotease is blocked.
Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano
2015-01-01
TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086
Nickerson, Nicholas N; Joag, Vineet; McGavin, Martin J
2008-09-01
The Staphylococcus aureus proteolytic cascade consists of a metalloprotease aureolysin (Aur), which activates a serine protease zymogen proSspA, which in turn activates the SspB cysteine protease. As with other M4 metalloproteases, including elastase of Pseudomonas aeruginosa, the propeptide of proAur contains an N-terminal fungalysin-thermolysin-propeptide (FTP) domain. Autocatalytic activation of proAur was initiated by processing at T85 downward arrowL(86) in the FTP domain. This differed from the mechanism described for proElastase, where the FTP domain has an RY motif in place of TL(86), and processing occurred at the junction of the propeptide and metalloprotease domains, which remained as an inactive complex during passage across the outer membrane. When TL(86) in the FTP domain was replaced with RY, an intact N-terminal propeptide was secreted, but the M4 metalloprotease domain was degraded. Consequently, this segment of the FTP domain promotes intramolecular processing of proAur while bestowing a chaperone function, but discourages processing within the FTP domain of proElastase, where activation must be co-ordinated with passage across a second membrane. We conclude that the FTP domain of proAur is adapted to facilitate a rapid autocatalytic activation mechanism, consistent with the role or proAur as initiator of the staphylococcal proteolytic cascade.
Kunji, E R; Hagting, A; De Vries, C J; Juillard, V; Haandrikman, A J; Poolman, B; Konings, W N
1995-01-27
In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addressed. Mutants have been constructed that lack a functional di-tripeptide transport system (DtpT) and/or oligopeptide transport system (Opp) but do express the P1-type proteinase (specific for hydrolysis of beta- and to a lesser extent kappa-casein). The wild type strain and the DtpT- mutant accumulate all beta-casein-derived amino acids in the presence of beta-casein as protein substrate and glucose as a source of metabolic energy. The amino acids are not accumulated significantly inside the cells by the Opp- and DtpT- Opp- mutants. When cells are incubated with a mixture of amino acids mimicking the composition of beta-casein, the amino acids are taken up to the same extent in all four strains. Analysis of the extracellular peptide fraction, formed by the action of PrtP on beta-casein, indicates that distinct peptides disappear only when the cells express an active Opp system. These and other experiments indicate that (i) oligopeptide transport is essential for the accumulation of all beta-casein-derived amino acids, (ii) the activity of the Opp system is sufficiently high to support high growth rates on beta-casein provided leucine and histidine are present as free amino acids, and (iii) extracellular peptidase activity is not present in L. lactis.
Camargo, Luiz Miguel; Zhang, Xiaohua Douglas; Loerch, Patrick; Caceres, Ramon Miguel; Marine, Shane D.; Uva, Paolo; Ferrer, Marc; de Rinaldis, Emanuele; Stone, David J.; Majercak, John; Ray, William J.; Yi-An, Chen; Shearman, Mark S.; Mizuguchi, Kenji
2015-01-01
The progressive aggregation of Amyloid-β (Aβ) in the brain is a major trait of Alzheimer's Disease (AD). Aβ is produced as a result of proteolytic processing of the β-amyloid precursor protein (APP). Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPβ, Aβ40, and Aβ42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aβ40 production over Aβ42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPβ production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A) recently implicated with AD through genome wide association studies (GWAS) and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the “regulatory landscape” of APP. PMID:25723573
The Nrf1 CNC-bZIP protein is regulated by the proteasome and activated by hypoxia.
Chepelev, Nikolai L; Bennitz, Joshua D; Huang, Ting; McBride, Skye; Willmore, William G
2011-01-01
Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is a transcription factor mediating cellular responses to xenobiotic and pro-oxidant stress. Nrf1 regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf1 have not been addressed fully. We found that proteasomal inhibitors MG-132 and clasto-lactacystin-β-lactone stabilized the protein expression of full-length Nrf1 in both COS7 and WFF2002 cells. Concomitantly, proteasomal inhibition decreased the expression of a smaller, N-terminal Nrf1 fragment, with an approximate molecular weight of 23 kDa. The EpRE-luciferase reporter assays revealed that proteasomal inhibition markedly inhibited the Nrf1 transactivational activity. These results support earlier hypotheses that the 26 S proteasome processes Nrf1 into its active form by removing its inhibitory N-terminal domain anchoring Nrf1 to the endoplasmic reticulum. Immunoprecipitation demonstrated that Nrf1 is ubiquitinated and that proteasomal inhibition increased the degree of Nrf1 ubiquitination. Furthermore, Nrf1 protein had a half-life of approximately 5 hours in COS7 cells. In contrast, hypoxia (1% O(2)) significantly increased the luciferase reporter activity of exogenous Nrf1 protein, while decreasing the protein expression of p65, a shorter form of Nrf1, known to act as a repressor of EpRE-controlled gene expression. Finally, the protein phosphatase inhibitor okadaic acid activated Nrf1 reporter activity, while the latter was repressed by the PKC inhibitor staurosporine. Collectively, our data suggests that Nrf1 is controlled by several post-translational mechanisms, including ubiquitination, proteolytic processing and proteasomal-mediated degradation as well as by its phosphorylation status. © 2011 Chepelev et al.
Immunohistochemical expression of matrix metalloproteinase 13 in chronic periodontitis.
Nagasupriya, Alapati; Rao, Donimukkala Bheemalingeswara; Ravikanth, Manyam; Kumar, Nalabolu Govind; Ramachandran, Cinnamanoor Rajmani; Saraswathi, Thillai Rajashekaran
2014-01-01
The extracellular matrix is a complex integrated system responsible for the physiologic properties of connective tissue. Collagen is the major extracellular component that is altered in pathologic conditions, mainly periodontitis. The destruction involves proteolytic enzymes, primarily matrix metalloproteinases (MMPs), which play a key role in mediating and regulating the connective tissue destruction in periodontitis. The study group included 40 patients with clinically diagnosed chronic periodontitis. The control group included 20 patients with clinically normal gingiva covering impacted third molars undergoing extraction or in areas where crown-lengthening procedures were performed. MMP-13 expression was demonstrated using immunohistochemistry in all the gingival biopsies, and the data were analyzed statistically. MMP-13 expression was observed more in chronic periodontitis when compared with normal gingiva. MMP-13 expression was expressed by fibroblasts, lymphocytes, macrophages, plasma cells, and basal cells of the sulcular epithelium. Comparative evaluation of all the clinical and histologic parameters with MMP-13 expression showed high statistical significance with Spearman correlation coefficient. Elevated levels of MMP-13 may play a role in the pathogenesis of chronic periodontitis. There is a direct correlation of increased expression of MMP-13 with various clinical and histologic parameters in disease severity.
Epimorphin expression in interstitial pneumonia
Terasaki, Yasuhiro; Fukuda, Yuh; Suga, Moritaka; Ikeguchi, Naoki; Takeya, Motohiro
2005-01-01
Epimorphin modulates epithelial morphogenesis in embryonic mouse organs. We previously suggested that epimorphin contributes to repair of bleomycin-induced pulmonary fibrosis in mice via epithelium-mesenchyme interactions. To clarify the role of epimorphin in human lungs, we evaluated epimorphin expression and localization in normal lungs, lungs with nonspecific interstitial pneumonia (NSIP), and lungs with usual interstitial pneumonia (UIP); we also studied the effect of recombinant epimorphin on cultured human alveolar epithelial cells in vitro. Northern and Western blotting analyses revealed that epimorphin expression in NSIP samples were significantly higher than those in control lungs and lungs with UIP. Immunohistochemistry showed strong epimorphin expression in mesenchymal cells of early fibrotic lesions and localization of epimorphin protein on mesenchymal cells and extracellular matrix of early fibrotic lesions in the nonspecific interstitial pneumonia group. Double-labeled fluorescent images revealed expression of matrix metalloproteinase 2 in re-epithelialized cells overlying epimorphin-positive early fibrotic lesions. Immunohistochemistry and metalloproteinase activity assay demonstrated augmented expression of metalloproteinase induced by recombinant epimorphin in human alveolar epithelial cells. These findings suggest that epimorphin contributes to repair of pulmonary fibrosis in nonspecific interstitial pneumonia, perhaps partly by inducing expression of matrix metalloproteinase 2, which is an important proteolytic factor in lung remodeling. PMID:15651999
Protease-activated receptor-2 (PAR(2)) in human periodontitis.
Holzhausen, M; Cortelli, J R; da Silva, V Araújo; Franco, G C Nobre; Cortelli, S Cavalca; Vergnolle, N
2010-09-01
No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.
Mikus, Marianna; Hatvani, Lóránt; Neuhof, Torsten; Komoń-Zelazowska, Monika; Dieckmann, Ralf; Schwecke, Torsten; Druzhinina, Irina S.; von Döhren, Hans; Kubicek, Christian P.
2009-01-01
Hydrophobins are small extracellular proteins, unique to and ubiquitous in filamentous fungi, which mediate interactions between the fungus and environment. The mycoparasitic fungus Hypocrea atroviridis has recently been shown to possess 10 different class II hydrophobin genes, which is a much higher number than that of any other ascomycete investigated so far. In order to learn the potential advantage of this hydrophobin multiplicity for the fungus, we have investigated their expression patterns under different physiological conditions (e.g., vegetative growth), various conditions inducing sporulation (light, carbon starvation, and mechanical injury-induced stress), and confrontation with potential hosts for mycoparasitism. The results show that the 10 hydrophobins display different patterns of response to these conditions: one hydrophobin (encoded by hfb-2b) is constitutively induced under all conditions, whereas other hydrophobins were formed only under conditions of carbon starvation (encoded by hfb-1c and hfb-6c) or light plus carbon starvation (encoded by hfb-2c, hfb-6a, and hfb-6b). The hydrophobins encoded by hfb-1b and hfb-5a were primarily formed during vegetative growth and under mechanical injury-provoked stress. hfb-22a was not expressed under any conditions and is likely a pseudogene. None of the 10 genes showed a specific expression pattern during mycoparasitic interaction. Most, but not all, of the expression patterns under the three different conditions of sporulation were dependent on one or both of the two blue-light regulator proteins BLR1 and BLR2, as shown by the use of respective loss-of-function mutants. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of mycelial solvent extracts provided sets of molecular ions corresponding to HFB-1b, HFB-2a, HFB-2b, and HFB-5a in their oxidized and processed forms. These in silico-deduced sequences of the hydrophobins indicate cleavages at known signal peptide sites as well as additional N- and C-terminal processing. Mass peaks observed during confrontation with plant-pathogenic fungi indicate further proteolytic attack on the hydrophobins. Our study illustrates both divergent and redundant functions of the 10 hydrophobins of H. atroviridis. PMID:19329667
Haaß, Wiltrud; Kleiner, Helga; Weiß, Christel; Haferlach, Claudia; Schlegelberger, Brigitte; Müller, Martin C; Hehlmann, Rüdiger; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang
2015-01-01
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.
Li, Dayong; Zhang, Huijuan; Song, Qiuming; Wang, Lu; Liu, Shixia; Hong, Yongbo; Huang, Lei; Song, Fengming
2015-06-14
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. MMPs have been characterized in detail in mammals and shown to play key roles in many physiological and pathological processes. Although MMPs in some plant species have been identified, the function of MMPs in biotic stress responses remains elusive. A total of five MMP genes were identified in tomato genome. qRT-PCR analysis revealed that expression of Sl-MMP genes was induced with distinct patterns by infection of Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 and by treatment with defense-related hormones such as salicylic acid, jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Virus-induced gene silencing (VIGS)-based knockdown of individual Sl-MMPs and disease assays indicated that silencing of Sl3-MMP resulted in reduced resistance to B. cinerea and Pst DC3000, whereas silencing of other four Sl-MMPs did not affect the disease resistance against these two pathogens. The Sl3-MMP-silenced tomato plants responded with increased accumulation of reactive oxygen species and alerted expression of defense genes after infection of B. cinerea. Transient expression of Sl3-MMP in leaves of Nicotiana benthamiana led to an enhanced resistance to B. cinerea and upregulated expression of defense-related genes. Biochemical assays revealed that the recombinant mature Sl3-MMP protein had proteolytic activities in vitro with distinct preferences for specificity of cleavage sites. The Sl3-MMP protein was targeted onto the plasma membrane of plant cells when transiently expressed in onion epidermal cells. VIGS-based knockdown of Sl3-MMP expression in tomato and gain-of-function transient expression of Sl3-MMP in N. benthamiana demonstrate that Sl3-MMP functions as a positive regulator of defense response against B. cinerea and Pst DC3000.
Purification of phage display-modified bacteriophage T4 by affinity chromatography
2011-01-01
Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be considered as a new phage purification method, appropriate for further investigations and development. PMID:21627821
Kazemi, Rezvan; Taheri-Kafrani, Asghar; Motahari, Ahmad; Kordesedehi, Reihane
2018-06-01
Nowadays health benefits of bioactive food constituents, known as probiotic microorganisms, are a growing awareness. Cow's milk is a nutritious food containing probiotic bacteria. However, milk allergenicity is one of the most common food allergies. The milk protein, β-lactoglobulin (BLG), is in about 80% of all main cases of milk allergies for children and infants. With the aim of screening proteolytic strains of lactic acid bacteria to evaluate their potential for the reduction of allergenicity of the major bovine milk proteins, we isolated new proteolytic strains of cocci lactic acid bacteria from traditional Iranian dairy products. The proteases produced by these strains had strong proteolytic activity against BLG. Proteolysis of BLG, observed after sodium dodecyl sulfate-PAGE, was confirmed by the analysis of the peptide profiles by reversed-phase HPLC. The two isolates were submitted to 16S rDNA sequencing and identified as Lactcoccus lactis subsp. cremoris and Lactcoccus lactis subsp. hordniea. The competitive ELISA experiments confirmed that these isolates, with high proteolytic activity, reduce significantly the allergenicity of BLG. Accordingly, these isolates can reduce the immunoreactivity of bovine milk proteins, which can be helpful for the production of low-allergic dairy products. Copyright © 2018 Elsevier B.V. All rights reserved.
Proteinase activity of prevotella species associated with oral purulent infection.
Yanagisawa, Maki; Kuriyama, Tomoari; Williams, David W; Nakagawa, Kiyomasa; Karasawa, Tadahiro
2006-05-01
Prevotella intermedia and Prevotella nigrescens are often regarded as principal causes of acute dentoalveolar infection; however, other species within the genus are also known to be associated with such infection. The aim of this study was to determine the in vitro proteolytic activity of these different Prevotella species that have been implicated with dentoalveolar infection. A total of 234 strains were obtained from pus specimens from dentoalveolar infection and from the plaque of healthy volunteers. Prevotella loescheii, Prevotella oralis, Prevotella melaninogenica, Prevotella buccae, and Prevotella denticola were all shown to have a proteolytic activity (8.5-10.5 x 10(-8) A-units) lower than that of P. intermedia and P. nigrescens (21.1-23.5 x 10(-8) A-units). In the case of P. loescheii, P. melaninogenica, and P. intermedia, the level of proteolytic activity for clinical strains was significantly (P < 0.05) higher than that recorded for commensal strains. Proteolytic activity for all species of Prevotella examined was inhibited by N-ethylmaleimide and phenymethylsulfonyl fluoride. This study suggests that Prevotella species associated with oral purulent infection produce cysteine and serine proteinases and that in certain species of Prevotella, the strains involved in infection exhibit higher proteolytic activity when compared with strains from healthy sites.
ERIC Educational Resources Information Center
Pizauro, Joao M., Jr.; Ferro, Jesus A.; de Lima, Andrea C. F.; Routman, Karina S.; Portella, Maria Celia
2004-01-01
The present research describes an efficient procedure to obtain high levels of trypsinogen and chymotrypsinogen by using a simple, rapid, and easily reproducible method. The extraction process and the time-course of activation of zymogens can be carried out in a single laboratory period, without sophisticated equipment. The main objective was to…
Effects of Organophosphate Esters on Neuropeptide Systems.
1986-03-01
pathways for the synthesis and degradation of neuropeptides involve hydrolytic enzyme reactions which may be mechanistically similar to those catalyzed by...neuropeptide processing and degradation in vitro, and to assess the effect of introducing organophosphates into these systems. The methods used for the...weight precursors by proteolytic cleavage and inactivation, in which the mature neuropeptides are hydrolyzed by peptidases . More importantly
van der Vorm, E R; van der Zon, G C; Möller, W; Krans, H M; Lindhout, D; Maassen, J A
1992-01-05
In a patient with Leprechaunism, we have characterized a new mutation in the insulin receptor substituting Arg for Gly at position 31. The proband, the mother, and the maternal grandfather were heterozygous for the mutation. Fibroblasts of the proband show a strongly reduced number of high affinity insulin receptors on the cell surface, whereas fibroblasts of the healthy mother and grandfather show moderately reduced insulin receptor numbers. In the other family members neither the binding defect nor the Arg31 mutation was found. The Arg31-mutant receptor was overexpressed in Chinese hamster ovary cells. In these cells the mutant alpha beta-proreceptor was not proteolytically cleaved and no transport to the cell surface took place. The proreceptor was unable to bind insulin and to undergo autophosphorylation. In addition, the proreceptor was not recognized by monoclonal antibodies directed against conformation-dependent epitopes. These findings suggest that the Gly31 to Arg31 mutant is involved in the insulin receptor dysfunction seen in the Leprechaun patient. The mutation seems to alter the conformation of the receptor in such way that the transport of the proreceptor to the Golgi compartment, where proteolytical processing occurs, is inhibited.
Barão, Soraia; Gärtner, Annette; Leyva-Díaz, Eduardo; Demyanenko, Galina; Munck, Sebastian; Vanhoutvin, Tine; Zhou, Lujia; Schachner, Melitta; López-Bendito, Guillermina; Maness, Patricia F; De Strooper, Bart
2015-09-01
ΒACE1 is the major drug target for Alzheimer's disease, but we know surprisingly little about its normal function in the CNS. Here, we show that this protease is critically involved in semaphorin 3A (Sema3A)-mediated axonal guidance processes in thalamic and hippocampal neurons. An active membrane-bound proteolytic CHL1 fragment is generated by BACE1 upon Sema3A binding. This fragment relays the Sema3A signal via ezrin-radixin-moesin (ERM) proteins to the neuronal cytoskeleton. APH1B-γ-secretase-mediated degradation of this fragment stops the Sema3A-induced collapse and sensitizes the growth cone for the next axonal guidance cue. Thus, we reveal a cycle of proteolytic activity underlying growth cone collapse and restoration used by axons to find their correct trajectory in the brain. Our data also suggest that BACE1 and γ-secretase inhibition have physiologically opposite effects in this process, supporting the idea that combination therapy might attenuate some of the side effects associated with these drugs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
de Sousa, Karina Pires; Atouguia, Jorge; Silva, Marcelo Sousa
2010-05-01
Metalloproteinases (MMP) belong to the family of cation dependent endopeptidases that degrade matrices at physiological pH and to cleave extracellular matrix proteins. They play an important role in diverse physiological and pathological processes; not only there diverse types of MMP differ in structure and functionally, but also their enzymatic activity is regulated at multiple levels. Trying to shed some light over the processes that govern the pathology of African Trypanosomiasis, the aim of the present study was to examine the proteolytic activity of the crude trypanosome protein extract obtained from the bloodstream forms of Trypanosoma brucei brucei parasites. We hereby report the partial biochemical characterization of a neutral Trypanosoma brucei-metalloproteinase that displays marked proteolytic activities on gelatin and casein, with a molecular mass of approximately 40 kDa, whose activity is strongly dependent of pH and temperature. Furthermore, we show that this activity can be inhibited by classical MMP inhibitors such as EDTA, EGTA, phenantroline, and also by tetracycline and derivatives. This study has a relevant role in the search for new therapeutical targets, for the use of metalloproteinases inhibitors as treatment strategies, or as enhancement to trypanocidal drugs used in the treatment of the disease.
Cohen, Itay; Kayode, Olumide; Hockla, Alexandra; Sankaran, Banumathi; Radisky, Derek C; Radisky, Evette S; Papo, Niv
2016-05-15
Engineered protein therapeutics offer advantages, including strong target affinity, selectivity and low toxicity, but like natural proteins can be susceptible to proteolytic degradation, thereby limiting their effectiveness. A compelling therapeutic target is mesotrypsin, a protease up-regulated with tumour progression, associated with poor prognosis, and implicated in tumour growth and progression of many cancers. However, with its unique capability for cleavage and inactivation of proteinaceous inhibitors, mesotrypsin presents a formidable challenge to the development of biological inhibitors. We used a powerful yeast display platform for directed evolution, employing a novel multi-modal library screening strategy, to engineer the human amyloid precursor protein Kunitz protease inhibitor domain (APPI) simultaneously for increased proteolytic stability, stronger binding affinity and improved selectivity for mesotrypsin inhibition. We identified a triple mutant APPIM17G/I18F/F34V, with a mesotrypsin inhibition constant (Ki) of 89 pM, as the strongest mesotrypsin inhibitor yet reported; this variant displays 1459-fold improved affinity, up to 350 000-fold greater specificity and 83-fold improved proteolytic stability compared with wild-type APPI. We demonstrated that APPIM17G/I18F/F34V acts as a functional inhibitor in cell-based models of mesotrypsin-dependent prostate cancer cellular invasiveness. Additionally, by solving the crystal structure of the APPIM17G/I18F/F34V-mesotrypsin complex, we obtained new insights into the structural and mechanistic basis for improved binding and proteolytic resistance. Our study identifies a promising mesotrypsin inhibitor as a starting point for development of anticancer protein therapeutics and establishes proof-of-principle for a novel library screening approach that will be widely applicable for simultaneously evolving proteolytic stability in tandem with desired functionality for diverse protein scaffolds. © 2016 Authors; published by Portland Press Limited.
Bad seeds produce bad crops: a single stage-process of prostate tumor invasion
Man, Yan-gao; Gardner, William A.
2008-01-01
It is a commonly held belief that prostate carcinogenesis is a multi-stage process and that tumor invasion is triggered by the overproduction of proteolytic enzymes. This belief is consistent with data from cell cultures and animal models, whereas is hard to interpret several critical facts, including the presence of cancer in “healthy” young men and cancer DNA phenotype in morphologically normal prostate tissues. These facts argue that alternative pathways may exist for prostate tumor invasion in some cases. Since degradation of the basal cell layer is the most distinct sign of invasion, our recent studies have attempted to identify pre-invasive lesions with focal basal cell layer alterations. Our studies revealed that about 30% of prostate cancer patients harbored normal appearing duct or acinar clusters with a high frequency of focal basal cell layer disruptions. These focally disrupted basal cell layers had significantly reduced cell proliferation and tumor suppressor expression, whereas significantly elevated degeneration, apoptosis, and infiltration of immunoreactive cells. In sharp contrast, associated epithelial cell had significantly elevated proliferation, expression of malignancy-signature markers, and physical continuity with invasive lesions. Based on these and other findings, we have proposed that these normal appearing duct or acinar clusters are derived from monoclonal proliferation of genetically damaged stem cells and could progress directly to invasion through two pathways: 1) clonal in situ transformation (CIST) and 2) multi-potential progenitor mediated “budding” (MPMB). These pathways may contribute to early onset of prostate cancer at young ages, and to clinically more aggressive prostate tumors. PMID:18725981
Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L.; Jerome, Jacob A.; Madsen, Daniel H.; Christofidou-Solomidou, Melpo; Speicher, David W.; Bachovchin, William W.; Feghali-Bostwick, Carol; Puré, Ellen
2016-01-01
Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung. PMID:26663085
[Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG's) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined bymore » isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.« less
[Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG`s) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined bymore » isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.« less
Tozzo, Kamila; Neto, Américo F G; Spercoski, Katherinne M; Ronnau, Milton; Soares, Vanessa M; Bersot, Luciano S
2018-02-01
Salmonella spp. have been shown to migrate to the internal regions of meat cuts. Storage conditions and the presence of proteolytic microbiota can influence this process. Our study assessed the impact of storage time, temperature, and the presence of proteolytic psychrotrophic bacteria on migration. Samples of previously frozen chicken breast with skin and bone were then sterilized using gamma ray irradiation and a cobalt-60 source (11 KGy) and them were inoculated with cultures of S. Enteritidis, S. Enteritidis and psychrotrophs, S. Heidelberg, or S. Heidelberg and psychrotrophs. Inoculated samples were stored for 6, 12, 24, 48, or 168 h at 2, 7, or -30 °C. After treatment, samples were divided into similar-sized segments and bacterial counts were determined in different regions (A - superface, B - intermediate region, and C - internal region). S. Heidelberg and S. Enteritidis both demonstrated successful internal migration for each time, temperature, and bacterial combination (p < 0.05). Our data revealed that Salmonella migration proceeded for 24 h, but slowed at 48 h (p < 0.05). S. Enteritidis with psychrotrophs showed a low amount of internal migration (p < 0.05). We therefore conclude that Salmonella spp. are able to migrate into the internal regions of meat cuts in a short period of time, even at low temperatures. The presence of proteolytic psychrotrophs inhibits the migration of S. Enteritidis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ortiz, Gastón Ezequiel; Noseda, Diego Gabriel; Ponce Mora, María Clara; Recupero, Matías Nicolás; Blasco, Martín; Albertó, Edgardo
2016-01-01
A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (E a), quotient energy (Q 10), K m, and V max were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively. PMID:26989505
Papagianni, Maria
2014-01-01
A number of novel Penicillium strains belonging to Penicillium nalgiovense, Penicillium solitum, Penicillium commune, Penicillium olsonii, and Penicillium oxalicum species, isolated from the surface of traditional Greek sausages, were evaluated for their proteolytic and lipolytic potential in a solid substrate first and next in submerged fermentations, using complex media. Extracellular proteolytic activity was assessed at acid, neutral, and alkaline pH, while the lipolytic activity was assessed using olive oil, the short-chain triacylglycerol tributyrin, and the long-chain triolein, as substrates. The study revealed that although closely related, the tested strains produce enzymes of distinct specificities. P. nalgiovense PNA9 produced the highest alkaline proteolytic activity (13.2 unit (U)/ml) and the highest lipolytic activity with tributyrin (92 U/ml). Comparisons with known sources show that proteases and/or lipases can be secreted effectively by some Penicillia (P. nalgiovense PNA4, PNA7, and PNA9 and P. solitum PSO1), and further investigations on their properties and characteristics would be promising.
The role of microRNAs in the pathogenesis of MMPi-induced skin fibrodysplasia
2013-01-01
Background Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes involved in extracellular matrix (ECM) homeostasis. MMPs have been an attractive pharmacological target for a number of indications. However, development has been hampered by the propensity of compounds targeting these enzymes to cause connective-tissue pathologies. The broad-spectrum MMP-inhibitor (MMPi) AZM551248 has been shown to induce such effects in the dog. Histopathological changes were consistent with fibrodysplasia (FD), characterised by fibroblast proliferation and the deposition of collagen in the subcutaneous tissues. We conducted a time-course study administering 20mg/kg/day AZM551248 between 4 and 17 days. Cervical subcutaneous tissue and plasma were sampled during the time-course. miRNA expression profiles in subcutaneous skin specimens following the administration of AZM551248 were determined by high-throughput-sequencing. Results An increasing number of miRNAs were differentially expressed compared with vehicle treated control animals as the study progressed. Several of these were members of the miR-200 family and were significantly attenuated in response to MMPi. As the severity of FD increased at the later time-points, other miRNAs associated with TGFβ synthesis and regulation of the acute inflammatory response were modulated. Evidence indicative of epithelial to mesenchymal transition was present at all study time points. Receiver operator curve (ROC) analysis revealed that miR-21 expression in the cervical subcutaneous tissue was a sensitive and specific biomarker of FD incidence. Conclusions Our data reveal significant perturbations in canine skin miRNA expression in response to MMPi administration. Furthermore, we have identified dysregulated miRNAs that are associated with processes relevant to the key histopathological events of MMPi-induced FD. PMID:23688202
Kulski, Jerzy K; Kenworthy, William; Bellgard, Matthew; Taplin, Ross; Okamoto, Koichi; Oka, Akira; Mabuchi, Tomotaka; Ozawa, Akira; Tamiya, Gen; Inoko, Hidetoshi
2005-12-01
Gene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. HUG95A Affymetrix DNA chips that contained oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student t-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signalling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases, including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T cells. Some of the up-regulated genes, such as TGM1, IVL, FABP5, CSTA and SPRR, are well-known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the up-regulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic interferon- and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.
Xiao, Li-Jie; Lin, Ping; Lin, Feng; Liu, Xin; Qin, Wei; Zou, Hai-Feng; Guo, Liang; Liu, Wei; Wang, Shu-Juan; Yu, Xiao-Guang
2012-05-01
ADAM17, also known as tumor necrosis factor-α converting enzyme (TACE), is involved in proteolytic ectodomain shedding of cell surface molecules and cytokines. Although aberrant expression of ADAM17 has been shown in various malignancies, the function of ADAM17 in prostate cancer has not been clarified. In the present study, we sought to elucidate whether ADAM17 contributes to prostate cancer cell invasion, as well as the mechanism involved in the process. The expression pattern of ADAM17 was investigated in human prostate cancer cells. The results showed that ADAM17 expression levels are correlated with the invasive ability of androgen-independent prostate cancer cell lines. Further, ADAM17 was overexpressed in cells showing high invasion characteristics, activation of the EGFR-MEK-ERK pathway, up-regulation of MMP-2, MMP-9, and an increased TGF-α release into the supernatant. However, AG1478, PD98059 and antibody against TGF-α deactivating the EGFR-MEK-ERK signaling pathway, abolished up-regulation of MMP-2, MMP-9 and prevented cell invasion. In addition, cells with knockdown of ADAM17 by siRNA exhibited low invasive ability, deactivated EGFR-MEK-ERK signaling pathway, reduced TGF-α released and down-regulation of MMP-2, MMP-9. However, these effects could be reversed by simultaneous addition of TGF-α. These data demonstrated that ADAM17 contributes to androgen-independent prostate cancer cell invasion by shedding of EGFR ligand TGF-α, which subsequently activates the EGFR-MEK-ERK signaling pathway, leading finally to overexpression of MMP-2 and MMP-9. This study suggests that the ADAM17 expression level may be a new predictive biomarker of invasion and metastasis of prostate cancer, and ADAM17 could provide a target for treating metastatic PCa.
Chesnokova, Liudmila S; Ahuja, Munish K; Hutt-Fletcher, Lindsey M
2014-11-01
Epstein-Barr virus (EBV) fusion with an epithelial cell requires virus glycoproteins gHgL and gB and is triggered by an interaction between gHgL and integrin αvβ5, αvβ6, or αvβ8. Fusion with a B cell requires gHgL, gp42, and gB and is triggered by an interaction between gp42 and human leukocyte antigen class II. We report here that, like alpha- and betaherpesviruses, EBV, a gammaherpesvirus, can mediate cell fusion if gB and gHgL are expressed in trans. Entry of a gH-null virus into an epithelial cell is possible if the epithelial cell expresses gHgL, and entry of the same virus, which phenotypically lacks gHgL and gp42, into a B cell expressing gHgL is possible in the presence of a soluble integrin. Heat is capable of inducing the fusion of cells expressing only gB, and the proteolytic digestion pattern of gB in virions changes in the same way following the exposure of virus to heat or to soluble integrins. It is suggested that the Gibbs free energy released as a result of the high-affinity interaction of gHgL with an integrin contributes to the activation energy required to cause the refolding of gB from a prefusion to a postfusion conformation. The core fusion machinery of herpesviruses consists of glycoproteins gB and gHgL. We demonstrate that as in alpha- and betaherpesvirus, gB and gHgL of the gammaherpesvirus EBV can mediate fusion and entry when expressed in trans in opposing membranes, implicating interactions between the ectodomains of the proteins in the activation of fusion. We further show that heat and exposure to a soluble integrin, both of which activate fusion, result in the same changes in the proteolytic digestion pattern of gB, possibly representing the refolding of gB from its prefusion to its postfusion conformation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Chesnokova, Liudmila S.; Ahuja, Munish K.
2014-01-01
ABSTRACT Epstein-Barr virus (EBV) fusion with an epithelial cell requires virus glycoproteins gHgL and gB and is triggered by an interaction between gHgL and integrin αvβ5, αvβ6, or αvβ8. Fusion with a B cell requires gHgL, gp42, and gB and is triggered by an interaction between gp42 and human leukocyte antigen class II. We report here that, like alpha- and betaherpesviruses, EBV, a gammaherpesvirus, can mediate cell fusion if gB and gHgL are expressed in trans. Entry of a gH-null virus into an epithelial cell is possible if the epithelial cell expresses gHgL, and entry of the same virus, which phenotypically lacks gHgL and gp42, into a B cell expressing gHgL is possible in the presence of a soluble integrin. Heat is capable of inducing the fusion of cells expressing only gB, and the proteolytic digestion pattern of gB in virions changes in the same way following the exposure of virus to heat or to soluble integrins. It is suggested that the Gibbs free energy released as a result of the high-affinity interaction of gHgL with an integrin contributes to the activation energy required to cause the refolding of gB from a prefusion to a postfusion conformation. IMPORTANCE The core fusion machinery of herpesviruses consists of glycoproteins gB and gHgL. We demonstrate that as in alpha- and betaherpesvirus, gB and gHgL of the gammaherpesvirus EBV can mediate fusion and entry when expressed in trans in opposing membranes, implicating interactions between the ectodomains of the proteins in the activation of fusion. We further show that heat and exposure to a soluble integrin, both of which activate fusion, result in the same changes in the proteolytic digestion pattern of gB, possibly representing the refolding of gB from its prefusion to its postfusion conformation. PMID:25142593
Unajak, Sasimanas; Aroonluke, Suradet; Promboon, Amornrat
2015-04-01
Cocoonase is a serine protease produced by silk moths and used for softening the cocoons so that they can escape. Degumming is one of the important steps in silk processing. This research aimed to produce an active recombinant Bombyx mori cocoonase (BmCoc) for the silk degumming process. A recombinant BmCoc was successfully expressed in a Pichia pastoris system. The purified enzyme showed specific activity of 227 U mg(-1) protein, 2.4-fold purification, 95% yield and a molecular weight of 26 kDa. The enzyme exhibited optimal temperature at 40 °C and optimal pH at 8, and showed thermal stability at 25-45 °C and pH stability at 5-9. The recombinant enzyme exhibited sericin degumming ability and color bleaching characteristics, and did not affect the fibroin fiber. The enzyme also degraded sericin substrate with a product size about 30-70 kDa. In this study, we successfully produced the active recombinant BmCoc in P. pastoris with promising functions for the Thai silk degumming process, which includes degumming, sericin degrading and color bleaching activities. Our data clearly indicated that the recombinant enzyme had proteolytic activity on sericin but not on fibroin proteins. The recombinant BmCoc has proven to be suitable for numerous applications in the silk industry. © 2014 Society of Chemical Industry.
Hoffmann, E; Streichert, K; Nischan, N; Seitz, C; Brunner, T; Schwagerus, S; Hackenberger, C P R; Rubini, M
2016-05-24
The covalent attachment of polyethylene glycol (PEG) to therapeutic proteins can improve their physicochemical properties. In this work we utilized the non-natural amino acid p-azidophenylalanine (pAzF) in combination with the chemoselective Staudinger-phosphite reaction to install branched PEG chains to recombinant unglycosylated erythropoietin (EPO) at each single naturally occurring glycosylation site. PEGylation with two short 750 or 2000 Da PEG units at positions 24, 38, or 83 significantly decreased unspecific aggregation and proteolytic degradation while biological activity in vitro was preserved or even increased in comparison to full-glycosylated EPO. This site-specific bioconjugation approach permits to analyse the impact of PEGylation at single positions. These results represent an important step towards the engineering of site-specifically modified EPO variants from bacterial expression with increased therapeutic efficacy.
Qiu, T; Lu, R H; Zhang, J; Zhu, Z Y
2001-07-01
The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mu1 of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mu1.
Egel-Mitani; Andersen; Diers; Hach; Thim; Hastrup; Vad
2000-06-01
Heterologous protein expression levels in Saccharomyces cerevisiae fermentations are highly dependent on the susceptibility to endogenous yeast proteases. Small peptides, such as glucagon and glucagon-like-peptides (GLP-1 and GLP-2), featuring an open structure are particularly accessible for proteolytic degradation during fermentation. Therefore, homogeneous products cannot be obtained. The most sensitive residues are found at basic amino acid residues in the peptide sequence. These heterologous peptides are degraded mainly by the YPS1-encoded aspartic protease, yapsin1, when produced in the yeast. In this article, distinct degradation products were analyzed by HPLC and mass spectrometry, and high yield of the heterologous peptide production has been achieved by the disruption of the YPS1 gene (previously called YAP3). By this technique, high yield continuous fermentation of glucagon in S. cerevisiae is now possible.
Barnett, Timothy C.; Liebl, David; Seymour, Lisa M.; Gillen, Christine M.; Lim, Jin Yan; LaRock, Christopher N.; Davies, Mark R.; Schulz, Benjamin L.; Nizet, Victor; Teasdale, Rohan D.; Walker, Mark J.
2014-01-01
SUMMARY Autophagy is reported to be an important innate immune defence against the intracellular bacterial pathogen Group A Streptococcus (GAS). However, the GAS strains examined to-date belong to serotypes infrequently associated with human disease. We find that the globally disseminated serotype M1T1 clone of GAS can evade autophagy and replicate efficiently in the cytosol of infected cells. Cytosolic M1T1 GAS (strain 5448), but not M6 GAS (strain JRS4), avoids ubiquitylation and recognition by the host autophagy marker LC3 and ubiquitin-LC3 adaptor proteins NDP52, p62 and NBR1. Expression of SpeB, a streptococcal cysteine protease, is critical for this process, as an isogenic M1T1 ΔspeB mutant is targeted to autophagy and attenuated for intracellular replication. SpeB degrades p62, NDP52 and NBR1 in vitro and within the host cell cytosol. These results uncover a proteolytic mechanism utilized by GAS to escape the host autophagy pathway which may underpin the success of the M1T1 clone. PMID:24331465
Maruri-López, Israel; Rodríguez-Kessler, Margarita; Rodríguez-Hernández, Aída Araceli; Becerra-Flora, Alicia; Olivares-Grajales, Juan Elías; Jiménez-Bremont, Juan Francisco
2014-05-01
Polyamines are low molecular weight aliphatic compounds involved in various biochemical, cellular and physiological processes in all organisms. In plants, genes involved in polyamine biosynthesis and catabolism are regulated at transcriptional, translational, and posttranslational level. In this research, we focused on the characterization of a PEST sequence (rich in proline, glutamic acid, serine, and threonine) of the maize spermine synthase 1 (ZmSPMS1). To this aim, 123 bp encoding 40 amino acids of the C-terminal region of the ZmSPMS1 enzyme containing the PEST sequence were fused to the GUS reporter gene. This fusion was evaluated in Arabidopsis thaliana transgenic lines and onion monolayers transient expression system. The ZmSPMS1 PEST sequence leads to specific degradation of the GUS reporter protein. It is suggested that the 26S proteasome may be involved in GUS::PEST fusion degradation in both onion and Arabidopsis. The PEST sequences appear to be present in plant spermine synthases, mainly in monocots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Trypanosoma brucei Metacaspase 4 Is a Pseudopeptidase and a Virulence Factor*
Proto, William R.; Castanys-Munoz, Esther; Black, Alana; Tetley, Laurence; Moss, Catherine X.; Juliano, Luiz; Coombs, Graham H.; Mottram, Jeremy C.
2011-01-01
Metacaspases are caspase family cysteine peptidases found in plants, fungi, and protozoa but not mammals. Trypanosoma brucei is unusual in having five metacaspases (MCA1–MCA5), of which MCA1 and MCA4 have active site substitutions, making them possible non-enzymatic homologues. Here we demonstrate that recombinant MCA4 lacks detectable peptidase activity despite maintaining a functional peptidase structure. MCA4 is expressed primarily in the bloodstream form of the parasite and associates with the flagellar membrane via dual myristoylation/palmitoylation. Loss of function phenotyping revealed critical roles for MCA4; rapid depletion by RNAi caused lethal disruption to the parasite's cell cycle, yet the generation of MCA4 null mutant parasites (Δmca4) was possible. Δmca4 had normal growth in axenic culture but markedly reduced virulence in mice. Further analysis revealed that MCA4 is released from the parasite and is specifically processed by MCA3, the only metacaspase that is both palmitoylated and enzymatically active. Accordingly, we have identified that the multiple metacaspases in T. brucei form a membrane-associated proteolytic cascade to generate a pseudopeptidase virulence factor. PMID:21949125
Salvador, Lilibeth A.; Taori, Kanchan; Biggs, Jason S.; Jakoncic, Jean; Ostrov, David A.; Paul, Valerie J.; Luesch, Hendrik
2013-01-01
We discovered new structural diversity to a prevalent, yet medicinally underappreciated, cyanobacterial protease inhibitor scaffold and undertook comprehensive protease profiling to reveal potent and selective elastase inhibition. SAR and X-ray cocrystal structure analysis allowed a detailed assessment of critical and tunable structural elements. To realize the therapeutic potential of these cyclodepsipeptides, we probed the cellular effects of a novel and representative family member, symplostatin 5 (1), which attenuated the downstream cellular effects of elastase in an epithelial lung airway model system, alleviating clinical hallmarks of chronic pulmonary diseases such as cell death, cell detachment and inflammation. This compound attenuated the effects of elastase on receptor activation, proteolytic processing of the adhesion protein ICAM-1, NF-κB activation and transcriptomic changes, including the expression of pro-inflammatory cytokines IL1A, IL1B and IL8. Compound 1 exhibited activity comparable to the clinically-approved elastase inhibitor sivelestat in short-term assays and demonstrated superior sustained activity in longer-term assays. PMID:23350733
Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Haupenthal, Viola J; Blümel, Tamara; Stötzel, Hannah; Grimm, Heike S; Hartmann, Tobias
2016-12-01
Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major Aβ-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aβ-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aβ production, EPA and DHA might ameliorate AD pathology by increasing Aβ turnover.
Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?
Sampaio-Marques, Belém; Felgueiras, Carolina; Silva, Alexandra; Rodrigues, Fernando; Ludovico, Paula
2011-10-01
Autophagy, a highly conserved proteolytic mechanism of quality control, is essential for the maintenance of metabolic and cellular homoeostasis and for an efficient cellular response to stress. Autophagy declines with aging and is believed to contribute to different aspects of the aging phenotype. The nutrient-sensing pathways PKA (protein kinase A), Sch9 and TOR (target of rapamycin), involved in the regulation of yeast lifespan, also converge on a common targeted process: autophagy. The molecular mechanisms underlying the regulation of autophagy and aging by these signalling pathways in yeast, with special attention to the TOR pathway, are discussed in the present paper. The question of whether or not autophagy could contribute to yeast cell death occurring during CLS (chronological lifespan) is discussed in the light of our findings obtained after autophagy activation promoted by proteotoxic stress. Autophagy progressively increases in cells expressing the aggregation-prone protein α-synuclein and seems to participate in the early cell death and shortening of CLS under these conditions, highlighting that autophagic activity should be maintained below physiological levels to exert its promising anti-aging effects.
Preliminary crystallographic analysis of avian infectious bronchitis virus main protease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Shen, Wei; Liao, Ming, E-mail: mliao@scau.edu.cn
The avian infectious bronchitis virus main protease has been crystallized; crystals diffract to 2.7 Å resolution. Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus. It causes a highly contagious disease which affects the respiratory, reproductive, neurological and renal systems of chickens, resulting great economic losses in the poultry industry worldwide. The coronavirus (CoV) main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, is an attractive target for antiviral drug design. In this study, IBV M{sup pro} was overexpressed inmore » Escherichia coli. Crystals suitable for X-ray crystallography have been obtained using microseeding techniques and belong to space group P6{sub 1}22. X-ray diffraction data were collected in-house to 2.7 Å resolution from a single crystal. The unit-cell parameters were a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120°. Three molecules were predicted to be present in the asymmetric unit from a calculated self-rotation function.« less
PAR-1 and PAR-2 Expression Is Enhanced in Inflamed Odontoblast Cells.
Alvarez, M M P; Moura, G E; Machado, M F M; Viana, G M; de Souza Costa, C A; Tjäderhane, L; Nader, H B; Tersariol, I L S; Nascimento, F D
2017-12-01
Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS 42 ↓F 43 LL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR 20 ↓S 21 LIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.
Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines*
Repnik, Urska; Starr, Amanda E.; Overall, Christopher M.; Turk, Boris
2015-01-01
Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9–12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca2+ mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9–12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation. PMID:25833952
Jakubiec, Anna; Drugeon, Gabrièle; Camborde, Laurent; Jupin, Isabelle
2007-01-01
Turnip yellow mosaic virus (TYMV), a positive-strand RNA virus belonging to the alphavirus-like supergroup, encodes its nonstructural replication proteins as a 206K precursor with domains indicative of methyltransferase (MT), proteinase (PRO), NTPase/helicase (HEL), and polymerase (POL) activities. Subsequent processing of 206K generates a 66K protein encompassing the POL domain and uncharacterized 115K and 85K proteins. Here, we demonstrate that TYMV proteinase mediates an additional cleavage between the PRO and HEL domains of the polyprotein, generating the 115K protein and a 42K protein encompassing the HEL domain that can be detected in plant cells using a specific antiserum. Deletion and substitution mutagenesis experiments and sequence comparisons indicate that the scissile bond is located between residues Ser879 and Gln880. The 85K protein is generated by a host proteinase and is likely to result from nonspecific proteolytic degradation occurring during protein sample extraction or analysis. We also report that TYMV proteinase has the ability to process substrates in trans in vivo. Finally, we examined the processing of the 206K protein containing native, mutated, or shuffled cleavage sites and analyzed the effects of cleavage mutations on viral infectivity and RNA synthesis by performing reverse-genetics experiments. We present evidence that PRO/HEL cleavage is critical for productive virus infection and that the impaired infectivity of PRO/HEL cleavage mutants is due mainly to defective synthesis of positive-strand RNA. PMID:17686855
Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization.
Driffort, Virginie; Gillet, Ludovic; Bon, Emeline; Marionneau-Lambot, Séverine; Oullier, Thibauld; Joulin, Virginie; Collin, Christine; Pagès, Jean-Christophe; Jourdan, Marie-Lise; Chevalier, Stéphan; Bougnoux, Philippe; Le Guennec, Jean-Yves; Besson, Pierre; Roger, Sébastien
2014-12-11
Na(V)1.5 voltage-gated sodium channels are abnormally expressed in breast tumours and their expression level is associated with metastatic occurrence and patients' death. In breast cancer cells, Na(V)1.5 activity promotes the proteolytic degradation of the extracellular matrix and enhances cell invasiveness. In this study, we showed that the extinction of Na(V)1.5 expression in human breast cancer cells almost completely abrogated lung colonisation in immunodepressed mice (NMRI nude). Furthermore, we demonstrated that ranolazine (50 μM) inhibited Na(V)1.5 currents in breast cancer cells and reduced Na(V)1.5-related cancer cell invasiveness in vitro. In vivo, the injection of ranolazine (50 mg/kg/day) significantly reduced lung colonisation by Na(V)1.5-expressing human breast cancer cells. Taken together, our results demonstrate the importance of Na(V)1.5 in the metastatic colonisation of organs by breast cancer cells and indicate that small molecules interfering with Na(V) activity, such as ranolazine, may represent powerful pharmacological tools to inhibit metastatic development and improve cancer treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinsil; Ha, Hye-Jeong; Kim, Sujin
Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that anmore » rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.« less
Antimicrobial activity of an aspartic protease from Salpichroa origanifolia fruits.
Díaz, M E; Rocha, G F; Kise, F; Rosso, A M; Guevara, M G; Parisi, M G
2018-05-08
Plant proteases play a fundamental role in several processes like growth, development and in response to biotic and abiotic stress. In particular, aspartic proteases (AP) are expressed in different plant organs and have antimicrobial activity. Previously, we purified an AP from Salpichroa origanifolia fruits called salpichroin. The aim of this work was to determine the cytotoxic activity of this enzyme on selected plant and human pathogens. For this purpose, the growth of the selected pathogens was analysed after exposure to different concentrations of salpichroin. The results showed that the enzyme was capable of inhibiting Fusarium solani and Staphylococcus aureus in a dose-dependent manner. It was determined that 1·2 μmol l -1 of salpichroin was necessary to inhibit 50% of conidial germination, and the minimal bactericidal concentration was between 1·9 and 2·5 μmol l -1 . Using SYTOX Green dye we were able to demonstrate that salpichroin cause membrane permeabilization. Moreover, the enzyme treated with its specific inhibitor pepstatin A did not lose its antibacterial activity. This finding demonstrates that the cytotoxic activity of salpichroin is due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of the AP could represent a potential alternative for the control of pathogens that affect humans or crops of economic interest. This study provides insights into the antimicrobial activity of an aspartic protease isolated from Salpichroa origanifolia fruits on plant and human pathogens. The proteinase inhibited Fusarium solani and Staphylococcus aureus in a dose-dependent manner due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of salpichroin suggests its potential applications as an important tool for the control of pathogenic micro-organisms affecting humans and crops of economic interest. Therefore, it would represent a new alternative to avoid the problems of environmental pollution and antimicrobial resistance. © 2018 The Society for Applied Microbiology.
Tandem SUMO fusion vectors for improving soluble protein expression and purification.
Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo
2015-12-01
Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.
Schmitt, Manfred; Magdolen, Viktor; Yang, Feng; Kiechle, Marion; Bayani, Jane; Yousef, George M.; Scorilas, Andreas; Diamandis, Eleftherios P.; Dorn, Julia
2013-01-01
Background Tumor tissue-associated KLKs (kallikrein-related peptidases) are clinically important biomarkers that may allow prognosis of the cancer disease and/or prediction of response/failure of cancer patients to cancer-directed drugs. Regarding the female/male reproductive tract, remarkably, all of the fifteen KLKs are expressed in the normal prostate, breast, cervix uteri, and the testis, whereas the uterus/endometrium and the ovary are expressing a limited number of KLKs only. Conclusions Most of the information regarding elevated expression of KLKs in tumor-affected organs is available for ovarian cancer; depicting them as valuable biomarkers in the cancerous phenotype. In contrast, for breast cancer, a series of KLKs was found to be downregulated. However, in breast cancer, KLK4 is elevated which is also true for ovarian and prostate cancer. In such cases, selective synthetic KLK inhibitors that aim at blocking the proteolytic activities of certain KLKs may serve as future candidate therapeutic drugs to interfere with tumor progression and metastasis. PMID:24294176
Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Qin, Lei; Du, Ming
2017-11-01
Cathepsin D (CTSD, EC 3.4.23.5) belongs to aspartic protease family, which is located in lysosomes and is distributed in diverse tissues and cells. CTSD has a wide variety of physiological functions, owing to its proteolytic activity in degradating proteins and peptides. In the current study, the full length cDNA of sea cucumber (Apostichopus japonicus) cathepsin D (AjCTSD) was firstly cloned, then the association between AjCTSD and sea cucumber autolysis was investigated. The full length cDNA of AjCTSD was 2896 bp, with an open reading frame (ORF) for 391 amino acids. AjCTSD was widely expressed in body wall, muscle and intestine; the expression level was the highest in intestine, followed by muscle and body wall. Compared to fresh tissues, AjCTSD expression levels were significantly increased in all examined autolytic tissues. The purified recombinant AjCTSD promoted the degradation of sea cucumber muscle. In conclusion, AjCTSD contributed to sea cucumber muscle autolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 67.
1977-03-30
and Ecological Problems 14 Molecular Biology 23 Pharmacology. 25 Physiology. 27 Public Health 46 Radiobiology 48 Therapy . 49 BEHAVIORAL...normalizing metabolic processes be included in the complex therapy . USSR UDC 612.3 616.3 DIGESTIBILITY OF VEGETARIAN FISH MEAT PROTEINS BY PROTEOLYTIC...inactivation of one hemisphere, arising after unilateral electroconvulsive seizure, a study was made of the intelli- gibility of phonemes (vowels and
Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia.
Shimada, T; Mizutani, S; Muto, T; Yoneya, T; Hino, R; Takeda, S; Takeuchi, Y; Fujita, T; Fukumoto, S; Yamashita, T
2001-05-22
Tumor-induced osteomalacia (TIO) is one of the paraneoplastic diseases characterized by hypophosphatemia caused by renal phosphate wasting. Because removal of responsible tumors normalizes phosphate metabolism, an unidentified humoral phosphaturic factor is believed to be responsible for this syndrome. To identify the causative factor of TIO, we obtained cDNA clones that were abundantly expressed only in a tumor causing TIO and constructed tumor-specific cDNA contigs. Based on the sequence of one major contig, we cloned 2,270-bp cDNA, which turned out to encode fibroblast growth factor 23 (FGF23). Administration of recombinant FGF23 decreased serum phosphate in mice within 12 h. When Chinese hamster ovary cells stably expressing FGF23 were s.c. implanted into nude mice, hypophosphatemia with increased renal phosphate clearance was observed. In addition, a high level of serum alkaline phosphatase, low 1,25-dihydroxyvitamin D, deformity of bone, and impairment of body weight gain became evident. Histological examination showed marked increase of osteoid and widening of growth plate. Thus, continuous production of FGF23 reproduced clinical, biochemical, and histological features of TIO in vivo. Analyses for recombinant FGF23 products produced by Chinese hamster ovary cells indicated proteolytic cleavage of FGF23 at the RXXR motif. Recent genetic study indicates that missense mutations in this RXXR motif of FGF23 are responsible for autosomal dominant hypophosphatemic rickets, another hypophosphatemic disease with similar features to TIO. We conclude that overproduction of FGF23 causes TIO, whereas mutations in the FGF23 gene result in autosomal dominant hypophosphatemic rickets possibly by preventing proteolytic cleavage and enhancing biological activity of FGF23.
Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia
Shimada, Takashi; Mizutani, Satoru; Muto, Takanori; Yoneya, Takashi; Hino, Rieko; Takeda, Shu; Takeuchi, Yasuhiro; Fujita, Toshiro; Fukumoto, Seiji; Yamashita, Takeyoshi
2001-01-01
Tumor-induced osteomalacia (TIO) is one of the paraneoplastic diseases characterized by hypophosphatemia caused by renal phosphate wasting. Because removal of responsible tumors normalizes phosphate metabolism, an unidentified humoral phosphaturic factor is believed to be responsible for this syndrome. To identify the causative factor of TIO, we obtained cDNA clones that were abundantly expressed only in a tumor causing TIO and constructed tumor-specific cDNA contigs. Based on the sequence of one major contig, we cloned 2,270-bp cDNA, which turned out to encode fibroblast growth factor 23 (FGF23). Administration of recombinant FGF23 decreased serum phosphate in mice within 12 h. When Chinese hamster ovary cells stably expressing FGF23 were s.c. implanted into nude mice, hypophosphatemia with increased renal phosphate clearance was observed. In addition, a high level of serum alkaline phosphatase, low 1,25-dihydroxyvitamin D, deformity of bone, and impairment of body weight gain became evident. Histological examination showed marked increase of osteoid and widening of growth plate. Thus, continuous production of FGF23 reproduced clinical, biochemical, and histological features of TIO in vivo. Analyses for recombinant FGF23 products produced by Chinese hamster ovary cells indicated proteolytic cleavage of FGF23 at the RXXR motif. Recent genetic study indicates that missense mutations in this RXXR motif of FGF23 are responsible for autosomal dominant hypophosphatemic rickets, another hypophosphatemic disease with similar features to TIO. We conclude that overproduction of FGF23 causes TIO, whereas mutations in the FGF23 gene result in autosomal dominant hypophosphatemic rickets possibly by preventing proteolytic cleavage and enhancing biological activity of FGF23. PMID:11344269
Shapira, Assaf; Gal-Tanamy, Meital; Nahary, Limor; Litvak-Greenfeld, Dana; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai
2011-01-01
The synthesis of inactive enzyme precursors, also known as “zymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated “zymogenized” chimeric toxins (which we denote “zymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the “zymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected. PMID:21264238